
SPSS® 12.0
Command Syntax
Reference

2

For more information about SPSS® software products, please visit our Web site at http://www.spss.com
or contact

SPSS Inc.
233 South Wacker Drive, 11th Floor
Chicago, IL 60606-6412
Tel: (312) 651-3000
Fax: (312) 651-3668

SPSS is a registered trademark and the other product names are the trademarks of SPSS Inc. for its
proprietary computer software. No material describing such software may be produced or distributed
without the written permission of the owners of the trademark and license rights in the software and the
copyrights in the published materials.

The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in subdivision (c)(1)(ii) of The Rights
in Technical Data and Computer Software clause at 52.227-7013. Contractor/manufacturer is SPSS Inc.,
233 South Wacker Drive, 11th Floor, Chicago, IL 60606-6412.

General notice: Other product names mentioned herein are used for identification purposes only and may
be trademarks of their respective companies.

TableLook is a trademark of SPSS Inc.
Windows is a registered trademark of Microsoft Corporation.
DataDirect, DataDirect Connect, INTERSOLV, and SequeLink are registered trademarks of MERANT
Solutions Inc.
Portions of this product were created using LEADTOOLS © 1991-2000, LEAD Technologies, Inc.
ALL RIGHTS RESERVED.
LEAD, LEADTOOLS, and LEADVIEW are registered trademarks of LEAD Technologies, Inc.
Portions of this product were based on the work of the FreeType Team (http:\\www.freetype.org).

SPSS® 12.0 Command Syntax Reference
Copyright © 2003 by SPSS Inc.
All rights reserved.
Printed in the United States of America.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher.

3

Universals
This part of the SPSS Syntax Reference Guide discusses general topics pertinent to using
command syntax. The topics are divided into five sections:

• Commands explains command syntax, including command specification, command or-
der, and running commands in different modes. In this section, you will learn how to
read syntax charts, which summarize command syntax in diagrams and provide an easy
reference. Discussions of individual commands are found in an alphabetical reference in
the next part of this manual.

• Files discusses different types of files used by the program. Terms frequently mentioned
in this manual are defined. This section provides an overview of how files are handled.

• Variables contains important information on general rules and conventions concerning
variables and variable definition. In this section, you will find detailed information on
variable formats.

• Transformation Expressions describes expressions that can be used in data transforma-
tion. Functions and operators are defined and illustrated. In this section, you will find a
complete list of available functions and how to use them.

• Date and Time deals with functions and formats used with date and time expressions. In
this section, you will find ways to read and convert date and time, use them in analysis,
and display them in output.

Commands

Commands are the instructions that you give the program to initiate an action. For the pro-
gram to interpret your commands correctly, you must follow certain rules.

Syntax Diagrams

Each command described in this manual includes a syntax diagram that shows all the sub-
commands, keywords, and specifications allowed for that command. By recognizing sym-
bols and different type fonts, you can use the syntax diagram as a quick reference for any
command. Figure 1 is an example.

• Lines of text in italics indicate limitation or operation mode of the command.

• Elements shown in upper case are keywords defined by SPSS to identify commands,
subcommands, functions, operators, and other specifications. In Figure 1, T-TEST is the
command and GROUPS is a subcommand.

• Elements in lower case describe specifications you supply. For example, varlist indicates
that you need to supply a list of variables.

• Elements in bold are defaults. SPSS supports two types of defaults. When the default is
followed by **, as ANALYSIS** is in Figure 1, the default (ANALYSIS) is in effect if the

4 Universals

subcommand (MISSING) is not specified. If a default is not followed by **, it is in effect
when the subcommand (or keyword) is specified by itself.

• Parentheses, apostrophes, and quotation marks are required where indicated.
• Elements enclosed in square brackets ([]) are optional. Wherever brackets would confuse

the format, they are omitted. The command description explains which specifications are
required and which are optional.

• Braces ({ }) indicate a choice between elements. You can specify any one of the elements
enclosed within the aligned braces.

• Ellipses indicate that you can repeat an element in the specification. The specification

T-TEST PAIRS=varlist [WITH varlist [(PAIRED)]] [/varlist ...]

means that you can specify multiple variable lists with optional WITH variables and the
keyword PAIRED in parentheses.

• Most abbreviations are obvious; for example, varname stands for variable name and varlist
stands for a variable list.

• The command terminator is not shown in the syntax diagram.

Command Specification

The following rules apply to all commands:

• Commands begin with a keyword that is the name of the command and often have
additional specifications, such as subcommands and user specifications. Refer to the
discussion of each command to see which subcommands and additional specifications are
required.

• Commands and any command specifications can be entered in upper and lower case.
Commands, subcommands, keywords, and variable names are translated to upper case

Figure 1 Syntax diagram

Independent samples:

T-TEST GROUPS=varname ({1,2** }) /VARIABLES=varlist
 {value }
 {value,value}

 [/MISSING={ANALYSIS**} [INCLUDE]]
 {LISTWISE }

 [/FORMAT={LABELS**}]
 {NOLABELS}

Paired samples:

T-TEST PAIRS=varlist [WITH varlist [(PAIRED)]] [/varlist ...]

 [/MISSING={ANALYSIS**} [INCLUDE]]
 {LISTWISE }

 [/FORMAT={LABELS**}]
 {NOLABELS}

**Default if the subcommand is omitted.

Default (in bold)

Keywords (in all upper case)

Alternatives (in aligned { })

Note

Repeatable elements (with ...)

Parentheses (cannot be omitted)

User specification (in lower case)

Subgrouping (in italics)

Optional specification (in [])

Commands 5

before processing. All user specifications, including labels and data values, preserve
upper and lower case.

• Spaces can be added between specifications at any point where a single blank is allowed.
In addition, lines can be broken at any point where a single blank is allowed. There are
two exceptions: the END DATA command can have only one space between words, and
string specifications on commands such as TITLE, SUBTITLE, VARIABLE LABELS, and
VALUE LABELS can be broken across two lines only by specifying a + between string seg-
ments (see “String Values in Command Specifications” on p. 7).

• The first word of a command can be abbreviated to a minimum of three letters provided
no duplicates result. For example, AGGREGATE can be abbreviated to AGG, but
COMPUTE can only be abbreviated to COMP to avoid confusion with COMMENT. A very
small number of commands can duplicate an internal command when abbreviated to three
characters (for example, LIST) and at least four characters should be used. For internal
command structure, DATA LIST cannot be abbreviated.

• If the first word of a multiple-word command has a duplicate (for example, FILE LABEL
and FILE TYPE), the first word cannot be abbreviated.

• All keywords after the first command word can be abbreviated to three characters. For
example, ADD VAL LAB is a valid abbreviation for ADD VALUE LABELS, and EXA VAR=varlist
is valid for EXAMINE VARIABLES=varlist. END DATA is an exception. You must spell both
command keywords in full; END DAT is not a valid abbreviation for END DATA.

• Three-character truncation does not apply to INFO command specifications. Spell out all
keywords in full. For procedure names specified on INFO, spell out the first word in full
and subsequent words through at least the first three characters.

Running Commands

You can run commands in either batch (production) or interactive mode. In batch mode, com-
mands are read and acted upon as a batch, so the system knows that a command is complete
when it encounters a new command. In interactive mode, commands are executed immediately,
and you must use a command terminator to tell SPSS when a command is complete.

Interactive Mode

The following rules apply to command specifications in interactive mode:

• Each command ends with a command terminator. The default command terminator is a
period. It is best to omit the terminator on BEGIN DATA, however, so that inline data is
treated as one continuous specification.

• The command terminator must be the last nonblank character in a command.

• Commands can begin in any column of a command line and continue for as many lines
as needed. The exception is the END DATA command, which must begin in the first column
of the first line after the end of data.

• The maximum length of any command line is 80 characters, including the prompt and the
command terminator.

6 Universals

You should observe interactive rules when you:

• Submit commands from a syntax window or with an SPSS Manager, either one command
at a time or as a group.

• Enter commands at a command prompt on those systems that run prompted sessions.

See the SPSS Base User’s Guide for your version of SPSS for more information.

Batch (Production) Mode

The following rules apply to command specifications in batch or production mode:

• All commands in the command file must begin in column 1. You can use plus (+) or
minus (−) signs in the first column if you want to indent the command specification to
make the command file more readable.

• If multiple lines are used for a command, column 1 of each continuation line must be
blank.

• Command terminators are optional.

• An asterisk (*) in the first column indicates a comment line (see the COMMENT command).

You should observe batch rules when you:
• Construct a command file for use with the Production Facility.

• Construct a command file that will be submitted to your operating system for execution.

• Construct a command file that will be included using the INCLUDE command. You can
include a command file when you are working in interactive mode. The included com-
mand file, however, must follow batch rules.

The way you submit a command file for execution varies from operating system to operating
system. Command files do not necessarily need to be submitted to a batch queue, although they
can be on operating systems that have a batch queue. In batch mode, the commands in the file
are executed one after the other, and output is displayed when all commands are executed.

The following is a sample command file:

GET FILE=BANK.SAV /KEEP ID TIME SEX JOBCAT SALBEG SALNOW
 /RENAME SALNOW = SAL90.

DO IF TIME LT 82.
+ COMPUTE RATE=0.05.
ELSE.
+ COMPUTE RATE=0.04.
END IF.

COMPUTE SALNOW=(1+RATE)*SAL90.

EXAMINE VARIABLES=SALNOW BY SEX /PLOT=NONE.

Subcommands

Many commands include additional specifications called subcommands for locating data,
handling data, and formatting the output.

Commands 7

• Subcommands begin with a keyword that is the name of the subcommand. Some subcom-
mands include additional specifications.

• A subcommand keyword is separated from its specifications, if any, by an equals sign. The
equals sign is usually optional but is required where ambiguity is possible in the specifica-
tion. To avoid ambiguity, it is best to use the equals signs as shown in the syntax diagrams
in this manual.

• Most subcommands can be named in any order. However, some commands require a
specific subcommand order. The description of each command includes a section on
subcommand order.

• Subcommands are separated from each other by a slash. To avoid ambiguity, it is best to
use the slashes as shown in the syntax diagrams in this manual.

Keywords

Keywords identify commands, subcommands, functions, operators, and other specifications
in SPSS.
• Keywords, including commands and subcommands, can often be truncated to the first

three characters of each word. An exception is the keyword WITH, which must be spelled
in full. See “Command Specification” on p. 4 for additional rules for three-character
truncation of commands.

• Keywords identifying logical operators (AND, OR, and NOT), relational operators (EQ,
GE, GT, LE, LT, and NE), and ALL, BY, TO, and WITH are reserved words and cannot be
used as variable names.

Values in Command Specifications

The following rules apply to values specified in commands:

• A single lowercase character in the syntax diagram, such as n, w, or d, indicates a user-
specified value.

• The value can be an integer or a real number within a restricted range, as required by the
specific command or subcommand. For exact restrictions, read the individual command
description.

• A number specified as an argument to a subcommand can be entered with or without
leading zeros.

String Values in Command Specifications

• Each string specified in a command should be enclosed in a set of apostrophes or quota-
tion marks.

• To specify an apostrophe within a string, either use quotation marks to enclose the string
or specify double apostrophes. Both of the following specifications are valid:

’Client’’s Satisfaction’

"Client’s Satisfaction"

8 Universals

• To specify quotation marks within a string, use apostrophes to enclose the string:

’Categories Labeled "UNSTANDARD" in the Report’

• String specifications can be broken across command lines by specifying each string
segment within apostrophes or quotation marks and using a + sign to join segments. For
example,

’One, Two’

can be specified as

’One,’
+ ’ Two’

The plus sign can be specified on either the first or the second line of the broken string.
Any blanks separating the two segments must be enclosed within one or the other string
segment.

• Blanks within apostrophes or quotation marks are significant.

Delimiters

Delimiters are used to separate data values, keywords, arguments, and specifications.

• A blank is usually used to separate one specification from another, except when another
delimiter serves the same purpose or when a comma is required.

• Commas are required to separate arguments to functions. Otherwise, blanks are generally
valid substitutes for commas.

• Arithmetic operators (+, –, *, and /) serve as delimiters in expressions.

• Blanks can be used before and after operators or equals signs to improve readability, but
commas cannot.

• Special delimiters include parentheses, apostrophes, quotation marks, the slash, and the
equals sign. Blanks before and after special delimiters are optional.

• The slash is used primarily to separate subcommands and lists of variables. Although
slashes are sometimes optional, it is best to enter them as shown in the syntax diagrams.

• The equals sign is used between a subcommand and its specifications, as in STATISTICS=
MEAN, and to show equivalence, as in COMPUTE target variable=expression. Equals signs
following subcommands are frequently optional, but it is best to enter them for clarity.

Command Order

Command order is more often than not a matter of common sense and follows this logical
sequence: variable definition, data transformation, and statistical analysis. For example, you
cannot label, transform, analyze, or use a variable in any way before it exists. The following
general rules apply:

• Commands that define variables for a session (DATA LIST, GET, MATRIX DATA, etc.) must
precede commands that assign labels or missing values to those variables; they must also
precede transformation and procedure commands that use those variables.

Commands 9

• Transformation commands (IF, COUNT, COMPUTE, etc.) that are used to create and
modify variables must precede commands that assign labels or missing values to those
variables, and they must also precede the procedures that use those variables.

• Generally, the logical outcome of command processing determines command order. For
example, a procedure that creates new variables in the working data file must precede a
procedure that uses those new variables.

• Some commands, such as REREAD and END CASE, can appear only in an input program
where the cases are created. Other commands, such as SELECT IF, can appear only in a
transformation program after cases have been created. Still other commands, such as
COMPUTE, can appear in an input or transformation program. For a discussion of these
program states and command order, see Appendix A.

In addition to observing the rules above, it is often important to distinguish between com-
mands that cause the data to be read and those that do not, particularly for large data sources
such as databases. Commands that cause the data to be read include all statistical and graph-
ing commands, all commands that result in creation of new files, AUTORECODE, EXECUTE,
and SORT.

Transformation commands that alter the dictionary of the working data file, such as
MISSING VALUES, and commands that do not affect the working data, such as SET, SHOW,
and DISPLAY, take effect as soon as they are encountered in the command sequence regard-
less of conditional statements that precede them. Table 1 lists all transformation commands
that take effect immediately.

Since these transformations take effect regardless of the conditional statements that precede
them, they cannot be applied selectively to individual cases, as shown in the following example:

DO IF AGE>69.
MISSING VALUES INCOME EXPENSES (0).
ELSE.
COMPUTE PROFIT=INCOME-EXPENSES.
END IF.
LIST.

The MISSING VALUES command is in effect when COMPUTE is executed, even if the condi-
tion defined on DO IF is false. To treat 0 income and expenses as missing only for those older

Table 1 Transformation commands that take effect immediately

ADD VALUE LABELS PRINT FORMATS
DOCUMENT SPLIT FILE
DROP DOCUMENTS STRING
FORMATS VALUE LABELS
LEAVE VARIABLE LABELS
MISSING VALUES VECTOR
N OF CASES WEIGHT
NUMERIC WRITE FORMATS

10 Universals

than 69, use RECODE in the DO IF—END IF structure to selectively recode 0 to a negative
number and declare the negative number as missing:

MISSING VALUES INCOME EXPENSES (-1).
DO IF (AGE>69).
RECODE INCOME EXPENSES (0=-1).
END IF.
COMPUTE PROFILE=INCOME-EXPENSES.
LIST.

In addition, the order of transformations that take effect immediately in the command
sequence can be misleading. Consider the following:

COMPUTE PROFIT=INCOME-EXPENSES.
MISSING VALUES INCOME EXPENSES (0).
LIST.

• COMPUTE precedes MISSING VALUES and is processed first; however, execution is
delayed until the data are being read.

• MISSING VALUES takes effect as soon as it is encountered.

• LIST causes the data to be read; thus, SPSS executes both COMPUTE and LIST during the
same data pass. Because MISSING VALUES is already in effect by this time, all cases with
the value 0 for either INCOME or EXPENSES return a missing value for PROFIT.

To prevent the MISSING VALUES command from taking effect before COMPUTE is executed,
you must position MISSING VALUES after the LIST command. Alternatively, place an
EXECUTE command between COMPUTE and MISSING VALUES.

11

Files

SPSS reads, creates, and writes different types of files. This section provides an overview
of the types of files used in SPSS and discusses concepts and rules that apply to all files.
Conventions for naming, printing, deleting, or permanently saving files, and for submitting
command files for processing, differ from one computer and operating system to another.
For specific information, consult the SPSS Base User’s Guide for your version of SPSS.

Command File

Command files contain commands, sometimes with inline data. They can be created by a
text editor. Wherever SPSS allows you to paste commands, either in a syntax window or
with an SPSS manager, the resulting file is a command file. You can also edit a journal file
to produce a command file (see “Journal File” below). The following is an example of a
simple command file that contains both commands and inline data:

DATA LIST /ID 1-3 SEX 4 (A) AGE 5-6 OPINION1 TO OPINION5 7-11.
BEGIN DATA
001F2621221
002M5611122
003F3422212
329M2121212
END DATA.
LIST.

• Case does not matter for commands but is significant for inline data. If you specified f
for female and m for male in column 4 of the data line, the value of SEX would be f or
m, instead of F or M as it is now.

• Commands can be in upper or lower case. Uppercase characters are used for all com-
mands throughout this manual only to distinguish them from other text.

Journal File

SPSS keeps a journal file to record all commands either entered in the syntax window or
generated from a dialog box during a session. You can retrieve this file with any text editor
and review it to learn how the session went. You can also edit the file to build a new
command file and use it in another run. An edited and tested journal file can be saved and
used later for repeated tasks. The journal file also records any error or warning messages
generated by commands. You can rerun these commands after making corrections and
removing the messages.

The default name for the journal file is SPSS.JNL on most operating systems. You can
turn off the journal or assign a different name to it (see SET). SPSS erases an existing
journal file with the default name when it starts a new session. If you want to save a journal
file for future use, rename it before you start another session. On some operating systems,
SPSS allows you to overwrite or append to journals from a previous session. Consult the
SPSS Base User’s Guide for your version of SPSS for specific information. Figure 2 is a
journal file for a short session with a warning message.

12 Universals

• The warning message, marked by the > symbol, tells you that an invalid numeric field has
been found. Checking the last data line, you will notice that column 10 is L, which is prob-
ably a typographic error. You can correct the typo (for example, by changing the L to 1),
delete the warning message, and submit the file again.

Data Files

SPSS is capable of reading and writing a wide variety of data file formats, including raw data
files created by a data entry device or a text editor, formatted data files produced by a data
management program, data files generated by other software packages, and SPSS-format
data files.

Raw Data File

Raw data files contain only data, either generated by a programming language, such as
COBOL, FORTRAN, and Assembler, or entered with a data entry device or a text editor.
SPSS can read raw data arranged in almost any format, including raw matrix materials and
nonprintable codes. User-entered data can be embedded within a command file as inline
data or saved on tape or disk as an external file. Nonprintable machine codes are usually
stored in an external file.

Raw data must be defined before they can be used by procedures. Data definition
commands such as DATA LIST, KEYED DATA LIST, and MATRIX DATA can be used to read in
raw data. Appropriate input formats must be specified on these commands (see “Variable
Formats” on p. 25). If for some reason you need to write a raw data file, use the WRITE
command or specify WRITE on a procedure with that subcommand. On most operating
systems, the default extension of a raw data file produced by SPSS is .DAT.

Files from Other Software Applications

You can read files from a variety of other software applications, including dBASE, Lotus,
SYLK, and Excel. You can also read simple tab-delimited spreadsheet files. Use GET
TRANSLATE with different TYPE specifications to read files from common spreadsheet
and database programs. To produce data files for these programs, use SAVE TRANSLATE.

Consult the SPSS Base User’s Guide for your version of SPSS for the types of files (if
any) that your system can read and write.

Figure 2 Records from a journal file
DATA LIST /ID 1-3 SEX 4 (A) AGE 5-6 OPINION1 TO OPINION5 7-11.
BEGIN DATA
001F2621221
002M5611122
003F3422212
004F45112L2
>Warning # 1102
>An invalid numeric field has been found. The result has been set to the
>system-missing value.
END DATA.
LIST.

Files 13

SPSS-Format Data File

An SPSS-format data file is a file specifically formatted for use by SPSS, containing both
data and the dictionary that defines the data. The dictionary contains names for the variables,
formats for reading and displaying values, and optional variable and value labels and
missing-value specifications. SPSS-format data files are created by using a SAVE or XSAVE
command during a session. On most operating systems, the default extension of a saved
SPSS-format data file is .SAV. An SPSS-format data file can also be a matrix file created with
the MATRIX=OUT subcommand on procedures that write matrices.

To retrieve an SPSS-format data file, use GET. SPSS-format data files speed processing
and are required as input for combining files during a session. For a discussion of the struc-
ture of SPSS-format data files, see “SPSS Data File Structure” below.

SPSS Portable File

A portable file contains all of the data and dictionary information stored in the working data
file but is specially formatted for transporting files between installations with different
versions of SPSS (such as the PRIME, VAX, or HONEYWELL GCOS computers) or for
transporting files between SPSS, SPSS/PC+, and other software using the same portable file
format. Use IMPORT to read a portable file and EXPORT to save the working data file as a
portable file. On most operating systems, the default extension of a saved portable file is
.POR. Since a portable file needs conversion, it is always simpler to transport a file as an
SPSS-format data file whenever possible.

Working Data File

The working data file is the data file you build to use in the current session. You can retrieve
an SPSS-format data file using GET, which in effect makes a working copy of the specified
file. You can also build a new file with DATA LIST or other data definition commands.

The working data file is not created until SPSS encounters a command (usually a
procedure) that causes it to read the data (see Table 1). At that point, SPSS executes all of
the preceding data definition and transformation commands and the command that causes the
data to be read. The working data file is then available for further transformations and
procedures, and it remains available until replaced by a new working data file or until the end
of the session.

Some procedures can add variables to the working data file. Others, such as AGGREGATE
and procedures that write matrix materials, can replace the working data file.

Any transformations and statistical analyses that you request during a session are
performed on the working data file. Transformations performed during a session apply to the
working data file only. Changes to the file are lost if the working data file is erased or
replaced before you have saved it. See SAVE and XSAVE.

SPSS Data File Structure

An SPSS-format data file is a self-documented file containing data and descriptive informa-
tion. The descriptive information is called the dictionary. It contains variable names and

14 Universals

locations, variable and value labels, print and write formats, and missing-value indicators. To
use an SPSS-format data file, you must retrieve it with GET, which creates a working data
file from the SPSS-format data file. Only a few commands can use an SPSS-format data file
directly without first specifying GET; they include MATCH FILES, ADD FILES, and procedures
that can read SPSS matrix data files.

To view the contents of an SPSS-format data file, retrieve it with GET and then use LIST
to display the variables in the working data file. Figure 3 shows a partial listing of a working
file. The values are displayed using their print format, which is different from the way they
are internally stored.

The dictionary is created when an SPSS-format data file is built. You can display or modify
the dictionary of a working file. Use DISPLAY DICTIONARY to view the dictionary, and use
commands such as VARIABLE LABELS, VALUE LABELS, and MISSING VALUES to modify
specific information contained in the dictionary. Figure 4 shows part of the displayed
dictionary information of the working data file displayed in Figure 3.

Figure 3 Part of a listed working data file
 ID SALBEG SEX TIME AGE SALNOW EDLEVEL WORK JOBCAT MINORITY SEXRACE

 628 8400 0 81 28.50 16080 16 .25 4 0 1.00
 630 24000 0 73 40.33 41400 16 12.50 5 0 1.00
 632 10200 0 83 31.08 21960 15 4.08 5 0 1.00
 633 8700 0 93 31.17 19200 16 1.83 4 0 1.00
 635 17400 0 83 41.92 28350 19 13.00 5 0 1.00
 637 12996 0 80 29.50 27250 18 2.42 4 0 1.00
 641 6900 0 79 28.00 16080 15 3.17 1 0 1.00
 649 5400 0 67 28.75 14100 15 .50 1 0 1.00
 650 5040 0 96 27.42 12420 15 1.17 1 0 1.00
 652 6300 0 77 52.92 12300 12 26.42 3 0 1.00
 653 6300 0 84 33.50 15720 15 6.00 1 0 1.00
 656 6000 0 88 54.33 8880 12 27.00 1 0 1.00
 657 10500 0 93 32.33 22000 17 2.67 4 0 1.00
 658 10800 0 98 41.17 22800 15 12.00 5 0 1.00

Figure 4 Displayed dictionary information
 List of variables on the active file

Name Position

ID Employee Code 1
 Print Format: F4
 Write Format: F4

SALBEG Beginning Salary 2
 Print Format: F5
 Write Format: F5
 Missing Values: 0

SEX Sex of Employee 3
 Print Format: F1
 Write Format: F1
 Missing Values: 9

 Value Label

 0 Males
 1 Females
TIME Job Seniority 4
 Print Format: F2
 Write Format: F2
 Missing Values: 0

Files 15

SPSS Matrix Data Files

An SPSS matrix data file is similar to any SPSS-format data file. It is a self-documented file
containing data and descriptive information. The descriptive information, stored in the file
dictionary, includes variable names, variable print and write formats, and optional variable
and value labels. You can assign or change the names, labels, and formats of the variables in
a matrix data file, just as you can in any SPSS-format data file. Many procedures can read raw
matrix data and write a representative matrix of the data values to an SPSS matrix data file,
which can be used as input for subsequent analysis.

Table 2 shows the types of matrix materials written by SPSS procedures. The ROWTYPE_
values (discussed below) of each matrix are also included so that you can see which
procedure matrices are readable by other procedures. If a procedure produces more than one
type of matrix, the subcommands required for each type of matrix are listed.

Table 2 Types of matrices and their contents

Command Subcommands/Notes ROWTYPE_ values

ALSCAL PROX

CLUSTER PROX

CORRELATIONS MEAN
STDDEV
N
CORR

DISCRIMINANT

/CLASSIFY=POOLED

N (1 per cell)
COUNT (1 per cell)
MEAN (1 per cell)
STDDEV (pooled)
CORR (pooled)

/CLASSIFY=SEPARATE,
/STATISTICS=BOXM, or
/STATISTICS=GCOV

N (1 per cell)
COUNT (1 per cell)
MEAN (1 per cell)
STDDEV (1 per cell)
CORR (1 per cell)

FACTOR

/MATRIX=OUT(CORR=file)
/MATRIX=IN(CORR=file)

CORR

/MATRIX=OUT(FAC=file)
/MATRIX=IN(FAC=file)

FACTOR

MANOVA

N (cell and pooled)
MEAN (1 per cell)
STDDEV (pooled)
CORR (pooled)

16 Universals

• All SPSS procedures that handle matrix materials use the MATRIX subcommand. The
MATRIX subcommand specifies the file from which the input matrix is read and/or the file
to which the output matrix is written.

