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Introduction

Foreword

Algebraic modelling languages are recognised as an important tool in the formulation of mathematical
programming problems. They facilitate the construction of models through a language that resembles
mathematical notation, and offer convenient features such as automatic differentiation and direct inter-
facing to solvers. Their use vastly reduces the need for tedious and error-prone coding work. Examples
of popular modelling languages are AMPL [4], GAMS [2], AIMMS [1] and Xpress-Mosel [3].

SML (Structured Modelling Language) attempts build on these traditional approaches while encapsu-
lating the structure of the problem. As such it encapsulates the AMPL syntax in an object oriented
fashion. We believe that objec-oriented modelling will eventually confer the following benefits:

Clarity of modelling, reducing the apparent complexity of models

Reusability of model parts, reducing errors and allowing more complex systems to be modelled.
(Planned for later releases)

Speed of solution, encouraging a structured model which can be exploited by transparently passing
structural information to the solver.

References

It would be greatly appreciated if users would cite the following references in work that uses SML:

• Marco Colombo, Andreas Grothey, Jonathan Hogg, Kristian Woodsend and Jacek
Gondzio, A Structure-Conveying Modelling Language for Mathematical and Stochastic Program-
ming, Technical Report ERGO 09-003, School of Mathematics. Accepted for publication in Math-
ematical Programming Computation.

• Andreas Grothey, Jonathan Hogg, Kristian Woodsend, Marco Colombo and Jacek
Gondzio, A Structure Conveying Parallelizable Modelling Language for Mathematical Program-
ming, Springer Optimization and Its Applications Vol. 27: Parallel Scientific Computing and Op-
timization ed: R. Čiegis, D. Henty, B. K̊agström, and J. Žilinska. 2009.

Reproduction

This user’s guide is licenced as part of SML under the Lesser GNU Public License (LGPL) version 3.
You can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, using version 3 of the License.

You should have received a copy of the GNU Lesser General Public License along with this program. If
not, see http://www.gnu.org/licenses/.
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1 Installation

SML uses the standard GNU autotools install process. This can be summarised by the following steps:

1. ./configure --with-ampl=/path/to/amplsolver

2. make

3. make install

However there are number of options and pieces of third party software you will require.

1.1 Third-party software

The third-party software you will need is summarised in Table 1.1. As SML is currently implemented as
a pre- and post-processor to AMPL you will need an installed version of AMPL.

Software Required? Free? URL
AMPL Yes No http://www.ampl.com/vendors.html
libamplsolver.a Yes Yes http://www.netlib.org/ampl/solvers/
OOPS No Limited http://www.maths.ed.ac.uk/ gondzio/parallel/solver.html
MeTiS No Yes http://glaros.dtc.umn.edu/gkhome/views/metis

Table 1.1: Third-party software and where to get it

OOPS is the Object-Oriented Parallel Solver by Gondzio and Grothey [5].

If you wish to use the OOPS solver then you will also need the OOPS library. A serial version, limited
to 5000 constraints, is distributed with SML under a closed-source licence and may only be linked with
the LGPL SML library. See ThirdParty/oops/COPYING for full terms. The version supplied is compiled
using GNU g77 on a 32-bit Linux machine; if your setup differs then mileage may vary.

If you have a full version of OOPS (contact Andreas Grothey <A.Grothey@ed.ac.uk> for further infor-
mation) you may use this instead, though you may also need the MeTiS library. OOPS also requires
LAPACK and BLAS routines; we advise that you use the ones supplied by your computer vendor,
however there are freely available implementations available from the Netlib archive.

1.2 Configuration Options

The following configuration options are available:
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--with-ampl=path Absolute path to directory containing libamplsolver.a
--with-oops=path Absolute path to OOPSHOME directory
--with-metis=path Absolute path to MeTiS directory
--with-blas=library BLAS library to use
--with-lapack=library LAPACK library to use
--with-mps=[yes|no] Enable/disable MPS interface

Running the command:

./configure --help

will display a more comprehensive summary.
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2 Structured Problems

A typical mathematical programming problem can be written in the form

min
x

f(x) s.t. Ax = b, x ≥ 0 (2.1)

If the matrix A is structured then this can be exploited by modern solvers to solve the problem faster.

