MATLAB

The Language of Technical Computing

Computation

Visualization

|

Programming

Graphics Reference Manual

Version 5

How to Contact The MathWorks:

(508) 647-7000
(508) 647-7001
(508) 647-7022

The MathWorks, Inc.
24 Prime Park Way
Natick, MA 01760-1500

http://www._mathworks.com
ftp.mathworks.com

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
subscribe@mathworks.com

Phone
Fax
Technical Support Faxback Server

Mail

Web
Anonymous FTP server

Technical support

Product enhancement suggestions
Bug reports

Documentation error reports
Subscribing user registration

Order status, license renewals, passcodes
Sales, pricing, and general information

service@mathworks.com
info@mathworks.com

MATLAB Graphics Reference Manual (November 1996)
0 COPYRIGHT 1994 - 1996 by The MathWorks, Inc. All Rights Reserved.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.
U.S. GOVERNMENT: If Licensee is acquiring the software on behalf of any unit or agency of the U. S.
Government, the following shall apply:

(a) for units of the Department of Defense:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restric-
tions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
Clause at DFARS 252.227-7013.

(b) for any other unit or agency:

NOTICE - Notwithstanding any other lease or license agreement that may pertain to, or accompany the
delivery of, the computer software and accompanying documentation, the rights of the Government
regarding its use, reproduction and disclosure are as set forth in Clause 52.227-19(c)(2) of the FAR.

Contractor/manufacturer is The MathWorks Inc., 24 Prime Park Way, Natick, MA 01760-1500.

MATLAB, SIMULINK, and Handle Graphics are registered trademarks and Real-Time Workshop is a trade-
mark of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.
Printing History: January 1996 First printing New for Alpha-2

July 1996 Second printing Revised for Alpha-7

November 1996 Third printing Revised FCS

Preface

1]

Command Summary

2|

=Y == 1-9
AXE S .t it e e e 1-11
AXE S it e e e 1-34
bar, barh e e 1-38
bar3, bar3h e 1-41
DOX o e e 1-43
brighten 1-44
CAPEUNE .ottt 1-47
CAXE S ot ittt e e e 1-48
Cla L 1-50
clabel e 1-50
ClC 1-53
(o 1 1-54
ClOSE .. e 1-55
colorbar e 1-57
colordeTl e 1-59
COBOIMAD oo 1-60
COBOINSPEC oottt e 1-64
COMEBE ittt e e e 1-66
COMEE S .ttt e e 1-67
COMPASS .« o ettt ettt e e e e e e e e 1-68
CONEOUE oottt ettt et et e e e e 1-70
CONMEOUN S .ottt et e e e e 1-74
CONTOUNC .« ottt ettt et et e e e e e e e e e e 1-76
CONTOUNT L e e e 1-78
CONENAST . ottt e e e e e 1-80
COPYOD J ottt 1-81
CYlINder .. . 1-83
dateticK ... e 1-88
defaultd ... e 1-91
AEAlOg ..o 1-92
Aragrect 1-93
AraWNOW .ottt e e e 1-94
1Y g o] g o =Y P 1-95

errordlg ... 1-97

Contents

EZPIOL . 1-99

Feather e 1-101
FIgTlag .. e 1-103
FHQUIE e e 1-104
L 1-123
FHLIS 1-125
FINAODJ .. o e 1-127
POt . e 1-129
FramE 2 m .o e 1-131
[0 o2 1-132
OChO o 1-133
OCT 1-134
D00 .ttt et e 1-135
o 1= 1-136
Lo L= o i =Y = 1-138
OENPUL .o e 1-140
ORIt L 1-141
Lo r=1Y/111o o 1-143
O o 1-144
o = 1-145
NelPdlg . o e 1-146
NEddeNn ... e 1-147
NSt o e 1-148
OB oo 1-150
NOME .o e 1-151
NSV2rgh ... 1-152
M2 rame ... 1-153
(1= Vo 1= 1-154
(11T Vo 1= o 1-164
IMFINTO .. 1-167
IMread e 1-170
MW . 1-172
INPUEAIg ... 1-175
ishandle 1-176
IShold ... 1-177
BEgeNd .. 1-178
LGN 1-181
LIghtENg ... 1-187
1 = 1-188
LENESPEC ottt 1-199
BOgHOg ..ot 1-201
material e 1-203
mesh, meshc, MEShZt 1-205

MOVECEN ottt e 1-211
15T o Yo >~ 1-212
NEWP IO ... e 1-213
Lol =T 0 o 1-215
[oF= 1 1= oo 1-216
PAECN . e 1-217
PCOOK . 1-239
PEE o 1-242
PEEE o e 1-243
POt e 1-244
PROE3 o e 1-246
PROEMAErEX .« ittt e e 1-247
PHOLYY oo 1-248
POIAr .. e 1-248
Print, printoptottt e 1-249
Lo T ol o= 1-255
QUESTEANG ..ot e 1-256
QUEVBE o e e e e e e 1-258
QUEVEE S i e e e e 1-260
FDOX ..o e 1-266
FeTrEsSh ... e 1-268
FESEE Lttt e 1-269
FOD2NSY L 1-270
[gfo o] o] o' o 1-271
KON .. 1-272
FOOT ODJECE ..ot e e e e e 1-273
[0 1= = 1-280
[0 1= = 1-280
FOTALE .. ittt 1-282
FOTAte3d ... i e 1-284
SEleCtMOVEreSIZE i 1-285
semilogx, semilogyoiiiiiiii i 1-286
SEE i 1-288
SNAdENG ..o 1-291
SIECE o 1-293
SPNEIE . 1-296
SPENMAD ot ittt 1-297
STAIES it 1-298
Lo =111 1-299
Lo =111 1-301
SUBPIOT .o e 1-303
SUNF, SUNTC ... 1-304

iv

Contents

SUNTACE oo oo e e 1-308

SUNFL L 1-323
SUNTNOIM o e 1-325
terminal e 1-327
0= q 1-329
B 0= 0q 111 or=Y o JE 1-341
L 1-342
EFEMESN L e e 1-343
ErISUrT e e 1-344
UTCONTrOl .o 1-345
uigetFile .. . e 1-359
U117 2 1-361
UIPULFIle L. 1-368
uiresume, UTWAET ...ttt e et 1-370
UISECOlOr ... 1-371
UESELTONT ..o e 1-372
VW ottt e e e e 1-373
VEBWIMEX oottt ettt e e e 1-375
WaE A ... 1-379
WaE T O . 1-380
WaTTFOrDUTEONPIESSttt e e 1-381
WarNdlg ..o e 1-382
waterfall e 1-383
WhETEDg ..o 1-385
xlabel, ylabel, zlabel i, 1-386
ZOOM et e 1-387

Preface

The Preface gives you infor-
mation about MATLAB , its
documentation, and this
guide.

‘ What Is MATLAB?

What Is MATLAB?

MATLAB® is a technical computing environment for high-performance numeric computa-
tion and visualization. MATLAB integrates numerical analysis, matrix computation, signal
processing, and graphics in an easy-to-use environment where problems and solutions are
expressed just as they are written mathematically — without traditional programming.

The name MATLAB stands for matrix laboratory. MATLAB was originally written to provide
easy access to matrix software developed by the LINPACK and EISPACK projects, which
together represent the state of the art in software for matrix computation.

MATLAB is an interactive system whose basic data element is an array that does not require
dimensioning. This allows you to solve many numerical problems in a fraction of the time
it would take to write a program in a language such as Fortran, Basic, or C.

MATLAB has evolved over a period of years with input from many users. In university envi-
ronments, it has become the standard instructional tool for introductory courses in applied
linear algebra, as well as advanced courses in other areas. In industrial settings, MATLAB is
used for research and to solve practical engineering and mathematical problems. Typical
uses include general purpose numeric computation, algorithm prototyping, and special
purpose problem solving with matrix formulations that arise in disciplines such as auto-
matic control theory, statistics, and digital signal processing (time-series analysis).

MATLAB also features a family of application-specific solutions that we call toolboxes. Very
important to most users of MATLAB, toolboxes are comprehensive collections of MATLAB
functions (M-files) that extend the MATLAB environment in order to solve particular
classes of problems. Areas in which toolboxes are available include signal processing,
control systems design, dynamic systems simulation, systems identification, neural
networks, and others.

Probably the most important feature of MATLAB, and one that we took care to perfect, is
its easy extensibility. This allows you to become a contributing author too, creating your
own applications. In the years that MATLAB has been available, we have enjoyed watching
many scientists, mathematicians, and engineers develop new and interesting applications,
all without writing a single line of Fortran or other low-level code.

Vi MATLAB Graphics Reference Manual

Preface

What Is MATLAB?

Who Wrote MATLAB?

The original MATLAB was written in Fortran by Cleve Moler, in an evolutionary process
over several years. The underlying matrix algorithms are from the many people who
worked on the LINPACK and EISPACK projects.

The current MATLAB program was written in C by The MathWorks. The first release was
written by Steve Bangert, who wrote the parser/interpreter, Steve Kleiman, who imple-
mented the graphics, and John Little and Cleve Moler, who wrote the analytical routines,
the user’s guide, and most of the M-files. Since the first release, many other people have
joined the MATLAB development team and have made substantial contributions.

MATLAB Graphics Reference Manual Vi

‘ MATLAB Documentation

MATLAB Documentation

viii

MATLAB comes with an extensive set of both online and printed documentation. The
online MATLAB Function Reference is a compendium of all MATLAB commands func-
tions. You can access this documentation from the MATLAB Help Desk. Users on all plat-
forms can access the Help Desk with the MATLAB doc command. MS-Windows and
Macintosh users can also access the Help Desk with the Help menu or the ? icon on the
Command Window toolbar. From the Help Desk main menu, choose “MATLAB Func-
tions” to display the Function Reference.

The online resources are augmented with printed documentation consisting of the
following titles:

+ Getting Started with MATLAB describes MATLAB fundamentals.

» Using MATLAB explains how to use MATLAB as both a programming language and a
command-line application.

+ Using MATLAB Graphics describes how to use MATLAB’s graphics and visualization
tools.

* The MATLAB Application Programmer’s Interface Guide explains how to write C or For-
tran programs that interact with MATLAB.

* The MATLAB 5 New Features Guide provides information useful in making the transi-
tion from MATLAB 4.x to MATLAB 5.

= The MATLAB 5 Release Notes provide additional information about new features that are
not covered in the other guides. They also include lists of problems fixed since the previ-
ous release and known documentation errors.

How to Use the Documentation Set

If you need to install MATLAB, you should read the appropriate booklet. Once you install
MATLAB, you can decide which document you prefer to use to learn the MATLAB
commands.

If you are a new MATLAB user, you should start by reading Getting Started with MATLAB.
Using MATLAB provides an extensive description of the MATLAB language.

Using MATLAB Graphics describes how to use MATLAB for visualizing data with both
high-level functions and Handle Graphics.

MATLAB Graphics Reference Manual

Preface

MATLAB Documentation

How to Use the Reference Pages

The Reference pages are organized in alphabetical order, with operators described first.
Each entry contains one or more of these sections:

Purpose
Syntax

Description

Remarks
Examples

Limitations

Diagnostics

Algorithm

See Also

References

Provides concise descriptions.
Summarizes the formats of the command or function.

Gives overall information about the command or function and describes
how each syntax behaves.

Provides tangential information about the command or function.
Shows concrete illustrations of how the command or function can be used.

Describes any unusual restrictions on how the command or function can
be used.

Tells you about error or warning messages that may appear.

Describes how the command or function is implemented or gives
background information on associated procedures and routines.

Refers you to the reference entries of related commands.

Provides pointers to additional resources.

Typographical and Alphabetic Conventions
This manual uses certain typographical conventions.

Font Usage

Monospace Commands, function names, and screen displays; for
example, conv.

Monospace Italics Names of arguments that are meant to be replaced and
not typed literally; for instance: cd directory.

Italics Book titles, mathematical notation, and the introduction
of new terms.

Color Command and function syntaxes.

Boldface Initial Cap Names of keys, such as the Return key.

MATLAB Graphics Reference Manual

MATLAB Documentation

In addition, this manual uses some alphabetic conventions.

Data Type Format Examples
Matrices and Upper-case letters A, B, C
multidimensional

arrays

Vectors Lower-case letters u, v, w
Scalars Lower-case letters a, b, c
Index variables Lower-case letters i, J, k
Sparse matrices Upper-case letters S, S1, s2
Parameters Lower case if vectors, pl, p2

otherwise upper case

Strings Lower-case letters str, strl

X MATLAB Graphics Reference Manual

Command Summary

1 command Summary

Command Summary

convhul l. Convex hull

delaunay. Delaunay triangulation

dSearch.ot e e Search Delaunay triangulation for nearest point
INPOlygon. . .. e True for points inside a polygonal region
polyarea. i Area of polygon

TSEArCh. . . .o Search for enclosing Delaunay triangle

VOFONOT . o ottt ettt e e e Voronoi diagram

brighten. i, Brighten or darken color map

CAXES. o ottt Pseudocolor axis scaling

colorbar. Display color bar (color scale)

colorcube. i Enhanced color-cube color map

colordef. e Set up color defaults

colormap. Set the color look-up table

diffuse. Diffuse reflectance

o L= Y117) o Graphics figure defaults set for gray-scale monitor
hSV2rgh. . ..o e Hue-saturation-value to red-green-blue conversion
lighting. Lighting mode

material. Material reflectance mode

rgbh2hsv. RGB to HSVconversion

rgbplot. e Plot color map

shading. Color shading mode

specullar. Specular reflectance

SPINMAD. .« v vttt et Spin the colormap

SUrFNOIM. . oo 3-D surface normals

whitebg. Change axes background color for plots
Colormaps

AUEUMN. « .ottt e e e e Shades of red and yellow color map

boNe. . . e e Gray-scale with a tinge of blue color map
FoTe] 0 o or- 1=y o Gray color map to enhance image contrast
cool. .. e Shades of cyan and magenta color map
FoTo] o] o =Y ol Linear copper-tone color map

Flag. . .o e Alternating red, white, blue, and black color map
o - Y Linear gray-scale color map

hot Black-red-yellow-white color map

NSV Hue-saturation-value (HSV) color map
JO e Variant of HSV

BENES. . .t e Line color colormap

PrESM. . .o Colormap of prism colors

SPrENG. ottt e Shades of magenta and yellow color map

1-2

Command Summary

£ 1111111 ol Shades of green and yellow colormap
WENEEE . e Shades of blue and green color map

Basic Plots and Graphs

bar ... Vertical bar chart

barh ... Horizontal bar chart
hESt .. e Plot histograms

hold ... e Hold current graph
BoglOg - e e Plot using log-log scales
PEE L Pie plot

PIOt . . Plot vectors or matrices.
POlAK . Polar coordinate plot
SEMIBOOX ot e Semi-log scale plot
semilogy Semi-log scale plot
SUbplOt ... Create axes in tiled positions

Hardcopy/File Output

NArdCOPY . . oo ittt Save figure window to file

OFEeNt .. Hardcopy paper orientation

Print Print graph or save graph to file

Printopt Configure local printer defaults

SAVEONEE . e Modify graphic objects to print on a white back-
ground

Surface, Mesh, and Contour Plots

CONEOUN . ..ottt e Contour (level curves) plot.
CONEOUNC . ..ottt e e e s Contour computation

contourt Filled contour plot

hidden Mesh hidden line removal mode
MESNC . . oo e Combination mesh/contourplot
MESh . oo 3-D mesh with reference plane
SUNT L 3-D shaded surface graph
SUrTaCEe ..o Create surface low-level objects
SUNFC . oo Combination surf/contourplot
surfl .o 3-D shaded surface with lighting
Trimesh e Triangular mesh plot

trisurf ... e Triangular surface plot

Domain Generation for Function Visualization

griddata Data gridding and surface fitting
meshgrid Generation of X and Y arrays for 3-D plots

Specialized Plotting
AFCA .« v vttt e Area plot

1-3

1 command Summary

compass
errorbar

ylabel.

1-4

Axis box for 2-D and 3-D plots
Comet plot

Compass plot

Plot graph with error bars
Easy to use function plotter
Feather plot

Draw filled 2-D polygons

Plot a function

Pareto chart

3-D Pie plot

Scatter plot matrix
Pseudocolor (checkerboard) plot
Plot rose or angle histogram
Quiver (or velocity) plot
Ribbon plot

Stairstep graph

Plot discrete sequence data

Vertical 3-D bar chart

Horizontal 3-D bar chart

3-D Comet plot

Generate cylinder

Draw filled 3-D polygons in 3-space
Plot lines and points in 3-D space
3-D Quiver (or velocity) plot
Volumetric slice plot

Generate sphere

Plot discrete surface data

3-D graph viewpoint specification.
Generate view transformation matrices
Waterfall plot

Add contour labels to a contour plot

Date formatted tick labels

Grid lines for 2-D and 3-D plots

Place text on a 2-D graph using a mouse

Graph legend for lines and patches

Plot graphs with Y tick labels on the left and right
Titles for 2-D and 3-D plots

X-axis labels for 2-D and 3-D plots

Y-axis labels for 2-D and 3-D plots

Z-axis labels for 3-D plots

Command Summary

Handle Graphics, General
bwcontr
copyobj
findobj
gcbo

Set ... e e

Handle Graphics, Figure Windows

capture
clc

gcf
newplot
refresh

Handle Graphics, Axes

Object Manipulation
propedit
reset
rotate3d
selectmoveresize
shg

Contrasting black and/or color

Make a copy of a graphics object and its children
Find objects with specified property values

Return object whose callback is currently executing
Return handle of current object

Get object properties

Rotate objects about specified origin and direction
True for graphics objects

Set object properties

Tree diagram of objects

Create axis at arbitrary positions
Create Figures (graph windows)
Display image (create image object)
Create light object

Create line low-level objects
Create patch low-level objects

Add text to the current plot

Screen capture of the current figure

Clear figure window

Clear Figure

Clear Figure (graph window)

Close specified window

Get current figure handle

Graphics M-file preamble for NextPlot property
Refresh figure

Plot axis scaling and appearance
Clear axis
Get current axis handle

Edit all properties of any selected object
Reset axis or figure

Interactively rotate the view of a 3-D plot
Interactively select, move, or resize objects
Show graph window

1-5

1 command Summary

Graphical User Interface Creation

textwrap
uicontrol
uigetfile
uimenu
uiputfile
uiresume
uisetcolor
uisetfont

waitbar
waitforbuttonpress
warndlg

Interactive User Input

Interface Design

algntool
cbedit

Region of Interest

dragrect
drawnow

1-6

Create a dialog box

Create error dialog box

Display help dialog box

Create input dialog

Generate a menu of choices for user input

Menu Editor

Create message dialog box

Create question dialog box

Return wrapped string matrix for given Ul Control
Create user interface control

Display dialog box to retrieve name of file for reading
Create user interface menu

Display dialog box to retrieve name of file for writing
Used with uiwait, controls program execution
Interactively set a ColorSpec via a dialog box
Interactively set a font by displaying a dialog box
Used with uiresume, controls program execution
Display wait bar

Wait for key/buttonpress over figure

Create warning dialog box

Graphical input from a mouse or cursor
Zoom in and out on a 2-D plot

Align uicontrols and axes
Callback Editor

functions

Initialization for Tool Palette

Drag XOR rectangles with mouse
Complete any pending drawing
Rubberband box

Command Summary

1-7

1 command Summary

area

Purpose

Syntax

Description

Remarks

Area fill of a two-dimensional plot

area(Y)

area(X,Y)

area(...,ymin)

area(...,"PropertyName” ,PropertyValue,...)
h = area(...)

An area plot displays elements in Y as one or more curves and fills the area
beneath each curve. When Y is a matrix, the curves are stacked showing the
relative contribution of each row element to the total height of the curve at each
x interval.

area(Y) plots the vector Y or the sum of each column in matrix Y. The x-axis
automatically scales depending on length(Y) when Y is a vector, and on
size(Y,1)when Y is a matrix.

area(X,Y) plots Y at the corresponding values of X. If X is a vector, length(X)
must equal Iength(Y) and X must be monotonic. If X is a matrix, size(X) must
equal size(Y) and each column in X must be monotonic. To make a vector or

matrix monotonic, use sort.

area(...,ymin) specifiesthe lower limitin they direction for the areafill. The
default ymin is 0.

area(..., "PropertyName~,PropertyValue, ...) specifies property name
and property value pairs for the Patch graphics object created by area.

h = area(...) returns handles of Patch graphics objects. area creates one
Patch object per columniny.

area creates one curve from all elements in a vector or one curve per columnin

a matrix. The colors of the curves are selected from equally spaced intervals
throughout the entire range of the colormap.

1-9

area

Examples Plot the values in Y as a stacked area plot:
Y=[1, 5, 3;
3, 2, 7;
1, 5, 3;
2, 6, 1];
area(Y)

set(gca, "Layer®,"top")
title "Stacked Area Plot*

Stacked Area Plot
12 T T T

See Also plot

1-10

axes

Purpose

Syntax

Description

Remarks

Create Axes graphics object

axes
axes("PropertyName*® ,PropertyValue,...)
axes(h)

h = axes(...)

axes is the low-level function for creating Axes graphics objects.

axes creates an Axes graphics object in the current Figure using default prop-
erty values.

axes("PropertyName™ ,PropertyValue, ...) creates an Axes object having
the specified property values. MATLAB uses default values for any properties
that you do not explicitly define as arguments.

h = axes(...) returns the handle of the created Axes object.

axes(h) makes existing axes h the current Axes. It also makes h the first Axes
listed in the Figure’s Children property and set the Figure's CurrentAxes
property to h. The current Axes is the target for functions that draw Image,
Line, Patch, Surface, and Text graphics objects.

MATLAB automatically creates an Axes, if one does not already exist, when you
issue a command that draws Image, Light, Line, Patch, Surface, or Text
graphics objects.

The axes function accepts property name/property value pairs, structure
arrays, and cell arrays as input arguments (see the set and get reference
pages for examples of how to specify these data types). These properties, which
control various aspects of the Axes object, are described in the “Axes Proper-
ties” section.

Use the set function to modify the properties of an existing Axes or the get
function to query the current values of Axes properties. Use the gca command
to obtain the handle of the current Axes.

The axis (not axes) function provides simplified access to commonly used prop-
erties that control the scaling and appearance of Axes.

1-11

axes

1-12

While the basic purpose of an Axes object is to provide a coordinate system for
plotted data, Axes properties provide considerable control over the way
MATLAB displays data.

Stretch-to-fill

By default, MATLAB stretches the Axes to fill the Axes position rectangle (the
rectangle defined by the last two elements in the Position property). This
results in graphs that use the available space in the rectangle. However, some
3-D graphs (such as a sphere) appear distorted because of this stretching, and
are better viewed with some specific three dimensional aspect ratio.
Stretch-to-fill is active when the DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all auto (the
default). However, stretch-to-fill is turned off when DataAspectRatio,
PlotBoxAspectRatio, or CameraViewAngle are user-specified, or when one or
more of the corresponding modes is set to manual (which happens automatically
when you set the corresponding property value).

This picture shows the same sphere displayed both with and without the
Stretch-to-fill . The dotted lines show the Axes Position rectangle.

Lpmom mm o o — S = i E e et i
8y 0.8
6§ 0.6
0.4

0.2Hf]"
|

AL
70.2—“\ /|
—0.4F \\
06t

-0.8r

O A S

L L o

I o L —
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8

Stretch-to-fill active Stretch-to-fill disabled

[Sp— i — L -
-1 -0.5 0 0.5 1

When Stretch-to-fill is disabled, MATLAB sets the size of the Axes to be as large
as possible within the constraints imposed by the Position rectangle without
introducing distortion. In the picture above, the height of the rectangle
constrains the Axes size.

axes

Examples

Zooming

Zoom in using aspect ratio and limits:

sphere
set(gca, "DataAspectRatio”,[1 1 1],.-.
"PlotBoxAspectRatio”,[1 1 1],"ZLim",[-0.6 0.6])

Zoom in and out using the CameraViewAngle:

sphere
set(gca, "CamerViewAngle® ,get(gca, "CameraViewAngle®)-5)
set(gca, "CamerViewAngle® ,get(gca, "CameraViewAngle®)+5)

Note that both examples disable MATLAB's stretch-to-fill behavior.

Positioning the Axes
The Axes Position property enable you to define the location of the Axes
within the Figure window. For example,

h = axes("Position®,position_rectangle)

creates an Axes object at the specified position within the current Figure and
returns a handle to it. Specify the location and size of the Axes with a rectangle
defined by a four-element vector,

position_rectangle = [left, bottom, width, height];

The left and bottom elements of this vector define the distance from the
lower-left corner of the Figure to the lower-left corner of the rectangle. The
width and height elements define the dimensions of the rectangle. You specify
these values in units determined by the Units property. By default, MATLAB
uses normalized units where (0,0) is the lower-left corner and (1.0,1.0) is the
upper-right corner of the Figure window.

You can define multiple Axes in a single Figure window:

axes("position®,[-1 .1 .8 .6])
mesh(peaks(20));
axes("position®,[.1 .7 .8 .2]
pcolor([1:10;1:10]);

1-13

axes

In this example, the first plot occupies the bottom two-thirds of the Figure, and
the second occupies the top third.

-=-| Figure No. 1 |LI =
File Edit Windows Help

-10-l
20

15 20
10

1-14

axes

Object
Hierarchy

Axes
Properties

Root
Figure

=Sl e
I

| Text | | Light |

| Line | | Patch | |Surface

| Image

Setting Property Defaults
You can set default Axes properties on the Figure and Root levels:

set (0, "Defaul tAxesPropertyName*® ,PropertyValue,...)
set(gcf, "Defaul tAxesPropertyName* ,PropertyValue,...)

Where PropertyName is the name of the Axes property and PropertyValue is
the value you are specifying.

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

AmbientLightColor ColorSpec

The background light in a scene. Ambient light is a directionless light that
shines uniformly on all objects in the Axes. However, if there are no visible
Light objects in the Axes, MATLAB does not use AmbientLightColor. If there
are Light objects in the Axes, the AmbientLightColor is added to the other
light sources.

AspectRatio (Obsolete)

This property produces a warning message when queried or changed. It has
been superseded by the DataAspectRatio[Mode] and
PlotBoxAspectRatio[Mode] properties.

Box on | {off}

Axes box mode. This property specifies whether to enclose the Axes extent in a
box for 2-D views or a cube for 3-D views. The default is to not display the box.

1-15

axes

1-16

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked call-
back routes always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then interrup-
tion occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

=« cancel — discard the event that attempted to execute a second callback rou-
tine.

= queue — queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is within the Axes, but not over another
graphics object displayed in the Axes. For 3-D views, the active area is defined
by a rectangle that encloses the Axes.

Define this routine as a string that is a valid MATLAB expression or the name
of an M-file. The expression executes in the MATLAB workspace.

CameraPosition [x, y, z] Axes coordinates

The location of the camera. This property defines the position from which the
camera views the scene. Specify the point in Axes coordinates.

If you fix CameraViewAngle, you can zoom in and out on the scene by changing
the CameraPosition, moving the camera closer to the CameraTarget to zoom in
and farther away from the CameraTarget to zoom out. As you change the
CameraPosition, the amount of perspective also changes, if Projection is
perspective. You can also zoom by changing the CameraviewAngle, however,
this does not change the amount of perspective in the scene.

CameraPositionMode {auto} | manual

Auto or manual CameraPosition. When set to auto, MATLAB automatically
calculates the CameraPosition such that the camera lies a fixed distance from

axes

the CameraTarget along the Azimuth and Elevation specified in the View.
Setting a value for CameraPosition sets this property to manual.

CameraTarget [x, y, z] Axes coordinates

Camera aiming point. This property specifies the location in the Axes that the
camera points to. The CameraTarget and the CameraPosi tion define the vector
along which the camera looks.

CameraTargetMode {auto} | manual

Auto or manual CameraTarget placement. When this property is auto,
MATLAB automatically positions the CameraTarget at the centroid of the Axes
plotbox. Specifying a value for CameraTarget sets this property to manual.

CameraUpVector [x, y, z] Axes coordinates

Camera rotation. This property specifies the rotation of the camera around the
viewing axis defined by the CameraTarget and the CameraPosition properties.
Specify CameraUpVector as a three-element array containing the x, y, and z
components of the vector. For example, [0 1 0] specifies the positive y-axis as
the up direction.

The default CameraUpVector is [0 0 1], which defines the positive z-axis as the
up direction.

CameraUpVectorMode {auto} | manual

Default or user-specified up vector. When CameraUpVectorMode is auto,
MATLAB uses a value of [0 0 1] (positive z-direction is up) for 3-D views and
[0 1 0] (positive y-direction is up) for 2-D views. Setting a value for Camer-
aUpVector sets this property to manual.

CameraViewAngle scalar between 0 and 180 (angle in degrees)

The field of view. This property determines the camera field of view. Changing
this value affects the size of graphics objects displayed in the Axes, but does not
affect the degree of perspective distortion. The greater the angle, the larger the
field of view, and the smaller objects appear in the scene.

CameraViewAngleMode {auto} | manual

Auto or manual CameraViewAngle. When in auto mode, MATLAB sets
CameraViewAngle to the minimum angle that captures the entire scene (up to
180°).

The following table summarizes MATLAB's automatic camera behavior.

1-17

axes

CameraView Camera Camera Behavior

Angle Target Position

auto auto auto CameraTarget is set to plot box centroid,
CameraViewAngle is set to capture entire scene,
CameraPosition is set along the view axis.

auto auto manual CameraTarget is set to plot box centroid,
CameraViewAngle is set to capture entire scene.

auto manual auto CameraViewAngle is set to capture entire scene,
CameraPosition is set along the view axis.

auto manual manual CameraViewAngle is set to capture entire scene.

manual auto auto CameraTarget is set to plot box centroid,
CameraPosition is set along the view axis.

manual auto manual CameraTarget is set to plot box centroid

manual manual auto CameraPosition is set along the view axis.

manual manual manual All Camera properties are user-specified.

Children vector of graphics object handles

1-18

Children of the Axes. A vector containing the handles of all graphics objects
rendered within the Axes (whether visible or not). The graphics objects that can
be children of Axes are Images, Lights, Lines, Patches, Surfaces, and Text.

The Text objects used to label the x-, y-, and z-axes are also children of Axes,
but their HandleVvisibility properties are set to cal Iback. This means their
handles do not show up in the Axes Children property unless you set the Root
ShowHiddenHandles property to on.

CLim

[cmin, cmax]

Color axis limits. A two-element vector that determines how MATLAB maps the
CData values of Surface and Patch objects to the Figure’s colormap. cmin is the
value of the data mapped to the first color in the colormap, and cmax is the
value of the data mapped to the last color in the colormap. Data values in
between are linearly interpolated across the colormap, while data values

axes

outside are clamped to either the first or last colormap color, whichever is
closest.

When CLimMode is auto (the default), MATLAB assigns cmin the minimum data
value and cmax the maximum data value in the graphics object’'s CData. This
maps CData elements with the minimum data value to the first colormap entry
and with the maximum data value to the last colormap entry.

If the Axes contains multiple graphics objects, MATLAB sets CLim to span the
range of all objects’ CData.

CLimMode {auto} | manual

Color axis limits mode. In auto mode, MATLAB sets the CLim property to span
the CData limits of the graphics objects displayed in the Axes. If CLimMode is
manual, MATLAB does not change the value of CLim when the CData limits of
axes children change. Setting the CLim property sets this property to manual.

Clipping {on} | off
This property has no effect on Axes.

Color {none} | ColorSpec

Color of the Axes back planes. Setting this property to none means the Axes is
transparent and the Figure color shows through. A ColorSpec is a
three-element RGB vector or one of MATLAB's predefined names. See the
ColorSpec reference page for more information on specifying color. Note that
while the default value is none, the matlabrc.m file may set the Axes color to
a specific color.

ColorOrder m-by-3 matrix of RGB values

Colors to use for multiline plots. An m-by-3 matrix of RGB values that define

the colors used by the plot and plot3 functions to color each line plotted. If you
do not specify a line color with plot and plot3, these functions cycle through

the ColorOrder to obtain the color for each line plotted. To obtain the current
, ColorOrder, which may be set during startup, get the property:

get(gca, "ColorOrder™)

Note that if the Axes NextPlot property is set to replace (the default),
high-level functions like plot reset the ColorOrder property before deter-
mining the colors to use. If you want MATLAB to use a ColorOrder that is

1-19

axes

1-20

different than the default, set NextPlot to replacedata. You can also specify
your own default ColorOrder.

CreateFcn string

Callback routine executed during object creation. This property defines a call-
back routine that executes when MATLAB creates an Axes object. You must
define this property as a default value for Axes. For example, the statement,

set (0, "Defaul tAxesCreateFcn®, "set(gca, ""Color"",""b"")")

defines a default value on the Root level that sets the current Axes’ background
color to blue whenever you (or MATLAB) create an Axes. MATLAB executes this
routine after setting all properties for the Axes. Setting this property on an
existing Axes object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

CurrentPoint 2-by-3 matrix

Location of last button click, in Axes data units. A 2-by-3 matrix containing the
coordinates of two points defined by the location of the pointer. These two
points lie on the line that is perpendicular to the plane of the screen and passes
through the pointer. The 3-D coordinates are the points, in the axes coordinate
system, where this line intersects the front and back surfaces of the Axes
volume (which is defined by the Axes x, y, and z limits).

The returned matrix is of the form:

Xback Yback “back

Xtront Yfront %front

MATLAB updates the CurrentPoint property whenever a button-click event
occurs. The pointer does not have to be within the Axes, or even the Figure
window; MATLAB returns the coordinates with respect to the requested Axes
regardless of the pointer location.

DataAspectRatio [dx dy dz]

Relative scaling of data units. A three-element vector controlling the relative
scaling of data units in the x, y, and z directions. For example, setting this prop-
erty to [1 2 1] causes the length of one unit of data in the x direction to be the

axes

same length as two units of data in the y direction and one unit of data in the
z direction.

Note that the DataAspectRatio property interacts with the
PlotBoxAspectRatio, XLimMode, YLimMode, and ZL imMode properties to control
how MATLAB scales the x-, y-, and z-axis. Setting the DataAspectRatio will
disable the Stretch-to-fill behavior, if DataAspectRatioMode, PlotBoxAspec-
tRatioMode, and CameraViewAngleMode were previously all auto. The
following table describes the interaction between properties when the
Stretch-to-fill behavior is disabled.

X-, Y-,
Z-Limits

DataAspect PlotBox Behavior
Ratio AspectRatio

auto

auto

auto

auto

manual

manual

manual

auto auto Limits chosen to span data range in all
dimensions.

auto manual Limits chosen to span data range in all
dimensions. DataAspectRatio is modified to
achieve the requested PlotBoxAspectRatio
within the limits selected by MATLAB.

manual auto Limits chosen to span data range in all
dimensions. PlotBoxAspectRatio is modified to
achieve the requested DataAspectRatio within
the limits selected by MATLAB.

manual manual Limits chosen to completely fit and center the
plot within the requested PlotBoxAspectRatio
given the requested DataAspectRatio (this may
produce empty space around 2 of the 3
dimensions).

auto auto Limits are honored. The DataAspectRatio and
PlotBoxAspectRatio are modified as necessary.

auto manual Limits and PlotBoxAspectRatio are honored.
The DataAspectRatio is modified as necessary.

manual auto Limits and DataAspectRatio are honored. The
PlotBoxAspectRatio is modified as necessary.

1-21

axes

X-, Y-, DataAspect PlotBox Behavior

Z-Limits Ratio AspectRatio

1 manual manual manual The 2 automatic limits are selected to honor the
2 auto specified aspect ratios and limit. See “Examples”
2 or 3 manual manual Limits and DataAspectRatio are honored; the
manual PlotBoxAspectRatio is ignored.

1-22

DataAspectRatioMode {auto} | manual

User or MATLAB controlled data scaling. This property controls whether the
values of the DataAspectRatio property are user defined or selected automat-
ically by MATLAB. Setting values for the DataAspectRatio property automati-
cally sets this property to manual. Changing DataAspectRatioMode to manual
will disable the Stretch-to-fill behavior, if DataAspectRatioMode, PlotBoxAs-
pectRatioMode, and CameraViewAngleMode were previously all auto

DeleteFcn string

Delete Axes callback routine. A callback routine that executes when the Axes
object is deleted (e.g., when you issue a delete or a close command). MATLAB
executes the routine before destroying the object’s properties so the callback
routine can query these values.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

DrawMode {normal} | fast

Rendering method. This property controls the method MATLAB uses to render
graphics objects displayed in the Axes, when the Figure Renderer is painters.

= normal mode draws objects in back to front ordering based on the current
view, in order to handle hidden surface elimination and object intersections.

=« fast mode draws objects in the order in which you specify the drawing com-
mands, without considering the relationships of the objects in three dimen-
sions. This results in faster rendering because it requires no sorting of objects
according to location in the view, but may produce undesirable results be-
cause it bypasses the hidden surface elimination and object interstection
handling provided by normal DrawMode.

axes

When the Figure Renderer is zbuffer, DrawMode is ignored, and hidden surface
elimination and object intersection handling are always provided.

FontAngle {normal} | italic | oblique

Select italic or normal font. This property selects the character slant for Axes
text. normal specifies a nonitalic font. italic and oblique specify italic font.

FontName The default is Helvetica on many systems

Font family name. The font family name specifying the font to use for Axes
labels. To display and print properly, FontName must be a font that your system
supports. Note that the x-, y-, and z-axis labels do not display in a new font until
you manually reset them (by setting the XLabel, YLabel, and ZLabel properties
or by using the xlabel, ylabel, or zlabel command). Tick mark labels change
immediately.

FontSize Font size specified in FontUnits

Font size. An integer specifying the font size to use for Axes labels and titles, in
units determined by the FontUnits property. The default point size is 12. The
X-, y-, and z-axis text labels do not display in a new font size until you manually
reset them (by setting the XLabel, YLabel, or ZLabel properties or by using the
xlabel, ylabel, or zlabel command). Tick mark labels change immediately.

FontUnits {points} | normalized | inches | centimeters |
pixels

Units used to interpret the FontSize property. When set to normalized,
MATLAB interprets the value of FontSize as a fraction of the height of the
Axes. For example, a normalized FontSize of 0.1 sets the text characters to a
font whose height is one tenth of the Axes’ height. The default units (points),
are equal to 1/72 of an inch.

FontWeight {normal} | bold | light | demi

Select bold or normal font. The character weight for Axes text. The x-, y-, and
z-axis text labels do not display in bold until you manually reset them (by
setting the XLabel, YLabel, and ZLabel properties or by using the xlabel,
ylabel, or zlabel commands). Tick mark labels change immediately.
GridLineStyle -1 -1 4{}1 — | none

Line style used to draw grid lines. The line style is a string consisting of a char-
acter, in quotes, specifying solid lines (=), dashed lines (- -), dotted lines(:), or

1-23

axes

1-24

dash-dot lines (-.). The default grid line style is dotted. To turn on grid lines,
use the grid command.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This prop-
erty determines when an object’s handle is visible in its parent’s list of children.
Handles are always visible when HandleVisibility is on. When HandleVisi-
bility is callback, handles are visible from within callbacks or functions
invoked by callbacks, but not from within functions invoked from the command
line - a useful way to protect GUIs from command-line users, while permitting
their callbacks complete access to their own handles. Setting HandleVisi-
bility to off makes handles invisible at all times - which is occasionally neces-
sary when a callback needs to invoke a function that might potentially damage
the Ul, and so wants to temporarily hide its own handles during the execution
of that function.

When a handle is not visible in its parent’s list of children, it can not be
returned by any functions which obtain handles by searching the object hier-
archy or querying handle properties, including get, findobj, gca, gcf, gco,
newplot, cla, clf, and close. When a handle’s visibility is restricted using
cal Iback or off, the object’s handle does not appear in its parent’s Children
property, Figures do not appear in the Root's CurrentFigure property, objects
do not appear in the Root's Cal IbackObject property or in the Figure’'s Curren-
tObject property, and Axes do not appear in their parent’s CurrentAxes prop-
erty.

The Root ShowHiddenHandles property can be set to on to temporarily make all
handles visible, regardless of their HandleVisibi lity settings (this does not
affect the values of the HandleVisibi lity properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.
This property is useful for preventing command-line users from accidently
drawing into or deleting a Figure that contains only user interface devices
(such as a dialog box).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether an Axes callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are

axes

affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine. See the EventQueue property for
related information.

Setting Interruptible to on allows any graphics object’s callback routine to
interrupt callback routines originating from an Axes property. Note that
MATLAB does not save the state of variables or the display (e.g., the handle
returned by the gca or gcf command) when an interruption occurs.

Layer {bottom} | top

Draw axis lines below or above graphics objects. This property determines if
axis lines and tick marks draw on top or below Axes children objects when the
view is [0 907 and the Axes DrawMode is fast (or when there are no Axes Chil-
dren with nonzero zData). This enables you to place grid lines and tick marks
on top of Images.

LineStyleOrder LineSpec

Order of line styles and markers used in a plot. This property specifies which
line styles and markers to use and in what order when creating multiple-line
plots. For example,

set(gca, "LineStyleOrder™, "-[J]:]o")

sets LineStyleOrder to solid line with asterisk marker, dotted line, and hollow
circle marker. The default is (=), which specifies a solid line for all data plotted.
Alternatively, you can create a cell array of character strings to define the line
styles:

set(gca, "LineStyleOrder” ,{"—*",":","0"})

MATLAB supports four line styles, which you can specify any number of times
in any order. MATLAB cycles through the line styles only after using all colors
defined by the ColorOrder property. For example, the first eight lines plotted
use the different colors defined by ColorOrder with the first line style.
MATLAB then cycles through the colors again, using the second line style spec-
ified, and so on.

You can also specify line style and color directly with the plot and plot3 func-
tions or by altering the properties of the Line objects.

1-25

axes

1-26

Note that, if the Axes NextPlot property is set to replace (the default),
high-level functions like plot reset the LineStyleOrder property before deter-
mining the line style to use. If you want MATLAB to use a LineStyleOrder that
is different than the default, set NextPlot to replacedata. You can also specify
your own default LineStyleOrder.

LineWidth linewidth in points

Width of axis lines. This property specifies the width, in points, of the x-, y-, and
z-axis lines. The default line width is 0.5 points (1 point = 1/72 inch).

NextPlot add | {replace} | replacechildren

Where to draw the next plot. This property determines how high-level plotting
functions draw into an existing Axes.

= add — use the existing Axes to draw graphics objects.

= replace — reset all Axes properties, except Position, to their defaults and
delete all Axes children before displaying graphics (equivalent to cla reset).

= replacechildren — remove all child objects, but do not reset Axes properties
(equivalent to cla).

The newplot function simplifies the use of the NextPlot property and is used
by M-file functions that draw graphs using only low-level object creation
routines. See the M-file pcolor.m for an example. Note that Figure graphics
objects also have a NextPlot property.

Parent Figure handle

Axes parent. The handle of the Axes’ parent object. The parent of an Axes object
is the Figure in which it is displayed. The utility function gcf returns the
handle of the current Axes’ Parent. You can reparent Axes to other Figure
objects.

PlotBoxAspectRatio [px py pz]

Relative scaling of Axes plotbox. A three-element vector controlling the relative
scaling of the plot box in the x-, y-, and z-directions. The plot box is a box
enclosing the Axes data region as defined by the x-, y-, and z-axis limits.

Note that the PlotBoxAspectRatio property interacts with the DataAspec-
tRatio, XLimMode, YLimMode, and ZLimMode properties to control the way
graphics objects are displayed in the Axes. Setting the PlotBoxAspectRatio

axes

will disable the Stretch-to-fill behavior, if DataAspectRatioMode, PlotBoxAs-
pectRatioMode, and CameraViewAngleMode were previously all auto. .

PlotBoxAspectRatioMode {auto} | manual

User or MATLAB controlled axis scaling. This property controls whether the
values of the PlotBoxAspectRatio property are user defined or selected auto-
matically by MATLAB. Setting values for the PlotBoxAspectRatio property
automatically sets this property to manual. Changing the PlotBoxAspectRati-
oMode to manual will disable the Stretch-to-fill behavior, if DataAspectRatio-
Mode, PlotBoxAspectRatioMode, and CameraViewAngleMode were previously
all auto.

Position 4-element vector

Position of Axes. A four-element vector specifying a rectangle that locates the
Axes within the Figure window. The vector is of the form:

[left bottom width height]

where left and bottom define the distance from the lower-left corner of the
Figure window to the lower-left corner of the rectangle. width and height are
the dimensions of the rectangle. All measurements are in units specified by the
Units property.

When Axes Stretch-to-fill behavior is enabled (when DataAspectRatioMode,
PlotBoxAspectRatioMode, CameraViewAngleMode are all auto), the axes are
stretched to fill the Position rectangle. When Stretch-to-fill is disabled, the
Axes are made as big as possible while obeying all other properties, without
extending outside the Position rectangle

Projection {orthographic} | perspective

Type of projection. This property selects between two projection types:

= orthographic — This projection maintains the correct relative dimensions of
the graphics objects with regard to the distance a given point is from the
viewer. Parallel lines in the data are drawn parallel on the screen.

= perspective — This projection incorporates foreshortening, which allows you
to perceive depth in a 2-D representation of 3-D objects. Objects appear to be-
come smaller as they are moved further from the viewer, and parallel lines
in the data may not appear parallel on screen.

1-27

axes

1-28

Selected on | off

Is object selected. When this property is on. MATLAB displays selection handles
if the SelectionHighlight property is also on. You can, for example, define the
ButtonDownFcn to set this property, allowing users to select the object with the
mouse.

SelectionHighlight {on} | off

Obijects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing four edge handles and four corner
handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines.

For example, suppose you want to direct all graphics output from an M-file to
a particular Axes, regardless of user actions that may have changed the current
Axes. To do this, identify the Axes with a Tag:

axes("Tag", "Special Axes")
Then make that Axes the current Axes before drawing by searching for the Tag
with findobj:

axes(Findobj("Tag", "Special Axes"))
TickDir in | out

Direction of tick marks. For 2-D views, the default is to direct tick marks
inward from the axis lines; 3-D views direct tick marks outward from the axis
line.

TickDirMode {auto} | manual

Automatic tick direction control. In auto mode, MATLAB directs tick marks
inward for 2-D views and outward for 3-D views. When you specify a setting for
TickDir, MATLAB sets TickDirMode to manual. In manual mode, MATLAB does
not change the specified tick direction.

axes

TickLength [2DLength 3DLength]

Length of tick marks. A two-element vector specifying the length of Axes tick
marks. The first element is the length of tick marks used for 2-D views and the
second element is the length of tick marks used for 3-D views. Specify tick mark
lengths in units normalized relative to the longest of the visible X-, Y-, or Z-axis
annotation lines.

Title handle of text object

Axes title. The handle of the Text object that is used for the Axes title. You can
use this handle to change the properties of the title Text or you can set Title
to the handle of an existing Text object. For example, the following statement
changes the color of the current title to red:

set(get(gca, "Title"), "Color~,"r")

To create a new title, set this property to the handle of the Text object you want
to use:

set(gca, "Title" ,text("String","New Title","*Color™,"r%))

However, it is generally simpler to use the title command to create or replace
an Axes title:

title("New Title","Color™","r")
Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For Axes objects, Type is always set to 'axes'.

Units inches | centimeters | {normalized} | points |
pixels

Position units. The units used to interpret the Position property. All units are
measured from the lower-left corner of the Figure window. normalized units
map the lower-left corner of the Figure window to (0,0) and the upper-right
corner to (1.0, 1.0). inches, centimeters, and points are absolute units (one
point equals 1/72 of an inch).

UserData matrix

User specified data. This property can be any data you want to associate with
the Axes object. The Axes does not use this property, but you can access it using
the set and get functions.

1-29

axes

1-30

View Obsolete

The functionality provided by the View property is now controlled by the Axes
camera properties — CameraPosition, CameraTarget, CameraUpVector, and
CameraViewAngle. See the view command.

Visible {on} | off

Visibility of Axes. By default, Axes are visible. Setting this property to off
prevents axis lines, tick marks, and labels from being displayed. The visible
property does not affect children of Axes.

XAxisLocation top | {bottom}

Location of x-axis tick marks and labels. This property controls where MATLAB
displays the x-axis tick marks and labels. Setting this property to top moves
the x-axis to the top of the plot.

YAxisLocation right | {left}

Location of y-axis tick marks and labels. This property controls where MATLAB
displays the y-axis tick marks and labels. Setting this property to right moves
the y-axis to the right side of the plot.

Properties That Control the X-, Y-, or Z-Axis
XColor, YColor, ZColor ColorSpec.

Color of axis lines. A three-element vector specifying an RGB triple, or a
predefined MATLAB color string. This property determines the color of the axis
lines, tick marks, tick mark labels, and the axis grid lines of the respective x-,
y-, and z-axis. The default axis color is white. See the ColorSpec reference page
for details on specifying colors.

axes

XDir, YDir, ZDir {normal} | reverse

Direction of increasing values. A mode controlling the direction of increasing
axis values. Axes form a right-hand coordinate system. By default,

= x-axis values increase from left to right. To reverse the direction of increasing
x values, set this property to reverse.
= y-axis values increase from bottom to top (2-D view) or front to back (3-D

view). To reverse the direction of increasing y values, set this property to
reverse.

= z-axis values increase pointing out of the screen (2-D view) or from bottom to

top (3-D view). To reverse the direction of increasing z values, set this prop-
erty to reverse.

XGrid, YGrid, ZGrid on | {off}

Axis gridline mode. When you set any of these properties to on, MATLAB draws
grid lines perpendicular to the respective axis (i.e., along lines of constant x, y,
or z values). Use the grid command to set all three properties on or off at once.

XLabel, YLabel, ZLabel handle of text object

Axis labels. The handle of the Text object used to label the X, y, or z-axis, respec-
tively. To assign values to any of these properties, you must obtain the handle
to the text string you want to use as a label. This statement defines a Text
object and assigns its hanlde to the XLabel property:

set(gca, "Xlabel ", text("String", "axis label™))
MATLAB places the string "axis label " appropriately for an x-axis label. Any

Text object whose handle you specify as an XLabel, YLabel, or ZLabel property
is moved to the appropriate location for the respective label.

Alternatively, you can use the xlabel, ylabel, and zlabel functions, which
generally provide a simpler means to label axis lines.

XLim, YLim, ZLim [minimum maximum]

Axis limits. A two-element vector specifying the minimum and maximum
values of the respective axis.

Changing these properties affects the scale of the x-, y-, or z-dimension as well
as the placement of labels and tick marks on the axis. The default values for
these properties are [0 1].

1-31

axes

1-32

XLimMode, YLimMode, ZLimMode {auto} | manual

MATLAB or user-controlled limits. The axis limits mode determines whether
MATLAB calculates axis limits based on the data plotted (i.e., the XData, YData,
or ZData of the Axes children) or uses the values explicitly set with the XLim,
YLim, or ZLim property, in which case, the respective limits mode is set to
manual.

XScale, YScale, ZScale {linear} | log
Axis scaling. Linear or logarithmic scaling for the respective axis.