• Matrix materials can be read from an external file as long as a working data file has been
created. The working file does not have to be the matrix data file.

• The procedures that read matrix materials cannot read every type of SPSS matrix data file.
For example, REGRESSION cannot read a matrix data file written by NONPAR CORR.

Figure 5 lists the structure of a matrix file and Figure 6 shows the dictionary information for
the same file.

Variable Order. The following variable order is standard for all SPSS matrix data files:

1. Split variables, if any. In Figure 5, the split variable is SEX.

2. ROWTYPE_ variable. The values of the ROWTYPE_ variable describe the contents of the
matrix data file, such as MEAN, STDDEV, N, and CORR.

3. Factor or grouping variables, if any.

NONPAR CORR

/PRINT=SPEARMAN

N
RHO

/PRINT=KENDALL

N
TAUB

ONEWAY

Separate variance
Can be input and output

MEAN (1 per cell)
STDDEV (1 per cell)
N (1 per cell)

Pooled variance
Can be input only

MEAN (1 per cell)
N (1 per cell)
MSE (pooled)
DFE (pooled)

PARTIAL CORR

N
CORR

PROXIMITIES PROX

REGRESSION

MEAN
STDDEV
N
CORR

RELIABILITY

N
MEAN
STDDEV
CORR

Table 2 Types of matrices and their contents (Continued)

Command Subcommands/Notes ROWTYPE_ values

Files 17

4. VARNAME_ variable (or FACTOR_ variable for factor-loading matrices). The values of the
VARNAME_ variable are the names of the variable used to form the matrix.

5. Continuous variables used to form the matrix.

Split Files. When split-file processing is in effect, a full set of matrix materials is written for
each split-file group defined by the split variables.

• A split variable cannot have the same variable name as any other variable written to the
matrix data file. Not all procedures allow split-file variables in their matrices.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by any procedure.

Figure 5 A matrix data file (LIST output)
FILE: MATRIX FILE
SEX: 1 FEMALE

SEX ROWTYPE_ VARNAME_ FOOD RENT PUBTRANS TEACHER COOK ENGINEER

 1 MEAN 73.3750000 134.500000 53.5000000 46.8000000 72.4375000 59.8125000
 1 STDDEV 15.4483009 115.534699 25.8173069 19.4209018 29.5746936 21.5196616
 1 N FOOD 16.0000000 16.0000000 16.0000000 15.0000000 16.0000000 16.0000000
 1 N RENT 16.0000000 16.0000000 16.0000000 15.0000000 16.0000000 16.0000000
 1 N PUBTRANS 16.0000000 16.0000000 16.0000000 15.0000000 16.0000000 16.0000000
 1 N TEACHER 15.0000000 15.0000000 15.0000000 15.0000000 15.0000000 15.0000000
 1 N COOK 16.0000000 16.0000000 16.0000000 15.0000000 16.0000000 16.0000000
 1 N ENGINEER 16.0000000 16.0000000 16.0000000 15.0000000 16.0000000 16.0000000
 1 CORR FOOD 1.0000000 .3658643 .5372333 .1733358 .1378010 .3778351
 1 CORR RENT .3658643 1.0000000 .1045105 -.0735708 .2026299 .1237062
 1 CORR PUBTRANS .5372333 .1045105 1.0000000 .6097397 .3877995 .6413121
 1 CORR TEACHER .1733358 -.0735708 .6097397 1.0000000 .4314755 .7312415
 1 CORR COOK .1378010 .2026299 .3877995 .4314755 1.0000000 .7807327
 1 CORR ENGINEER .3778351 .1237062 .6413121 .7312415 .7807327 1.0000000

NUMBER OF CASES READ = 14 NUMBER OF CASES LISTED = 14

FILE: MATRIX FILE
SEX: 2 MALE

SEX ROWTYPE_ VARNAME_ FOOD RENT PUBTRANS TEACHER COOK ENGINEER

 2 MEAN 68.8620690 112.137931 45.1379310 33.9310345 60.2142857 60.1785714
 2 STDDEV 20.4148478 81.3430672 24.1819356 26.9588722 30.2952840 28.8752792
 2 N FOOD 29.0000000 29.0000000 29.0000000 29.0000000 28.0000000 28.0000000
 2 N RENT 29.0000000 29.0000000 29.0000000 29.0000000 28.0000000 28.0000000
 2 N PUBTRANS 29.0000000 29.0000000 29.0000000 29.0000000 28.0000000 28.0000000
 2 N TEACHER 29.0000000 29.0000000 29.0000000 29.0000000 28.0000000 28.0000000
 2 N COOK 28.0000000 28.0000000 28.0000000 28.0000000 28.0000000 28.0000000
 2 N ENGINEER 28.0000000 28.0000000 28.0000000 28.0000000 28.0000000 28.0000000
 2 CORR FOOD 1.0000000 .2012077 .5977491 .6417034 .4898941 .5190702
 2 CORR RENT .2012077 1.0000000 -.1405952 -.0540657 .0727153 .3508598
 2 CORR PUBTRANS .5977491 -.1405952 1.0000000 .7172945 .7170419 .6580408
 2 CORR TEACHER .6417034 -.0540657 .7172945 1.0000000 .6711871 .6650047
 2 CORR COOK .4898941 .0727153 .7170419 .6711871 1.0000000 .7688210
 2 CORR ENGINEER .5190702 .3508598 .6580408 .6650047 .7688210 1.0000000

NUMBER OF CASES READ = 14 NUMBER OF CASES LISTED = 14

18 Universals

Additional Statistics. Some procedures include statistics with their matrix materials. For
example, CORRELATION matrices always include the mean, standard deviation, and number
of cases used to compute each coefficient, as shown in Figure 5. Other procedures, for
example PROXIMITIES and FACTOR, include no statistics with their matrices. See Table 2 for
a list of the statistics written by each procedure. Refer to the description of each command
for its requirements for a matrix input file.

Missing Values. The treatment of missing values in a procedure affects the matrix materials
written to the data file. With pairwise treatment of missing values, the matrix of N’s used to
compute each coefficient is included in the matrix. With any other missing-value treatment,
the single N used to calculate all coefficients in the matrix is included in the form of a vector.
Figure 5 includes the matrix of N’s written by CORRELATIONS when missing values are
excluded pairwise from the analysis. Figure 7 shows the single N written by CORRELATIONS
when missing values are excluded listwise.

The missing-value treatment that was in effect when the matrix was written must be
compatible with the missing-value treatment in effect when the matrix is read. For example,
REGRESSION can read a matrix written by CORRELATIONS but only if the missing-value
treatment of both procedures is consistent. Either both must refer to a matrix of N’s or both
must refer to a single N. For all procedures, pairwise treatment of missing values generates
a matrix of N’s; any other treatment of missing values generates a single vector of N’s.

Matrix File Dictionaries. As shown in Figure 6, print and write formats of A8 are assigned to
the matrix variables that SPSS creates (for example, ROWTYPE_, VARNAME_, and
FACTOR_). No labels are assigned to these variables. Print and write formats of F10.7 are
assigned to all of the continuous variables in the matrix analysis; the names and variable
labels defined for these variables in the original data file are retained, but their original values
and value labels are dropped because they do not apply to the matrix data file. When split-
file processing is in effect, the variable names, variable and value labels, and print and write
formats of the split-file variables are read from the dictionary of the original data file.

Procedures read and write matrices in which each row corresponds to a single case in the
matrix data file. For example, the matrix shown in Figure 7 has nine cases. The first three cases
with the ROWTYPE_ values of MEAN, STDDEV, and N have no values for VARNAME_ but do
have values for all the variables from FOOD to ENGINEER. The fourth case, CORR, in the
matrix generated for the first split-file group has a value of FOOD for VARNAME_, a value of
0.3652366 when correlated with variable RENT, a value of 0.5371597 when correlated with
variable PUBTRANS, and so on.

Files 19

Figure 6 Dictionary of a matrix system file (DISPLAY output)
FILE: MATRIX FILE

 LIST OF VARIABLES ON THE ACTIVE FILE

NAME POSITION

SEX 1
 PRINT FORMAT: F2
 WRITE FORMAT: F2

 VALUE LABEL

 1 FEMALE
 2 MALE

ROWTYPE_ 2
 PRINT FORMAT: A8
 WRITE FORMAT: A8

VARNAME_ 3
 PRINT FORMAT: A8
 WRITE FORMAT: A8

FOOD AVG FOOD PRICES 4
 PRINT FORMAT: F10.7
 WRITE FORMAT: F10.7

RENT NORMAL RENT 5
 PRINT FORMAT: F10.7
 WRITE FORMAT: F10.7

PUBTRANS PRICE FOR PUBLIC TRANSPORT 6
 PRINT FORMAT: F10.7
 WRITE FORMAT: F10.7

TEACHER NET TEACHER’S SALARY 7
 PRINT FORMAT: F10.7
 WRITE FORMAT: F10.7

COOK NET COOK’S SALARY 8
 PRINT FORMAT: F10.7
 WRITE FORMAT: F10.7

ENGINEER NET ENGINEER’S SALARY 9
 PRINT FORMAT: F10.7
 WRITE FORMAT: F10.7

20 Universals

Long Variable Names

In some instances, data files with variable names longer than eight bytes require special con-
sideration:

• If you save a data file in portable format (see “EXPORT” on p. 529), variable names that
exceed eight bytes are converted to unique eight character names. For example,
mylongrootname1, mylongrootname2, and mylongrootname3 would be converted to mylon-
gro, mylong_2, and mylong_3 respectively.

• When using data files with variable names longer than eight bytes in SPSS 10.x or 11.x,
unique, eight byte versions of variable names are used -- but the original variable names
are preserved for use in release 12.0 or later. In releases prior to SPSS 10, the original long
variable names are lost if you save the data file.

• Matrix data files (commonly created with the MATRIX OUT subcommand available in
some procedures) in which the VARNAME_ variable is longer than an 8 byte string cannot
be read by releases of SPSS prior to 12.0.

Figure 7 Single N in the matrix system file
FILE: MATRIX FILE
SEX: 1 FEMALE

SEX ROWTYPE_ VARNAME_ FOOD RENT PUBTRANS TEACHER COOK ENGINEER

 1 MEAN 73.4666667 136.800000 54.0000000 46.8000000 73.8666667 60.0000000
 1 STDDEV 15.9860058 119.210019 26.6431444 19.4209018 30.0353760 22.2614337
 1 N 15.0000000 15.0000000 15.0000000 15.0000000 15.0000000 15.0000000
 1 CORR FOOD 1.0000000 .3652366 .5371597 .1733358 .1358120 .3773434
 1 CORR RENT .3652366 1.0000000 .0989524 -.0735708 .1914448 .1213899
 1 CORR PUBTRANS .5371597 .0989524 1.0000000 .6097397 .3811372 .6409265
 1 CORR TEACHER .1733358 -.0735708 .6097397 1.0000000 .4314755 .7312415
 1 CORR COOK .1358120 .1914448 .3811372 .4314755 1.0000000 .7893533
 1 CORR ENGINEER .3773434 .1213899 .6409265 .7312415 .7893533 1.0000000

NUMBER OF CASES READ = 9 NUMBER OF CASES LISTED = 9

 2

FILE: MATRIX FILE
SEX: 2 MALE

SEX ROWTYPE_ VARNAME_ FOOD RENT PUBTRANS TEACHER COOK ENGINEER

 2 MEAN 69.6428571 114.464286 46.1428571 33.7500000 60.2142857 60.1785714
 2 STDDEV 20.3437392 81.8474109 24.0011023 27.4356149 30.2952840 28.8752792
 2 N 28.0000000 28.0000000 28.0000000 28.0000000 28.0000000 28.0000000
 2 CORR FOOD 1.0000000 .1752920 .5784136 .6638084 .4898941 .5190702
 2 CORR RENT .1752920 1.0000000 -.1817862 -.0491139 .0727153 .3508598
 2 CORR PUBTRANS .5784136 -.1817862 1.0000000 .7447511 .7170419 .6580408
 2 CORR TEACHER .6638084 -.0491139 .7447511 1.0000000 .6711871 .6650047
 2 CORR COOK .4898941 .0727153 .7170419 .6711871 1.0000000 .7688210
 2 CORR ENGINEER .5190702 .3508598 .6580408 .6650047 .7688210 1.0000000

NUMBER OF CASES READ = 9 NUMBER OF CASES LISTED = 9

21

Variables

To prepare data for processing, you must define variables by assigning variable names and
formats. You can also specify variable labels, value labels, and missing values, but they are
optional. This section discusses the two essential components of variable definition: vari-
able names and formats.

Variable Names

Each variable must have a unique name. Variable names are stored in the dictionary of an
SPSS-format data file or working data file. Observe the following rules when establishing
variable names or referring to variables by their names on commands:

• Variable names can be up to 64 bytes long, and the first character must be a letter or one
of the characters @, #, or $. Subsequent characters can be any combination of letters,
numbers, a period (.), and non-punctuation characters. 64 bytes typically means 64 char-
acters in single-byte languages (e.g., English, French, German, Spanish, Italian, Hebrew,
Russian, Greek, Arabic, Thai) and 32 characters in double-byte languages (e.g., Japa-
nese, Chinese, Korean).

(Note: “Letters” includes any non-punctuation characters used in writing ordinary words
in the languages supported in the character set of the platform on which SPSS is run-
ning.)

• Variable names cannot contain spaces.

• A # character in the first position of a variable name defines a scratch variable (see
“Scratch Variables” on p. 24).

• A $ sign in the first position indicates that the variable is a system variable (see “System
Variables” on p. 23). The $ sign is not allowed as the initial character of a user-defined
variable.

• The period, underscore, and the characters $, #, and @ can be used within variable
names. For example, A._$@#1 is a valid variable name.

• Variable names ending with a period should be avoided, since the period may be inter-
preted as a command terminator.

• Variable names ending in underscores should be avoided, since such names may conflict
with names of variables automatically created by a number of commands—for example,
YEAR_ and DATE_ created by the DATE command.

• Variable names can be established on the DATA LIST, KEYED DATA LIST, MATRIX DATA,
NUMERIC, STRING, COMPUTE, RECODE, and COUNT commands. They can be changed
with the RENAME VARIABLES command.

• Reserved keywords cannot be used as variable names. Reserved keywords are

ALL AND BY EQ GE GT LE
LT NE NOT OR TO WITH

22 Universals

Mixed Case Variable Names

Variable names can be defined with any mixture of upper and lower case characters, and case
is preserved for display purposes.

• Variable names are stored and displayed exactly as specified on commands that read data
or create new variables. For example compute NewVar = 1 creates a new variable that will
be displayed as NewVar in the Data Editor and in output from any procedures that display
variable names.

• Commands that refer to existing variable names are not case-sensitive. For example,
FREQUENCIES VARIABLES = newvar, FREQUENCIES VARIABLES = NEWVAR, and
FREQUENCIES VARIABLES = NewVar are all functionally equivalent.

• In languages such as Japanese where some characters exist in both narrow and wide
forms, these forms are considered to be different and are displayed using the form in
which they were entered.

• When long variable names need to wrap on to multiple lines in output, SPSS attempts to
break lines at underscores, periods, and a change from lower to upper case.

You can use the RENAME VARIABLES command to change the case of any characters in a
variable name.

Example
RENAME VARIABLES (newvariable = NewVariable).

• For the existing variable name specification, case is ignored. Any combination of upper
and lower case will work.

• For the new variable name, case will be preserved as entered for display purposes.

For more information, see the RENAME VARIABLES command.

Long Variable Names

In some instances, variable names longer than eight bytes require special consideration:

• If you save a data file in portable format (see “EXPORT” on p. 529), variable names that
exceed eight bytes are converted to unique eight character names. For example,
mylongrootname1, mylongrootname2, and mylongrootname3 would be converted to mylon-
gro, mylong_2, and mylong_3 respectively.

• When using data files with variable names longer than eight bytes in SPSS 10.x or 11.x,
unique, eight byte versions of variable names are used -- but the original variable names
are preserved for use in release 12.0 or later. In releases prior to SPSS 10, the original long
variable names are lost if you save the data file.

• Matrix data files (commonly created with the MATRIX OUT subcommand available in
some procedures) in which the VARNAME_ variable is longer than an 8 byte string cannot
be read by releases of SPSS prior to 12.0.

Variables 23

Keyword TO

You can establish names for a set of variables or to refer to any number of consecutive variables
by specifying the beginning and the ending variables joined by the keyword TO.

To establish names for a set of variables with the keyword TO, use a character prefix with
a numeric suffix.
• The prefix can be any valid name. Both the beginning and ending variables must use the

same prefix.

• The numeric suffix can be any integer, but the first number must be smaller than the
second. For example, ITEM1 TO ITEM5 establishes five variables named ITEM1, ITEM2,
ITEM3, ITEM4, and ITEM5.

• Leading zeros used in numeric suffixes are included in the variable name. For example,
V001 TO V100 establishes 100 variables, V001, V002, V003, ..., V100. V1 TO V100 establishes
100 variables, V1, V2, V3, ..., V100.

The keyword TO can also be used on procedures and other commands to refer to consecutive
variables on the working data file. For example, AVAR TO VARB refers to the variables AVAR
and all subsequent variables up to and including VARB.

• In most cases, the TO specification uses the variable order on the working data file. Use
the DISPLAY command to see the order of variables on the working data file.

• On some subcommands, the order in which variables are named on a previous
subcommand, usually the VARIABLES subcommand, is used to determine which variables
are consecutive and therefore are implied by the TO specification. This is noted in the
description of individual commands.

Keyword ALL

The keyword ALL can be used in many commands to specify all the variables in the working
data file. For example:

FREQUENCIES /VARIABLES = ALL.

or

OLAP CUBES income by ALL.

In the second example, a separate table will be created for every variable in the data file, in-
cluding a table of income by income.

System Variables

System variables are special variables created during a working session to keep system-
required information, such as the number of cases read by the system, the system-missing
value, and the current date. System variables can be used in data transformations.

• The names of system variables begin with a dollar sign ($).

• You cannot modify a system variable or alter its print or write format. Except for these
restrictions, you can use system variables anywhere a normal variable is used in the trans-
formation language.

24 Universals

• System variables are not available for procedures.

$CASENUM Permanent case sequence number. For each case, $CASENUM is the number
of permanent cases read up to and including that case. The format is F8.0.The
value of $CASENUM is not necessarily the row number in a Data Editor
window (available in windowed environments).

$SYSMIS System-missing value. The system-missing value displays as a period (.) or
whatever is used as the decimal point.

$JDATE Current date in number of days from October 14, 1582 (day 1 of the
Gregorian calendar). The format is F6.0.

$DATE Current date in international date format with two-digit year. The format is
A9 in the form dd-mmm-yy.

$DATE11 Current date in international date format with four-digit year. The format is
A11 in the form dd-mmm-yyyy.

$TIME Current date and time. $TIME represents the number of seconds from
midnight, October 14, 1582, to the date and time when the transformation
command is executed. The format is F20.

$LENGTH The current page length. The format is F11.0. For more information, see SET.

$WIDTH The current page width. The format is F3.0. For more information, see SET.

Scratch Variables

Scratch variables are variables created for the sole purpose of facilitating operations during
a session.
• To create a scratch variable, specify a variable name that begins with the # character—

for example, #ID. Scratch variables can be either numeric or string.

• Scratch variables are initialized to 0 for numeric variables or blank for string variables.

• SPSS does not reinitialize scratch variables when reading a new case. Their values are
always carried across cases. Therefore, a scratch variable is a good choice for a looping
index.

• Do not use LEAVE with a scratch variable.

• Scratch variables cannot be used in procedures and cannot be saved in a data file.

• Scratch variables cannot be assigned missing values, variable labels, or value labels.

• Scratch variables can be created between procedures but are always discarded as the next
procedure begins.

• Scratch variables are discarded once a TEMPORARY command is specified.
• The keyword TO cannot refer to scratch variables and permanent variables at the same

time.

• Scratch variables cannot be named on a WEIGHT command.

Variables 25

Variable Formats

SPSS accepts two variable types: numeric and string (also referred to as alphanumeric).
Numeric values are stored internally as double-precision floating-point numbers and string
values as codes listed in the SPSS character set (see Appendix B). Variable formats
determine how SPSS reads raw data into storage and how it displays and writes values out.

Input and Output Formats

Values are read according to their input format and displayed on your terminal or written to
a file according to their output format. The input and output formats differ in several ways.

• The input format is either specified or implied on the DATA LIST, KEYED DATA LIST, or
other data definition commands. It is in effect only when SPSS builds cases in a work-
ing data file. Figure 8 shows the command printback for DATA LIST, which includes
input format specifications.

• DATA LIST or any other data definition command automatically generates an output format
from the input format and expands the output format to include punctuation characters
such as decimal points, commas, dollar signs, and percent signs. To see the current output
formats of variables in the working data file, use DISPLAY VARIABLES. The variables
defined by the above DATA LIST command are displayed in Figure 9. Note that the output
format for SCORE has been expanded one space to allow the display of the decimal point
(the F4.2 input format indicates a four-character variable with two implied decimal places;
the F5.2 output format includes one space for the decimal point).

• The formats (specified or default) on NUMERIC, COMPUTE, or other commands that
create new variables are output formats. You must specify adequate widths to
accommodate all punctuation characters.

• The output format is in effect during the entire working session (unless explicitly
changed) and is saved in the dictionary of an SPSS-format data file.

• Output formats for numeric variables can be changed with the FORMATS, PRINT FORMATS,
or WRITE FORMATS command.

Figure 8 Output showing input formats
 1 0 DATA LIST /ID 1-4 SCORE 6-9 (F,2).

This command will read 1 records from the command file

Variable Rec Start End Format

ID 1 1 4 F4.0
SCORE 1 6 9 F4.2

List of variables on the active file

Name Pos Print Fmt Write Fmt Missing Values

ID 1 F4 F4
SCORE 2 F5.2 F5.2

Figure 9 Output showing output formats

26 Universals

• Output formats (widths) for string variables cannot be changed with command syntax.
However, you can use STRING to declare a new variable with the desired format and then
use COMPUTE to copy values from the existing string variable into the new variable.

• The format type cannot be changed from string to numeric, or vice versa, with command
syntax. However, you can use RECODE to recode values from one variable into another
variable of a different type.

See DATA LIST for information on specifying input data formats. See FORMATS, PRINT
FORMATS, and WRITE FORMATS for information on specifying output data formats. See
STRING for information on declaring new string variables.

Numeric Variable Formats

• The formats used in this manual use FORTRAN-like syntax—for example, Fw.d, where
F denotes the format type (numeric), w represents the variable width, and d represents the
number of decimal places.

• By default, the DATA LIST and KEYED DATA LIST commands assume that variables are
numeric with an F format type. The default width depends on whether the data are in fixed
or freefield format. For discussion of fixed data and freefield data, see DATA LIST.

• Numeric variables created by COMPUTE, COUNT, or other commands that create numeric
variables are assigned a format type F8.2 (or the default format defined on SET FORMAT).

• If a data value exceeds its width specification, SPSS makes an attempt to display some
value nevertheless. It first rounds the decimals, then takes out punctuation characters,
then tries scientific notation, and if there is still not enough space, produces asterisks
(***), indicating that a value is present but cannot be displayed in the assigned width.

• The output format does not affect the value stored in the file. A numeric value is always
stored in double precision.

F, N, and E Formats

Table 3 lists the formats most commonly used to read in and write out numeric data.

Table 3 Common numeric formats

Format
type Description Sample

format
Sample
input

Output for fixed input Output for freefield input

Format Value Format Value

Fw.d Standard
numeric

F5.0 1234 F5.0 1234 F5.0 1234

1.234 1 1*

F5.2 1234 F6.2 12.34 F6.2 1234.0

1.234 1.23 1.23

Nw.d Restricted
numeric

N5.0 00123 F5.0 123 F5.0 123

1.234 . † 1

Variables 27

N5.2 12345 F6.2 123.45 F6.2 12345

12.34 . 12.34

Ew.d Scientific
notation

E8.0 1234E3 E10.3 1.234E+06 E10.3 1.234E+06**

1234 1.234E+03 1.234E+03

* Only the display is truncated. The value is stored in full precision.
† System-missing value. In this case, the value entered contains an illegal decimal point.
** Scientific notation is accepted in input data with F, COMMA, DOLLAR, DOT, and PCT formats.
The same rules apply as specified below.

Format
type Description Sample

format
Sample
input

Output for fixed input Output for freefield input

Format Value Format Value

28 Universals

For fixed data:

• If a value has no coded decimal point but the input format specifies decimal positions, the
rightmost positions are interpreted as implied decimal digits. For example, if the input F
format specifies two decimal digits, the value 1234 is interpreted as 12.34; however, the
value 123.4 is still interpreted as 123.4.

• With the N format, decimal places are always implied. Only unsigned integers are
allowed. Values not padded with leading zeros to the specified width or those containing
decimal points are assigned the system-missing value. This format is useful for reading
and checking values that should be integers containing leading zeros.

• The E format reads all forms of scientific notation. If the sign is omitted, + is assumed. If
the sign (+ or –) is specified before the exponent, the E or D can be omitted. A single
space is permitted after the E or D and/or after the sign. If both the sign and the letter E
or D are omitted, implied decimal places are assumed. For example, 1.234E3, 1.234+3,
1.234E+3, 1.234D3, 1.234D+3, 1.234E 3, and 1234 are all legitimate values. Only the last
value can imply decimal places.

• E format input values can be up to 40 characters wide and include up to 15 decimal positions.
• The default output width (w) for the E format is either the specified input width or the

number of specified decimal positions plus 7 (d+7), whichever is greater. The minimum
width is 10 and the minimum decimal places are 3.

For freefield data:

• F format w and d specifications do not affect how data are read. They only determine the
output formats (expanded, if necessary). 1234 is always read as 1234 in freefield data, but
a specified F5.2 format will be expanded to F6.2 and the value will be displayed as 1234.0
(the last decimal place is rounded because of lack of space).

• The N format, when used for freefield data, is treated as the F format.

• The E format for freefield data follows the same rules as for fixed data except that no
blank space is permitted in the value. Thus, 1.234E3 and 1.234+3 are allowed, but the
value 1.234 3 will cause mistakes when the data are read.

• The default output E format and the width and decimal place limitations are the same as
with fixed data.