This structure can take a number of forms, for example if the problem involves a network then the
node-arc incidence matrix may be repeated multiple times within the matrix A, or if the problem is
stochastic in nature then the scenario tree can be exploited.

Throughout this guide we will consider two structured problems:

MSND Survivable Network Design

ALM Asset and Liability Management

2.1 Example Problem 1: Survivable Network Design

A network is described by sets V of nodes and E of (directed) arcs and a base capacity Cj for every
arc j ∈ E . The basic multi-commodity network flow (MCNF) problem considers the best way to move
commodities k ∈ C from their sources to their respective destinations, through the arcs of the shared-
capacity network. Each commodity is described as the triplet (sk, tk, dk) consisting of start node sk,
terminal node tk and amount to be shipped dk. A feasible flow xk = (xk,j)j∈E for the k-th commodity
can be represented by the constraint

Axk = bk, xk ≥ 0,

where A ∈ IR|V|×|E| is the node–arc incidence matrix, and bk = (bk,i)i∈V is the demand vector for the
k-th commodity, with the following conventions:

Ai,j =

 −1 node i is source of arc j,
1 node i is target of arc j,
0 otherwise,

bk,i =

 −dk node i is source of demand k,
dk node i is target of demand k,
0 otherwise.

In multi-commodity survivable network design (MSND) the aim is to find the minimum installation cost
of additional (spare) capacities Sj at price cj , j ∈ E , so that the given commodities can still be routed
through the network if any one arc or node should fail. The MSND problem can be modelled by a series
of multi-commodity network flow problems, in each of which one of the original arcs or nodes is removed.
Note that the subproblems are not completely independent, as they are linked by the common spare
capacities Sj .

Let A(a,l), l ∈ E , be the node–arc incidence matrix in which the column corresponding to the l-th arc is
set to zero. Then any vector of flows x

(a,l)
k ≥ 0 satisfying

A(a,l)x
(a,l)
k = bk, k ∈ C, l ∈ E ,
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gives a feasible flow to route the k-th commodity through the arc-reduced network. Similarly let A(n,i),
i ∈ V, be the node–arc incidence matrix in which the row corresponding to the i-th nodes and the
columns corresponding to arcs incident to this node are set to zero. Then any vector of flows x

(n,i)
k ≥ 0

satisfying
A(n,i)x

(n,i)
k = bk, k ∈ C, i ∈ V,

gives a feasible flow to route the k-th commodity through the node-reduced network. As the network
is capacity-limited, however, each arc j ∈ E can carry at most Cj + Sj units of flow. The complete
formulation of the MSND problem is as follows:

min
∑
j∈E

cjSj

s.t. A(a,l)x
(a,l)
k = bk ∀k ∈ C, l ∈ E

A(n,i)x
(n,i)
k = bk ∀k ∈ C, i ∈ V∑

k∈C

x
(a,l)
k,j ≤ Cj + Sj ∀j ∈ E , l ∈ E∑

k∈C

x
(n,i)
k,j ≤ Cj + Sj ∀j ∈ E , i ∈ V

x, s ≥ 0

(2.2)

Figure 2.1: Structure of the constraint matrix for the MSND problem.

The constraint matrix of this problem has the form shown in Figure 2.1. The basic building blocks are
the node–arc incidence matrices (shown in dark grey). These blocks are repeated for every commodity
that needs to be shipped, and they are linked by a series of common rows (shown in medium grey) that
represent the global capacity constraints to build a MCNF problem. Each MCNF block (framed by
dashed lines) is repeated for every (missing) arc and node. The common capacity variables (light grey
blocks) act as linking columns. While the nested structure of the problem is obvious is Figure 2.1, it
cannot be easily appreciated from the mathematical formulation (2.2).