XTick, YTick, ZTick vector of data values locating tick marks

Tick spacing. A vector of x-, y-, or z-data values that determine the location of
tick marks along the respective axis. If you do not want tick marks displayed,
set the respective property to the empty vector, []. These vectors must contain
monotonically increasing values.

XTickLabel, YTickLabel, ZTickLabel string

Tick labels. A matrix of strings to use as labels for tick marks along the respec-
tive axis. These labels replace the numeric labels generated by MATLAB. If you
do not specify enough text labels for all the tick marks, MATLAB uses all of the
labels specified, then reuses the specified labels.

For example, the statement,

set(gca, "XTickLabel " ,{"0One";"Two"; "Three" ; >’Four"})

labels the first four tick marks on the x-axis and then reuses the labels until all
ticks are labeled.

Labels can be specified as cell arrays of strings, padded string matrices, string
vectors separated by vertical slash characters, or as numeric vectors (where
each number is implicitly converted to the equivalent string using numa2str).
All of the following are equivalent:

set(gca, ’XTickLabel” ,{“17;7107;7100°})
set(gca, ’XTickLabel”,“1]10]1007)

set(gca, *XTickLabel”,[1;10;100])
set(gca,’XTickLabel”,[“1 ~;710 ”;7100°])

axes

See Also

XTickMode, YTickMode, ZTickMode {auto} | manual

MATLAB or user controlled tick spacing. The axis tick modes determine
whether MATLAB calculates the tick mark spacing based on the range of data
for the respective axis (auto mode) or uses the values explicitly set for any of
the XTick, YTick, and ZTick properties (nanual mode). Setting values for the
XTick, YTick, or ZTick properties sets the respective axis tick mode to manual.

XTickLabelMode, YTickLabelMode, ZTickLabelMode{auto} | manual

MATLAB or user determined tick labels. The axis tick mark labeling mode
determines whether MATLAB uses numeric tick mark labels that span the
range of the plotted data (auto mode) or uses the tick mark labels specified
with the XTickLabel, YTickLabel, or ZTickLabel property (manual mode).
Setting values for the XTickLabel, YTickLabel, or ZTickLabel property sets
the respective axis tick label mode to manual.

axis, cla, clf, figure, gca, subplot

1-33

axis

Purpose

Syntax

Description

1-34

Axis scaling and appearance

axis([xmin xmax ymin ymax])
axis([xmin xmax ymin ymax zmin zmax])
axis auto

axis manual

axis(axis)

Vv = axis

axis square
axis equal

axis normal
axis image

axis vis3d

axis off
axis on

[mode,visibility,direction] = axis("state")
axis manipulates commonly used Axes properties. (See Algorithm section.)

axis([xmin xmax ymin ymax]) sets the limits for the x- and y-axis of the
current Axes.

axis([xmin xmax ymin ymax zmin zmax]) sets the limits for the x-, y-, and
z-axis of the current Axes.

axis auto sets MATLAB to its default behavior of computing the current Axes
limits automatically, based on the minimum and maximum values of x, y, and
z data. You can restrict this automatic behavior to a specific axis. For example,
axis "auto x" computes only the x-axis limits automatically; axis "auto yz"
computes the y- and z-axis limits automatically.

axis

axis manual and axis(axis) freeze the scaling at the current limits, so that
if hold is on, subsequent plots use the same limits. This sets the XLimMode,
YLimMode, and ZLimMode properties to manual.

v = axis returns a row vector containing scaling factors for the x-, y-, and
z-axis. v has four or six components depending on whether the current Axes is
2-D or 3-D, respectively. The returned values are the current Axes’ XLim, Y1im,
and zZLim properties.

axis ij places the coordinate system origin in the upper-left corner. The
i-axis is vertical, with values increasing from top to bottom. The j-axis is hori-
zontal with values increasing from left to right.

axis xy draws the graph in the default Cartesian axes format with the coor-
dinate system origin in the lower-left corner. The x-axis is horizontal with
values increasing from left to right. The y-axis is vertical with values
increasing from bottom to top.

axis square makes the current Axes region square (or cubed when
three-dimensional). MATLAB adjusts the x-axis, y-axis, and z-axis so that they

have equal lengths and adjusts the increments between data units accordingly.

axis equal sets the aspect ratio so that the data units are the same in every
direction. The aspect ratio of the x-, y-, and z-axis is adjusted automatically
according to the range of data units in the X, y, and z directions.

axis vis3 freezes aspect ratio properties to enable rotation of 3-D objects and
overrides stretch-to-fill.

axis normal automatically adjusts the aspect ratio of the Axes
and the aspect ratio of the data units represented on the Axes to fill the plot
box.

axis tightequal sets the aspect ratio so that the data units are the same in
every direction. This differs from axis equal because the plot box aspect ratio
automatically adjusts. (Formally axis image.)

axis off turns off all axis lines, tick marks, and labels.

axis on turns on all axis lines, tick marks, and labels.

1-35

axis

[mode,visibility,direction] = axis("state") returns three strings indi-
cating the current setting of Axes properties:

Output Argument Strings Returned
mode "auto®” | "manual*
visibility “on® | "off"
direction "xy" | "ij"

mode is "auto" if XLimMode, YLimMode, and ZLimMode are all set to auto. If XLim-
Mode, YLimMode, or ZLimMode is manual, mode is "manual .
Examples The statements
X = 0:.01:pi/2;
plot(x,tan(x))

use the automatic scaling of the y-axis based on ymax = tan(1.57), which is
well over 1000, as shown in the left figure.

The right figure shows a more satisfactory plot after typing

axis([0 pi/2 0 10])

1400

1200
1000
800
600

4001
2001 ‘_/J 1
0 L L L L L

Algorithm When you specify minimum and maximum values for the x-, y-, and z-axes,
axis sets the XLim, YIim, and ZLim properties for the current Axes to the respec-
tive minimum and maximum values in the argument list. Additionally, the

1-36

axis

XLimMode, YLimMode, and ZLimMode properties for the current Axes are set to
manual.

axis auto sets the current Axes’' XLimMode, YLimMode, and ZLimMode properties
to 'auto”.

axis manual sets the current Axes’ XLimMode, YLimMode, and ZL imMode proper-
ties to 'manual =.

The following table shows the values of the Axes properties set by axis equal,
axis normal, axis square, and axis image.

AXxes Property axis equal axis normal axis square axis tightequal
DataAspectRatio [1 1 1] not set not set [1 1 1]
DataAspectRatioMode manual auto auto manual
PlotBoxAspectRatio [3 4 4] not set [111] auto
PlotBoxAspectRatioMode manual auto manual auto
Stretch-to-fill disabled active disabled disabled

See Also

axes, get, set, subplot

Properties of Axes graphics objects.

1-37

bar, barh

Purpose

Syntax

Description

1-38

Bar chart

bar(Y)

bar(x,Y)
bar(...,width)
bar(...,"style")
bar(...,ColorSpec)
[xb,yb] = bar(...)
h = bar(...)

barh(...)
[xb,yb] = barh(...)
h = barh(...)

A bar chart displays the values in a vector or matrix as horizontal or vertical
bars.

bar(Y) draws one bar for each element in Y. If Y is a matrix, bar groups
together the bars produced by the elements in each row. The x-axis scale ranges
from 1 to length(Y) when Y is a vector, and 1 to size(Y, 1), which is the
number of rows, when Y is a matrix.

bar(x,Y) draws a bar for each element in Y at locations specified in x, where x
is a monotonically increasing vector defining the x-axis intervals for the
vertical bars. If Y is a matrix, bar clusters the elements in the same row in Y at
locations corresponding to an element in x.

bar(...,width) setsthe relative bar width and controls the separation of bars
within a group. The default width is 0.8, so if you do not specify x, the bars
within a group have a slight separation. If width is 1, the bars within a group
touch one another.

bar, barh

bar(...,"style") specifies the style of the bars. "style"” is "group” or
"stack”. "group” is the default mode of display.

= “group" displays n groups of m vertical bars, where n is the number of rows
and m is the number of columns in Y. The group contains one bar per column
iny.

=« "stack" displays one bar for each row in Y. The bar height is the sum of the
elements in the row. Each bar is multi-colored, with colors corresponding to
distinct elements and showing the relative contribution each row element
makes to the total sum.

bar(...,LineSpec) displays all bars using the color specified by LineSpec.

[xb,yb] = bar(...) returns vectors that you plot using plot(xb,yb) or
patch(xb,yb,C). This gives you greater control over the appearance of a graph,
for example, to incorporate a bar chart into a more elaborate plot statement.

h = bar(...) returns a vector of handles to Patch graphics objects. bar
creates one Patch graphics object per column in Y.

barh(...), [xb,yb] = barh(...),and h = barh(...) create horizontal
bars. Y determines the bar length. The vector x is a monotonic vector defining
the y-axis intervals for horizontal bars.

|

1-39

bar, barh

Examples Plot a bell shaped curve:

X = -2.9:0.2:2.9;
bar(x,exp(—x.0x))

Create four subplots showing the effects of some bar arguments:

Y = round(rand(5,3)0);
subplot(2,2,1)
bar(Y,"group®)
title "Group”

subplot(2,2,2)
bar(Y, "stack™)
title "Stack”

subplot(2,2,3)
barh(Y, "stack®)
title "“Stack”

subplot(2,2,4)
bar(Y,1.5)
title "Width = 1.5*

See Also bar3, ColorSpec, patch, stairs, hist

1-40

bar3, bar3h

Purpose

Syntax

Description

Three-dimensional bar chart

bar3(Y)

bar3(x,Y)
bar3(...,width)
bar3(..., "style")
bar3(...,LineSpec)
h = bar3(...)

bar3h(...)
h = bar3h(...)

bar3 and bar3h draw three-dimensional vertical and horizontal bar charts.

bar3(Y) draws a three-dimensional bar chart, where each element in Y corre-
sponds to one bar. When Y is a vector, the x-axis scale ranges from 1 to
length(Y). When Y is a matrix, the x-axis scale ranges from 1 to size(Y,2),
which is the number of columns, and the elements in each row are grouped
together.

bar3(x,Y) draws a bar chart of the elements in Y at the locations specified in
x, where x is a monotonic vector defining the y-axis intervals for vertical bars.
If Y is a matrix, bar3 clusters elements from the same row in Y at locations
corresponding to an element in x. Values of elements in each row are grouped
together.

bar3(...,width) setsthe width of the bars and controls the separation of bars
within a group. The default width is 0.8, so if you do not specify x, bars within
a group have a slight separation. If width is 1, the bars within a group touch
one another.

bar3(...,"style") specifies the style of the bars. "style" is "detached”,
"grouped”, or "stacked". "detached" is the default mode of display.

= "detached" displays the elements of each row in Y as separate blocks behind
one another in the x direction.

|

1-41

bar3, bar3h

= "grouped" displays n groups of m vertical bars, where n is the number of
rows and m is the number of columns in Y. The group contains one bar per
columniny.

= “stacked" displays one bar for each row in Y. The bar height is the sum of
the elements in the row. Each bar is multi-colored, with colors corresponding
to distinct elements and showing the relative contribution each row element
makes to the total sum.

bar3(...,LineSpec) displays all bars using the color specified by LineSpec.

h = bar3(...) returns a vector of handles to Patch graphics objects. bar3
creates one Patch object per columnin.

bar3h(...) and h = bar3h(...) create horizontal bars. Y determines the bar
length. The vector x is a monotonic vector defining the y-axis intervals for hori-
zontal bars.

Examples Create four subplots showing the effects of different arguments for bar3:

Y = rand(7,3);
subplot(2,2,1)
bar3(Y, “"group®)
title("Group™)

subplot(2,2,2)
bar3(Y, "stacked®)
title("Stacked™)

subplot(2,2,3)
bar3(Y, .5)
title("Width =.5%)
subplot(2,2,4)
bar3(Y,1.5)
title("Width=1.5%)

See Also bar, LineSpec, patch

1-42

box

Purpose

Syntax

Description

Algorithm

See Also

Control Axes border
box on
box off

box

box on displays the boundary of the current Axes.
box off rdoes not display the boundary of the current Axes.

box toggles the visible state of the current Axes’ boundary.
The box function sets the Axes Box property to on or off.

axes

1-43

brighten

Purpose

Syntax

Description

Examples

Algorithm

See Also

1-44

Brighten or darken colormap

brighten(beta)
brighten(h,beta)

newmap = brighten(beta)
newmap = brighten(cmap,beta)

brighten increases or decreases the color intensities in a colormap. The modi-
fied colormap is brighter if 0 < beta < 1 and darker if -1 < beta < 0.

brighten(beta) replaces the current colormap with a brighter or darker
colormap of essentially the same colors. brighten(beta), followed by
brighten(—beta), where beta < 1, restores the original map.

brighten(h,beta) brightens all objects that are children of the Figure having
the handle h.

newmap = brighten(beta) returns a brighter or darker version of the current
colormap without changing the display.

newmap = brighten(cmap,beta) returns a brighter or darker version of the
colormap cmap without changing the display.

Brighten then darken the current colormap:

beta
beta

.5; brighten(beta);
—.5; brighten(beta);

The values in the colormap are raised to the power of gamma, where gamma is

D1—[3, >0
y=01 <0
i+ PS

brighten has no effect on graphics objects defined with true color.

colormap, rgbplot

brighten

|

1-45

brighten

1-46

capture

Purpose

Syntax

Description

Remarks

See Also

|

Screen capture

capture
capture(h)
[X,cmap] = capture(h)

capture creates a bitmap copy of the contents of the current Figure, including
any Uicontrol graphics objects. It creates a new Figure and displays the bitmap
copy as an Image graphics object in the new Figure.

capture(h) creates a new Figure that contains a copy of the Figure identified
by h.

[X,cmap] = capture(h) returns an image matrix X and a colormap. You
display this information using the statements

colormap(cmap)
image(X)

The resolution of a bitmap copy is less than that obtained with the print
command.

image, print

1-47

caxis

1-48

Purpose

Syntax

Description

Examples

Color axis scaling

caxis([cmin cmax])
caxis auto

caxis manual
caxis(caxis)

Vv = caxis

caxis controls the mapping of data values to the colormap. It affects any
Surfaces, Patches, and Images with indexed CData and CDataMapping set to
scaled . It does not affect Surfaces, Patches, or Images with true color CData
or with CDhataMapping set to direct.

caxis([cmin cmax]) sets the color limits to specified minimum and
maximum values. Data values less than cmin or greater than cmax map to cmin
and cmax, respectively. Values between cmin and cmax linearly map to the
current colormap.

caxis auto lets MATLAB compute the color limits automatically using the
minimum and maximum data values. This is MATLAB's default behavior.
Color values set to Inf have the maximum color and values set to —Inf have
the minimum color. Faces or edges with color values set to NaN are not drawn.

caxis manual and caxis(caxis) freeze the color axis scaling at the current
limits. This enables subsequent plots to use the same limits when hold is on.

v = caxis returns a two-element row vector containing the [cmin cmax]
currently in use.

Create (X,Y,Z2) data for a sphere of radius 1 and view the data as a Surface:

[X,Y,Z] = sphere(32);
C = 7Z;
surf(X,Y,z,C)

Values of C have the range [-1 1]. Values of C near -1 are assigned the lowest
values in the colormap; values of C near +1 are assigned the highest values in
the colormap.

caxis

Algorithm

See Also

Map the top half of the sphere to the highest value in the color table:
caxis([-1 0])

To use only the bottom half of the color table, enter
caxis([-1 3D

which maps the lowest CData values to the bottom of the colormap, and the
hightest values to the middle of the colormap (by specifying a cmax whose value
is equal to cmin plus twice the range of the CData).

The command

caxis auto

resets axis scaling back to auto-ranging and you see all the colors in the
Surface. In this case, entering

v = caxis
returns
VvV =
[-1 1]

caxis changes the CLim and CLimMode properties of Axes graphics objects.

Surface, Patch and Image graphics objects with indexed Cbata and
CDataMapping set to scaled map CData values to colors in the Figure colormap
each time they render. CData values equal to or less than cmin map to the first
color value in the colormap, and CData values equal to or greater than cmax
map to the last color value in the colormap. MATLAB performs the following
linear transformation on the intermediate values (referred to as C below) to
map them to an entry in the colormap (whose length is m, and whose row index
is referred to as index below):

index = Fix((C—cmin)/(cmax—cmin)[n)+1
axes, axis, colormap, get, mesh, pcolor, set, surf
The CLim and CLimMode properties of Axes graphics objects.

The ColorMap property of Figure graphics objects.
The Axes chapter in the Graphics User’s Guide.

1-49

cla

1-50

Purpose

Syntax

Description

See Also

Purpose

Syntax

Description

Clear current Axes

cla
cla reset

cla deletes all graphics objects from the current Axes.

cla reset deletes all graphics objects from the current Axes and resets all
Axes properties, except Position, to their default values.

clf, hold, reset

Contour plot elevation labels

clabel (C,h)
clabel(C,h,Vv)
clabel (C,h, "manual ")

clabel (0)
clabel(C,v)
clabel (C, "manual ™)

The clabel function adds height labels to a two-dimensional contour plot.

clabel (C,h) rotates the labels and inserts them in the contour lines. The
function inserts only those labels that fit within the contour, due to the size of
the contour.

clabel (C,h,v) creates labels only for those contour levels given in vector v,
then rotates the labels and inserts them in the contour lines.

clabel (C,h, "manual ™) places contour labels at locations you select with a
mouse. You press the left mouse button (the only mouse button on a
single-button mouse), or the space bar to label a contour at the closest location
beneath the center of the cursor. Press the Return key while the cursor is
within the Figure window to terminate labeling. The labels are rotated and
inserted in the contour lines.

clabel

Remarks

Examples

|

clabel (C) adds labels to the current contour plot using the contour structure
C output from contour. The function labels all contours displayed and
randomly selects label positions.

clabel (C,v) labels only those contour levels given in vector v.

clabel (C, "manual *) places contour labels at locations you select with a
mouse.

When the syntax includes the argument h, this function rotates the labels and
inserts them in the contour lines (see Example). Otherwise, the labels are
displayed upright and a "+ indicates which contour line the label is anno-
tating.

Generate, draw, and label a simple contour plot:

[x,y]l = meshgrid(-2:.2:2);
z = x.exp(—x."2-y."2);
[C.h] = contour(X,y,z);

clabel(C,h);
2
1.5F .
l | . -
0.5+ v .
oF - y -
=
_05 - C -
_l - -
-1.5+ e .
-2 1 \ 1 =] 1
-2 -15 1 15 2

1-51

clabel

See Also contour, contourc, contourf

1-52

clc

Purpose
Syntax
Description

Examples

See Also

Clear command window

clc

clc clears the command window.

Display a sequence of random matrices at the same location in the command

window:

clc
for 1 =1:25
home
A = rand(b)
end

clf, home

1-53

clf

1-54

Purpose

Syntax

Description

See Also

Clear current Figure window

clf
clf reset

clf deletes all graphics objects from the current Figure.

clf reset deletes all graphics objects within the current Figure and resets all
Figure properties, except Position, to their default values.

cla, clc, hold, reset

close

Purpose

Syntax

Description

Remarks

Delete specified Figure

close

close(h)

close name

close all

close all hidden
status = close(...)

close deletes the current Figure or the specified Figure(s). It optionally returns
the status of the close operation.

close deletes the current Figure (equivalent to close(gcT)).

close(h) deletes the Figure identified by h. If h is a vector or matrix, close
deletes all Figures identified by h.

close name deletes the Figure with the specified name.
close all deletes all Figures whose handles are not hidden.
close all hidden deletes all figures including those with hidden handles.

status = close(...) returns 1 if the specified windows have been deleted
and 0 otherwise.

The close function works by evaluating the specified Figure's CloseRe-
guestFcn property with the statement:

eval (get(h, "CloseRequestFcn*))

The default CloseRequestFcn, closereq, deletes the current Figure using
delete(get(0, "CurrentFigure™)). If you specify multiple Figure handles,
close executes each Figure’s CloseRequestFcn in turn. If MATLAB encounters
an error that terminates the execution of a CloseRequestFcn, the Figure is not
deleted. Note that using your computer’'s window manager (i.e., the Close
menu item) also calls the Figure’s CloseRequestFcn.

If a Figure’s handle is hidden (i.e., the Figure's HandleVisibility property is
set to cal Iback or off and the Root ShowHiddenHandle property is set no), you

1-55

close

1-56

See Also

must specify the hidden option when trying to access a Figure using the all
option.

To unconditionally delete all Figures, use the statements:

set(0, "ShowHiddenHandles","on")
delete(get(0, "Children™))

The delete function does not execute the Figure’'s CloseRequestFcn, it simply
deletes the specified Figure.

The Figure CloseRequestFcn allows you to either delay or abort the closing of
a Figure once the close function has been issued. For example, you can display
a dialog box to see if the user really want to delete the Figure or save and
cleanup before closing.

delete, figure, gcf

The Figure HandleVisibi lity property

The Root ShowHiddenHandle property

colorbar

Purpose

Syntax

Description

Remarks

|

Display colorbar showing the color scale

colorbar
colorbar("vert"®)
colorbar("horiz®)
colorbar(h)

h = colorbar(...)

The colorbar function displays the current colormap in the current Figure and
resizes the current Axes to accommodate the colorbar.

colorbar updates the most recently created colorbar, or when the current
Axes does not have a colorbar, colorbar adds a new vertical colorbar.

colorbar("vert") adds a vertical colorbar to the current Axes.
colorbar(“horiz") adds a horizontal colorbar to the current Axes.

colorbar(h) places a colorbar in the Axes identified by h. The colorbar is hori-
zontal if the width of the Axes is greater than its height, as determined by the
Axes Position property.

h = colorbar(...) returns a handle to the colorbar, which is an Axes
graphics object.

colorbar works with two-dimensional and three-dimensional plots.

1-57

colorbar

Examples

See Also

1-58

surf(peaks);

Display a colorbar beside the Axes:

I ‘ NN
""00‘

y, NN
"'"0‘ “\

0
“ "/’/"‘ \\\\w\“’
il

SS5S \\\\\ ‘H‘\

II/

colordef

Purpose

Syntax

Description

Remarks

See Also

|

Sets default property values to display different color schemes

colordef white

colordef black

colordef none
colordef(fig,color_option)

h = colordef("new”,color_option)

colordef enables you to select either a white or black background for graphics
display. It sets axis lines and labels to show up against the background color.

colordef white sets the axis background color to white, the axis lines and
labels to black, and the Figure background color to light gray.

colordef black sets the axis background color to black, the axis lines and
labels to white, and the Figure background color to dark gray.

colordef none sets the Figure coloring to that used by MATLAB Version 4
(essentially a black background).

colordef(fig,color_option) sets the color scheme of the Figure identified
by the handle fig to the color option "white", "black", or "none".

h = colordef("new",color_option) returns the handle to a new Figure
created with the specified color options (i.e., "white”, "black", or "none").

colordef affects only subsequently drawn Figures, not those currently on the
display. This is because colordef works by setting default property values (on
the Root or Figure level). You can list the currently set default values on the
Root level with the statement:

get(0, "defaults®)

You can remove all default values using the reset command:

reset(0)

See the get and reset references pages for more information.

whitebg

1-59

colormap
Purpose Set and get the current colormap
Syntax colormap(map)
colormap(“default®)
cmap = colormap
Description A colormap is an m-by-3 matrix of real numbers between 0.0 and 1.0. Each row

1-60

is an RGB vector that defines one color. The k" row of the colormap defines the
k-th color, where map(k, :) = [r(k) g(k) b(k)]) specifies the intensity of red,
green, and blue.

colormap(map) sets the colormap to the matrix map. If any values in map are
outside the interval [0 1], MATLAB returns the error: Colormap must have
values in [0,1]

colormap(~default™) sets the current colormap to the default colormap.

cmap = colormap; retrieves the current colormap. The values returned are in
the interval [0 1].

Specifying Colormaps
M-files in the color directory generate a number of colormaps. Each M-file
accepts the colormap size as an argument. For example,

colormap(hsv(128))

creates an hsv colormap with 128 colors. If you do not specify a size, MATLAB
creates a colormap the same size as the current colormap.

colormap

|

Supported Colormaps
MATLAB supports a number of colormaps.

= autumn varies smoothly from red, through orange, to yellow.

= bone is a grayscale colormap with a higher value for the blue component.
This colormap is useful for adding an “electronic” look to grayscale images.

= colorcube contains as many regularly spaced colors in RGB colorspace as
possible, while attempting to provide more steps of gray, pure red, pure
green, and pure blue.

= cool consists of colors that are shades of cyan and magenta. It varies smooth-
ly from cyan to magenta.

= copper varies smoothly from black to bright copper.

= flag consists of the colors red, white, blue, and black. This colormap com-
pletely changes color with each index increment.

= gray returns a linear grayscale colormap.

= hot varies smoothly from black, through shades of red, orange, and yellow,
to white.

= hsv varies the hue component of the hue-saturation-value color model. The
colors begin with red, pass through yellow, green, cyan, blue, magenta, and
return to red. The colormap is particularly appropriate for displaying period-
ic functions. hsv(m) is the same as hsv2rgb([h ones(m,2)]) where h is the
linear ramp, h = (0:m-1)"/m.

= jet ranges from blue to red, and passes through the colors cyan, yellow, and
orange. It is a variation of the hsv colormap. The jet colormap is associated
with an astrophysical fluid jet simulation from the National Center for Su-

1-61

colormap

percomputer Applications. The following commands display the flujet data
using the jet colormap:

load flujet

image(X)

colormap(jet)

= lines produces a colormap of colors specified by the Axes ColorOrder prop-
erty and a shade of gray.

= pink contains pastel shades of pink. The pink colormap provides sepia tone
colorization of grayscale photographs.

= prism repeats the six colors red, orange, yellow, green, blue, and violet.

= spring consists of colors that are shades of magenta and yellow.

= summer consists of colors that are shades of green and yellow.

=< white is an all white monochrome colormap.

= winter consists of colors that are shades of blue and green.

Examples The Images and colormaps demo, imagedemo, provides an introduction to color-
maps. Select Color Spiral from the menu (starts automatically on the Macin-
tosh). This uses the pcolor function to display a 16-by-16 matrix whose
elements vary from 0 to 255 in a rectilinear spiral. The hsv colormap starts
with red in the center, then passes through yellow, green, cyan, blue, and
magenta before returning to red at the outside end of the spiral. Selecting
Colormap Menu gives access to a number of other colormaps (except for on the
Macintosh).

The rgbplot function plots colormap values. Try rgbplot(hsv),
rgbplot(gray), and rgbplot(hot).

1-62

colormap

|

The demos directory contains a CAT scan image of a human spine. To view the
image:

load spine

image(X)

colormap bone

Algorithm Each Figure has its own ColorMap property. colormap is an M-file that sets and
gets this property.

See Also brighten, caxis, contrast, hsv2rgb, pcolor, rgb2hsv, rgbplot
The ColorMap property of Figure graphics objects.

1-63

ColorSpec

1-64

Purpose Color specification

Description

color in MATLAB:

= RGB triple
< Short name
= | ong name

ColorSpec is not a command; it refers to the three ways in which you specify

The short names and long names are MATLAB strings that specify one of eight
predefined colors. The RGB triple is a three-element row vector whose
elements specify the intensities of the red, green, and blue components of the
color; the intensities must be in the range [0 1]. The following table lists the
predefined colors and their RGB equivalents.

RGB Value Short Name Long Name
[11 0] y yellow
[1 0 1] m magenta
[0 1 1] C cyan
[1 0 0] r red
[0 1 0] g green
[0 O 1] b blue
[111] w white
[0 0 0] Kk black
Remarks The eight predefined colors and any colors you specify as RGB values are not

part of a Figure’s colormap, nor are they affected by changes to the Figure's
colormap. They are referred to as fixed colors, as opposed to colormap colors.

ColorSpec
|

Examples To change the background color of a Figure to green, specify the color with a
short name, a long name, or an RGB triple. These statements generate equiv-
alent results:

whitebg("g")
whitebg("green®)
whitebg([0 1 0]);

You can use ColorSpec anywhere you need to define a color. For example, this
statement changes the Figure background color to pink:

set(gcf, "Color=,[1 .4 .6])

See Also bar, bar3, colormap, fill, fill3, whitebg

1-65

comet

Purpose Two-dimensional comet plot
Syntax comet
comet(y)
comet(Xx,y)
comet(X,y,p)
Description A comet plot is an animated graph in which a circle (the comet head) traces the

data points on the screen. The comet body is a trailing segment that follows the
head. The tail is a solid line that traces the entire function.

comet demonstrates the comet plot.
comet(y) displays a comet plot of the vector y.
comet(x,y) displays a comet plot of vector y versus vector x.

comet(x,y,p) specifies a comet body of length plength(y). p defaults to 0.1.

Examples Create a simple comet plot:
t = 0:.01:2[pi;
X = cos(2t) .[(cos(t) -~2);

y = sin(20) .O(sin(t) .~2);
comet(X,Y);

See Also comet3

1-66

comet3

Purpose

Syntax

Description

Examples

See Also

|

Three-dimensional comet plot

comet3
comet3(z)
comet3(X,y,z)
comet3(X,y,z,p)

A comet plot is an animated graph in which a circle (the comet head) traces the
data points on the screen. The comet body is a trailing segment that follows the
head. The tail is a solid line that traces the entire function.

comet3, with no arguments, demonstrates the three-dimensional comet plot.
comet3(z) displays a three-dimensional comet plot of the vector z.

comet3(x,y,z) displays a comet plot of the curve through the points
[x(i),y(i),z(D].

comet3(x,y,z,p) specifies a comet body of length plength(y).

Create a three-dimensional comet plot:

t = —100pi:pi/250:100pi;
comet3((cos(20X)."2) .(5in(t), (sin(20X) ."2) .[Los(1), 1) ;

comet

1-67

compass
Purpose Plot arrows emanating from the origin
Syntax compass(X,Y)
compass(2)
compass(.--.,LineSpec)
h = compass(--..)
Description A compass plot displays direction or velocity vectors as arrows emanating from

1-68

the origin. X, Y, and Z are in Cartesian coordinates and plotted on a circular
grid.

compass(X,Y) displays acompass plot having n arrows, where n is the number
of elements in X or Y. The location of the base of each arrow is the origin. The
location of the tip of each arrow is a point relative to the base and determined

by [X(#).Y(i)].

compass(Z) displays a compass plot having n arrows, where n is the number
of elements in Z. The location of the base of each arrow is the origin. The loca-
tion of the tip of each arrow is relative to the base as determined by the real
and imaginary components of Z. This syntax is equivalent to

compass(real (2), imag(2)).

compass(.- - .,LineSpec) draws a compass plot using the line type, marker
symbol, and color specified by LineSpec.

h = compass(...) returns handles to Line objects.

compass

|

Examples Draw a compass plot of the eigenvalues of a matrix:
Z = eig(randn(20,20));
compass(2)
0
See Also feather, LineSpec, rose

1-69

cO

ntour

1-70

Purpose

Syntax

Description

Two-dimensional contour plot

contour(2)
contour(Z,n)
contour(Z,v)
contour(X,Y,2)
contour(X,Y,Z,n)
contour(X,Y,Z,v)
contour(...,LineSpec)
[C,h] = contour(...)

A contour plot displays isolines of matrix Z. You label the contour lines using
clabel.

contour(Z) draws a contour plot of matrix zZ, where Z is interpreted as heights
with respect to the x-y plane. Z must be at least a 2-by-2 matrix. The number
of contour levels and the values of the contour levels are chosen automatically
based on the minimum and maximum values of Z. The ranges of the x- and
y-axis are [1:n] and [1:m], where [m,n] = size(2).

contour(Z,n) draws a contour plot of matrix Z with n contour levels.

contour(Z,v) draws a contour plot of matrix Z with contour lines at the data
values specified in vector v. The number of contour levels is equal to Iength(v).
To draw a single contour of level i, use contour(Z,[i i]).

contour(X,Y,Z2), contour(X,Y,Z,n), and contour(X,Y,Z,v) draw contour
plots of Z. X and Y specify the x- and y-axis limits. When X and Y are matrices,
they must be the same size as z, in which case they specify a surface as surf
does.

contour(...,LineSpec) draws the contours using the line type and color
specified by LineSpec. Marker symbols are ignored.

[C,h] = contour(...) returns the contour matrix C (see contourc) and a
vector of handles to graphics objects. clabel uses the contour matrix C to create
the labels. contour creates Patch graphics objects unless you specify LineSpec,
in which case contour creates Line graphics objects.

contour

|

Remarks If you do not specify LineSpec, colormap and caxis control the color.

If Xor Y is irregularly spaced, contour calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

Examples To view a contour plot of the function
z = xe(=x*-y?)

over the range -2 < x < 2, -2 < y < 3, create matrix Z using the statements

Xrange —2:.2:2;

yrange = —2:.2:3;

[X,Y] = meshgrid(xrange,yrange);
Z = X.[exp(—X."2-Y."2);

Then, generate a contour plot of z:

[C.h] = contour(X,Y,Z2);
clabel (C,h)
3 ‘

251 8

2k -

15F 8

1

1-71

contour

View the same function using the default range and 20 evenly spaced contour
lines:

contour(Z,20);

25 q

15

1-72

contour

See Also

Use interp2 and contour to create smoother contours:

Z = magic(4);
[C.h] = contour(interp2(Z,4));
clabel (C,h)

T 14

45 12

20F /\
15 :_J"O . . —
N

10

clabel, contour3, contourc, contourf, quiver

The interp2 function in the MATLAB Language Reference Manual.

7

N
40} 10————-~444/////

. 8/\% f
I S

|

1-73

cO

ntour3

1-74

Purpose

Syntax

Description

Three-dimensional contour plot

contour3(2)
contour3(Z,n)
contour3(Z,v)
contour3(X,Y,2)
contour3(X,Y,Z,n)
contour3(X,Y,Z,v)
contour3(...,LineSpec)
[C,h] = contour3(.-.)

contour3 creates a three-dimensional contour plot of a surface defined on a
rectangular grid.

contour3(Z) draws a contour plot of matrix Z in a three-dimensional view. Z
is interpreted as heights with respect to the x-y plane. Z must be at least a
2-by-2 matrix. The number of contour levels and the values of contour levels
are chosen automatically. The ranges of the x- and y-axis are [1:n] and [1:m],
where [m,n] = size(2).

contour3(Z,n) draws a contour plot of matrix Z with n contour levels in a
three-dimensional view.

contour3(Z,v) draws a contour plot of matrix Z with contour lines at the
values specified in vector v. The number of contour levels is equal to Iength(v).
To draw a single contour of level i, use contour(Z,[i i]).

contour3(X,Y,2), contour3(X,Y,Z,n), and contour3(X,Y,Z,v) use XandyY
to define the x- and y-axis limits. If X is a matrix, X(1, :) defines the x-axis. If
Y is a matrix, Y(:,1) defines the y-axis. When X and Y are matrices, they must
be the same size as z, in which case they specify a surface as surf does.

contour3(...,LineSpec) draws the contours using the line type and color
specified by LineSpec.

[C,h] = contour3(...) returns the contour matrix C as described in the
function contourc and a column vector containing handles to graphics objects.
contour3 creates Patch graphics objects unless you specify LineSpec, in which
case contour3 creates Line graphics objects.

contour3

|

Remarks If you do not specify LineSpec, colormap and caxis control the color.

If X or Y is irregularly spaced, contour3 calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

Examples Plot the three-dimensional contour of the peaks function:

xrange = —-3:.125:3;

yrange = xrange;

[X,Y] = meshgrid(xrange,yrange);
Z = peaks(X,Y);
contour3(X,Y,Z,20);

See Also contour, contourc, meshc, meshgrid, surfc

1-75

contourc

1-76

Purpose

Syntax

Description

Remarks

Low-level contour plot computation

= contourc(2)

= contourc(Z,n)

= contourc(Z,Vv)

= contourc(X,y,Z)

= contourc(x,y,Z,n)
= contourc(X,y,Z,V)

OO0 00O0
|

contourc calculates the contour matrix C used by contour, contour3, and
contourf. The values in Z determine the heights of the contour lines with
respect to a plane. The contour calculations use a regularly spaced grid deter-
mined by the dimensions of Z.

C = contourc(Z) computes the contour matrix from data in matrix z, where
Z must be at least a 2-by-2 matrix. The contours are isolines in the units of Z.
The number of contour lines and the corresponding values of the contour lines
are chosen automatically.

C = contourc(Z,n) computes contours of matrix Z with n contour levels.

C = contourc(Z,v) computes contours of matrix Z with contour lines at the
values specified in vector v. The length of v determines the number of contour
levels. To compute a single contour of level i, use contourc(Z,[i i]).

(o contourc(x,y,Z), C = contourc(x,y,Z,n), and
C = contourc(x,y,Z,v) compute contours of Z using vectors x and y to deter-
mine the x- and y-axis limits. x and y must be monotonically increasing.

Cis a two-row matrix specifying all the contour lines. Each contour line defined
in matrix C begins with a column that contains the value of the contour (speci-
fied by v and used by clabel), and the number of (x,y) vertices in the contour
line. The remaining columns contain the data for the (x,y)pairs.

C = [valuel xdata(l) xdata(2)...value2 xdata(l) xdata(2)...;
diml ydata(l) ydata(2)...dim2 ydata(l) ydata(2)...]

Specifying irregularly spaced x and y vectors is not the same as contouring
irregularly spaced data. If x or y is irregularly spaced, contourc calculates

contourc

|

contours using a regularly spaced contour grid, then transforms the data to x
ory.

See Also clabel, contour, contour3, contourf

1-77

cO

ntourf

1-78

Purpose

Syntax

Description

Remarks

Filled two-dimensional contour plot

contourf(2)
contourf(Z,n)
contourf(Z,v)
contourf(X,Y,2)
contourf(X,Y,Z,n)
contourf(X,Y,Z,v)
[C,h,CF] = contourf(...)

A filled contour plot displays isolines calculated from matrix Z and fills the
areas between the isolines using constant colors. The color of the filled areas
depends on the current Figure’s colormap.

contourf(Z) draws a contour plot of matrix zZ, where Z is interpreted as
heights with respect to a plane. Z must be at least a 2-by-2 matrix. The number
of contour lines and the values of the contour lines are chosen automatically.

contourf(Z,n) draws a contour plot of matrix Z with n contour levels.

contourf(Z,v) draws a contour plot of matrix Z with contour levels at the
values specified in vector v.

contourf(X,Y,Z), contourf(X,Y,Z,n), and contourf(X,Y,Z,v) produce
contour plots of Z using X and Y to determine the x- and y-axis limits. When X
and Y are matrices, they must be the same size as Z, in which case they specify
a surface as surf does.

[C,h,CF] = contourf(...) returns the contour matrix C as calculated by the
function contourc and used by clabel, a vector of handles h to Patch graphics
objects, and a contour matrix CF for the filled areas.

If X or Y is irregularly spaced, contourf calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

contourf

Examples

See Also

Create a filled contour plot of the peaks function:

[C,h] = contourf(peaks(20),10);
clabel (C,h)

20

18

16

14

12

10

clabel, contour, contour3, contourc, quiver

1-79

cO

ntrast

1-80

Purpose

Syntax

Description

Examples

See Also

Grayscale colormap for contrast enhancement

contrast(X)
contrast(X,m)

cmap
cmap

The contrast function enhances the contrast of an Image. It creates a new
gray colormap, cmap, that has an approximately equal intensity distribution.
All three elements in each row are identical.

cmap = contrast(X) returns a gray colormap that is the same length as the
current colormap.

cmap = contrast(X,m) returns an m-by-3 gray colormap.

Add contrast to the clown image defined by X:

load clown;

cmap = contrast(X);
image(X);
colormap(cmap) ;

brighten, gray, image

copyobj

Purpose
Syntax

Description

Remarks

|

Copy graphics objects and their descendants
new_handle = copyobj(h,p)

copyobj creates copies of graphics objects. The copies are identical to the orig-
inal objects except the copies have different values for their Parent property
and a new handle. The new parent must be appropriate for the copied object
(e.g., you can copy a Line object only to another Axes object).

new_handle = copyobj(h,p) copiesone or more graphics objects identified by
h and returns the handle of the new object or a vector of handles to new objects.
The new graphics objects are children of the graphics objects specified by p.

h and p can be scalars or vectors. When both are vectors, they must be the same
length and the output argument, new_handle, is a vector of the same length.
In this case, new_handle(i) is a copy of h(i) with its Parent property set to

p(i).

When h is a scalar and p is a vector, h is copied once to each of the parents in p.
Each new_handle(i) is a copy of h with its Parent property set to p(i), and
length(new_handle) equals length(p).

When his a vector and p is a scalar, each new-handle (i) is a copy of h(i) with
its Parent property set to p. The length of new_handle equals Iength(h).

Graphics objects are arranged as a hierarchy. Here, each graphics object is
shown connected below its appropriate parent object.

Root
Figure

| Axes | |Uimenu

| Line | Patch | |Surface | Text | | Light |

| Uicontrol

| Image

1-81

copyobj

Examples Copy a set of Patch handles into a new Figure by assigning the Parent property
of the new Patch graphics objects to the current Axes:

X = rand(5,3);

Y rand(5,3);

C rand(1,3);

h = fill(X,Y,C);

figure % Create a new figure window

axes % Create an axes object in the figure window
new_handle = copyobj(h,gca);

See Also findobj, gcf, gca, gco, get, set

Parent property for all graphics objects.

1-82

cylinder

Purpose

Syntax

Description

Remarks

Generate cylinder

[X,Y,Z] cylinder
[X,Y,Z] cylinder(r)
[X,Y,Z] = cylinder(r,n)
cylinder(...)

cylinder generates x, y, and z coordinates of a unit cylinder. You can draw the
cylindrical object using surf or mesh, or draw it immediately by not providing
output arguments.

[X,Y,Z] = cylinder returns the x, y, and z coordinates of a cylinder with a
radius equal to 1. The cylinder has 20 equally spaced points around its circum
ference.

[X,Y,Z] = cylinder(r) returnsthex,y, and z coordinates of a cylinder using
r to define a profile curve. cylinder treats each element in r as a radius at
equally spaced heights along the unit height of the cylinder. The cylinder has
20 equally spaced points around its circumference.

[X,Y,Z] = cylinder(r,n) returns the x, y, and z coordinates of a cylinder
based on the profile curve defined by vector r. The cylinder has n equally spaced
points around its circumference.

cylinder(...), with no output arguments, plots the cylinder using surft.

cylinder treats its first argument as a profile curve. The resulting Surface
graphics object is generated by rotating the curve about the x-axis, and then
aligning it with the z-axis.

|

1-83

cylinder

Examples Create a cylinder with randomly colored faces.

cylinder

axis square

h = findobj("Type~, "surface”);

set(h, "CData” ,rand(size(get(h,"CDhata"))))

1-84

cylinder

Generate a cylinder defined by the profile function 2+sin(t):
t = 0:pi/10:2*pi;
axis square
[X,Y,Z] = cylinder(2+cos(t));
surf(X,Y,2)

See Also sphere, surf

1-85

cylinder

1-86

cylinder

|

1-87

datetick

Purpose

Syntax

Description

Label tick lines using dates

datetick(tickaxis)
datetick(tickaxis,dateform)

|

datetick(tickaxis) labels the tick lines of an axis using dates, replacing the
default numeric labels. tickaxis is the string "x", "y", or "z". The default is
"x". datetick selects a label format based on the minimum and maximum

limits of the specified axis.

datetick(tickaxis,dateform) formats the labels according to the integer
dateform (see table). To produce correct results, the data for the specified axis

must be serial date numbers (as produced by datenum).

Dateform

© 0 N o o0~ W N - O

[
= O

Format

day-month-year hour:minute

day-month-year
month/day/year

month, three letters
month, single letter
month, numeral
month/day

day of month

day of week, three letters
day of week, single letter
year, four digit

year, two digit

Example
01-Mar-1995 03:45
01-Mar-1995
03/01/95

Mar

M

3

03/01

Wed

1995
95

1-88

datetick

Remarks

|

Dateform Format Example
12 month year Mar95
13 hour:minute:second 15:45:17
14 hour:minute:second AM or PM 03:45:17
15 hour:minute 15:45

16 hour:minute AM or PM 03:45 PM

datetick calls datestr to convert date numbers to date strings.

To change the tick spacing and locations, set the appropriate Axes property
(i.e., XTick, YTick, or ZTick) before calling datetick.

1-89

datetick

Example Consider graphing population data based on the 1990 U.S. census:

t
p

(1900:10:1990) " ; % Time interval

[75.995 91.972 105.711 123.203 131.669 ...

150.697 179.323 203.212 226.505 249.633]"; % Population
plot(datenum(t,1,1),p) % Convert years to date numbers and plot
datetick("x",11) % Replace x-axis ticks with 2-digit year

labels

260

240+ il
220+ .
200 N
180 1
1601 , , ; . ‘ |
140+ s
120 1
100 1
80| 1
6%0 1‘0 2‘0 36 4‘0 5‘0 6‘0 7‘0 86 90

See Also The Axes properties XTick, YTick, and ZTick.

The datenum and datestr functions in the MATLAB Language Reference Guide.

1-90

default4

|

Purpose MATLAB Version 4.0 Figure and Axes defaults

Syntax default4
default4(h)

Description default4 sets Figure and Axes defaults to match MATLAB Version 4.0
defaults.

default4(h) only affects the Figure with handle h.

See Also wdefault, kdefault

1-91

dialog

1-92

Purpose
Syntax

Description

See Also

Create and display dialog box

h dialog("PropertyName*® ,PropertyValue,...)

h = dialog("PropertyName" ,PropertyValue,...) returns ahandle toa
dialog box. This function creates a Figure graphics object and sets the Figure
properties recommended for dialog boxes. You can specify any valid Figure
property value.

errordlg, figure, helpdlg, inputdlg, questdlg, uiwait, uiresume, warndlg

dragrect

Purpose

Syntax

Description

Remarks

Example

See Also

|

Drag rectangles with mouse

[finalRect] dragrect(initialRect)
[finalRect] = dragrect(initialRect,stepSize)

[finalRect] = dragrect(initialRect) tracks one or more rectangles
anywhere on the screen. The n-by-4 matrix rect defines the rectangles. Each
row of rect must contain the initial rectangle position as [left bottom width
height] values. dragrect returns the final position of the rectangles in final -
Rect.

[finalRect] = dragrect(initialRect,stepSize) moves the rectangles in
increments of STEPSIZE. The lower-left corner of the first rectangle is
constrained to a grid of size STEPSIZE starting at the lower-left corner of the
figure, and all other rectangles maintain their original offset from the first rect-
angle. [finalRect] = dragrect(...) returns the final positions of the rectan-
gles when the mouse button is released. The default stepsize is 1.

dragrect returns immediately if a mouse button is not currently pressed. Use
dragrect in a ButtonDownFcn, or from the commandline in conjunction with
waitforbuttonpress, toensure that the mouse button is down when
dragrect is called. dragrect returns when you release the mouse button.

Drag a rectangle that is 50 pixels wide and 100 pixels in height.

waitforbuttonpress

pointl = get(gcfF, "CurrentPoint®) % button down detected
rect = [pointl(1,1) pointl(1,2) 50 100]

[r2] dragrect(rect)

rbbox, waitforbuttonpress

1-93

dr

awnow

1-94

Purpose
Synopsis
Description

Remarks

Examples

See Also

Complete pending drawing events
drawnow
drawnow flushes the event queue and updates the Figure window.

Other events that cause MATLAB to flush the event queue and draw the
Figure windows include returning to the MATLAB prompt, a pause statement,
a waitforbuttonpress statement, a waitfor statement, a getframe state-
ment, and a figure statement.

Executing the statements
X = —pizpi/20:pi;
plot(x,cos(x))
drawnow

title("A Short Title")
grid

as an M-file updates the current Figure after executing the drawnow function
and after executing the final statement.

waitfor, pause, waitforbuttonpress

errorbar

Purpose

Syntax

Description

Remarks

|

Plot error bars along a curve

errorbar(Y,E)
errorbar(X,Y,E)
errorbar(X,Y,L,U)
errorbar(...,LineSpec)
h = errorbar(...)

Error bars show the confidence level of data or the deviation along a curve.

errorbar(Y,E) plotsY and draws an error bar at each element of Y. The error
bar is a distance of E(i) above and below the curve so that each bar is
symmetric and 2[E(i) long.

errorbar(X,Y,E) plots X versus Y with symmetric error bars 2[E(i) long. X, Y,
E must be the same size. When they are vectors, each error bar is a distance of
E(i) above and below the point defined by (X(i),Y(i)). When they are
matrices, each error bar is a distance of E(i,j) above and below the point

defined by (X(i,3).Y(i,j)).

errorbar(X,Y,L,U) plotsXversusY with error bars L(i)+U(i) long specifying
the lower and upper error bars. X, Y, L, and U must be the same size. When they
are vectors, each error bar is a distance of L(i) below and U(i) above the point
defined by (X(i),Y(i)). When they are matrices, each error bar is a distance
of L(i,j) below and U(i,j) above the point defined by (X(i,3).Y(i,]j)).

errorbar(...,LineSpec) draws the error bars using the line type, marker
symbol, and color specified by LineSpec.

h = errorbar(...) returns a vector of handles to Line graphics objects.

When the arguments are all matrices, errorbar draws one line per matrix
column. If X and Y are vectors, they specify one curve.

1-95

errorbar

Examples Draw symmetric error bars that are two standard deviation units in length:

X

O:pi/10:pi;

Y sin(X);

E = std(Y)*ones(size(X));
errorbar(X,Y,E)

14

1.2r - - B

0.41 .) R

0.2+ - - b

_0.2 [,

_0'4 1 1 1 1 1 1 1
-0.5 0 0.5 1 15 2 2.5 3 3.5

See Also LineSpec, plot

The std function in the online MATLAB Function Reference for more informa-
toin.

1-96

errordlg

Purpose

Syntax

Description

Remarks

Examples

|

Create and display an error dialog box

errordlg

errordlg("errorstring”)
errordlg("errorstring”, "dlgname*®)
errordlg(“errorstring”, "dlgname®, "on")
h = errordlg(...)

errordlg creates an error dialog box, or if the named dialog exists, errordlg
pops the named dialog in front of other windows.

errordlg displays adialog box named "Error Dialog" and contains the string
"This is the default error string.”

errordlg("errorstring”) displays a dialog box named "Error Dialog” that
contains the string "errorstring-.

errordlg("errorstring”, "dIgname™) displays a dialog box named
"dIgname* that contains the string "errorstring”.

errordlg("errorstring”, "dlgname”, "on") specifies whether to replace an
existing dialog box having the same name. "on*" brings an existing error dialog
having the same name to the foreground. In this case, errordlg does not create
a new dialog.

h = errordlg(...) returns the handle of the dialog box.

MATLAB sizes the dialog box to fit the string "errorstring”. The error dialog
box has an OK pushbutton and remains on the screen until you press the OK

button or the Return key. After pressing the button, the error dialog box disap-
pears.

The appearance of the dialog box depends on the windowing system you use.