COMMA, DOT, DOLLAR, and PCT Formats

Table 4 lists the formats that read and write data with embedded punctuation characters and
symbols, such as commas, dots, and dollar and percent signs. The input data may or may not
contain such characters. The data values read in are stored as numbers but displayed using
the appropriate formats. Other formats that use punctuation characters and symbols are date
and time formats and currency formats. Date and time are discussed in “Date and Time” on
p. 55. Currency formats are output formats only. (See SET and FORMATS.)

Variables 29

Table 4 Numeric formats with punctuation and symbols

Format type Description Sample format Sample
input

Default output
format

Displayed
value

COMMAw.d Commas in
numbers

COMMA6.0 12345 COMMA7.0 12,345
12,345 12,345
123,45 12,345

COMMA6.3 12345 COMMA7.3 12.345
123,45 12.345
1.2345 1.234
1234.5 1234.50*

DOTw.d Dots in numbers DOT6.0 12345 DOT7.0 12.345
123.45 12.345
123.45 12.345

DOT6.3 12345 DOT7.3 12,345
123.45 12,345
1,2345 1,234
1234,5 1234,50*

DOLLARw.d Dollar sign and
comma in numbers

DOLLAR7.0 1234 DOLLAR10.0 $1,234
1,234 $1,234

$1234 $1,234
$1,234 $1,234

DOLLAR7.3 1234 DOLLAR10.3 $1.234
1,234 $1.234

$1,23.4 $123.400
12345.6 $12345.60

0*
PCTw.d Percent sign after

numbers
PCT7.0 1234 PCT8.0 1234%

12.34 12%
PCT7.2 1234 PCT9.3 1.234%

12.3 12.340%

1234 12.34%

* When the decimal point is coded in input, SPSS displays all specified decimal places whether
recorded in the data or not. When the width is inadequate, thousands separators are dropped be-
fore decimal places.

30 Universals

• Formats listed in Table 4 cannot be used to read freefield data.

• Data values can appear anywhere within the column specification. Both leading and
trailing blanks are allowed.

• The sign (for example, “$” for DOLLAR format) or punctuation mark (for example, “.” for
DOT format) is ignored in the input data. Its position does not affect the value read into
storage.

• The default output format expands the width of the input format by the number of the
required signs or punctuation marks plus the decimal point if d is not 0. For example,
COMMA9.2 is expanded to COMMA12.2 to accommodate two possible commas and one
decimal point.

• DOT format is similar to COMMA format but reverses the symbols used for the thousands
separator and the decimal point. For example, in DOT format, 1.234 has the value of one
thousand, two hundred and thirty-four.

Binary and Hexadecimal Formats

SPSS is capable of reading and writing data in formats used by a number of programming
languages such as PL/I, COBOL, FORTRAN, and Assembler. The data can be binary, hexa-
decimal, or zoned decimal. Formats described in this section can be used both as input
formats and output formats, but with fixed data only. The described formats are not available
on all systems. Consult the SPSS Base User’s Guide for your version of SPSS for details.

The default output format for all formats described in this section is an equivalent F
format, allowing the maximum number of columns for values with symbols and punctuation.
To change the default, use FORMATS or WRITE FORMATS.

IBw.d (integer binary):

The IB format reads fields that contain fixed-point binary (integer) data. The data might be gen-
erated by COBOL using COMPUTATIONAL data items, by FORTRAN using INTEGER*2 or
INTEGER*4, or by Assembler using fullword and halfword items. The general format is a
signed binary number that is 16 or 32 bits in length.

The general syntax for the IB format is IBw.d, where w is the field width in bytes (omitted
for column-style specifications) and d is the number of digits to the right of the decimal point.
Since the width is expressed in bytes and the number of decimal positions is expressed in
digits, d can be greater than w. For example, both of the following commands are valid:

DATA LIST FIXED /VAR1 (IB4.8).

DATA LIST FIXED /VAR1 1-4 (IB,8).

Widths of 2 and 4 represent standard 16-bit and 32-bit integers, respectively. Fields read with
the IB format are treated as signed. For example, the one-byte binary value 11111111 would
be read as −1.

PIBw.d (positive integer binary):

The PIB format is essentially the same as IB except that negative numbers are not allowed.
This restriction allows one additional bit of magnitude. The same one-byte value 11111111
would be read as 255.

Variables 31

PIBHEXw (hexadecimal of PIB):

The PIBHEX format reads hexadecimal numbers as unsigned integers and writes positive
integers as hexadecimal numbers. The general syntax for the PIBHEX format is PIBHEXw,
where w indicates the total number of hexadecimal characters. The w specification must be
an even number, with a maximum of 16.

For input data, each hexadecimal number must consist of the exact number of characters.
No signs, decimal points, or leading and trailing blanks are allowed. For some operating
systems (such as IBM CMS), hexadecimal characters must be upper case. The following
example illustrates the kind of data the PIBHEX format can read:

DATA LIST FIXED
 /VAR1 1-4 (PIBHEX) VAR2 6-9 (PIBHEX) VAR3 11-14 (PIBHEX).
BEGIN DATA
0001 0002 0003
0004 0005 0006
0007 0008 0009
000A 000B 000C
000D 000E 000F
00F0 0B2C FFFF
END DATA.
LIST.

The values for VAR1, VAR2, and VAR3 are listed in Figure 10. The PIBHEX format can also
be used to write decimal values as hexadecimal numbers, which may be useful for
programmers.

Zw.d (zoned decimal):

The Z format reads data values that contain zoned decimal data. Such numbers may be
generated by COBOL systems using DISPLAY data items, by PL/I systems using PICTURE
data items, or by Assembler using zoned decimal data items.

In zoned decimal format, one digit is represented by one byte, generally hexadecimal F1
representing 1, F2 representing 2, and so on. The last byte, however, combines the sign for
the number with the last digit. In the last byte, hexadecimal A, F, or C assigns +, and B, D,
or E assigns −. For example, hexadecimal D1 represents 1 for the last digit and assigns the
minus sign (−) to the number.

The general syntax of the Z format is Zw.d, where w is the total number of bytes (which is
the same as columns) and d is the number of decimals. For input data, values can appear
anywhere within the column specifications. Both leading and trailing blanks are allowed.
Decimals can be implied by the input format specification or explicitly coded in the data.
Explicitly coded decimals override the input format specifications.

Figure 10 Output displaying values read in PIBHEX format
 VAR1 VAR2 VAR3

 1 2 3
 4 5 6
 7 8 9
 10 11 12
 13 14 15
 240 2860 65535

32 Universals

The following example illustrates how the Z format reads zoned decimals in their printed
forms on IBM mainframe and PC systems. The printed form for the sign zone (A to I for +1
to +9, and so on) may vary from system to system.

DATA LIST FIXED /VAR1 1-5 (Z) VAR2 7-11 (Z,2) VAR3 13-17 (Z)
 VAR4 19-23 (Z,2) VAR5 25-29 (Z) VAR6 31-35 (Z,2).
BEGIN DATA
1234A 1234A 1234B 1234B 1234C 1234C
1234D 1234D 1234E 1234E 1234F 1234F
1234G 1234G 1234H 1234H 1234I 1234I
1234J 1234J 1234K 1234K 1234L 1234L
1234M 1234M 1234N 1234N 1234O 1234O
1234P 1234P 1234Q 1234Q 1234R 1234R
1234{ 1234{ 1234} 1234} 1.23M 1.23M
END DATA.
LIST.

The values for VAR1 to VAR6 are listed in Figure 11.

The default output format for the Z format is the equivalent F format, as shown in Figure 11.
The default output width is based on the input width specification plus one column for the
sign and one column for the implied decimal point (if specified). For example, an input
format of Z4.0 generates an output format of F5.0 and an input format of Z4.2 generates an
output format of F6.2.

Pw.d (packed decimal):

The P format is used to read fields with packed decimal numbers. Such numbers are gener-
ated by COBOL using COMPUTATIONAL–3 data items and by Assembler using packed
decimal data items. The general format of a packed decimal field is two four-bit digits in each
byte of the field except the last. The last byte contains a single digit in its four leftmost bits
and a four-bit sign in its rightmost bits. If the last four bits are 1111 (hexadecimal F), the
value is positive; if they are 1101 (hexadecimal D), the value is negative. One byte under the
P format can represent numbers from −9 to 9.

The general syntax of the P format is Pw.d, where w is the number of bytes (not digits)
and d is the number of digits to the right of the implied decimal point. The number of digits
in a field is (2*w–1).

PKw.d (unsigned packed decimal):

The PK format is essentially the same as P except that there is no sign. That is, even the right-
most byte contains two digits, and negative data cannot be represented. One byte under the
PK format can represent numbers from 0 to 99. The number of digits in a field is 2*w.

Figure 11 Output displaying values read in Z format
VAR1 VAR2 VAR3 VAR4 VAR5 VAR6

 12341 123.41 12342 123.42 12343 123.43
 12344 123.44 12345 123.45 12346 123.46
 12347 123.47 12348 123.48 12349 123.49
-12341 -123.41 -12342 -123.42 -12343 -123.43
-12344 -123.44 -12345 -123.45 -12346 -123.46
-12347 -123.47 -12348 -123.48 -12349 -123.49
 12340 123.40 -12340 -123.40 -1 -1.23

Variables 33

RBw (real binary):

The RB format is used to read data values that contain internal format floating-point
numbers. Such numbers are generated by COBOL using COMPUTATIONAL–1 or
COMPUTATIONAL–2 data items, by PL/I using FLOATING DECIMAL data items, by
FORTRAN using REAL or REAL*8 data items, or by Assembler using floating-point
data items.

The general syntax of the RB format is RBw, where w is the total number of bytes. The width
specification must be an even number between 2 and 8. Normally, a width specification of 8 is
used to read double-precision values, and a width of 4 is used to read single-precision values.

RBHEXw (hexadecimal of RB):

The RBHEX format interprets a series of hexadecimal characters as a number that represents
a floating-point number. This representation is system-specific. If the field width is less than
twice the width of a floating-point number, the value is right-padded with binary zeros. For
some operating systems (for example, IBM CMS), letters in hexadecimal values must be
upper case.

The general syntax of the RBHEX format is RBHEXw, where w indicates the total number
of columns. The width must be an even number. The values are real (floating-point) num-
bers. Leading and trailing blanks are not allowed. Any data values shorter than the specified
input width must be padded with leading zeros.

String Variable Formats

• The values of string variables can contain numbers, letters, and special characters and can
be up to 255 characters long.

• SPSS differentiates between long strings and short strings. Long strings can be displayed
by some procedures and by the PRINT command, and they can be used as break variables
to define subgroups in REPORT. They cannot, however, be tabulated in procedures such
as CROSSTABS, and they cannot have user-missing values. Short strings, on the other
hand, can be tabulated and can have user-missing values. The maximum length of a short
string depends on the computer and operating system; it is typically 8 characters.

• System-missing values cannot be generated for string variables, since any character is a
legal string value.

• When a transformation command that creates or modifies a string variable yields a miss-
ing or undefined result, a null string is assigned. The variable displays as blanks and is not
treated as missing.

• String formats are used to read and write string variables. The input values can be
alphanumeric characters (A format) or the hexadecimal representation of alphanumeric
characters (AHEX format).

• For fixed data, the width can be explicitly specified on DATA LIST or KEYED DATA LIST or
implied if column-style specifications are used. For freefield data, the default width is 1;
if the input string may be longer, w must be explicitly specified. Input strings shorter than
the specified width are right-padded with blanks.

34 Universals

• The output format for a string variable is always A. The width is determined by the input
format or the format assigned on the STRING command. String formats can be displayed
with DISPLAY VARIABLES but cannot be changed.

Aw (Standard Characters)

The A format is used to read standard characters. Characters can include letters, numbers,
punctuation marks, blanks, and most other characters on your keyboard. Numbers entered as
values for string variables cannot be used in calculations unless you convert them to numeric
format with the NUMBER function (see “String Functions” on p. 45).

Fixed data:

With fixed-format input data, any punctuation—including leading, trailing, and embedded
blanks—within the column specifications is included in the string value. For example, a string
value of “Mr. Ed” (with one embedded blank) is distinguished from a value of “Mr. Ed”
(with two embedded blanks). It is also distinguished from a string value of “MR. ED” (all
upper case), and all three are treated as separate values. These can be important considerations
for any procedures, transformations, or data selection commands involving string variables.
Consider the following example:

DATA LIST FIXED /ALPHAVAR 1-10 (A).
BEGIN DATA
Mr. Ed
Mr. Ed
MR. ED
Mr. Ed
 Mr. Ed
END DATA.
AUTORECODE ALPHAVAR /INTO NUMVAR.
LIST.

AUTORECODE recodes the values into consecutive integers. Figure 12 shows the recoded
values.

Freefield data:

With freefield data, blanks and commas are treated as delimiters for A format variables unless
the value is enclosed in apostrophes or quotation marks. For example,

Ed, Mr.

Figure 12 Different string values illustrated
ALPHAVAR NUMVAR

Mr. Ed 4
Mr. Ed 4
MR. ED 2
Mr. Ed 3
 Mr. Ed 1

Variables 35

is read as two separate values (Ed and Mr.). To include blanks and/or commas in a string
value, enclose the value in apostrophes or quotation marks. For example, the following
command file will generate a list of values as shown in Figure 13:

DATA LIST FREE /ALPHAVAR (A10).
BEGIN DATA
Mr. Ed
Ed,Mr.
’Mr. Ed’
’Ed, Mr.’
END DATA.
LIST.

AHEXw (Hexadecimal Characters)

The AHEX format is used to read the hexadecimal representation of standard characters. Each
set of two hexadecimal characters represents one standard character. For codes used on
different operating systems, see Appendix B.
• The w specification refers to columns of the hexadecimal representation and must be an

even number. Leading, trailing, and embedded blanks are not allowed, and only valid
hexadecimal characters can be used in input values.

• For some operating systems (for example, IBM CMS), letters in hexadecimal values must
be upper case.

• The default output format for variables read with the AHEX input format is the A format.
The default width is half the specified input width. For example, an input format of
AHEX14 generates an output format of A7.

• Used as an output format, the AHEX format displays the printable characters in the
hexadecimal characters specific to your system. The following commands run on a UNIX
system (where A=41 (decimal 65), a=61 (decimal 97), and so on) produce the output
shown in Figure 14:

DATA LIST FIXED
 /A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z 1-26 (A).
FORMATS ALL (AHEX2).
BEGIN DATA
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
END DATA.
LIST.

Figure 13 Blanks and commas in freefield string input
ALPHAVAR

Mr.
Ed
Ed
Mr.
Mr. Ed
Ed, Mr.

36 Universals

FORTRAN-like Format Specifications

You can use FORTRAN-like format specifications to define formats for a set of variables, as
in the following example:

DATA LIST FILE=HUBDATA RECORDS=3
 /MOHIRED, YRHIRED, DEPT1 TO DEPT4 (T12, 2F2.0, 4(1X,F1.0)).

• The specification T12 in parentheses tabs to the 12th column. The first variable (MOHIRED)
will be read beginning from column 12.

• The specification 2F2.0 assigns the format F2.0 to two adjacent variables (MOHIRED and
YRHIRED).

• The next four variables (DEPT1 to DEPT4) are each assigned the format F1.0. The 4 in
4(1X,F1.0) distributes the same format to four consecutive variables. 1X skips one column
before each variable. (The column-skipping specification placed within the parentheses
is distributed to each variable.)

Figure 14 Display of hexadecimal representation of the character set with AHEX format
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A
61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A

37

Transformation Expressions

Transformation expressions are used in commands like COMPUTE, IF, DO IF, LOOP IF, and
SELECT IF. This section describes the three types of expressions: numeric, string, and
logical, as well as available operators. For date and time functions, see “Date and Time” on
p. 55.

Numeric Expressions

Numeric expressions can be used with the COMPUTE and IF command and as part of a
logical expression for commands such as IF, DO IF, LOOP IF, and SELECT IF. Arithmetic
expressions can also appear in the index portion of a LOOP command, on the REPEATING
DATA command, and on the PRINT SPACES command.

Arithmetic Operations

The following arithmetic operators are available:

+ Addition.

– Subtraction.

* Multiplication.

/ Division.

** Exponentiation.

• No two operators can appear consecutively.

• Arithmetic operators cannot be implied. For example, (VAR1)(VAR2) is not a legal spec-
ification; you must specify VAR1*VAR2.

• Arithmetic operators and parentheses serve as delimiters. To improve readability, blanks
(not commas) can be inserted before and after an operator.

• To form complex expressions, you can use variables, constants, and functions with
arithmetic operators.

• The order of execution is functions first, then exponentiation, then multiplication,
division, and unary −, and then addition and subtraction.

• Operators at the same level are executed from left to right.

• To override the order of operation, use parentheses. Execution begins with the innermost
set of parentheses and progresses out.

Numeric Constants

• Constants used in numeric expressions or as arguments to functions can be integer or
non-integer, depending on the application or function.

38 Universals

• You can specify as many digits in a constant as needed, as long as you understand the
precision restrictions of your computer.

• Numeric constants can be signed (+ or −) but cannot contain any other special characters
such as the comma or dollar sign.

• Numeric constants can be expressed with scientific notation. Thus, the exponent for a
constant in scientific notation is limited to two digits. The range of values allowed for
exponents in scientific notation is from −99 to +99.

Complex Numeric Arguments

• Except where explicitly restricted, complex expressions can be formed by nesting
functions and arithmetic operators as arguments to functions.

• The order of execution for complex numeric arguments is functions first, then exponen-
tiation, then multiplication, division, and unary −, and then addition and subtraction.

• To control the order of execution in complex numeric arguments, use parentheses.

Numeric Functions

Numeric functions can be used in any numeric expression on IF, SELECT IF, DO IF, ELSE IF,
LOOP IF, END LOOP IF, and COMPUTE commands. Numeric functions always return numbers
(or the system-missing value whenever the result is indeterminate). The expression to be
transformed by a function is called the argument. Most functions have a variable or a list of
variables as arguments.

• In numeric functions with two or more arguments, each argument must be separated by
a comma. Blanks alone cannot be used to separate variable names, expressions, or
constants in transformation expressions.

• Arguments should be enclosed in parentheses, as in TRUNC(INCOME), where the TRUNC
function returns the integer portion of the variable INCOME.

• Multiple arguments should be separated by commas, as in MEAN(Q1,Q2,Q3), where the
MEAN function returns the mean of variables Q1, Q2, and Q3.

Arithmetic Functions

• All arithmetic functions except MOD have single arguments; MOD has two. The arguments
to MOD must be separated by a comma.

• Arguments can be numeric expressions, as in RND(A**2/B).

ABS(arg) Absolute value. ABS(SCALE) is 4.7 when SCALE equals 4.7 or −4.7.

RND(arg) Round the absolute value to an integer and reaffix the sign. RND(SCALE) is
−5 when SCALE equals −4.7.

TRUNC(arg) Truncate to an integer. TRUNC(SCALE) is −4 when SCALE equals −4.7.

MOD(arg,arg) Remainder (modulo) of the first argument divided by the second. When
YEAR equals 1983, MOD(YEAR,100) is 83.

Transformation Expressions 39

SQRT(arg) Square root. SQRT(SIBS) is 1.41 when SIBS equals 2.

EXP(arg) Exponential. e is raised to the power of the argument. EXP(VARA) is 7.39
when VARA equals 2.

LG10(arg) Base 10 logarithm. LG10(VARB) is 0.48 when VARB equals 3.

LN(arg) Natural or Naperian logarithm (base e). LN(VARC) is 2.30 when VARC
equals 10.

LNGAMMA(arg) Logarithm (base e) of complete Gamma function.

ARSIN(arg) Arcsine. (Alias ASIN.) The result is given in radians. ARSIN(ANG) is 1.57
when ANG equals 1.

ARTAN(arg) Arctangent. (Alias ATAN.) The result is given in radians. ARTAN(ANG2) is
0.79 when ANG2 equals 1.

SIN(arg) Sine. The argument must be specified in radians. SIN(VARD) is 0.84 when
VARD equals 1.

COS(arg) Cosine. The argument must be specified in radians. COS(VARE) is 0.54 when
VARE equals 1.

Statistical Functions

• Each argument to a statistical function (expression, variable name, or constant) must be
separated by a comma.

• The .n suffix can be used with all statistical functions to specify the number of valid
arguments. For example, MEAN.2(A,B,C,D) returns the mean of the valid values for
variables A, B, C, and D only if at least two of the variables have valid values. The default
for n is 2 for SD, VARIANCE, and CFVAR, and 1 for other statistical functions.

• The keyword TO can be used to refer to a set of variables in the argument list.

SUM(arg list) Sum of the nonmissing values across the argument list.

MEAN(arg list) Mean of the nonmissing values across the argument list.

SD(arg list) Standard deviation of the nonmissing values across the argument list.

VARIANCE(arg list) Variance of the nonmissing values across the argument list.

CFVAR(arg list) Coefficient of variation of the nonmissing values across the argument
list. The coefficient of variation is the standard deviation divided by
the mean.

MIN(arg list) Minimum nonmissing value across the argument list.

MAX(arg list) Maximum nonmissing value across the argument list.

40 Universals

Random Variable and Distribution Functions

Random variable and distribution function keywords are all of form prefix.suffix, where the
prefix specifies the function to be applied to the distribution and the suffix specifies the
distribution.

• Random variable and distribution functions take both constants and variables for arguments.

• A function argument, if required, must come first and is denoted by q (quantile) for
cumulative distribution and probability density functions and p (probability) for inverse
distribution functions.

• All random variable and distribution functions must specify distribution parameters,
denoted by a, b, and/or c, according to the number required.

• All arguments are real numbers.

• Restrictions to distribution parameters a, b, and c apply to all functions for that distribu-
tion. Restrictions for the function parameter p or q apply to that particular distribution
function. The program issues a warning and returns system-missing when it encounters
an out-of-range value for an argument.

The following are possible prefixes:

CDF Cumulative distribution function. A cumulative distribution function
CDF.d_spec(q,a,...) returns a probability p that a variate with the specified
distribution (d_spec) falls below q for continuous functions and at or below
q for discrete functions.

IDF Inverse distribution function. Inverse distribution functions are not available
for discrete distributions. An inverse distribution function IDF.d_spec(p,a,...)
returns a value q such that CDF.d_spec(q,a,...)=p with the specified distribution
(d_spec).

PDF Probability density function. A probability density function PDF.d_spec(q,a,...)
returns the density of the specified distribution (d_spec) at q for continuous
functions and the probability that a random variable with the specified distribu-
tion equals q for discrete functions.

RV Random number generation function. A random number generation function
RV.d_spec(a,...) generates an independent observation with the specified
distribution (d_spec).

NCDF Noncentral cumulative distribution function. A noncentral distribution func-
tion NCDF.d_spec(q,a,b,...) returns a probability p that a variate with the
specified noncentral distribution falls below q. It is available only for beta,
chi-square, F, and Student’s t.

NPDF Noncentral probability density function. A noncentral probability density
function NCDF.d_spec(q,a,b,...) returns the density of the specified distribu-
tion (d_spec) at q. It is available only for beta, chi-square, F, and Student’s t.

SIG Tail probability function. A tail probability function SIG.d_spec(q,a,...)
returns a probability p that a variate with the specified distribution (d_spec) is
larger than q.

Transformation Expressions 41

The following are suffixes for continuous distributions:

BETA Beta distribution. The beta distribution takes two shape parameters, a and b;
both must be positive. The noncentral beta distribution takes an extra noncen-
trality parameter, c, which must be greater than or equal to 0. The CDF, IDF,
PDF, RV, NCDF, and NPDF functions are available for this distribution, where
both q and p must be between 0 and 1, inclusive. The beta distribution is used
in Bayesian analyses as a conjugate to the binomial distribution.

BVNOR Bivariate normal distribution. The bivariate normal distribution takes one
correlation parameter, r, which must be between –1 and 1, inclusive. The
CDF and PDF functions are available for this distribution and require two
quantiles, q1 and q2. Two variables with correlation r and marginal normal
distributions with a mean of 0 and a standard deviation of 1 have a bivariate
normal distribution.

CAUCHY Cauchy distribution. The Cauchy distribution takes one location parameter,
a, and one scale parameter, b; b must be positive. The CDF, IDF, PDF, and RV
functions are available for this distribution, where 0<p<1. The Cauchy
distribution is symmetric about the location parameter, a, and has such
slowly decaying tails that the expectation does not exist. The harmonic mean
of variates that have positive density at 0 is typically distributed as Cauchy.

CHISQ Chi-square distribution. The chi-square distribution takes one shape parame-
ter, a, which is the degrees of freedom and must be positive. The noncentral
chi-square distribution takes an extra noncentrality parameter, c, which must
be greater than or equal to 0. The CDF, IDF, PDF, RV, NCDF, NPDF, and SIG
functions are available for this distribution, where q≥0 and 0≤p<1. Chi-square
is a special case of the gamma distribution and is commonly used to test
quadratic forms under the Gaussian assumption.

EXP Exponential distribution. The exponential distribution takes one scale pa-
rameter, a, which can represent the rate of decay and must be positive. The
CDF, IDF, PDF, and RV functions are available, where q≥0 and 0≤p<1. The
exponential distribution is a special case of the gamma distribution. A major
use of this distribution is life testing.

F F distribution. The F distribution takes two shape parameters, a and b,
which are the degrees of freedom and must be positive. The noncentral F
distribution takes an extra noncentrality parameter, c, which must be greater
than or equal to 0. The CDF, IDF, IDF, RV.F(a,b), NCDF, NPDF, and SIG func-
tions are available, where q≥0 and 0≤p<1. The F distribution is commonly
used to test hypotheses under the Gaussian assumption.

GAMMA Gamma distribution. The gamma distribution takes one shape parameter, a
and one scale parameter, b. Both parameters must be positive. The CDF, IDF,
PDF, and RV functions are available, where q≥0 and 0≤p<1. The gamma
distribution is commonly used in queuing theory, inventory control, and pre-
cipitation processes. If a is an integer and b=1, it is the Erlang distribution.

42 Universals

HALFNRM Half-normal distribution. The half-normal distribution takes one location
parameter, a and one scale parameter, b. Parameter b must be positive. The
CDF, IDF, PDF, and RV functions are available, where 0<p<1.

IGAUSS Inverse Gaussian distribution. The inverse Gaussian, or Wald, distribution
takes two parameters, a and b, both of which must be positive. The CDF, IDF,
PDF, and RV functions are available, where q>0 and 0≤p<1. The inverse
Gaussian distribution is commonly used to test hypotheses for model
parameter estimates.

LAPLACE Laplace or double exponential distribution. The Laplace distribution takes
one location parameter, a, and one scale parameter, b. Parameter b must be
positive. The CDF, IDF, PDF, and RV functions are available, where 0<p<1.
The Laplace distribution is symmetric about 0 and has exponentially decay-
ing tails on both ends.