2.1.1 Standard modelling language formulation

Problem (2.2) can be represented in an algebraic modelling language as shown below, where we adopt
a syntax that is very close to AMPL, slightly modified to compress the example and aid readability;
models in other languages will look much the same.
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set NODES, ARCS, COMM;
param cost{ARCS}, basecap{ARCS};
param arc_source{ARCS}, arc_target{ARCS};
param comm_source{COMM}, comm_target{COMM}, comm_demand{COMM};
param b{k in COMM, i in NODES} :=
if (comm_source[k]==i) then comm_demand[k] else
if (comm_target[k]==i) then -comm_demand[k] else 0;

# first index is missing arc/node, then commodity, then arc of flow

var Flow{ARCS union NODES, COMM, ARCS} >= 0;
var sparecap{ARCS} >= 0;

# flow into node - flow out of node equals demand

subject to FlowBalanceMissingArcs{a in ARCS, k in COMM, i in NODES}:
sum{j in ARCS:j~=a, arc_target[j]==i} Flow[a,k,j]
- sum{j in ARCS:j~=a, arc_source[j]==i} Flow[a,k,j] = b[k,i];

subject to FlowBalanceMissingNodes{n in NODES, k in COMM, i in NODES diff {n}}:
sum{j in ARCS:arc_target[j]==i, arc_source[j]~=n} Flow[n,k,j]
- sum{j in ARCS:arc_source[j]==i, arc_target[j]~=n} Flow[n,k,j] = b[k,i];

subject to CapacityMissingArcs{a in ARCS union NODES, j in ARCS}:
sum{k in COMM} Flow[a,k,j] <= basecap[j] + sparecap[j];

minimize obj: sum{j in ARCS} sparecap[j]*cost[j];

2.2 Example Problem 2: Asset and Liability Management

As an example of a stochastic programming problem we use an asset and liability management problem.
The problem is concerned with investing an initial cash amount b into a given set of assets A over T time
periods in such a way that, at every time stage 0 < t ≤ T , a liability payment lt can be covered. Each
asset has value vj , j ∈ A. The composition of the portfolio can be changed throughout the investment
horizon, incurring (proportional) transaction costs c, xh

i,j is the amount of asset j held at node i, xb
i,j and

xs
i,j are the amounts bought and sold. These satisfy the inventory and cash balance equations at every

node. The random parameters are the asset returns ri,j that hold for asset j at node i. The evolution
of uncertainties can be described by an event tree: For a node i, π(i) is its parent in the tree, pi is the
probability of reaching it, and τ(i) represents its stage. With LT we denote the set of final-stage nodes.
The objective maximises a linear combination of the expectation of the final portfolio value (denoted by
µ) and its variance, with risk-aversion parameter λ:

max{IE(wealth)− λVar(wealth)} = max{IE
(
wealth− λ

[
wealth2 − IE(wealth)2

])
}.

The complete model is the following:

max
x, µ≥0

µ− ρ[
∑

i∈LT

pi[(1− c)
∑
j∈A

vjx
h
i,j ]

2 − µ2]

s.t. xh
i,j = (1 + ri,j)xh

π(i),j + xb
i,j − xs

i,j , ∀i 6= 0, j ∈ A∑
j∈A(1− c)vjx

s
i,j = lτ(i) +

∑
j∈A(1 + c)vjx

b
i,j , ∀i 6= 0∑

j∈A(1 + c)vjx
b
0,j = b

(1− c)
∑

i∈LT
pi

∑
j∈A vjx

h
i,j = µ

(2.3)
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2.3 Identifying the structure

How do we identify the structure? Generally if you are building you model out of repeated components
you can easily obtain structure - it may be that this structure would be indexed over in the traditional
Algebraic Modelling Language representation - for example the indexing over ARCS and NODES in the
MSND example, and the indexing over the scenario tree in the stochastic ALM example.

If this indexing is pulled out into a series of related blocks then the problem becomes similar. In the
next example we consider the structured representation of the MSND model.