The function

errordlg("File not found®,"File Error*®);

1-97

errordlg

displays the following dialog box on a UNIX system:

=

W,

See Also dialog, helpdlg, msgbox, questdlg, warndlg

1-98

ezplot

Purpose

Syntax

Description

Examples

Easy to use function plotter.

ezplot(f)
ezplot(f, [xmin xmax])
ezplot(Ff, [xmin xmax],Ffig)

ezplot(F) plots a graph of f(x), where f is a symbolic expression representing
a mathematical expression involving a single symbolic variable, say x. The
domain on the x-axis is usually [-2*pi, 2*pi].

ezplot(F, [xmin xmax]) uses the specified x-domain instead of the default
[-2*pi, 2*pi].

ezplot(Ff, [xmin xmax],fig) uses the specified Figure number instead of the
current Figure. It also omits the title of the graph.

Either of the following commands,

ezplot("erf(x)")
ezplot erf(x)

plot a graph of the error function::

erf(x)

1-99

ezplot

Algorithm ezplot determines the interval of the x-axis by sampling the function between
—2*pi and 2*pi and then selecting a subinterval where the variation is signif-
icant. For the range of the y-axis, ezplot omits extreme values associated with
singularities.

See Also fplot

1-100

feather

Purpose

Syntax

Description

Examples

|

Plot velocity vectors

feather(U,V)
feather(2)
feather(...,LineSpec)

A feather plot displays vectors emanating from equally spaced points along a
horizontal axis. You express the vector components relative to the origin of the
respective vector.

feather(U,V) displays the vectors specified by U and V, where U contains the x
components as relative coordinates, and V contains the y components as rela-
tive coordinates.

feather(Z) displays the vectors specified by the complex numbers in z. This
is equivalent to feather(real (2), imag(2)).

feather(...,LineSpec) draws a feather plot using the line type, marker
symbol, and color specified by LineSpec.

Create a feather plot showing the direction of theta:

theta = (-90:10:90)[pi/180;
r = 2[bnes(size(theta));
[u,v] = pol2cart(theta,r);
feather(u,v);

axis equal

1-101

feather

101

-10+t

See Also compass, LineSpec, rose

1-102

/]

PLANNSS

10

15

20

figflag

Purpose

Syntax

Description

Examples

See Also

Test if Figure is on screen

[flag] = Figflag("figurename®)
[flag,fig]l = figflag("figurename®)
[--.1 = figflag("figurename®,silent)

Use figflag to determine if a particular Figure exists, bring a Figure to the
foreground, or set the window focus to a Figure.

[flag] = figflag("figurename") returns a1 if the Figure named "figure-
name" exists and pops the Figure to the foreground, otherwise this function
returns 0.

[flag,fig] = Ffigflag(~figurename®) returns a1l in flag, returns the
Figure’s handle in fig, and pops the Figure to the foreground, if the Figure
named "figurename" exists. Otherwise this function returns 0.

[-..]1 = figflag("figurename”,silent) pops the Figure window to the fore-
ground if silent is 0, and leaves the Figure in its current position if silent is 1.

To determine if a Figure window named “Fluid Jet Simulation” exists, type

[flag,fig] = figflag("Fluid Jet Simulation®)

If two Figures with handles 1 and 3 have the name "Fluid Jet Simulation”,
MATLAB returns:

flag =
1

fig =
13

figure

1-103

figure

Purpose

Syntax

Description

Remarks

1-104

Create a Figure graphics object

figure

figure("PropertyName*® ,PropertyValue,...)
figure(h)

h = Ffigure(...)

figure is the function for creating Figure graphics objects. Figure objects are
the individual windows on the screen in which MATLAB displays graphical
output.

figure creates a new Figure object using default property values.

figure("PropertyName*® ,PropertyValue, ...) creates a new Figure object
using the values of the properties specified. MATLAB uses default values for
any properties that you do not explicitly define as arguments.

figure(h) does one of two things, depending on whether or not a Figure with
handle h exists. If h is the handle to an existing Figure, figure(h) makes the
Figure identified by h the current Figure, makes it visible, and raises it above
all other Figures on the screen. The current Figure is the target for graphics
output. If his not the handle to an existing Figure, but is an integer, figure(h)
creates a Figure, and assigns it the handle h. figure(h) where h is not the
handle to a Figure, and is not an integer, is an error.

h = figure(...) returns the handle to the Figure object.

To create a Figure object, MATLAB creates a new window whose characteris-
tics are controlled by default Figure properties (both factory installed and user
defined) and properties specified as arguments. See the “Figure Properties”
section for a description of these properties.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for examples of
how to specify these data types).

Use set to modify the properties of an existing Figure or get to query the
current values of Figure properties.

The gcf command returns the handle to the current Figure.

figure

Example

Object
Hierarchy

Figure
Properties

|

To create a Figure one quarter the size of your screen, positioned in the
upper-left corner, use the Root object’s ScreenSize property to determine the
size:

scrsz = get(0, "ScreenSize");
figure("Position®,[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])

ScreenSize is a four-element vector: [left, bottom, width, height].

Root

igure

il

I 1

Axes

| Uimenu

| Uicontrol

| Line | | Patch | Surface | Text | | Light |

| Image

Setting Default Properties
You can set default Figure properties only on the Root level:

set(0, "Defaul tFigureProperty” ,PropertyValue...)

Where Property is the name of the Figure property and PropertyValue is the
value you are specifying.

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

BackingStore {on} | off

Off screen pixel buffer. When BackingStore is on, MATLAB stores a copy of the
Figure window in an off-screen pixel buffer. When obscured parts of the Figure
window are exposed, MATLAB copies the window contents from this buffer
rather than regenerating the objects on the screen. This increases the speed
with which the screen is redrawn.

While refreshing the screen quickly is generally desirable, the buffers required
do consume system memory. If memory limitations occur, you can set
BackingStore to off to disable this feature and release the memory used by the

1-105

figure

1-106

buffers. If your computer does not support backingstore, setting the Backing-
Store property results in a warning message, but has no other effect.

Setting BackingStore to off can increase the speed of animations because it
eliminates the need to draw into both an off-screen buffer and the Figure
window.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked call-
back routes always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then interrup-
tion occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

=« cancel —discard the event that attempted to execute a second callback rou-
tine.

= queue — queue the event that attempted to execute a second callback routine
until the current callback finishes.
ButtonDownFcn string

Button press callback function. A callback routine that executes whenever you
press a mouse button while the pointer is in the Figure window, but not over
descendent object (i.e., Uicontrol, Axes or Axes child). Define this routine as a
string that is a valid MATLAB expression or the name of an M-file. The expres-
sion executes in the MATLAB workspace.

Children vector of handles

Children of the Figure. A vector containing the handles of all Axes, Uicontrol,
and Uimenu objects displayed within the Figure. You can change the order of
the handles and thereby change the stacking of the objects on the display.

Clipping {on} | off
This property has no effect on Figures.

figure

CloseRequestFcn string

Callback executed on Figure close. This property defines a callback routine that
MATLAB executes whenever you issue the close command (either a
close(fig_handle) or a close all) or close a Figure window from the
computer’s window manager menu. This provides an opportunity for the Figure
to, for example, display a yes/no/cancel dialog box before closing, to abort the
deletion of the Figure, or to perform “clean up” before closing. The delete
command unconditionally closes the Figure. The default callback is closereq,
which uses:

delete(get(0, "CurrentFigure®))

Color ColorSpec

Background color. This property controls the Figure window background color.
You can specify a color using a three-element vector of RGB values or one of
MATLAB's predefined names. See the ColorSpec reference page for more infor-
mation.

Colormap m-by-3 matrix of RGB values

Figure colormap. This property is an m-by-3 array of red, green, and blue
(RGB) intensity values that define m individual colors. MATLAB accesses colors
by their row number. For example, an index of 1 specifies the first RGB triplet,
an index of 2 specifies the second RGB triplet, and so on. Colormaps can be any
length (up to 256 only on MS-Windows and Macintosh), but must be three
columns wide. The default Figure colormap contains 64 predefined colors.

Colormaps affect the rendering of Surface, Image, and Patch objects, but gener-
ally do not affect other graphics objects. See the colormap and ColorSpec refer-
ence pages for more information.

CreateFcn string

Callback routine executed during object creation. This property defines a call-
back routine that executes when MATLAB creates a Figure object. You must
define this property as a default value for Figures. For example, the statement,

set(0, "Defaul tFigureCreateFcn”, "set(gcbo, " " IntegerHandle" ", " "off
- I) l)
defines a default value on the Root level that causes the created Figure to use
noninteger handles whenever you (or MATLAB) creates Figure. MATLAB

|

1-107

figure

1-108

executes this routine after setting all properties for the Figure. Setting this
property on an existing Figure object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

CurrentAxes handle of current Axes

Target Axes in this Figure. MATLAB sets this property to the handle of the
Figure’s current Axes (i.e., the handle returned by the gca function when this
Figure is the current Figure). In all Figures for which Axes children exist, there
is always a current Axes. The current Axes does not have to be the topmost
axes, and setting an Axes to be the CurrentAxes does not restack it above all
other Axes.

You can make an Axes current using the axes and set commands. For
example, axes(axes_handle) and set(gcf, "CurrentAxes”,axes_handle)
both make the Axes identified by the handle axes_handle the current Axes.
However, axes(axes_handle) also restacks the Axes above all other Axes in
the Figure.

If a Figure contains no Axes, get(gcf, "CurrentAxes™) returns the empty
matrix. Note that the gca function actual creates an Axes if one does not exist.

CurrentCharacter single character (read only)

Last key pressed. MATLAB sets this property to the last key pressed in the
Figure window. CurrentCharacter is useful for obtaining user input.

CurrentMenu (Obsolete)

This property produces a warning message when queried. It has been super-
seded by the Root Cal IbackObject property.

CurrentObject object handle

Handle of current object. MATLAB sets this property to the handle of the object
that is under the current point (see the CurrentPoint property). This object is
the front-most object in the stacking order. You can use this property to deter-
mine which object a user has selected. The function gco provides a convenient
way to retrieve the CurrentObject of the CurrentFigure.

CurrentPoint two-element vector: [x-coordinate, y-coordinate]

Location of last button click in this Figure. MATLAB sets this property to the
location of the pointer at the time of the most recent mouse button press.

figure

MATLAB updates this property whenever you press the mouse button while the
pointer is in a Figure window.

The CurrentPoint is measured from the lower-left corner of the Figure
window, in units determined by the Units property.

DeleteFcn string

Delete Figure callback routine. A callback routine that executes when the
Figure object is deleted (e.g., when you issue a delete or a close command).
MATLAB executes the routine before destroying the object’s properties so these
values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

Dithermap m-by-3 matrix of RGB values

Colormap used for true-color data on pseudocolor displays. This property
defines a colormap that MATLAB uses to dither true-color CData for display on
pseudocolor (8-bit or less) displays. MATLAB maps each RGB color defined as
true-color CData to the closest color in the dithermap. The default Dithermap
contains colors that span the full spectrum so any color values map reasonably
well.

However, if the true-color data contains wide range of shades in one color, you
may achieve better results by defining your own dithermap. See the Dither-
mapMode property.

DithermapMode auto | {manual}

MATLAB generated dithermap. In manual mode, MATLAB uses the colormap
defined in the Dithermap property to display direct color on pseudocolor
displays. When DithermapMode is auto, MATLAB generates a dithermap based
on the colors currently displayed. This is useful if the default dithermap does
not produce satisfactory results.

The process of generating the dithermap can be quite time consuming and is
repeated whenever MATLAB re-renders the display (e.g., when you add a new
object or resize the window). You can avoid unnecessary regeneration by
setting this property back to manual and save the generated dithermap (which
MATLAB loaded into the Dithermap property).

|

1-109

figure

1-110

FixedColors m-by-3 matrix of RGB values (read only)

Non-colormap colors. Fixed colors define all colors appearing in a Figure
window that are not obtained from the Figure colormap. These colors include
axis lines and labels, the color of Line, Text, Uicontrol, and Uimenu objects,
and any colors that you explicitly define, for example, with a statement like:

set(gcf, "Color=,[-3 .7 .9D).

Fixed color definitions reside in the system color table and do not appear in the
Figure colormap. For this reason, fixed colors can limit the number of simulta-
neously displayed colors if the number of fixed colors plus the number of entries
in the Figure colormap exceed your system’s maximum number of colors.

(See the ScreenDepth property of the Root for information on determining the
total number of colors supported on your system. See the MinColorMap and
ShareColors properties for information on how MATLAB shares colors
between applications.)

HandleVisibility {on} | callback | off

Control access to object’'s handle by command-line users and GUIs. This prop-
erty determines when an object’s handle is visible in its parent’s list of children.
Handles are always visible when HandleVisibility is on. When HandleVisi-
bility is callback, handles are visible from within callbacks or functions
invoked by callbacks, but not from within functions invoked from the command
line - a useful way to protect GUIs from command-line users, while permitting
their callbacks complete access to their own handles. Setting HandleVisi-
bility to off makes handles invisible at all times - which is occasionally neces-
sary when a callback needs to invoke a function that might potentially damage
the Ul, and so wants to temporarily hide its own handles during the execution
of that function.

When a handle is not visible in its parent’s list of children, it can not be
returned by any functions which obtain handles by searching the object hier-
archy or querying handle properties, including get, findobj, gca, gcf, gco,
newplot, cla, clf, and close. When a handle’s visibility is restricted using
callback or off, the object’'s handle does not appear in its parent’s Children
property, Figures do not appear in the Root’s CurrentFigure property, objects
do not appear in the Root's Cal IbackObject property or in the Figure’s Curren-
tObject property, and Axes do not appear in their parent’s CurrentAxes prop-
erty.

figure

The Root ShowHiddenHandles property can be set to on to temporarily make all
handles visible, regardless of their HandleVisibi lity settings (this does not
affect the values of the HandleVisibi lity properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.
This property is useful for preventing command-line users from accidently
drawing into or deleting a Figure that contains only user interface devices
(such as a dialog box).

IntegerHandle {on} | off

Figure handle mode. Figure object handles are integers by default. When
creating a new Figure, MATLAB uses the lowest integer that is not used by an
existing Figure. If you delete a Figure, its integer handle can be reused.

If you set this property to off, MATLAB assigns nonreusable real-number
handles (e.g., 67.0001221) instead of integers. This feature is designed for
dialog boxes where removing the handle from integer values reduces the like-
lihood of inadvertently drawing into the dialog box.

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a Figure callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn,
KeyPressFcn, WindowButtonDownFcn, WindowButtonMotionFcn, and
WindowButtonUpFcn are affected by the Interruptible property. MATLAB
checks for events that can interrupt a callback routine only when it encounters
a drawnow, Figure, getframe, or pause command in the routine. See the Event-
Queue property for related information.

InvertHardcopy {on} | off

Change hardcopy to black objects on white background. This property affects
only printed output. Printing a Figure having a background color (Color prop-
erty) that is not white results in poor contrast between graphics objects and the
Figure background and also consumes a lot of printer toner.

When InvertHardCopy is on, MATLAB eliminates this effect by changing the
color of the Figure and Axes to white and the axis lines, tick marks, axis labels,
etc., to black. Lines, Text, and the edges of Patches and Surfaces may be
changed depending on the print command options specified.

|

1-111

figure

1-112

If you set InvertHardCopy to off and specify the —exact option with the print
command, the printed output matches the colors displayed on the screen
(which may be dithered on black and white devices).

See the print reference page for more information on printing MATLAB
Figures.

KeyPressFcn string

Key press callback function. A callback routine invoked by a key press occur-
ring in the Figure window. You can define KeyPressFcn as any legal MATLAB
expression or the name of an M-file.

The callback routine can query the Figure's CurrentCharacter property to
determine what particular key was pressed and thereby limit the callback
execution to specific keys.

The callback routine can also query the Root object’s PointerWindow property
to determine in which Figure the key was pressed. Note that pressing a key
while the pointer is in a particular Figure window does not make that Figure
the current Figure (i.e., the one referred by the gcf command).

MenuBar none | {figure}

Enable-disable Figure menu bar. This property allows you to display or hide
the menu bar placed at the top of a Figure window. Note that not all systems
support Figure window menu bars. However, for those that do, the default is to
display the menu.

MinColormap scalar (default = 64)

Minimum number of color table entries used. This property specifies the
minimum number of system color table entries used by MATLAB to store the
colormap defined for the Figure (see the ColorMap property). In certain situa-
tions, you may need to increase this value to ensure proper use of colors.

For example, suppose you are running color-intensive applications in addition
to MATLAB and have defined a large Figure colormap (e.g., 150 to 200 colors).
MATLAB may select colors that are close, but not exact from the existing colors
in the system color table because there aren't enough slots available to define
all the colors you specified.

figure

|

To ensure MATLAB uses exactly the colors you define in the Figure colormap,
set MinColorMap equal to the length of the colormap:

set(gcf, "MinColormap”®, length(get(gcf, "ColorMap®)))

Note that the larger the value of MinColorMap, the greater the likelihood other
windows (including other MATLAB Figure windows) will display in false
colors.

Name string

Figure window title. This property specifies the title displayed in the Figure
window. By default Name is empty and the Figure title is displayed as Figure
No. 1, Figure No. 2, and so on. When you set this parameter to a string, the
Figure title becomes Figure No. 1: <string>. See the NumberTitle property.

NextPlot {add} | replace | replacechildren

How to add next plot. NextPlot determines which Figure MATLAB uses to
display graphics output. If the value of the current Figure is:

< add — use the current Figure to display graphics (the default).

= replace — reset all Figure properties, except Position, to their defaults and
delete all Figure children before displaying graphics (equivalent to clf re-
set).

= replacechildren — remove all child objects, but do not reset Figure proper-
ties (equivalent to clf).

The newplot function provides an easy way to handle the NextPlot property.
Also see the NextPlot property of Axes.
NumberTitle {on} | off

Figure window title number. This property determines whether the string
Figure No. N (where N is the Figure number) is prefixed to the Figure window
title. See the Name property.

PaperOrientation {portrait} | landscape

Horizontal or vertical paper orientation. This property determines how printed
Figures are oriented on the page. portrait orients the longest page dimension
vertically; landscape orients the longest page dimension horizontally.

1-113

figure

1-114

PaperPosition 4-element rect vector
Location on printed page. A rectangle that determines the location of the
Figure on the printed page. Specify this rectangle with a vector of the form

rect = [left, bottom, width, height]

where left specifies the distance from the left side of the paper to the left side
of the rectangle and bottom specifies the distance from the bottom of the page
to the bottom of the rectangle. Together these distances define the lower-left
corner of the rectangle. width and height define the dimensions of the rect-
angle. The PaperUnits property specifies the units used to define this rect-
angle.

PaperPositionMode auto | {manual}

WYSIWYG printing of Figure. In manual mode, MATLAB honors the value spec-
ified by the PaperPosition property. In auto mode, MATLAB prints the Figure
the same size as it appears on the computer screen, centered on the page.
PaperSize [width height] (read only)

Paper size. This property contains the size of the current PaperType, measured
in PaperUnits.

PaperType {usletter} | uslegal | a3 | adletter | a5
b4 | tabloid

Selection of standard paper size. This property sets the PaperSize to the one of
seven standard sizes. In inches, these sizes are:

=« usletter: width = 8.5, height = 11 inches

= uslegal: width = 11, height = 14 inches

= a3: width = 297, height = 420 mm

= a4letter: width = 210, height = 297 mm

= a5: width = 148, height = 210 mm

= b4: width = 250, height = 354 mm

= tabloid: width = 11, height = 17 inches (also called “C” size)

PaperUnits normalized | {inches} | centimeters | points

Hardcopy measurement units. This property specifies the units used to define
the PaperPosition and PaperSize properties. All units are measured from the
lower-left corner of the page. normalized units map the lower-left corner of the

figure

|

page to (0,0) and the upper-right corner to (1.0,1.0). inches, centimeters, and
points are absolute units (one point equals /72 of an inch).

If you change the value of PaperUnits, it is good practice to return it to its
default value after completing your computation so as not to affect other func-
tions that assume PaperUnits is set to the default value.

Parent handle

Handle of Figure’s parent. The parent of a Figure object is the Root object. The
handle to the Root is always 0.

Pointer crosshair | {arrow} I watch topl | topr
botl botr | circle | cross | fleur

left right | top | bottom | fullcrosshair

Ibeam | custom

Pointer symbol selection. This property determines the symbol used to indicate
the pointer (cursor) position in the Figure window.

Setting Pointer to custom allows you to define your own pointer symbol. See
the PointerShapeCData property for more information.
PointerShapeCData 16-by-16 matrix

User-defined pointer. This property defines the pointer that is used when you
set the Pointer property to custom. Itis a 16-by-16 element matrix defining the
16-by-16 pixel pointer using the following values:

=« 1 — color pixel black

= 2 —color pixel white
= NaN — make pixel transparent (underlying screen shows through)

Element (1,1) of the PointerShapeCData matrix corresponds to the upper-left
corner of the pointer. Setting the Pointer property to one of the predefined
pointer symbols does not change the value of the PointerShapeCData.
Computer systems supporting 32-by-32 pixel pointers fill only one quarter of
the available pixmap.

PointerShapeHotSpot 2-element vector

Pointer active area. A two-element vector specifying the row and column indices
in the PointerShapeCData matrix defining the pixel indicating the pointer loca-
tion. The location is contained in the CurrentPoint property and the Root

1-115

figure

1-116

object's PointerLocation property. The default value is element (1,1), which is
the upper-left corner.

Position 4-element vector

Figure position. This property specifies the size and location on the screen of
the Figure window. Specify the position rectangle with a 4-element vector of
the form:

rect = [left, bottom, width, height]

where left and bottom define the distance from the lower-left corner of the
screen to the lower-left corner of the Figure window. width and height define
the dimensions of the window. See the Units property for information on the
units used in this specification. The Ieft and bottom elements can be negative
on systems that have more than one monitor.

You can use the get function to obtain this property and determine the position
of the Figure and you can use the set function to resize and move the Figure to
a new location.

Renderer painters | zbuffer

Rendering method used for screen and printing. This property enables you to
select the method used to render MATLAB graphics. The choices are:

= painters — MATLAB'’s original rendering method is faster when the Figure
contains only simple or small graphics objects.

= zbuffer — MATLAB draws graphics object faster and more accurately be-
cause objects are colored on a per pixel basis and MATLAB renders only those
pixels that are visible in the scene (thus eliminating front-to-back sorting er-
rors). Note that this method can consume a lot of system memory if MATLAB
is displaying a complex scene.

RendererMode {auto} | manual

Automatic, or user selection of Renderer. This property enables you to specify
whether MATLAB should choose the Renderer based on the contents of the
figure window, or whether the Renderer should remain unchanged.

When the RendererMode property is set to auto, MATLAB selects the rendering
method for printing as well as for the screen based on the size and complexity
of the graphics objects in the Figure. For printing, MATLAB switches to
zbuffer at a greater scene complexity than for screen rendering because

figure

|

printing from a Z-buffered Figure can be considerably slower than one using
the painters rendering method, and can result in large PostScript files.

When the RendererMode property is set to manual, MATLAB does not change
the Renderer, regardless of changes to the Figure contents.

Resize {on} | off

Window resize mode. This property determines if you can resize the Figure
window with the mouse. on means you can resize the window, off means you
cannot. When Resize is off, the Figure window doesn’t display any resizing
controls (such as boxes at the corners) to indicate the absence of resizeability.

ResizeFcn string

Window resize callback routine. MATLAB executes the specified callback
routine whenever you resize the Figure window. The Figure’'s Position prop-
erty can be queried to determine the new size and position of the Figure
window. The handle to the Figure being resized is only accessible through the
Root Cal IbackObject property, which can be queried using gcbo.

ResizeFcn can be used to maintain a GUI layout that is not directly supported
by MATLAB's Position/Units paradigm, such as keeping an object a constant
height in pixels, and attached to the top of the Figure, but always matching the
width of the Figure. For example, the following ResizeFcn will keep a Uicontrol
whose Tag is “StatusBar” 20 pixels high, as wide as the Figure, and attached
to the top of the Figure. Note the use of the Tag property to retrieve the Uicon-
trol handle, and the gcbo function to retrieve the Figure handle. Also note the
defensive programming regarding Figure Units, which the callback requires to
be in pixels in order to work correctly, but which the callback also restores to
their previous value afterwards:

u = findobj(“Tag’,”StatusBar?”);

fig = gcbo;

old_units = get(fig,’Units’);
set(fig,’Units”, ’pixels?);

figpos = get(fig,’Position’);

upos = [0, Ffigpos(4) - 20, figpos(3), 20];
set(u, ’Position’”,upos);

set(fig, ’Units”,old_units);

The Figure Position may be changed from within the ResizeFcn callback,
however the ResizeFcn will not be called again as a result.

1-117

figure

1-118

Selected on | off

Is object selected. This property indicates whether the Figure is selected. You
can, for example, define the ButtonDownFcn to set this property, allowing users
to select the object with the mouse.

SelectionHighlight {on} | off
Figures do not indicate selection.

SelectionType {normal} | extended | alt | open (read only)

Mouse selection type. MATLAB maintains this property to provide information
about the last mouse button press that occurred within the Figure window.
This information indicates the type of selection made. Selection types are
particular actions that are generally associated with particular responses from
the user interface software (e.g., single clicking on a graphics object places it in
move or resize mode; double-clicking on a filename opens it, etc.).

The physical action required to make these selections varies on different plat-
forms. However, all selection types exist on all platforms.

Selection Type MS-Windows X-Windows Macintosh
Normal Click left mouse Click left mouse Click mouse
button button button
Extended Shift - click left Shift - click left Shift - click
mouse button or mouse button mouse button
both leftand right or
mouse buttons middle mouse
button
Alternate Control - click Control - click Option - click
left mouse button left mouse button mouse button
or right mouse or
button right mouse
button
Open Double click any Double click any Double click

mouse button

mouse button

mouse button

figure

|

Note that the ListBox style of Uicontrols set the Figure SelectionType prop-
erty to normal to indicate a single mouse click or to open to indicate a double
mouse click.

ShareColors {on} | off

Share slots in system colortable with like colors. This property affects the way
MATLAB stores the Figure colormap in the system color table. By default,
MATLAB looks at colors already defined and uses those slots to assign pixel
colors. This leads to an efficient use of color resources (which are limited on
systems capable of displaying 256 or less colors) and extends the number of
Figure windows that can simultaneously display correct colors.

However, in situations where you want to change the Figure colormap quickly
without causing MATLAB to re-render the displayed graphics objects, you
should disable color sharing (set ShareColors to off). In this case, MATLAB
can swap one colormap for another without changing pixel color assignments
since all the slots in the system color table used for the first colormap are
replaced with the corresponding color in the second colormap. (Note that is
applies only in cases where both colormaps are the same length and where the
computer hardware allows user modification of the system color table.)

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines.

For example, suppose you want to direct all graphics output from an M-file to
a particular Figure, regardless of user actions that may have changed the
current Figure. To do this, identify the Figure with a Tag:

figure("Tag", "Plotting Figure~®)

Then make that Figure the current Figure before drawing by searching for the
Tag with findobj:

figure(findobj("Tag", "Plotting Figure®))

1-119

figure

1-120

Type string (read only)

Obiject class. This property identifies the kind of graphics object. For Figure
objects, Type is always the string “figure”.

Units {pixels} | normal | inches | centimeters | points

Units of measurement. This property specifies the units MATLAB uses to inter-
pret size and location data. All units are measured from the lower-left corner
of the window. Normalized (normal) units map the lower-left corner of the
Figure window to (0,0) and the upper-right corner to (1.0,1.0). inches, centi-
meters, and points are absolute units (one point equals Y72 of an inch). The
size of a pixel depends on screen resolution.

This property affects the CurrentPoint and Position properties. If you change
the value of Units, it is good practice to return it to its default value after
completing your computation so as not to affect other functions that assume
Units is set to the default value.

When specifying the units as property/value pairs during object creation, you
must set the Units property before specifying the properties that you want to
use these units.

UserData matrix

User specified data. You can specify UserData as any matrix you want to asso-
ciate with the Figure object. The object does not use this data, but you can
access it using the set and get commands.

Visible {on} | off

Obiject visibility. The Visible property determines whether an object is
displayed on the screen. If the Visible property of a Figure is off, the entire
Figure window is invisible.

WindowButtonDownFcn string

Button press callback function. Use this property to define a callback routine

that MATLAB executes whenever you press a mouse button while the pointer
is in the Figure window. Define this routine as a string that is a valid MATLAB
expression or the name of an M-file. The expression executes in the MATLAB

workspace.

figure

WindowButtonMotionFcn string

Mouse motion callback function. Use this property to define a callback routine
that MATLAB executes whenever you move the pointer within the Figure
window. Define this routine as a string that is a valid MATLAB expression or
the name of an M-file. The expression executes in the MATLAB workspace.

WindowButtonUpFcn string

Button release callback function. Use this property to define a callback routine
that MATLAB executes whenever you release a mouse button. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

The button up event is associated with the Figure window in which the
preceding button down event occurred. Therefore, the pointer need not be in the
Figure window when you release the button to generate the button up event.

If the callback routines defined by WindowButtonDownFcn or WindowButtonMo-
tionFcn contain drawnow commands or call other functions that contain
drawnow commands and the Interruptible property is set to off, the Window-
ButtonUpFcn may not be called. You can prevent this problem by setting Inter-
ruptible to on.

WindowStyle {normal} | modal

Normal or modal window behavior. When WindowStyle is set to modal, the
Figure window traps all keyboard and mouse events over all MATLAB windows
as long as it is visible. Windows belonging to other applications other than
MATLAB are unaffected. Modal Figures remain stacked above all normal
Figures and the MATLAB command window. When multiple modal windows
exist, the most recently created window will keep focus and stay above all other
windows until it becomes invisible, or is returned to WindowStyle normal, or is
deleted. At that time, focus reverts to the window which last had the focus.

Figures with WindowStyle modal and Visible off do not behave modally until
they are made visible, so it is acceptable to hide a modal window instead of
destroying it, for efficiency, when a dialog that is being dismissed may be used
again.

The WindowStyle of a Figure may be changed at any time, including when the
figure is visible, and contains children. However, on some systems this may
cause the figure to flash, or even to disappear and reappear, depending on the

|

1-121

figure

See Also

1-122

windowing-system’s implementation of normal and modal windows. For best
visual results, WindowStyle should be set at creation time, or when the figure
is invisible.

modal Figures do not display Uimenu children or built-in menus, but it is not
an error to create Uimenus in a modal Figure, or to change WindowStyle to
modal on a Figure with Uimenu children. The Uimenu objects exist, and their

handles are retained by the Figure. If the Figure's WindowStyle is returned to
normal, the Uimenus will again be displayed.

Modal Figures are used to create dialog boxes that force the user to respond
without being able to interact with other windows. Typing Control C at the
MATLAB prompt causes all Figures with WindowStyle modal to revert to
WindowStyle normal, to allow typing at the command line.

axes, uicontrol, uimenu, close, clf, gcf, root

fill

Purpose

Syntax

Description

Algorithm

Filled two-dimensional polygons

fill(X,Y,0)

Ffill(X,Y,ColorSpec)
fill(X1,Y1,C1,%X2,Y2,C2,...)

fill(..., "PropertyName” ,PropertyValue)
h = fill(...)

The Fill function creates colored polygons.

fill(X,Y,C) creates filled polygons from the data in X and Y with vertex color
specified by C. C is a vector or matrix used as an index into the colormap. If Cis
a row vector, length(C) must equal size(X,2) and size(Y,2); if Cisacolumn
vector, length(C) must equal size(X,1) and size(Y,1). If necessary, fill
closes the polygon by connecting the last vertex to the first.

Fill(X,Y,ColorSpec) fillstwo-dimensional polygons specified by X and Y with
the color specified by ColorSpec.

fill(X1,Y1,C1,X2,Y2,C2,...) specifies multiple two-dimensional filled
areas.

fill(...,"PropertyName",PropertyVvalue) allows you to specify property
names and values for a Patch graphics object.

h = Ffill(...) returns a vector of handles to Patch graphics objects, one
handle per Patch object.

If X or Y is a matrix, and the other is a column vector with the same number of
elements as rows in the matrix, Fill replicates the column vector argument to
produce a matrix of the required size. fill forms a vertex from corresponding
elements in X and Y and creates one polygon from the data in each column.

The type of color shading depends on how you specify color in the argument list.
If you specify color using ColorSpec, fill generates flat-shaded polygons by

setting the Patch object’s FaceColor property to the corresponding RGB triple.

If you specify color using C, il l scales the elements of C by the values specified
by the Axes property CLim. After scaling C, C indexes the current colormap.

1-123

fill

Examples

See Also

1-124

If C is a row vector, fill generates flat-shaded polygons where each element
determines the color of the polygon defined by the respective column of the X
and Y matrices. Each Patch object's FaceColor property is set to "flat". Each
row element becomes the CData property value for the n-th Patch object, where
n is the corresponding column in X or Y.

If Cis acolumn vector or a matrix, fill uses a linear interpolation of the vertex
colors to generate polygons with interpolated colors. It sets the Patch graphics
object FaceColor property to "interp~ and the elements in one column become
the CData property value for the respective Patch object. If C is a column vector,
fill replicates the column vector to produce the required sized matrix.

Create a red octagon:

t = (1/16:1/8:1)"*2*pi ;
X = sin(t);
y = cos(1);

fill(x,y,"r")
axis square

axis, caxis, colormap, ColorSpec, fill3, patch

fill3

Purpose

Syntax

Description

Algorithm

Filled three-dimensional polygons

fill3(X,Y,Z,0)

Fill3(X,Y,Z,ColorSpec)
fill3a(x1,v1,21,C1,X2,Y2,22,C2,...)
Ffill3(..., "PropertyName” ,PropertyValue)
h = Fill3(...)

The fil13 function creates flat-shaded and Gouraud-shaded polygons.

fill3(X,Y,Z,C) fills three-dimensional polygons. X, Y, and Z triplets specify
the polygon vertices. If X, Y, or Z is a matrix, fil13 creates n polygons, where n
is the number of columns in the matrix. fil13 closes the polygons by
connecting the last vertex to the first when necessary.

C specifies color, where C is a vector or matrix of indices into the current
colormap. If Cis a row vector, length(C) must equal size(X,2) and size(Y,2);
if C is a column vector, length(C) must equal size(X,1) and size(Y,1).

Fill3(X,Y,Z,ColorSpec) fillsthree-dimensional polygons defined by X, Y, and
Z with color specified by ColorSpec.

fill3(X1,Y1,21,C1,X2,Y2,22,C2,...) specifies multiple filled three-dimen-
sional areas.

fill3(..., "PropertyName~,PropertyValue) allows you to set values for
specific Patch properties.

h = Fill3(...) returns a vector of handles to Patch graphics objects, one
handle per Patch.

If X, Y, and Z are matrices of the same size, fi 113 forms a vertex from the corre-
sponding elements of X, Y, and Z (all from the same matrix location), and creates
one polygon from the data in each column.

If X, Y, or Zis amatrix, fill3 replicates any column vector argument to produce
matrices of the required size.

If you specify color using ColorSpec, fill3 generates flat-shaded polygons and
sets the Patch object FaceColor property to an RGB triple.

1-125

fill3

Examples

See Also

1-126

If you specify color using C, fil13 scales the elements of C by the Axes property
CLim, which specifies the color axis scaling parameters, before indexing the
current colormap.

If C is a row vector, fill3 generates flat-shaded polygons and sets the Face-
Color property of the Patch objects to "flat". Each element becomes the CData
property value for the respective Patch object.

If C is a column vector or a matrix, fil13 generates polygons with interpolated
colors and sets the patch object FaceColor property to "interp=. fill3 uses a
linear interpolation of the vertex colormap indices when generating polygons
with interpolated colors. The elements in one column become the CData prop-
erty value for the respective Patch object. If C is a column vector, fill3 repli-
cates the column vector to produce the required sized matrix.

Create four triangles with interpolated colors.

colormap(cool)
X = rand(3,4); Y = rand(3,4); Z = rand(3,4)
C = rand(3,4);
fill3(X,Y,Z,0)

axis, caxis, colormap, ColorSpec, fill, patch

findobj

Purpose

Syntax

Description

Remarks

Examples

|

Locate graphics objects

findobj

findobj ("PropertyName® ,PropertyValue,...)
findobj(objhandles,...)

findobj(objhandles, "flat", "PropertyName*” ,PropertyValue, ...)

> 5 IS5 O
1

findobj locates graphics objects and returns their handles. You can limit the
search to objects with particular property values and along specific branches of
the hierarchy.

h

findobj returns the handles of the Root object and all its descendents.

h = findobj("PropertyName~,PropertyValue, ...) returns the handles of
all graphics objects having the property PropertyName, set to the value
PropertyValue. You can specify more than one property/value pair, in which
case, Findobj returns only those objects having all specified values.

h = findobj(objhandles, ...) restricts the search to objects listed in
objhandles and their descendents.

h = findobj(objhandles, "flat", "PropertyName®,PropertyValue,...)
restricts the search to those objects listed in objhandles and does not search
descendents.

findobj returns an error if a handle refers to a non-existent graphics object.

When you specify a property value, use the same format as get returns. For
example, you must use the RGB format to specify a color value and when the
value is a string, you must specify the entire character string.

When a graphics object is a descendent of more than one object identified in
objhandles, MATLAB searches the object each time findobj encounters its
handle. Therefore, implicit references to a graphics object can result in its
handle being returned multiple times.

Find all Line objects in the current Axes:

h = findobj(gca, "Type","line")

1-127

findobj

See Also copyobj, gcf, gca, gco, get, set

axes, figure, image, light, line, patch, surface, text, uicontrol, uimenu

1-128

fplot

Purpose

Syntax

Description

Remarks

Plot a function between specified limits

fplot("function®,limits)

fplot(" function®, limits,LineSpec)
fplot("function”, limits, tol)
fplot("function”, limits, tol,LineSpec)
[x.Y] = fplot(...)

fplot plots a function between specified limits. The function must be of the
form

y = F(x), where x is a vector whose range specifies the limits, and y is a vector
the same size as x and contains the function’s value at the points in x (see the
first example). If the function returns more than one value for a given x, then
y is a matrix whose columns contain each component of £(x) (see the second
example).

fplot("function”, limits) plots "function” between the limits specified by
limits. limits is a vector specifying the x-axis limits ([xmin xmax]), or the x-
and y-axis limits, ([xmin xmax ymin ymax]).

fplot(~function”, limits,LineSpec) plots "function” using the line speci-
fication LineSpec. "function” is a name of a MATLAB M-file or a string
containing the variable x.

fplot(~function”, limits,tol) plots "function” using the relative error
tolerance tol (default is 2e—3). The maximum number of x steps is (1/tol)+1.

fplot(~function~, limits,tol,LineSpec) plots "function= using the rela-
tive error tolerance tol and a line specification that determines line type,
marker symbol, and color.

[x,Y] = fplot(...) returns the abscissas and ordinates for "function” in x
and Y. No plot is drawn on the screen. You plot the function using plot(x,Y).

fplot uses adaptive step control to produce a representative graph, concen-

trating its evaluation in regions where the function’s rate of change is the
greatest.

1-129

fplot

Examples
Plot the hyperbolic tangent
function from -2 to 2:

fplot(“tanh®,[-2 2])

Create an M-file, myfun, that
returns a two column matrix:

400

350

function Y = myfun(X) 300
Y(:,1) = 20050in(X(:)) -7/ 5
x(:);
Y(:’Z) = X(:)_Az; 200

Plot the function with the

statement:; 1001

fplot("myfun®,[-20 20]

I I h I fl I I
-20 -15 -10 -5 0 5 10 15 20

See Also LineSpec, plot

The eval and feval functions in the online MATLAB Function Reference.

1-130

frame2im

|

Purpose Convert movie frame to indexed image
Syntax [X,Map] = frame2im(F)
Description [X,Map] = frame2im(F) converts the single movie frame F into the indexed

image X and associated colormap Map. A single column of a movie matrix is one
movie frame. The functions getframe and im2frame create a movie frame.

See Also capture, im2frame, movie

1-131

gca

Purpose
Syntax

Description

See Also

Get current Axes handle
h = gca

h = gca returns the handle to the current Axes for the current Figure. If no
AXxes exists, MATLAB creates one and returns its handle. You can use the state-
ment,

get(gcf, "CurrentAxes”®)
if you do not what MATLAB to create an Axes if one does not alread exist.

The current Axes is the target for graphics output when you create Axes chil-
dren. Graphics commands such as plot, text, and surf draw their results in
the current Axes. Changing the current Figure also changes the current Axes.

axes, cla, delete, gcf, gcbo, gco, hold, subplot, findobj
Figure CurrentAxes property

1-132

gcbo

Purpose

Syntax

Description

Remarks

See Also

Return the handle of the object whose callback is currently executing

h = gcbo
[h, figure] = gcbo

h = gcbo returns the handle of the graphics object whose callback is executing.

[h, figure] = gcbo returns the handle of the current callback object and the
handle of the Figure containing this object.

MATLAB stores the handle of the object whose callback is executing in the
Root’s Cal IbackObject property. If a callback interrupts another callback,
MATLAB replaces the Cal IbackObject value with the handle of the object
whose callback is interrupting. When that callback completes, MATLAB
restores the handle of the object whose callback was interrupted.

The Root Cal IbackObject property is read-only, so its value is always valid at
any time during callback execution. The Root CurrentFigure property, and the
Figure CurrentAxes and CurrentObject properties (returned by gcf, gca, and
gco respectively) are user settable, so they can change during the execution of
a callback, especially if that callback is inter rupted by another callback. There-
fore, those functions are not reliable indicators of which object’s callback is
executing.

gcbo must be used in conjunction with CreateFcn and DeleteFcn callbacks,
and with the Figure ResizeFcn callback, since those callbacks do not update
the Root’s CurrentFigure property, or the Figure’'s CurrentObject or
CurrentAxis properties, but only update the Root's Cal IbackObject property.

When no callbacks are executing, gcbo returns [].

gca, gcf, gco, root

1-133

gcf

Purpose
Syntax

Description

See Also

1-134

Get current Figure handle

h gcf

h = gcf returns the handle of the current Figure. The current Figure is the
Figure window in which graphics commands such as plot, title, and surf

draw their results. If no Figure exists, MATLAB creates one and returns its
handle. You can use the statement,

get(0, "CurrentFigure®)

if you do not what MATLAB to create a Figure if one does not alread exist.

axes, clf, close, delete, Figure, gca, gcbo, gco, subplot

Root CurrentFigure property

gco

Purpose

Syntax

Description

Remarks

Examples

See Also

Return handle of current object

h = gco
h = gco(h)
h = gco returns the handle of the last graphics object you clicked on with the

mouse or the last graphics object created.

h = gco(h) returns the value of the current object for the Figure specified by
h

MATLAB stores the handle of the current object in the Figure’s CurrentObject
property.

The CurrentObject of the CurrentFigure does not always indicate the object
whose callback is being executed. Interruptions of callbacks by other callbacks
can change the CurrentObject or even the CurrentFigure. Some callbacks,
such as CreateFcn and DeleteFcn, and uimenu Cal Iback intentionally do not
update CurrentFigure or CurrentObject. gcbo provides the only completely
reliable way to retrieve the handle to the object whose callback is executing, at
any point in the callback function, regardless of the type of callback or of any
previous interruptions.

Return the handle to the current graphics object in Figure 2:

h = gco(2)

gca, gcbo, gcf, root

1-135

get

Purpose

Syntax

Description

1-136

Get object properties

get(h)

get(h, "PropertyName™)

<m-by-n value cell array> = get(H,<property cell array>)
a = get(h)

get(0, "Factory™)

get(0, "FactoryObjectTypePropertyName™)

get(h, "Default”)

get(h, "DefaultObjectTypePropertyName")

a
a
a
a

get(h) returns all properties and their current values of the graphics object
identified by the handle h.

get(h, "PropertyName™) returns the value of the property "PropertyName" of
the graphics object identified by h.

<m-by-n value cell array> = get(H,pn) returns n property values for m
graphics objects in the m-by-n cell array, where m = length(H) and n is equal
to the number of property names contained in pn.

a = get(h) returns a structure whose field names are the object’'s property
names and whose values are the current values of the corresponding proper-
ties. h must be a scalar. If you do not specify an output argument, MATLAB
displays the information on the screen.

a = get(0, "Factory™) returns the factory-defined values of all user-settable
properties. a is a structure array whose field names are the object property
names and whose field values are the values of the corresponding properties.
If you do not specify an output argument, MATLAB displays the information on
the screen.

a = get(0, "FactoryObjectTypePropertyName") returns the factory-defined
value of the named property for the specified object type. The argument,
FactoryObjectTypePropertyName is the word Factory concatenated with the
object type (e.g., Figure) and the property name (e.g., Color).

a = get(h, "Default™) returns all default values currently defined on object
h. a is a structure array whose field names are the object property names and

get

Examples

See Also

whose field values are the values of the corresponding properties. If you do not
specify an output argument, MATLAB displays the information on the screen.

a = get(h, "DefaultObjectTypePropertyName") returns the factory-defined
value of the named property for the specified object type. The argument,
DefaultObjectTypePropertyName is the word Default concatenated with the
object type (e.g., Figure) and the property name (e.g., Color).

You can obtain the default value of the Linewidth property for Line graphics
objects defined on the Root level with the statement:

get(0, "DefaultLineLineWidth®)

ans =
0.5000

To query a set of properties on all Axes children define a cell array of property
names:

props = {"HandleVisibility", "Interruptible~;
"SelectionHighlight®, "Type'};
output = get(get(gca, "Children®),props);

The variable output is a cell array of dimension: length(get(gca, "Chil-
dren®) by 4.

For example, type:

patch;surface;text;line
output = get(get(gca, "Children®),props)

output =
"off" on* "off" “line"
"off” on* "off" "text”
"off" on* "off" "surface”

"off" “on* "off" "patch*

findobj, gca, gcf, gco, set

1-137

getframe

Purpose

Synopsis

Description

Remarks

1-138

Get movie frame

M = getframe
M = getframe(h)
M = getframe(h,rect)

[X,Map] = getframe(...)

getframe returns acolumn vector containing one movie frame. The frame is a
snapshot (pixmap) of the current Axes.

M

getframe gets a frame from the current Axes.

M = getframe(h) gets aframe from the Figure or Axes graphics object identi-
fied by h.

M = getframe(h,rect) specifies a rectangular area from which to copy the
pixmap. rect is relative to the lower-left corner of the Figure or Axes graphics
object identified by h, in pixel units. rect is a four-element vector in the form
[1eft bottom width height], where width and height define the dimensions
of the rectangle.

[X,Map] = getframe(...) returns the frame as an indexed image matrix X
and a colormap Map. In this case, h is a handle to a Figure or Axes object. You
display the image matrix using image or imagesc.

Usually, getframe is put in a for loop to assemble movie matrix M for playback
using movie. To prevent excessive memory use, use moviein to allocate movie
matrix M before building the movie. This generates an appropriate size matrix
of zeros.

getframe

|

Examples Make the peaks function vibrate:

Z = peaks; surf(2)
axis manual % Freeze Axes limits
set(gca, "nextplot”, "replacechildren®);
M = moviein(20);
for j = 1:20
surf(sin(2*pi*j/20)*72,2)
M(:,J) = getframe;
end
movie(M,20) % Play the movie twenty times

See Also movie, moviein

1-139

ginput

Purpose

Syntax

Description

Examples

See Also

1-140

Input data using the mouse

[x.yl = ginput(n)
[x.yl = ginput
[Xx,y,button] = ginput(...)

ginput allows you to select points from the Figure using the mouse or arrow
keys for cursor positioning. The Figure must have focus before ginput receives
input.

[x,y] = ginput(n) allows you to select n points from the current Axes and
returns the x- and y-coordinates in the column vectors x and y, respectively.
You can press the Return key to terminate the input before entering n points.

[x,y] = ginput gathers an unlimited number of points until you press the
Return key.

[x,y,button] = ginput(...) returns the x-coordinates, the y-coordinates,
and the button or key designation. button is a vector of integers indicating
which mouse buttons you pressed (1 for left, 2 for middle, 3 for right), or ASCII
numbers indicating which keys on the keyboard you pressed.

Pick 10 two-dimensional points from the Figure window.

[x.yl = ginput(10)

Position the cursor with the mouse (or the arrow keys on terminals without a
mouse, such as Tektronix emulators). Enter data points by pressing a mouse
button or a key on the keyboard. To terminate input before entering 10 points,
press the Return key.

gtext

gplot

Purpose

Synopsis

Description

Remarks

Plot set of nodes using an adjacency matrix

gplot(A,Coordinates)
gplot(A,Coordinates,LineSpec)

The gplot function graphs a set of coordinates using an adjacency matrix.

gplot(A,Coordinates) plots a graph of the nodes defined in Coordinates
according to the n-by-n adjacency matrix A, where n is the number of nodes.
Coordinates is an n-by-2 or an n-by-3 matrix, where n is the number of nodes
and each coordinate pair or triple represents one node.

gplot(A,Coordinates,LineSpec) plots the nodes using the line type, marker
symbol, and color specified by LineSpec.

For two-dimensional data, Coordinates(i, :) = [x(i) y(i)] denotes node i,

and Coordinates(J,:) = [xX(J) y()] denotes node j. If node i and node j are
joined, A(i,j) or A(j§,i) are nonzero; otherwise, A(i,j) and A(J,i) are zero.

1-141

gplot

Examples To draw half of a Bucky ball with asterisks at each node:

k = 1:30;

[B.,XY] = bucky;
gplot(B(k,k),XY(k,),"-*")
axis square

1

0.8r

0.6~

0.4r

See Also LineSpec, spy

The sparse function in the online MATLAB Function Reference.

1-142

graymon

|

Purpose Set default Figure properties for grayscale monitors
Syntax graymon
Description graymon sets defaults for graphics properties to produce more legible displays

for gray-scale monitors.

See Also axes, figure

1-143

grid

Purpose

Syntax

Description

Algorithm

See Also

1-144

Grid lines for two- and three-dimensional plots

grid on
grid off
grid

The grid function turns the current Axes’ grid lines on and off.
grid on adds grid lines to the current Axes.

grid off removes grid lines from the current Axes.

grid toggles the grid visibility state.

grid sets the XGrid, YGrid, and ZGrid properties of the current Axes.

axes, plot

The XGrid, YGrid, and zZGrid properties of Axes objects.

gtext

Purpose

Syntax

Description

Remarks

Algorithm

Examples

See Also

Mouse placement of text in two-dimensional view

gtext(“string”)
h = gtext("string®)

gtext displays a text string in the current Figure window after you select a
location with the mouse.

gtext("string™) waits for you to press a mouse button or keyboard key while
the pointer is within a Figure window. Pressing a mouse button or any key
places "string” on the plot at the selected location.

h = gtext("string”) returns a handle to a Text graphics objects after you
place "string" on the plot at the selected location.

As you move the pointer into a Figure window, the pointer becomes a crosshair
to indicate that gtext is waiting for you to select a location.

gtext uses the functions ginput and text.

Place a label on the current plot:

gtext(“Note this divergence!”®)

ginput, text

1-145

helpdlig

Purpose

Syntax

Description

Remarks

Examples

See Also

1-146

Create a help dialog box

helpdlg

helpdlg(“helpstring™)
helpdlg(“helpstring®, "dlgname®)
h = helpdlg(--..)

helpdlg creates a help dialog box or brings the named help dialog box to the
front.

helpdlg displays a dialog box named “Help Dialog" containing the string
"This is the default help string."

helpdlg("helpstring”) displays a dialog box named 'Help Dialog'
containing the string specified by "helpstring”.

helpdlg(“helpstring”, "dlgname®) displays a dialog box named "dlgname*”
containing the string "helpstring”.

h = helpdlg(...) returns the handle of the dialog box.