LOGISTIC Logistic distribution. The logistic distribution takes one location parameter, a,
and one scale parameter, b. Parameter b must be positive. The CDF, IDF, PDF,
and RV functions are available, where 0<p<1. The logistic distribution is a
unimodal, symmetric distribution with tails that are longer than the Gaussian
distribution. It is used to model growth curves.

LNORMAL Lognormal distribution. This distribution takes two parameters, a and b.
Both parameters must be positive. The CDF, IDF, PDF, and RV functions are
available, where q≥0 and 0≤p<1. Lognormal is used in the distribution of
particle sizes in aggregates, flood flows, concentrations of air contaminants,
and failure time.

NORMAL Normal distribution. The normal, or Gaussian, distribution takes one loca-
tion parameter, a, and one scale parameter, b. Parameter b must be positive.
The CDF, IDF, PDF, and RV functions are available, where 0<p<1. Three
functions in SPSS releases earlier than 6.0 are special cases of the normal
distribution functions:
CDFNORM(arg)=CDF.NORMAL(q,0,1)
where arg is q;
PROBIT(srg)=IDF.NORMAL(p,0,1)
where arg is p; and
NORMAL(arg)=RV.NORMAL(0,b)
where arg is b. The normal distribution is symmetric about the mean and is
the most widely used in statistics.

PARETO Pareto distribution. The Pareto distribution takes a threshold parameter, a,
and a shape parameter, b. Both parameters must be positive. The CDF, IDF,
PDF, and RV functions are available, where q≥a and 0≤p<1. Pareto is
commonly used in economics as a model for a density function with a slowly
decaying tail.

SMOD Studentized maximum modulus distribution. The studentized maximum
modulus distribution takes parameters a and b, both of which must be greater
than or equal to 1. The CDF and IDF functions are available, where q>0 and

Transformation Expressions 43

0≤p<1. The studentized maximum modulus is commonly used in post hoc
multiple comparisons for GLM and ANOVA.

SRANGE Studentized range distribution. The studentized range distribution takes
parameters a and b, both of which must be greater than or equal to 1. The
CDF and IDF functions are available, where q>0 and 0≤p<1. The studentized
range is commonly used in post hoc multiple comparisons for GLM and
ANOVA.

T Student t distribution. The Student t distribution takes one shape parameter,
a, which is the degrees of freedom and must be positive. The noncentral
Student t distribution takes an extra noncentrality parameter, b. The CDF,
IDF, PDF, RV, NCDF, NPDF functions are available, where 0<p<1. The
Student t distribution is symmetric about 0 and approaches the Gaussian
distribution as a approaches infinity. The major uses of the Student t
distribution are to test hypotheses and construct confidence intervals for
means of data.

UNIFORM Uniform distribution. The uniform distribution takes two parameters, a
and b. The first parameter, a, must be less than or equal to the second
parameter, b. The CDF, IDF, PDF, and RV functions are available, where
a≤q≤b and 0≤p≤1. The uniform random number function in SPSS releases
earlier than 6.0 is a special case:
UNIFORM(arg)=RV.UNIFORM(0,b)
where arg is parameter b. Among other uses, the uniform distribution com-
monly models the round-off error.

WEIBULL Weibull distribution. The Weibull distribution takes two parameters a and
b, both of which must be positive. The CDF, IDF, PDF, and RV functions are
available, where q≥0 and 0≤p<1. The Weibull distribution is commonly
used in survival analysis.

The following are suffixes for discrete distributions:

BERNOULLI Bernoulli distribution. The Bernoulli distribution takes one success
probability parameter, a, which must be between 0 and 1, inclusive.
The CDF, PDF, and RV functions are available, where q equals 0 or 1.
The Bernoulli distribution is a special case of the binomial distribution
and is used in simple success-failure experiments.

BINOM Binomial distribution. The binomial distribution takes one number of
trials parameter, a, and one success probability parameter, b.
Parameter a must be a positive integer and parameter b must be
between 0 and 1, inclusive. The CDF, PDF, and RV functions are
available, where q is the number of successes in a trials. When a=1, it
is the Bernoulli distribution. The binomial distribution is used in
independently replicated success-failure experiments.

GEOM Geometric distribution. The geometric distribution takes one success
probability parameter, a, which must be greater than 0 and less than
or equal to 1. The CDF, PDF, and RV functions are available, where q
is the number of trials needed (including the last trial) before a
success is observed.

44 Universals

HYPER Hypergeometric distribution. The hypergeometric distribution takes
three parameters, a, b, and c, where a is the total number of objects in
an urn model, b is the number of objects randomly drawn without
replacement from the urn, c is the number of objects with distinct
characteristics. All three parameters are positive integers, and both b
and c must be less than or equal to a. The CDF, PDF, and RV functions
are available, where q is the number of objects with these distinct
characteristics observed out of the withdrawn objects.

NEGBIN Negative binomial distribution. The negative binomial distribution takes
one threshold parameter, a, and one success probability parameter, b.
Parameter a must be an integer and parameter b must be greater than 0
and less than or equal to 1. The CDF, PDF, and RV functions are available,
where q is the number of trials needed (including the last trial) before a
successes are observed. If a=1, it is a geometric distribution.

POISSON Poisson distribution. The Poisson distribution takes one rate or
mean parameter, a. Parameter a must be positive. The CDF, PDF,
and RV functions are available, where q is a non-negative integer. The
Poisson distribution is used in modeling the distribution of counts,
such as traffic counts and insect counts.

Missing Values in Numeric Expressions

• Most numeric expressions receive the system-missing value when any one of the values
in the expression is missing.

• Some arithmetic operations involving 0 can be evaluated even when the variables have
missing values. These operations are:

• The .n suffix can be used with the statistical functions SUM, MEAN, MIN, MAX, SD,
VARIANCE, and CFVAR to specify the number of valid arguments you consider
acceptable. The default of n is 2 for SD, VARIANCE, and CFVAR, and 1 for other
statistical functions. For example,

COMPUTE FACTOR = SUM.2(SCORE1 TO SCORE3).

computes the variable FACTOR only if a case has valid information for at least two scores.
FACTOR is assigned the system-missing value if a case has valid values for fewer than
two scores.

Expression Result

0 * missing 0
0 / missing 0
MOD(0,missing) 0

Transformation Expressions 45

Domain Errors

Domain errors occur when numeric expressions are mathematically undefined or cannot be
represented numerically on the computer for reasons other than missing data. Two common
examples are division by 0 and the square root of a negative number. When SPSS detects a
domain error, it issues a warning and assigns the system-missing value to the expression. For
example, the command COMPUTE TESTVAR = TRUNC(SQRT(X/Y) * .5) returns system-
missing if X/Y is negative or if Y is 0.

The following are domain errors in numeric expressions:

** A negative number to a non-integer power.

/ A divisor of 0.

MOD A divisor of 0.

SQRT A negative argument.

EXP An argument that produces a result too large to be represented on the computer.

LG10 A negative or 0 argument.

LN A negative or 0 argument.

ARSIN An argument whose absolute value exceeds 1.

NORMAL A negative or 0 argument.

PROBIT A negative or 0 argument, or an argument 1 or greater.

String Expressions

Expressions involving string variables can be used on COMPUTE and IF commands and in
logical expressions on commands such as IF, DO IF, LOOP IF, and SELECT IF.

• A string expression can be a constant enclosed in apostrophes (for example, ‘IL’), a string
function (see “String Functions” below), or a string variable.

• An expression must return a string if the target variable is a string.

• The string returned by a string expression does not have to be the same length as the
target variable; no warning messages are issued if the lengths are not the same. If the
target variable produced by a COMPUTE command is shorter, the result is right-trimmed.
If the target variable is longer, the result is right-padded.

String Functions

• The target variable for each string function must be a string and must have already been
declared (see STRING).

• Multiple arguments in a list must be separated by commas.

46 Universals

• When two strings are compared, the case in which they are entered is significant. The
LOWER and UPCASE functions are useful for making comparisons of strings regardless
of case.

• For certain functions (for example, MIN, MAX, ANY, and RANGE), the outcome will be
affected by case and by whether the string includes numbers or special characters. The
character set in use varies by system. With the ASCII character set, lower case follows
upper case in the sort order. Therefore, if NAME1 is in upper case and NAME2 is in lower
case, MIN(NAME1,NAME2) will return NAME1 as the minimum. The reverse is true with
the EBCDIC character set, which sorts lower case before upper case.

CONCAT(arg list) Concatenate the arguments into a string. String variables and strings can
be intermixed as arguments. For example, CONCAT(A,’**’) creates the
string ABCD** for a case with the value ABCD for the string variable A.

LOWER(arg) Convert upper case to lower case. All other characters remain un-
changed. The argument can be a string variable or value. For example,
LOWER(NAME1) returns charles if the value of NAME1 is CHARLES.

LPAD(a1, a2, a3) Left-pad. The variable a1 is left-padded up to the length specified by a2
using the optional single character a3 as the pad character. a2 must be a
positive integer from 1 to 255. The default pad character is a blank. For
example, LPAD(ALPHA1,10) adds four leading blanks to the target
variable if ALPHA1 has an A6 format. a3 can be any character enclosed
in apostrophes or any expression that yields a single character.

LTRIM(a1, a2) Left-trim. The character a2 is trimmed from the beginning of a1. For
example, LTRIM(ALPHA2,’0’) trims leading zeros from the variable
ALPHA2. a2 can be any character enclosed in apostrophes or any
expression that yields a single character. The default for a2 is a blank.

RPAD(a1, a2, a3) Right-pad. The variable a1 is right-padded up to the length of a2 using
the optional single character a3 as the pad character. a2 must be a
positive integer from 1 to 255. The default pad character is a blank. For
example, RPAD(ALPHA3,8,’*’) adds two trailing asterisks to the target
variable if ALPHA3 has an A6 format. a3 can be any character enclosed
in apostrophes or any expression that yields a single character.

RTRIM(a1, a2) Right-trim. The character a2 is trimmed from the end of a1. For exam-
ple, RTRIM(ALPHA4,’*’) trims trailing asterisks from variable ALPHA4.
a2 can be any character enclosed in apostrophes or any expression that
yields a single character. The default for a2 is a blank.

SUBSTR(a1, a2, a3) Substring. This function returns the substring within a1 beginning with
the position specified by a2 and optionally for a length of a3. a2 can be
a positive integer from 1 to the length of a1. a3, when added to a2, should
not exceed the length of a1. If a3 is not specified, the substring is re-
turned up to the end of a1. For example, if the variable ALPHA5 has an
A6 format, SUBSTR(ALPHA5,3) returns the last four characters of
ALPHA5. SUBSTR (ALPHA5,3,1) returns the third character of ALPHA5.

When used on the left side of an equals sign, the substring is replaced by
the string specified on the right side of the equals sign. The rest of the

Transformation Expressions 47

original string remains intact. For example, SUBSTR(ALPHA6,3,1)=’*’
changes the third character of all values for ALPHA6 to *. If the replace-
ment string is longer or shorter than the substring, the replacement is
truncated or padded with blanks on the right to an equal length.

UPCASE(arg) Convert lower case to upper case. The argument can be a string
variable or a string. For example, UPCASE(NAME1) returns CHARLES
if the value of NAME1 is Charles.

MBLEN.BYTE(arg,a1) Return the number of bytes in the character at the specified position.
The argument is a string expression and a1 indicates the beginning
byte of the character in the specified string.

Search Functions

• The values returned by INDEX and/or RINDEX can be used as arguments to SUBSTR to pull
out substrings with the same beginning or ending character but with varying position and
length.

INDEX(a1, a2, a3) Return a number that indicates the position of the first occurrence of
a2 in a1. a1 is the string that is searched. a2 is the string variable or
string that is used in the search. If a3 is not specified, all of a2 is used.
For example, INDEX(ALPHA8,’**X*’) returns 2 for a case with the value
X**X**X* for the variable ALPHA8. The optional a3 is the number of
characters used to divide a2 into separate strings. Each substring is
used for searching and the function returns the first occurrence of any
of the substrings. With the same value X**X**X* for ALPHA8, both
INDEX(ALPHA8, ’**X*’, 2) and INDEX(ALPHA8, ’**X*’, 1) return 1. a3 must
be a positive integer and must divide evenly into the length of a2. The
target variable must be numeric. If a2 is not found within a1, the value
0 is returned.

LENGTH(arg) Return the length of the specified string. The argument can be a string
variable or a string. For example, LENGTH(LNAME) always returns 6 if
LNAME has an A6 format. The target variable must be numeric.

MAX(arg list) Return the maximum value across the argument list. For example,
MAX(LNAME,FNAME) selects the name that comes last in the sort order,
the first or the last name. MAX is also available as a numeric function.

MIN(arg list) Return the minimum value across the argument list. For example,
MIN(LNAME,FNAME) selects the name that comes first in the sort order,
the first or the last name. MIN is also available as a numeric function.

RINDEX(a1,a2,a3) Return a number indicating the position of the last occurrence of a2 in
a1. a1 is the string that is searched. a2 is the string variable or string
that is used in the search. If a3 is not specified, all of a2 is used. For
example, RINDEX(ALPHA8,’**X*’) returns 5 for a case with the value
X**X**X* for the variable ALPHA8. The optional a3 is the number of
characters used to divide a2 into separate strings. Each substring is
used for searching, and the function returns the last occurrence of any

48 Universals

of the substrings. With the same value X**X**X* for ALPHA8,
RINDEX (ALPHA8, ’**X*’, 2) returns 7, and RINDEX (ALPHA8, ’**X*’, 1)
returns 8. a3 must be a positive integer and must divide evenly into the
length of a2. The target variable must be numeric. If a2 is not found
within a1, the value 0 is returned.

Conversion Functions

NUMBER(arg,format) Convert the argument into a number using the specified format. The
argument is string, the format is a numeric format, and the result is
numeric. The string is essentially reread using the format and returned
as a number. For example, NUMBER (XALPHA,F3.1) converts all values
for XALPHA to numbers using the F3.1 format. The function returns the
system-missing value if the conversion is invalid.

STRING(arg,format) Converts the argument into a string using the specified format. The
argument is numeric, the format is a numeric format, and the result is a
string. The number is converted from internal representation according
to the format and then stored as a string. For example, STRING (INCOME,
DOLLAR8) converts the numeric values for INCOME to the dollar format
and returns it as a string value. If the result is shorter than the string
variable that receives the values, it is right-justified. If the result is
longer, it is right-trimmed.

Missing Values in String Expressions

• If the numeric argument (which can be an expression) for functions LPAD and RPAD is
illegal or missing, the result is a null string. If the padding or trimming is the only
operation, the string is then padded to its entire length with blanks. If the operation is
nested, the null string is passed to the next nested level.

• If a numeric argument to SUBSTR is illegal or missing, the result is a null string. If SUBSTR
is the only operation, the string is blank. If the operation is nested, the null string is passed
to the next nested level.

• If a numeric argument to INDEX or RINDEX is illegal or missing, the result is system-missing.

Logical Expressions

Logical expressions can appear on the IF, SELECT IF, DO IF, ELSE IF, LOOP IF, and END
LOOP IF commands. SPSS evaluates a logical expression as true or false, or as missing if
it is indeterminate. A logical expression returns 1 if the expression is true, 0 if it is false,
or system-missing if it is missing. Thus, logical expressions can be any expressions that
yield this three-value logic.

• The simplest logical expression is a logical variable. A logical variable is any numeric
variable that has values 1, 0, or system-missing. Logical variables cannot be strings.

Transformation Expressions 49

• Logical expressions can be simple logical variables or relations, or they can be complex
logical tests involving variables, constants, functions, relational operators, logical
operators, and parentheses to control the order of evaluation.

• On an IF command, a logical expression that is true causes the assignment expression to
be executed. A logical expression that returns missing has the same effect as one that is
false: the assignment expression is not executed and the value of the target variable is not
altered.

• On a DO IF command, a logical expression that is true causes SPSS to execute the
commands immediately following the DO IF, up to the next ELSE IF, ELSE, or END IF. If
it is false, SPSS looks for the next ELSE IF or ELSE command. If the logical expression
returns missing for each of these, the entire structure is skipped.

• On a SELECT IF command, a logical expression that is true causes the case to be selected.
A logical expression that returns missing has the same effect as one that is false: the case
is not selected.

• On a LOOP IF command, a logical expression that is true causes looping to begin (or
continue). A logical expression that returns missing has the same effect as one that is
false: the structure is skipped.

• On an END LOOP IF command, a logical expression that is false returns control to the
LOOP command for that structure and looping continues. If it is true, looping stops and
the structure is terminated. A logical expression that returns a missing value has the same
effect as one that is true: the structure is terminated.

String Variables in Logical Expressions

String variables, like numeric variables, can be tested in logical expressions.
• String variables must be declared before they can be used in a string expression.

• String variables cannot be compared to numeric variables.

• If strings of different lengths are compared, the shorter string is right-padded with blanks
to equal the length of the longer.

• The magnitude of strings can be compared using LT, GT, and so on, but the outcome
depends on the sorting sequence of the computer. Use with caution.

Logical Functions

• Each argument to a logical function (expression, variable name, or constant) must be
separated by a comma.

• The target variable for a logical function must be numeric.

• The functions RANGE and ANY can be useful shortcuts to more complicated specifications
on the IF, DO IF, and other conditional commands. For example, the command

SELECT IF ANY(REGION,’NW’,’NE’,’SE’).

is equivalent to

SELECT IF (REGION EQ ’NW’ OR REGION EQ ’NE’ OR REGION EQ
’SE’).

50 Universals

RANGE(arg,arg list) Return 1 or true if the value of the first argument is in the inclusive
ranges; return 0 or false if not. The first argument is usually a
variable, and the second argument is a list of one or more pairs of
values. The variable can be either numeric or string. For example,
RANGE (AGE,1,17,62,99) returns 1 for ages 1 through 17 and 62
through 99, inclusive, and 0 for any other ages. RANGE
(LNAME,’A’,’MZZZZZZ’) returns 1 for last names that begin with a letter
between A and M, inclusive, and 0 for last names beginning with other
letters.

Note: For string values, results can vary by locale even for the same
set of characters since the national collating sequence is used. Lan-
guage order, not ascii order, determines where certain characters fall
in the sequence.

ANY(arg,arg list) Return 1 or true if the value of the first argument matches one of the
arguments in the list; return 0 or false if not. The first argument is
usually a variable, either numeric or string. For example,
ANY(PROJECT,3,4,7,9) returns 1 if the value for variable PROJECT is
3, 4, 7, or 9, and 0 for other values of PROJECT. Similarly, ANY
(LNAME,’MARTIN’,’JONES’,’EVANS’) returns 1 for people whose last
names are MARTIN, JONES, or EVANS, and 0 for all other last names.

Relational Operators

A relation is a logical expression that compares two values using a relational operator. In
the command

IF (X EQ 0) Y=1

the variable X and 0 are expressions that yield the values to be compared by the EQ relational
operator. Relational operators are

EQ or = Equal to.

NE or ~= ¬ = or <> Not equal to.

LT or < Less than.

LE or <= Less than or equal to.

GT or > Greater than.

GE or >= Greater than or equal to.

• The symbols representing NE (~= or ¬=) are system dependent (see “NOT Logical Operator”
below).

• The expressions in a relation can be variables, constants, or more complicated arithmetic
expressions.

• Blanks (not commas) must be used to separate the relational operator from the
expressions. To make the command more readable, use extra blanks or parentheses.

Transformation Expressions 51

NOT Logical Operator

The NOT logical operator reverses the true/false outcome of the expression that immediately
follows.

• The NOT operator affects only the expression that immediately follows, unless a more
complex logical expression is enclosed in parentheses.

• The valid substitute for NOT varies from operating system to operating system. In
general, the tilde (~) is valid for ASCII systems, while ¬ (or the symbol over number 6
on the keyboard) is valid for IBM EBCDIC systems. See the SPSS Base User’s Guide
for your version of SPSS.

• NOT can be used to check whether a numeric variable has the value 0, 1, or any other
value. For example, all scratch variables are initialized to 0. Therefore, NOT (#ID) returns
false or missing when #ID has been assigned a value other than 0.

AND and OR Logical Operators

Two or more relations can be logically joined using the logical operators AND and OR.
Logical operators combine relations according to the following rules:

• The ampersand (&) symbol is a valid substitute for the logical operator AND. The vertical
bar (|) is a valid substitute for the logical operator OR.

• Only one logical operator can be used to combine two relations. However, multiple
relations can be combined into a complex logical expression.

• Regardless of the number of relations and logical operators used to build a logical
expression, the result is either true, false, or indeterminate because of missing values.

• Operators or expressions cannot be implied. For example, X EQ 1 OR 2 is illegal; you must
specify X EQ 1 OR X EQ 2.

• The ANY and RANGE functions can be used to simplify complex expressions.

AND Both relations must be true for the complex expression to be true.

OR If either relation is true, the complex expression is true.

Table 5 lists the outcome for AND and OR combinations.

Table 5 Outcome for AND and OR combinations

Expression Outcome Expression Outcome

true AND true = true true OR true = true
true AND false = false true OR false = true
false AND false = false false OR false = false
true AND missing = missing true OR missing = true*

* Expressions where SPSS can evaluate the outcome with incomplete information. See “Missing
Values in Logical Expressions” below.

missing AND missing = missing missing OR missing = missing

52 Universals

Order of Evaluation

• When arithmetic operators and functions are used in a logical expression, the order of
operations is functions and arithmetic operations first, then relational operators, and then
logical operators.

• When more than one logical operator is used, NOT is evaluated first, then AND, and then OR.

• To change the order of evaluation, use parentheses.

Missing Values in Logical Expressions

In a simple relation, the logic is indeterminate if the expression on either side of the relational
operator is missing. When two or more relations are joined by logical operators AND and OR,
SPSS always returns a missing value if all of the relations in the expression are missing.
However, if any one of the relations can be determined, SPSS tries to return true or false
according to the logical outcomes shown in Table 5.

• When two relations are joined with the AND operator, the logical expression can never be
true if one of the relations is indeterminate. The expression can, however, be false.

• When two relations are joined with the OR operator, the logical expression can never be
false if one relation returns missing. The expression, however, can be true.

Other Functions

SPSS also includes a lag function and several missing-value functions.

LAG Function

LAG(arg,n) The value of the variable n cases before. The first argument is a variable. The
second argument, if specified, is a constant and must be a positive integer;
the default is 1. For example, PREV4=LAG(GNP,4) returns the value of GNP
for the fourth case before the current one. The first four cases have system-
missing values for PREV4.

• The result is of the same type (numeric or string) as the variable specified as the first
argument.

• The first n cases for string variables are set to blanks. For example, if PREV2=LAG
(LNAME,2) is specified, blanks will be assigned to the first two cases for PREV2.

• When LAG is used with commands that select cases (for example, SELECT IF and SAMPLE),
LAG counts cases after case selection, even if specified before these commands (see
“Command Order” on p. 8).

Note: In a series of transformation commands without any intervening EXECUTE commands
or other commands that read the data, lag functions are calculated after all other transforma-
tions, regardless of command order. For example:

COMPUTE lagvar=LAG(var1).
COMPUTE var1=var1*2.

Transformation Expressions 53

and

COMPUTE lagvar=LAG(var1).
EXECUTE.
COMPUTE var1=var1*2.

yield very different results for the value of lagvar, since the former uses the transformed value
of var1 while the latter uses the original value.

Missing-Value Functions

• Each argument to a missing-value function (expression, variable name, or constant) must
be separated by a comma.

• Only numeric values can be used as arguments in missing-value functions.
• The keyword TO can be used to refer to a set of variables in the argument list for functions

NMISS and NVALID.

• The functions MISSING and SYSMIS are logical functions and can be useful shortcuts to
more complicated specifications on the IF, DO IF, and other conditional commands.

VALUE(arg) Ignore user-defined missing values. The value is treated as is. The
argument must be a variable name.

MISSING(arg) True or 1 if the value is user-missing or system-missing; false or 0
otherwise.

SYSMIS(arg) True or 1 if the value is system-missing; false or 0 otherwise.

NMISS(arg list) Number of system-missing values in the argument list.

NVALID(arg list) Number of valid values in the argument list.

Treatment of Missing Values in Arguments

If the logic of an expression is indeterminate because of missing values, the expression
returns a missing value, and the command is not executed. Table 6 summarizes how missing
values are handled in arguments to various functions.

Table 6 Missing values in arguments

Function Returns system-missing if

MOD (x1,x2) x1 is missing, or x2 is missing and x1 is not 0

MAX.n (x1,x2,...xk) fewer than n arguments are valid; the default n is 1
MEAN.n (x1,x2,...xk)
MIN.n (x1,x2,...x1)
SUM.n (x1,x2,...xk)

54 Universals

• Any function that is not listed in Table 6 returns the system-missing value when the
argument is missing.

• The system-missing value is a displayed as a period (.) for numeric variables.

• String variables do not have system-missing values. An invalid string expression nested
within a complex transformation yields a null string, which is passed to the next level of
operation and treated as missing. However, an invalid string expression that is not nested
is displayed as a blank string and is not treated as missing.

CFVAR.n (x1,x2,...xk) fewer than n arguments are valid; the default n is 2
SD.n (x1,x2,...xk)
VARIANCE.n (x1,x2,...xk)

LPAD(x1,x2,x3) x1 or x2 is illegal or missing
LTRIM(x1,x2)

RTRIM(x1,x2)

RPAD(x1,x2,x3)

SUBSTR(x1,x2,x3) x2 or x3 is illegal or missing

NUMBER(x,format) the conversion is invalid
STRING(x,format)

INDEX(x1,x2,x3) x3 is invalid or missing
RINDEX(x1,x2,x3)

LAG (x,n) x is missing n cases previously (and always for the first n cases);
the default n is 1

ANY (x,x1,x2,...xk) x or all of x1, x2, ..., xk are missing
RANGE (x,x1,x2,...xk)

VALUE (x) x is system-missing

MISSING (x) never
NMISS (x1,x2,...xk)
NVALID (x1,x2,...xk)
SYSMIS (x)

Table 6 Missing values in arguments (Continued)

Function Returns system-missing if

55

Date and Time

SPSS reads and writes date and time in many different formats but stores them as floating-
point numbers. You can perform arithmetic operations on them, use them in statistical
procedures, and display or print them in a format of your choice. This section discusses the
input and output formats for date and time, arithmetic operations using date and time
variables, and date and time functions.