2.3.1 MSND Example

Using the block keyword, the previous MSND model can be rewritten as:

set NODES, ARCS, COMM;
param cost{ARCS}, basecap{ARCS};
param arc_source{ARCS}, arc_target{ARCS};
param comm_source{COMM}, comm_target{COMM}, comm_demand{COMM};
param b{k in COMM, i in NODES} :=
if (comm_source[k]==i) then comm_demand[k] else
if (comm_target[k]==i) then -comm_demand[k] else 0;

var sparecap{ARCS} >= 0;

block MCNFArcs{a in ARCS}: {
set ARCSDIFF = ARCS diff {a}; # local ARCS still present

block Net{k in COMM}: {
var Flow{ARCSDIFF} >= 0;
# flow into node - flow out of node equals demand

subject to FlowBalance{i in NODES}:
sum{j in ARCSDIFF:arc_target[j]==i} Flow[j]
- sum{j in ARCSDIFF:arc_source[j]==i} Flow[j] = b[k,i];

}

subject to Capacity{j in ARCSDIFF}:
sum{k in COMM} Net[k].Flow[j] <= basecap[j] + sparecap[j];

}

block MCNFNodes{n in Nodes}: {
set NODESDIFF = NODES diff {n}; # local NODES still present

set ARCSDIFF = {i in ARCS: arc_source[i]~=n, arc_target[i]~=n};

block Net{k in COMM}: {
var Flow{ARCS} >= 0;
# flow into node - flow out of node equals demand

subject to FlowBalance{i in NODESDIFF}:
sum{j in ARCSDIFF:arc_target[j]==i} Flow[j]
- sum{j in ARCSDIFF:arc_source[j]==i} Flow[j] = b[k,i];

}

subject to Capacity{j in ARCSDIFF}:
sum{k in COMM} Net[k].Flow[j] <= basecap[j] + sparecap[j];
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}

minimize costToInstall: sum{j in ARCS} sparecap[j]*cost[j];

2.4 Stochastic Structure

As stochastic programming is a common source of such structured problems, and the special conventions
used to represent stochastic entities, SML includes some special conventions for handling stochastic
problems. Our next example shows these in action.

2.4.1 ALM Example

param Budget, T, Tc, Rho;
set ASSETS, NODES, STAGESET := 0..T;
param PARENT{NODES} symbolic, PROBS{NODES};
param Value{ASSETS};
var mu;

block alm stochastic using (NODES, PARENT, PROBS, STAGESET):{

var xh{ASSETS} >= 0, xb{ASSETS} >= 0, xs{ASSETS} >= 0;
param Ret{ASSETS};
param Liability deterministic;

stage {0}: {
subject to StartBudget:
(1+Tc)*sum{j in ASSETS} xb[j]*Value[j] <= Budget;

}

stage {1..T}: {
subject to Inventory{j in ASSETS}:
xh[j] = (1+Ret[j]) * ancestor(1).xh(j) + xb[j] - xs[j];

subject to CashBalance:
(1-Tc) * sum{j in ASSETS} Value[j]*xs[j] =

Liability + (1+tc)*sum{j in ASSETS} Value[j]*xb[j];
}

stage {T}: {
var wealth := (1-tc) * sum{j in ASSETS} Value[j]*xh[j];
subject to ExpPortfolioValue:
Exp(wealth) = mu;

maximize objFunc: mu - Rho * ((wealth*wealth) - mu*mu )
}

}
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3 SML Keywords

In order to facilitate Structured Modelling we have introduced several new keywords and structures
into the AMPL language. These keywords are the following reserved words which may not be used for
component names:

ancestor Exp stochastic
block node suffix
deterministic stages using

We also note that while AMPL allows the redefinition of certain keywords (for example from and prod)
rendering their erstwhile meanings unavailable, sml does not permit this for the following reasons:

1. It complicates the coding required to handle them.

2. We believe it makes the model more error prone and hard to read.

3.1 Blocks

A block is defined as follows:

block nameofblock [{[j in] set_expr }]: {
[statements]

}

Between the curly braces {} , any number of set, param, subject to, var, minimize or indeed
further block definitions can be placed. The square brackets [] are not part of the language and are
merely used to indicate optinal parts of the expression. The interpretation is that all declarations placed
inside the block environment are implicitly repeated over the indexing expression used for the block
command. Clearly, the nesting of such blocks creates a tree structure of blocks.