MATLAB wraps the text in "helpstring” to fit the width of the dialog box. The
dialog box remains on your screen until you press the OK button or the Return
key. After pressing the button, the help dialog box disappears.

The statement,

helpdlg(“Choose 10 points from the figure®,"Point Selection®);

displays the following dialog box:

! Choose 10 points from the figure

dialog, errordlg, questdlg, warndlg

hidden

Purpose

Syntax

Description

Algorithm

Examples

See Also

|

Remove hidden lines from a mesh plot

hidden on
hidden off
hidden

Hidden line removal draws only those lines that are not obscured by other
objects in the field of view.

hidden on turns on hidden line removal for the current graph so lines in the
back of a mesh are hidden by those in front. This is the default behavior.

hidden off turns off hidden line removal for the current graph.

hidden toggles the hidden line removal state.

hidden on sets the FaceColor property of a Surface graphics object to Back-
groundColor, which is usually black. hidden off sets the FaceColor property
to none.

Set hidden line removal off and on while displaying the peaks function:

mesh(peaks)
hidden off
hidden on

shading

The Surface properties FaceColor and EdgeColor.

1-147

hist

Purpose

Syntax

Description

Remarks

1-148

Histogram plot

hist(Y)

hist(Y,x)
hist(Y,nbins)
[n,xout] = hist(...)

A histogram shows the distribution of data values.

hist(Y) draws a histogram of the elements in Y. hist distributes the bins
along the x-axis between the minimum and maximum values of Y.

hist(Y,x) draws a histogram using n bins, where n is Iength(x). x also spec-
ifies the locations on the x-axis where hist places the bins. For example, if x is
a 5-element vector, hist distributes the elements of Y into five bins centered on
the x-axis at the elements in x.

hist(Y,nbins) draws a histogram with no more bins than nbins.

[n,xout] = hist(...) returns vectors n and xout containing the frequency
counts and the bin locations. This syntax does not generate a plot. This is
useful when you need more control over the appearance of a graph, for
example, to combine a histogram into a more elaborate plot. You can use

bar (xout,n) to plot the histogram.

All elements in vector Y or in one column of matrix Y are grouped according to
their numeric range. Each group is shown as one bin.

The histogram’s x-axis reflects the range of values in Y. The histogram’s y-axis
shows the number of elements that fall within the groups; therefore, the y-axis
ranges from 0 to the greatest number of elements deposited in any bin.

hist

Examples Generate a bell-curve histogram from Gaussian data.

X = -2.9:0.1:2.9;
y randn(10000,1);

hist(y,x)
-1 0 1 2

LI-IIIIIII
-2 3

450

400

350

300

T

250

T

T

200

T

150

100

T

o

See Also bar, stairs

1-149

hold

Purpose

Syntax

Description

Remarks

Algorithm

See Also

1-150

Hold current graph in the Figure

hold on
hold off
hold

The hold function determines whether new graphics objects are added to the
graph or replace objects in the graph.

hold on retains the current plot and certain Axes properties so that subse-
quent graphing commands add to the existing graph.

hold off resets Axes properties to their defaults before drawing new plots.
hold off is the default.

hold toggles the hold state between adding to the graph and replacing the
graph.
You test the hold state using the ishold function.

Although the hold state is on, some Axes properties change to accommodate
additional graphics objects. For example, the Axes’ limits increase when the
data requires them to do so.

The hold function sets the NextPlot property of the current Figure and the
current Axes. If several Axes objects exist in a Figure window, each Axes has
its own hold state. hold also creates an Axes if one does not exist.

hold on sets the NextPlot property of the current Figure and Axes to add.
hold off sets the NextPlot property of the current Axes to replace.

hold toggles the NextPlot property between the add and replace states.

axis, cla, ishold, newplot

The NextPlot property of Axes and Figure graphics objects.

home

Purpose
Syntax
Description

Examples

See Also

Send the cursor home

home

home returns the cursor to the upper-left corner of the command window.

Display a sequence of random matrices at the same location in the command

window:
clc
for 1 =1:25
home
A = rand(b)
end
clc

1-151

hsv2rgb

Purpose
Syntax

Description

Remarks

See Also

1-152

Convert HSV colormap to RGB
M = hsv2rgb(H)

M = hsv2rgb(H) converts a hue-saturation-value (HSV) colormap to a
red-green-blue (RGB) colormap. H is an m-by-3 matrix, where m is the number
of colors in the colormap. The columns of H represent hue, saturation, and
value, respectively. M is an m-by-3 matrix. Its columns are intensities of red,
green, and blue, respectively.

As H(:,1) varies from 0 to 1, the resulting color varies from red, through
yellow, green, cyan, blue, and magenta, and returns to red. When H(:,2) is 0,
the colors are unsaturated (i.e., shades of gray). When H(:,2) is 1, the colors
are fully saturated (i.e., they contain no white component). As H(:,3) varies
from O to 1, the brightness increases.

The MATLAB hsv colormap uses hsv2rgb([hue saturationvalue]) where hue
is a linear ramp from 0 to 1, and saturation and value are all 1's.

brighten, colormap, rgb2hsv

im2frame

|

Purpose Convert indexed image into movie frame

Syntax F = im2frame(X,Map)

Description F = im2frame(X,Map) converts the indexed image X and associated colormap
Map into a movie frame F. You can use im2frame to convert a sequence of images
into a movie.

Example You can use im2frame to convert a sequence of images into a movie.

M = moviein(n);
M(z,1) = im2frame(X1,map);
M(:,2) = im2frame(X2,map);

M(:z,n) = im2Fframe(Xn,map);
movie(M)

See Also capture, frame2im, movie, moviein

1-153

iImage

Purpose

Syntax

Description

1-154

Display Image object

image(C)

image(x,y,C)

image(.- .., "PropertyName® ,PropertyValue,...)

image("PropertyName" ,PropertyValue, ...) Formal synatx — PN/PV pairs
only

handle = image(...)

image creates an Image graphics object by interpreting each element in a
matrix as an index into the Figure’s colormap or directly as RGB values,
depending on the data specified.

The image function has two forms:

= A high-level function that calls newplot to determine where to draw the
graphics objects and sets the following Axes properties:

XLim and YLim to enclose the Image

Layer to top to place the Image in front of the tick marks and grid lines
YDir to reverse

View to [0 90]

= A low-level function that adds the Image to the current Axes without calling
newplot. The low-level function argument list can contain only property
name/property value pairs.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for examples of
how to specify these data types).

image(C) displays matrix C as an Image. Each element of C specifies the color
of a rectangular segment in the Image.

image(X,y,C) where x and y are two-element vectors, specifies the range of
the x- and y-axis labels, but produces the same Image as image(C). This can be
useful, for example, if you want the axis tick labels to correspond to real phys-
ical dimensions represented by the image.

image

Remarks

image(x,y,C, "PropertyName” ,PropertyValue, . . .) is a high-level function
that also specifies property name/property value pairs. This syntax calls
newp lot before drawing the Image.

image("PropertyName” ,PropertyValue, ...) is the low-level syntax of the
image function. It specifies only property name/property value pairs as input
arguments.

handle = image(...) returns the handle of the Image object it creates. You
can obtain the handle with all forms of the image function.

Image data can be either indexed or true color. An indexed image stores colors
as an array of indices into the Figure colormap. A true color image does not use
a colormap; instead, the color values for each pixel are stored directly as RGB
triplets. In MATLAB , the CData property of a truecolor Image object is a
three-dimensional (m-by-n-by-3) array. This array consists of three m-by-n
matrices (representing the red, green, and blue color planes) concatenated
along the third dimension.

The imread function reads image data into MATLAB arrays from graphics files
in various standard formats, such as TIFF. You can write MATLAB image data
to graphics files using the imwrite function. imread and imwrite both support
a variety of graphics file formats and compression schemes.

When you read image data into MATLAB using imread, the data is stored as an
array of 8-bit integers. This is a much more efficient storage method than the
double-precision (64-bit) floating-point numbers that MATLAB typically uses.

|

1-155

iImage

However, it is necessary for MATLAB to interpret 8-bit image data differently
from 64-bit data. This table summarizes these differences:

Image Double-precision data 8-bit data (uint8 array)

type (double array)

indexed Image is stored as a Image is stored as a

(colormap) two-dimensional (m-by-n) array two-dimensional (m-by-n)
of integers in the range [1, array of integers in the
length(colormap)]; colormap range [0, 255]; colormap
is an m-by-3 array of is an m-by-3 array of
floating-point values in the floating-point values in
range the range [0, 1]
[0, 1]

truecolor Image is stored as a Image is stored as a

(RGB) three-dimensional three-dimensional
(m-by-n-by-3) array of (m-by-n-by-3) array of
floating-point values in the integers in the range [0,
range [0, 1] 255]

Indexed images

In an indexed image of class double, the value 1 points to the first row in the
colormap, the value 2 points to the second row, and so on. In a uint8 indexed
image, there is an offset; the value 0 points to the first row in the colormap, the
value 1 points to the second row, and so on. The uint8 convention is also used
in graphics file formats, and enables 8-bit indexed images to support up to 256
colors. Note that when you read in an indexed image with imread, the resulting
image array is always of class uint8. (The colormap, however, is of class
double; see below.)

If you want to convert a uint8 indexed image to double, you need to add 1to
the result. For example:

X64 = double(X8) + 1;

To convert from double to uint8, you need to first subtract 1, and then use
round to ensure all the values are integers:

X8 = uint8(round(X64 — 1));

1-156

image

|

The order of the operations must be as shown in these examples, because you
cannot perform mathematical operations on uint8 arrays.

When you write an indexed image using imwrite, MATLAB automatically
converts the values if necessary.

Colormaps

Colormaps in MATLAB are alway m-by-3 arrays of double-precision
floating-point numbers in the range [0, 1]. In most graphics file formats, color-
maps are stored as integers, but MATLAB does not support colormaps with
integer values. imread and imwrite automatically convert colormap values
when reading and writing files.

True Color Images

In a truecolor image of class double, the data values are floating-point numbers
in the range [0, 1]. In a truecolor image of class uint8, the data values are inte-
gers in the range [0, 255].

If you want to convert a truecolor image from one data type to the other, you
must rescale the data. For example, this call converts a uint8 truecolor image
to double:

RGB64 = double(RGB8)/255;
This statement converts a double truecolor image to uints:

RGB8 = uint8(round(RGB*255));

The order of the operations must be as shown in these examples, because you
cannot perform mathematical operations on uint8 arrays.

When you write a truecolor image using imwrite, MATLAB automatically
converts the values if necessary.

1-157

iImage

Object
Hierarchy

Image
Properties

1-158

Root
Figure

I]

| Axes | |Uimenu

I
I I I |
| Patch | | Surface | Text | | Light |

Setting Default Properties
You can set default Image properties on the Axes, Figure, and Root levels:

| Uicontrol

set (0, "DefaultlmageProperty” ,PropertyValue...)
set(gcf, "DefaultlmageProperty” ,PropertyValue...)
set(gca, "DefaultlmageProperty” ,PropertyValue...)

Where Property is the name of the Image property and PropertyValue is the
value you are specifying.

This section lists property names along with the type of values each property
accepts.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked call-
back routes always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then interrup-
tion occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

= cancel —discard the event that attempted to execute a second callback rou-
tine.

= queue — queue the event that attempted to execute a second callback routine
until the current callback finishes.

image

|

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the Image object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

CData matrix or m-by-n-by-3 array

The Image data. A matrix of values specifying the color of each rectangular
area defining the Image. image(C) assigns the values of C to CData. MATLAB
determines the coloring of the Image in one of three ways:

= Using the elements of CData as indices into the current colormap (the de-
fault)

=« Scaling the elements of CData to range between the values
min(get(gca, "CLim")) and max(get(gca, "CLim")) (CDataMapping set to
scaled)

= Interpreting the elements of CData directly as RGB values (true color speci-
fication)

A true color specification for CData requires an m-by-n-by-3 array of RGB
values. The first page contains the red component, the second page the green
component, and the third page the blue component of each element in the
Image. RGB values range from 0 to 1. The following picture illustrates the rela-
tive dimensions of CData for the two color models:

Indexed Colors True Colors
CData | | Blue |
| [Green |
Red T
CData T

1-159

iImage

1-160

CDataMapping scaled | {direct}

Direct or scaled indexed colors. This property determines whether MATLAB
interprets the values in CData as indices into the Figure colormap (the default)
or scales the values according to the Axes CLim property.

When CDataMapping is direct, the values of CData should be in the range 1 to
length(get(gcf, "Colormap™)). If you use true color specification for CData,
this property has no effect.

Children handles
The empty matrix; Image objects have no children.
Clipping on | off

Clipping mode. By default, MATLAB clips Images to the Axes rectangle. If you
set Clipping to off, the Image can display outside the Axes rectangle. For
example, if you create an Image, set hold to on, freeze axis scaling (axis
manual), and then create a larger Image, it extends beyond the axis limits.

CreateFcn string

Callback routine executed during object creation. This property defines a call-
back routine that executes when MATLAB creates an Image object. You must
define this property as a default value for Images. For example, the statement,

set (0, "DefaultlmageCreateFcn”, "axis image")

defines a default value on the Root level that sets the aspect ratio and the axis
limits so the Image has square pixels. MATLAB executes this routine after
setting all Image properties. Setting this property on an existing Image object
has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

DeleteFcn string

Delete Image callback routine. A callback routine that executes when you
delete the Image object (i.e., when you issue a delete command or clear the
Axes or Figure containing the Image). MATLAB executes the routine before
destroying the object’s properties so these values are available to the callback
routine.

image

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase Image objects. Alternative erase modes are useful for creating animated
sequences, where control of the way individual objects redraw is necessary to
improve performance and obtain the desired effect.

= normal (the default) — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all objects are ren-
dered correctly. This mode produces the most accurate picture, but is the
slowest. The other modes are faster, but do not perform a complete redraw
and are therefore less accurate.

= none — Do not erase the Image when it is moved or changed.

=« xor — Draw and erase the Image by performing an exclusive OR (XOR) with
the color of the screen beneath it. This mode does not damage the color of the
objects beneath the Image. However, the Image’s color depends on the color
of whatever is beneath it on the display.

= background — Erase the Image by drawing it in the Axes’ background color.
This damages objects that are behind the erased Image, but Images are al-
ways properly colored.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This prop-
erty determines when an object’s handle is visible in its parent’s list of children.
Handles are always visible when HandleVisibility is on. When HandleVisi-
bility is cal lback, handles are visible from within callbacks or functions
invoked by callbacks, but not from within functions invoked from the command
line - a useful way to protect GUIs from command-line users, while permitting
their callbacks complete access to their own handles. Setting HandleVisi-
bility to off makes handles invisible at all times - which is occasionally neces-
sary when a callback needs to invoke a function that might potentially damage
the Ul, and so wants to temporarily hide its own handles during the execution
of that function.

When a handle is not visible in its parent’s list of children, it can not be
returned by any functions which obtain handles by searching the object hier-
archy or querying handle properties, including get, findobj, gca, gcf, gco,

|

1-161

iImage

1-162

newplot, cla, clf, and close. When a handle’s visibility is restricted using
callback or off, the object’'s handle does not appear in its parent’s Children
property, Figures do not appear in the Root’s CurrentFigure property, objects
do not appear in the Root's Cal IbackObject property or in the Figure’s Curren-
tObject property, and Axes do not appear in their parent’s CurrentAxes prop-
erty.

The Root ShowHiddenHandles property can be set to on to temporarily make all
handles visible, regardless of their HandleVisibi lity settings (this does not
affect the values of the HandleVvisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.
This property is useful for preventing command-line users from accidently
drawing into or deleting a Figure that contains only user interface devices
(such as a dialog box).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether an Image callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine.

Parent handle of parent Axes

Image’s parent. The handle of the Image object’s parent Axes. You can move an
Image object to another Axes by changing this property to the new Axes
handle.

Selected on | off

Is object selected. When this property is on. MATLAB displays selection handles
if the SelectionHighlight property is also on. You can, for example, define the
ButtonDownFcn to set this property, allowing users to select the object with the
mouse.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing four edge handles and four corner

image

See Also

handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For Image objects, Type is always 'image'.

UserData matrix

User specified data. This property can be any data you want to associate with
the Image object. The Image does not use this property, but you can access it
using set and get.

Visible on | off

Image visibility. By default, Image objects are visible. Setting this property to
off prevents the Image from being displayed. However, the object still exists
and you can set and query its properties.

XData [1 size(C,b2)]

X-axis range. A two-element vector specifying the x-coordinates spanned by the
Image, along the x-axis. By default, the second element in XData is equal to the
number of columns in the Image CData property.

YData [1 size(C,1)]

Y-axis range. A two-element vector specifying the y-coordinates spanned by the
Image, along the y-axis. By default, the second element in YData is equal to the
number of rows in the Image CData property.

colormap, iminfo, imread, imwrite, pcolor,newplot,surface

1-163

Imagesc

Purpose

Syntax

Description

Remarks

Algorithm

1-164

Scale data and display an Image

imagesc(C)
imagesc(x,y,C)
imagesc(...,clims)
h = imagesc(-..)

The imagesc function scales image data to the full range of the current
colormap and displays an Image. (See illustration on the following page.)

imagesc(C) displays C as an Image. Each element of C corresponds to a rect-
angular area in the Image. The values of the elements of C are indices into the
current colormap that determine the color of each patch.

imagesc(x,y,C) displays C as an Image and specifies the bounds of the x- and
y-axis with vectors x and .

imagesc(. - .,clims) normalizes the values in C to the range specified by
clims and displays C as an Image. clims is a two-element vector that limits the
range of data values in C. These values map to the full range of values in the
current colormap.

h = imagesc(...) returns the handle for an Image graphics object.

x and y do not affect the elements in C; they only affect the annotation of the
Axes. If length(x) > 2 or length(y) > 2, imagesc ignores all except the first
and last elements of the respective vector.

imagesc creates an image with CDataMapping set to scaled, and sets the axes
CLim to the value passed in clims.

iImagesc

|

Examples If the size of the current colormap is 81-by-3,
the statements Data Colormap
Values Values

clims = [10 60]
imagesc(C,clims)

map the data values in C to the colormap,
as shown to the right.

The left Image maps to the gray colormap using the statements

load clown

imagesc(X)

colormap(gray)
The right Image has values between 10 and 60 scaled to the full range of the
gray colormap using the statements

load clown

clims = [10 60];

imagesc(X,clims)

colormap(gray)

1-165

Imagesc

See Also image, colorbar

1-166

imfinfo

Purpose

Synopsis

Description

|

Return information about a graphics file

imfinfo(filename, fmt)
imfFinfo(filename)

info
info

info = imfinfo(filename, fmt) returns a structure whose fields contain infor-
mation about an image in a graphics file. filename is a string that specifies the
name of the graphics file, and fmt is a string that specifies the format of the file.
The file must be in the current directory or in a directory on the MATLAB path.
If imFinfo cannot find a file named filename, it looks for a file named file-
name . fmt.

This table lists the possible values for fmt:

Format File type
“bmp*” Windows Bitmap (BMP)
“hdf" Hierarchical Data Format (HDF)

"jpg- or "jpeg” Joint Photographic Experts Group (JPEG)
"pcx” Windows Paintbrush (PCX)

“tif" or "tiff" Tagged Image File Format (TIFF)

"xwd " X Windows Dump (XWD)

If filename is a TIFF or HDF file containing more than one image, info is a
structure array with one element (i.e., an individual structure) for each image
in the file. For example, info(3) would contain information about the third
image in the file.

1-167

Imfinfo

The set of fields in info depends on the individual file and its format. However,
the first seven fields are always the same. This table lists these fields and
describes their values:

Field Value

Filename A string containing the name of the file; if the file is
not in the current directory, the string contains the
full pathname of the file

Format A string containing the file format, as specified by fmt;
for JPEG and TIFF files, the three-letter variant is
returned

FormatVersion A string or number describing the version of the
format

Width An integer indicating the width of the image in pixels

Height An integer indicating the height of the image in pixels

BitDepth An integer indicating the number of bits per pixel

ColorType A string indicating the type of image; either

“truecolor” for atruecolor RGB image, "grayscale”
for a grayscale intensity image, or "indexed" for an
indexed image

info = imfinfo(Ffilename) attempts to infer the format of the file from its
content.

1-168

imfinfo

Example

See Also

info = imfinfo("flower

info =

Filename:

Format:
FormatVersion:
Width:

Height:

BitDepth:
ColorType:
FormatSignature:
NumColormapEntries:
Colormap:
RedMask:
GreenMask:
BlueMask:
FileSize:
ImageDataOffset:
BitmapHeaderSize:
NumPlanes:
CompressionType:
BitmapSize:
HorzResolution:
VertResolution:
NumColorsUsed:
NumlImportantColors:

imread, imwrite

|

-bmp®)

“flower_bmp~

"bmp*

"Version 3 (Microsoft Windows 3.x)*
227

149

8

"indexed”

“BM"

256

[256x3 double]

[l

1-169

imread

Purpose

Synopsis

Description

1-170

Read image from graphics file

A = imread(filename, fmt)
[X,map] = imread(filename,fmt)
[---1 = imread(Filename)
[---1 imread(. .., idx)
[---1 imread(...,ref)

A = imread(filename, fmt) reads the image in filename into A, whose class is
uint8. If the file contains a grayscale intensity image, A is a two-dimensional
array. If the file contains a truecolor (RGB) image, A is a three-dimensional
(m-by-n-by-3) array. filename is a string that specifies the name of the graphics
file, and fmt is a string that specifies the format of the file. The file must be in
the current directory or in a directory in the MATLAB path. If imread cannot
find a file named filename, it looks for a file named filename. fmt.

This table lists the possible values for fmt:

Format File type
“bmp*~ Windows Bitmap (BMP)
“hdf- Hierarchical Data Format (HDF)

"jpg” or "jpeg” Joint Photographic Experts Group (JPEG)
"pcx-” Windows Paintbrush (PCX)

“tif" or "tiff" Tagged Image File Format (TIFF)

“xwd*" X Windows Dump (XWD)

[X,map] = imread(filename,fmt) reads the indexed image in filename into
X and its associated colormap into map. X is of class uint8, and map is of class
double. The colormap values are rescaled when they are read to have the range
[0, 1].

[---]1 = imfread(filename) attempts to infer the format of the file from its
content.

imread

|

[---1 = imread(.-.-.,idx) reads in one image from a multi-image TIFF file.
idx is an integer value that specifies the order that the image appears in the
file. For example, if idx is 3, imread reads the third image in the file. If you omit
this argument, imread reads the first image in the file.

[---1 = imread(...,ref) reads in one image from a multi-image HDF file.
ref is an integer value that specifies the reference number used to identify the
image. For example, if ref is 12, imread reads the image whose reference
number is 12. (Note that in an HDF file the reference numbers do not neces-
sarily correspond with the order of the images in the file.) If you omit this argu-
ment, imread reads the first image in the file.

This table summarizes the types of images that imread can read:

Format Variants

BMP 1-bit, 4-bit, 8-bit, and 24-bit uncompressed images; 4-bit
and 8-bit run-length encoded (RLE) images

HDF 8-bit raster image datasets, with or without associated
colormap; 24-bit raster image datasets

JPEG Any baseline JPEG image; JPEG images with some
commonly used extensions

PCX 1-bit, 8-bit, and 24-bit images

TIFF Any baseline TIFF image, including 1-bit, 8-bit, and 24-bit

uncompressed images; 1-bit, 8-bit, and 24-bit images with
packbit compression; 1-bit images with CCITT compression

XWD 1-bit and 8-bit ZPixmaps; XYBitmaps; 1-bit XYPixmaps

Examples This example reads the sixth image in a TIFF file:
[X,map] = imread("flower.tif",6);
This example reads the fourth image in an HDF file:

info = imfinfo("skull_hdf");
[X,map] = imread("skull_hdf*",info(4).Reference);

See Also imfinfo, imwrite

1-171

Imwvrite

Purpose

Synopsis

Description

1-172

Write an image to a graphics file

imwrite(A, filename, fmt)
imwvrite(X,map, filename, fmt)
imwvrite(...,Filename)
imwrite(...,Parameter,Value,...)

imwvrite(A, filename, fmt) writes the image in A to filename. filename is a
string that specifies the name of the output file, and fmt is a string that speci-
fies the format of the file. If A is a grayscale intensity image or a truecolor
(RGB) image of class uint8, imwrite writes the actual values in the array to
the file. If A is of class double, imwrite rescales the values in the array before
writing, using uint8(round(255*A)). This operation converts the
floating-point numbers in the range [0, 1] to 8-bit integers in the range [0, 255].

This table lists the possible values for fmt:

Format File type
“bmp*~ Windows Bitmap (BMP)
“hdf- Hierarchical Data Format (HDF)

"jpg” or "jpeg" Joint Photographers Expert Group (JPEG)
"pcx-” Windows Paintbrush (PCX)
“tif" or "tiff" Tagged Image File Format (TIFF)

"xwd " X Windows Dump (XWD)

imvrite(X,map, filename, fmt) writes the indexed image in X, and its associ-
ated colormap map, to filename. If X is of class uint8, imwrite writes the actual
values in the array to the file. If X is of class double, imwrite offsets the values
in the array before writing, using uint8(X-1). map must be of class double;
imwrite rescales the values in map using uint8(round(255*map)).

imwvrite(...,filename) writes the image to filename, inferring the format to
use from the filename’s extension. The extension must be one of the legal
values for fmt.

iImwrite

|

imwvrite(...,Parameter,Value, . ..) specifies parameters that control
various characteristics of the output file. Parameters are currently supported
for HDF, JPEG, and TIFF files.

This table describes the available parameters for HDF files:

Parameter Values Default
"Compression® One of these strings: "none", "rle", ‘rle”
"jpeg”
"Quality" A number between 0 and 100; 75
parameter applies only if
“Compression” is "jpeg"; higher
numbers mean quality is better (less
image degradation due to
compression), but the resulting file
size is larger
"WriteMode™" One of these strings: "overwrite”, "overwrite”
"append*

This table describes the available parameters for JPEG files:

Parameter

Values Default

“Quality”

A number between 0 and 100; higher 75
numbers mean quality is better (less

image degradation due to

compression), but the resulting file

size is larger

1-173

Imwvrite

This table describes the available parameters for TIFF files:

Parameter Values Default
"Compression One of these strings: "none”, "ccitt" for
) "packbits”, "ccitt"; "ccitt" is binary images;
valid for binary images only "packbits" forall
other images
"Description Any string; fills in the empty
- ImageDescription field returned by
imFinfo

This table summarizes the types of images that imwrite can write:

Format Variants

BMP 8-bit and 24-bit uncompressed images

HDF 8-bit raster image datasets, with or without associated
colormap; 24-bit raster image datasets

JPEG Baseline JPEG images

PCX 8-bit images

TIFF Baseline TIFF images, including 1-bit, 8-bit, and 24-bit

uncompressed images; 1-bit, 8-bit, and 24-bit images with
packbit compression; 1-bit images with CCITT compression

XWD 8-bit ZPixmaps
Example imvrite(X,map, "eggs.-hdf*, "Compression”, "none”, "WriteMode", "appe
nd*®)
See Also imfinfo, imread

1-174

inputdlg

Purpose

Syntax

Description

Example

See Also

|

Create input dialog

answer = inputdlg(prompt)

answer = inputdlg(prompt,title)

answer = inputdlg(prompt,title,lineNo)

answer = inputdlg(prompt,title,lineNo,defAns)

answer = inputdlg(prompt) creates a modal dialog box and returns user
input for multiple prompts in the cell array answer. prompt is a cell array
containing prompt strings.

answer = inputdlg(prompt,title) specifies a title for the dialog.

answer = inputdlg(prompt,title,lineNo) specifies the number of lines for
each answer in lineNo, which is a scalar value applying to all prompts, or a
vector having one element per prompt.

answer = inputdlg(prompt,title,lineNo,defAns) specifies the default
answer to display for each question. defAns must contain the same number of
elements as prompt.

Create an input dialog to input an integer and colormap name:

prompt = {"Enter the size of the matrix", "Enter colormap name®};
def = {20, "hsv"}

title = "Input for peaks function®

lineNo = 1;

answer = inputdlg(prompt,title,lineNo,def);

Enter the size of the matrix
IZD

Enter colormap name
Ihsu

textwrap, dialog, warndlg, helpdlg, questdlg, errdlg

1-175

iIshandle

Purpose Determines if values are valid graphics object handles
Syntax array = ishandle(h)
Description array = ishandle(h) returns an array that contains 1's where the elements

of h are valid graphics handles and 0's where they are not.

Examples Determine whether the handles previously returned by fill remain handles
of existing graphical objects:

X = rand(4); Y = rand(4);
h = fill(X,Y,"blue®)

<;Ielete(h(3))

ishandle(h)
ans

P OFRPFI

See Also findobj

1-176

ishold

Purpose
Syntax

Description

Examples

See Also

Return hold state

=~
1l

ishold

k = ishold returns the hold state of the current Axes. If holdison k = 1, if
hold is off, k = 0.

ishold is useful in graphics M-files where you want to perform a particular
action only if hold is not on. For example, these statements set the view to 3-D
only if hold is off:

if ~ishold
view(3);
end

axes, figure, hold, newplot

|

1-177

legend

Purpose

Syntax

Description

1-178

Display a legend for an Axes

legend("stringl®, "string2®,...)
legend(Strings)
legend(h,Strings)

legend("off")

legend(h,...)

legend(. . .,pos)

h = legend(...)

legend places a legend on a graph. For each line in the plot, the legend shows
a sample of the line type, marker symbol, and color beside the text label you
specify. When plotting filled areas, the legend contains a sample of the face
color next to the text label. After the legend appears, you can move it using the
mouse.

legend("stringl”,"string2”,...) displays a legend in the current Axes
using the specified strings to label each set of data.

legend(Strings) adds a legend containing the rows of the matrix Strings as
labels. This is the same as legend(Strings(1,:),Strings(2,:),-..)

legend(h,Strings) associates each row of the matrix Strings with the corre-
sponding graphics object in the vector h.

legend("off") removes the legend from the current Axes or the Axes speci-
fied by h.

legend(h, - ..) specifies the legend for the Axes specified by h.

legend

Remarks

legend(...,pos) uses pos to determine where to place the legend.

= pos = -1 places the legend outside the Axes boundary.

= pos = 0 places the legend inside the Axes boundary, obscuring as few points
as possible.

< pos = 1 places the legend in the upper-left corner of the Axes.
= pos = 2 places the legend in the upper-right corner of the Axes.
< pos = 3 places the legend in the lower-left corner of the Axes.
= pos = 4 places the legend in the lower-right corner of the Axes.

=« pos = [XlowerLeft YlowerLeft] explicitly specifies the lower-left legend po-
sition in normalized coordinates.

h = legend(...) returns a handle to the legend, which is an Axes graphics
object.

legend associates strings with the objects in the Axes in the same order that
they are listed in the Axes Chi ldren property. By default, the legend annotates
the current Axes.

MATLAB displays only one legend per Axes. legend positions the legend based
on a variety of factors, such as what objects the legend obscures. You move the
legend by pressing the mouse button while the cursor is over the legend and
dragging the legend to a new location. If your mouse has more than one button,
you press the left mouse button.

1-179

legend

Examples Add a legend to a plot showing a sine and cosine function:

X = —pi:pi/20:pi;
plot(x,cos(X),x,sin(xX),":")
grid on

h = legend("cos”®,"sin");

1

0.81

0.6

04r

0.2r

oF

-0.21-

-0.4r

-0.6F

-0.8-

See Also LineSpec, plot

1-180

light

Purpose

Syntax

Description

Remarks

Examples

Create a Light object

light("PropertyName® ,PropertyValue,...)
handle = light(...)

light creates a Light object in the current Axes. Lights affect only Patch and
Surface object.

light("PropertyName” ,PropertyValue, ...) createsa Light object using the
specified values for the named properties. MATLAB parents the Light to the
current Axes unless you specify another Axes with the Parent property.

You cannot see a Light object per se, but you can see the effects of the light
source on Patch and Surface objects. You can also specify an Axes-wide ambient
light color that illuminates these objects. However, ambient light is visible only
when at least one Light object is present and visible in the Axes.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for examples of how
to specify these data types).

See also the Patch and Surface AmbientStrength, DiffuseStrength,
SpecularStrength, SpecularExponent, SpecularColorReflectance, and
VertexNormals properties.

Light the peaks Surface with a light source located at infinity and oriented
along the direction defined by the vector [1 0 0], that is, along the x-axis.

h = surf(peaks);
set(h, ’FaceLighting’,’phong”)
light(“Position’,[1 0 0],’Style”,”infinite”);

1-181

light

Object
Hierarchy

Light
Properties

1-182

Root
Figure

I 1

| Axes | |Uimenu

I
I I I I I
| Image | Line | | Patch | |Surface | Text |

Setting Default Properties
You can set default Light properties on the Axes, Figure, and Root levels:

| Uicontrol

set(0, "DefaultLightProperty”,PropertyValue...)
set(gcf, "DefaultLightProperty” ,PropertyValue...)
set(gca, "DefaultLightProperty” ,PropertyValue...)

Where Property is the name of the Light property and PropertyValue is the
value you are specifying.

This section lists property names along with the type of values each accepts.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked call-
back routes always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then interrup-
tion occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

= cancel —discard the event that attempted to execute a second callback rou-
tine.

= queue — queue the event that attempted to execute a second callback routine
until the current callback finishes.

light

ButtonDownFcn string

This property is not useful on Lights.

Children handles

The empty matrix; Light objects have no children.
Clipping on | off

Clipping has no effect on Light objects.

Color ColorSpec

Color of Light. This property defines the color of the light emanating from the
Light object. Define it as three-element RGB vector or one of MATLAB'S
predefined names. See the ColorSpec reference page for more information.

CreateFcn string

Callback routine executed during object creation. This property defines a call-
back routine that executes when MATLAB creates a Light object. You must
define this property as a default value for Lights. For example, the statement,

set(0, "DefaultLightCreateFcn®, "set(gcf, ""Colormap" " ,hsv) ")

sets the current Figure colormap to hsv whenever you create a Light object.
MATLAB executes this routine after setting all Light properties. Setting this
property on an existing Light object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

DeleteFcn string

Delete Light callback routine. A callback routine that executes when you delete
the Light object (i.e., when you issue a delete command or clear the Axes or
Figure containing the Light). MATLAB executes the routine before destroying
the object’s properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This prop-
erty determines when an object’s handle is visible in its parent’s list of children.
Handles are always visible when HandleVisibility is on. When HandleVisi-

1-183

light

1-184

bility is callback, handles are visible from within callbacks or functions
invoked by callbacks, but not from within functions invoked from the command
line - a useful way to protect GUIs from command-line users, while permitting
their callbacks complete access to their own handles. Setting HandleVisi-
bility to off makes handles invisible at all times - which is occasionally neces-
sary when a callback needs to invoke a function that might potentially damage
the Ul, and so wants to temporarily hide its own handles during the execution
of that function.

When a handle is not visible in its parent’s list of children, it can not be
returned by any functions which obtain handles by searching the object hier-
archy or querying handle properties, including get, findobj, gca, gcf, gco,
newplot, cla, clf, and close. When a handle’s visibility is restricted using
callback or off, the object’'s handle does not appear in its parent’s Children
property, Figures do not appear in the Root’s CurrentFigure property, objects
do not appear in the Root's Cal IbackObject property or in the Figure’s Curren-
tObject property, and Axes do not appear in their parent’s CurrentAxes prop-
erty.

The Root ShowHiddenHandles property can be set to on to temporarily make all
handles visible, regardless of their HandleVisibi lity settings (this does not
affect the values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.
This property is useful for preventing command-line users from accidently
drawing into or deleting a Figure that contains only user interface devices
(such as a dialog box).

Interruptible {on} | off

Callback routine interruption mode. Light object callback routines defined for
the DeleteFcn property are not affected by the Interruptible property.

Style {infinite} | local

Parallel or divergent light source. This property determines whether MATLAB
places the Light object at infinity, in which case the light rays are parallel, or
at the location specified by the Position property, in which case the light rays
diverge in all directions. See the Position property.

light

Parent handle of parent Axes

Light objects parent. The handle of the Light object’'s parent Axes. You can
move a Light object to another Axes by changing this property to the new Axes
handle.

Position [x,y.,z] in Axes data units

Location of Light object. This property specifies a vector defining the location of
the Light object. The vector is defined from the origin to the specified x, y, and
z coordinates. The placement of the Light depends on the setting of the Style
property:

= If the Style property is set to local, Posi tion specifies the actual location of
the Light (which is then a point source that radiates from the location in all
directions).

= |fthe Style property is set to infinite, Position specifies the direction from
which the light shines in parallel rays.

Selected on | off

This property is not used by Light objects.

SelectionHighlight {on} | off
This property is not used by Light objects.
Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For Light objects, Type is always 'light'.

UserData matrix

User specified data. This property can be any data you want to associate with
the Light object. The Light does not use this property, but you can access it
using set and get.

1-185

light

See Also

1-186

Visible {on} | off

Light visibility. While Light objects themselves are not visible, you can see the
light on Patch and Surface objects. When you set Visible to off, the light
emanating from the source is not visible. There must be at least one Light
object in the Axes whose Visible property is on for any lighting features to be

enabled (including the Axes AmbientLightColor and Patch and Surface Ambi-
entStrength).

lighting, material, patch, surface

lighting

Purpose

Syntax

Description

Remarks

See Also

Select the lighting algorithm

lighting flat
lighting gouraud
lighting phong
lighting none

lighting selects the algorithm used to calculate the effects of Light objects on
all Surface and Patch objects in the current Axes.

lighting flat selects flat lighting.
lighting gouraund selects gouraud lighting.
lighting phong selects phong lighting.
lighting none turns off lighting.

The surf, mesh, pcolor, fill, Fill3, surface, and patch functions create
graphics objects that are affected by light sources. The Iighting command sets
the FaceLighting and EdgeLighting properties of Surfaces and Patches appro-
priately for the graphics object.

light, material, patch, surface

|

1-187

line

Purpose

Syntax

Description

1-188

Create Line object

line(X,Y)

line(X,Y,2)

line(X,Y,Z, "PropertyName" ,PropertyValue,...)
line("PropertyName” ,PropertyValue, ...) Formal-PN/PV pairs only
h = line(...)

line creates a Line object in the current Axes. You can specify the color, width,
line style, and marker type, as well as other characteristics.

The line function has two forms:

= Automatic color and line style cycling. When you specify matrix coordinate
data using the informal syntax (i.e., the first three arguments are interpret-
ed as the coordinates),

line(X,Y,2)

MATLAB cycles through the Axes ColorOrder and LineStyleOrder property
values the way the plot function does. However, unlike plot, line does not
call the newplot function.
= Purely low-level behavior. When you call 1ine with only property name/prop-
erty value pairs,
line("XData",x, "YData",y, "ZData" ,z)

MATLAB draws a Line object in the current Axes using the default Line color
(see the colordef function for information on color defaults). Note that you
cannot specify matrix coordinate data with the low-level form of the line
function.

line(X,Y) adds the Line defined in vectors X and Y to the current Axes. If X
and Y are matrices of the same size, line draws one Line per column.

line(X,Y,Z) creates Lines in three-dimensional coordinates.

line(X,Y,Z,"PropertyName" ,PropertyValue,...) creates a Line using the
values for the property name/property value pairs specified and default values
for all other properties.

line

Remarks

Examples

line("XData",x, "YData",y, "ZData",z, "PropertyName" ,Property-

Value, . ..) creates a Line in the current Axes using the property values
defined as arguments. This is the low-level form of the 1ine function, which
does not accept matrix coordinate data as the other informal forms described
above.

h = line(...) returnsacolumn vector of handles corresponding to each Line
object the function creates.

In its informal form, the Iine function interprets the first three arguments
(two for 2-D) as the X, Y, and Z coordinate data, allowing you to omit the prop-
erty names. You must specify all other properties as name/value pairs. For
example,

line(X,Y,Z,"Color™,"r", "LineWidth*,4)
The low-level form of the line function can have arguments that are only prop-
erty name/property value paris. For example,

line("XData",x, "YData",y, "ZData",z, "Color™,"r", "LineWidth",4)

Line properties control various aspects of the Line object and are described in
the “Line Properties” section. You can also set and query property values after
creating the Line using set and get.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for examples of how
to specify these data types).

Unlike high-level functions such as plot, line does not respect the setting of
the Figure and Axes NextPlot properties. It simply adds Line objects to the
current Axes. However, Axes properties that are under automatic control such
as the axis limits can change to accommodate the Line within the current Axes.

This example uses the line function to add a shadow to plotted data. First, plot
some data and save the Line’s handle:

t = 0:pi/20:2*pi;
hlinel = plot(t,sin(t),’k”);

1-189

line

Next, add a shadow by offsetting the x coordinates. Make the shadow Line light
gray and wider than the default Linewidth:

hline2 = line(t+.06,sin(t), "LineWidth",4,"Color",[-8 .8 .8]):

Finally, pop the first Line to the front:

set(gca, "Children®,[hlinel hline2])

Input Argument Dimensions — Informal Form
This statement reuses the one column matrix specified for zData to produce
two lines, each having four points.

line(rand(4,2),rand(4,2),rand(4,1))

If all the data has the same number of columns and one row each, MATLAB
transposes the matrices to produce data for plotting. For example,

line(rand(1,4),rand(1,4),rand(1,4))

1-190

line

Object
Hierarchy

Line Properties

is changed to:

line(rand(4,1),rand(4,1),rand(4,1))

This also applies to the case when just one or two matrices have one row. For
example, the statement,

line(rand(2,4),rand(2,4),rand(1,4))

is equivalent to:

line(rand(4,2),rand(4,2),rand(4,1))

Root
Figure

I]

| Axes | |Uimenu

I
I I I |
| Patch | | Surface | Text | | Light |

Setting Default Properties
You can set default Line properties on the Axes, Figure, and Root levels:

| Uicontrol

set(0, "DefaultLinePropertyName” ,PropertyValue,...)
set(gcf, "DefaultLinePropertyName” ,PropertyValue,...)
set(gca, "DefaultLinePropertyName” ,PropertyValue,...)

Where PropertyName is the name of the Line property and PropertyVvalue is
the value you are specifying.

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked call-

1-191

line

1-192

back routes always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then interrup-
tion occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

= cancel —discard the event that attempted to execute a second callback rou-
tine.

= queue — queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the Line object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

Children vector of handles

The empty matrix; Line objects have no children.

Clipping {on} | off

Clipping mode. MATLAB clips Lines to the Axes plot box by default. If you set
Clipping to off, Lines display outside the Axes plot box. This can occur if you

create a Line, set hold to on, freeze axis scaling (axis manual), and then create
a longer Line.

Color ColorSpec

Line color. A three-element RGB vector or one of MATLAB's predefined names,
specifying the Line color. See the ColorSpec reference page for more informa-
tion on specifying color.

CreateFcn string

Callback routine executed during object creation. This property defines a call-
back routine that executes when MATLAB creates a Line object. You must
define this property as a default value for Lines. For example, the statement,

set(0, "DefaultLineCreateFcn®, "set(gca, " “LineStyleOrder™",
=79

line

defines a default value on the Root level that sets the Axes LineStyleOrder
whenever you create a Line object. MATLAB executes this routine after setting
all Line properties. Setting this property on an existing Line object has no
effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

DeleteFcn string

Delete Line callback routine. A callback routine that executes when you delete
the Line object (e.g., when you issue a delete command or clear the Axes or
Figure). MATLAB executes the routine before deleting the object’s properties so
these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase Line objects. Alternative erase modes are useful for creating animated
sequences, where control of the way individual objects redraw is necessary to
improve performance and obtain the desired effect.

= normal (the default) — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all objects are ren-
dered correctly. This mode produces the most accurate picture, but is the
slowest. The other modes are faster, but do not perform a complete redraw
and are therefore less accurate.

= none — Do not erase the Line when it is moved or destroyed.

= xor — Draw and erase the Line by performing an exclusive OR (XOR) with
the color of the screen beneath it. This mode does not damage the color of the
objects beneath the Line. However, the Line’s color depends on the color of
whatever is beneath it on the display.

= background — Erase the Line by drawing it in the Axes’ background color.
This damages objects that are behind the erased Line, but Lines are always
properly colored.

1-193

line

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This prop-
erty determines when an object’s handle is visible in its parent’s list of children.
Handles are always visible when HandleVisibility is on. When HandleVisi-
bility is callback, handles are visible from within callbacks or functions
invoked by callbacks, but not from within functions invoked from the command
line - a useful way to protect GUIs from command-line users, while permitting
their callbacks complete access to their own handles. Setting HandleVisi-
bility to off makes handles invisible at all times - which is occasionally neces-
sary when a callback needs to invoke a function that might potentially damage
the Ul, and so wants to temporarily hide its own handles during the execution
of that function.

When a handle is not visible in its parent’s list of children, it can not be
returned by any functions which obtain handles by searching the object hier-
archy or querying handle properties, including get, findobj, gca, gcf, gco,
newplot, cla, clf, and close. When a handle’s visibility is restricted using
cal lback or off, the object’'s handle does not appear in its parent’s Children
property, Figures do not appear in the Root’s CurrentFigure property, objects
do not appear in the Root’'s Cal IbackObject property or in the Figure’s Curren-
tObject property, and Axes do not appear in their parent’s CurrentAxes prop-
erty.

The Root ShowHiddenHandles property can be set to on to temporarily make all
handles visible, regardless of their HandleVisibi lity settings (this does not
affect the values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.
This property is useful for preventing command-line users from accidently
drawing into or deleting a Figure that contains only user interface devices
(such as a dialog box).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a Line callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine.

1-194

line

LineStyle {31 --1:1--1 none
Linestyle. This property specifies the line style. The available line styles are:

Symbol Line Style

- solid line (default)

-= dashed line
dotted line

- dash-dot line

none no line

You can use LineStyle none when you want to place a marker at each point,
but do not want the points connected with a Line (see the Marker property).

LineWidth scalar

The width of the Line object. Specify this value in points (1 point = 1/72 inch).
The default LineWidth is 0.5 points.

Marker character (see table)

Marker symbol. The Marker property specifies marks that display at data
points. You can set values for the Marker property independently from the
LineStyle property. Supported markers include:

Marker Specifier Description

+ plus sign

o circle

* asterisk
point

X Cross

square square

diamond diamond

1-195

line

1-196

Marker Specifier Description

n upward pointing triangle

v downward pointing triangle
> right pointing triangle

< left pointing triangle
pentagram five-pointed star

hexagram six-pointed star

none no marker (default)

MarkerEdgeColor ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for filled markers
(circle, square, diamond, pentagram, hexagram, and the four triangles).
ColorSpec defines the color to use. none specifies no color, which makes
nonfilled markers invisible. auto sets MarkerEdgeColor to the same color as
the Line’s Color property.

MarkerFaceColor ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes (circle,
square, diamond, pentagram, hexagram, and the four triangles). ColorSpec
defines the color to use. none makes the interior of the marker transparent,
allowing the background to show through. auto sets the fill color to the Axes
color, or the Figure color, if the Axes Color property is set to none (which is the
default for Axes).

MarkerSize size in points

Marker size. A scalar specifying the size of the marker, in points. The default
value for MarkerSize is six points (1 point = 1/72 inch). Note that MATLAB
draws the point marker at one-third the specified size.

Parent handle

Line’'s parent. The handle of the Line object’s parent Axes. You can move a Line
object to another Axes by changing this property to the new Axes handle.

line

Selected on | off

Is object selected. When this property is on. MATLAB displays selection handles
if the SelectionHighlight property is also on. You can, for example, define the
ButtonDownFcn to set this property, allowing users to select the object with the
mouse.

SelectionHighlight {on} | off

Obijects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing handles at each vertex. When Selec-
tionHighlight is off, MATLAB does not draw the handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)
Class of graphics object. For Line objects, Type is always the string "line~.
UserData matrix

User-specified data. Any data you want to associate with the Line object.
MATLAB does not use this data, but you can access it using the set and get
commands.

Visible {on} | off

Line visibility. By default, all Lines are visible. When set to off, the Line is not
visible, but still exists and you can get and set its properties.

XData vector of coordinates

X-coordinates. A vector of x-coordinates defining the Line. YData and ZData
must have the same number of rows. (See “Examples”).

YData vector or matrix of coordinates

Y-coordinates. A vector of y-coordinates defining the Line. XData and ZData
must have the same number of rows. (See “Examples”).

1-197

line

ZData vector of coordinates

Z-coordinates. A vector of z-coordinates defining the Line. XData and YData
must have the same number of rows. (See “Examples”).

See Also axes,newplot, plot, plot3

1-198

LineSpec

Purpose

Description

Line specification syntax

|

LineSpec is not a command. It refers to the three components used to specify

linestyles in MATLAB :

=« Line Style
< Marker Symbol
< Color

The line type, marker symbol, and color are MATLAB strings that specify a line
style. You create a one-, two-, three-, or four-character string from the charac-
ters in the following table. The LineSpec argument to the plot command can
contain up to one element from each column. Each element of the Axes Line-
StyleOrder property can contain up to one element from each of the first two
columns (but can not contain Color). The order of characters is unimportant.

The LineStyle properties of Line, Surface, and Patch, and the GridLineStyle
property of Axes are specified using symbols in the first column, while the
Marker properties of Line, Surface, and Patch are specified with symbols from

the second column.

Line Style Marker Symbol Color
- solid line . point y yellow
dotted line o circle m magenta
- dashdot line X Cross c cyan
- dashed line + plus r red
* asterisk g green
s square b blue
d diamond w white
~ up arrow k black

1-199

LineSpec

Line Style Marker Symbol Color

v down arrow
> right arrow
< leftarrow
p pentagram
h hexagram

Examples Create a plot that displays an asterisk at each point and connects the points

with solid blue lines:
plot(rand(10,1),"-[b")
See Also

1-200

line, plot, surface, patch, Axes LineStyleOrder.

loglog

Purpose

Syntax

Description

Remarks

Log-log scale plot

loglog(Y)

loglog(X1,Y1,...)

loglog(X1,Y1,LineSpec,...)

loglog(..., "PropertyName",PropertyVvalue,...)
h = loglog(...)

loglog(Y) plotsthe columns of Y versus their index if Y contains real numbers.
If Y contains complex numbers, loglog(Y) and loglog(real (Y),imag(Y)) are
equivalent. loglog ignores the imaginary component in all other uses of this
function.

loglog(X1,Y1,...) plots all Xn versus Yn pairs. If only Xn or Yn is a matrix,
loglog plots the vector argument versus the rows or columns of the matrix,
depending on whether the vector’s row or column dimension matches the
matrix.

loglog(X1,Y1,LineSpec, ...) plots all lines defined by the Xn,Yn,LineSpec
triples, where LineSpec determines line type, marker symbol, and color of the
plotted lines. You can mix Xn,Yn,LineSpec triples with Xn,Yn pairs, for
example,

loglog(X1,Y1,X2,Y2,LineSpec,X3,Y3)
loglog(...,"' PropertyName', PropertyValue,...) sets property values for

all Line graphics objects created by loglog. See the line reference page for
more information.

h = loglog(...) returns acolumn vector of handles to Line graphics objects,
one handle per Line.