Date and Time Formats

Date and time formats are both input and output formats. They can be used on DATA LIST and
other variable definition commands to read in values representing dates or times or date-time
combinations. Like numeric formats, each input format generates a default output format,
automatically expanded (if necessary) to accommodate display width. In addition, you can
assign or modify output formats using FORMATS, WRITE FORMATS, and PRINT FORMATS
commands. The output formats are effective only with LIST, REPORT, and TABLES procedures
and the PRINT and WRITE transformation commands. Other procedures use the F format and
display the values as numbers.

• All date and time formats have a minimum input width, and some have a different
minimum output. Wherever the input minimum width is less than the output minimum,
SPSS expands the width automatically when displaying or printing values. However,
when you specify output formats, you must allow enough space for displaying the date
and time in the format you choose.

• Input data shorter than the specified width are correctly evaluated as long as all the
necessary elements are present. For example, with the TIME format, 1:2, 01 2, and 01:02
are all correctly evaluated even though the minimum width is 5. However, if only one
element (hours or minutes) is present, you must use a time function to aggregate or
convert the data (see “Date and Time Functions” on p. 62).

• If a date or time value cannot be completely displayed in the specified width, values are
truncated in the output. For example, an input time value of 1:20:59 (1 hour, 20 minutes,
59 seconds) displayed with a width of 5 will generate an output value of 01:20, not
01:21. The truncation of output does not affect the numeric value stored in the working
file.

Table 7 shows all available date and time formats, where w indicates the total number of
columns and d (if present), the number of decimal places for fractional seconds. The
example shows the output format with the minimum width and default decimal positions (if
applicable). The format allowed in the input data is much less restrictive (see “Input Data
Specification” on p. 57).

56 Universals

Table 7 Date and time formats

Format type Description Min w Max w Max d General form Example

In Out

DATEw International
date

8 9 40 dd-mmm-yy 28-OCT-90

 10 11 dd-mmm-yyyy 28-OCT-1990

ADATEw American
date

8 8 40 mm/dd/yy 10/28/90

 10 10 mm/dd/yyyy 10/28/1990

EDATEw European
date

8 8 40 dd.mm.yy 28.10.90

10 10 dd.mm.yyyy 28.10.1990

JDATEw Julian date 5 5 40 yyddd 90301

 7 7 yyyyddd 1990301

SDATEw Sortable
date*

8 8 40 yy/mm/dd 90/10/28

10 10 yyyy/mm/dd 1990/10/28

QYRw Quarter and
year

4 6 40 q Q yy 4 Q 90

 6 8 q Q yyyy 4 Q 1990

MOYRw Month and
year

6 6 40 mmm yy OCT 90

 8 8 mmm yyyy OCT 1990

WKYRw Week and
year

6 8 40 ww WK yy 43 WK 90

 8 10 ww WK yyyy 43 WK 1990

WKDAYw Day of the
week

2 2 40 (name of the day) SU

MONTHw Month 3 3 40 (name of the month) JAN

TIMEw Time 5 5 40 hh:mm 01:02

TIMEw.d 10 10 40 16 hh:mm:ss.s 01:02:34.75

DTIMEw Days and
time

8 8 40 dd hh:mm 20 08:03

DTIMEw.d 13 13 40 16 dd hh:mm:ss.s 20 08:03:00

DATETIMEw Date and
time

17 17 40 dd-mmm-yyyy hh:mm 20-JUN-1990
08:03

DATETIMEw.d 22 22 40 16 dd-mmm-yyyy
hh:mm:ss.s

20-JUN-1990
08:03:00

* All date and time formats produce sortable data. SDATE, a date format used in a number of Asian countries,
can be sorted in its character form and is used as a sortable format by many programmers.

Date and Time 57

Input Data Specification

The following general rules apply to date and time input formats:

• Input data must be fixed. Data can appear anywhere within the specified columns.
Leading and trailing blanks are allowed. If column-style specifications are used, the width
specification can be omitted (see DATA LIST). For example,

DATA LIST /BIRTHDAY 1-8 (DATE).

is equivalent to

DATA LIST /BIRTHDAY (DATE8).

• The century value for two-digit years is defined by the SET EPOCH value. By default,
the century range begins 69 years prior to the current year and end 30 years after the
current year. Whether all four digits or only two digits are displayed in output depends on
the width specification on the format.

• Dashes, periods, commas, slashes, or blanks can be used as delimiters in the date-month-
year input. For example, with the DATE format, the following input forms are all acceptable:

28-10-90 28/10/1990 28.OCT.90 28 October, 1990

The displayed values, however, will be the same: 28-OCT-90 or 28-OCT-1990, depend-
ing on whether the specified width allows 11 characters in output.

• The JDATE format does not allow internal delimiters and requires leading zeros for day
values of less than 100 and two-digit-year values of less than 10. For example, for January
1, 1990, the following two specifications are acceptable:

90001 1990001

However, neither of the following is acceptable:

90 1 90/1

• Months can be represented in digits, Roman numerals, or three-character abbreviations,
and they can be fully spelled out. For example, all of the following specifications are
acceptable for October:

10 X OCT October

• The quarter in QYR format is expressed as 1, 2, 3, or 4. It must be separated from the year
by the letter Q. Blanks can be used as additional delimiters. For example, for the fourth
quarter of 1990, all of the following specifications are acceptable:

4Q90 4Q1990 4 Q 90 4 Q 1990

On some operating systems, such as IBM CMS, Q must be upper case. The displayed out-
put is 4 Q 90 or 4 Q 1990, depending on whether the width specified allows all four digits
of the year.

• The week in the WKYR format is expressed as a number from 1 to 53. Week 1 begins on
January 1, week 2 on January 8, and so on. The value may be different from the number
of the calendar week. The week and year must be separated by the string WK. Blanks can
be used as additional delimiters. For example, for the 43rd week of 1990, all of the
following specifications are acceptable:

43WK90 43WK1990 43 WK 90 43 WK 1990

58 Universals

On some operating systems, such as IBM CMS, WK must be upper case. The displayed
output is 43 WK 90 or 43 WK 1990, depending on whether the specified width allows
enough space for all four digits of the year.

• In time specifications, colons can be used as delimiters between hours, minutes, and
seconds. Hours and minutes are required but seconds are optional. A period is required to
separate seconds from fractional seconds. Hours can be of unlimited magnitude, but the
maximum value for minutes is 59 and for seconds 59.999. . . .

• Data values can contain a sign (+ or −) in TIME and DTIME formats to represent time
intervals before or after a point in time.

Example
DATA LIST FIXED
 /VAR1 1-17 (DATE) VAR2 21-37 (ADATE) VAR3 41-47 (JDATE).
BEGIN DATA
28-10-90 10/28/90 90301
28.OCT.1990 X 28 1990 1990301
28 October, 2001 Oct. 28, 2001 2001301
END DATA.
LIST.

• Internally, all date format variables are stored as the number of seconds from 0 hours, 0
minutes, and 0 seconds of Oct. 14, 1582.

The LIST output from these commands is shown in Figure 15.

Example
DATA LIST FIXED /VAR1 1-10 (QYR) VAR2 12-25 (MOYR) VAR3 28-37 (WKYR).
BEGIN DATA
4Q90 10/90 43WK90
4 Q 90 Oct-1990 43 WK 1990
4 Q 2001 October, 2001 43 WK 2001
END DATA.
LIST.

• Internally, the value of a QYR variable is stored as midnight of the first day of the first
month of the specified quarter, the value of a MOYR variable is stored as midnight of the
first day of the specified month, and the value of a WKYR format variable is stored as mid-
night of the first day of the specified week. Thus, 4Q90 and 10/90 are both equivalent to
October 1, 1990, and 43WK90 is equivalent to October 22, 1990.

Figure 15 Output illustrating DATE, ADATE, and JDATE formats
 VAR1 VAR2 VAR3

28-OCT-1990 10/28/1990 1990301
28-OCT-1990 10/28/1990 1990301
28-OCT-2001 10/28/2001 2001301

Date and Time 59

The LIST output from these commands is shown in Figure 16.

Example
DATA LIST FIXED
 /VAR1 1-11 (TIME,2) VAR2 13-21 (TIME) VAR3 23-28 (TIME).
BEGIN DATA
1:2:34.75 1:2:34.75 1:2:34
END DATA.
LIST.

• TIME reads and writes time of the day or a time interval.

• Internally, the TIME values are stored as the number of seconds from midnight of the day
or of the time interval.

The LIST output from these commands is shown in Figure 17.

Example
DATA LIST FIXED
 /VAR1 1-9 (WKDAY) VAR2 10-18 (WKDAY)
 VAR3 20-29 (MONTH) VAR4 30-32 (MONTH) VAR5 35-37 (MONTH).
BEGIN DATA
Sunday Sunday January 1 Jan
Monday Monday February 2 Feb
Tues Tues March 3 Mar
Wed Wed April 4 Apr
Th Th Oct 10 Oct
Fr Fr Nov 11 Nov
Sa Sa Dec 12 Dec
END DATA.
FORMATS VAR2 VAR5 (F2).
LIST.

• WKDAY reads and writes the day of the week; MONTH reads and writes the month of the
year.

• Values for WKDAY are entered as strings but stored as numbers. They can be used in
arithmetic operations but not in string functions.

• Values for MONTH can be entered either as strings or as numbers, but are stored as
numbers. They can be used in arithmetic operations but not in string functions.

• To display the values as numbers, assign an F format to the variable, as was done for VAR2
and VAR5 in the above example.

Figure 16 Output illustrating QYR, MOYR, and WKYR formats
 VAR1 VAR2 VAR3

4 Q 1990 OCT 1990 43 WK 1990
4 Q 1990 OCT 1990 43 WK 1990
4 Q 2001 OCT 2001 43 WK 2001

Figure 17 Output illustrating TIME format
 VAR1 VAR2 VAR3

 1:02:34.75 1:02:34 1:02

60 Universals

The LIST output from these commands is shown in Figure 18.

Example
DATA LIST FIXED /VAR1 1-14 (DTIME) VAR2 18-42 (DATETIME).
BEGIN DATA
20 8:3 20-6-90 8:3
20:8:03:46 20/JUN/1990 8:03:46
20 08 03 46.75 20 June, 2001 08 03 46.75
END DATA.
LIST.

• DTIME and DATETIME read and write time intervals.

• The decimal point explicitly coded in the input data for fractional seconds.

• The DTIME format allows a − or + sign in the data value to indicate a time interval before
or after a point in time.

• Internally, values for a DTIME variable are stored as the number of seconds of the time
interval while those for a DATETIME variable are stored as the number of seconds from 0
hours, 0 minutes, and 0 seconds of Oct. 14, 1582.

The LIST output from these commands is shown in Figure 19.

Arithmetic Operations with Date and Time Variables

Most date and time variables are stored internally as the number of seconds from a particular
date or as a time interval and therefore can be used in arithmetic operations:

• A date is a floating-point number representing the number of seconds from midnight,
October 14, 1582. Dates, which represent a particular point in time, are stored as the
number of seconds to that date. For example, November 8, 1957, is stored as 1.2E+10.

• A date includes the time of day, which is the time interval past midnight. When time of
day is not given, it is taken as 00:00 and the date is an even multiple of 86,400 (the number
of seconds in a day).

Figure 18 Output illustrating WKDAY and MONTH formats
 VAR1 VAR2 VAR3 VAR4 VAR5

SUNDAY 1 JANUARY JAN 1
MONDAY 2 FEBRUARY FEB 2
TUESDAY 3 MARCH MAR 3
WEDNESDAY 4 APRIL APR 4
THURSDAY 5 OCTOBER OCT 10
FRIDAY 6 NOVEMBER NOV 11
SATURDAY 7 DECEMBER DEC 12

Figure 19 Output illustrating DTIME and DATETIME formats
 VAR1 VAR2

 20 08:03:00 20-JUN-1990 08:03:00
 20 08:03:46 20-JUN-1990 08:03:46
 20 08:03:46 20-JUN-2001 08:03:46

Date and Time 61

• A time interval is a floating-point number representing the number of seconds in a time
period, for example, an hour, minute, or day. For example, the value representing 5.5 days
is 475,200; the value representing the time interval 14:08:17 is 50,897.

• QYR, MOYR, and WKYR variables are stored as midnight of the first day of the respective
quarter, month, and week of the year. Therefore, 1 Q 90, 1/90, and 1 WK 90 are all equiv-
alents of January 1, 1990 0:0:00. See “Date and Time Functions” on p. 62 for information
on how to determine the quarter, month, or week of a year for a certain date.

• WKDAY variables are stored as 1 to 7, and MONTH variables as 1 to 12. For information on
how to determine the day of the week or the month of the year for a certain date, see “Date
and Time Functions” on p. 62.

• Both dates and time intervals can be used in arithmetic expressions. The results are stored
as the number of seconds or days (see Table 8).

• Do not mix time variables (TIME and DTIME) with date variables (DATE, ADATE, EDATE,
and so on) in computations. Since date variables have an implicit time value of 00:00:00,
calculations involving time values that are not multiples of a whole day (for example, 24
hours, 0 minutes, 0 seconds) will yield unreliable results.

• Mixing a DATETIME variable with a date variable may yield an unreliable result.
Operations involving date variables are accurate only to the days. To avoid possible
misinterpretation, use the DTIME format and ignore the hours and minutes portion of the
resulting value.

You can perform virtually any arithmetic operation with them. Of course, not all of these
operations are particularly useful. You can calculate the number of days between two dates
by subtracting one date from the other—but adding two dates does not produce a very mean-
ingful result.

By default, any new numeric variables you compute are displayed in F format. In the case
of calculations involving time and date variables, this means that the default output is ex-
pressed as a number of seconds or days. Use the FORMATS (or PRINT FORMATS) command
to specify an appropriate format for the computed variable. Table 8 shows the recommended
output formats for some of the calculations possible with date and time variables.

Table 8 Recommended output formats for date and time calculations

Arithmetic operation Result Recommended output format

time ± time*

* Including TIME and DTIME formats.

time TIME, DTIME
date – date †

† Including DATE, ADATE, EDATE, JDATE, and SDATE formats.

time DTIME
DATETIME – DATETIME time TIME, DTIME
DATETIME ± time date DATETIME

62 Universals

Example
DATA LIST RECORDS=2
 /TIME 1-8 (TIME) DTIME 10-19 (DTIME) DATE 21-29 (DATE)
 ADATE 31-38 (ADATE)
 /DATTIME1 1-18 (DATETIME) DATTIME2 20-37 (DATETIME).
BEGIN DATA
1:10:15 1 0:25:10 13-8-90 10/21/90
28-OCT-90 9:15:17 29/OCT/90 10:30:22
END DATA.
COMPUTE ADDTIME=TIME+DTIME.
COMPUTE DATEDIF1=ADATE-DATE.
COMPUTE DATEDIF2=DATTIME2-DATTIME1.
COMPUTE DATETIME=DATTIME2+DTIME.
LIST VARIABLES=ADDTIME DATEDIF1 DATEDIF2 DATETIME.
FORMATS ADDTIME DATEDIF2 (TIME15) DATEDIF1 (DTIME15)
 DATETIME (DATETIME25).
LIST VARIABLES=ADDTIME DATEDIF1 DATEDIF2 DATETIME.

The results of these commands are shown in Figure 20.

Date and Time Functions

Date and time functions provide aggregation, conversion, and extraction routines for dates
and time intervals. Each function transforms an expression consisting of one or more
arguments. Arguments can be complex expressions, variable names, or constants. Date and
time expressions and variables are legitimate arguments.

All date functions that accept the argument of day—for example, DATE.DMY(d,m,y),
DATE.MDY(m,d,y), and DATE.YRDAY(y,d)—check the validity of the argument. The value for
day must be an integer between 1 and 31. If an invalid value is encountered, a warning is
displayed and the value is set to system-missing. However, if the day value is invalid for a
particular month—for example, 31 in September, April, June, and November or 29 through
31 for February in non-leap years—the resulting date is placed in the next month (for exam-
ple, if you enter 2 for MONTH, 31 for DAY, and 91 for YEAR, the result becomes 03/02/91).

Figure 20 Results of arithmetic operations with date and time variables

 ADDTIME DATEDIF1 DATEDIF2 DATETIME

 25:35:25 69 00:00:00 25:15:05 30-OCT-1990 10:55:32

Date and Time 63

Aggregation Functions

Aggregation functions generate dates and time intervals from values that were not read by
date and time input formats.

• All aggregation functions begin with DATE or TIME, depending on whether a date or a time
interval is requested. This is followed by a subfunction that corresponds to the type of
values found in the data.

• The subfunctions are separated from the function by a period (.) and are followed by an
argument list specified in parentheses.

• The arguments to the DATE and TIME functions must be separated by commas and must
contain integer values.

DATE.DMY(d,m,y) Combine day, month, and year. The value of the argument for day
must be expressed as an integer between 1 and 31. The value of the
argument for month must be expressed as an integer between 1 and 13
(13 returns January of the following year). Years should be expressed
in four digits. For example, the command

COMPUTE BIRTHDAY=DATE.DMY(DAY,MONTH,YEAR).

stores the value of approximately 1.184E+10 in BIRTHDAY when DAY
is 8, MONTH is 11, and YEAR is 57. This value can be displayed with
a DATE9 format as 08-NOV-57.

DATE.MDY(m,d,y) Combine month, day, and year. This function follows the same rules
as DATE.DMY, except for the order of the arguments. For example, the
command

COMPUTE BIRTHDAY=DATE.MDY(MONTH,DAY,YEAR).

stores the same value as the previous example in BIRTHDAY for the
same values of MONTH, DAY, and YEAR. The value can be displayed
as 11/08/57 with an ADATE8 format.

DATE.YRDAY(y,d) Combine year and day of the year. The year can be expressed as either
two or four digits. Years should be expressed in four digits. The day
can be expressed as any integer between and including 1 and 366. For
example, the command

COMPUTE BIRTHDAY=DATE.YRDAY(1688,301).

when combined with a DATE11 print format produces the date
27-OCT-1688 for BIRTHDAY.

DATE.QYR(q,y) Combine quarter and year. The quarter must be expressed as a single
digit between and including 1 and 4. The year can contain two or
four digits. Years should be expressed in four digits. For example,
the command

COMPUTE QUART=DATE.QYR(QTR,YEAR).

with a QDATE6 print format produces a value of 4 Q 57 for QUART
when QTR is 4 and YEAR is 57. Since each quarter is assumed to begin

64 Universals

on the first day of the first month of the quarter, a DATE9 print format
for the same value is displayed as 01-OCT-57.

DATE.MOYR(m,y) Combine month and year. The value of the month must be expressed
as an integer between and including 1 and 12. The year can be
expressed as two or four digits. For example, the command

COMPUTE START=DATE.MOYR(MONTH,YEAR).

displays NOV 57 for START when MONTH is 11 and YEAR is 57 and
the print format is MOYR.

DATE.WKYR(w,y) Combine week and year. The week must be an integer between and
including 1 and 53. The year can be represented by two or four digits.
For example, the command

COMPUTE WEEK=DATE.WKYR(WK,YEAR).

displays 26-NOV-57 for WEEK when WK is 48 and YEAR is 57 and the
print format is DATE9. The number of the week in the WKYR format is
calculated beginning with the first day of the year. It may be different
from the number of the calendar week.

TIME.HMS(h,m,s) Combine hour, minute, and second into a time interval. For example,
the command

COMPUTE PERIOD1= TIME.HMS (HR,MIN,SEC).

produces an interval of 45,030 seconds for PERIOD1 when HR equals
12, MIN equals 30, and SEC equals 30. The value can be displayed as
12:30:30 with a TIME8 print format.

You can supply one, two, or three arguments. Trailing arguments can be
omitted and default to 0. The value of the first nonzero argument can
spill over into the next higher argument. For example, the command

COMPUTE PERIOD2=TIME.HMS(HR,MIN).

produces an interval of 5400 seconds for PERIOD2 when HR is 0 and MIN
is 90. The value can be displayed as 01:30 with a TIME5 print format.

You can have a non-integer value for the last argument. For example,
the command

COMPUTE PERIOD3=TIME.HMS(HR).

produces an interval of 5400 seconds for PERIOD3 when HR equals 1.5
and is displayed as 01:30 with a TIME5 format. When you supply a
nonzero argument to a function, each of the lower-level units must be
within the range of −60 to +60.

TIME.DAYS(d) Aggregate days into a time interval. The argument can be expressed
as any numeric value. For example, the command

COMPUTE NDAYS=TIME.DAYS(SPELL).

with a value of 2.5 for SPELL generates a value for NDAYS that is dis-
played as 2 12:00 with a DTIME7 format.

Date and Time 65

Conversion Functions

The conversion functions convert time intervals from one unit of time to another. Time
intervals are stored as the number of seconds in the interval; the conversion functions provide
a means for calculating more appropriate units, for example, converting seconds to days.

Each conversion function consists of the CTIME function followed by a period (.), the
target time unit, and an argument. The argument can consist of expressions, variable names,
or constants. The argument must already be a time interval (see “Aggregation Functions” on
p. 63). Time conversions produce non-integer results with a default format of F8.2.

Since time and dates are stored internally as seconds, a function that converts to seconds
is not necessary.

CTIME.DAYS(arg) Convert a time interval to the number of days. For example, the
command

COMPUTE NDAYS=CTIME.DAYS(TIME.HMS(HR,MIN,SEC)).

with 12 for HR, 30 for MIN, and 30 for SEC yields a value of 0.52 for
NDAYS. CTIME.DAYS(45030)yields the same result.

CTIME.HOURS(arg) Convert a time interval to the number of hours. For example, the
command

COMPUTE NHOURS=CTIME.HOURS(TIME.HMS(HR,MIN,SEC)).

using the same values as the previous example produces a value of
12.51 for NHOURS.

CTIME.MINUTES(arg) Convert a time interval to the number of minutes. Using the same
values as the previous example for HR, MIN, and, SEC, the command

COMPUTE NMINS=CTIME.MINUTES(TIME.HMS(HR,MIN,SEC)).

converts the interval to minutes and produces a value of 750.50 for
NMINS.

YRMODA Function

YRMODA(arg list) Convert year, month, and day to a day number. The number returned
is the number of days since October 14, 1582 (day 0 of the Gregorian
calendar).

• Arguments for YRMODA can be variables, constants, or any other type of numeric
expression but must yield integers.

• Year, month, and day must be specified in that order.

• The first argument can be any year between 0 and 99, or between 1582 to 47516.

• If the first argument yields a number between 00 and 99, 1900 through 1999 is assumed.

• The month can range from 1 through 13. Month 13 with day 0 yields the last day of the
year. For example, YRMODA(1990,13,0) produces the day number for December 31, 1990.
Month 13 with any other day yields the day of the first month of the coming year, for
example, YRMODA(1990,13,1) produces the day number for January 1, 1991.

66 Universals

• The day can range from 0 through 31. Day 0 is the last day of the previous month regard-
less of whether it is 28, 29, 30, or 31. For example, YRMODA(1990,3,0) yields 148791.00,
the day number for February 28, 1990.

• The function returns the system-missing value if any of the three arguments is missing or
if the arguments do not form a valid date after October 14, 1582.

• Since YRMODA yields the number of days instead of seconds, you can not display it in
date format unless you convert it to the number of seconds.

Extraction Functions

The extraction functions extract subfields from dates or time intervals, targeting the day or a
time from a date value. This permits you to classify events by day of the week, season, shift,
and so forth.

• Each extraction function begins with XDATE, followed by a period, the subfunction name
(what you want to extract), and an argument.

• The argument can be an expression, a variable name, or a constant, provided the argument
is already in date form.

• In the following examples, the value for the variable BIRTHDAY is 05-DEC-1954 5:30:15,
read with a DATE20 input format.

XDATE.MDAY(arg) Return day number in a month from a date. The result is an integer
between 1 and 31. The date must have occurred after October 14,
1582. For example, you can extract the day number from BIRTHDAY,
as in

COMPUTE DAYNUM=XDATE.MDAY(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, DAYNUM is
5.

XDATE.MONTH(arg) Return month number from a date. The result is an integer between 1
and 12. The date must have occurred after October 14, 1582. For
example, you can extract the month number from BIRTHDAY, as in

COMPUTE MONTHNUM=XDATE.MONTH(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, this com-
mand yields 12 for MONTHNUM. If you provide a print format of
MONTH12, as in

PRINT FORMAT MONTHNUM(MONTH12).

the value would be displayed as DECEMBER.

XDATE.YEAR(arg) Return a four-digit year from a date. The date must have occurred
after October 14, 1582. For example, you can extract the year from
BIRTHDAY, as in

COMPUTE YEAR=XDATE.YEAR(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, this
command returns 1954 for YEAR.

Date and Time 67

XDATE.HOUR(arg) Return the hour from a date or time of day. The result is an integer be-
tween 0 and 23. For example, you can extract the hour from BIRTHDAY,
as in

COMPUTE HOUR=XDATE.HOUR(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, this command
returns 5 for HOUR.

XDATE.MINUTE(arg) Return the minute of the hour from a date or time of day. The result is
an integer from 0 through 59. For example, you can extract the minute
of the hour from BIRTHDAY, as in

COMPUTE MIN=XDATE.MINUTE(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, this command
returns 30 for MIN.

XDATE.SECOND(arg) Return the second of the minute from a date or time of day. The result is
an integer or, if there are fractional seconds, a value with decimals. For
example, you can extract the second of the minute from BIRTHDAY, as in

COMPUTE SEC=XDATE.SECOND(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, this command
returns a value of 15.00 for SEC.

XDATE.WKDAY(arg) Return the day within a week from a date. The result is an integer be-
tween and including 1 and 7, with Sunday being 1 and Saturday being
7. The date must have occurred after October 14, 1582. For example,
you can extract the day of the week from BIRTHDAY, as in

COMPUTE DAYNAME=XDATE.WKDAY(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, this command
returns the value 1 for DAYNAME. If you provide an output format of
WKDAY, as in

PRINT FORMAT DAYNAME (WKDAY9).

the value for DAYNAME would display as SUNDAY.

XDATE.JDAY(arg) Return the day of the year from the date. The result is an integer
between 1 and 366 inclusive. The date must have occurred after
October 14, 1582. For example, you can extract the day of the year
from BIRTHDAY, as in

COMPUTE DAYNUM=XDATE.JDAY(BIRTHDAY).

When the value for BIRTHDAY is 05-DEC-1954 5:30:15, this com-
mand returns the value 339 for DAYNUM.

XDATE.QUARTER(arg) Return quarter number within a year for a date. The result is 1, 2, 3,
or 4. The date must have occurred after October 14, 1582. To extract
the quarter in which BIRTHDAY occurred, use the command

COMPUTE Q=XDATE.QUARTER(BIRTHDAY).