A block introduces the notion of scope, similar to that found in the programming language C. Within a
block all references to objects visible to the containing context are visible unless there is an object with
the same name defined within the block.

3.2 Stochastic Blocks and Variables

A stochastic program is declared in SML via the stochastic modifier to the block command:

block nameofblock [{[k in] set_expr }] stochastic using([i in] NODES , PROB , PARENT ,
[j in] STAGESET ): {

[stochastic statements]
}

11



where the expressions NODES, PROB, PARENT and STAGESET conform to the following relations:

set NODES;
param PROB{NODES};
param PARENT{NODES} symbolic, within (NODES union {none});
set STAGESET ordered;

The stochastic statements include both normal AMPL and block statements, but may also include
the special stages statement:

stages set_expr: {
[stochastic statements]

}

that declares variables and constraints which apply only to the specific stages in the supplied set expres-
sion.

Currently, no check is performed on the validity of the values indicated in the PROB set: the user has to
be careful to indicate positive values such that for all stages their sum is 1.

The scenario tree is defined by the set of NODES and their PARENT relationship. The probability associated
with a node is the conditional probability of reaching that node given that its parent is reached. The set
expression STAGESET is used only to provide labels for the stages should they be required. It is assumed
that the number of levels thus defined in the tree matches the cardinality of tht STAGESET set.

Entities defined within the stochastic block are either stochastic and are repeated for nodes in their
stageset, or are deterministic and are repeated only once for each stage. By default entities are stochastic
and their stageset is the full set STAGESET. Entities within a stages block are by default stochastic with
their stageset determined by the stages set expression. The nature of an entity may be changed from
the default through the use of the special attributes deterministic and stages set expr in their
declaration.

The dummy indices of the NODES and STAGESET set expressions allow the reference of the particular node
or stage within the block through the normal indexing mechanism.

Relations between different stages can be expressed by using the ancestor(i) function that allows to
reference the i-th ancestor stage. Variables of the ancestor can be referenced using the normal SML
syntax, ancestor(i).x.

Expectations may also be handled through a special new syntax. Within a stochastic block the expression
Exp(expr) is equivalent to the expression

sum{nd in NODES: nd in currentstage } PROBS[nd] * expr[nd]

where currentstage is a list of nodes in the scope of the current stages block.
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4 Advanced Topics

4.1 Solver Interface

If you wish to hook a solver other than OOPS to SML then you will need to use the interface described
in this section. We first describe the data representation used by the interface before describing the
available function calls. The implementer is advised to browse the source code for the MPS interface for
an example implementation.

4.1.1 Data structure

Internally, SML describes a problem as a nested bordered block diagonal form. The data structure used
to represent this assumes the following:

1. A block has a zero or more constraints of variables with an associated Jacobian matrix, labelled A
in Figure 4.1.

2. Further, associated variables may contribute to the objective function.

3. A block has zero or more additional blocks nested within it, these are represented by a list of
pointers to the contained blocks.

4. A contained block has a similar internal structure, labelled B, that has no bearing on the constraints
of variables associated with this block.

5. The constrained block may contain constraints on the variables associated with this block, with a
Jacobian labelled C.

6. This block may place constraints upon variables associated with the contained block, yielding the
Jacobian labelled D.

7. Any or all of the Jacobians A, B, C or D may be identically zero.

The list of pointers to contained blocks yields a tree structure which we refer to as the Expanded Model
Tree. This representation of the structured model is natural for a hierarchical linear algebra solver such
as OOPS, but should also provide sufficient access for other designs of structure exploiting solver such
as those which use decomposition approaches.

4.1.2 Basic Use

The model currently used by SML is that it is called by the solver and passed the names of the
model and data files, it will then return a pointer to an Expanded Model Tree represented by a
ExpandedModelInterface object which the solver is then free to query. Finally, the solver should
delete the ExpandedModelInterface object to free the memory.
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Figure 4.1: Structure of the constraint matrix for the MSND problem.

We recommend that solvers parse the tree in either one or two passes. The initial parse may extract
information on the dimension and relative density of the tree, setting up data structures are required,
while the second pass will determine the actual numeric values.