If you do not specify a color when plotting more than one Line, loglog automat-

ically cycles through the colors and line styles in the order specified by the
current Axes.

1-201

loglog

Examples Create a simple loglog plot:

x = logspace(-1,2);
loglog(x,exp(x))

1045

1040 [

1035 [

1030 [

1025 [

1020 [

1015 [

1010 [

10° [

10°

See Also line, LineSpec, plot, semi logx, semi logy

1-202

material

Purpose

Syntax

Description

Remarks

|

Controls the reflectance properties of Surfaces and Patches

material shiny

material dull

material metal

material ([ka kd ks])
material([ka kd ks n])
material([ka kd ks n sc])
material default

material sets the lighting characteristics of Surface and Patch objects.

material shiny sets the reflectance properties so that the object has a high
specular reflectance relative the diffuse and ambient light and the color of the
specular light depends only on the color of the light source.

material dull sets the reflectance properties so that the object reflects more
diffuse light, has no specular highlights, but the color of the reflected light
depends only on the light source.

material metal sets the reflectance properties so that the object has a very
high specular reflectance, very low ambient and diffuse reflectance, and the
color of the reflected light depends on both the color of the light source and the
color of the object.

material ([ka kd ks]) sets the ambient/diffuse/specular strength of the
objects.

material ([ka kd ks n]) sets the ambient/diffuse/specular strength and
specular exponent of the objects.

material ([ka kd ks n sc]) sets the ambient/diffuse/specular strength,
specular exponent and specular color reflectance of the objects.

material metal sets the ambient/diffuse/specular strength, specular expo-
nent and specular color reflectance of the objects to their defaults.

The material command sets the AmbientStrength, DiffuseStrength
SpecularStrength, SpecularExponent, and SpecularColorReflectance prop-

1-203

material

erties of all Surface and Patch objects in the Axes. There must be visible Light
objects in the Axes for lighting to be enabled. Look at the materal .m M-file to
see the actual values set.

See Also light, lighting, patch, surface

1-204

mesh, meshc, meshz

Purpose

Syntax

Description

Remarks

|

Mesh plots
mesh(X,Y,Z)
mesh(Z)
mesh(...,C)
meshc(...)
meshz(...)

h =mesh(...)

h =meshc(...)
h =meshz(...)

mesh, meshc, and meshz create wireframe parametric surfaces specified by X, Y,
and z, with color specified by C.

mesh(X,Y,Z) draws a wireframe mesh with color determined by Z, so color is
proportional to surface height. If X and Y are vectors, length(X) = nand
length(Y) = m, where [m,n] = size(2). In this case, (X(]),Y (i), Z(i, j))
are the intersections of the wireframe grid lines; X and Y correspond to the
columns and rows of z, respectively. If X and Y are matrices,

(X(i, J), Y, j), Z(i, j)) are the intersections of the wireframe grid lines.

mesh(Z) draws a wireframe mesh usingX = 1:nandyY = 1:m, where [m,n] =
size(2). The height, z, is a single-valued function defined over a rectangular
grid. Color is proportional to surface height.

mesh(...,C) draws a wireframe mesh with color determined by matrix C.
MATLAB performs a linear transformation on the data in C to obtain colors from
the current colormap. If X, Y, and Z are matrices, they must be the same size as
C.

meshc(.-..) draws a contour plot beneath the mesh.
meshz(...) draws a curtain plot (i.e., a reference plane), around the mesh.

h = mesh(...),h = meshc(...),and h = meshz(...) returnahandletoa
Surface graphics object.

A mesh is drawn as a Surface graphics object with the view point specified by
view(3). The face color is the same as the background color (to simulate a wire-

1-205

mesh, meshc, meshz

Examples

1-206

frame with hidden-surface elimination), or none when drawing a standard
see-through wireframe. The current colormap determines the edge color. The
hidden function controls the simulation of hidden-surface elimination in the
mesh, and the shading function controls the shading model.

Produce a combination mesh and contour plot of the peaks surface:

[X,Y] =meshgrid(-3:.125:3);
Z =peaks(X,Y);
meshc(X,Y,2);
axis([-33-33-105])

5 " \‘%&\‘\\
IS

mesh, meshc, meshz

Algorithm

Generate the curtain plot for the peaks function:

[X,Y] =meshgrid(-3:.125:3);
Z =peaks(X,Y);
meshz(X,Y,Z2)

10

,I"“‘\\
AN
Al o

The range of X, Y, and z, or the current setting of the Axes XLimMode, Yl imMode,
and zlimMode properties determine the axis limits. axis sets these properties.

The range of C, or the current setting of the Axes CLim and ClimMode properties
(also set by the caxis function) determine the color scaling. The scaled color
values are used as indices into the current colormap.

The mesh rendering functions produce color values by mapping the z data
values (or an explicit color array), onto the current colormap. MATLAB's default
behavior computes the color limits automatically using the minimum and
maximum data values (also set using caxis auto). The minimun data value
maps to the first color value in the colormap and the maximum data value
maps to the last color value in the colormap. MATLAB performs a linear trans-
formation on the intermediate values to map them to the current colormap.

|

1-207

mesh, meshc, meshz

See Also

1-208

meshc calls mesh, turns hold on, and then calls contour and positions the
contour on the x-y plane. For additional control over the appearance of the
contours, you can issue these commands directly. You can combine other types
of graphs in this manner, for example surf and pcolor plots.

meshc assumes that X and Y are monotonically increasing. If X or Y isirregularly
spaced, contour3 calculates contours using a regularly spaced contour grid,
then transforms the data to X or Y.

contour, hidden, meshgrid, surf, surfc, surfl, waterfall

axis, caxis, colormap, hold, shading, and view set graphics object properties
that affect mesh, meshc, and meshz.

For a discussion of parametric surfaces plots, refer to surf.

movie

Purpose

Syntax

Description

Remarks

Play recorded movie frames

movie(M)

movie(M,n)
movie(M,n, fps)
movie(h,...)
movie(h,M,n,fps,loc)

movie plays the movie defined by a matrix whose columns are movie frames
(usually produced by getframe).

movie(M) plays the movie in matrix M once.

movie(M,n) plays the movie n times. If n is negative, each cycle is shown
forward then backward. If n is a vector, the first element is the number of times
the movie is played, and the second through last elements specify the order in
which to play the frames. For example, if M has three columns, n = [10 3 2 1]
plays the movie backwards 10 times.

movie(M,n,fps) plays the movie at fps frames per second. The default is 12
frames per second. Computers that cannot achieve the specified speed play as
fast as possible.

movie(h, ...) plays the movie in the Figure or Axes identified by h.

movie(h,M,n,fps, loc) specifies a four-element location vector, [x y 0 0],
where the lower-left corner of the movie frame is anchored (only the first two
elements in the vector are used). The location is relative to the lower-left corner
of the Figure or Axes specified by handle and in units of pixels, regardless of
the object’s Units property.

The movie function displays each frame as it loads the data into memory, and
then plays the movie. This eliminates long delays with a blank screen when you
load a memory-intensive movie. The movie’s load cycle is not considered one of
the movie repetitions.

1-209

movie

Examples Animate the peaks function as you scale the values of z:

Z =peaks;
surf(2);
M =moviein(20);

% Freeze Axes limits
axis manual
set(gca, "nextplot”, "replacechildren®);

% Record the movie

for j=1:20
surf(sin(Rpigj/20)(Z,2)
M(:,]J) = getframe;

end

% Play the movie twenty times
movie(M,20)

See Also getframe, moviein

1-210

moviein

Purpose Create matrix for movie frames

Syntax M =moviein(n)
M=moviein(n,h)
M=moviein(n,h,rect)

Description moviein allocates an appropriately sized matrix for the getframe function.

M = moviein(n) creates matrix M having n columns to store n frames of a
movie based on the size of the current Axes.

M = moviein(n,h) specifies a handle for a valid Figure or Axes graphics object
on which to base the memory requirement.

M = moviein(n,h,rect) specifies the rectangular area from which to copy the
bitmap, relative to the lower-left corner of the Figure or Axes graphics object
identified by h.

rect = [left bottom width height], where left and bottom specify the
lower-left corner of the rectangle, and width and height specify the dimensions
of the rectangle. Components of rect are in pixel units.

Examples Use moviein to allocate a matrix for the movie frames and getframe to create
the movie:

Z =peaks;
surf(2);
M =moviein(20);

% Freeze Axes limits
axis manual
set(gca, "nextplot”, "replacechildren®);

% Record the movie

for j=1:20
surf(sin(2pij/20)xZ,2)
M(:,J) =getframe;

end

% Play the movie twenty times
movie(M, 20)

See Also getframe, movie

1-211

msgbox

Purpose

Syntax

Description

See Also

1-212

Display message box

msgbox(message)

msgbox(message, title)
msgbox(message, title, "icon®)
msgbox(message, title, "custom”, iconData, iconCmap)
msgbox(. .., "createMode™);

h = msgbox(-...)

msgbox(message) creates a message box that automatically wraps message to
fit an appropriately sized Figure. message is a string vector, string matrix, or
cell array.

msgbox(message, title) specifies the title of the message box.

msgbox(message, title, "icon™) specifies which icon to display in the
message box. "icon” is "none”, "error”, "help”, "warn”, or "custom”. The
default is "none".

B Error Icon |E Help Icon & Warning lcon

msgbox(message, title, "custom”, iconData, iconCmap) definesacustomized
icon. iconData contains image data defining the icon; iconCmap is the colormap
used for the image.

msgbox(. - -, "createMode™) specifies whether the message box is modal or
nonmodal, and if it is nonmodal, whether to replace another message box with
the same title. Valid values for "createMode* are "modal ", "non-modal *, and
‘replace”.

h = msgbox(...) returns the handle of the box in h, which is a handle to a
Figure graphics object.

dialog, errordlg, questdlg, inputdlg, helpdlg, textwrap, warndlg

newplot

|

Purpose Determine where to draw graphics objects

Syntax newplot
h = newplot

Description newplot is used at the beginning of high-level graphics M-files to determine in
which Figure and Axes to draw subsequent graphics objects. Calling newplot
can change the current Figure and current Axes.

newplot prepares a Figure and Axes for subsequent graphics commands.

h = newplot prepares a Figure and Axes for subsequent graphics commands
and returns a handle to the current Axes.

Algorithm First, newplot reads the current Figure's NextPlot property and acts accord-
ingly:
NextPlot Description
add Draw to the current Figure without clearing any

graphics objects already present.

replacechildren Remove all child objects, but do not reset Figure
properties to their defaults. This clears the current
Figure like the cIf command.

replace Remove all child objects and reset Figure properties to
their defaults. This clears and resets the current
Figure like the cl¥ reset command.

1-213

newplot

After newplot establishes which Figure to draw in, it reads the current Axes’
NextPlot property and acts accordingly:

NextPlot Description

add Draw to the current Axes, retaining all graphics objects
already present.

replacechildren Remove all child objects, but do not reset Axes

properties. This clears the current Axes like the cla
command.

replace Removes all child objects and resets Axes properties to
their defaults. This clears and resets the current Axes
like the cla reset command.

See Also axes, cla, clf, figure, hold, ishold

The NextPlot property for Figure and Axes graphics objects.

1-214

orient

Purpose

Syntax

Description

Algorithm

See Also

|

Hardcopy paper orientation

orient

orient portrait
orient landscape
orient tall

orient returns a string with the current paper orientation, either portrait,
landscape, or tall.

orient portrait sets the paper orientation for the current Figure to portrait
mode. Output from subsequent print operations have a 4-to-3 aspect ratio and
are centered in the middle of the page. This syntax orients the longest page
dimension vertically. This is the default.

orient landscape sets the paper orientation for the current Figure to
full-page landscape orientation. This syntax orients the longest page dimen-
sion horizontally.

orient tall maps the current Figure to the entire page in portrait orienta-
tion.

orient sets the PaperOrientation, PaperPosition, and PaperUnits proper-
ties of the current Figure. Subsequent print operations use these properties.

print

PaperOrientation, PaperPosition, PaperSize, PaperType, and PaperUnits
properties of Figure graphics objects.

1-215

pareto

Purpose

Syntax

Description

See Also

1-216

Draw Pareto chart

pareto(Y)
pareto(Y,names)
pareto(Y,X)

H = pareto(...)

Parento charts display the values in the vector Y as bars drawn in descending
order.
pareto(Y) labels each bar with its element index in Y.

pareto(Y,names) labels each bar with the associated name in the string matrix
or cell array names.

pareto(Y,X) labels each bar with the associated value from X.

H = pareto(...) returns acombination of Patch and Line object handles.

hist, bar

patch

Purpose

Syntax

Description

Remarks

Create Patch graphics object

patch(X,Y,C)

patch(X,Y,Z,C)

patch(..."PropertyName® ,PropertyValue...)
patch("PropertyName" ,PropertyVvalue...) PN/PV pairs only
handle = patch(...)

patch is the low-level graphics function for creating Patch graphics objects. A
Patch object is one or more polygons defined by the coordinates of its vertices.
You can specify the coloring and lighting of the Patch.

patch(X,Y,C) adds the filled two-dimensional polygon to the current Axes.
The elements of x and Y specify the vertices of the polygon. If X and Y are
matrices, MATLAB draws one polygon per column. C determines the color of the
Patch. It can be a single ColorSpec, one color per face, or one color per vertex
(see “Remarks”).

patch(X,Y,Z,C) creates a Patch in three-dimensional coordinates.

patch(..."PropertyName”,PropertyValue...) follows the X, Y, (), and C
arguments with property name/property value pairs to specify additional
Patch properties.

patch("PropertyName" ,PropertyVvalue, ...) specifies all properties using
property name/property value pairs. This form allows you to omit the color
specification because MATLAB uses the default face color and edge color, unless
you explicitly assign a value to the FaceColor and EdgeColor properties. This
form also allows you to specify the Patch using the Faces and Vertices prop-
erties instead of x-, y-, and z-coordinates. See the “Examples” section for more
information.

handle = patch(...) returns the handle of the Patch object it creates.
Unlike high-level area creation functions, such as fill or area, patch does not

check the settings of the Figure and Axes NextPlot properties. It simply adds
the Patch object to the current Axes.

1-217

patch

1-218

If the coordinate data do not define closed polygons, patch closes the polygons.
The points in X, Y, (and z) can define concave or self-intersecting polygons.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for examples of how
to specify these data types).

There are two Patch properties that specify color:

= Chata — use when specifying x-, y-, and z-coordinates (XData, YData, ZData).

= FaceVertexCData — use when specifying vertices and connection matrix
(Vertices and Faces).

The CData and FaceVertexCData properties accept color data as indexed or true
color (RGB) values. See the Chata and FaceVertexCData property descriptions
for information on how to specify color.

Indexed color data can represent either direct indices into the colormap or
scaled values that map the data linearly to the entire colormap (see the caxis
function for more information on this scaling). The CDataMapping property
determines how MATLAB interprets indexed color data:

Patch Color

CData | FaceVertexCData

Color Interpretation

Indexed True Color

/

direct scaled

CDataMapping

patch

Color Data Interpretation
You can specify Patch colors as:

= A single color for all faces
= One color for each face enabling flat coloring
= One color for each vertex enabling interpolated coloring

The following tables summarize how MATLAB interprets color data defined by
the CData and FaceVertexCData properties.

Table 1-1: Interpretation of the CData Property

[X,Y,Z]Data CbData Required for Results Obtained
Dimensions Indexed True Color
m-by-n scalar 1-by-1-by- Use the single color specified for all Patch faces.
3 Edges can be only a single color.
m-by-n 1-by-n 1-by-n-by- Use one color for each Patch face. Edges can be only a
3 single color.
m-by-n m-by-n m-by-n-3 Assign a color to each vertex. Patch faces can be flat (a
single color) or interpolated. Edges can be flat or
interpolated.
Table 2-1: Interpretation of the FaceVertexCData Property
Vertices Faces FaceVertexCData Results Obtained
Required for
Dimensions Dimensions Indexed True Color
m-by-n k-by-3 scalar 1-by-3 Use the single color specified for all

Patch faces. Edges can be only a single
color.

1-219

patch

Table 2-1: Interpretation of the FaceVertexCData Property

Vertices Faces FaceVertexCData Results Obtained
Required for

Dimensions Dimensions Indexed True Color

m-by-n k-by-3 k-by-1 k-by-3 Use one color for each Patch face. Edges
can be only a single color.

m-by-n k-by-3 m-by-1 m-by-3 Assign a color to each vertex. Patch faces
can be flat (a single color) or
interpolated. Edges can be flat or
interpolated.

Examples This example creates a Patch object using two different methods:

= Specifying x-, y-, and z-coordinates and color data (XData, YData, ZData, and
CData properties).

= Specifying vertices, the connection matrix, and color data (vertices, Faces,
and FaceVertexCData properties).

Specifying X, Y, and Z Coordinates

The first approach specifies the coordinates of each vertex. In this example, the
coordinate data defines two triangular faces, each having three vertices. Using
true color, the top face is set to white and the bottom face to gray:

X [0 1;1 1;0 O];

y = [2 2;2 1;1 1];
z=111;11;1 1];
tcolor(1,1,1:3) = [1 1 1];
tcolor(1,2,1:3) = [.7 .7 .7]1;
patch(x,y,z,tcolor)

1-220

patch

V2 V3
19 V5
1.8
1.7
1.6
1.5
1.4
1.3
1.2
11| V1
V4 V6
10 0.2 0.4 0.6 0.8 1

Notice that each face shares two vertices with the other face (V1-V, and V3-Vg).

Specifying Vertices and Faces

The Vertices property contains the coordinates of each unique vertex defining
the Patch. The Faces property specifies how to connect these vertices to form
each face of the Patch. For this particular example, two vertices share the same
location so you need to specify only four of the six vertices. Each row contains
the x, y, and z-coordinates of each vertex:

vert = [0 11;02 1;121;11 1];

There are only two faces, defined by connecting the vertices in the order indi-
cated:

fac = [1 2 3;1 3 4];

1-221

patch

Object
Hierarchy

1-222

Create the Patch by specifying the Faces, Vertices, and FaceVertexCData
properties, using the same values for tcolor as the previous example:

patch("faces*®,fac, "vertices” ,vert, "FaceVertexCData" ,tcolor)

V22 V3
1.9
1.8
v Face 1
16
15
14
13 Face 2
1.2
11
V]_lo 0.2 0.4 0.6 0.8 1 V4

Specifying only unique vertices and their connection matrix can reduce the size
of the data considerably for Patches having many faces. See the descriptions of
the Faces, Vertices, and FaceVertexCData properties for information on how
to define them.

MATLAB does not require each face to have the same number of vertices. In
cases where they do not, pad the Faces matrix with NaNs. To define a Patch

with faces that do not close, add one or more NaN to the row in the Vertices

matrix that defines the vertex you do not want connected.

Root
Figure

I]

| Axes | |Uimenu

I I I |
| Image | Line | | Text | | Light |

| Uicontrol

patch

Patch
Properties

|

Setting Default Properties
You can set default Patch properties on the Axes, Figure, and Root levels:

set(0, "DefaultPatchPropertyName® ,PropertyValue...)
set(gcf, "DefaultPatchPropertyName® ,PropertyValue...)
set(gca, "DefaultPatchPropertyName® ,PropertyValue...)

Where PropertyName is the name of the Patch property and Propertyvalue is
the value you are specifying.

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

AmbientStrength scalar >=0and <=1

Strength of ambient light. This property sets the strength of the ambient light,
which is a nondirectional light source that illuminates the entire scene. You
must have at least one visible Light object in the Axes for the ambient light to
be visible. The Axes AmbientColor property sets the color of the ambient light,
which is therefore the same on all objects in the Axes.

You can also set the strength of the diffuse and specular contribution of Light
objects. See the DiffuseStrength and SpecularStrength properties.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked call-
back routes always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then interrup-
tion occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

=« cancel —discard the event that attempted to execute a second callback rou-
tine.

= queue — queue the event that attempted to execute a second callback routine
until the current callback finishes.

1-223

patch

1-224

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the Patch object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

CData scalar, vector, or matrix

Patch colors. This property specifies the color of the Patch. You can specify color
for each vertex, each face, or a single color for the entire Patch. The way
MATLAB interprets CData depends on the type of data supplied. The data can
be numeric values that are scaled to map linearly into the current colormap,
integer values that are used directly as indices into the current colormap, or
arrays of RGB values. RGB values are not mapped into the current colormap,
but interpreted as the colors defined. On true color systems, MATLAB uses the
actual colors defined by the RGB triples. On pseudocolor systems, MATLAB
uses dithering to approximate the RGB triples using the colors in the figure's
Colormap and Dithermap.

The following two diagrams illustrate the dimensions of CData with respect to
the coordinate data arrays, XData, YData, and ZData. The first diagram illus-
trates the use of indexed color:

patch

Single Color One Color One Color
Per Face Per Vertex
CData CData
dDafa
| |
T T T T T
[X,Y,Z]Data [X,Y,Z]Data
FIIF| F| F| F
—afraT atTat a’
. cllc|clc]|c]| - .
elje|rejeje [X,Y,Z]Data
1 11121 3] 4] 5]

1-225

patch

1-226

The second diagram illustrates the use of true color. True color requires
m-by-n-by-3 arrays to define red, green, and blue components for each color.

Single Color One Color One Color
Per Face Per Vertex
CData | | |:T>,|ue: |
B | Bl T 11 [Green [1
= e}/ T 11 Red | [
R R élDatla S
[X,Y,z]pata 'Ix,Y.,z]pata CData e
FIIF| F| F|F -
raftaTatTatrT a’ —
cllclclc|c
efleT el el e
142131415 I[X,\I(,Z]Datla

Note that if CDhata contains NaNs, MATLAB does not color the faces.

See also the Faces, Vertices, and FaceVertexCData properties for an alterna-
tive method of Patch definition.

CDataMapping {scaled} | direct

Direct or scaled color mapping. This property determines how MATLAB inter-
prets indexed color data used to color the Patch. (If you use true color specifica-
tion for CData or FaceVertexCData, this property has no effect.)

= scaled — transform the color data to span the portion of the colormap indicat-
ed by the Axes CLim property, linearly mapping data values to colors. See the
caxis reference page for more information on this mapping.

=« direct — use the color data as indices directly into the colormap. When not
scaled, the data are usually integer values ranging from 1 to

patch

length(colormap). MATLAB maps values less than 1 to the first color in the
colormap, and values greater than length(colormap) to the last color in the
colormap. Values with a decimal portion are fixed to the nearest, lower inte-
ger.

Children matrix of handles
Always the empty matrix; Patch objects have no children.

Clipping {on} | off

Clipping to Axes rectangle. When Clipping is on, MATLAB does not display any
portion of the Patch outside the Axes rectangle.

CreateFcn string

Callback routine executed during object creation. This property defines a call-
back routine that executes when MATLAB creates a Patch object. You must
define this property as a default value for Patches. For example, the statement,

set(0, "Defaul tPatchCreateFcn®, "set(gcf, " "DitherMap" " ,my_dither_
map)*)

defines a default value on the Root level that sets the Figure DitherMap prop-
erty whenever you create a Patch object. MATLAB executes this routine after
setting all properties for the Patch created. Setting this property on an existing
Patch object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

DeleteFcn string

Delete Patch callback routine. A callback routine that executes when you delete
the Patch object (e.g., when you issue a delete command or clear the Axes (cla)
or Figure (clf) containing the Patch). MATLAB executes the routine before
deleting the object’s properties so these values are available to the callback
routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

|

1-227

patch

1-228

DiffuseStrength scalar >=0and <=1

Intensity of diffuse light. This property sets the intensity of the diffuse compo-
nent of the light falling on the Patch. Diffuse light comes from Light objects in
the Axes.

You can also set the intensity of the ambient and specular components of the
light on the Patch object. See the AmbientStrength and SpecularStrength
properties.

EdgeColor {ColorSpec} | none | flat | interp

Color of the Patch edge. This property determines how MATLAB colors the
edges of the individual faces that make up the Patch.

= ColorSpec — A three-element RGB vector or one of MATLAB's predefined
names, specifying a single color for edges. The default edge color is black. See
the Colorspec reference page for more information on specifying color.

= none — Edges are not drawn.

= flat — The color of each vertex controls the color of the edge that follows it.
This means flat edge coloring is dependent on the order you specify the ver-
tices:

Vertex controlling the /
color of the following edge

= interp — Linear interpolation of the CData or FaceVertexCData values at the
vertices determines the edge color.

patch

|

EdgeLighting {none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the algorithm
used to calculate the effect of Light objects on Patch edges. Choices are:

= none — Lights do not affect the edges of this object.
= flat — The effect of Light objects is uniform across each edge of the Patch.

= gouraud — The effect of Light objects is calculated at the vertices and then
linearly interpolated across the edge lines.

= phong — The effect of Light objects is determined by interpolating the vertex
normals across each edge line and calculating the reflectance at each pixel.
Phong lighting generally produces better results than Gouraud lighting, but
takes longer to render.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technigue MATLAB uses to draw and
erase Patch objects. Alternative erase modes are useful in creating animated
sequences, where control of the way individual objects redraw is necessary to
improve performance and obtain the desired effect.

= normal — Redraw the affected region of the display, performing the three-di-
mensional analysis necessary to ensure that all objects are rendered correct-
ly. This mode produces the most accurate picture, but is the slowest. The
other modes are faster, but do not perform a complete redraw and are there-
fore less accurate.

= none — Do not erase the Patch when it is moved or destroyed.

=« xor— Draw and erase the Patch by performing an exclusive OR (XOR) with
each pixel index of the screen beneath it. Erasing the Patch does not damage
the color of the objects beneath it. However, Patch color depends on the color
of the screen beneath.

= background — Erase the Patch by drawing it in the Axes’ background color.
This damages objects that are behind the erased Patch, but the Patch is al-
ways properly colored.

1-229

patch

1-230

FaceColor {ColorSpec} | none | flat | interp
Color of the Patch face. This property can be any of the following:

= ColorSpec — A three-element RGB vector or one of MATLAB's predefined
names, specifying a single color for faces. See the ColorSpec reference page
for more information on specifying color.

= none — Do not draw faces. Note that edges are drawn independently of faces.

= flat — The values of CData or FaceVertexCData determine the color for each
face in the Patch. The color data at the first vertex determines the color of the
entire face.

= interp — Bilinear interpolation of the color at each vertex determines the col-
oring of each face.

FaceLighting {none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the algorithm
used to calculate the effect of Light objects on Patch faces. Choices are:

= none — Lights do not affect the faces of this object.

= flat — The effect of Light objects is uniform across the faces of the Patch. Se-
lect this choice to view faceted objects.

= gouraud — The effect of Light objects is calculated at the vertices and then lin-
early interpolated across the faces. Select this choice to view curved surfaces.

= phong — The effect of Light objects is determined by interpolating the vertex
normals across each face and calculating the reflectance at each pixel. Select
this choice to view curved surfaces. Phong lighting generally produces better
results than Gouraud lighting, but takes longer to render.

Faces m-by-n matrix

Vertex connection defining each face. This property is the connection matrix
specifying which vertices in the vertices property are connected. The Faces
matrix defines m faces with up to n vertices each. Each row designates the
connections for a single face, and the number of elements in that row that are
not NaN defines the number of vertices for that face.

The Faces and Vertices properties provide an alternative way to specify a
Patch that can be more efficient in most cases. For example, consider the

patch

following Patch. It is composed of eight triangular faces defined by nine
vertices:

Faces property Verticesp

VZ V8 V9
" Fi|Va|Va|Vs| Vi|X
16 F5 F7 Fz Vl V5 V2 V2)(2 ’
ol Fe Fg F3|V2|Vs|V6| V3 |xg|
Vg, Ve Ve Fa Vo |Vs | V3 Vg [X,
08l FS V4 V7 V8 V5 X5
0.6 Fi F3 Fe | V4| Vg Vs
0.4 FZ F4 F7 V5 V8 V9 V6 X6
0.2f \ X7|"
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ F8 V5 Vg | Vg
00 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 ZV V8 x8 '
Vl V2 3
Vg Xg

The corresponding Faces and Vertices properties are shown to the right of the
Patch. Note how some faces share vertices with other faces. For example, the
fifth vertex (V5) is used six times, once each by faces one, two, and three and
siX, seven, and eight. Without sharing vertices, this same Patch requires 24
vertex definitions.

FaceVertexCData matrix

Face and vertex colors. The FaceVertexCData property specifies the color of
Patches defined by the Faces and Vertices properties, and the values are used
when FaceColor, EdgeColor, MarkerFaceColor, or MarkerEdgeColor are set
appropriately. The interpretation of the values specified for FacevertexCData
depends on the dimensions of the data:

For indexed colors, FaceVertexCData can be:

= A single value, which applies a single color to the entire Patch

= An n-by-1 matrix, where n is the number of rows in the Faces property, which
specifies one color per face

= An n-by-1 matrix, where n is the number of rows in the vertices property,
which specifies one color per vertex

1-231

patch

1-232

For true colors, FaceVertexCData can be:

= A 1-by-3 matrix , which applies a single color to the entire Patch

= An n-by-3 matrix, where n is the number of rows in the Faces property,
which specifies one color per face

= An n-by-3 matrix, where n is the number of rows in the vertices property,
which specifies one color per vertex

The following diagram illustrates the various forms of the FaceVertexCData
property for a Patch having eight faces and nine vertices. The CDataMapping
property determines how MATLAB interprets the FaceVertexCData property
when you specify indexed colors.

| FaceVertexCData|

Indexw/ \Truecolor
One color One color Oneélor One color
Single color per face per vertex Single color per face per vertex
c Cy C1 R]G|B| |Ry|G1|B1| |Ry|G1|B1
Cy Co R,|G,[Bs| |Ry|Gy| By
Cs Cs R3|G3|Bs| |R3|G3|Bs
Cy Cy R4|G4|Bs| |R4|G4|By
Cs Cs R5|G5|Bs| |R5|Gs|Bs
Ce Ce Re|Ge|Be| | Re|Ge|Be
(o C; R,|G7|B7| |R7|G7|By
Cq Cq Rg|Gg|Bg| |Rg|Gg|Bg
Cq Rg|Bg | Bg

patch

|

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This prop-
erty determines when an object’s handle is visible in its parent’s list of children.
Handles are always visible when HandleVisibility is on. When HandleVisi-
bility is callback, handles are visible from within callbacks or functions
invoked by callbacks, but not from within functions invoked from the command
line - a useful way to protect GUIs from command-line users, while permitting
their callbacks complete access to their own handles. Setting HandleVisi-
bility to off makes handles invisible at all times - which is occasionally neces-
sary when a callback needs to invoke a function that might potentially damage
the Ul, and so wants to temporarily hide its own handles during the execution
of that function.

When a handle is not visible in its parent’s list of children, it can not be
returned by any functions which obtain handles by searching the object hier-
archy or querying handle properties, including get, findobj, gca, gcf, gco,
newplot, cla, clf, and close. When a handle’s visibility is restricted using
cal lback or off, the object’'s handle does not appear in its parent’s Children
property, Figures do not appear in the Root’s CurrentFigure property, objects
do not appear in the Root’'s Cal IbackObject property or in the Figure’s Curren-
tObject property, and Axes do not appear in their parent’s CurrentAxes prop-
erty.

The Root ShowHiddenHandles property can be set to on to temporarily make all
handles visible, regardless of their HandleVisibi lity settings (this does not
affect the values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.
This property is useful for preventing command-line users from accidently
drawing into or deleting a Figure that contains only user interface devices
(such as a dialog box).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a Patch callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,

1-233

patch

1-234

getframe, or pause command in the routine. See the EventQueue property for
related information.

LineStyle {31 --1:1--1 none

Edge linestyle. This property specifies the line style of the Patch edges. The
available line styles are:

Symbol Line Style

- solid line (default)

- - dashed line
dotted line

-. dash-dot line

none no line

You can use LineStyle none when you want to place a marker at each point,
but do not want the points connected with a line (see the Marker property).

LineWidth scalar

Edge line width. The width, in points, of the Patch edges (1 point = 1/72 inch).
The default Linewidth is 0.5 points.

patch

Marker character (see table)

Marker symbol. The Marker property specifies marks that locate vertices. You
can set values for the Marker property independently from the LineStyle prop-
erty. Supported markers include:

Marker Specifier Description
+ plus sign
0 circle
* asterisk
point
X Cross
square square
diamond diamond
n upward pointing triangle
\Y downward pointing triangle
> right pointing triangle
< left pointing triangle
pentagram five-pointed star
hexagram six-pointed star
none no marker (default)
MarkerEdgeColor ColorSpec | none | {auto} | flat

Marker edge color. The color of the marker or the edge color for filled markers
(circle, square, diamond, pentagram, hexagram, and the four triangles). Color-
Spec defines the color to use. none specifies no color, which makes nonfilled
markers invisible. auto sets MarkerEdgeColor to the same color as the Edge-
Color property.

|

1-235

patch

1-236

MarkerFaceColor ColorSpec | {none} | auto | flat

Marker face color. The fill color for markers that are closed shapes (circle,
square, diamond, pentagram, hexagram, and the four triangles). ColorSpec
defines the color to use. none makes the interior of the marker transparent,
allowing the background to show through. auto sets the fill color to the Axes
color, or the Figure color, if the Axes Color property is set to none.

MarkerSize size in points

Marker size. A scalar specifying the size of the marker, in points. The default
value for MarkerSize is six points (1 point = 1/72 inch). Note that MATLAB
draws the point marker at 1/3 of the specified size.

NormalMode {auto} | manual

MATLAB-generated or user-specified normal vectors. When this property is
auto, MATLAB calculates vertex normals based on the coordinate data. If you
specify your own vertex normals, MATLAB sets this property to manual and
does not generate its own data. See also the VertexNormals property.

Parent Axes handle

Patch’s parent. The handle of the Patch’s parent object. The parent of a Patch
object is the Axes in which it is displayed. You can move a Patch object to
another Axes by setting this property to the handle of the new parent.

Selected on | off

Is object selected. When this property is on. MATLAB displays selection handles
or a dashed box (depending on the number of faces) if the SelectionHighlight
property is also on. You can, for example, define the ButtonDownFcn to set this
property, allowing users to select the object with the mouse.

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by:

< Drawing handles at each vertex for a single-faced Patch.
= Drawing a dashed bounding box for a multi-faced Patch.

When SelectionHighlight is off, MATLAB does not draw the handles.

patch

|

SpecularColorReflectance scalar in the range O to 1

Color of specularly reflected light. When this property is 0, the color of the spec-
ularly reflected light depends on both the color of the object from which it
reflects and the color of the light source. When set to 1, the color of the specu-
larly reflected light depends only on the color or the light source (i.e., the Light
object Color property). The proportions vary linearly for values in between.

SpecularExponent scalar >= 1

Harshness of specular reflection. This property controls the size of the specular
spot. Most materials have exponents in the range of 5 to 20.

SpecularStrength scalar >=0and <=1

Intensity of specular light. This property sets the intensity of the specular
component of the light falling on the Patch. Specular light comes from Light
objects in the Axes.

You can also set the intensity of the ambient and diffuse components of the
light on the Patch object. See the AmbientStrength and DiffuseStrength
properties.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines.

For example, suppose you use Patch objects to create borders for a group of
Uicontrol objects and want to change the color of the borders in a Uicontrol’s
callback routine. You can specify a Tag with the Patch definition:

patch(X,Y, "k*®,"Tag", "PatchBorder*)

Then use findobj in the Uicontrol’s callback routine to obtain the handle of the
Patch and set its FaceColor property:

set(Ffindobj("Tag", "PatchBorder*®), "FaceColor”, "w")

Type string (read only)

Class of the graphics object. For Patch objects, Type is always the string
"patch”.

1-237

patch

See Also

1-238

UserData matrix

User-specified data. Any matrix you want to associate with the Patch object.
MATLAB does not use this data, but you can access it using set and get.

VertexNormals matrix

Surface normal vectors. This property contains the vertex normals for the
Patch. MATLAB generates this data to perform lighting calculations. You can
supply your own vertex normal data, even if it does not match the coordinate
data. This can be useful to produce interesting lighting effects.

Vertices matrix

Vertex coordinates. A matrix containing the x-, y-, z-coordinates for each vertex.
See the Faces property for more information.

Visible {on} | off
Patch object visibility. By default, all Patches are visible. When set to off, the
Patch is not visible, but still exists and you can query and set its properties.

XData vector or matrix

X-coordinates. The x-coordinates of the points at the vertices of the Patch. If
XData is a matrix, each column represents the x-coordinates of a single face of
the Patch. In this case, XData, YData, and zbata must have the same dimen-
sions.

YData vector or matrix

Y-coordinates. The y-coordinates of the points at the vertices of the Patch. If
YData is a matrix, each column represents the y-coordinates of a single face of
the Patch. In this case, XData, YData, and zbata must have the same dimen-
sions.

ZData vector or matrix

Z-coordinates. The z-coordinates of the points at the vertices of the Patch. If
ZData is a matrix, each column represents the z-coordinates of a single face of
the Patch. In this case, XData, YData, and zData must have the same dimen-
sions.

area,caxis,Fill,fill3,surface

pcolor

Purpose

Syntax

Description

Remarks

Pseudocolor plot

pcolor(C)
pcolor(X,Y,C)
h = pcolor(...)

A pseudocolor plot is a rectangular array of cells with colors determined by C.
MATLAB creates a pseudocolor plot by using each set of four adjacent points
in C to define a Surface patch (i.e., cell).

pcolor(C) draws a pseudocolor plot. The elements of C are linearly mapped to
an index into the current colormap. The mapping from C to the current
colormap is defined by colormap and caxis.

pcolor(X,Y,C) draws a pseudocolor plot of the elements of C at the locations
specified by X and Y. The plot is a logically rectangular, two-dimensional grid
with vertices at the points [X(i,j), Y(i,j)]. Xand Y are vectors or matrices
that specify the spacing of the grid lines. If X and Y are vectors, X corresponds
to the columns of C and Y corresponds to the rows. If X and Y are matrices, they
must be the same size as C.

h = pcolor(...) returns a handle to a Surface graphics object.

A pseudocolor plot is a flat Surface plot viewed from above. pcolor(X,Y,C) is
the same as viewing surf(X,Y,0rZ,C) using view([0 90]).

Using shading faceted or shading flat, the constant color of each cell is the
color associated with the corner having the smallest x-y coordinates. Therefore,
C(i,j) determines the color of the cell in the ith row and jth column. The last
row and column of C are not used.

Using shading interp, each cell's color results from a bilinear interpolation of
the colors at its four vertices and all elements of C are used.

1-239

pcolor

Examples A Hadamard matrix has elements that are +1 and —1. A colormap with only two
entries is appropriate when displaying a pseudocolor plot of this matrix:

pcolor(hadamard(20))
colormap(gray(2))
axis ij

axis square

1-240

pcolor

Algorithm

See Also

A simple color wheel illustrates a polar coordinate system:
n = 6;
r = (0:n)"/n;
theta = pifl(—n:n)/n;

X = rrros(theta);
Y = risin(theta);
C = rrros(2rtheta);
pcolor(X,Y,C)
axis equal
1
0.8 .
0.6 .

0.4

0.2

The number of vertex colors for pcolor(C) is the same as the number of cells
for image(C). pcolor differs from image in that pcolor (C) specifies the colors
of vertices, which are scaled to fit the colormap; changing the Axes clim prop-
erty changes this color mapping. image(C) specifies the colors of cells and
directly indexes into the colormap without scaling. Additionally,
pcolor(X,Y,C) can produce parametric grids, which is not possible with image.

caxis, image, mesh, shading, surf, view

1-241

pie

Purpose

Syntax

Description

Remarks

Examples

See Also

1-242

Pie chart
pie(X)
pie(X,Explode)
h = pie(...)

pie(X) draws a pie chart using the data in X. Each element in X is represented
as a slice in the pie chart.

pie(X,Explode) offsets aslice from the pie. Explode is a vector or matrix of 0's
and nonzeros that correspond to X. A non-zero value offsets the corresponding
slice from the center of the pie chart, so that X(i, j) is offset from the center if
Explode(i,j) is nonzero. Explode must be the same size as X.

h = pie(...) returns a vector of handles to Patch and Text graphics objects.

If sun(X) 1pie normalizes the X values so that each slice has an area of X;/
sum(X;), where X; is an element of X. The normalized value specifies the frac-
tional part of each pie slice. If sum(X) < 1, pie does not normalize the elements
of X. pie draws a partial pie when sum(X) < 1.

Emphasize the second slice in the chart by exploding it:

11%

element to 1:

X = [1 3 0.5 2.5 2]
explode = [0 1 0 0 O]
pie(x,explode)

33%

6%

pie3

pie3

Purpose

Syntax

Description

Remarks

Examples

See Also

Three-dimensional pie chart

pie3(X)
pie3(X,Explode)
h = pie3(...)

pie3(X) draws a three-dimensional pie chart using the data in X. Each
element in X is represented as a slice in the pie chart.

pie3(X,Explode) specifies whether to offset a slice from the center of the pie
chart. X(i,Jj) is offset from the center of the pie chart if Explode(i,j) is
nonzero. Explode must be the same size as X.

h = pie(...) returnsavector of handles to Patch, Surface, and Text graphics
objects.

If sum(X) 1pie3d normalizes the X values so that each slice has an area of X;/
sum(X;), where X; is an element of X. The normalized value specifies the frac-
tional part of each pie slice. If sum(X) < 1, pie3 does not normalize the
elements of X. pie3 draws a partial pie when sum(X) < 1.

A slice in the pie chart is offset by setting the corresponding explode element
to 1:

x = [1 3 0.5 2.5 2]
explode = [0 1 0 0 O]
pie3(x,explode)

pie

1-243

plot

Purpose

Syntax

Description

Remarks

Examples

1-244

Linear 2-D plot

plot(Y)

plot(X1,Y1,...)

plot(X1,Y1,LineSpec,...)
plot(...,"PropertyName®,PropertyValue,...)
h = plot(...)

plot(Y) plots the columns of Y versus their index if Y is a real number. IfY is
complex, plot(Y) is equivalent to plot(real (Y), imag(Y)). In all other uses of
plot, the imaginary component is ignored.

plot(X1,Y1,...) plotsall lines defined by Xn versus Yn pairs. If only Xn or Yn
is a matrix, the vector is plotted versus the rows or columns of the matrix,
depending whether the vector’s row or column dimension matches the matrix.

plot(X1,Y1,LineSpec,...) plots all lines defined by the Xn,Yn,LineSpec
triples, where LineSpec is a line specification that determines line type,
marker symbol, and color of the plotted lines.

plot(-.., "PropertyName” ,PropertyValue, . ..) sets properties to the speci-
fied property values for all Line graphics objects created by plot.

h = plot(...) returns a column vector of handles to Line graphics objects,
one handle per Line.

If you do not specify a color when plotting more than one line, plot automati-
cally cycles through the colors and line styles in the order specified by the
current Axes.

You can mix Xn,Yn,LineSpec triples with Xn, Yn pairs, for example,

plot(X1,Y1,X2,Y2,LineSpec,X3,Y3)

plot(X,Y, "c+") plots a cyan-colored plus sign at each data point.

plot(X,Y, "r-",X,Y, go"™) plots a solid red line connecting the data points and
green circles showing the location of each data point.

plot

The statements

X = —pi:pi/500:pi;

y = tan(sin(x)) — sin(tan(x));

plot(x,y)
produce
3
2+]
1, -
O, -
_l’ -
_27 -
_3 1 1 1 1 1 1 1
-4 -3 -2 -1 0 1 2 3 4

See Also axis, grid, line, LineSpec, loglog, plotyy, semilogx, semilogy

1-245

plot3

Purpose

Syntax

Description

Remarks

Examples

1-246

Linear 3-D plot

plot3(X1,Y1,Z71,...)
plot3(X1,Y1,Z1,LineSpec,.-.)

plot3(..., "PropertyName” ,PropertyValue,...)
h = plot3(...)

The plot3 function displays a three-dimensional plot of a set of data points.

plot3(X1,Y1,21,...), where X1, Y1, Z1 are vectors or matrices, plots one or
more lines in three-dimensional space through the points whose coordinates
are the elements of X1, Y1, and Z1.

plot3(X1,Y1,Z1,LineSpec,...) creates and displays all lines defined by the
Xn,Yn,Zn,LineSpec quads, where LineSpec is a line specification that deter-
mines line style, marker symbol, and color of the plotted lines.

plot3(...,"PropertyName” ,PropertyValue, ...) sets properties to the spec-
ified property values for all Line graphics objects created by plot3.

plot3(-- -, "PropertyName” ,PropertyValue, ...) sets properties to the spec-
ified property values for all Line graphics objects created by plot3.

h = plot3(...) returns acolumn vector of handles to Line graphics objects,
with one handle per Line.

If one or more of X1, Y1, Z1 is a vector, the vectors are plotted versus the rows
or columns of the matrix, depending if the vectors’ length equals the number of
rows or the number of columns.

You can mix Xn,Yn,Zn triples with Xn,Yn,Zn, LineSpec quads, for example,

plot3(X1,Y1,71,X2,Y2,Z2,LineSpec,X3,Y3,Z3)

Plot a three-dimensional helix:

t = 0:pi/50:10[pi;
plot3(sin(t),cos(t),t)

plotmatrix

|

See Also axis, grid, line, LineSpec, loglog, semi logx, semi logy
Purpose Draw scatter plots
Syntax plotmatrix(X,Y)

plotmatrix(..., "LineSpec*)
[H,AX,BigAx,P] = plotmatrix(...)

Description plotmatrix(X,Y) scatter plots the columns of X against the columns of Y. If X
is p-by-m and Y is p-by-n, plotmatrix produces an n-by-m matrix of Axes.
plotmatrix(Y) is the same as plotmatrix(Y,Y) except that the diagonal is
replaced by hist(Y(:,i)).

plotmatrix(..., LineSpec") uses the line specification in the string
"LineSpec”; "." is the default (see plot for possibilities).

[H,AX,BigAx,P] = plotmatrix(...) returns a matrix of handles to the objects
created in H, a matrix of handles to the individual subaxes in AX, a handle to a

1-247

plotyy

Examples

Purpose

Syntax

Description

See Also
Purpose

Syntax

1-248

big (invisible) Axes which frames the subaxes in BigAx, and a matrix of handles
for the histogram plots in P. BigAx is left as the current Axes so that a subse-
guent title, xlabel, or ylabel commands are centered with respect to the
matrix of Axes.

Generate plots of random data.

x = randn(50,3); y = x*[-1 2 1;2 0 1;1 -2 3;]1";
plotmatrix(y)
Create graphs with y axes on both left and right side

plotyy(X1,Y1,X2,Y2)

plotyy(X1,Y1,X2,Y2, "function®)
plotyy(X1,Y1,X2,Y2,"functionl”, "function2®)
[AX,H1,H2] = plotyy(.-.)

plotyy(X1,Y1,X2,Y2) plots X1 versus Y1 with y-axis labeling on the left and
plots X2 versus Y2 with y-axis labeling on the right.

plotyy(X1,Y1,X2,Y2,"function™) uses the plotting function specified by the
string "function' instead of plot to produce each plot. 'function' can be plot,
semi logx, semi logy, loglog, stem or any MATLAB function that accepts the
syntax:

h = function(x,y)

plotyy(X1,Y1,X2,Y2,"functionl®, "function2®) uses functionl(X1,Y1) to
plot the data for the left axis and function1(X2,Y2) to plot the data for the
right axis.

[AX,H1,H2] = plotyy(...) returns the handles of the two Axes created in AX
and the handles of the graphics objects from each plot in H1 and H2. AX(1) is
the left Axes and AX(2) is the right Axes.

plot

Plot polar coordinates

polar(theta, rho)
polar(theta, rho,LineSpec)

print, printopt

|

Description The polar function accepts polar coordinates, plots them in a Cartesian plane,
and draws the polar grid on the plane.

polar(theta,rho) creates a polar coordinate plot of the angle theta versus
the radius rho. theta is the angle from the x-axis to the radius vector specified
in radians; rho is the length of the radius vector specified in dataspace units.

polar(theta,rho,LineSpec) specifies the line type, plot symbol, and color for
the lines drawn in the polar plot.

Examples Create a simple polar plot:

t = 0:.01:20pi;
polar(t,sin(20t) .[tos(20t))

See Also cart2pol, compass, plot, pol2cart, rose
Purpose Create hardcopy output
Syntax print

print —devicetype —options filename
[pcmd,dev] = printopt

1-249

print, printopt

Description

1-250

print and printopt produce hardcopy output. All arguments to the print
command are optional. You can use them in any combination or order.

print sends the contents of the current Figure, including any user interface
controls, to the printer using the device and system print command defined by
printopt.

print —devicetype specifies a device type, overriding the value returned by
printopt. The “Devices” section lists all supported device types.

print —options specifies print options that modify the action of the print
command. (For example, the —noui option suppresses printing of user interface
controls.) The “Options” section lists available options.

print filename directs the output to the file designated by filename. If
filename does not include an extension, print appends an appropriate exten-
sion, depending on the device (e.g., -eps). If you omit fi lename, print sends the
file to the default output device (except for -dmeta and -dbitmap, which place
their output on the clipboard).

[pcmd,dev] = printopt returns strings containing the current
system-dependent print command and output device. printopt is an M-file
used by print to produce the hardcopy output. You can edit the M-file
printopt.m to set your default printer type and destination.

pcmd and dev are platform-dependent strings. pcmd contains the command that
print uses to send a file to the printer. dev contains the device options for the
print command. Their defaults are platform-dependent.

Platform pcmd dev
UNIX (except Silicon Ipr -r —s —dps2
Graphics)

Silicon Graphics Ip —dps2
VMS PRINT/DELETE —dps2
Windows COPY /B %s LPT1: —dwin
Macintosh (not applicable) —dps2

print, printopt

Devices

|

The table below lists device types supported by MATLAB's built-in drivers.
Generally, Level 2 PostScript files are smaller and render more quickly when
printing than Level 1 PostScript files. However, not all PostScript printers
support Level 2, so determine the capabilities of your printer before using those

devices.
Device Description
—dps Level 1 black and white PostScript
—dpsc Level 1 color PostScript
—dps2 Level 2 black and white PostScript
—dpsc2 Level 2 color PostScript
—deps Level 1 black and white Encapsulated PostScript (EPS)
—depsc Level 1 color Encapsulated PostScript (EPS)
—deps2 Level 2 black and white Encapsulated PostScript (EPS)
—depsc2 Level 2 color Encapsulated PostScript (EPS)
—dhpgl HPGL compatible with HP 7475A plotter
—dill Adobe lllustrator 88 compatible illustration file
—dmFile M-file, and MAT-file when appropriate, containing Handle

Graphics commands to re-create the Figure and its children

1-251

print, printopt

1-252

This table lists additional devices supported via the Ghostscript post-processor,
which converts PostScript files into other formats. (This feature is not available

on Macintosh systems.)