When BIRTHDAY equals 5-DEC-1954 05:30:15, the value of Q is 4.

68 Universals

XDATE.WEEK(arg) Return the week number of a date. The result is an integer between 1
and 53. The date must have occurred after October 14, 1582. For
example, you can extract the week number from BIRTHDAY, as in

COMPUTE WEEKNUM=XDATE.WEEK(BIRTHDAY).

When the value for BIRTHDAY is 5-DEC-1954 05:30:15, this com-
mand returns the value 49 for WEEKNUM.

XDATE.TDAY(arg) Return number of days in a time interval or from October 14, 1582.
The value returned is an integer (the fractional portion of a day is ig-
nored). For example, the command

COMPUTE NDAYS=XDATE.TDAY(BIRTHDAY).

returns the value 135922 when the value for BIRTHDAY is 05-DEC-1954
5:30:15, indicating the number of days between October 14, 1582 and
December 5, 1954. The hours, minutes, and seconds are ignored.

XDATE.TIME(arg) Return time of day from a date. The result is expressed as the number
of elapsed seconds since midnight of that date. For example, when the
value for BIRTHDAY is 05-DEC-1954 5:30:15, the command

COMPUTE ELSEC=XDATE.TIME(BIRTHDAY).

returns the value 19815 for ELSEC. If you provide a TIME print format,
as in

PRINT FORMAT ELSEC(TIME8).

the value is displayed as 5:30:15.

XDATE.DATE(arg) Return the date portion of a date. The result is the integral date portion
of a date, which is the number of elapsed seconds between midnight
October 14, 1582 and midnight of the date in question. The date must
have occurred after October 14, 1582. To extract the date from variable
BIRTHDAY, use

COMPUTE BRTHDATE=XDATE.DATE(BIRTHDAY).

The value for BIRTHDATE can then be displayed as 12/05/54 using
ADATE8 format.

Date and Time 69

Precautions with Date and Time Variables

Dates and times are represented internally as seconds. The numbers for dates are very large,
and arithmetic overflows can result. For example, dates in the 20th century are on the order
of 10 to the 10th power (11 digits). For that reason, a few precautions are in order:

• Some machine environments cannot accommodate the computation of higher powers of
date and time variables. For example, computations higher than the sixth power may
cause overflows on some machines.

• The magnitude of the values may cause inaccuracies in some statistical procedures. It is
advisable to subtract a fixed date if you want to keep seconds as the unit, or to convert
days using the XDATE.TDAYS function. REGRESSION, CORRELATIONS, ANOVA, and
ONEWAY use an adaptive centering method, so their accuracy will not be affected.

• LIST, REPORT, and TABLES are the only procedures that display values in date and time for-
mats. The PRINT and WRITE transformation commands can also display and write date and
time formats. However, some summary variables in REPORT and calculated variables in
TABLES display in F format, regardless of the print formats of variables used as arguments.

• All other procedures use F format in all cases. The default width and number of decimal
places is taken from the print format, but the format type is ignored. For example, in a
frequency table, the date 1/09/57 with a print format of DATE9 will be displayed as
11830147200, not 01-SEP-57.

• Changing the print format in no way alters the values that are stored. For example, if you
assign a print format of DATE9 for a variable read with DATETIME format, the time of day
will not display but continues to be part of the value. This means that seemingly identical
values can be displayed as separate entries within procedures.

71

Commands

ACF

ACF [VARIABLES=] series names

 [/DIFF={1}]
 {n}

 [/SDIFF={1}]
 {n}

 [/PERIOD=n]

 [/{NOLOG**}]
 {LN }

 [/SEASONAL]

 [/MXAUTO={16**}]
 {n }

 [/SERROR={IND**}]
 {MA }

 [/PACF]

 [/APPLY [=’model name’]]

**Default if the subcommand is omitted and there is no corresponding specification on the TSET command.

Example
ACF TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PER=12
 /MXAUTO=50.

Overview

ACF displays and plots the sample autocorrelation function of one or more time series. You
can also display and plot the autocorrelations of transformed series by requesting natural log
and differencing transformations within the procedure.

Options

Modifying the Series. You can request a natural log transformation of the series using the
LN subcommand and seasonal and nonseasonal differencing to any degree using the SDIFF

72 ACF

and DIFF subcommands. With seasonal differencing, you can specify the periodicity on the
PERIOD subcommand.

Statistical Output. With the MXAUTO subcommand, you can specify the number of lags for
which you want autocorrelations displayed and plotted, overriding the maximum specified
on TSET. You can also display and plot values only at periodic lags using the SEASONAL sub-
command. In addition to autocorrelations, you can display and plot partial autocorrelations
using the PACF subcommand.

Method of Calculating Standard Errors. You can specify one of two methods of calculating the
standard errors for the autocorrelations on the SERROR subcommand.

Basic Specification

The basic specification is one or more series names.

• For each series specified, ACF automatically displays the autocorrelation value, standard
error, Box-Ljung statistic, and probability for each lag.

• ACF plots the autocorrelations and marks the bounds of two standard errors on the plot.
By default, ACF displays and plots autocorrelations for up to 16 lags or the number of lags
specified on TSET.

• If a method has not been specified on TSET, the default method of calculating the standard
error (IND) assumes the process is white noise.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.
• Other subcommands can be specified more than once, but only the last specification of

each one is executed.

Operations

• Subcommand specifications apply to all series named on the ACF command.

• If the LN subcommand is specified, any differencing requested on that ACF command is
done on the log-transformed series.

• Confidence limits are displayed in the plot, marking the bounds of two standard errors at
each lag.

ACF 73

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of series named
on the list.

Example

ACF TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PER=12
 /MXAUTO=50.

• This example produces a plot of the autocorrelation function for the series TICKETS after
a natural log transformation, differencing, and seasonal differencing have been applied.
Along with the plot, the autocorrelation value, standard error, Box-Ljung statistic, and
probability are displayed for each lag.

• LN transforms the data using the natural logarithm (base e) of the series.

• DIFF differences the series once.
• SDIFF and PERIOD apply one degree of seasonal differencing with a period of 12.

• MXAUTO specifies that the maximum number of lags for which output is to be produced
is 50.

VARIABLES Subcommand

VARIABLES specifies the series names and is the only required subcommand. The actual key-
word VARIABLES can be omitted.

DIFF Subcommand

DIFF specifies the degree of differencing used to convert a nonstationary series to a stationary
one with a constant mean and variance before the autocorrelations are computed.

• You can specify 0 or any positive integer on DIFF.
• If DIFF is specified without a value, the default is 1.

• The number of values used in the calculations decreases by 1 for each degree-1 of differencing.

Example
ACF SALES
 /DIFF=1.

• In this example, the series SALES will be differenced once before the autocorrelations are
computed and plotted.

74 ACF

SDIFF Subcommand

If the series exhibits a seasonal or periodic pattern, you can use the SDIFF subcommand to
seasonally difference the series before obtaining autocorrelations.

• The specification on SDIFF indicates the degree of seasonal differencing and can be 0 or
any positive integer.

• If SDIFF is specified without a value, the degree of seasonal differencing defaults to 1.
• The number of seasons used in the calculations decreases by 1 for each degree of seasonal

differencing.

• The length of the period used by SDIFF is specified on the PERIOD subcommand. If the
PERIOD subcommand is not specified, the periodicity established on the TSET or DATE
command is used (see the PERIOD subcommand below).

PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF or SEASONAL subcommands.

• The specification on PERIOD indicates how many observations are in one period or
season and can be any positive integer greater than 1.

• The PERIOD subcommand is ignored if it is used without the SDIFF or SEASONAL sub-
commands.

• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If
TSET PERIOD is not specified, the periodicity established on the DATE command is used.
If periodicity was not established anywhere, the SDIFF and SEASONAL subcommands
will not be executed.

Example
ACF SALES
 /SDIFF=1M
 /PERIOD=12.

• This command applies one degree of seasonal differencing with a periodicity (season) of
12 to the series SALES before autocorrelations are computed.

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base e) of the series and is used to remove
varying amplitude over time. NOLOG indicates that the data should not be log transformed.
NOLOG is the default.

• If you specify LN on an ACF command, any differencing requested on that command will
be done on the log-transformed series.

• There are no additional specifications on LN or NOLOG.

• Only the last LN or NOLOG subcommand on an ACF command is executed.

ACF 75

• If a natural log transformation is requested when there are values in the series that are less
than or equal to zero, the ACF will not be produced for that series because nonpositive values
cannot be log transformed.

• NOLOG is generally used with an APPLY subcommand to turn off a previous LN specification.

Example
ACF SALES
 /LN.

• This command transforms the series SALES using the natural log transformation and then
computes and plots autocorrelations.

SEASONAL Subcommand

Use the SEASONAL subcommand to focus attention on the seasonal component by displaying
and plotting autocorrelations only at periodic lags.
• There are no additional specifications on SEASONAL.

• If SEASONAL is specified, values are displayed and plotted at the periodic lags indicated
on the PERIOD subcommand. If PERIOD is not specified, the periodicity established on
the TSET or DATE command is used (see the PERIOD subcommand on p. 74).

• If SEASONAL is not specified, autocorrelations for all lags up to the maximum are dis-
played and plotted.

Example
ACF SALES
 /SEASONAL
 /PERIOD=12.

• In this example, autocorrelations are displayed only at every 12th lag.

MXAUTO Subcommand

MXAUTO specifies the maximum number of lags for a series.

• The specification on MXAUTO must be a positive integer.

• If MXAUTO is not specified, the default number of lags is the value set on TSET MXAUTO.
If TSET MXAUTO is not specified, the default is 16.

• The value on MXAUTO overrides the value set on TSET MXAUTO.

Example
ACF SALES
 /MXAUTO=14.

• This command sets the maximum number of autocorrelations to be displayed for series
SALES to 14.

76 ACF

SERROR Subcommand

SERROR specifies the method of calculating the standard errors for the autocorrelations.

• You must specify either keyword IND or MA on SERROR.

• The method on SERROR overrides the method specified on the TSET ACFSE command.

• If SERROR is not specified, the method indicated on TSET ACFSE is used. If TSET ACFSE
is not specified, the default is IND.

IND Independence model. The method of calculating the standard errors assumes the
underlying process is white noise.

MA MA model. The method of calculating the standard errors is based on Bartlett’s
approximation. With this method, appropriate where the true MA order of the
process is k−1, standard errors grow at increased lags (Pankratz, 1983).

Example
ACF SALES
 /SERROR=MA.

• In this example, the standard errors of the autocorrelations are computed using the MA
method.

PACF Subcommand

Use the PACF subcommand to display and plot sample partial autocorrelations as well as
autocorrelations for each series named on the ACF command.

• There are no additional specifications on PACF.

• PACF also displays the standard errors of the partial autocorrelations and indicates the
bounds of two standard errors on the plot.

• With the exception of SERROR, all other subcommands specified on that ACF command
apply to both the partial autocorrelations and the autocorrelations.

Example
ACF SALES
 /DIFFERENCE=1
 /PACF.

• This command requests both autocorrelations and partial autocorrelations for the series
SALES after it has been differenced once.

APPLY Subcommand

APPLY allows you to use a previously defined ACF model without having to repeat the
specifications.

• The only specification on APPLY is the name of a previous model in quotes. If a model
name is not specified, the model specified on the previous ACF command is used.

ACF 77

• To change one or more model specifications, specify the subcommands of only those
portions you want to change after the APPLY subcommand.

• If no series are specified on the ACF command, the series that were originally specified
with the model being reapplied are used.

• To change the series used with the model, enter new series names before or after the APPLY
subcommand.

Example
ACF TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PERIOD=12
 /MXAUTO=50.
ACF ROUNDTRP
 /APPLY.
ACF APPLY
 /NOLOG.
ACF APPLY ’MOD_2’
 /PERIOD=6.

• The first command requests a maximum of 50 autocorrelations for the series TICKETS after
it has been natural log transformed, differenced once, and had one degree of seasonal differ-
encing with a periodicity of 12 applied to it. This model is assigned the default name MOD_1.

• The second command displays and plots the autocorrelation function for the series
ROUNDTRP using the same model that was used for the series TICKETS. This model is
assigned the name MOD_2.

• The third command requests another autocorrelation function of the series ROUNDTRP
using the same model but without the natural log transformation. Note that when APPLY
is the first specification after the ACF command, the slash (/) before it is not necessary.
This model is assigned the name MOD_3.

• The fourth command reapplies MOD_2, autocorrelations for the series ROUNDTRP with
the natural log and differencing specifications, but this time with a periodicity of 6. This
model is assigned the name MOD_4. It differs from MOD_2 only in the periodicity.

References

Box, G. E. P., and G. M. Jenkins. 1976. Time series analysis: Forecasting and control. San
Francisco: Holden-Day.

Pankratz, A. 1983. Forecasting with univariate Box-Jenkins models: Concepts and cases. New
York: John Wiley and Sons.

78

ADD DOCUMENT

ADD DOCUMENT
 ’text’
 ’text’.

Example

ADD DOCUMENT
 "This data file is a 10% random sample from the
 "master data file. It’s seed value is 13254689.".

Overview

ADD DOCUMENT saves a block of text of any length in an SPSS-format data file. The result
is equivalent to the DOCUMENT command. The documentation can be displayed with the
DISPLAY DOCUMENT command.

When GET retrieves a data file, or APPLY DICTIONARY is used to apply documents from
another data file , or when ADD FILES, MATCH FILES, or UPDATE is used to combine data
files, all documents from each specified file are copied into the working file. DROP DOCU-
MENTS can be used to drop those documents from the working file.

Basic Specification

The basic specification is ADD DOCUMENT followed by one or more optional lines of quot-
ed text. The text is stored in the file dictionary when the data file is saved in SPSS-format.

Syntax Rules

• Each line must be enclosed in single or double quotes, following the standard rules for
quoted strings (see “String Values in Command Specifications” on p. 7).

• Each line can be up to 80 bytes long (typically 80 characters in single-byte languages),
including the command name but not including the quotation marks used to enclose the
text. If any line exceeds 80 bytes, an error will result and the command will not be
executed.

• The text can be entered on as many lines as needed.

• Multiple ADD DOCUMENT commands can be specified for the same data file.

Operation

• The text from each ADD DOCUMENT command is appended to the end of the list of docu-
mentation, followed by the date in parentheses.

ADD DOCUMENT 79

• An ADD DOCUMENT command with no quoted text string appends a date in parentheses
to the documenation.

• DISPLAY DOCUMENTS will display all documentation for the data file specified on ADD
DOCUMENT and/or DOCUMENT commands. Documentation is displayed exactly as
entered; each line of the ADD DOCUMENT command is displayed as a separate line, and
there is no line wrapping.

• DROP DOCUMENTS deletes all documentation created by both ADD DOCUMENT and
DOCUMENT.

Example

If the command name and the quoted text string are specified on the same line, the command
name counts toward the 80-byte line limit; so it’s probably a good idea to put the command
name on a separate line, as in:

ADD DOCUMENT
 "This is some text that describes this file.".

Example

To insert blank lines between blocks of text, enter a null string, as in:

ADD DOCUMENT
 "This is some text that describes this file."
 ""
 "This is some more text preceded by a blank line.".

80

ADD FILES

ADD FILES FILE={file}
 {* }

 [/RENAME=(old varnames=new varnames)...]

 [/IN=varname]

 /FILE=... [/RENAME=...] [/IN=...]

 [/BY varlist]

 [/MAP]

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/FIRST=varname] [/LAST=varname]

**Default if the subcommand is omitted.

Example
ADD FILES FILE=SCHOOL1 /FILE=SCHOOL2.

Overview

ADD FILES combines cases from 2 up to 50 SPSS-format data files by concatenating or
interleaving cases. When cases are concatenated, all cases from one file are added to the
end of all cases from another file. When cases are interleaved, cases in the resulting file are
ordered according to the values of one or more key variables.

The files specified on ADD FILES can be SPSS-format data files created by the SAVE or
XSAVE commands or the working data file. The combined file becomes the new working
file. Statistical procedures following ADD FILES use this combined file unless you replace
it by building another working file. You must use the SAVE or XSAVE commands if you
want to save the combined file as an SPSS-format data file.

In general, ADD FILES is used to combine files containing the same variables but
different cases. To combine files containing the same cases but different variables, use
MATCH FILES. To update existing SPSS-format data files, use UPDATE. ADD FILES cannot
concatenate raw data files. To concatenate raw data files, use DATA LIST within an INPUT
PROGRAM structure (see p. 422 for an example). Alternatively, convert the raw data files
to SPSS-format data files with the SAVE or XSAVE commands and then use ADD FILES to
combine them.

Options

Variable Selection. You can specify which variables from each input file are included in the
new working file using the DROP and KEEP subcommands.

ADD FILES 81

Variable Names. You can rename variables in each input file before combining the files using
the RENAME subcommand. This permits you to combine variables that are the same but
whose names differ in different input files, or to separate variables that are different but have
the same name.

Variable Flag. You can create a variable that indicates whether a case came from a particular
input file using IN. When interleaving cases, you can use the FIRST or LAST subcommands
to create a variable that flags the first or last case of a group of cases with the same value for
the key variable.

Variable Map. You can request a map showing all variables in the new working file, their
order, and the input files from which they came using the MAP subcommand.

Basic Specification

• The basic specification is two or more FILE subcommands, each of which specifies a file
to be combined. If cases are to be interleaved, the BY subcommand specifying the key
variables is also required.

• All variables from all input files are included in the new working file unless DROP or
KEEP is specified.

Subcommand Order

• RENAME and IN must immediately follow the FILE subcommand to which they apply.

• BY, FIRST, and LAST must follow all FILE subcommands and their associated RENAME
and IN subcommands.

Syntax Rules

• RENAME can be repeated after each FILE subcommand. RENAME applies only to variables
in the file named on the FILE subcommand immediately preceding it.

• BY can be specified only once. However, multiple key variables can be specified on BY.
When BY is used, all files must be sorted in ascending order by the key variables (see
SORT CASES).

• FIRST and LAST can be used only when files are interleaved (when BY is used).

• MAP can be repeated as often as desired.

Operations

• ADD FILES reads all input files named on FILE and builds a new working data file that re-
places any working file created earlier in the session. ADD FILES is executed when the
data are read by one of the procedure commands or the EXECUTE, SAVE, or SORT CASES
commands.

82 ADD FILES

• The resulting file contains complete dictionary information from the input files, including
variable names, labels, print and write formats, and missing-value indicators. It also
contains the documents from each input file. See DROP DOCUMENTS for information on
deleting documents.

• Variables are copied in order from the first file specified, then from the second file
specified, and so on. Variables that are not contained in all files receive the system-
missing value for cases that do not have values for those variables.

• If the same variable name exists in more than one file but the format type (numeric or
string) does not match, the command is not executed.

• If a numeric variable has the same name but different formats (for example, F8.0 and F8.2)
in different input files, the format of the variable in the first-named file is used.

• If a string variable has the same name but different formats (for example, A24 and A16)
in different input files, the command is not executed.

• If the working file is named as an input file, any N and SAMPLE commands that have been
specified are applied to the working file before files are combined.

• If only one of the files is weighted, the program turns weighting off when combining
cases from the two files. To weight the cases, use the WEIGHT command again.

Limitations

• Maximum 50 files can be combined on one ADD FILES command.

• The TEMPORARY command cannot be in effect if the working data file is used as an
input file.

Examples

ADD FILES FILE=SCHOOL1 /FILE=SCHOOL2.

• ADD FILES concatenates cases from the SPSS-format data files SCHOOL1 and SCHOOL2.
All cases from SCHOOL1 precede all cases from SCHOOL2 in the resulting file.

SORT CASES BY LOCATN DEPT.
ADD FILES FILE=SOURCE /FILE=* /BY LOCATN DEPT
/KEEP AVGHOUR AVGRAISE LOCATN DEPT SEX HOURLY RAISE /MAP.
SAVE OUTFILE=PRSNNL.

• SORT CASES sorts cases in the working file in ascending order of their values for LOCATN
and DEPT.

• ADD FILES combines two files: the SPSS-format data file SOURCE and the sorted work-
ing file. The file SOURCE must also be sorted by LOCATN and DEPT.

• BY indicates that the keys for interleaving cases are LOCATN and DEPT, the same
variables used on SORT CASES.

• KEEP specifies the variables to be retained in the resulting file.

• MAP produces a list of variables in the resulting file and the two input files.

• SAVE saves the resulting file as a new SPSS-format data file named PRSNNL.

ADD FILES 83

FILE Subcommand

FILE identifies the files to be combined. A separate FILE subcommand must be used for each
input file.

• An asterisk may be specified on FILE to indicate the working data file.

• The order in which files are named determines the order of cases in the resulting file.

Raw Data Files

To add cases from a raw data file, you must first define the file as the working data file using
the DATA LIST command. ADD FILES can then combine the working file with an SPSS-format
data file.

Example
DATA LIST FILE=GASDATA/1 OZONE 10-12 CO 20-22 SULFUR 30-32.
ADD FILES FILE=PARTICLE /FILE=*.
SAVE OUTFILE=POLLUTE.

• The GASDATA file is a raw data file and is defined on the DATA LIST command.

• The PARTICLE file is a previously saved SPSS-format data file.

• FILE=* on ADD FILES specifies the working data file, which contains the gas data.
FILE=PARTICLE specifies the SPSS-format data file PARTICLE.

• SAVE saves the resulting file as an SPSS-format data file with the filename POLLUTE.
Cases from the GASDATA file follow cases from the PARTICLE file.

RENAME Subcommand

RENAME renames variables in input files before they are processed by ADD FILES. RENAME
follows the FILE subcommand that specifies the file containing the variables to be renamed.

• RENAME applies only to the FILE subcommand immediately preceding it. To rename vari-
ables from more than one input file, enter a RENAME subcommand after each FILE sub-
command that specifies a file with variables to be renamed.

• Specifications for RENAME consist of a left parenthesis, a list of old variable names, an
equals sign, a list of new variable names, and a right parenthesis. The two variable lists
must name or imply the same number of variables. If only one variable is renamed, the
parentheses are optional.

• More than one such specification can be entered on a single RENAME subcommand, each
enclosed in parentheses.

• The TO keyword can be used to refer to consecutive variables in the file and to generate
new variable names (see “Keyword TO” on p. 23).

• RENAME takes effect immediately. KEEP and DROP subcommands entered prior to RENAME
must use the old names, while those entered after RENAME must use the new names.

• All specifications within a single set of parentheses take effect simultaneously. For
example, the specification RENAME (A,B = B,A) swaps the names of the two variables.

• Variables cannot be renamed to scratch variables.

84 ADD FILES

• Input data files are not changed on disk; only the copy of the file being combined is affected.

Example
ADD FILES FILE=CLIENTS /RENAME=(TEL_NO, ID_NO = PHONE, ID)
/FILE=MASTER /BY ID.

• ADD FILES adds new client cases from the file CLIENTS to existing client cases in the file
MASTER.

• Two variables on CLIENTS are renamed prior to the match. TEL_NO is renamed PHONE
to match the name used for phone numbers in the master file. ID_NO is renamed ID so that
it will have the same name as the identification variable in the master file and can be used
on the BY subcommand.

• The BY subcommand orders the resulting file according to client ID number.

BY Subcommand

BY specifies one or more key variables that determine the order of cases in the resulting file.
When BY is specified, cases from the input files are interleaved according to their values for
the key variables.

• BY must follow the FILE subcommands and any associated RENAME and IN subcommands.
• The key variables specified on BY must be present and have the same names in all input files.

• Key variables can be long or short string variables or numerics.

• All input files must be sorted in ascending order of the key variables. If necessary, use
SORT CASES before ADD FILES.

• Cases in the resulting file are ordered by the values of the key variables. All cases from
the first file with the first value for the key variable are first, followed by all cases from
the second file with the same value, followed by all cases from the third file with the same
value, and so forth. These cases are followed by all cases from the first file with the next
value for the key variable, and so on.

• Cases with system-missing values are first in the resulting file. User-missing values are
interleaved with other values.

DROP and KEEP Subcommands

DROP and KEEP are used to include only a subset of variables in the resulting file. DROP
specifies a set of variables to exclude and KEEP specifies a set of variables to retain.
• DROP and KEEP do not affect the input files on disk.

• DROP and KEEP must follow all FILE and RENAME subcommands.

• DROP and KEEP must specify one or more variables. If RENAME is used to rename
variables, specify the new names on DROP and KEEP.

• DROP and KEEP take effect immediately. If a variable specified on DROP or KEEP does
not exist in the input files, was dropped by a previous DROP subcommand, or was not
retained by a previous KEEP subcommand, the program displays an error message and
does not execute the ADD FILES command.

ADD FILES 85

• DROP cannot be used with variables created by the IN, FIRST, or LAST subcommands.

• KEEP can be used to change the order of variables in the resulting file. With KEEP,
variables are kept in the order they are listed on the subcommand. If a variable is named
more than once on KEEP, only the first mention of the variable is in effect; all subsequent
references to that variable name are ignored.

• The keyword ALL can be specified on KEEP. ALL must be the last specification on KEEP,
and it refers to all variables not previously named on that subcommand. It is useful when
you want to arrange the first few variables in a specific order.

Example
ADD FILES FILE=PARTICLE /RENAME=(PARTIC=POLLUTE1)
/FILE=GAS /RENAME=(OZONE TO SULFUR=POLLUTE2 TO POLLUTE4)
/KEEP=POLLUTE1 POLLUTE2 POLLUTE3 POLLUTE4.

• The renamed variables are retained in the resulting file. KEEP is specified after all the FILE
and RENAME subcommands, and it refers to the variables by their new names.

IN Subcommand

IN creates a new variable in the resulting file that indicates whether a case came from the in-
put file named on the preceding FILE subcommand. IN applies only to the file specified on the
immediately preceding FILE subcommand.
• IN has only one specification, the name of the flag variable.

• The variable created by IN has value 1 for every case that came from the associated input
file and value 0 for every case that came from a different input file.

• Variables created by IN are automatically attached to the end of the resulting file and can-
not be dropped. If FIRST or LAST are used, the variable created by IN precedes the variables
created by FIRST or LAST.

Example
ADD FILES FILE=WEEK10 /FILE=WEEK11 /IN=INWEEK11 /BY=EMPID.

• IN creates the variable INWEEK11, which has value 1 for all cases in the resulting file that
came from the input file WEEK11 and value 0 for those cases that were not in the file
WEEK11.

Example
ADD FILES FILE=WEEK10 /FILE=WEEK11 /IN=INWEEK11 /BY=EMPID.
IF (NOT INWEEK11) SALARY1=0.

• The variable created by IN is used to screen partially missing cases for subsequent analyses.