4.1.3 API

Acquiring the ExpandedModelInterface object

The solver should use the include statement

#include "sml.h"

which will provide access to all relevant definitions. The solver should then call the function:

ExpandedModelInterface* sml_generate(const std::string modelfilename,
const std::string datafilename, const bool debug);

to retrieve a ExpandedModelInterface object which can then be queried. If the argument debug is true
then additional debugging information will be generated.

Traversing the Tree

The ExpandedModelInterface object returned after parsing the model and data files offers two iterators
for moving through the tree, and further allows direct access to the list of children:

• The ExpandedModelInterface::ancestor iterator allows the iteration up through the tree to
the root. The function ExpandedModelInterface::abegin() returns an iterator which points to
the parent of the node it is called on. The function ExpandedModelInterface::aend() return an
iterator which represents the top of the tree, above the root.
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• The ExpandedModelInterface::child iterator allows the iteration over all children of a node in
a depth-first order, with the node itself being last. The function ExpandedModelInterface::cbegin()
returns an iterator pointing to the left-most leaf in the subtree routed at the calling node. The
function ExpandedModelInterface::cend() returns an iterator representing the end of the child
iteration sequence.

• The component std::vector<ExpandedModelInterface*> ExpandedModelInterface::children
allows the implementer to use their own iteration scheme if the above are not sufficient.

We note that (non-)equivalence of pointers is not a sufficient condition to differentiate nodes, and the
function ExpandedModelInterface::getName() should be used instead to compare the names of the
blocks (which are guaranteed to be unique).

Accessing the Data

Each block essentially allows the query of all data in its row block. The following functions are available:

int getNLocalVars() Number of variables local to block
const std::list<std::string>& getLocalVarNames() List of variable names local to block
int getNLocalCons() Number of constraints local to block
const std::list<std::string>& getLocalConNames() List of constraint names local to block
int getNzJacobianOfIntersection(ExpandedModelInterface *emcol)

Number of non-zeros in submatrix in block column emcol and this block row
void getJacobianOfIntersection(ExpandedModelInterface *emcol, *colbeg, *collen, *rownbs, *el)

Entries of submatrix in block column emcol and this block row, in CSC format (see below)
void getRowLowBounds(double *elts) Constraint lower bounds for block.
void getRowUpBounds(double *elts) Constraint upper bounds for block.
void getColLowBounds(double *elts) Variable lower bounds for block.
void getColUpBounds(double *elts) Variable upper bounds for block.
void getObjGradient(double *elts) Objective coefficients for block.

The Compressed Sparse Column (CSC) format used by getJacobianOfIntersection() describes for
each column only the non-zero entries within it, and for each entry gives a row number and value pair.
On entry the parameters should point to areas of memory corresponding to the following arrays:

int colbeg[n+1], int collen[n], int rownbs[nz], double el[nz]

where n is the number of variables in this model, and nz is the number returned by the corresponding
call to getNzJacobianOfIntersection().

On return, colbeg[i] is a pointer to the beginning of column i within the arrays rownbs[] and el[],
collen[i] is the number of entries in that column — which may be zero. The values rownbs[j] and
el[j] represent a row number-value pair.

4.1.4 Returning the solution

You may return the solution to SML and have it write out a file containing these solutions. The following
functions are available for each ExpandedModelInterface block to return the primal and dual solutions
associated with each variable and constraint within the block:
void setPrimalSolColumns(double *elts) Set the primal solution vector for variables in this block.
void setDualSolColumns(double *elts) Set the dual solution vector for variables in this block.
void setPrimalSolRows(double *elts) Set the primal solution vector for constraints in this block.
void setDualSolRows(double *elts) Set the dual solution vector for constraints in this block.
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The complete solution may be output recursively for a block (ie the solution associated with this block
and all its descendants) by calling the function

void outputSolution(std::ostream &out [, int indent] )

which will write the solution to the output stream out. If the optional argument indent is supplied that
the solution will be indented by a number of spaces equal to indent. If indent is not present, then no
indent will be used.