Device Description

—dlaserjet HP LaserJet

—dljetplus HP LaserJet+

—dljet2p HP LaserJet IIP

—dljet3 HP LaserJet 111

—dljetd HP LaserJet 4 (defaults to 600 dpi)

—ddeskjet HP DeskJet and DeskJet Plus

—ddjet500 HP Deskjet 500

—dcdeskjet HP DeskJet 500C with 1 bit/pixel color

—dcdjmono HP DeskJet 500C printing black only

—dcdjcolor HP DeskJet 500C with 24 bit/pixel color and
high-quality color (Floyd-Steinberg) dithering

—dcdj500 HP DeskJet 500C

—dcdj550 HP Deskjet 550C

—dpaintjet HP PaintJet color printer

—dpjxI HP PaintJet XL color printer

—dpjetxl HP PaintJet XL color printer

—dpjx1300 HP PaintJet XL300 color printer

—ddnj650c HP DesignJet 650C

—dbj10e Canon BubbleJet BJ10e

—dbj200 Canon BubbleJet BJ200

print, printopt

|

Device Description

—dbjc600 Canon Color BubbleJet BJC-600 and BJC-4000

—dIn03 DEC LNO3 printer

—depson Epson-compatible dot matrix printers (9- or 24-pin)

—depsonc Epson LQ-2550 and Fujitsu 3400/2400/1200

—deps9high Epson-compatible 9-pin, interleaved lines (triple reso-
lution)

—dibmpro IBM 9-pin Proprinter

—dbmp256 8-bit (256-color) BMP file format

—dbmp16m 24-bit BMP file format

—dpcxmono Monochrome PCX file format

—dpcx16 Older color PCX file format (EGA/VGA, 16-color)

—dpcx256 Newer color PCX file format (256-color)

—dpcx24b 24-bit color PCX file format, three 8-bit planes

—dpbm Portable Bitmap (plain format)

—dpbmraw Portable Bitmap (raw format)

—dpgm Portable Graymap (plain format)

—dpgmraw Portable Graymap (raw format)

—dppm Portable Pixmap (plain format)

—dppmraw Portable Pixmap (raw format)

—dbit A plain “bit bucket” device

—dbitrgb Plain bits, RGB

—dbitcmyk Plain bits, CMYK

1-253

print, printopt

1-254

This table summarizes additional devices available on Windows systems.

Device Description

—dwin Use Windows printing services (black and white)

—dwinc Use Windows printing services (color)

—dmeta Copy to clipboard in Enhanced Windows metafile format
—dbitmap Copy to clipboard in Windows bitmap (BMP) format
—dsetup Display Print Setup dialog box, but do not print

-V Verbose mode to display Print dialog box (suppressed by

default)

This table summarizes additional devices available on Macintosh systems.

Device Description
—dpict Create PICT file
-V Verbose mode to display Print dialog box (suppressed by

default)

gtwrite

Options

Example

See Also

Purpose

|

This table summarizes printing options that you can specify when you enter
the print command.

Option Description

—epsi Add 1-bit deep EPSI preview to EPS

—loose Use loose bounding box for EPS and PS

—cmyk Use CMYK colors in PostScript instead of RGB
—append Append to existing PostScript file without overwriting
—rnumber Specify resolution in dots per inch

—adobecset Use PostScript default character set encoding
—Pprinter Specify printer to use

—fhandle Handle of a Figure graphics object to print
—swindowtitle Name of SIMULINK system window to print
—painters Render using painter’s algorithm

—zbuffer Render using Z-buffer

—noui Suppress printing of user interface controls

This command saves the contents of the current Figure as Level 2 color Encap-
sulated PostScript in the file called meshdata.eps:

print —depsc2 meshdata

orient, figure

See the Using MATLAB Graphics manual for detailed information about
printing in MATLAB.

Write QuickTime movie file

1-255

guestdig

Syntax qtwrite(D,size,Map, “"filename®)
qtwrite(M,Map, "filename®)
qtwrite(...,options)

Description gtwrite(D,size,Map, "Filename") writes the indexed image deck D with size
size and colormap Map to the QuickTime movie file "filename=. If “filename"
exists, it is replaced.

gtwrite(M,Map, "Ffilename™) writes the MATLAB movie matrix M with
colormap Map to the QuickTime movie file "filename".

gtwrite(...,options) sets the frame rate, spacial quality, and compressor
type:

Option Description

options(l) Frame rate in frames per second. The default is
10.

options(2) Compressor type:

= 1 is video (default)
- 2isjpeg
« 3 is animation

options(3) Spacial quality:
« 1 - minimum
-2 -low
« 3 - normal (default)
« 4 - high
< 5 - maximum
« 6 - lossless

Remarks gtwrite requires QuickTime and works only on the Macintosh.

Purpose Create and display question dialog box

1-256

questdlg

Syntax

Description

|

button = questdlg("gstring”)

button questdlg(gstring”, "title")

button = questdlg("gstring”, "title","default”)

button questdlg("gstring”, "title","strl”, "str2*, "default®)

button =
questdlg(®"gstring”, "title", "strl”, "str2", "str3", "default”)

button = questdlg("gstring”) displays a modal dialog presenting the ques-
tion "gstring”. The dialog has three default buttons—No, Cancel, and Yes.
"gstring” is a cell array or a string that automatically wraps to fit within the
dialog box. button contains the name of the button pressed.

button = questdlg("gstring”, "title") displays a question dialog with
“title" displayed in the dialog's title bar.

button = questdlg(~gstring~,"title", "default™) specifies which push
button is the default in the event that the Return key is pressed. "default-”
must be 'Yes®, "No*", or "Cancel".

button = questdlg("gstring®,“title", "strl","str2", "default”)
creates a question dialog box with two push buttons labeled "stri® and
"str2". "default” specifies the default button selection and must be "str1- or
"str2-.

button =

questdlg(®qgstring”, "title”, "strl”, "str2", "str3", "default”) creates
a question dialog box with three push buttons labeled "str1-, "str2-, and
"str3". 'default” specifies the default button selection and must be "str1-,
"str2°, or "str3-.

1-257

quiver

Example Create a question dialog asking the user whether to continue a hypothetical
operation

button=questdlg("Do you want to continue?”,"Continue Operation”,
"Yes","No", "Help","No");

if strcmp(buttonName, "Yes®™), disp("Creating file");

elseif strcmp(buttonName, *"No"), disp(“Cancelled file operation®)
elseif strcmp(buttonName, "Help®), disp("Sorry, no help
available®™);

end
See Also dialog, errordlg, helpdlg, inputdlg, msgbox, warndlg
Purpose Quiver or velocity plot
Syntax quiver(U,V)
quiver(X,Y,U,V)

quiver(...,scale)
quiver(...,LineSpec)
quiver(...,LineSpec, "filled™)

h = quiver(...)
Description A quiver plot displays vectors with components (u,v) at the points (x,y).

quiver(U,V) draws vectors specified by U and Vv at the coordinates defined by
x =1:nandy = 1:m, where [m,n] = size(U) = size(V). This syntax plots U
and Vv over a geometrically rectangular grid. quiver automatically scales the

vectors based on the distance between them to prevent them from overlapping.

quiver(X,Y,U,V) draws vectors at each pair of elementsin Xand Y. If Xand Y
are vectors, length(X) = nand length(Y) = m, where

[m,n] = size(U) = size(V). The vector X corresponds to the columns of U and
V, and vector Y corresponds to the rows of U and V.

quiver(...,scale) automatically scales the vectors to prevent them from
overlapping, then multiplies them by scale. scale = 2 doubles their relative

1-258

quiver

|

length and scale = 0.5 halves them. Use scale = 0 to plot the velocity vectors
without the automatic scaling.

quiver(...,LineSpec) specifies line style, marker symbol, and color using
any valid line specification. quiver draws the markers at the origin of the
vectors.

quiver(...,LineSpec, "filled") fills markers specified by LineSpec.

h = quiver(...) returns a vector of Line handles.

Remarks If X and Y are vectors, this function behaves as

[X,Y] = meshgrid(x,y)
quiver(X,Y,U,V)

1-259

quiver3

Examples Plot the gradient field of the functionz = xe(™*~¥*

[X,Y] = meshgrid(-2:.2:2);

Z = X.BXp(—X."2 — Y."2);
[DX,DY] = gradient(Z,.2,.2);
contour(X,Y,Z)

hold on

quiver(X,Y,DX,DY)

grid off

hold off

15

o5F

1
!
[S A

'
!
!
!

051

\
N N T
~ N XN

-2 1 | 1 1 L 1
-2 -15 -1 -0.5 0 0.5 1 15

See Also contour, LineSpec, plot, quiver3

Purpose Three-dimensional velocity plot

Syntax quiver3(z,U,V,W)
quiver3(X,Y,Z,U,V,W)
quiver3(...,scale)
quiver3(...,LineSpec)
quiver3(...,LineSpec, "filled")
h = quiver3(...)

1-260

quiver3

Description

|

A three-dimensional quiver plot displays vectors with components (u,v,w) at
the points (x,y,2).

quiver3(zZ,U,V,W) plots the vectors at the equally spaced surface points spec-
ified by matrix Z. quiver3 automatically scales the vectors based on the
distance between them to prevent them from overlapping.

quiver3(X,Y,Z,U,V,W) plots vectors with components (u,v,w) at the points
(X,y,2). The matrices X, Y, Z, U, V, W must all be the same size and contain the
corresponding position and vector components.

quiver3(...,scale) automatically scales the vectors to prevent them from
overlapping, then multiplies them by scale. scale = 2 doubles their relative
length and scale = 0.5 halves them. Use scale = 0 to plot the vectors without
the automatic scaling.

quiver3(...,LineSpec) specify line type and color using any valid line spec-
ification.

quiver3(...,LineSpec, "filled") fills markers specified by LineSpec.

h = quiver3(...) returns a vector of Line handles.

1-261

quiver3

Examples Plot the surface normals of the function: = xe(=*-¥?:

[X,Y] = meshgrid(-2:.2:2,-1:.15:1);
Z = X.* exp(—X."2 — Y."2);

[U,V,W] = surfnorm(X,Y,Z2);
quiver3(X,Y,Z,U,V,W);

hold on

surf(X,Y,2);
grid on
hold off

See Also contour, LineSpec, plot, plot3, quiver

1-262

quiver3

|

1-263

quiver3

1-264

quiver3

|

1-265

rbbox

Purpose

Synopsis

Description

Rubberband box for area selection

rbbox

rbbox(initialRect)

rbbox(initialRect, fixedPoint)
rbbox(initialRect, fixedPoint,stepSize)
finalRect = rbbox(...)

rbbox initializes and tracks a rubberband box in the current Figure. It sets the
initial rectangular size of the box to 0, anchors the box at the Figure’s Current-
Point, and begins tracking at the Figure's CurrentPoint.

rbbox(initialRect) specifies the initial location and size of the rubberband
box as [x y width height], where x and y define the lower-left corner, and
width and height define the size. initialRect is in the units specified by the
current Figure’'s Units property, and measured from the lower-left corner of
the Figure window. The corner of the box closest to the pointer position follows
the pointer until rbbox receives a button-up event.

rbbox(initialRect, fixedPoint) specifies the corner of the box that remains
fixed. All arguments are in the units specified by the current Figure’'s Units
property, and measured from the lower-left corner of the Figure window.
fixedPoint is a two-element vector, [x y]. The tracking point is the corner
diametrically opposite the anchored corner defined by fixedPoint.

rbbox(initialRect, fixedPoint,stepSize) specifies how frequently the
rubberband box is updated. When the tracking point exceeds stepSize Figure
units, rbbox redraws the rubberband box. The default stepsize is 1.

finalRect = rbbox(...) returns a four-element vector, [x y width
height], where x and y are the x and y components of the lower-left corner of
the box, and width and height are the dimensions of the box.

1-266

rbbox

Remarks

Examples

See Also

rbbox is useful for defining and resizing a rectangular region:

= For box definition, initialRect is [x y 0 0], where (x,y) is the Figure’s
CurrentPoint.

= For box resizing, initialRect defines the rectangular region that you resize
(e.g., a legend). FixedPoint is the corner diametrically opposite the tracking
point.

rbbox returns immediately if a button is not currently pressed. Therefore, you

use rbbox with waitforbuttonpress so that the mouse button is down when

rbbox is called. rbbox returns when you release the mouse button.

Assuming the current view is view(2), use the current Axes’' CurrentPoint
property to determine the extent of the rectangle in dataspace units:

k = waitforbuttonpress

pointl = get(gca, "CurrentPoint®)% button down detected
finalRect = rbbox % return Figure units
point2 = get(gca, "CurrentPoint®)% button up detected

pointl = pointl(1,1:2)% extract x and y
point2 = point2(1,1:2)

pl = min(pointl,point2)% calculate locations
offset = abs(pointl-point2)% and dimensions

x = [p1(1) pl(D)+offset(l) pl(l)+offset(l) pl(1) pl(1)]
y [P1(2) pl(2) pl(2)+offset(2) pl(2)+offset(2) pl(2)]
hold on

axis manual
plot(x,y)% redraw in dataspace units

dragrect, waitforbuttonpress

1-267

refresh

Purpose Redraw current Figure
Syntax refresh
refresh(h)
Description refresh erases and redraws the current Figure.

refresh(h) redraws the Figure identified by h.

1-268

reset

Purpose
Syntax

Description

Examples

See Also

Reset graphics object properties to their defaults
reset(h)

reset(h) resets all properties having factory defaults on the object identified
by h. To see the list of factory defaults, use the statement,

get(0, "factory”)

If his a Figure, MATLAB does not reset Position, Units, PaperPosition, and
PaperUnits. If h is an Axes, MATLAB does not reset Position and Units.

reset(gca) resets the properties of the current Axes.

reset(gcf) resets the properties of the current Figure.

cla, clf, gca, gcf, hold

1-269

rgb2hsv

Purpose
Syntax

Description

See Also

1-270

Convert RGB colormap to HSV colormap

rgb2hsv(M)

cmap

cmap = rgb2hsv(M) converts a RGB colormap, M, to a HSV colormap, cmap.
Both colormaps are m-by-3 matrices. The elements of both colormaps are in the
range O to 1.

The columns of the input matrix, M, represent intensities of red, green, and
blue, respectively. The columns of the output matrix, cmap, represent hue, satu-
ration, and value, respectively.

brighten, colormap, hsv2rgb, rgbplot

rgbplot

Purpose Plot colormap
Syntax rgbplot(cmap)
Description rgbplot(cmap) plots the three columns of cmap, where cmap is an m-by-3

colormap matrix. rgbplot draws the first column in red, the second in green,
and the third in blue.

Examples Plot the RGB values of the copper colormap:

rgbplot(copper)

0.9 B

0.8 B

0.71 B

0.6 : B

0.4r N

0.31 i

0.11 B

See Also colormap

1-271

ribbon

Purpose Ribbon plot

Syntax ribbon(Y)
ribbon(X,Y)
ribbon(X,Y,width)

h = ribbon(...)

Description ribbon(Y) plots the columns of Y as separate three-dimensional ribbons using
X = 1:size(Y,1).

ribbon(X,Y) plots X versus the columns of Y as three-dimensional strips. X
and Y are vectors of the same size or matrices of the same size. Additionally, X
can be a row or a column vector, and Y a matrix with Iength(X) rows.

ribbon(X,Y,width) specifies the width of the ribbons. The default is 0.75.

h = ribbon(...) returns a vector of handles to Surface graphics objects.
ribbon returns one handle per strip.

Examples Create a ribbon plot of the peaks function:

[x,y] = meshgrid(-3:.5:3,-
3:.1:3);
z = peaks(x,y);

10

See Also plot, plot3, surface

1-272

root object

Purpose

Description

Object
Hierarchy

|

Root object properties

The Root is a graphics object that corresponds to the computer screen. There is
only one Root object and it has no parent. The children of the Root object are
Figures.

The Root object exists when you start MATLAB; you never have to create it and
you cannot destroy it. Use set and get to access the Root properties, which are
described in the “Root Properties” section.

Figure

I 1

| Axes | |Uimenu

| Uicontrol

| Line | | Patch | |Surface | Text | | Light |

| Image

Root Properties

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

BusyAction cancel | {queue}
Not used by the Root object.
ButtonDownFcnstring

Not used by the Root object.

CallbackObject handle (read only)

Handle of current callback’s object. This property contains the handle of the
object whose callback routine is currently executing. If no callback routines are
executing, this property contains the empty matrix []. See also the gco
command.

1-273

root object

1-274

CaptureMatrix (obsolete)

This property has been superseded by the getframe command.
CaptureRect (obsolete)

This property has been superseded by the getframe command.
Children vector of handles

Handles of child objects. A vector containing the handles of all non-hidden
Figure objects. You can change the order of the handles and thereby change the
stacking order of the Figures on the display.

Clipping {on} | off
Clipping has no effect on the Root object.
CreateFcn

The Root does not use this property.
CurrentFigure Figure handle

Handle of the current Figure window, which is the one most recently created,
clicked in, or made current with the statement:

figure(h)
which restacks the Figure to the top of the screen, or
set(0, "CurrentFigure” ,h)
which does not restack the Figures. In these statements, h is the handle of an
existing Figure. If there are no Figure objects,
get(0, "CurrentFigure®)
returns the empty matrix. Note, however, that gcf always returns a Figure
handle, and creates one if there are no Figure objects.
DeleteFcn string
Since you cannot delete the Root object, this property is not used.
Diary on | {off}

Diary file mode. When this property is on, MATLAB maintains a file (whose
name is specified by the DiaryFile property) that saves a copy of all keyboard
input and most of the resulting output. See also the diary command.

root object

|

DiaryFile string
Diary filename. The name of the diary file. The default name is diary.

Echo on | {off}

Script echoing mode. When Echo is on, MATLAB displays each line of a script
file as it executes. See also the echo command.

ErrorMessage string
Text of last error message. This property contains the last error message issued
by MATLAB.

Format short | {shortE} | long | longE | blank | hex |
+ | rat

Output format mode. This property sets the format used to display humbers.
See also the format command.

= short — Fixed-point format with 5 digits.

= shortE — Floating-point format with 5 digits.

= shortG — Fixed- or floating-point format displaying as many significant fig-
ures as possible with 5 digits.

= long — Scaled fixed-point format with 15 digits.
= longE — Floating-point format with 15 digits.

= longG — Fixed- or floating-point format displaying as many significant figures
as possible with 15 digits.

= pank — Fixed-format of dollars and cents.

=« hex — Hexadecimal format.

< + — Displays + and — symbols.

= rat — Approximation by ratio of small integers.

FormatSpacing compact | {loose}

Output format spacing (see also format command).

= compact — Suppress extra line feeds for more compact display.
= loose — Display extra line feeds for a more readable display.

1-275

root object

1-276

HandleVisibility {on} | callback | off
This property is not useful on the Root object.
Interruptible {on} | off

This property is not useful on the Root object.
Parent handle

Handle of parent object. This property always contains the empty matrix, as
the Root object has no parent.

PointerLocation [x,y]

Current location of pointer. A vector containing the x- and y-coordinates of the
pointer position, measured from the lower-left corner of the screen. You can
move the pointer by changing the values of this property. The Units property
determines the units of this measurement.

This property always contains the instantaneous pointer location, even if the
pointer is not in a MATLAB window. A callback routine querying the Pointer-
Location can get a different value than the location of the pointer when the
callback was triggered. This difference results from delays in callback execu-
tion caused by competition for system resources.

PointerWindow handle (read only)

Handle of window containing the pointer. MATLAB sets this property to the
handle of the Figure window containing the pointer. If the pointer is not in a
MATLAB window, the value of this property is 0. A callback routine querying
the PointerWindow can get the wrong window handle if you move the pointer to
another window before the callback executes. This error results from delays in
callback execution caused by competition for system resources.

Profile on | {off}

M-file profiler on or off. Setting this property to on activates the profiler when
you execute the M-files named in ProfileFile. The profiler determines what
percentage of time MATLAB spends executing each line of the M-file. See also
the profile command.

ProfileFile M-file name

M-file to profile. This property contains the full path name of the M-file to
profile.

root object

|

ProfileCount vector

Profiler output. This property is a n-by-1 vector, where n is the number of lines
of code in the profiled M-file. Each element in this vector represents the
number of times the profiler found MATLAB executing a particular line of code.
The Profilelnterval property determines how often MATLAB profiles (i.e.,
determines which line is executing).

Profilelnterval scalar

Time increment to profile M-file. This property sets the time interval at which
the profiler checks to see what line in the M-file is executing.

ScreenDepth bits per pixel

Screen depth. The depth of the display bitmap (i.e., the number of bits per
pixel). The maximum number of simultaneously displayed colors on the current
graphics device is 2 raised to this power.

ScreenDepth supersedes the BlackAndwhite property. To override automatic
hardware checking, set this property to 1. This value causes MATLAB to
assume the display is monochrome. This is useful if MATLAB is running on
color hardware, but is displaying on a monochrome terminal. Such a situation
can cause MATLAB to determine erroneously that the display is color.

ScreenSize 4-element rectangle vector (read only)
Screen size. A four-element vector,

[1eft,bottom,width,height]
that defines the display size. 1eft and bottom are 0 for all Units except pixels,

in which case left and bottom are 1. width and height are the screen dimen-
sions in units specified by the units property.

Selected on | off

This property has no effect on the Root level.
SelectionHighlight {on} | off

This property has no effect on the Root level.
ShowHiddenHandles on | {off}

Show or hide handles marked as hidden. When set to on, this property disables
handle hiding and exposes all object handles, regardless of the setting of an

1-277

root object

1-278

object’'s HandleVisibi lity property. When set to off, all objects so marked
remain hidden within the graphics hierarchy.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. You can set Tag to any string.

TerminalHideGraphCommand string X-Windows only

Hide graph window command. This property specifies the escape sequence
that MATLAB issues to hide the graph window when switching from graph
mode back to command mode. This property is used only by the terminal
graphics driver. Consult your terminal manual for the correct escape sequence.

TerminalOneWindow {on} | off X-Windows only

One window terminal. This property indicates whether there is only one
window on your terminal. If the terminal uses only one window, MATLAB waits
for you to press a key before it switches from graphics mode back to command
mode. This property is used only by the terminal graphics driver.

TerminalDimensions pixels X-Windows only
Size of default terminal. This property defines the size of the terminal.

TerminalProtocol none | x | tek401x | tek410x X-Windows only

Type of terminal. This property tells MATLAB what type of terminal you are
using. Specify tek401x for terminals that emulate Tektronix 4010/4014 termi-
nals. Specify tek410x for terminals that emulate Tektronix 4100/4105 termi-
nals. If you are using X Windows and MATLAB can connect to your X display
server, this property is automatically set to x.

Once this property is set, you cannot change it unless you quit and restart
MATLAB.

Terminal ShowGraphCommand string X-Windows only

Display graph window command. This property specifies the escape sequence
that MATLAB issues to display the graph window when switching from
command mode to graph mode. This property is only used by the terminal
graphics driver. Consult your terminal manual for the appropriate escape
sequence.

root object

See Also

Type string (read only)
Class of graphics object. For the Root object, Type is always "root".

Units {pixels} | normalized | inches | centimeters |
points

Unit of measurement. This property specifies the units MATLAB uses to inter-

pret size and location data. All units are measure from the lower-left corner of

the screen. Normalized units map the lower-left corner of the screen to (0,0) and

the upper right corner to (1.0,1.0). inches, centimeters, and points are absolute

units (one point equals 1/72 of an inch).

This property affects the PointerLocation and ScreenSize properties. If you
change the value of Units, it is good practice to return it to its default value
after completing your operation so as not to affect other functions that assume
Units is set to the default value.

UserData matrix

User specified data. This property can be any data you want to associate with
the Root object. MATLAB does not use this property, but you can access it using
the set and get functions.

Visible {on} | off
Obiject visibility. This property has no effect on the Root object.

diary, echo, figure, format, gcf, get, set

|

1-279

rose

Purpose

Syntax

Description

1-280

Angle histogram

rose(theta)
rose(theta,x)
rose(theta,nbins)
[tout,rout] = rose(...)

rose creates an angle histogram, which is a polar plot showing the distribu-
tion of values grouped according to their numeric range. Each group is shown
as one bin.

rose(theta) plots an angle histogram showing the distribution of theta in 20
angle bins or less. The vector theta, expressed in radians, determines the angle
from the origin of each bin. The length of each bin reflects the number of
elements in theta that fall within a group, which ranges from 0 to the greatest
number of elements deposited in any one bin.

rose(theta,x) uses the vector x to specify the number and the locations of
bins. Iength(x) is the number of bins and the values of x specify the center
angle of each bin. For example, if x is a five-element vector, rose distributes
the elements of theta in five bins centered at the specified x values.

rose(theta,nbins) plots nbins equally spaced bins in the range [0, 2(pi].
The default is 20.

[tout,rout] = rose(...) returns the vectors tout and rout so
polar(tout, rout) generates the histogram for the data. This syntax does not
generate a plot.

rose

Example Create a rose plot showing the distribution 50 random numbers.

90 g theta = 2*pi*rand(1,50)
: rose(theta)

270

See Also compass, feather, hist, polar

1-281

rotate

Purpose

Syntax

Description

Remarks

1-282

Rotate object about a specified direction

rotate(h,direction,alpha)
rotate(...,origin)

The rotate function rotates a graphics object in three-dimensional space,
according to the right-hand rule.

rotate(h,direction,alpha) rotates the graphics object h by alpha degrees.
direction is a two- or three-element vector that describes the axis of rotation
in conjunction with the origin.

rotate(...,origin) specifies the origin of the axis of rotation as a
three-element vector. The default is [0 0 0].

The graphics object you want rotated must be a child of an Axes graphics
object. The object’'s data is modified by the rotation transformation. This is in
contrast to view and rotate3d, which only modify the viewpoint.

The axis of rotation is defined by an origin and a point P relative to the origin.
P is expressed as the spherical coordinates [theta phi], or as Cartesian coor-
dinates.

origin

The two-element form for direction specifies the axis direction using the
spherical coordinates [theta phi]. theta is the angle in the xy plane counter-

rotate

Examples

Algorithm

See Also

clockwise from the positive x-axis. phi is the elevation of the direction vector
from the xy plane.

The three-element form for direction specifies the axis direction using Carte-
sian coordinates. The direction vector is the vector from the origin to (X,Y,Z).

Rotate a graphics object 180° about the x-axis:

h = surf(peaks(20))
rotate(h,[1 0 0],180)

Rotate a Surface graphics object 45° about its center in the z direction:
h = surf(peaks(20))
zdir = [0 O 1]
center = [10 10 O]
rotate(h,zdir,45,center)

rotate changes the Xdata, Ydata, and Zdata properties of the appropriate
graphics object.

rotate3d, sph2cart, view

|

1-283

rotate3d

Purpose

Syntax

Description

See Also

1-284

Rotate Axes using mouse

rotate3d
rotate3d on
rotate3d off

rotate3d on enables interactive Axes rotation within the current figure using
the mouse. When interactive Axes rotation is enabled, clicking on an Axes
draws an animated box, which rotates as the mouse is dragged, showing the
View that will result when the mouse button is released. A numeric readout
appears in the lower-left corner of the figure during this time, showing the
current Azimuth and Elevation of the animated box. Releasing the mouse
button removes the animated box and the readout, and changes the View of the
Axes to correspond to the last orientation of the animated box.

rotate3d off disables interactive Axes rotation in the current Figure.

rotate3d toggles interactive Axes rotation in the current Figure.

rotate, view

selectmoveresize

Purpose

Syntax

Description

See Also

Selecting, moving, resizing, or copying graphics objects

object_creation_fcn("ButtonDownFcn*®, "selectmoveresize®)
set(h, "ButtonDownFcn*, "selectmoveresize®)
A = selectmoveresize;

selectmoveresize is a function that you can use as the callback routine for any
graphics object’s button down function. When executed, it selects graphics
objects and allows you to move, resize, and copy them.

A = selectmoveresize returns a structure array containing:

= A_Type: a sting containing the action type, which can be Select, Move,
Resize, or Copy

= A.Handles: a list of the selected handles or for a Copy an Mx2 matrix contain-
ing the original handles in the first column and the new handles in the sec-
ond column.

The ButtonDownFcn of all graphics objects.

1-285

semilogx, semilogy

Purpose

Syntax

Description

1-286

Semi-logarithmic plots

semi logx(Y)

semilogx(X1,Y1,...)

semilogx(X1,Y1l,LineSpec, -..)

semilogx(. .., "PropertyName” ,PropertyValue,...)
h = semilogx(...)

semilogy(--.)
h = semilogy(--..)

semi logx and semi logy plot data as logarithmic scales for the x- and y-axis,
respectively.

semi logx(Y) creates a plot using a base 10 logarithmic scale for the x-axis and
a linear scale for the y-axis. It plots the columns of Y versus their index if Y
contains real numbers. semi logx(Y) is equivalent to semi -

logx(real (Y), imag(Y)) if Y contains complex numbers. semi logx ignores the
imaginary component in all other uses of this function.

semi logx(X1,Y1,...) plots all Xn versus Yn pairs. If only Xn or Yn is a matrix,
semi logx plots the vector argument versus the rows or columns of the matrix,
depending on whether the vector’'s row or column dimension matches the
matrix.

semilogx(X1,Y1,LineSpec,...) plots all lines defined by the
Xn,Yn,LineSpec triples. LineSpec determines line style, marker symbol, and
color of the plotted lines.

semilogx(- - ., "PropertyName* ,PropertyValue, ...) sets property values
for all Line graphics objects created by semi logx. See the line reference page
for more information.

semilogy(...) creates a plot using a base 10 logarithmic scale for the y-axis
and a linear scale for the x-axis.

h = semilogx(...) and h = semilogy(...) return a vector of handles to
Line graphics objects, one handle per Line.

semilogx, semilogy

|

Remarks If you do not specify a color when plotting more than one line, semilogx and
semi logy automatically cycle through the colors and line styles in the order
specified by the current Axes ColorOrder and LineStyleOrder properties.

You can mix Xn,Yn pairs with Xn, Yn, LineSpec triples, for example,

semi logx(X1,Y1,X2,Y2,LineSpec,X3,Y3)

Examples A simple semilogy plot is:
X = 0:.1:10;
semilogy(x,10.7x)

10"

10" 1

10" 1

10" 1

10° + 1

10 I I I I I I I I I

See Also line, LineSpec, loglog, plot

1-287

set

Purpose

Syntax

Description

1-288

Set object properties

set(H, "PropertyName® ,PropertyValue, ...)
set(H,a)

set(H,pn,pv...)

set(H,pn,<m-by-n cell array>)

a= set(h)

a= set(0, "Factory")

a= set(0, "FactoryObjectTypePropertyName*)
a= set(h, "Default®)

a= set(h, "DefaultObjectTypePropertyName")
<cell array> = set(h, "PropertyName*®)

set(H, "PropertyName” ,PropertyValue, . ..) sets the named properties to
the specified values on the object(s) identified by H.

set(H,a) sets the named properties to the specified values on the object(s)
identified by H. a is a structure array whose field names are the object property
names and whose field values are the values of the corresponding properties.

set(H,pn,pv,...) setsthe named properties specified in the cell array pn to
the corresponding value in the cell array pv for all objects identified in H.

set(H,pn,<m-by-n cell array>) sets n property values on each of m
graphics objects, where m = length(H) and n is equal to the number of prop-
erty names contained in the cell array pn. This allows you to set a given group
of properties to different values on each object.

a = set(h) returns the user-settable properties and possible values for the
objectidentified by h. a is a structure array whose field names are the object’s
property names and whose field values are the possible values of the corre-
sponding properties. If you do not specify an output argument, MATLAB
displays the information on the screen. h must be scalar.

a = set(0, "Factory™) returns the properties whose defaults are user
settable for all objects and lists possible values for each property. a is a struc-
ture array whose field names are the object’s property names and whose field
values are the possible values of the corresponding properties. If you do not
specify an output argument, MATLAB displays the information on the screen.

set

Remarks

Examples

a = set(0, "FactoryObjectTypePropertyName") returns the possible values
of the named property for the specified object type, if the values are strings. The
argument FactoryObjectTypePropertyName is the word Factory concatenated
with the object type (e.g., Axes) and the property name (e.g., CameraPosition).

a = set(h, "Default™) returns the names of properties having default values
set on the object identified by h. set also returns the possible values if they are
strings. h must be scalar.

a = set(h, "DefaultObjectTypePropertyName") returns the possible values
of the named property for the specified object type, if the values are strings. The
argument Defaul tObjectTypePropertyName is the word Defaul t concatenated
with the object type (e.g., Axes) and the property name (e.g., CameraPosition).
For example, Defaul tAxesCameraPosition. h must be scalar.

pv = set(h, "PropertyName") returns the possible values for the named prop-
erty. If the possible values are strings, set returns each in a cell of the cell
array, pv. For other properties, set returns an empty cell array. If you do not
specify an output argument, MATLAB displays the information on the screen.
h must be scalar.

You can use any combination of property name/property value pairs, structure
arrays, and cell arrays in one call to set.

You can define a group of properties in a structure to better organize your code.
For example, these statements define a structure called active, which contains
a set of property definitions used for the Uicontrol objects in a particular
Figure. When this Figure becomes the current Figure, MATLAB changes colors
and enables the controls:

active._BackgroundColor = [.7 .7 .7];
active._Enable = "on";
active.ForegroundColor

[0 0 0O]:
if gcf == control_fig_handle

set(findobj(control_fig_handle, "Type", "uicontrol ") ,active)
end

1-289

set

See Also

1-290

You can use cell arrays to set properties to different values on each object. For
example, these statements define a cell array to set three properties:

PropName(1) = {"BackgroundColor"};
PropName(2) {"Enable"};
PropName(3) {"ForegroundColor"};

These statements define a cell array containing three values for each of three
objects. (i.e., a 3-by-3 cell array):

Propval (1,1) = {[-5 -5 -5]}:
Propval (1,2) = {"off"};
Propval (1,3) = {[-9 -9 .9]}:

Propval(2,1) = {[1 0 0]};
Propval(2,2) = {"on"};
Propval(2,3) = {[1 1 1]};

Propval (3,1) = {[-7 -7 .71};
Propval(3,2) = {"on"};
Propval (3,3) = {[0 0 0]%};

Now pass the arguments to set,

set(H,PropName,PropVval)

where length(H) == 3 and each element is the handle to a Uicontrol.

findobj, gca, gcf, gco, gcbo, get

shading

Purpose

Syntax

Description

Examples

|

Set color shading properties

shading flat
shading faceted
shading interp

The shading function controls the color shading of Surface and Patch graphics
objects.

shading flat sets each mesh line segment, Surface face, or Patch face to a
constant color determined by the color values at the end points of the segment,
or the corners of the Surface face or Patch.

shading faceted sets the shading to flat with individual faces outlined in
black. This is the default shading mode.

shading interp varies the color in each line segment, Surface face, or Patch
face by interpolating the colormap index or true color value across the face or
line.

Compare a flat-shaded sphere with a Gouraud-shaded sphere:
colormap gray

subplot(1,2,1)
surf(peaks(10));

axis square

shading flat
title("Flat Shading®)

subplot(1,2,2)
surf(peaks(10));

axis square

shading interp
title("Interpolated Shading®)

1-291

shading

Flat Shading Interpolated Shading

Algorithm shading sets the EdgeColor and FaceColor properties of all Surface and Patch
graphics objects in the current Axes. shading sets the appropriate values,
depending on whether the Surface or Patch objects represent meshes or solid
surfaces.

See Also fill, fill3, hidden, mesh, patch, pcolor, surf

The EdgeColor and FaceColor properties for Surface and Patch graphics
objects.

1-292

slice

Purpose

Syntax

Description

Volumetric slice plot

slice(V,sx,sy,sz)
slice(X,Y,Z,V,sx,sy,Sz)
slice(V,X1,Y1,Z1)
slice(X,Y,Z,V,X1,YL,ZI)
slice(...,"method")

h = slice(...)

slice displays volumetric data. You indicate the portion of the data you want
to view by specifying a slice plane or surface.

slice(V,sx,sy,sz) drawsdata in the volumeV for the slices defined by sx, sy,
and sz. V is an m-by-n-by-p volume array containing data values at the default
location X = 1:n, Y = 1:m, Z = 1:p. Each element in the vectors sx, sy, and sz
defines a slice plane in the x-, y-, or z-axis direction.

slice(X,Y,Z,V,sx,sy,sz) draws slices of the volume V. X, Y, and Z are
three-dimensional arrays specifying the coordinates for V. X, Y, and Z must be
monotonic and orthogonally spaced (e.g., produced by the function meshgrid).

slice(V,X1,Y1,Z1) drawsdatain the volumeV for the slices defined by X1, Y1,
and zI1. X1, Y1, and Z1 are matrices that define a surface and the volume is eval-
uated at the surface points. X1, YI, and ZI must all be the same size.

slice(X,Y,Z,V,XI1,Y1,Z1) draws slices of the volume V. X, Y, and Z are
three-dimensional arrays specifying the coordinates for V. X, Y, and Z must be
monotonic and orthogonally spaced (e.g., produced by the function meshgrid).

slice(..., "method") specifies the interpolation method. "method" is
"linear", "cubic", or "nearest”. "linear” is the default.

= "linear" specifies trilinear interpolation.
= “cubic" specifies tricubic interpolation.

= "nearest™ specifies nearest neighbor interpolation.

h = slice(...) returns a vector of handles to Surface graphics objects.

1-293

slice

The color drawn at each point is determined by interpolation into the volume V.

Remarks
Examples Visualize the function
v = xe(-x?-y?-2?)
over the range -2 <x<2, -2 <y <2, -2 <7 £2:
[x,y,z] = meshgrid(-2:.2:2, —2:.25:2, -2:.16:2);
v = X.[exp(—x."2-y . "2—z."2);
xslice = [-1.2 .8 2]; yslice = 2; zslice = [-2 0];
slice(x,y,z,v,xslice,yslice,zslice)
See Also meshgrid

The interp3 function in the online MATLAB Function Reference.

1-294

slice

1-295

sphere

Purpose

Syntax

Description

Examples

See Also

-296

Generate sphere

sphere
sphere(n)
[X,Y,Z] = sphere(...)

The sphere function generates the x-, y-, and z-coordinates of a unit sphere for
use with surf and mesh.

sphere generates a sphere consisting of 20-by-20 faces.
sphere(n) draws a surf plot of an n-by-n sphere in the current Figure.

[X,Y,Z] = sphere(n) returns the coordinates of a sphere in three matrices
that are (n+1)-by—(n+1) in size. You draw the sphere with surf(X,Y,Z) or
mesh(X,Y,Z).

Generate and plot a sphere:

[X,Y,Z] = sphere(10);
mesh(X,Y,Z)

-1 -1

cylinder

spinmap

Purpose

Syntax

Description

See Also

|

Spin colormap

spinmap
spinmap(t)
spinmap(t,inc)
spinmap("inf")

The spinmap function shifts the colormap RGB values by some incremental
value. For example, if the increment equals 1, color 1 becomes color 2, color 2
becomes color 3, etc.

spinmap cyclically rotates the colormap for approximately five seconds using
an incremental value of 2.

spinmap(t) rotates the colormap for approximately 100k seconds. The amount
of time specified by t depends on your hardware configuration (e.g., if you are
running MATLAB over a network).

spinmap(t, inc) rotates the colormap for approximately 100k seconds and
specifies an increment inc by which the colormap shifts. When inc is 1, the
rotation appears smoother than the default (i.e., 2). Increments greater than 2
are less smooth than the default. A negative increment (e.g., —2) rotates the
colormap in a negative direction.

spinmap("inf") rotates the colormap for an infinite amount of time. To break
the loop, press Ctrl-C .

colormap

-297

stairs

Purpose

Syntax

Description

Examples

See Also

-298

Stairstep plot

stairs(Y)

stairs(X,Y)
stairs(...,LineSpec)
[xb,yb] = stairs(Y)
[xb,yb] = stairs(X,Y)

Stairstep plots are useful for drawing time-history plots of digitally sampled
data systems.

stairs(Y) draws a stairstep plot of the elements of Y. When Y is a vector, the
x-axis scale ranges from 1 to size(Y). When Y is a matrix, the x-axis scale
ranges from 1 to the number of rows in Y.

stairs(X,Y) plots X versus the columns of Y. X and Y are vectors of the same
size or matrices of the same size. Additionally, X can be a row or a column
vector, and Y a matrix with length(X) rows.

stairs(...,LineSpec) specifies a line style, marker symbol, and color for the
plot.

[xb,yb] = stairs(Y) and [xb,yb] = stairs(x,Y) do not draw graphs, but
return vectors xb and yb such that plot(xb,yb) plots the stairstep graph.

Create a stairstep plot of a sine wave:

X = 0:.25:10;
stairs(x,sin(x))

bar, hist

stem

Purpose

Syntax

Description

Plot discrete sequence data

stem(Y)

stem(X,Y)

stem(. .., "Fill")
stem(...,LineSpec)
h = stem(...)

A two-dimensional stem plot displays data as lines extending from the x-axis.
A circle (the default) or other marker symbol whose y-position represents the
data value, terminates each stem.

stem(Y) plots the data sequence Y as stems that extend from equally spaced
and automatically generated values along the x-axis. When Y is a matrix, stem
plots all elements in a row against the same x value.

stem(X,Y) plots X versus the columns of Y. X and Y are vectors or matrices of
the same size. Additionally, X can be a row or a column vector, and Y a matrix
with Iength(X) rows.

stem(...,"Fill") specifies whether to color the circle at the end of the stem.

stem(...,LineSpec) specifies the line style, marker symbol, and color for the
stem plot.

h = stem(...) returns handles to Line graphics objects.

-299

stem

Create a stem plot of 10 random numbers:

Examples

L O -
F of
L S _
L S S S S -
L O]
L D T S -
L S _
L [ER S _
L JeSL S S S _
L.e - S
e ® m © ® % w N o
S 86 8 © © © oS oS o
~
Ll
i
~
o o
— A
na —{
o
N~ |
T O
C e
© >
-\
I=30)]
I Q -
- X
> n ©

11

10

bar, plot, stairs, stem3

See Also

-300

stem3

Purpose

Syntax

Description

Plot three-dimensional discrete sequence data

stem3(2)
stem3(X,Y,2)
stem3(..., "Ffill")
stem3(...,LineSpec)
h = stem3(...)

Three-dimensional stem plots display lines extending from the xy-plane. A
circle (the default) or other marker symbol whose z-position represents the
data value, terminates each stem.

stem3(2) plots the data sequence Z as stems that extend from the xy-plane. x
and y are generated automatically. When Z is a row vector, stem3 plots all
elements at equally spaced x values against the same y value. When Z is a
column vector, stem3 plots all elements at equally spaced y values against the
same x value.

stem3(X,Y,Z) plots the data sequence Z at values specified by X and Y. X, Y,
and Z must all be vectors or matrices of the same size.

stem3(..., "Fill") specifies whether to color the circle at the end of the stem.

stem3(...,LineSpec) specifies the line style, marker symbol, and color for
the stems.

h = stem3(...) returns handles to Line graphics objects.

-301

stem3

Examples

See Also

-302

Create a three-dimensional stem plot of 10 random numbers:

Z = rand(1,10)
stem3(Z,"—*")

bar, plot, stairs, stem

0.8

0.6

0.4

0.2

N o

10

subplot

Purpose

Syntax

Description

Remarks

Examples

See Also

|

Create and control multiple Axes

subplot(m,n,p)

subplot(h)

subplot("Position®,[left bottom width height])
h = subplot(...)

subplot divides the current Figure into rectangular panes that are numbered
row-wise. Each pane contains an Axes. Subsequent plots are output to the
current pane.

subplot(m,n,p) creates an Axes in the p-th pane of a Figure divided into an
m-by-n matrix of rectangular panes. The new Axes becomes the current Axes.

subplot(h) makes the Axeswith handle h current for subsequent plotting
commands.

subplot("Position",[left bottom width height]) creates an Axes at the
position specified by a four-element vector. left, bottom, width, and height
are in normalized coordinates in the range from 0.0 to 1.0.

h = subplot(...) returns the handle to the new Axes.

If a subplot specification causes a new Axes to overlap an existing Axes,
subplot deletes the existing Axes. subplot(1,1,1) or clf deletes all Axes
objects and returns to the default subplot(1,1,1) configuration.

To plot income in the top half of a Figure and outgo in the bottom half,

income = [3.2 4.1 5.0 5.6];
outgo = [2.5 4.0 3.35 4.9];
subplot(2,1,1); plot(income)
subplot(2,1,2); plot(outgo)

axes, cla, clf, figure, gca

-303

surf, surfc

Purpose

Syntax

Description

Algorithm

-304

3-D shaded surface plot

surf(2)
surf(X,Y,2)
surf(...,C)
surfc(...)

h = surf(...)
h = surfc(...)

You use surf and surfc to view mathematical functions over a rectangular
region. surf and surfc create colored parametric surfaces specified by X, Y, and
Z, with color specified by Z or C.

surf(2) creates a a three-dimensional shaded surface from the z components
in matrix Z, using x = 1:nandy = 1:m, where [m,n] = size(2Z). The height,
Z, is a single-valued function defined over a geometrically rectangular grid. Z
specifies the color data as well as Surface height, so color is proportional to
surface height.

surf(X,Y,Z) creates a shaded Surface using Z for the color data as well as
Surface height. X and Y are vectors or matrices defining the x and y components
of a Surface. If X and Y are vectors, length(X) = n and length(Y) = m, where
[m,n] = size(2). In this case, the vertices of the Surface faces are

(X(J), Y (i), Z(i, j)) triples.

surf(...,C) creates a shaded surface, with color defined by C. MATLAB
performs a linear transformation on this data to obtain colors from the current
colormap.

surfc(...) draws a contour plot beneath the Surface.

h = surf(...) and h = surfc(...) return a handle to a Surface graphics
object.

Abstractly, a parametric surface is parametrized by two independent variables,
i and j, which vary continuously over a rectangle, for example,1 < i < mand
1 £ j < n. Thethree functions, x(i,j), y(i,j),and z(i,j) specify the surface.
When i and j are integer values, they define a rectangular grid with integer

surf, surfc

|

grid points. The functions x(i,j), y(i,j), and z(i,j) become three m-by-n
matrices, X, Y and z. Surface color is a fourth function, c(i,j), denoted by
matrix C.

Each point in the rectangular grid can be thought of as connected to its four
nearest neighbors:

i-1.]
I

i1 — 0. - i.j+1
I

i+1,])
This underlying rectangular grid induces four-sided patches on the surface. To
express this another way, [X(:) Y(:) Z(:)] returns a list of triples specifying
points in 3-space. Each interior point is connected to the four neighbors inher-
ited from the matrix indexing. Points on the edge of the surface have three
neighbors; the four points at the corners of the grid have only two neighbors.
This defines a mesh of quadrilaterals or a quad-mesh.

Surface color can be specified in two different ways — at the vertices or at the
centers of each patch. In this general setting, the surface need not be a single
valued function of x and y. Moreover, the four-sided surface patches need not
be planar. For example, you can have surfaces defined in polar, cylindrical, and
spherical coordinate systems.

The shading function sets the shading. If the shading is interp, C must be the
same size as X, Y, and Z; it specifies the colors at the vertices. The color within
a surface patch is a bilinear function of the local coordinates. If the shading is
faceted (the default) or flat, C(i,j) specifies the constant color in the surface
patch:

aipn - 3a.,j+)
I CcG.i) |
(+1,j) - (@(+1,j+1)

In this case, C can be the same size as X, Y, and Z and its last row and column
are ignored, Alternatively, its row and column dimensions can be one less than
those of X, Y, and z.

The surf and surfc functions specify the view point using view(3).

-305

surf, surfc

Examples

-306

The range of X, Y, and Z, or the current setting of the Axes XLimMode, Yl imMode,
and zlimMode properties (also set by the axis function) determine the axis
labels.

The range of C, or the current setting of the Axes CLim and ClimMode properties
(also set by the caxis function) determine the color scaling. The scaled color
values are used as indices into the current colormap.

Display a surface and contour plot of the peaks surface:
[X,Y] = meshgrid(-3:.125:3);
= peaks(X,Y);
surfc(X,Y,2)
axis([-3 3 -3 3 -10 5]

10

0
“‘\\\\‘\‘\“\

g o :,’,’,/////,on‘ R

O
OI/,/r

"I'I"‘“
R

surf, surfc

Color a sphere with the pattern of +1s and -1s in a Hadamard matrix:

k = 5;

n = 2"k-1;

[x.y.z] = sphere(n);

c = hadamard(27k);
surf(x,y,z,c);

colormap([21 1 O0; O 1 1D
set(gca, "Stretch”, "off")

See Also axis, caxis, colormap, contour, mesh, pcolor, shading, view

Properties for Surface graphics objects.

-307

surface

Purpose

Syntax

Description

-308

Create Surface object

surface(2)

surface(Z,0C)

surface(X,Y,2)

surface(X,Y,Z,C)
surface(..."PropertyName®,PropertyValue,...)
h = surface(...)

surface is the low-level function for creating Surface graphics objects. Surfaces
are plots of matrix data created using the row and column indices of each
element as the x- and y- coordinates and the value of each element as the z-coor-
dinate.

surface(Z) plots the Surface specified by the matrix z. Here, Z is a
single-valued function, defined over a geometrically rectangular grid.

surface(Z,C) plots the Surface specified by Z and colors it according to the
data in C (see “Examples”).

surface(X,Y,Z,C) plots the parametric surface specified by X, Y and z, with
color specified by C.

surface(X,Y,Z) usesC = Z,socolorisproportional to surface height above the
x-y plane.

surface(x,y,Z2), surface(x,y,Z,C) replaces the first two matrix arguments
with vectors and must have Iength(x) = n and length(y) = m where

[m,n] = size(2). In this case, the vertices of the Surface facets are the triples
() ,y(i),2(i,j)). Note that x corresponds to the columns of z and y corre-
sponds to the rows of z. For a complete discussion of parametric surfaces, see
the surf reference page.

surface(..."PropertyName" ,PropertyValue, ...) follows the X, Y, z,and C
arguments with property name/property value pairs to specify additional
Surface properties. These properties are described in the “Surface Properties”
section.

h = surface(...) returns a handle to the created Surface object.

surface

Remarks

Example

|

Unlike high-level area creation functions, such as surf or mesh, surface does
not respect the settings of the Figure and Axes NextPlot properties. It simply
adds the Surface object to the current Axes.

If you do not specify separate color data (C), MATLAB uses the matrix (2) to
determine the coloring of the Surface. In this case, color is proportional to
values of z. You can specify a separate matrix to color the Surface indepen-
dently of the data defining the area of the Surface.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for examples of
how to specify these data types).

surface provides convenience forms that allow you to omit the property name
for the XData, YData, ZData, and CData properties. For example,

surface("XData",X, "YData",Y, "ZData",Z, "CData",C)
is equivalent to:
surface(X,Y,Z,C)
When you specify only a single matrix input argument,
surface(2)
MATLAB assigns the data properties as if you specified,

surface("XData",[1:size(Z,2)],---
*YData",[1l:size(Z,1)],---
"ZData*",Z, ...
"CDhata”,2)

The axis, caxis, colormap, hold, shading, and view commands set graphics
properties that affect Surfaces. You can also set and query Surface property
values after creating them using the set and get commands.