• Since IN variables have either value 1 or 0, they can be used as logical expressions, where
1=true and 0=false. The IF command sets variable SALARY1 equal to 0 for all cases that
came from the file INWEEK11.

86 ADD FILES

FIRST and LAST Subcommands

FIRST and LAST create logical variables that flag the first or last case of a group of cases with
the same value on the BY variables. FIRST and LAST must follow all FILE subcommands and
their associated RENAME and IN subcommands.

• FIRST and LAST have only one specification, the name of the flag variable.

• FIRST creates a variable with value 1 for the first case of each group and value 0 for all
other cases.

• LAST creates a variable with value 1 for the last case of each group and value 0 for all
other cases.

• Variables created by FIRST and LAST are automatically attached to the end of the
resulting file and cannot be dropped.

Example
ADD FILES FILE=SCHOOL1 /FILE=SCHOOL2
/BY=GRADE /FIRST=HISCORE.

• The variable HISCORE contains value 1 for the first case in each grade in the resulting file
and value 0 for all other cases.

MAP Subcommand

MAP produces a list of the variables included in the new working file and the file or files from
which they came. Variables are listed in the order in which they exist in the resulting file.
MAP has no specifications and must follow after all FILE and RENAME subcommands.

• Multiple MAP subcommands can be used. Each MAP subcommand shows the current status
of the working file and reflects only the subcommands that precede the MAP subcommand.

• To obtain a map of the working data file in its final state, specify MAP last.

• If a variable is renamed, its original and new names are listed. Variables created by IN,
FIRST, and LAST are not included in the map, since they are automatically attached to the
end of the file and cannot be dropped.

87

ADD VALUE LABELS

ADD VALUE LABELS varlist value ’label’ value ’label’...[/varlist...]

Example
ADD VALUE LABELS JOBGRADE ’P’ ’Parttime Employee’
 ’C’ ’Customer Support’.

Overview

ADD VALUE LABELS adds or alters value labels without affecting other value labels already
defined for that variable. In contrast, VALUE LABELS adds or alters value labels but deletes
all existing value labels for that variable when it does so.

Basic Specification

The basic specification is a variable name and individual values with associated labels.

Syntax Rules

• Labels can be assigned to values of any previously defined variable. It is not necessary
to enter value labels for all of a variable’s values.

• Each value label must be enclosed in apostrophes or quotation marks.

• When an apostrophe occurs as part of a label, enclose the label in quotation marks or
enter the internal apostrophe twice with no intervening space.

• Value labels can contain any characters, including blanks.
• The same labels can be assigned to the same values of different variables by specifying

a list of variable names. For string variables, the variables on the list must have the same
defined width (for example, A8).

• Multiple sets of variable names and value labels can be specified on one ADD VALUE
LABELS command as long as each set is separated from the previous one by a slash.

• To continue a label from one command line to the next, specify a plus sign (+) before
the continuation of the label and enclose each segment of the label, including the blank
between them, in apostrophes or quotes.

Operations

• Unlike most transformations, ADD VALUE LABELS takes effect as soon as it is encoun-
tered in the command sequence. Thus, special attention should be paid to its position
among commands. See “Command Order” on p. 8 for more information.

88 ADD VALUE LABELS

• The added value labels are stored in the working file dictionary.

• ADD VALUE LABELS can be used for variables that have no previously assigned value labels.

• Adding labels to some values does not affect labels previously assigned to other values.

Limitations

• Value labels cannot exceed 60 characters.

• Value labels cannot be assigned to long string variables.

Example

ADD VALUE LABELS V1 TO V3 1 ’Officials & Managers’
 6 ’Service Workers’

/V4 ’N’ ’New Employee’.

• Labels are assigned to the values 1 and 6 of the variables between and including V1 and
V3 in the working data file.

• Following the required slash, a label for value N for variable V4 is specified. N is a string
value and must be enclosed in apostrophes or quotation marks.

• If labels already exist for these values, they are changed in the dictionary. If labels do not
exist for these values, new labels are added to the dictionary.

• Existing labels for other values for these variables are not affected.

Example

ADD VALUE LABELS OFFICE88 1 "EMPLOYEE’S OFFICE ASSIGNMENT PRIOR"
+ " TO 1988".

• The label for value 1 for OFFICE88 is specified on two command lines. The plus sign con-
catenates the two string segments and a blank is included at the beginning of the second
string in order to maintain correct spacing in the label.

Value Labels for String Variables

• For short string variables, the values and the labels must be enclosed in apostrophes or
quotation marks.

• If a specified value is longer than the defined width of the variable, the program displays a
warning and truncates the value. The added label will be associated with the truncated value.

• If a specified value is shorter than the defined width of the variable, the program adds
blanks to right-pad the value without warning. The added label will be associated with the
padded value.

• If a single set of labels is to be assigned to a list of string variables, the variables must
have the same defined width (for example, A8).

ADD VALUE LABELS 89

Example
ADD VALUE LABELS STATE ’TEX’ ’TEXAS’ ’TEN’ ’TENNESSEE’

 ’MIN’ ’MINNESOTA’.

• ADD VALUE LABELS assigns labels to three values of the variable STATE. Each value and
each label is specified in apostrophes.

• Assuming that the variable STATE is defined as three characters wide, the labels TEXAS,
TENNESSEE, and MINNESOTA will be appropriately associated with values TEX, TEN,
and MIN. However, if STATE were defined as two characters wide, the program would
truncate the specified values to two characters and would not be able to associate the labels
correctly. Both TEX and TEN would be truncated to TE and would first be assigned the
label TEXAS, which would then be changed to TENNESSEE by the second specification.

Example
ADD VALUE LABELS STATE REGION "U" "UNKNOWN".

• The label UNKNOWN is assigned to value U for both STATE and REGION.
• STATE and REGION must have the same defined width. If they do not, a separate specifi-

cation must be made for each, as in the following:

ADD VALUE LABELS STATE "U" "UNKNOWN" / REGION "U" "UNKNOWN".

90

AGGREGATE

AGGREGATE OUTFILE={file} [/MISSING=COLUMNWISE] [/DOCUMENT]
 {* }

 [/PRESORTED] /BREAK=varlist[({A})][varlist...]
 {D}

 /aggvar[’label’]aggvar[’label’]...=function(arguments)

 [/aggvar ...]

Available functions:

Example
AGGREGATE OUTFILE=AGGEMP /BREAK=LOCATN DEPT /COUNT=N

/AVGSAL AVGRAISE = MEAN(SALARY RAISE)
/SUMSAL SUMRAISE = SUM(SALARY RAISE)
/BLACKPCT ’Percentage Black’ = PIN(RACE,1,1)
/WHITEPCT ’Percentage White’ = PIN(RACE,5,5).

Overview

AGGREGATE aggregates groups of cases in the working data file into single cases and
creates a new, aggregated file. The values of one or more variables in the working file define
the case groups. These variables are called break variables. A set of cases with identical
values for each break variable is called a break group. A series of aggregate functions are
applied to source variables in the working file to create new, aggregated variables that have
one value for each break group.

AGGREGATE is often used with MATCH FILES to add variables with summary measures
(sum, mean, etc.) to a file. Transformations performed on the combined file can create
composite summary measures. With the REPORT procedure, the composite variables can
be used to write reports with nested composite information.

SUM Sum MEAN Mean
SD Standard deviation MAX Maximum
MIN Minimum PGT % of cases greater than value
PLT % of cases less than value PIN % of cases between values
POUT % of cases not in range FGT Fraction greater than value
FLT Fraction less than value FIN Fraction between values
FOUT Fraction not in range N Weighted number of cases
NU Unweighted number of cases NMISS Weighted number of missing cases
NUMISS Unweighted number of missing cases FIRST First nonmissing value
LAST Last nonmissing value MEDIAN Median

AGGREGATE 91

Options

Aggregated File. You can produce either an SPSS-format data file or a new working file.

Documentary Text. You can copy documentary text from the original file into the aggregated
file using the DOCUMENT subcommand. By default, documentary text is dropped.

Sorting. By default, cases in the aggregated file are sorted in ascending order of the values of
each break variable. Alternatively, you can specify descending order. If the working file is
already sorted by the break variables, you can skip this final sorting pass through the file
using the PRESORTED subcommand.

Aggregated Variables. You can create aggregated variables using any of 19 aggregate func-
tions. The functions SUM, MEAN, and SD can aggregate only numeric variables. All other
functions can use both numeric and string variables.

Labels and Formats. You can specify variable labels for the aggregated variables. Variables
created with the functions MAX, MIN, FIRST, and LAST assume the formats and value labels
of their source variables. All other variables assume the default formats described under
“Aggregate Functions” on p. 94.

Basic Specification

The basic specification is OUTFILE, BREAK, and at least one aggregate function and source
variable. OUTFILE specifies a name for the aggregated file. BREAK names the case grouping
(break) variables. The aggregate function creates a new aggregated variable.

Subcommand Order

• OUTFILE must be specified first.
• If specified, DOCUMENT and PRESORTED must precede BREAK. No other subcommand

can be specified between these two subcommands.

• MISSING, if specified, must immediately follow OUTFILE.

• The aggregate functions must be specified last.

Operations

• When AGGREGATE produces an SPSS-format data file, the working file remains un-
changed and is still available for analysis. When AGGREGATE creates a new working file,
it replaces the old working file. Only the new working file is available for analysis.

• The aggregated file contains the break variables plus the variables created by the
aggregate functions.

• AGGREGATE excludes cases with missing values from all aggregate calculations except
those involving functions N, NU, NMISS, and NUMISS.

• Unless otherwise specified, AGGREGATE sorts cases in the aggregated file in ascending
order of the values of the grouping variables.

92 AGGREGATE

• If PRESORTED is specified, a new aggregate case is created each time a different value
or combination of values is encountered on variables named on the BREAK subcommand.

• AGGREGATE ignores split-file processing. To achieve the same effect, name the
variable or variables used to split the file as break variables before any other break
variables. AGGREGATE produces one file, but the aggregated cases are in the same
order as the split files.

Example

AGGREGATE OUTFILE=AGGEMP /BREAK=LOCATN DEPT
/COUNT=N
/AVGSAL AVGRAISE = MEAN(SALARY RAISE)
/SUMSAL SUMRAISE = SUM(SALARY RAISE)
/BLACKPCT ’Percentage Black’ = PIN(RACE,1,1)
/WHITEPCT ’Percentage White’ = PIN(RACE,5,5).

• AGGREGATE creates a new SPSS-format data file AGGEMP. AGGEMP contains two break
variables (LOCATN and DEPT) and all the new aggregate variables (COUNT, AVGSAL,
AVGRAISE, SUMSAL, SUMRAISE, BLACKPCT, and WHITEPCT).

• BREAK specifies LOCATN and DEPT as the break variables. In the aggregated file, cases
are sorted in ascending order of LOCATN and in ascending order of DEPT within LOCATN.
The working data file remains unsorted.

• Variable COUNT is created as the weighted number of cases in each break group. AVGSAL
is the mean of SALARY and AVGRAISE is the mean of RAISE. SUMSAL is the sum of SALARY
and SUMRAISE is the sum of RAISE. BLACKPCT is the percentage of cases with value 1 for
RACE. WHITEPCT is the percentage of cases with value 5 for RACE.

Example

GET FILE=HUBEMPL /KEEP=LOCATN DEPT HOURLY RAISE SEX.
AGGREGATE OUTFILE=AGGFILE /BREAK=LOCATN DEPT
/AVGHOUR AVGRAISE=MEAN(HOURLY RAISE).
SORT CASES BY LOCATN DEPT.
MATCH FILES TABLE=AGGFILE /FILE=* /BY LOCATN DEPT
/KEEP AVGHOUR AVGRAISE LOCATN DEPT SEX HOURLY RAISE /MAP.

COMPUTE HOURDIF=HOURLY/AVGHOUR.
COMPUTE RAISEDIF=RAISE/AVGRAISE.
LIST.

• GET reads the SPSS-format data file HUBEMPL and keeps a subset of variables.

• AGGREGATE creates a file aggregated by LOCATN and DEPT with the two new variables
AVGHOUR and AVGRAISE, containing the means by location and department for HOURLY
and RAISE. The aggregated file is saved as an SPSS-format data file named AGGFILE.
Only the aggregated data file AGGFILE is sorted by LOCATN and DEPT; the working data
file remains unchanged.

• SORT CASES sorts the working data file in ascending order of LOCATN and DEPT, the
same variables used as AGGREGATE break variables.

AGGREGATE 93

• MATCH FILES specifies a table lookup match with AGGFILE as the table file and the sorted
working data file as the case file.

• BY indicates that the keys for the match are LOCATN and DEPT.

• KEEP specifies the subset and order of variables to be retained in the resulting file.

• MAP provides a listing of the variables in the resulting file and the two input files.

• The COMPUTE commands calculate the ratios of each employee’s hourly wage and raise
to the department averages for wage and raise. The results are stored in the variables
HOURDIF and RAISEDIF.

• LIST displays the resulting file.

OUTFILE Subcommand

OUTFILE specifies a name for the file created by AGGREGATE. If an asterisk is specified on
OUTFILE, the aggregated file replaces the working file. OUTFILE must be the first subcom-
mand specified on AGGREGATE.

• If the aggregated file replaces the working file, the file is not automatically saved on disk.
To save the file, use the SAVE command.

Example
AGGREGATE OUTFILE=AGGEMP
/BREAK=LOCATN
/AVGSAL = MEAN(SALARY).

• OUTFILE creates an SPSS-format data file named AGGEMP. The working file remains un-
changed and is available for further analysis.

• The file AGGEMP contains two variables, LOCATN and AVGSAL.

BREAK Subcommand

BREAK lists the grouping variables, also called break variables. Each unique combination of
values of the break variables defines one break group.

• The variables named on BREAK can be any combination of variables in the working data
file.

• Unless PRESORTED is specified, AGGREGATE sorts cases after aggregating. By default,
cases are sorted in ascending order of the values of the break variables. AGGREGATE sorts
first on the first break variable, then on the second break variable within the groups cre-
ated by the first, and so on.

• Sort order can be controlled by specifying an A (for ascending) or D (for descending) in
parentheses after any break variables.

• The designations A and D apply to all preceding undesignated variables.

• The subcommand PRESORTED overrides all sorting specifications.

94 AGGREGATE

Example
AGGREGATE OUTFILE=AGGEMP
/BREAK=LOCATN DEPT (A) TENURE (D)
 /AVGSAL = MEAN(SALARY).

• BREAK names the variables LOCATN, DEPT, and TENURE as the break variables.

• Cases in the aggregated file are sorted in ascending order of LOCATN, in ascending order
of DEPT within LOCATN, and in descending order of TENURE within LOCATN and DEPT.
For each group defined by these variables, AVGSAL is computed as the mean of salary.

DOCUMENT Subcommand

DOCUMENT copies documentation from the original file into the aggregated file. By default,
documents are dropped from the aggregated file, whether the file is the working file or an
SPSS-format data file. DOCUMENT must appear after OUTFILE but before BREAK.

PRESORTED Subcommand

PRESORTED indicates that cases in the working data file are sorted according to the values of
the break variables. Without PRESORTED, AGGREGATE must store the entire result data set
in memory. With PRESORTED, it stores only one result case in memory. Thus, specifying
PRESORTED reduces the memory needed and makes AGGREGATE run faster.

• If specified, PRESORTED must precede BREAK. The only specification is the keyword
PRESORTED. PRESORTED has no additional specifications.

• When PRESORTED is specified, the program forms an aggregate case out of each group
of adjacent cases with the same values for the break variables.

• If the working file is not sorted by the break variables in ascending order and PRESORTED
is specified, a warning message is generated but the procedure is executed. Each group of
adjacent cases with the same values for break variables forms a case in the aggregated file,
which may produce multiple cases with the same values for the break variables.

Example
AGGREGATE OUTFILE=AGGEMP
/PRESORTED
/BREAK=LOCATN DEPT
/AVGSAL = MEAN(SALARY).

• PRESORTED indicates that cases are already sorted by the variables LOCATN and DEPT.

• AGGREGATE does not make an extra data pass to sort the cases.

Aggregate Functions

An aggregated variable is created by applying an aggregate function to a variable in the
working file. The variable in the working file is called the source variable, and the new
aggregated variable is the target variable.
• The aggregate functions must be specified last on AGGREGATE.

AGGREGATE 95

• The simplest specification is a target variable list, followed by an equals sign, a function
name, and a list of source variables.

• The number of target variables named must match the number of source variables.

• When several aggregate variables are defined at once, the first-named target variable is
based on the first-named source variable, the second-named target is based on the second-
named source, and so on.

• Only the functions MAX, MIN, FIRST, and LAST copy complete dictionary information
from the source variable. For all other functions, new variables do not have labels and are
assigned default dictionary print and write formats. The default format for a variable
depends on the function used to create it (see the list of available functions below).

• You can provide a variable label for a new variable by specifying the label in
apostrophes immediately following the new variable name. Value labels cannot be
assigned in AGGREGATE.

• To change formats or add value labels to a working data file created by AGGREGATE, use
the PRINT FORMATS, WRITE FORMATS, FORMATS, or VALUE LABELS commands. If the
aggregate file is written to disk, first retrieve the file using GET, specify the new labels
and formats, and resave the file.

The following is a list of available functions:

SUM(varlist) Sum across cases. Default formats are F8.2.

MEAN(varlist) Mean across cases. Default formats are F8.2.

MEDIAN(varlist) Median across cases. Default formats are F8.2.

SD(varlist) Standard deviation across cases. Default formats are F8.2.

MAX(varlist) Maximum value across cases. Complete dictionary information is
copied from the source variables to the target variables.

MIN(varlist) Minimum value across cases. Complete dictionary information is
copied from the source variables to the target variables.

PGT(varlist,value) Percentage of cases greater than the specified value. Default
formats are F5.1.

PLT(varlist,value) Percentage of cases less than the specified value. Default formats
are F5.1.

PIN(varlist,value1,value2) Percentage of cases between value1 and value2, inclusive.
Default formats are F5.1.

POUT(varlist,value1,value2) Percentage of cases not between value1 and value2. Cases where
the source variable equals value1 or value2 are not counted.
Default formats are F5.1.

FGT(varlist,value) Fraction of cases greater than the specified value. Default
formats are F5.3.

FLT(varlist,value) Fraction of cases less than the specified value. Default formats
are F5.3.

96 AGGREGATE

FIN(varlist,value1,value2) Fraction of cases between value1 and value2, inclusive. Default
formats are F5.3.

FOUT(varlist,value1,value2) Fraction of cases not between value1 and value2. Cases where
the source variable equals value1 or value2 are not counted.
Default formats are F5.3.

N(varlist) Weighted number of cases in break group. Default formats are
F7.0 for unweighted files and F8.2 for weighted files.

NU(varlist) Unweighted number of cases in break group. Default formats
are F7.0.

NMISS(varlist) Weighted number of missing cases. Default formats are F7.0 for
unweighted files and F8.2 for weighted files.

NUMISS(varlist) Unweighted number of missing cases. Default formats are F7.0.

FIRST(varlist) First nonmissing observed value in break group. Complete
dictionary information is copied from the source variables to the
target variables.

LAST(varlist) Last nonmissing observed value in break group. Complete
dictionary information is copied from the source variables to the
target variables.

• The functions SUM, MEAN, and SD can be applied only to numeric source variables. All
other functions can use short and long string variables as well as numeric ones.

• The N and NU functions do not require arguments. Without arguments, they return the num-
ber of weighted and unweighted valid cases in a break group. If you supply a variable list,
they return the number of weighted and unweighted valid cases for the variables specified.

• For several functions, the argument includes values as well as a source variable
designation. Either blanks or commas can be used to separate the components of an
argument list.

• For PIN, POUT, FIN, and FOUT, the first value should be less than or equal to the second.
If the first is greater, AGGREGATE automatically reverses them and prints a warning
message. If the two values are equal, PIN and FIN calculate the percentages and fractions
of values equal to the argument. POUT and FOUT calculate the percentages and fractions
of values not equal to the argument.

• String values specified in an argument should be enclosed in apostrophes. They are eval-
uated in alphabetical order.

Example
AGGREGATE OUTFILE=AGGEMP /BREAK=LOCATN
/AVGSAL ’Average Salary’ AVGRAISE = MEAN(SALARY RAISE).

• AGGREGATE defines two aggregate variables, AVGSAL and AVGRAISE.

• AVGSAL is the mean of SALARY for each break group, and AVGRAISE is the mean of
RAISE.

• The label Average Salary is assigned to AVGSAL.

AGGREGATE 97

Example
AGGREGATE OUTFILE=* /BREAK=DEPT
/LOWVAC,LOWSICK = PLT (VACDAY SICKDAY,10).

• AGGREGATE creates two aggregated variables: LOWVAC and LOWSICK. LOWVAC is the
percentage of cases with values less than 10 for VACDAY and LOWSICK is the percentage
of cases with values less than 10 for SICKDAY.

Example
AGGREGATE OUTFILE=GROUPS /BREAK=OCCGROUP
/COLLEGE = FIN(EDUC,13,16).

• AGGREGATE creates the variable COLLEGE, which is the fraction of cases with 13 to 16
years of education (variable EDUC).

Example
AGGREGATE OUTFILE=* /BREAK=CLASS
/LOCAL = PIN(STATE,’IL’,’IO’).

• AGGREGATE creates the variable LOCAL, which is the percentage of cases in each break
group whose two-letter state code represents Illinois, Indiana, or Iowa. (The abbreviation
for Indiana, IN, is between IL and IO in an alphabetical sort sequence.)

MISSING Subcommand

By default, AGGREGATE uses all nonmissing values of the source variable to calculate
aggregated variables. An aggregated variable will have a missing value only if the source
variable is missing for every case in the break group. You can alter the default missing-value
treatment by using the MISSING subcommand. You can also specify the inclusion of user-
missing values on any function.

• MISSING must immediately follow OUTFILE.

• COLUMNWISE is the only specification available for MISSING.

• If COLUMNWISE is specified, the value of an aggregated variable is missing for a break
group if the source variable is missing for any case in the group.

• COLUMNWISE does not affect the calculation of the N, NU, NMISS, or NUMISS functions.

• COLUMNWISE does not apply to break variables. If a break variable has a missing value,
cases in that group are processed and the break variable is saved in the file with the
missing value. Use SELECT IF if you want to eliminate cases with missing values for the
break variables.

Including Missing Values

You can force a function to include user-missing values in its calculations by specifying a
period after the function name.

• AGGREGATE ignores periods used with functions N, NU, NMISS, and NUMISS if these
functions have no argument.

98 AGGREGATE

• User-missing values are treated as valid when these four functions are followed by a period
and have a variable as an argument. NMISS.(AGE) treats user-missing values as valid and
thus gives the number of cases for which AGE has the system-missing value only.

The effect of specifying a period with N, NU, NMISS, and NUMISS is illustrated by the following:

• The function N (the same as N. with no argument) yields a value for each break group that
equals the number of cases with valid values (N(AGE)) plus the number of cases with user-
or system-missing values (NMISS(AGE)).

• This in turn equals the number of cases with either valid or user-missing values (N.(AGE))
plus the number with system-missing values (NMISS.(AGE)).

• The same identities hold for the NU, NMISS, and NUMISS functions.

Example
AGGREGATE OUTFILE=AGGEMP /MISSING=COLUMNWISE /BREAK=LOCATN
/AVGSAL = MEAN(SALARY).

• AVGSAL is missing for an aggregated case if SALARY is missing for any case in the break
group.

Example
AGGREGATE OUTFILE=* /BREAK=DEPT
/LOVAC = PLT.(VACDAY,10).

• LOVAC is the percentage of cases within each break group with values less than 10 for
VACDAY, even if some of those values are defined as user-missing.

Example
AGGREGATE OUTFILE=CLASS /BREAK=GRADE

/FIRSTAGE = FIRST.(AGE).

• The first value of AGE in each break group is assigned to the variable FIRSTAGE.

• If the first value of AGE in a break group is user missing, that value will be assigned to
FIRSTAGE. However, the value will retain its missing-value status, since variables created
with FIRST take dictionary information from their source variables.

Comparing Missing-Value Treatments

Table 1 demonstrates the effects of specifying the MISSING subcommand and a period after
the function name. Each entry in the table is the number of cases used to compute the
specified function for the variable EDUC, which has 10 nonmissing cases, 5 user-missing
cases, and 2 system-missing cases for the group. Note that columnwise treatment produces
the same results as the default for every function except the MEAN function.

N N. N(AGE) NMISS(AGE)+ N.(AGE) NMISS.(AGE)+= = =

NU NU. NU(AGE) NUMISS(AGE)+ NU.(AGE) NUMISS.(AGE)+= = =

AGGREGATE 99

Table 1 Default versus columnwise missing-value treatments

Function Default Columnwise

N 17 17
N. 17 17
N(EDUC) 10 10
N.(EDUC) 15 15
MEAN(EDUC) 10 0
MEAN.(EDUC) 15 0
NMISS(EDUC) 7 7
NMISS.(EDUC) 2 2

100

ALSCAL

ALSCAL VARIABLES=varlist

 [/FILE=file] [CONFIG [({INITIAL})]] [ROWCONF [({INITIAL})]]
 {FIXED } {FIXED }

 [COLCONF [({INITIAL})]] [SUBJWGHT[({INITIAL})]]
 {FIXED } {FIXED }

 [STIMWGHT[({INITIAL})]]
 {FIXED }

 [/INPUT=ROWS ({ALL**})]
 { n }

 [/SHAPE={SYMMETRIC**}]
 {ASYMMETRIC }
 {RECTANGULAR}

 [/LEVEL={ORDINAL** [([UNTIE] [SIMILAR])]}]
 {INTERVAL[({1})] }
 { {n} }
 {RATIO[({1})] }
 { {n} }
 {NOMINAL }

 [/CONDITION={MATRIX** }]
 {ROW }
 {UNCONDITIONAL}

 [/{MODEL }={EUCLID**}]
 {METHOD} {INDSCAL }
 {ASCAL }
 {AINDS }
 {GEMSCAL }

 [/CRITERIA=[NEGATIVE] [CUTOFF({0**})] [CONVERGE({.001})]
 { n } { n }

 [ITER({30})] [STRESSMIN({.005})] [NOULB]
 {n } { n }

 [DIMENS({2** })] [DIRECTIONS(n)]
 {min[,max]}

 [CONSTRAIN] [TIESTORE(n)]]

 [/PRINT=[DATA] [HEADER]] [/PLOT=[DEFAULT] [ALL]]

 [/OUTFILE=file]

 [/MATRIX=IN({file})]
 {* }

**Default if the subcommand or keyword is omitted.

Example
ALSCAL VARIABLES=ATLANTA TO TAMPA.