4.2 Implementation

SML is implemented in the object-oriented C++ language as a pre- and post-processor to AMPL. The
SML model file is parsed to extract the prototype model-tree, the list of entities associated with each
prototype-tree node and the dependency graph of the entities. The goal of the pre-processing stage is
to create, for each node in the prototype model-tree, a stand-alone AMPL model file that describes the
local model for this block of the problem. The file includes definitions for all the entities belonging to the
prototype-tree node and all their dependencies: references to entities are changed to a global naming and
indexing scheme, that easily generated from the SML model file by generic text substitutions. Figure 4.2
shows these AMPL submodel files for the MSND problem formulation.

The AMPL model is separated into the appropriate submodels for every node of the prototype tree by
changing the indexing sets. Each block definition is replaced by declaring an indexing set (named * SUB)
for the indexing expression of the sub-block, and this is prepended to the indexing expressions of every
entity declared in the sub-block. By temporarily defining the set ARCS SUB to a suitable subset of ARCS
(leveraging AMPL’s scripting commands), the model for any node on the expanded tree can be generated
from the corresponding submodel *.mod file shown in Figure 4.2.

This process of model expansion based on indexing sets results in a *.nl file for every node of the
expanded model tree; each file carries all the information about this node needed by a solver. The
underlying submodel is the same for all expanded-tree nodes that correspond to the same prototype-tree
node. However they are produced with different data instances: namely different choices of elements
from the block’s indexing sets.

The nodes of the prototype and the expanded tree are internally represented as C++ objects that carry
pointers to their children. Therefore, the prototype and expanded trees are themselves trees of C++
objects. The ExpandedTreeNode class provides information on the dimension of the node (number of
local constraints and variables) and a list of its children; further, it provides methods to evaluate the
Jacobian of its local constraints with respect to the local variables of a second ExpandedTreeNode object.
Information on the number of sparse elements of this Jacobian block can be obtained prior to requesting
the complete sparse matrix description to enable the allocation of sufficient memory. As argued above,
these methods should satisfy the needs of all different conceivable structure-exploiting solvers.
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%------------------------------- root.mod --------------------------------

set ARCS;

param cost{ARCS};

var sparecap{ARCS} >= 0;

minimize obj: sum{j in ARCS} sparecap[j]*cost[j];

% -------------------------- root_MCNFArcs.mod ----------------------------

set ARCS, COMM;

param basecap{ARCS};

var sparecap{ARCS} >= 0;

set ARCS_SUB within ARCS;

set ARCSDIFF{a in ARCS_SUB} = ARCS diff {a}; # local ARCS still present

var MCNFArcs_Net_Flow{a in ARCS_SUB, ARCSDIFF[a], k in COMM} >= 0;

subject to Capacity{a in ARCS_SUB, j in ARCSDIFF[a]}:
sum{k in COMM} MCNFArcs_Net_Flow[a,k,j] <= basecap[j] + sparecap[j];

% -------------------------- root_MCNFArcs_Net.mod ----------------------------

set NODES, ARCS, COMM;

param arc_source{ARCS}, arc_target{ARCS};
param comm_source{COMM}, comm_target{COMM}, comm_demand{COMM};
param b{k in COMM, i in NODES} :=

if (comm_source[k]==i) then comm_demand[k] else

if (comm_target[k]==i) then -comm_demand[k] else 0;

set ARCS_SUB within ARCS;

set ARCSDIFF{a in ARCS} = ARCS diff {a}; # local ARCS still present

set COMM_SUB within COMM;

var MCNFArcs_Net_Flow{a in ARCS_SUB, k in COMM_SUB, ARCSDIFF[a]} >= 0;

# flow into node - flow out of node equals demand

subject to MCNFArcs_Net_FlowBalance{a in ARCS_SUB, k in COMM_SUB, i in NODES}:
sum{j in ARCSDIFF[a]:arc_target[j]==i} MCNFArcs_Net_Flow[a,k,j]

- sum{j in ARCSDIFF[a]:arc_source[j]==i} MCNFArcs_Net_Flow[a,k,j] = b[k,i];

}
}

Figure 4.2: Generated AMPL model files for the root MSND model and MCNF submodels
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