This example creates a Surface using the peaks M-file to generate the data and
colors it using the clown Image. The zData is a 49-by-49 element matrix, while

-309

surface

the CData is a 200-by-320 matrix. You must set the FaceColor to texturemap to
use zZData and CDhata of different dimensions.

load clown

surface(peaks, flipud(X), ...
"FaceColor", "texturemap”, ...
"EdgeColor”®, "none”, ...
"CDataMapping”, "direct™)

colormap(map)

view(3d)

Note the use of the surface(z,C) convenience form combined with property
name/property value pairs.

Since the clown data () is typically viewed as an Image, which MATLAB
normally displays with 'ij' axis numbering and direct CDataMapping, this
example reverses the data in the vertical direction using flipud and sets the
CDataMapping property to direct.

-310

surface

Object
Hierarchy

Surface
Properties

|

Root
Figure

I]

| Axes | |Uimenu

I I I |
| Image | Line | | Text | | Light |

Setting Default Properties

| Uicontrol

You can set default Surface properties on the Axes, Figure, and Root levels:

set (0, "DefaultSurfaceProperty” ,PropertyValue...)
set(gcf, "DefaultSurfaceProperty” ,PropertyValue...)
set(gca, "DefaultSurfaceProperty” ,PropertyValue...)

Where Property is the name of the Surface property whose default value you
want to set and PropertyValue is the value you are specifying.

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

AmbientStrength scalar>=0and <=1

Strength of ambient light. This property sets the strength of the ambient light,
which is a nondirectional light source that illuminates the entire scene. You
must have at least one visible Light object in the Axes for the ambient light to
be visible. The Axes AmbientColor property sets the color of the ambient light,
which is therefore the same on all objects in the Axes.

You can also set the strength of the diffuse and specular contribution of Light
objects. See the DiffuseStrength and SpecularStrength properties.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked call-

-311

surface

-312

back routes always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then interrup-
tion occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

= cancel —discard the event that attempted to execute a second callback rou-
tine.

= queue — queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the Surface object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

CDhata matrix

Vertex colors. A matrix of values that specify the color at every point in zData.
If you set the FaceColor property to texturemap, CData does not need to be the
same size as zData. In this case, MATLAB maps CData to conform the Surface

defined by zData.

You can specify color as indexed values or true color. Indexed color data speci-
fies a single value for each vertex. These values are either scaled to linearly
map into the current colormap (see caxis) or interpreted directly as indices
into the colormap, depending on the setting of the CDataMapping property.

True color defines an RGB value for each vertex. If the coordinate data (XData
for example) are contained in an m-by-n matrix, then CbData must be an
m-by-n-3 array. The first page contains the red components, the second the
green components, and the third the blue components of the colors.

On computer displays that cannot display true color (e.g., 8-bit displays),
MATLAB uses dithering to approximate the RGB triples using the colors in the
Figure’s Colormap and Dithermap, which defaults to colorcube(64). You can
also specify your own dithermap.

surface

CDataMapping {scaled} | direct

Direct or scaled color mapping. This property determines how MATLAB inter-
prets indexed color data used to color the Surface. (If you use true color speci-
fication for CData, this property has no effect.)

= scaled — transform the color data to span the portion of the colormap indicat-
ed by the Axes CLim property, linearly mapping data values to colors. See the
caxis reference page for more information on this mapping.

= direct — use the color data as indices directly into the colormap. The color
data should then be integer values ranging from 1 to length(colormap).
MATLAB maps values less than 1 to the first color in the colormap, and val-
ues greater than length(colormap) to the last color in the colormap. Values
with a decimal portion are fixed to the nearest, lower integer.

Children matrix of handles
Always the empty matrix; Surface objects have no children.
Clipping {on} | off

Clipping to Axes rectangle. When Clipping is on, MATLAB does not display any
portion of the Surface that is outside the Axes rectangle.

CreateFcn string

Callback routine executed during object creation. This property defines a call-
back routine that executes when MATLAB creates a Surface object. You must
define this property as a default value for Surfaces. For example, the state-
ment,

set(0, "DefaultSurfaceCreateFcn™, ...
"set(gcf, " "DitherMap" " ,my_dithermap)*)

defines a default value on the Root level that sets the Figure DitherMap prop-
erty whenever you create a Surface object. MATLAB executes this routine after
setting all Surface properties. Setting this property on an existing Surface
object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

|

-313

surface

-314

DeleteFcn string

Delete Surface callback routine. A callback routine that executes when you
delete the Surface object (e.g., when you issue a delete command or clear the
Axes or Figure). MATLAB executes the routine before destroying the object’s
properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

DiffuseStrength scalar >>0and <=1

Intensity of diffuse light. This property sets the intensity of the diffuse compo-
nent of the light falling on the Surface. Diffuse light comes from Light objects
in the Axes.

You can also set the intensity of the ambient and specular components of the
light on the Surface object. See the AmbientStrength and SpecularStrength
properties.

surface

|

EdgeColor {ColorSpec} | none | flat | interp

Color of the Surface edge. This property determines how MATLAB colors the
edges of the individual faces that make up the Surface:

= ColorSpec — A three-element RGB vector or one of MATLAB's predefined
names, specifying a single color for edges. The default EdgeColor is black. See
the Colorspec reference page for more information on specifying color.

=< none — Edges are not drawn.

= flat — The CData value of the first vertex for a face determines the color of
each edge:

Direction of
increasing y data

Vertex controlling the - =
color of adjacent edges Direction of
increasing x data

= interp — Linear interpolation of the CDhata values at the face vertices deter-
mines the edge color.
EdgeLighting {none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the algorithm
used to calculate the effect of Light objects on Patch edges. Choices are:

= none — Lights do not affect the edges of this object.
= flat — The effect of Light objects is uniform across each edge of the Surface.

= gouraud — The effect of Light objects is calculated at the vertices and then
linearly interpolated across the edge lines.

= phong — The effect of Light objects is determined by interpolating the vertex
normals across each edge line and calculating the reflectance at each pixel.

Phong lighting generally produces better results than Gouraud lighting, but
takes longer to render.

-315

surface

-316

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase Surface objects. Alternative erase modes are useful in creating animated
sequences, where control of the way individual objects redraw is necessary to
improve performance and obtain the desired effect.

= normal — Redraw the affected region of the display, performing the three-di-
mensional analysis necessary to ensure that all objects are rendered correct-
ly. This mode produces the most accurate picture, but is the slowest. The
other modes are faster, but do not perform a complete redraw and are there-
fore less accurate.

= none — Do not erase the Surface when it is moved or destroyed.

= xor — Draw and erase the Surface by performing an exclusive OR (XOR)
with each pixel index of the screen beneath it. Erasing the Surface does not
damage the color of the objects beneath it. However, Surface color depends
on the color of the screen beneath it and is correctly colored only when over
the Axes background color, or Figure background color if the Axes color is set
to none.

= background — Erase the Surface by drawing it in the Axes’ background color.
This damages objects that are behind the erased object, but Surface objects
are always properly colored.

FaceColor ColorSpec | none | {flat} | interp
Color of the Surface face. This property can be any of the following:
= ColorSpec — A three-element RGB vector or one of MATLAB's predefined

names, specifying a single color for faces. See the ColorSpec reference page
for more information on specifying color.

= none — Do not draw faces. Note that edges are drawn independently of faces.

= flat — The values of Chata determine the color for each face of the Surface.
The color data at the first vertex determines the color of the entire face.

= interp — Bilinear interpolation of the values at each vertex (the Cbata) de-
termines the coloring of each face.

= texturemap — Texture map the CDhata to the Surface. MATLAB transforms the
color data so that it conforms to the Surface. (See “Examples”)

surface

|

FaceLighting {none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the algorithm
used to calculate the effect of Light objects on the Surface. Choices are:

= none — Lights do not affect the faces of this object.

= flat — The effect of Light objects is uniform across the faces of the Surface.
Select this choice to view faceted objects.

= gouraud — The effect of Light objects is calculated at the vertices and then
linearly interpolated across the faces. Select this choice to view curved sur-
faces.

= phong — The effect of Light objects is determined by interpolating the vertex
normals across each face and calculating the reflectance at each pixel. Select
this choice to view curved surfaces. Phong lighting generally produces better
results than Gouraud lighting, but takes longer to render.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This prop-
erty determines when an object’s handle is visible in its parent’s list of children.
Handles are always visible when HandleVisibility is on. When
HandleVisibility is cal Iback, handles are visible from within callbacks or
functions invoked by callbacks, but not from within functions invoked from the
command line - a useful way to protect GUIs from command-line users, while
permitting their callbacks complete access to their own handles. Setting
HandleVisibility to off makes handles invisible at all times - which is occa-
sionally necessary when a callback needs to invoke a function that might
potentially damage the Ul, and so wants to temporarily hide its own handles
during the execution of that function.

When a handle is not visible in its parent’s list of children, it can not be
returned by any functions which obtain handles by searching the object hier-
archy or querying handle properties, including get, findobj, gca, gcf, gco,
newplot, cla, clf, and close. When a handle’s visibility is restricted using
cal lback or off, the object’'s handle does not appear in its parent’s Children
property, Figures do not appear in the Root’s CurrentFigure property, objects
do not appear in the Root's Cal IbackObject property or in the Figure's
CurrentObject property, and Axes do not appear in their parent’s CurrentAxes
property.

-317

surface

The Root ShowHiddenHandles property can be set to on to temporarily make all
handles visible, regardless of their HandleVisibi lity settings (this does not
affect the values of the HandleVisibi lity properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.
This property is useful for preventing command-line users from accidently
drawing into or deleting a Figure that contains only user interface devices
(such as a dialog box).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a Surface callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in theroutine. See the EventQueue property for
related information.

LineStyle {31—1:1 —- | none

Edge line type. This property determines the line style used to draw Surface
edges. The available line styles are:

Symbol Line Style
- solid line (default)

- - dashed line
dotted line
- dash-dot line
none no line
LineWidth scalar

Edge line width. The width of the lines in points used to draw Surface edges.
The default width is 0.5 points (1 point = 1/72 inch).

-318

surface

Marker

|

marker symbol (see table)

Marker symbol. The Marker property specifies symbols that display at vertices.
You can set values for the Marker property independently from the LineStyle

property.

The available markers are:

Marker Specifier

+

0

X
square
diamond

N

v

>

<
pentagram
hexagram

none

Description

plus sign

circle

asterisk

point

Cross

square

diamond

upward pointing triangle
downward pointing triangle
right pointing triangle
left pointing triangle
five-pointed star
six-pointed star

no marker (default)

-319

surface

-320

MarkerEdgeColor ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for filled markers
(circle, square, diamond, pentagram, hexagram, and the four triangles).

= ColorSpec defines a single color to use for the edge (see the ColorSpec refer-
ence page).

= none specifies no color, which makes nonfilled markers invisible.

= auto uses the same color as the EdgeColor property.

MarkerFaceColor ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes (circle,
square, diamond, pentagram, hexagram, and the four triangles).

= ColorSpec defines a single color to use for all marker on the Surface (see the
ColorSpec reference page).

= none makes the interior of the marker transparent, allowing the background
to show through.

= auto uses the cbata for the vertex located by the marker to determine the col-
or.

MarkerSize size in points.

Marker size. A scalar specifying the marker size, in points. The default value

for MarkerSize is six points (1 point = 1/72 inch). Note that MATLAB draws the
point marker at 1/3 the specified marker size.

MeshStyle {both} | row | column

Row and column lines. This property specifies whether to draw all edge lines

or just row or column edge lines.

= both draws edges for both rows and columns.

= row draws row edges only.

= column draws column edges only.

NormalMode {auto} | manual

MATLAB-generated or user-specified normal vectors. When this property is
auto, MATLAB calculates vertex normals based on the coordinate data. If you
specify your own vertex normals, MATLAB sets this property to manual and
does not generate its own data. See also the VertexNormals property.

surface

Parent handle

Surface’s parent object. The parent of a Surface object is the Axes in which it is
displayed. You can move a Surface object to another Axes by setting this prop-
erty to the handle of the new parent.

Selected on | off

Is object selected. When this property is on. MATLAB displays a dashed
bounding box around the Surface if the SelectionHighlight property is also
on. You can, for example, define the ButtonDownFcn to set this property,
allowing users to select the object with the mouse.

SelectionHighlight {on} | off

Obijects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing a dashed bounding box around the
Surface. When SelectionHighlight is off, MATLAB does not draw the
handles.

SpecularColorReflectancescalar in the range 0 to 1

Color of specularly reflected light. When this property is 0, the color of the spec-
ularly reflected light depends on both the color of the object from which it
reflects and the color of the light source. When set to 1, the color of the specu-
larly reflected light depends only on the color or the light source (i.e., the Light
object Color property). The proportions vary linearly for values in between.

SpecularExponent scalar>=1

Harshness of specular reflection. This property controls the size of the specular
spot. Most materials have exponents in the range of 5 to 20.

SpecularStrength scalar>=0and <=1

Intensity of specular light. This property sets the intensity of the specular
component of the light falling on the Surface. Specular light comes from Light
objects in the Axes.

You can also set the intensity of the ambient and diffuse components of the
light on the Surface object. See the AmbientStrength and DiffuseStrength
properties. Also see the material function.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when

|

-321

surface

See Also

-322

constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Class of the graphics object. The class of the graphics object. For Surface
objects, Type is always the string "surface".

UserData matrix

User-specified data. Any matrix you want to associate with the Surface object.
MATLAB does not use this data, but you can access it using the set and get
commands.

VertexNormals vector or matrix

Surface normal vectors. This property contains the vertex normals for the
Surface. MATLAB generates this data to perform lighting calculations. You can
supply your own vertex normal data, even if it does not match the coordinate
data. This can be useful to produce interesting lighting effects.

Visible {on} | off

Surface object visibility. By default, all Surfaces are visible. When set to off,
the Surface is not visible, but still exists and you can query and set its proper-
ties.

XData vector or matrix

X-coordinates. The x-position of the surface points. If you specify a row vector,
surface replicates the row internally until it has the same number of columns
as ZData.

YData vector or matrix

Y-coordinates. The y-position of the surface points. If you specify a row vector,
surface replicates the row internally until it has the same number of rows as
ZData.

ZData vector or matrix

Z-coordinates. Z-position of the surface points. See the “Description” section for
more information.

ColorSpec, mesh, patch, pcolor, surf

surfl

Purpose

Syntax

Description

Remarks

Surface plot with colormap-based lighting

surfl(2)
surfl(X,Y,2)
surfl(...,s)
surfl(X,Y,Z,s,k)
h = surfl(...)

The surfl function displays a shaded Surface based on a combination of
ambient, diffuse, and specular lighting models.

surfl(2) and surfl(X,Y,2) create three-dimensional shaded Surfaces using
the default direction for the light source and the default lighting coefficients for
the shading model. X, Y, and Z are vectors or matrices that define the x, y, and
z components of a Surface.

surfl (..., light”) produces a colored lighted surface using the Light
object. This produces different results than the default lighting method,
surfl(...,'cdata’), which changes the color data for the surface to be the reflec-
tance of the surface.

surfl(...,s) specifies the direction of the light source. s is a two- or
three-element vector that specifies the direction from a Surface to a light
source. s = [sx sy sz] or s = [azimuth elevation]. The default s is 45°
counterclockwise from the current view direction.

surfl(X,Y,Z,s,k) specifies the reflectance constant. k is a four-element
vector defining the relative contributions of ambient light, diffuse reflection,
specular reflection, and the specular shine coefficient. k = [ka kd ks shine]
and defaults to [.55, .6, .4,10].

h = surfl(...) returns a handle to a Surface graphics object.
For smoother color transitions, use colormaps that have linear intensity varia-
tions (e.g., gray, copper, bone, pink).

The ordering of points in the X, Y, and Z matrices define the inside and outside
of parametric surfaces. If you want the opposite side of the surface to reflect the

-323

surfl

light source, use surfl(X",Y",Z"). Due to the way surface normal vectors are
computed, surfl requires matrices that are at least 3-by-3.

Examples View the peaks function using colormap-based lighting:

[x,y]l = meshgrid(-3:1/8:3);
z = peaks(X,y);
surfl(x,y,z);

shading interp
colormap(gray);

axis([-3 3 -3 3 -8 8]

To plot a lighted surface from a view direction other than the default:

cla

hold on
view([10 10])
surfl(peaks)
shading interp
colormap(gray)
hold off

See Also colormap, shading, light

-324

surfnorm

Purpose

Syntax

Description

Remarks

Algorithm

Examples

|

Compute and display 3-D surface normals

surfnorm(2)
surfnorm(X,Y,Z2)
[Nx,Ny,Nz] = surfnorm(...)

The surfnorm function computes surface normals for the Surface defined by X,
Y, and Z. The surface normals are unnormalized and valid at each vertex.
Normals are not shown for Surface elements that face away from the viewer.

surfnorm(2) and surfnorm(X,Y,Z) plot a Surface and its surface normals. Z
is a matrix that defines the z component of the Surface. X and Y are vectors or
matrices that define the x and y components of the Surface.

[Nx,Ny,Nz] = surfnorm(...) returns the components of the three-dimen-
sional surface normals for the Surface.

The direction of the normals is reversed by calling surfnorm with transposed
arguments:

surfnorm(X*,Y",Z")
surfl uses surfnorm to compute surface normals when calculating the reflec-
tance of a Surface.

The surface normals are based on a bicubic fit of the data in X, Y, and Z. For
each vertex, diagonal vectors are computed and crossed to form the normal.

Plot the normal vectors for a truncated cone.

[x,y,z] = cylinder(1:10);
surfnorm(x,y,z)

-325

surfnorm

0.5

-20 -20

See Also surfl

-326

terminal

Purpose

Syntax

Description

|

Set graphics terminal type

terminal

terminal ("type*®)

To add terminal-specific settings (e.g., escape characters, line length), edit the

file terminal .m.

terminal displays a menu of graphics terminal types, prompts for a choice,
then configures MATLAB to run on the specified terminal.

terminal ("type") accepts a terminal type string. Valid "type" strings are

Type
tek401x
tek4100
tek4105
retro
sg100
sg200
vt240tek
ergo
graphon
citoh
xtermtek
wyse

kermit

Description

Tektronix 4010/4014
Tektronix 4100

Tektronix 4105
Retrographics card
Selanar Graphics 100
Selanar Graphics 200
VT240 & VT340 Tektronix mode
Ergo terminal

Graphon terminal

C.Itoh terminal

xterm, Tektronix graphics
Wyse WY-99GT

MS-DOS Kermit 2.23

1-327

terminal

1-328

‘ Type
hp2647
versa
versa4100

versa4105

hds

Description (Continued)

Hewlett-Packard 2647

Macintosh with VersaTerm (Tektronix 4010/4014)
Macintosh with VersaTerm (Tektronix 4100)

Color/grayscale Macintosh with VersaTerm (Tektronix
4105)

Human Designed Systems

text

Purpose

Syntax

Description

Remarks

Create Text object in current Axes

text(Xx,y, "string”)

text(X,y,z,"string")

text(. .. "PropertyName® ,PropertyValue...)
h = text(...)

text is the low-level function for creating Text graphics objects. Use text to
place character strings at specified locations.

text(x,y, "string”) adds the string in quotes to the location specified by the
point (x,y).

text(x,y,z,"string") adds the string in 3-D coordinates.

text(x,y,z,"string", "PropertyName" ,PropertyVvalue....) adds the
string in quotes to location defined by the coordinates and uses the values for
the specified Text properties.

text("PropertyName” ,PropertyValue....) omits the coordinates entirely
and specifies all properties using property name/property value pairs.

h = text(..) returns a column vector of handles to Text objects, one handle
per object. All forms of the text function optionally return this output argu-
ment.

Specify the Text location coordinates (the x, y, and z arguments) in the data

units of the current Axes (see “Examples”). The Extent, VerticalAlignment,
and HorizontalAlignment properties control the positioning of the character
string with regard to the Text location point.

If the coordinates are vectors, text writes the string at all locations defined by
the list of points. If the character string is an array the same length as x, y, and
z, text writes the corresponding row of the string array at each point specified.

When specifying strings for multiple Text objects, string can be a cell array of
strings, a padded string matrix, or a string vector using vertical slash charac-
ters (| ”) as separators, and each Text object will be assigned a different
element of the specified string. When specifying the string for a single Text
object, cell arrays of strings and padded string matrices result in a Text object

1-329

text

Examples

1-330

with a multiline string, while vertical slash characters are not interpreted as
separators, and result in a single line string containing vertical slashes.

While text is a low-level function that accepts property name/property value
pairs as input arguments, the convince form,

text(x,y,z, "string")
is equivalent to:
text("XData",x, "YData",y, "ZData",z,"String~, "string”)

You can specify other properties only as property name/property value pairs.
See the “Text Properties” section for a description of each property. You can
specify properties as property name/property value pairs, structure arrays, and
cell arrays (see the set and get reference pages for examples of how to specify
these data types).

text does not respect the setting of the Figure or Axes NextPlot property. This
allows you to add Text objects to an existing Axes without setting hold to on.
The statements,

plot(0:pi/20:2*pi,sin(0:pi/20:2*pi))
text(pi,0," \leftarrow sin(\pi)"~, "FontSize~",18)

annotate the point at (pi,0) with the string "sin(m):

1

0.81
0.6
0.4r
0.2r

0 ~sin(m)

text

Object
Hierarchy

Text Properties

The statement,

text(x,y, "\ite™{i\omega\tau} = cos(\omega\tau) + i
sin(\omega\tau) ")

uses imbedded LaTeX sequences to produce:

't = cos(wrt) + i sin(wrt)

Root
Figure

I 1

| Axes | |Uimenu

|
I I I I
| Image | Line | | Patch | | Surface

Setting Default Properties
You can set default Text properties on the Axes, Figure, and Root levels:

| Uicontrol

set(0, "DefaulttextProperty” ,PropertyVvalue...)
set(gcf, "DefaulttextProperty” ,PropertyValue...)
set(gca, "DefaulttextProperty” ,PropertyValue...)

Where Property is the name of the Text property and PropertyVvalue is the
value you are specifying.

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked call-

1-331

text

1-332

back routes always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then interrup-
tion occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

= cancel —discard the event that attempted to execute a second callback rou-
tine.

= queue — queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the Text object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

Children matrix (read only)
The empty matrix; Text objects have no children.
Clipping on | {off}

Clipping mode. When Clipping is on, MATLAB does not display any portion of
the Text that is outside the Axes.

Color ColorSpec

Text color. A three-element RGB vector or one of MATLAB's predefined names,
specifying the Text color. The default value for Color is white. See the Color-
Spec reference page for more information on specifying color.

CreateFcn string

Callback routine executed during object creation. This property defines a call-
back routine that executes when MATLAB creates a Text object. You must
define this property as a default value for Text. For example, the statement,

set(0, "DefaultTextCreateFcn", . ..
"set(gcf, ""Pointer"",”"crosshair"")")

defines a default value on the Root level that sets the Figure Pointer property
to a crosshair whenever you create a Text object. MATLAB executes this routine

text

after setting all Text properties. Setting this property on an existing Text object
has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

DeleteFcn string

Delete Text callback routine. A callback routine that executes when you delete
the Text object (e.g., when you issue a delete command or clear the Axes or
Figure). MATLAB executes the routine before destroying the object’s properties
so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase Text objects. Alternative erase modes are useful for creating animated
sequences, where control of the way individual object redraw is necessary to
improve performance and obtain the desired effect.

=< normal — Redraw the affected region of the display, performing the three-di-
mensional analysis necessary to ensure that all objects are rendered correct-
ly. This mode produces the most accurate picture, but is the slowest. The
other modes are faster, but do not perform a complete redraw and are there-
fore less accurate.

= none — Do not erase the Text when it is moved or destroyed.

= xor — Draw and erase the Text by performing an exclusive OR (XOR) with
each pixel index of the screen beneath it. When the Text is erased, it does not
damage the objects beneath it. However, when Text is drawn in xor mode, its
color depends on the color of the screen beneath it and is correctly colored
only when over the Axes background color.

= background — Erase the Text by drawing it in the background color. This
damages objects that are behind the erased Text, but Text is always properly
colored.

1-333

text

1-334

Extent position rectangle (read only)

Position and size of Text. A four-element read-only vector that defines the size
and position of the Text string:

[1eft,bottom,width,height]

left and bottom are the distance from the lower-left corner of the Axes rect-
angle to the lower-left corner of the Text Extent rectangle. width and height
are the dimensions of the Extent rectangle. All measurements are in units
specified by the Units property.

FontAngle {normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from those avail-
able on your particular system. Generally, setting this property to italic or
oblique selects a slanted font.

FontName string

Font family. A string specifying the name of the font to use for the Text object.
To display and print properly, this must be a font that your system supports.
The default font is Helvetica.

FontSize size in FontUnits

Font size. An integer specifying the font size to use for Text, in units deter-
mined by the FontUnits property. The default point size is 10 (1 point = 1/72
inch).

FontWeight light | {normal} | demi | bold

Weight of Text characters. MATLAB uses this property to select a font from
those available on your particular system. Generally, setting this property to
bold or demi causes MATLAB to use a bold font.

FontUnits {points} | normalized | inches | centimeters |
pixels

Font size units. MATLAB uses this property to determine the units used by the

FontSize property. Normalized units interpret FontSize as a fraction of the

height of the parent Axes. When you resize the Axes, MATLAB modifies the

screen FontSize accordingly. pixels, inches, centimeters, and points are

absolute units (1 point = 1/72 inch).

text

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This prop-
erty determines when an object’s handle is visible in its parent’s list of children.
Handles are always visible when HandleVisibility is on. When HandleVisi-
bility is callback, handles are visible from within callbacks or functions
invoked by callbacks, but not from within functions invoked from the command
line - a useful way to protect GUIs from command-line users, while permitting
their callbacks complete access to their own handles. Setting

HandleVisibi lity to off makes handles invisible at all times - which is occa-
sionally necessary when a callback needs to invoke a function that might poten-
tially damage the Ul, and so wants to temporarily hide its own handles during
the execution of that function.

When a handle is not visible in its parent’s list of children, it can not be
returned by any functions which obtain handles by searching the object hier-
archy or querying handle properties, including get, findobj, gca, gcf, gco,
newplot, cla, clf, and close. When a handle’s visibility is restricted using
cal lback or off, the object’'s handle does not appear in its parent’s Children
property, Figures do not appear in the Root’s CurrentFigure property, objects
do not appear in the Root’s Cal IbackObject property or in the Figure's
CurrentObject property, and Axes do not appear in their parent’s CurrentAxes
property.

The Root ShowHiddenHandles property can be set to on to temporarily make all
handles visible, regardless of their HandleVisibi lity settings (this does not
affect the values of the HandleVvisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.
This property is useful for preventing command-line users from accidently
drawing into or deleting a Figure that contains only user interface devices
(such as a dialog box).

HorizontalAlignment {left} | center | right

Horizontal alignment of Text. This property specifies the horizontal justifica-
tion of the Text string. It determines where MATLAB places the string with
regard to the point specified by the Position property.

1-335

text

1-336

Interpreter {latex} | none

Interpret LaTex instructions. This property controls whether MATLAB inter-
prets certain characters in the String property as LaTex instructions (default)
or displays all characters literally. See the String property for a list of support
LaTex instructions.

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a Text callback routine can be interrupted by subsequently invoked
callback routines. Text objects have four properties that define callback
routines: ButtonDownFcn, CreateFcn, and DeleteFcn. See the Executionqueue
property for information on how MATLAB executes callback routines.

Parent handle

Text object’'s parent. The handle of the Text object’s parent object. The parent
of a Text object is the Axes in which it is displayed. You can move a Text object
to another Axes by setting this property to the handle of the new parent.

Position [x,y.[z1]

Location of Text. A two- or three-element vector, [x y [z]], that specifies the
location of the text in three dimensions. If you omit the z value, it defaults to
0. All measurements are in units specified by the Units property. Initial value
is [0 0 O].

Rotation scalar (default = 0)

Text orientation. This property determines the orientation of the Text string.
Specify values of rotation in degrees (positive angles cause counterclockwise
rotation).

Selected on | {off}

Is object selected. When this property is on. MATLAB displays selection handles
if the SelectionHighlight property is also on. You can, for example, define the
ButtonDownFcn to set this property, allowing users to select the object with the
mouse.

SelectionHighlight {on} | off

Obijects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing four edge handles and four corner

text

handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

String string

The Text string. Specify this property as a quoted string for single-line strings,
or as a cell array of strings or a padded string matrix for multiline strings.
MATLAB displays this string at the specified location. Vertical slash characters
are not interpreted as linebreaks in Text strings, and are drawn as part of the
Text string.

When the Text Interpreter property is Tex (the default), you can use a subset
of Tex commands embedded in the string to produce special characters such as
Greek letters and mathematical symbols. The following table lists these char-
acters and the character sequence used to define them.

Character Symbol Character Symbol Character Symbol
Sequence Sequence Sequence

\alpha a \upsilon 0] \sim O
\beta B \phi (0] \leq <
\gamma V% \chi X \infty 00
\delta 0 \psi U] \clubsuit &
\epsilon € \omega () \diamondsuit .
\zeta (\Gamma r \heartsuit v
\eta n \Delta A \spadesuit ry
\theta 0 \Theta O] \leftrightarrow o
\vartheta v \Lambda N \leftarrow -
\iota l \Xi = \uparrow 1
\kappa K \Pi n \rightarrow -
\lambda A \Sigma > \downarrow !
\mu M \Upsilon Y \circ °

1-337

text

Character Symbol Character Symbol Character Symbol
Sequence Sequence Sequence

\nu Y \Phi P \pm *
\Xxi i3 \Psi w \geq >
\pi 1L \Omega Q \propto O
\rho p \forall O \partial 0
\sigma o \exist O \bullet .
\varsigma 4 \ni O \div +
\tau T \cong O \neq #
\equiv = \approx = \aleph O
\Im O \Re O \wp O
\otimes O \oplus O \oslash O
\cap N \cup O \supseteq O
\supset O \subseteq O \subset O
\int I \in O \o o]

You can also specify stream modifiers that control the font used. The first four
modifiers are mutually exclusive. However, you can use \fontname in combina-
tion with one of the other modifiers:

< \bf — bold font

= \it— italics font

= \sl — oblique font (rarely available)

< \rm — normal font

= \fontname{fontname} — specify the name of the font family to use.

Stream modifiers remain in effect until the end of the string or only within the
context defined by braces { }.

1-338

text

The subscript character “_” and the superscript character “~” modify the char-
acter or substring defined in braces immediately following.

To print the special characters used to define the Tex strings when Inter-
preter is Tex, prefix them with the backslash “\” character: \\, \{, \} _, \"\.
See the “Example” section for more information.

When Interpreter is none, no characters in the String are interpreted, and all
are displayed when the text is drawn.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)
Class of graphics object. For Text objects, Type is always the string "text".

Units pixels normalized | inches | centimeters |
points | {data}
Units of measurement. This property specifies the units MATLAB uses to inter-
pret the Extent and Position properties. All units are measured from the
lower-left corner of the Axes plotbox. Normal ized units map the lower-left
corner of the rectangle defined by the Axes to (0,0) and the upper-right corner
to (1.0,1.0). pixels, inches, centimeters, and points are absolute units (1
point = 1/72 inch). data refers to the data units of the parent Axes.

If you change the value of Units, it is good practice to return it to its default
value after completing your computation so as not to affect other functions that
assume Units is set to the default value.

UserData matrix

User-specified data. Any data you want to associate with the Text object.
MATLAB does not use this data, but you can access it using set and get.

1-339

text

See Also

1-340

VerticalAlignment top | cap | {middle} | baseline | bottom
Vertical alignment of Text. This property specifies the vertical justification of
the text string. It determines where MATLAB places the string with regard to
the value of the Position property. The possible values mean:

= top — Place string at the top of the specified y-position.

= cap — Place the capital letter height at the specified y-position.

< middle — Place string at the middle of the specified y-position.

= basel ine — Place font baseline at the specified y-position.

= bottom — Place the string at the bottom of the specified y-position.

Visible {on} | off

Text visibility. By default, all Text is visible. When set to off, the Text is not
visible, but still exists and you can query and set its properties.

gtext, int2str, num2str, title, xlabel, ylabel, zlabel

textwrap

Purpose

Syntax

Description

Example

See Also

|

Return wrapped string matrix for given Ul control

outstring = textwrap(h, instring)
[outstring,position] = textwrap(h, instring)

outstring = textwrap(h,instring) returns a wrapped string cell array,
outstring, that fits inside the Uicontrol with handle h. instring isacell array,
with each cell containing a single line of text. outstring is the wrapped string
matrix in cell array format. Each cell of the input string is considered a para-
graph.

[outstring,position]=textwrap(h, instring) returns the recommended
position of the Uicontrol in the units of the Uicontrol. position considers the
extent of the multi-line text in the x and y directions.

Place a textwrapped string in a Uicontrol:

pos = [10 10 100 10]
h = uicontrol ("Style”, "Text", "Position”,pos);

string = {"This is a string for the uicontrol.",
"It should be correctly wrapped inside."};

[outstring,newpos] = textwrap(h,string);

pos(4) = newpos(4)
set(h, "String",outstring, "Position", [pos(1) pos(2) pos(3)+10
pos(4 1)

uicontrol

1-341

title

Purpose

Syntax

Description

Examples

Algorithm

See Also

1-342

Add title to current Axes

title("string”)

title(fname)

title(..., "PropertyName*,PropertyValue,...)
h = title(...)

Each Axes graphics object can have one title. The title is located at the top and
in the center of the Axes.

title("string™) outputs the string at the top and in the center of the current
AXxes.

title(fname) evaluates the function that returns a string and displays the
string at the top and in the center of the current Axes.

title(..., PropertyName~,PropertyValue, ...) specifies property name
and property value pairs for the Text graphics object that title creates.

h = title(...) returns the handle to the text object used as the title.

Display today’s date in the current Axes:

title(date)

Include a variable’s value in a title:

f = 70;
c (f-32)/1.8;
title(["Temperature is ",num2str(c),"C"])

Include a variable’s value in a title and set the color of the title to yellow:

n=3
title(["Case number #",int2str(n)],"Color®,"y")

title sets the Title property of the current Axes graphics object to a new Text
graphics object.

gtext, int2str, num2str, plot, text, xlabel, ylabel, zlabel

trimesh

Purpose

Syntax

Description

Example

See Also

|

Triangular mesh plot

trimesh(Tri,X,Y,2Z2)

trimesh(Tri,X,Y,Z,C)
trimesh(..."PropertyName®,PropertyValue...)
h = trimesh(...)

trimesh(Tri,X,Y,Z) displays triangles defined in the m-by-3 face matrix Tri
as a mesh. Each row of Tri defines a single triangular face by indexing into the
vectors or matrices that contain the X, Y, and Z vertices.

trimesh(Tri,X,Y,Z,C) specifies color defined by C in the same manner as the
surf function. MATLAB performs a linear transformation on this data to obtain
colors from the current colormap.

trimesh(..."PropertyName” ,PropertyVvalue...) specifies additional Patch
property names and values for the Patch graphics object created by the func-
tion.

h = trimesh(...) returns a handle to a Patch graphics object.

Create vertex vectors and a face matrix, then create a triangular mesh plot.

rand(1,50);
rand(1,50);

= peaks(6*x—3,6*x-3);
i = delaunay(x,y);
imesh(tri,x,y,z)

N < X
I

~+

r
tr

patch, trisurf

The delauney function in the MATLAB Language Reference Manual.

1-343

trisurf

Purpose

Syntax

Description

Example

See Also

1-344

Triangular surface plot

trisurf(Tri,X,Y,2)

trisurf(Tri,X,Y,Z,C)
trisurf(..."PropertyName® ,PropertyValue...)
h = trisurf(...)

trisurf(Tri,X,Y,2) displays triangles defined in the m-by-3 face matrix Tri as
a surface. Each row of Tri defines a single triangular face by indexing into the
vectors or matrices that contain the X, Y, and Z vertices.

trisurf(Tri,X,Y,Z,C) specifies color defined by C in the same manner as the
surf function. MATLAB performs a linear transformation on this data to obtain
colors from the current colormap.

trisurf(..."PropertyName” ,PropertyValue...) specifies additional Patch
property names and values for the Patch graphics object created by the func-
tion.

h = trisurf(...) returns a patch handle.

Create vertex vectors and a face matrix, then create a triangular surface plot.

x = rand(1,50);
y = rand(1,50);
z = peaks(6*x—3,6*x-3);

tri = delaunay(X,Y);
trisurf(tri,x,y,z)

patch, surf, trimesh

The delauney function in MATLAB Language Reference Manual.

uicontrol

Purpose

Syntax

Description

|

Create user interface control object.

handle uicontrol (parent)
handle = uicontrol(..., "PropertyName®,PropertyValue,...)

uicontrol is the function for creating Uicontrol graphics objects. Uicontrols
(user interface controls) implement graphical user interfaces. When selected,
most Uicontrol objects perform a predefined action. MATLAB supports nine
styles of Uicontrols, each of which is suited for a different purpose:

= Push buttons
=« Check boxes
= Pop-up menus
< Radio buttons
= Sliders

= Editable text
- Static text

= Frames

= List boxes

Push buttons are analogous to the buttons on a telephone — they generate an
action with each press, but do not remain in a pressed state. To activate a push
button, press and release the mouse button on the object. Push buttons are
useful when the action you want to perform is not related to any other action
executable by the user interface (for example, an “OK” button).

Check boxes also generate an action when pressed, but remain in a pressed
state until pressed a second time. These devices are useful when providing the
user with a number of independent choices, each toggling between two states.
To activate a check box, press and release the mouse button on the object. The
state of the device is indicated on the display.

Pop-up menus open to display a list of choices when pressed. When not acti-
vated, they display a single button with text indicating their current setting.
Pop-up menus are useful when you want to provide users with a number of
mutually exclusive choices, but do not want to take up the amount of space that
a series of radio buttons require.

1-345

uicontrol

Remarks

1-346

Radio buttons are similar to check boxes, but are intended to be mutually exclu-
sive within a group of related radio buttons (i.e., only one is in a pressed state
at any given time). To activate a radio button, press and release the mouse
button on the object. The state of the device is indicated on the display. Note
that your code can implement the mutually exclusive behavior of radio buttons.

Sliders accept numeric input within some specific range by allowing the user to
move a sliding bar. Users move the bar by pressing the mouse button and drag-
ging the mouse over the bar, or by clicking in the trough or on an arrow. The
location of the bar indicates a numeric value, which is selected by releasing the
mouse button. You can set the minimum, maximum, and current values of the
slider.

Editable text are boxes containing text users can modify. After typing in the
desired text, press Control-Return (for multiline), Return (for single line) or
move the focus off the object to execute its Cal Iback. Use editable text when
you want text as input.

Static text are boxes that display lines of text. It is typically used to label a
group of other controls, provide directions to the user, or indicate values asso-
ciated with a slider. Users cannot change static text interactively and there is
no way to invoke the callback routine associated with it.

Frames are boxes that enclose regions of a figure window. Frames can make a
user interface easier to understand by grouping related controls. Frames have
no callback routines associated with them.

List boxes display a list of strings and allow users to select individual list
entries or multiple, noncontiguous, list entries. The Min and Max properties
control this selection mode. The Value property contains the indices into the
list of strings. Value is a vector if multiple selections are made. MATLAB eval-
uates the list box’s callback routine after any mouse button up event that
changes the value property. Therefore, you may need to add a “Done” button to
delay action caused by multiple clicks on list items.

List boxes differentiate between single and double clicks and set the Figure
SelectionType property to normal or open accordingly before evaluating the
list box’s Cal Iback property.

The uicontrol function accepts property name/property value pairs, struc-
tures, and cell arrays as input arguments and optionally returns the handle of

uicontrol

|

the created object. The “Uicontrol Properties” section describes these proper-
ties. You can also set and query property values after creating the object using
the set and get functions.

Uicontrol objects are children of Figures and therefore do not require an Axes
to exist when being placed in a Figure window.

Examples The following statement creates a push button that clears the current axes
when pressed:

h = uicontrol ("Style”, "Pushbutton®, "Position”, ...
[20 150 100 70], "Callback®,"cla®,"String","Clear™);

You can create a Uicontrol object that changes Figure colormaps by specifying
a pop-up menu and supplying an M-file as the object’s Cal Iback:

hpop = uicontrol("Style®, "Popup”,*"String”, ...
"hsv|hot]cool]gray”, "Position®,[20 320 100 50],---
"Callback®, "setmap®)

This call to uicontrol defines four individual choices in the menu: hsv, hot,
cool, and gray. You specify these choices with the String property, separating
each with the “]” character.

The Callback, in this case setmap, is the name of an M-file that defines a more
complicated set of instructions than a single MATLAB command. setmap
contains:

val = get(hpop, "Value®);
if val ==
colormap(hsv)
elseif val == 2
colormap(hot)
elseif val ==
colormap(cool)
elseif val == 4
colormap(gray)
end

The value property contains a number that indicates which choice you
selected. The choices are numbered sequentially from one to four. The setmap

1-347

uicontrol

M-file can get and then test the contents of the Value property to determine
what action to take.

Object

Hierarchy @

m | Axes | |Uimenu

| Line | Patch | |Sun‘ace | Text | | Light |

| Image

Setting Default Properties

You can set default Uicontrol properties on the Figure and Root levels:

set(0, "DefaultUicontrolProperty”,PropertyValue...)
set(gcf, "DefaultUicontrolProperty” ,Propertyvalue...)

Where Property is the name of the Uicontrol property whose default value you
want to set and PropertyValue is the value you are specifying.

Uicontrol This section lists property names along with the type of values each accepts.
Properties Curly braces { } enclose default values.
BackgroundColor ColorSpec

Object background color. The color used to fill the rectangle defined by the
Uicontrol. Specify a color using a three-element RGB vector or one of MATLAB's
predefined names. The default color is light gray. See the ColorSpec reference
page for more information on specifying color.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked call-
back routes always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then interrup-

1-348

uicontrol

|

tion occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

=« cancel —discard the event that attempted to execute a second callback rou-
tine.

= queue — queue the event that attempted to execute a second callback routine
until the current callback finishes.

ButtonDownFcn string

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is in a five-pixel wide border around the
Uicontrol. When the Uicontrol’s Enable property is set to inactive or off, the
ButtonDownFcn executes when you click the mouse in the five-pixel border or
on the control itself. This is useful for implementing actions to interactively
modify control object properties, such as size and position, when they are
clicked on (using selectmoveresize, for example).

Define this routine as a string that is a valid MATLAB expression or the name
of an M-file. The expression executes in the MATLAB workspace.

The Callback property defines the callback routine that executes when you
activate the enabled Uicontrol (e.g., click on a push button).

Callback string

Control action. A callback routine that executes whenever you activate the
Uicontrol object (e.g., when you click on a push button or move a slider). Define
this routine as a string that is a valid MATLAB expression or the name of an
M-file. The expression executes in the MATLAB workspace. Note that Frames
and Static Text do not define actions to interactively invoke their callback
routines.

Children matrix

The empty matrix; Uicontrol objects have no children.
Clipping {on} | off

This property has no effect on Uicontrols.

1-349

uicontrol

1-350

CreateFcn string

Callback routine executed during object creation. This property defines a call-

back routine that executes when MATLAB creates a Uicontrol object. You must
define this property as a default value for Uicontrols. For example, the state-

ment,

set(0, "DefaultUicontrolCreateFcn”, "set(gcf, " "IntegerHandle®",” "0
ff- l) l)

defines a default value on the Root level that sets the Figure IntegerHandle
property to off whenever you create a Uicontrol object. MATLAB executes this
routine after setting all property values for the Uicontrol. Setting this property
on an existing Uicontrol object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

DeleteFcn string

Delete Uicontrol callback routine. A callback routine that executes when you
delete the Uicontrol object (e.g., when you issue a delete command or clear the
Figure containing the Uicontrol). MATLAB executes the routine before
destroying the object’s properties so these values are available to the callback
routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

Enable {on} | inactive | off

Enable or disable the Uicontrol. This property controls how Uicontrols respond
to mouse button clicks.

= on—The Uicontrol is operational. When you activate the Uicontrol (generally
by clicking on it) MATLAB executes the callback routine defined by the Call-
back property. When you click the mouse within a 5-pixel border outside the
Uicontrol, MATLAB executes the callback routine defined by the Button-
DownFcn.

= inactive — The Uicontrol is not operational, but it is not dimmed (i.e., it
looks the same as when Enable is on). MATLAB executes the ButtonDownFcn

uicontrol

if you click the mouse on or within a 5-pixel border around the Uicontrol, and
does not execute the Cal Iback.

= off — The Uicontrol does not respond visually to mouse actions, does not ex-
ecute its Cal Iback routine, and its label (string property) is grayed out.
MATLAB executes the ButtonDownFcn if you click the mouse on or within a
5-pixel border around the Uicontrol.

Setting this property to inactive or off enables you to implement object “drag-

ging” via the ButtonDownFcn callback routine.

Extent position rectangle (read only)

Size of Uicontrol character string. A four-element vector that defines the size

and position of the character string used to label the Uicontrol. It has the form:
[0,0,width,height]

The first two elements are always zero. width and height are the dimensions
of the rectangle. All measurements are in units specified by the Units property.

Since the Extent property is defined in the same units as the Uicontrol itself,
you can use this property to determine proper sizing for the Uicontrol with
regard to its label. Do this by,

= Defining the String property and selecting the font using the Fontnnn prop-
erties.
= Getting the value of the Extent property.

= Defining the width and height of the Position property to be somewhat
larger than the width and height of the Extent.

For multiline strings, the Extent rectangle encompasses all the lines of text.
For single line strings, the Extent is returned as a single line, even if the string
wraps when displayed on the control.

FontAngle {normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from those avail-
able on your particular system. Setting this property to italic or oblique
selects a slanted version of the font, when it is available on your system.

|

1-351

uicontrol

1-352

FontName string

Font family. The name of the font in which to display the String. To display
and print properly, this must be a font that your system supports. The default
font is system dependent.

FontSize size in FontUnits

Font size. A number specifying the size of the font in which to display the

String, in units determined by the FontUnits property. The default point size

is system dependent.

FontUnits {points} | normalized | inches | centimeters |
pixels

Font size units. MATLAB uses this property to determine the units used by the

FontSize property. Normalized units interpret FontSize as a fraction of the

height of the Uicontrol. When you resize the Uicontrol, MATLAB modifies the

screen FontSize accordingly. pixels, inches, centimeters, and points are

absolute units (1 point = 1/72 inch).

FontWeight light | {normal} | demi | bold

Weight of Text characters. MATLAB uses this property to select a font from
those available on your particular system. Setting this property to bold causes
MATLAB to use a bold version of the font, when it is available on your system.

ForegroundColor ColorSpec

Color of text. This property determines the color of the text defined for the
String property (the Uicontrol label). Specify a color using a three-element
RGB vector or one of MATLAB's predefined names. The default text color is
black. See the ColorSpec reference page for more information on specifying
color.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This prop-
erty determines when an object’s handle is visible in its parent’s list of children.
Handles are always visible when HandleVisibility is on. When HandleVisi-
bility is cal lback, handles are visible from within callbacks or functions
invoked by callbacks, but not from within functions invoked from the command
line - a useful way to protect GUIs from command-line users, while permitting
their callbacks complete access to their own handles. Setting HandleVisi-
bility to off makes handles invisible at all times - which is occasionally neces-

uicontrol

|

sary when a callback needs to invoke a function that might potentially damage
the Ul, and so wants to temporarily hide its own handles during the execution
of that function.

When a handle is not visible in its parent’s list of children, it can not be
returned by any functions which obtain handles by searching the object hier-
archy or querying handle properties, including get, findobj, gca, gcf, gco,
newplot, cla, clf, and close. When a handle’s visibility is restricted using
cal lback or off, the object’'s handle does not appear in its parent’s Children
property, Figures do not appear in the Root’s CurrentFigure property, objects
do not appear in the Root's Cal IbackObject property or in the Figure’s
CurrentObject property, and Axes do not appear in their parent’s CurrentAxes

property.
The Root ShowHiddenHandles property can be set to on to temporarily make all

handles visible, regardless of their HandleVisibi lity settings (this does not
affect the values of the HandleVisibi lity properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.
This property is useful for preventing command-line users from accidently
drawing into or deleting a Figure that contains only user interface devices
(such as a dialog box).

HorizontalAlignment left | {center} | right

Horizontal alignment of label string. This property determines the justification
of the text defined for the String property (the Uicontrol label):

= left — Text is left justified with respect to the Uicontrol.

= center — Text is centered with respect to the Uicontrol.

= right — Text is right justified with respect to the Uicontrol.

On MS-Windows and Macintosh systems, this property affects only edit and
text Uicontrols.

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a Uicontrol callback routine can be interrupted by subsequently
invoked callback routines. By default (off), a callback routine executes to
completion before another can begin.

1-353

uicontrol

1-354

Only callback routines defined for the ButtonDownFcn and Cal Iback properties
are affected by the Interruptible property. MATLAB checks for events that
can interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine.

ListboxTop scalar

Index of top-most string displayed in list box. This property applies only to the
1istbox style of Uicontrol. It specifies which string occupies the top-most posi-
tion in the list box. Define ListboxTop as an index into the array of strings
defined by the String property. Noninteger values are fixed to the next lowest
integer.

Max scalar

Maximum value. This property specifies the largest value allowed for the Value
property. Different Styles of Uicontrols interpret Max differently:

= Radio buttons and check boxes (on/off switches) — Max is the setting of the
Value property while the Uicontrol is in the on position.

= Sliders —Max is the largest value you can select and must be greater than the
Min property. The default maximum is 1.

= Editable text — If Max — Min > 1, then editable text boxes accept multiline in-
put. If Max — Min <=1, then editable text boxes accept only single line input.

= List boxes — If Max — Min > 1, then list boxes allow multiple item selection. If
Max — Min <=1, then list boxes do not allow multiple item selection.

= Frames, pop-up menus, and static text do not use the Max property.

uicontrol

|

Min scalar

Minimum value. This property specifies the smallest value allowed for the
Value property. Different Styles of Uicontrols interpret Min differently:

= Radio buttons and check boxes (on/off switches) — Miin is the setting of the
Value property while the Uicontrol is in the off position.

= Sliders — Min is the smallest value you can select and must be less than Max.
The default minimum is 0.

= Editable text — If Max — Min > 1, then editable text boxes accept multiline in-
put. If
Max — Min <=1, then editable text boxes accept only single line input.

= List boxes — If Max —Min > 1, then list boxes allow multiple item selection. If
Max — Min <=1, then list boxes allow only single item selection.

Parent handle

Uicontrol’s parent. The handle of the Uicontrol’s parent object. The parent of a
Uicontrol object is the Figure in which it displays. You can move a Uicontrol
object to another Figure by setting this property to the handle of the new
parent.

Position position rectangle

Size and location of Uicontrol. The rectangle defined by this property specifies
the size and location of the control within the Figure window. Specify Position
as

[left,bottom,width,height]

left and bottom are the distance from the lower-left corner of the Figure
window to the lower-left corner of the Uicontrol object. width and height are
the dimensions of the Uicontrol rectangle. All measurements are in units spec-
ified by the Units property.

Selected on | {off}

Is object selected. When this property is on, MATLAB displays selection handles
if the SelectionHighlight property is also on. You can, for example, define the
ButtonDownFcn to set this property, allowing users to select the object with the
mouse.

1-355

uicontrol

1-356

SelectionHighlight {on} | off

Objects highlight when selected. When the Selected property is on, MATLAB
indicates the selected state by drawing four edge handles and four corner
handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

SliderStep [min_step max_step]

Slider step size. This property controls the percentage (of maximum slider
value) change in the slider’s current value when you click the mouse on the
slider trough (max_step) or on its arrow button (min_step). Specify SliderStep
as a two-element vector whose elements MATLAB converts to percents. The
default, [0.01 0.10], provides a 1 percent change for clicks on the arrow
button and a 10 percent change for clicks in the trough.

String string

Uicontrol label. A string specifying the text displayed on push buttons, radio
buttons, check boxes, static text, editable text, listboxes, and pop-up menus.

For multiple items on a pop-up menu or a list box, items can be specified as a
cell array of strings, a padded string matrix, or within a string vector separated
by vertical slash (<] ~) characters.

For multiple line editable text or static text controls, line breaks occur between
each row of the string matrix, each cell of a cell array of strings, and after any
\n characters embedded in the string. Vertical slash (| ~) characters are not
interpreted as linebreaks, and instead show up in the text displayed in the
uicontrol.

For the remaining uicontrol styles, which display only one line of text, only the
first string of a cell array of string or of a padded string matrix is displayed, and
all the rest are ignored. Vertical slash (<] ”) characters are not interpreted as
linebreaks, and instead show up in the text displayed in the uicontrol.

For editable text, this property is set to the string typed in by the user.

Style {pushbutton} | radiobutton | checkbox | edit |
text | slider | frame | listbox | popupmenu

Style of Uicontrol object to create. The Style property selects the style of Uicon-
trol to create. See the “Description” section for information on each type.

uicontrol

|

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Class of graphics object. For Uicontrol objects, Type is always the string

“uicontrol”.

Units {pixels} | normalized | inches | centimeters |
points

Units of measurement. The units MATLAB uses to interpret the Extent and

Position properties. All units are measured from the lower-left corner of the

Figure window. Normalized units map the lower-left corner of the Figure

window to (0,0) and the upper-right corner to (1.0,1.0). pixels, inches, centi-

meters, and points are absolute units (1 point = 1/72 inch).

If you change the value of Units, it is good practice to return it to its default
value after completing your computation so as not to affect other functions that
assume Units is set to the default value.

UserData matrix

User-specified data. Any data you want to associate with the Uicontrol object.
MATLAB does not use this data, but you can access it using set and get.

1-357

uicontrol

See Also

1-358

value scalar or vector

Current value of Uicontrol. The possible values a Uicontrol can take on depend

on its Style property:

< Radio buttons and check boxes set Value to Max (usually 1) when they are on
(when the indicator is filled) and Min (usually 0) when off (not filled).

= Sliders set value to the number indicated by the slider bar, which is within
the range established by Min and Max.

= Pop-up menus set Value to the index of the item selected, where 1 corre-
sponds to the first item on the menu. The “Examples” section shows how to
use the value property to determine which item has been selected.

= List boxes set Value to a vector of indices corresponding to the highlighted
items displayed in the box, where 1 corresponds to the first item in the list.

= Push buttons, editable text, static text, and frames do not set this property.

Set the Value property either interactively with the mouse or through a call to
the set function. The display reflects changes made to vValue.

Visible {on} | off

Uicontrol visibility. By default, all Uicontrols are visible. When set to off, the
Uicontrol is not visible, but still exists and you can query and set its properties.

textwrap, uimenu

uigetfile

Purpose

Syntax

Description

Remarks

|

Interactively retrieve a filename

uigetfile

uigetfile("filterSpec*)
uigetfile("filterSpec”, "dialogTitle")
uigetfile("filterSpec”, "dialogTitle" ,x)
uigetfile("filterSpec”, "dialogTitle",x,y)
[fname,pname] = uigetfile(...)

uigetfile displays a dialog box used to retrieve a file. The dialog lists the
subdirectories in your current directory. The default position of the dialog box
is the upper-left corner of your monitor.

uigetfile("filterSpec™) displays a dialog box that lists the files in the
current directory specified by “FilterSpec” . "FilterSpec" is a full filename
or includes wildcards. A wildcard specification such as "0.m" does not provide
a default file and the scroll box lists only files with the .m extension.

uigetfile("filterSpec”,"dialogTitle") displays a dialog box that has the
title "dialogTitle".

uigetfile("filterSpec”,"dialogTitle",x) positions the upper-left corner
of the dialog box at (x,0), where x is in pixel units. (Some platforms may not
support dialog box placement.)

uigetfile("filterSpec™, "dialogTitle",x,y) positions the upper-left
corner of the dialog box. x and y are the x- and y-position, in pixels, of the dialog
box. (Some platforms may not support dialog box placement.)

[fname,pname] = uigetfile(...) returns the filename and pathname (or
folder) selected in the dialog box. After you press the Done button, fname
contains the name of the file selected and pname contains the name of the path
selected. If you press the Cancelbutton or if an error occurs, fname and pname
are set to 0.

If you select a file that does not exist, an error dialog informs you that the file
does not exist. You can then enter another filename, or press the Cancelbutton.

1-359

uigetfile

Examples Retrieve a filename using uigetfile to list all MATLAB M-files within a
selected directory (note that the figure shows the dialog box on a Macintosh):

[fname,pname] = uigetfile("*.m","Example Dialog Box")

Example Dialog Box

accdmzZ.m — Pats.
accevaz.m B
agents.m

airfoil.m

andrew.m

animinit.m

bandem.m

bblwrap.m

bckprpl2.m Cancel

fispnt
Desktop

OO0 D0 DD o=

The exact appearance of the dialog box depends on your windowing system.

See Also uiputfile

1-360

uimenu

Purpose

Syntax

Description

Remarks

Create menus on a Figure window

handle uimenu("PropertyName® ,PropertyValue,...)
handle = uimenu(parent, "PropertyName®,PropertyValue,...)

uimenu creates a hierarchy of menus and submenus that display in the Figure
window’s menu bar.

handle = uimenu("PropertyName",PropertyValue,...) creates amenuin
the current Figure’s menu bar using the values of the specified properties.

handle = uimenu(parent, "PropertyName” ,PropertyValue,...) creates a
submenu of the parent menu specified by parent. If parent refers to a Figure
instead of another Uimenu object, MATLAB creates a new menu on the refer-
enced Figure’'s menubar.

MATLAB adds the new menu to the existing menu bar. Each menu choice can
itself be a menu that displays its submenu when selected.

uimenu accepts property name/property value pairs, structures, and cell arrays
as input arguments. The Uimenu Cal Iback property defines the action taken
when you activate the menu. The “Uimenu Properties” section describes these
properties. uimenu optionally returns the handle to the created Uimenu object.

Uimenus only appear in Figures whose WindowStyle is normal. If a Figure
containing Uimenu children is changed to WindowStyle modal, the Uimenu
children will still exist, and be contained in the Chi ldren list of the Figure, but
will not be displayed until the WindowStyle reverts to normal.

The value of the Figure MenuBar property affects the location of Uimenu chil-
dren of the Figure on the menubar. When MenuBar is none, Uimenus are the
only items on the Figure menubar. When MenuBar is figure, a set of built-in
menus precedes the Uimenus on the menubar (but MATLAB controls those
built-in menus, and their handles can not be obtained by the user).

You can set and query property values after creating the menu using set and
get.

1-361

uimenu

Examples

Object
Hierarchy

1-362

This example creates a menu labeled Workspacewhose choices allow users to
create a new Figure window, save workspace variables, and exit out of
MATLAB. In addition, it defines an accelerator key for the quit option.

f = uimenu("Label ", "Workspace");
uimenu(f, "Label ", "New Figure®,"Callback", "figure®);
uimenu(f, "Label ", "Save", "Callback”, "save”);
uimenu(f, "Label ", "Quit", "Callback”, "exit", ...
"Separator®,"on", “Accelerator®, "Q%);

Root
Figure

| Axes |

| Uicontrol

Uimenu

| Line | | Patch | |Surface | Text | | Light |

| Image

Setting Default Properties
You can set default Uimenu properties on the Figure and Root levels:

set (0, "DefaultUimenuPropertyName® ,PropertyValue...)
set(gcf, "DefaultUimenuPropertyName® ,PropertyValue...)
set(menu_handle, "DefaultUimenuProperty” ,PropertyValue...)

Where PropertyName is the name of the Uimenu property and PropertyVvalue
is the value you are specifying.

uimenu

Object
Properties

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

Accelerator character

Keyboard equivalent. A character specifying the keyboard equivalent for the
menu item. This allows users to select a particular menu choice by pressing the
specified character in conjunction with another key, instead of selecting the
menu item with the mouse. The key sequence is platform specific:

=« For X-Windows and MS-Windows systems, the sequence is Control-Acceler-
ator.

<« For Macintosh systems, the sequence is Command-Accelerator.

You can define an accelerator only for menu items that do not have children
menus. Accelerators work only for menu items that directly execute a callback
routine, not items that bring up other menus.

Note that the menu item does not have to be displayed (e.g., a submenu) for the
accelerator key to work. However, the window focus must be in the Figure
when the key sequence is entered.

BackgroundColor (obsolete)
The background color of menu items is determined by the system.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, subsequently invoked call-
back routes always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then interrup-
tion occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are:

=« cancel —discard the event that attempted to execute a second callback rou-
tine.

= queue — queue the event that attempted to execute a second callback routine
until the current callback finishes.

1-363

uimenu

1-364

ButtonDownFcn string
The button down function is not used for Uimenus.

Callback string

Menu action. A callback routine that executes whenever you select the menu.
Define this routine as a string that is a valid MATLAB expression or the name
of an M-file. The expression executes in the MATLAB workspace.

A menu with children (submenus) executes its callback routine before
displaying the submenus. A menu without children executes its callback
routine when you release the mouse button (i.e., on the button up event).

Checked on | {off}

Menu check indicator. Setting this property to on places a check mark next to
the corresponding menu item. Setting it to off removes the check mark. You
can use this feature to create menus that indicate the state of a particular
option. Note that there is no formal mechanism for indicating that an
unchecked menu item will become checked when selected.

Children vector of handles

Handles of submenus. A vector containing the handles of all children of the
Uimenu object. The children objects of Uimenus are other Uimenus, which
function as submenus. You can use this property to re-order the menus.

Clipping {on} | off
Clipping has no effect on Uimenus.
CreateFcn string

Callback routine executed during object creation. This property defines a call-
back routine that executes when MATLAB creates a Uimenu object. You must
define this property as a default value for Uimenus. For example, the state-
ment,

set(0, "DefaultUimenuCreateFcn”, "set(gcf, " " IntegerHandle" ", "off" ")

defines a default value on the Root level that sets the Figure IntegerHandle
property to off whenever you create a Uimenu object. Setting this property on
an existing Uimenu object has no effect. MATLAB executes this routine after
setting all property values for the Uimenu.

uimenu

The handle of the object whose CreateFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

DeleteFcn string

Delete Uimenu callback routine. A callback routine that executes when you
delete the Uimenu object (e.g., when you issue a delete command or cause the
Figure containing the Uimenu to reset). MATLAB executes the routine before
destroying the object’s properties so these values are available to the callback
routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root Cal IbackObject property, which can be queried using gcbo.

Enable {on} | off

Enable or disable the Uimenu. This property controls the selectability of a
menu item. When not enabled (set to off), the menu Label appears dimmed,
indicating you cannot select it.

ForegroundColor ColorSpec X-Windows only

Color of menu label string. This property determines color of the text defined
for the Label property. Specify a color using a three-element RGB vector or one
of MATLAB's predefined names. The default text color is black. See the Color-
Spec reference page for more information on specifying color.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This prop-
erty determines when an object’s handle is visible in its parent’s list of children.
Handles are always visible when HandleVisibility is on. When
HandleVisibility is cal Iback, handles are visible from within callbacks or
functions invoked by callbacks, but not from within functions invoked from the
command line - a useful way to protect GUIs from command-line users, while
permitting their callbacks complete access to their own handles. Setting
HandleVisibility to off makes handles invisible at all times - which is occa-
sionally necessary when a callback needs to invoke a function that might
potentially damage the Ul, and so wants to temporarily hide its own handles
during the execution of that function. When a handle is not visible in its
parent’s list of children, it can not be returned by any functions which obtain
handles by searching the object hierarchy or querying handle properties,
including get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

1-365

uimenu

1-366

When a handle’s visibility is restricted using cal Iback or off, the object’s
handle does not appear in its parent’s Children property, Figures do not
appear in the Root’s CurrentFigure property, objects do not appear in the
Root's Cal IbackObject property or in the Figure’'s CurrentObject property,
and Axes do not appear in their parent’'s CurrentAxes property.

The Root ShowHiddenHandles property can be set to on to temporarily make all
handles visible, regardless of their HandleVisibi lity settings (this does not
affect the values of the HandleVvisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.
This property is useful for preventing command-line users from accidently
drawing into or deleting a Figure that contains only user interface devices
(such as a dialog box).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a Uimenu callback routine can be interrupted by subsequently
invoked callback routines. By default (off), a callback routine executes to
completion before another can begin. Only the Cal lback Uimenu property is
affected by the Interruptible property.

Label string

Menu label. A string specifying the text label on the menu item. You can specify
a mnemonic using the “&” character. Whatever character follows the “&” in the
string appears underlined and selects the menu item when you type that char-
acter while the menu is visible. The “&” character is not displayed. On Macin-
tosh systems, MATLAB ignores (and does not print) the “&” character. To
display the “&” character in a label, use two “&” characters in the string:

“0&pen selection” yeilds Open selection
“Save && Go~ yeilds Save & Go

Parent handle

Uimenu’s parent. The handle of the Uimenu'’s parent object. The parent of a
Uimenu object is the Figure on whose menu bar it displays, or the Uimenu of
which it is a submenu. You can move a Uimenu object to another Figure by
setting this property to the handle of the new parent.

uimenu

See Also

Position scalar

Relative menu position. The value of Position indicates placement on the
menu bar or within a menu. Top-level menus are placed from left to right on
the menu bar according to the value of their Position property, with 1 repre-
senting the left-most position. The individual items within a given menu are
placed from top to bottom according to the value of their Position property,
with 1 representing the top-most position.

Selected on | {off}
This property is not useful for Uimenus.

SelectionHighlight on | off
This property is not useful for Uimenus.
Separator on | {off}

Separator line mode. Setting this property to on draws a dividing line above the
menu item.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
constructing interactive graphics programs that would otherwise need to
define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Class of graphics object. For Uimenu objects, Type is always the string
"uimenu”.

UserData matrix

User-specified data. Any matrix you want to associate with the Uimenu object.
MATLAB does not use this data, but you can access it using the set and get
commands.

Visible {on} | off

Uimenu visibility. By default, all Uimenus are visible. When set to off, the
Uimenu is not visible, but still exists and you can query and set its properties.

uicontrol, gcbo, set, get, figure

1-367

uiputfile

Purpose

Syntax

Description

Remarks

1-368

Interactively select a file for writing

uiputfile

uiputfile("FfilterSpec*)
uiputfile("filterSpec”, "dialogTitle")
uiputFfile("filterSpec”, "dialogTitle" ,x)
uiputfile("filterSpec”, "dialogTitle",x,y)
[fname,pname] = uiputfile(...)

uiputfile displays adialog box used to select a file for writing. The dialog lists
the directories in your current directory. The default position of the dialog box
is the upper-left corner of your monitor.

uiputfile("filterSpec™) displays a dialog box that lists the files in the
current directory specified by "FilterSpec” . "FilterSpec” is a full filename
or includes wildcards. A wildcard specification such as "[.m" does not provide
a default file and the scroll box lists only files with the .m extension.

uiputfile("filterSpec”,"dialogTitle") displays a dialog box that has the
title "dialogTitle".

uiputfile("filterSpec", "dialogTitle",x) positions the upper-left corner
of the dialog box at (x,0), where x is in pixel units. Note that positioning may
not work on all platforms.

uiputfile("filterSpec™, "dialogTitle",x,y) positions the upper-left
corner of the dialog box. x and y are the x- and y-position, in pixels, of the dialog
box. Note that positioning may not work on all platforms.

[fname,pname] = uiputfile(...) returns the filename and pathname (or
folder) selected in the dialog box. After you press the Donebutton, fname
contains the name of the file selected and pname contains the name of the path
selected. If you press the Cancelbutton or if an error occurs, fname and pname
are set to 0.

If you select a file that already exists, a prompt asks whether you want to over-
write the file. If you select OK, the function successfully returns but does not
delete the existing file (which is the responsibility of the calling routines). If you

uiputfile

|

select Cancel the function returns control back to the dialog box so that you can
enter another filename.

Examples Display a dialog box titled "Example Dialog Box" (the exact appearance of the
dialog box depends on your windowing system):

[newfile,newpath] = uiputfile("faniminit.m","Example Dialog

Box");
= pats.

E accdm2.m [Eject]
0O acceva2.m

O agents.m Desktop

0O airfoil.m

O airfoil.mat
0O andrew.m -
Example Dialog Box [Cancel]
animinit.m |

See Also uigetfile

1-369

uiresume, uiwait

Purpose

Syntax

Description

Remarks

See Also

1-370

Control program execution

uiwait(h)
uiwait
uiresume(h)

The uiwait and uiresume functions block and resume MATLAB program execu-
tion.

uiwait blocks execution until uiresume is called or the current Figure is
deleted. This syntax is the same as uiwait(gcf).

uiwait(h) blocks execution until uiresume is called or the Figure h is deleted.

uiresume(h) resumes the M-file execution that uiwait suspended.

When creating a dialog, you should have a uicontrol with a callback that calls
uiresume or a callback that destroys the dialog box. These are the only methods
that resume program execution after the uiwait function blocks execution.

uiwait is a convenient way to use the waitfor command. You typically use it

in conjunction with a dialog box. It provides a way to block the execution of the
M-file that created the dialog, until the user responds to the dialog box. When

used in conjunction with a modal dialog, uiwait/uiresume can block the execu-
tion of the MFile and restrict user interaction to the dialog only.

uicontrol, uimenu, waitfor, figure, dialog

uisetcolor

Purpose

Syntax

Description

See Also

|

Interactively set an object’s ColorSpec from a dialog box (MS-Windows and
Mac only)

c = uisetcolor(h_or_c, "dialogTitle")

uisetcolor displays a dialog box for the user to fill in, then applies the selected
color to the appropriate property of the graphics object identified by the first
argument.

h_or_c can be either a handle to a graphics object or an RGB triple. If you
specify a handle, it must specify a graphics object that supports color. If you
specify a color, it must be a valid RGB triple (e.g., [1 0 0] for red). The color spec-
ified is used to initialize the dialog box. If no initial RGB is specified, the dialog
box initializes the color to black.

dialogTitle is a string that is used as the title of the dialog box.

c is the RGB value selected by the user. If the user presses Cancel from the
dialog box, or if any error occurs, c is set to the input RGB triple, if provided;
otherwise, it is set to O.

ColorSpec

1-371

uisetfont

Purpose

Syntax

Description

Example

See Also

1-372

Interactively select a font

uisetfont

uisetfont(handleln)
uisetfont(“dialogTitle")
uisetfont(handleln, "dialogTitle")
handleOut = uisetfont(...)

uisetfont displays a dialog box and creates a Text graphics object with the
font properties selected in the dialog box.

uisetfont(handleln) displays a dialog box and applies the selected font
attributes to the Text or Axes graphics object specified by handleln. uisetfont
uses the font properties currently assigned to this object to initialize the dialog
box.

uisetfont("dialogTitle™) displays a dialog box with the title "dialog-
Title" and creates a Text graphics object with the font properties selected in
the dialog box.

uisetfont(handleln, "dialogTitle") applies the selected font attributes to
the Text or Axes graphics object specified by handleln and assigns the title
"dialogTitle" to the dialog box. The arguments can appear in any order.

handleOut = uisetfont(...) returns the handle handleOut. If you specify
handleln, handleOut is identical to handleln. If you do not specify handleln,
uisetfont creates a new Text object using the selected font properties, and
returns its handle. If you press the Cancelbutton or an error occurs, handleOut
is set to handleln, if provided, or to 0.

Interactively change the font for a Text graphics object by displaying a dialog
to update the font:

h = text(.5, .5, "Figure Annotation®)
uisetfont(h, "Update Font")

axes, text, uicontrol

view

Purpose

Syntax

Description

Viewpoint specification

view(az,el)
view([az,ell)
view([x,y.z])
view(2)
view(3)
view(T)

[az,el] = view
T = view

The position of the viewer (the viewpoint) determines the orientation of the
Axes. You specify the viewpoint in terms of azimuth and elevation, or by a point
in three-dimensional space.

view(az,el) and view([az,el]) set the viewing angle for a three-dimen-
sional plot. The azimuth, az, is the horizontal rotation about the z-axis as
measured in degrees from the negative y-axis. Positive values indicate counter-
clockwise rotation of the viewpoint. el is the vertical elevation of the viewpoint
in degrees. Positive values of elevation correspond to moving above the object;
negative values correspond to moving below the object.

view([x,y,z]) setsthe viewpoint tothe Cartesian coordinates x, y, and z. The
magnitude of (x,y,z) is ignored.

view(2) sets the default two-dimensional view, az = 0, el = 90.
view(3) sets the default three-dimensional view, az = -37.5, el = 30.

view(T) sets the view according to the transformation matrix T, which is a
4-by-4 matrix such as a perspective transformation generated by viewmtx.

[az,el] = view returns the current azimuth and elevation.

T = view returns the current 4-by-4 transformation matrix.

1-373

view

Examples

See Also

1-374

View the object from directly overhead:

az = 0;
el = 90;
view(az, el);

Set the view along the y-axis, with the x-axis extending horizontally and the
z-axis extending vertically in the Figure:

view([0 0]);
Rotate the view about the z-axis by 180°:

az = 180;
el = 90;
view(az, el);

viewmtx, axes

Axes graphics object properties: CameraPosition, CameraTarget,
CameraViewAngle, Projection.

viewmitx

Purpose

Syntax

Description

|

View transformation matrices

T = viewmtx(az,el)
T = viewntx(az,el,phi)
T = viewmtx(az,el,phi,xc)

viewmtx computes a 4-by-4 orthographic or perspective transformation matrix
that projects four-dimensional homogeneous vectors onto a two-dimensional
view surface (e.g., your computer screen).

T = viewmtx(az,el) returns an orthographic transformation matrix corre-
sponding to azimuth az and elevation el. az is the azimuth (i.e., horizontal
rotation) of the viewpoint in degrees. el is the elevation of the viewpoint in
degrees. This returns the same matrix as the commands

view(az,el)
T = view

but does not change the current view.

T = viewmtx(az,el,phi) returns a perspective transformation matrix. phi is
the perspective viewing angle in degrees. phi is the subtended view angle of the
normalized plot cube (in degrees) and controls the amount of perspective
distortion:

Phi Description

0 degrees Orthographic projection
10 degrees Similar to telephoto lens
25 degrees Similar to normal lens

60 degrees Similar to wide angle lens

You can use the matrix returned to set the view transformation with view(T).
The 4-by-4 perspective transformation matrix transforms four-dimensional
homogeneous vectors into unnormalized vectors of the form (x,y,z,w) where wis
not equal to 1. The x- and y-components of the normalized vector (x/w, y/w, z/w,
1) are the desired two-dimensional components (see example below).

1-375

viewmtx

Remarks

Examples

1-376

T = viewnmtx(az,el,phi,xc) returns the perspective transformation matrix

using xc as the target point within the normalized plot cube (i.e., the camera is
looking at the point xc). xc is the target point that is the center of the view. You
specify the point as a three-element vector, xc = [xc,yc,zc], in the interval

[0,1]. The default value is xc = [0,0,0].

A four-dimensional homogenous vector is formed by appending a 1 to the corre-
sponding three-dimensional vector. For example, [x,y,z,1] is the four-dimen-
sional vector corresponding to the three-dimensional point [x,y,z].

Determine the projected two-dimensional vector corresponding to the
three-dimensional point (0.5,0.0,—3.0) using the default view direction. Note
that the point is a column vector.

A = viewmtx(-37.5,30);
x4d = [.5 0 -3 1]7;

x2d = Alx4d;
x2d = x2d(1:2)
x2d =
0.3967
—2.4459

Vectors that trace the edges of a unit cube are

x=[0 1 1 0 00 1 1 00 1 1 1 1 0 0];
y=[0 01 1 0001100 0 1 1 1 1];
z=[0 0000 1 1 1 11 1 00 1 1 0];

viewmitx

|

Transform the points in these vectors to the screen, then plot the object:

A = viewmtx(-37.5,30);

[m,n] = size(X);

x4d [x(),y(:),z(:),ones(m*n,1)]";
x2d A*x4d;

x2 = zeros(m,n); y2 = zeros(m,n);
x2(:) = x2d(1,:);

y2(:) = x2d(2,:);

plot(x2,y2)

1.6

0.8

0.6

0.4

0.2 b

Use a perspective transformation with a 25 degree viewing angle:

A = viewmtx(-37.5,30,25);
x4d = [.5 0 -3 1]°7;

x2d = Ax4d;
x2d = x2d(1:2)/x2d(4); % Normalize
x2d =
0.1777
—1.8858

1-377

viewmtx

Transform the cube vectors to the screen and plot the object:

A = viewmtx(-37.5,30,2);

[m,n] = size(X);

x4d = [x(2),y(:),z(:),ones(m*n,1)]";
x2d = A*x4d;

x2 = zeros(m,n); y2 = zeros(m,n);
x2(:) = x2d(1,:)-/x2d(4,:);

y2(:) = x2d(2,:)-/x2d(4,:);
plot(x2,y2)

See Also view

1-378

waitbar

Purpose
Syntax

Description

Example

Display waitbar
h = waitbar(x, "title")

A waitbar shows what percentage of a calculation is complete, as the calcula-
tion proceeds.

h = waitbar(x,"title") creates and displays a waitbar of fractional length
x. The handle to the waitbar Figure is returned in h. x should be between 0 and
1. Each subsequent call to waitbar, waitbar(x), extends the length of the bar
to the new position x.

waitbar is typically used inside a for loop that performs a lengthy computa-
tion. For example,
h = waitbar(0, "Please wait.._");

for i1=1:100, % computation here %
waitbar(i/100)
end

close(h)
e

Plssrsn sk

@ B

1-379

waitfor

Purpose

Syntax

Description

Remarks

See Also

1-380

Wait for condition

waitfor(h)
waitfor(h, "PropertyName*®)
waitfor(h, "PropertyName” ,PropertyValue)

The waitfor function blocks the caller’s execution stream so that
command-line expressions, callbacks, and statements in the blocked M-file do
not execute until a specified condition is satisfied.

waitfor(h) returnswhen the graphics object identified by h is deleted or when
a Ctrl-C is typed in the command window. If h does not exist, waitfor returns
immediately without processing any events.

waitfor(h, "PropertyName™), in addition to the conditions in the previous
syntax, returns when the value of "PropertyName* for the graphics object h
changes. If "PropertyName* is not a valid property for the object, waitfor
returns immediately without processing any events.

waitfor(h, "PropertyName” ,PropertyValue), inaddition to the conditions in
the previous syntax, waitfor returns when the value of "PropertyName " for the
graphics object h changes to PropertyValue. waitfor returns immediately
without processing any events if "PropertyName*® is set to PropertyValue.

While waitfor blocks an execution stream, other execution streams in the form
of callbacks may execute as a result of various events (e.g., pressing a mouse
button).

waitfor can block nested execution streams. For example, a callback invoked
during a waitfor statement can itself invoke waitfor.

uiresume, uiwait

waitforbuttonpress

Purpose
Syntax

Description

See Also

|

Wait for key or mouse button press

k = waitforbuttonpress

k = waitforbuttonpress blocks the caller's execution stream until
waitforbuttonpress detects a mouse button or key press while the cursor is
over a Figure window. The function returns 0 if it detects a mouse button press
or 1 if it detects a key press. Additional information about the event that
resumes execution is available through the Figure’s CurrentCharacter,
SelectionType, and CurrentPoint properties.

dragrect, figure, gcf, ginput, rbbox, waitfor

1-381

warndlg

Purpose
Syntax

Description

Examples

See Also

1-382

Warning dialog box
h = warndlg(*“warningstring”, "dlgname®)

warndlg displays a dialog box named "Warning Dialog"” containing the string
"This is the default warning string." The warning dialog disappears
after you press the OK push button.

warndlg("warningstring”) displays a dialog box named *"Warning Dialog"
containing the string specified by "warningstring-.

warndlg("warningstring”, "dlgname™) displays a dialog box named
"dlIgname* containing the string "warningstring”.

h = warndlg(...) returns the handle of the dialog box.

The function
warndlg("Pressing OK will clear memory®,"!! Warning 11%);

displays the following dialog box:

= [Warsing & =1=]
& Prewsing OH will deer ressay
(=]

dialog, errordlg, helpdlg, msgbox

waterfall

Purpose

Syntax

Description

Remarks

|

Waterfall plot

waterfall(2)
waterfall(X,Y,2)
waterfall(...,C)

h = waterfall(...)

The waterfall function draws a mesh similar to the meshz function, but it does
not generate lines from the columns of the matrices. This produces a “water-
fall” effect.

waterfall (Z2) creates a waterfall plot using x = 1:size(Z,1) and
y = 1:size(Z,1). Z determines the color, so color is proportional to surface
height.

waterfall (X,Y,Z) creates a waterfall plot using the values specified in X, Y,

and z. Z also determines the color, so color is proportional to the surface height.
If X and Y are vectors, X corresponds to the columns of Z and Y corresponds to
the rows, where length(x) = n, length(y) = m,and [m,n] = size(Z).Xand
Y are vectors or matrices that define the x and y coordinates of the plot. Z is a
matrix that defines the z coordinates of the plot (i.e., height above a plane). If
C is omitted, color is proportional to Z.

waterfall(...,C) uses scaled color values to obtain colors from the current
colormap. Color scaling is determined by the range of C, which must be the
same size as Z. MATLAB performs a linear transformation on C to obtain colors
from the current colormap.

h = waterfall(...) returns the handle of the Patch graphics object used to
draw the plot.

For column-oriented data analysis, use waterfal 1(Z") or water-
fall(x",Y",z").

1-383

waterfall

Examples Produce a waterfall plot of the peaks function:

[X,Y,Z] = peaks(30);
waterfall(X,Y,2)

10

Algorithm The range of X, Y, and z, or the current setting of the Axes X1im, Ylim, and Zlim
properties, determines the range of the Axes (also set by axis). The range of C,
or the current setting of the Axes Clim property, determines the color scaling
(also set by caxis).

The CData property for the Patch graphics objects specifies the color at every
point along the edge of the Patch, which determines the color of the lines.

The waterfall plot looks like a mesh surface, however, it is a Patch graphics
object. To create a Surface plot similar to waterfall, use the meshz function
and set the MeshStyle property of the Surface to "Row". For a discussion of
parametric surfaces and related color properties, see surf.

See Also axes, axis, caxis, meshz, surf

Properties for Patch graphics objects.

1-384

whitebg

Purpose

Syntax

Description

Remarks

Examples

See Also

|

Change Axes background color

whitebg

whitebg(h)
whitebg(ColorSpec)
whitebg(h,ColorSpec)

whitebg complements the colors in the current Figure.
whitebg(h) complements colors in all Figures specified in the vector h.

whitebg(ColorSpec) and whitebg(h,ColorSpec) change the color of the
Axes, which are children of the Figure, to the color specified by ColorSpec.

whitebg changes the colors of the Figure’s children, with the exception of
shaded surfaces. This ensures that all objects are visible against the new back-
ground color. whitebg sets the default properties of the Root window such that
all subsequent Figure plots use the new background color.

Set the background color to blue-gray:

whitebg([0 .5 .6])

Set the background color to blue:

whitebg("blue®)

ColorSpec

The Figure graphics object property InvertHardCopy.

1-385

Xxlabel, ylabel, zlabel

Purpose

Syntax

Description

Remarks
Algorithm

See Also

1-386

Label the x-, y-, and z-axis

xlabel ("string®)

xlabel (fname)

xlabel (..., "PropertyName®” ,PropertyValue,...)
h = xlabel(...)

ylabel(...)
h = ylabel(...)

zlabel(...)
h = zlabel(...)

Each Axes graphics object can have one label for the x-, y-, and z-axis. The label
appears beneath its respective axis in a two-dimensional plot and to the side or
beneath the axis in a three-dimensional plot.

xlabel ("string”) labels the x-axis of the current Axes.

xlabel (fname) evaluates the function fname, which must return a string,
then displays the string beside the x-axis.

xlabel (..., "PropertName” ,PropertyValue, ...) specifies property name
and property value pairs for the Text graphics object created by xlabel.

h = xlabel(...),h = ylabel(...),and h = zlabel(...) return the
handle to the text object used as the label.

ylabel (...) and zlabel (...) label the y-axis and z-axis, respectively, of the
current Axes.

Re-issuing an xlabel, ylabel, or zlabel command causes the new label to
replace the old label.

For three-dimensional graphics, MATLAB puts the label in the front or side, so
that it is never hidden by the plot.

text, title

Z00m

Purpose

Syntax

Description

Zoom in and out on a 2-D plot

zoom on
zoom off

zoom out

zoom reset

zoom

zoom xon

zoom yon
zoom(fFactor)
zoom(fig, option)

zoom on turnson interactive zooming. When interactive zooming is enabled in
a Figure, pressing a mouse button while your cursor is within an Axes zooms

into the point or out from the point beneath the mouse. Zooming changes the

Axes limits.

= For a single-button mouse, zoom in by pressing the mouse button and zoom
out by simultaneously pressing Shift and the mouse button.

= For a two- or three-button mouse, zoom in by pressing the left mouse button
and zoom out by pressing the right mouse button.

Clicking and dragging over an Axes when interactive zooming is enabled draws
a rubber-band box. When the mouse button is released, the Axes zoom in to the
region enclosed by the rubber-band box.

Double-clicking over an Axes returns the Axes to its initial zoom setting.
zoom off turns interactive zooming off.
zoom out returns the plot to its initial zoom setting.

zoom reset remembers the current zoom setting as the initial zoom setting.
Later calls to zoom out, or double-clicks when interactive zoom mode is enabled,
will return to this zoom level.

zoom toggles the interactive zoom status.

zoom xon and zoom yon sets zoom on for the x- and y-axis, respectively.

1-387

Z00m

Remarks

1-388

zoom(factor) zooms in or out by the specified zoom factor, without affecting
the interactive zoom mode. Values greater than 1 zoom in by that amount,
while numbers greater than 0 and less than 1 zoom out by 1/factor.

zoom(fig, option) Any of the above options can be specified on a figure other
than the current figure using this syntax.

zoom changes the Axes limits by a factor of two (in or out) each time you press
the mouse button while the cursor is within an Axes. You can also click and
drag the mouse to define a zoom area, or double-click to return to the initial
zoom level.

Z00m

1-389

Z00m

1-390

A

Accelerator 1-363
AmbientLightColor 1-15
AmbientStrength
Patch object 1-223
Surface object 1-311
area 1-9
Axes
creating 1-11
defining default properties 1-15
property descriptions 1-15
axes 1-11
axis 1-34

B
BackGroundColor 1-348

Uimenu object 1-363
BackingStore 1-105
bar 1-38
bar3 1-41
bar3h 1-41
barh 1-38
Box 1-15
box 1-43
brighten 1-44
BusyAction 1-16

Figure object 1-106

Image object 1-158

Light object 1-182

Line object 1-191

Patch object 1-223

Root object 1-273

Surface object 1-311

Text object 1-331

Uicontrol object 1-348

Uimenu object 1-363

ButtonDownFcn
Axes object 1-16, 1-106, 1-159, 1-183, 1-192, 1-224,
1-273, 1-312, 1-332, 1-349, 1-364

C
CallBack

Uicontrol object 1-349

Uimenu object 1-364
CallbackObject 1-273
CameraPosition 1-16
CameraPositionMode 1-16
CameraTarget 1-17
CameraTargetMode 1-17
CameraUpVector 1-17
CameraUpVectorMode 1-17
CameraViewAngle 1-17
CameraViewAngleMode 1-17
capture 1-47
CaptureMatrix 1-274
CaptureRect 1-274
caxis 1-48
Chata

Image object 1-159

Patch object 1-224

Surface object 1-312
CDataMapping

Image object 1-160

Patch object 1-226

Surface object 1-313
Checked

Uimenu object 1-364
Children 1-160, 1-192, 1-227, 1-313, 1-332, 1-349

Axes object 1-18

Figure object 1-106

Root object 1-274

Index

1-2

Uimenu object 1-364
clal-50
clabel 1-50
clc 1-53
clf1-54
CLim1-18
CLimMode 1-19
Clipping 1-19, 1-349
Image object 1-160
Line object 1-192
Patch object 1-227
Surface object 1-313
Text object 1-332
close 1-55
CloseRequestFcn 1-107
Color
Axes object 1-19
Figure object 1-107
Light object 1-183
Line object 1-192
Text object 1-332
colorbar 1-57
ColorMap 1-107
colormap 1-60
ColorOrder 1-19
ColorSpec 1-64
comet 1-66
comet3 1-67
compass 1-68
contour 1-70
contour3 1-74
contourc 1-76
contourf 1-78
contrast 1-80
copyobj 1-81
CreateFcn
Axes object 1-20, 1-107

Image object 1-160
Light object 1-183
Line object 1-192
Patch object 1-227
Surface object 1-313
Text object 1-332
Uicontrol objects 1-350
Uimenu object 1-364
CurrentAxes 1-108
CurrentCharacter 1-108
CurrentFigure 1-274
CurrentMenu 1-108
CurrentObject 1-108
CurrentPoint
Axex object 1-20
Figure object 1-108
cylinder 1-83

D
DataAspectRatio 1-20

DataAspectRatioMode 1-22

default4 1-91

DeleteFcn 1-183, 1-193, 1-274, 1-333, 1-350

Axes object 1-22
Figure object 1-109
Image object 1-160
Light object 1-183
Line object 1-193
Patch object 1-227
Surface object 1-313
Text object 1-333
Uicontrol object 1-350
Uimenu object 1-365

dialog 1-92

Diary 1-274

DiaryFile 1-275

Index

DiffuseStrength 1-314
Patch object 1-227, 1-228
Surface object 1-314

Dithermap 1-109

DithermapMode 1-109

dragrect 1-93

DrawMode 1-22

drawnow 1-94

E
Echo 1-275

EdgeColor
Patch object 1-228
Surface object 1-315
EdgelLighting
Patch object 1-229, 1-315
Enable 1-365
Uicontrol object 1-350
Uimenu object 1-365
EraseMode 1-193, 1-333
Image object 1-161
Line object 1-193
Patch object 1-229
Surface object 1-316
Text object 1-333
errorbar 1-95
errordlg 1-97
ErrorMessage 1-275
ErrorType 1-275
Extent
Text object 1-334
Uicontrol object 1-351
ezplot 1-99

F

FaceColor
Patch object 1-230
Surface object 1-316
FaceLighting
Patch object 1-230
Surface object 1-317
Faces 1-230
FaceVertexCData 1-231
feather 1-101
figflag 1-103
Figure
creating 1-104
defining default properties 1-105
properties 1-105
figure 1-104
fill 1-123
fill3 1-125
findobj 1-127
FixedColors 1-110
FontAngle
Axes object 1-23
Text object 1-334
Uicontrol object 1-351
FontName
Axes object 1-23
Text object 1-334
Uicontrol object 1-352
FontSize
Axes object 1-23
Text object 1-334
Uicontrol object 1-352
FontUnits
Axes object 1-23
Text object 1-334
Uicontrol object 1-352
FontWeight

Index

Axes object 1-23 H

Text object 1-334 HandleVisibility 1-24, 1-183

Uicontrol object 1-352 Figure object 1-110
ForeGroundColor Image object 1-161

Uicontrol object 1-352 Line object 1-194

Uimenu object 1-365 Patch object 1-233
ForegroundColor 1-365 Root object 1-276
Format 1-275 Surface object 1-317
FormatSpacing 1-275 Text objects 1-335
fplot 1-100, 1-129 Uicontrol object 1-352
frame2im 1-131 Uimenu object 1-365

helpdlg 1-146
hidden 1-147

G HiddenHandle
gca 1-132 Image object 1-161
gcf 1-134 Light object 1-183
gco 1-135 hist 1-148
get 1-136 hold 1-150
getframe 1-138 home 1-151
ginput 1-140 hsv2rgb 1-152
gplot 1-141
graphics objects
Axes 1-11 |
Figure 1-104 im2frame 1-153
Light 1-181 Image
Line 1-188 creating 1-154
Patch 1-217 defining default properties 1-158
Root 1-273 properties 1-158
Surface 1-308 image 1-154
Text 1-329 imagesc 1-164
Uicontrol 1-345 inputdlg 1-175
Uimenu 1-361 Interpreter 1-336
graymon 1-143 Interruptible
grid1-144 Axes object 1-24, 1-111, 1-162, 1-184, 1-194, 1-233,
GridLineStyle 1-23 1-318, 1-335, 1-353, 1-366
gtext 1-145 Figure object 1-111

Line object 1-194

Index

Root object 1-276
Text object 1-336
Uicontrol object 1-353
InvertHardCopy 1-111
ishandle 1-176
ishold 1-177

K
KeyPressFcn 1-112

L
Label 1-366

Layer 1-25
legend 1-178
Light
creating 1-181
defining default properties 1-182
properties 1-182
light 1-181
lighting 1-187
Line
creating 1-188
defining default properties 1-191
properties 1-191
line 1-188
LineSpec 1-199
LineStyle
Line object 1-195
Patch object 1-234
Surface object 1-318
LineStyleOrder
Axes object 1-25
LineWidth
Axes object 1-26
Line object 1-195

Patch object 1-234

Surface object 1-318
ListboxTop 1-354
loglog 1-201

M

Marker
Line object 1-195
Patch object 1-235
Surface object 1-319

MarkerEdgeColor 1-196
Patch object 1-235
Surface object 1-320

MarkerFaceColor 1-196
Patch object 1-236
Surface object 1-320

MarkerSize
Line object 1-196
Patch object 1-236
Surface object 1-320

material 1-203

Max 1-354

MenuBar 1-112

mesh 1-205

meshc 1-205

MeshStyle 1-320

meshz 1-205

Min 1-355

MinColorMap 1-112

Mode 1-184

movie 1-209

moviein 1-211

msgbox 1-212

Index

1-6

N
Name 1-113

newplot 1-213
NextPlot
Axes object 1-26
Figure object 1-113
NormalMode 1-236
Surface object 1-320
NumberTitle 1-113

P
PaperOrientation 1-113
PaperPosition 1-114
PaperPositionMode 1-114
PaperSize 1-114
PaperType 1-114
PaperUnits 1-114
Parent
Axes object 1-26
Figure object 1-115
Image object 1-162
Light object 1-185
Line object 1-196
Patch object 1-236
Surface object 1-321
Text object 1-336
Uicontrol object 1-355
Uimenu object 1-366
Patch
creating 1-217

defining default properties 1-223

properties 1-223
patch 1-217
pcolor 1-239
pie 1-242
pie3 1-243

plot 1-244
PlotBoxAspectRatio 1-26
PlotBoxAspectRatioMode 1-27
Pointer 1-115
PointerLocation 1-276
PointerShapeCData 1-115
PointerShapeHotSpot 1-115
PointerWindow 1-276
polar 1-248
Position

Axes object 1-27

Figure object 1-116

Light object 1-185

Text object 1-336

Uicontrol object 1-355

Uimenu object 1-367
print 1-249
Profile 1-276
ProfileFile 1-276
ProfileFunction 1-277
Profilelnterval 1-277
ProjectionType 1-27

Q

questdlg 1-256
quiver 1-258
quiver3 1-260

R
rbbox 1-266

refresh 1-268
Renderer 1-116
RendererMode 1-116
reset 1-269

Resize 1-117

Index

ResizeFcn 1-117
rgb2hsv 1-270
rgbplot 1-271
ribbon 1-272

root object 1-273
rose 1-280

rotate 1-282
rotate3d 1-284
Rotation 1-336

S
ScreenDepth 1-277

ScreenSize 1-277

Selected 1-185, 1-277, 1-367
Axes object 1-28
Figure object 1-118
Image object 1-162
Line object 1-197
Patch object 1-236
Surface object 1-321
Text object 1-336
Uicontrol object 1-355
Uimenu object 1-367

SelectionHighlight 1-118, 1-185
Axes object 1-28
Image object 1-162
Line object 1-197
Patch object 1-236
Surface object 1-321
Text object 1-336
Uicontrol object 1-356

SelectionType 1-118

semi logx 1-286

Separator 1-367

set 1-288

shading 1-291

ShareColors 1-119

ShowHiddenHandle 1-277

slice 1-293

SliderStep 1-356

SpecularColorReflectance
Patch object 1-237
Surface object 1-321

SpecularExponent
Patch object 1-237
Surface object 1-321

SpecularStrength
Patch object 1-237
Surface object 1-321

sphere 1-296

spinmap 1-297

stairs 1-298

stem 1-299

stem3 1-301

stretch-to-fill 1-12

String
Text object 1-337
Uicontrol object 1-356

Style 1-356

subplot 1-303

surf 1-304

Surface
creating 1-308
defining default properties 1-311
properties 1-311

surface 1-308

surfc 1-304

surfl 1-323

surfnorm 1-325

T
Tag 1-339, 1-357, 1-367

Index

1-8

Axes object 1-28, 1-119

Image object 1-163

Light object 1-185

Line object 1-197

Patch object 1-237

Root object 1-278
terminal 1-327
TerminalDimensions 1-278
TerminalHideGraphCommand 1-278
TerminalOneWindow 1-278
TerminalProtocol 1-278
TerminalShowGraphCommand 1-278
Text

creating 1-329

defining default properties 1-331

properties 1-331

text 1-329

textwrap 1-341

TickDir 1-28

TickDirMode 1-28

TickLength 1-29

Title 1-29

title 1-342

trimesh 1-343

trisurf1-344

Type
Axes object 1-29
Figure object 1-120
Image object 1-163
Light object 1-185
Line object 1-197
Patch object 1-237
Root object 1-279
Surface object 1-322
Text object 1-339
Uicontrol object 1-357
Uimenu object 1-367

u

Uicontrol
creating 1-345
defining default properties 1-348
properties 1-348
types of 1-345
uicontrol 1-345
uigetfile 1-359
Uimenu
creating 1-361
defining default properties 1-362
properties 1-363
uimenu 1-361
uiputfile 1-368
uiresume 1-370
uisetfont 1-372
Units
Axes object 1-29
Figure object 1-120
Root object 1-279
Text object 1-339
Uicontrol object 1-357
UserData
Axes object 1-29
Figure object 1-120
Image object 1-163
Light object 1-185
Line object 1-197
Patch object 1-238
Root object 1-279
Surface object 1-322
Text object 1-339
Uicontrol object 1-357
Uimenu object 1-367

Index

\Y/
Value 1-358

VertexNormals
Patch object 1-238
Surface object 1-322

VerticalAlignment 1-340

Vertices 1-238

View 1-30

view 1-373

viewmtx 1-375

Visible
Axes object 1-30
Figure object 1-120
Image object 1-163
Light object 1-186
Line object 1-197
Patch object 1-238
Surface object 1-322
Text object 1-340
Uicontrol object 1-358
Uimenu object 1-367

W

waitbar 1-379

waitfor 1-380
waitforbuttonpress 1-381
warndlg 1-382

waterfall 1-383

whitebg 1-385
WindowButtonDownFcn 1-120
WindowButtonMotionFcn 1-121
WindowButtonUpFcn 1-121
WindowStyle 1-121

X
XAxisLocation 1-30

XColor 1-30

XData
Image object 1-163
Line object 1-197
Patch object 1-238
Surface object 1-322

XDir 1-31

XGrid 1-31

XLabel 1-31

xlabel 1-386

XLim 1-31

XLimMode 1-32

XScale 1-32

XTick 1-32

XTickLabel 1-32

XTickLabelMode 1-33

XTickMode 1-33

Y
YAxisLocation 1-30

YColor 1-30

YData
Image object 1-163
Line object 1-197
Patch object 1-238
Surface object 1-322

YDir 1-31

YGrid 1-31

YLabel 1-31

YLim1-31

YLimMode 1-32

YScale 1-32

YTick 1-32

YTickLabel 1-32

Index

1-10

YTickLabelMode 1-33
YTickMode 1-33

Z
ZColor 1-30

ZData
Line object 1-198
Patch object 1-238
Surface object 1-322
ZDir 1-31
ZGrid 1-31
ZLim 1-31
ZLimMode 1-32
zoom 1-387
ZScale 1-32
ZTick 1-32
ZTickLabel 1-32
ZTickLabelMode 1-33
ZTickMode 1-33

	Command Summary
	Command Summary
	area
	axes
	Stretch-to-fill
	Positioning the Axes
	Setting Property Defaults
	Properties That Control the X-, Y-, or Z�Axis

	axis
	bar, barh
	bar3, bar3h
	box
	brighten
	capture
	caxis
	cla
	clabel
	clc
	clf
	close
	colorbar
	colordef
	colormap
	ColorSpec
	comet
	comet3
	compass
	contour
	contour3
	contourc
	contourf
	contrast
	copyobj
	cylinder
	datetick
	default4
	dialog
	dragrect
	drawnow
	errorbar
	errordlg
	ezplot
	feather
	figflag
	figure
	fill
	fill3
	findobj
	fplot
	frame2im
	gca
	gcbo
	gcf
	gco
	get
	getframe
	ginput
	gplot
	graymon
	grid
	gtext
	helpdlg
	hidden
	hist
	hold
	home
	hsv2rgb
	im2frame
	image
	imagesc
	imfinfo
	imread
	imwrite
	inputdlg
	ishandle
	ishold
	legend
	light
	lighting
	line
	LineSpec
	loglog
	material
	mesh, meshc, meshz
	movie
	moviein
	msgbox
	newplot
	orient
	pareto
	patch
	pcolor
	pie
	pie3
	plot
	plot3
	plotmatrix
	plotyy
	polar
	print, printopt
	qtwrite
	questdlg
	quiver
	quiver3
	rbbox
	refresh
	reset
	rgb2hsv
	rgbplot
	ribbon
	root object
	rose
	rose
	rotate
	rotate3d
	selectmoveresize
	semilogx, semilogy
	set
	shading
	slice
	sphere
	spinmap
	stairs
	stem
	stem3
	subplot
	surf, surfc
	surface
	surfl
	surfnorm
	terminal
	text
	textwrap
	title
	trimesh
	trisurf
	uicontrol
	uigetfile
	uimenu
	uiputfile
	uiresume, uiwait
	uisetcolor
	uisetfont
	view
	viewmtx
	waitbar
	waitfor
	waitforbuttonpress
	warndlg
	waterfall
	whitebg
	xlabel, ylabel, zlabel
	zoom