ALSCAL was originally designed and programmed by Forrest W. Young, Yoshio Takane,
and Rostyslaw J. Lewyckyj of the Psychometric Laboratory, University of North Carolina.

ALSCAL 101

Overview

ALSCAL uses an alternating least-squares algorithm to perform multidimensional scaling
(MDS) and multidimensional unfolding (MDU). You can select one of the five models to
obtain stimulus coordinates and/or weights in multidimensional space.

Options

Data Input. You can read inline data matrices, including all types of two- or three-way data,
such as a single matrix or a matrix for each of several subjects, using the INPUT subcommand.
You can read square (symmetrical or asymmetrical) or rectangular matrices of proximities
with the SHAPE subcommand and proximity matrices created by PROXIMITIES and CLUS-
TER with the MATRIX subcommand. You can also read a file of coordinates and/or weights to
provide initial or fixed values for the scaling process with the FILE subcommand.

Methodological Assumptions. You can specify data as matrix-conditional, row-conditional, or
unconditional on the CONDITION subcommand. You can treat data as nonmetric (nominal or
ordinal) or as metric (interval or ratio) using the LEVEL subcommand. You can also use
LEVEL to identify ordinal-level proximity data as measures of similarity or dissimilarity and
can specify tied observations as untied (continuous) or leave them tied (discrete).

Model Selection. You can specify most commonly used multidimensional scaling models by
selecting the correct combination of ALSCAL subcommands, keywords, and criteria. In
addition to the default Euclidean distance model, the MODEL subcommand offers the
individual differences (weighted) Euclidean distance model (INDSCAL), the asymmetric
Euclidean distance model (ASCAL), the asymmetric individual differences Euclidean
distance model (AINDS), and the generalized Euclidean metric individual differences model
(GEMSCAL).

Output. You can produce output that includes raw and scaled input data, missing-value
patterns, normalized data with means, squared data with additive constants, each subject’s
scalar product and individual weight space, plots of linear or nonlinear fit, and plots of the
data transformations using the PRINT and PLOT subcommands.

Basic Specification

The basic specification is VARIABLES followed by a variable list. By default, ALSCAL
produces a two-dimensional nonmetric Euclidean multidimensional scaling solution. Input
is assumed to be one or more square symmetric matrices with data elements that are
dissimilarities at the ordinal level of measurement. Ties are not untied, and conditionality is
by subject. Values less than 0 are treated as missing. The default output includes the
improvement in Young’s S-stress for successive iterations, two measures of fit for each input
matrix (Kruskal’s stress and the squared correlation, RSQ), and the derived configurations
for each of the dimensions.

Subcommand Order

Subcommands can be named in any order.

102 ALSCAL

Operations

• ALSCAL calculates the number of input matrices by dividing the total number of
observations in the data set by the number of rows in each matrix. All matrices must
contain the same number of rows. This number is determined by the settings on SHAPE
and INPUT (if used). For square matrix data, the number of rows in the matrix equals the
number of variables. For rectangular matrix data, it equals the number of rows specified
or implied. For additional information, see the INPUT and SHAPE subcommands below.

• ALSCAL ignores user-missing specifications in all variables in the configuration/weights
file (see the FILE subcommand on p. 105). The system-missing value is converted to 0.

• With split-file data, ALSCAL reads initial or fixed configurations from the
configuration/weights file for each split-file group (see the FILE subcommand on p. 105).
If there is only one initial configuration in the file, ALSCAL rereads these initial or fixed
values for successive split-file groups.

• By default, ALSCAL estimates upper and lower bounds on missing values in the working
data file in order to compute the initial configuration. To prevent this, specify
CRITERIA=NOULB. Missing values are always ignored during the iterative process.

Limitations

• Maximum 100 variables on the VARIABLES subcommand.

• Maximum six dimensions can be scaled.

• ALSCAL does not recognize data weights created by the WEIGHT command.

• ALSCAL analyses can include no more than 32,767 values in each of the input matrices.
Large analyses may require significant computing time.

Example

* Air distances among U.S. cities.
* Data are from Johnson and Wichern (1982), page 563.
DATA LIST
/ATLANTA BOSTON CINCNATI COLUMBUS DALLAS INDNPLIS

LITTROCK LOSANGEL MEMPHIS STLOUIS SPOKANE TAMPA 1-60.
BEGIN DATA

0
1068 0
461 867 0
549 769 107 0
805 1819 943 1050 0
508 941 108 172 882 0
505 1494 618 725 325 562 0
2197 3052 2186 2245 1403 2080 1701 0
366 1355 502 586 464 436 137 1831 0
558 1178 338 409 645 234 353 1848 294 0
2467 2747 2067 2131 1891 1959 1988 1227 2042 1820 0
467 1379 928 985 1077 975 912 2480 779 1016 2821 0
END DATA.

ALSCAL VARIABLES=ATLANTA TO TAMPA
 /PLOT.

ALSCAL 103

• By default, ALSCAL assumes a symmetric matrix of dissimilarities for ordinal-level
variables. Only values below the diagonal are used. The upper triangle can be left blank.
The 12 cities form the rows and columns of the matrix.

• The result is a classical MDS analysis that reproduces a map of the United States when
the output is rotated to a north-south by east-west orientation.

VARIABLES Subcommand

VARIABLES identifies the columns in the proximity matrix or matrices that ALSCAL reads.

• VARIABLES is required and can name only numeric variables.
• Each matrix must have at least four rows and four columns.

INPUT Subcommand

ALSCAL reads data row by row, with each case in the working data file representing a single
row in the data matrix. (VARIABLES specifies the columns.) Use INPUT when reading
rectangular data matrices to specify how many rows are in each matrix.

• The specification on INPUT is ROWS. If INPUT is not specified or is specified without
ROWS, the default is ROWS(ALL). ALSCAL assumes that each case in the working data file
represents one row of a single input matrix, and the result is a square matrix.

• You can specify the number of rows (n) in each matrix in parentheses after the keyword
ROWS. The number of matrices equals the number of observations divided by the number
specified.

• The number specified on ROWS must be at least 4 and must divide evenly into the total
number of rows in the data.

• With split-file data, n refers to the number of cases in each split-file group. All split-file
groups must have the same number of rows.

Example
ALSCAL VARIABLES=V1 to V7 /INPUT=ROWS(8).

• INPUT indicates that there are eight rows per matrix, with each case in the working data
file representing one row.

• The total number of cases must be divisible by 8.

SHAPE Subcommand

Use SHAPE to specify the structure of the input data matrix or matrices.

• You can specify one of the three keywords listed below.

• Both SYMMETRIC and ASYMMETRIC refer to square matrix data.

SYMMETRIC Symmetric data matrix or matrices. For a symmetric matrix, ALSCAL
looks only at the values below the diagonal. Values on and above the
diagonal can be omitted. This is the default.

104 ALSCAL

ASYMMETRIC Asymmetric data matrix or matrices. The corresponding values in the
upper and lower triangles are not all equal. The diagonal is ignored.

RECTANGULAR Rectangular data matrix or matrices. The rows and columns represent
different sets of items.

Example
ALSCAL VAR=V1 TO V8 /SHAPE=RECTANGULAR.

• ALSCAL performs a classical MDU analysis, treating the rows and columns as separate
sets of items.

LEVEL Subcommand

LEVEL identifies the level of measurement for the values in the data matrix or matrices. You
can specify one of the keywords defined below.

ORDINAL Ordinal-level data. This specification is the default. It treats the data as ordinal,
using Kruskal’s (1964) least-squares monotonic transformation. The analysis is
nonmetric. By default, the data are treated as discrete dissimilarities. Ties in the
data remain tied throughout the analysis. To change the default, specify UNTIE
and/or SIMILAR in parentheses. UNTIE treats the data as continuous and resolves
ties in an optimal fashion; SIMILAR treats the data as similarities. UNTIE and
SIMILAR cannot be used with the other levels of measurement.

INTERVAL(n) Interval-level data. This specification produces a metric analysis of the data
using classical regression techniques. You can specify any integer from 1 to
4 in parentheses for the degree of polynomial transformation to be fit to the
data. The default is 1.

RATIO(n) Ratio-level data. This specification produces a metric analysis. You can
specify an integer from 1 to 4 in parentheses for the degree of polynomial
transformation. The default is 1.

NOMINAL Nominal-level data. This specification treats the data as nominal by using a
least-squares categorical transformation (Takane et al., 1977). This option
produces a nonmetric analysis of nominal data. It is useful when there are
few observed categories, when there are many observations in each category,
and when the order of the categories is not known.

Example
ALSCAL VAR=ATLANTA TO TAMPA /LEVEL=INTERVAL(2).

• This example identifies the distances between U.S. cities as interval-level data. The 2 in
parentheses indicates a polynomial transformation with linear and quadratic terms.

ALSCAL 105

CONDITION Subcommand

CONDITION specifies which numbers in a data set are comparable.

MATRIX Only numbers within each matrix are comparable. If each matrix rep-
resents a different subject, this specification makes comparisons con-
ditional by subject. This is the default.

ROW Only numbers within the same row are comparable. This specification
is appropriate only for asymmetric or rectangular data. They cannot be
used when ASCAL or AINDS is specified on MODEL.

UNCONDITIONAL All numbers are comparable. Comparisons can be made among any
values in the input matrix or matrices.

Example
ALSCAL VAR=V1 TO V8 /SHAPE=RECTANGULAR /CONDITION=ROW.

• ALSCAL performs a Euclidean MDU analysis conditional on comparisons within rows.

FILE Subcommand

ALSCAL can read proximity data from the working data file or, with the MATRIX subcom-
mand, from a matrix data file created by PROXIMITIES or CLUSTER. The FILE subcommand
reads a file containing additional data: an initial or fixed configuration for the coordinates of
the stimuli and/or weights for the matrices being scaled. This file can be created with the
OUTFILE subcommand on ALSCAL or with an SPSS input program.

• The minimum specification is the file that contains the configurations and/or weights.
• FILE can include additional specifications that define the structure of the configura-

tion/weights file.

• The variables in the configuration/weights file that correspond to successive ALSCAL di-
mensions must have the names DIM1, DIM2,...DIMr, where r is the maximum number of
ALSCAL dimensions. The file must also contain the short string variable TYPE_ to identify
the types of values in all rows.

• Values for the variable TYPE_ can be CONFIG, ROWCONF, COLCONF, SUBJWGHT,
and STIMWGHT, in that order. Each value can be truncated to the first three letters. Stim-
ulus coordinate values are specified as CONFIG; row stimulus coordinates as
ROWCONF; column stimulus coordinates as COLCONF; and subject and stimulus
weights as SUBJWGHT and STIMWGHT, respectively. ALSCAL accepts CONFIG and
ROWCONF interchangeably.

• ALSCAL skips unneeded types as long as they appear in the file in their proper order. Gen-
eralized weights (GEM) and flattened subject weights (FLA) cannot be initialized or fixed
and will always be skipped. (These weights can be generated by ALSCAL but cannot be
used as input.)

The following list summarizes the optional specifications that can be used on FILE to define
the structure of the configuration/weights file:

• Each specification can be further identified with option INITIAL or FIXED in parentheses.

106 ALSCAL

• INITIAL is the default. INITIAL indicates that the external configuration or weights are to be
used as initial coordinates and are to be modified during each iteration.

• FIXED forces ALSCAL to use the externally defined structure without modification to cal-
culate the best values for all unfixed portions of the structure.

CONFIG Read stimulus configuration. The configuration/weights file contains ini-
tial stimulus coordinates. Input of this type is appropriate when
SHAPE=SYMMETRIC or SHAPE=ASYMMETRIC, or when the number of
variables in a matrix equals the number of variables on the ALSCAL com-
mand. The value of the TYPE_ variable must be either CON or ROW for
all stimulus coordinates for the configuration.

ROWCONF Read row stimulus configuration. The configuration/weights file contains
initial row stimulus coordinates. This specification is appropriate if
SHAPE=RECTANGULAR and if the number of ROWCONF rows in the ma-
trix equals the number of rows specified on the INPUT subcommand (or, if
INPUT is omitted, the number of cases in the working data file). The value of
TYPE_ must be either ROW or CON for the set of coordinates for each row.

COLCONF Read column stimulus configuration. The configuration/weights file con-
tains initial column stimulus coordinates. This kind of file can be used only
if SHAPE=RECTANGULAR and if the number of COLCONF rows in the ma-
trix equals the number of variables on the ALSCAL command. The value of
TYPE_ must be COL for the set of coordinates for each column.

SUBJWGHT Read subject (matrix) weights. The configuration/weights file contains sub-
ject weights. The number of observations in a subject-weights matrix must
equal the number of matrices in the proximity file. Subject weights can be
used only if the model is INDSCAL, AINDS, or GEMSCAL. The value of TYPE_
for each set of weights must be SUB.

STIMWGHT Read stimulus weights. The configuration/weights file contains stimulus
weights. The number of observations in the configuration/weights file must
equal the number of matrices in the proximity file. Stimulus weights can be
used only if the model is AINDS or ASCAL. The value of TYPE_ for each set
of weights must be STI.

If the optional specifications for the configuration/weights file are not specified on FILE,
ALSCAL sequentially reads the TYPE_ values appropriate to the model and shape according
to the defaults in Table 1.

Example
ALSCAL VAR=V1 TO V8 /FILE=ONE CON(FIXED) STI(INITIAL).

• ALSCAL reads the configuration/weights file ONE.

• The stimulus coordinates are read as fixed values, and the stimulus weights are read as
initial values.

ALSCAL 107

MODEL Subcommand

MODEL (alias METHOD) defines the scaling model for the analysis. The only specification is
MODEL (or METHOD) and any one of the five scaling and unfolding model types. EUCLID is
the default.

EUCLID Euclidean distance model. This model can be used with any type of proxim-
ity matrix and is the default.

INDSCAL Individual differences (weighted) Euclidean distance model. ALSCAL scales
the data using the weighted individual differences Euclidean distance model
proposed by Carroll and Chang (1970). This type of analysis can be specified
only if the analysis involves more than one data matrix and more than one
dimension is specified on CRITERIA.

ASCAL Asymmetric Euclidean distance model. This model (Young, 1975) can be
used only if SHAPE=ASYMMETRIC and more than one dimension is requested
on CRITERIA.

AINDS Asymmetric individual differences Euclidean distance model. This option
combines Young’s (1975) asymmetric Euclidean model with the individual

Table 1 Default specifications for the FILE subcommand

Shape Model Default specifications

SYMMETRIC EUCLID CONFIG (or ROWCONF)

INDSCAL CONFIG (or ROWCONF)
SUBJWGHT

GEMSCAL CONFIG (or ROWCONF)
SUBJWGHT

ASYMMETRIC EUCLID CONFIG (or ROWCONF)

INDSCAL CONFIG (or ROWCONF)
SUBJWGHT

GEMSCAL CONFIG (or ROWCONF)
SUBJWGHT

ASCAL CONFIG (or ROWCONF)
STIMWGHT

AINDS CONFIG (or ROWCONF)
SUBJWGHT
STIMWGHT

RECTANGULAR EUCLID ROWCONF (or CONFIG)
COLCONF

INDSCAL ROWCONF (or CONFIG)
COLCONF
SUBJWGHT

GEMSCAL ROWCONF (or CONFIG)
COLCONF
SUBJWGHT

108 ALSCAL

differences model proposed by Carroll and Chang (1970). This model can be
used only when SHAPE=ASYMMETRIC, the analysis involves more than one
data matrix, and more than one dimension is specified on CRITERIA.

GEMSCAL Generalized Euclidean metric individual differences model. The number of
directions for this model is set with the DIRECTIONS option on CRITERIA.
The number of directions specified can be equal to but cannot exceed the
group space dimensionality. By default, the number of directions equals the
number of dimensions in the solution.

Example
ALSCAL VARIABLES = V1 TO V6
/SHAPE = ASYMMETRIC
/CONDITION = ROW
/MODEL = GEMSCAL
/CRITERIA = DIM(4) DIRECTIONS(4).

• In this example, the number of directions in the GEMSCAL model is set to 4.

CRITERIA Subcommand

Use CRITERIA to control features of the scaling model and to set convergence criteria for the
solution. You can specify one or more of the following:

CONVERGE(n) Stop iterations if the change in S-stress is less than n. S-stress is a
goodness-of-fit index. By default, n=0.001. To increase the precision
of a solution, specify a smaller value, for example, 0.0001. To obtain
a less precise solution (perhaps to reduce computing time), specify a
larger value, for example, 0.05. Negative values are not allowed. If
n=0, the algorithm will iterate 30 times unless a value is specified with
the ITER option.

ITER(n) Set the maximum number of iterations to n. The default value is 30. A
higher value will give a more precise solution but will take longer to
compute.

STRESSMIN(n) Set the minimum stress value to n. By default, ALSCAL stops iterating
when the value of S-stress is 0.005 or less. STRESSMIN can be as-
signed any value from 0 to 1.

NEGATIVE Allow negative weights in individual differences models. By default,
ALSCAL does not permit the weights to be negative. Weighted models
include INDSCAL, ASCAL, AINDS, and GEMSCAL. The NEGATIVE op-
tion is ignored if the model is EUCLID.

CUTOFF(n) Set the cutoff value for treating distances as missing to n. By default,
ALSCAL treats all negative similarities (or dissimilarities) as missing,
and 0 and positive similarities as nonmissing (n=0). Changing the
CUTOFF value causes ALSCAL to treat similarities greater than or
equal to that value as nonmissing. User- and system-missing values
are considered missing regardless of the CUTOFF specification.

ALSCAL 109

NOULB Do not estimate upper and lower bounds on missing values. By de-
fault, ALSCAL estimates the upper and lower bounds on missing values
in order to compute the initial configuration. This specification has no
effect during the iterative process, when missing values are ignored.

DIMENS(min[,max]) Set the minimum and maximum number of dimensions in the scaling
solution. By default, ALSCAL calculates a solution with two dimen-
sions. To obtain solutions for more than two dimensions, specify the
minimum and the maximum number of dimensions in parentheses af-
ter DIMENS. The minimum and maximum can be integers between 2
and 6. A single value represents both the minimum and the maximum.
For example, DIMENS(3) is equivalent to DIMENS(3,3). The minimum
number of dimensions can be set to 1 only if MODEL=EUCLID.

DIRECTIONS(n) Set the number of principal directions in the generalized Euclidean
model to n. This option has no effect for models other than GEMSCAL.
The number of principal directions can be any positive integer be-
tween 1 and the number of dimensions specified on the DIMENS op-
tion. By default, the number of directions equals the number of
dimensions.

TIESTORE(n) Set the amount of storage needed for ties to n. This option estimates
the amount of storage needed to deal with ties in ordinal data. By de-
fault, the amount of storage is set to 1000 or the number of cells in a
matrix, whichever is smaller. Should this be insufficient, ALSCAL ter-
minates and displays a message that more space is needed.

CONSTRAIN Constrain multidimensional unfolding solution. This option can be
used to keep the initial constraints throughout the analysis.

PRINT Subcommand

PRINT requests output not available by default. You can specify the following:

DATA Display input data. The display includes both the initial data and the scaled
data for each subject according to the structure specified on SHAPE.

HEADER Display a header page. The header includes the model, output, algorithmic,
and data options in effect for the analysis.

• Data options listed by PRINT=HEADER include the number of rows and columns, number
of matrices, measurement level, shape of the data matrix, type of data (similarity or dis-
similarity), whether ties are tied or untied, conditionality, and data cutoff value.

• Model options listed by PRINT=HEADER are the type of model specified (EUCLID,
INDSCAL, ASCAL, AINDS, or GEMSCAL), minimum and maximum dimensionality, and
whether or not negative weights are permitted.

• Output options listed by PRINT=HEADER indicate whether the output includes the header
page and input data, whether ALSCAL plotted configurations and transformations, whether
an output data set was created, and whether initial stimulus coordinates, initial column
stimulus coordinates, initial subject weights, and initial stimulus weights were computed.

110 ALSCAL

• Algorithmic options listed by PRINT=HEADER include the maximum number of iterations
permitted, the convergence criterion, the maximum S-stress value, whether or not missing
data are estimated by upper and lower bounds, and the amount of storage allotted for ties
in ordinal data.

Example
ALSCAL VAR=ATLANTA TO TAMPA /PRINT=DATA.

• In addition to scaled data, ALSCAL will display initial data.

PLOT Subcommand

PLOT controls the display of plots. The minimum specification is simply PLOT to produce
the defaults.

DEFAULT Default plots. Default plots include plots of stimulus coordinates, matrix
weights (if the model is INDSCAL, AINDS, or GEMSCAL), and stimulus
weights (if the model is AINDS or ASCAL). The default also includes a scat-
terplot of the linear fit between the data and the model and, for certain types
of data, scatterplots of the nonlinear fit and the data transformation.

ALL Transformation plots in addition to the default plots. SPSS produces a sepa-
rate plot for each subject if CONDITION=MATRIX and a separate plot for each
row if CONDITION=ROW. For interval and ratio data, PLOT=ALL has the same
effect as PLOT=DEFAULT. This option can generate voluminous output, par-
ticularly when CONDITION=ROW.

Example
ALSCAL VAR=V1 TO V8 /INPUT=ROWS(8) /PLOT=ALL.

• This command produces all the default plots. It also produces a separate plot for each sub-
ject’s data transformation and a plot of V1 through V8 in a two-dimensional space for each
subject.

ALSCAL 111

OUTFILE Subcommand

OUTFILE saves coordinate and weight matrices to an SPSS data file. The only specification
is a name for the output file.

• The output data file has an alphanumeric (short string) variable named TYPE_ that iden-
tifies the kind of values in each row, a numeric variable DIMENS that specifies the number
of dimensions, a numeric variable MATNUM that indicates the subject (matrix) to which
each set of coordinates corresponds, and variables DIM1, DIM2,...DIMn that correspond to
the n dimensions in the model.

• The values of any split-file variables are also included in the output file.

• The file created by OUTFILE can be used by subsequent ALSCAL commands as initial data.

The following are the types of configurations and weights that can be included in the output
file:

CONFIG Stimulus configuration coordinates.

ROWCONF Row stimulus configuration coordinates.

COLCONF Column stimulus configuration coordinates.

SUBJWGHT Subject (matrix) weights.

FLATWGHT Flattened subject (matrix) weights.

GEMWGHT Generalized weights.

STIMWGHT Stimulus weights.

Only the first three characters of each identifier are written to variable TYPE_ in the file. For
example, CONFIG becomes CON. The structure of the file is determined by the SHAPE and
MODEL subcommands, as shown in Table 2.

112 ALSCAL

Example
ALSCAL VAR=ATLANTA TO TAMPA /OUTFILE=ONE.

• OUTFILE creates the SPSS configuration/weights file ONE from the example of air dis-
tances between cities.

Table 2 Types of configurations and/or weights in output files

Shape Model TYPE_

SYMMETRIC EUCLID CON

INDSCAL CON
SUB
FLA

GEMSCAL CON
SUB
FLA
GEM

ASYMMETRIC EUCLID CON

INDSCAL CON
SUB
FLA

GEMSCAL CON
SUB
FLA
GEM

ASCAL CON
STI

AINDS CON
SUB
FLA
STI

RECTANGULAR EUCLID ROW
COL

INDSCAL ROW
COL
SUB
FLA

GEMSCAL ROW
COL
SUB
FLA
GEM

ALSCAL 113

MATRIX Subcommand

MATRIX reads SPSS matrix data files. It can read a matrix written by either PROXIMITIES or
CLUSTER.

• Generally, data read by ALSCAL are already in matrix form. If the matrix materials are in the
working data file, you do not need to use MATRIX to read them. Simply use the VARIABLES
subcommand to indicate the variables (or columns) to be used. However, if the matrix mate-
rials are not in the working data file, MATRIX must be used to specify the matrix data file that
contains the matrix.

• The proximity matrices ALSCAL reads have ROWTYPE_ values of PROX. No additional
statistics should be included with these matrix materials.

• ALSCAL ignores unrecognized ROWTYPE_ values in the matrix file. In addition, it ignores
variables present in the matrix file that are not specified on the VARIABLES subcommand
in ALSCAL. The order of rows and columns in the matrix is unimportant.

• Since ALSCAL does not support case labeling, it ignores values for the ID variable (if
present) in a CLUSTER or PROXIMITIES matrix.

• If split-file processing was in effect when the matrix was written, the same split file must
be in effect when ALSCAL reads that matrix.

• The specification on MATRIX is the keyword IN and the matrix file in parentheses.

• MATRIX=IN cannot be used unless a working data file has already been defined. To read
an existing matrix data file at the beginning of a session, first use GET to retrieve the ma-
trix file and then specify IN(*) on MATRIX.

IN (filename) Read a matrix data file. If the matrix data file is the working data file, specify
an asterisk in parentheses (*). If the matrix data file is another file, specify
the filename in parentheses. A matrix file read from an external file does not
replace the working data file.

Example
PROXIMITIES V1 TO V8 /ID=NAMEVAR /MATRIX=OUT(*).
ALSCAL VAR=CASE1 TO CASE10 /MATRIX=IN(*).

• PROXIMITIES uses V1 through V8 in the working data file to generate a matrix file of Eu-
clidean distances between each pair of cases based on the eight variables. The number of
rows and columns in the resulting matrix equals the number of cases. MATRIX=OUT then
replaces the working data file with this new matrix data file.

• MATRIX=IN on ALSCAL reads the matrix data file, which is the new working data file. In
this instance, MATRIX is optional because the matrix materials are in the working data file.

• If there were 10 cases in the original working data file, ALSCAL performs a multidimen-
sional scaling analysis in two dimensions on CASE1 through CASE10.

Example
GET FILE PROXMTX.
ALSCAL VAR=CASE1 TO CASE10 /MATRIX=IN(*).

• GET retrieves the matrix data file PROXMTX.

114 ALSCAL

• MATRIX=IN specifies an asterisk because the working data file is the matrix. MATRIX is op-
tional, however, since the matrix materials are in the working data file.

Example
GET FILE PRSNNL.
FREQUENCIES VARIABLE=AGE.
ALSCAL VAR=CASE1 TO CASE10 /MATRIX=IN(PROXMTX).

• This example performs a frequencies analysis on file PRSNNL and then uses a different
file containing matrix data for ALSCAL. The file is an existing matrix data file.

• MATRIX=IN is required because the matrix data file, PROXMTX, is not the working data
file. PROXMTX does not replace PRSNNL as the working data file.

Specification of Analyses

Table 3 summarizes the analyses that can be performed for the major types of proximity
matrices you can use with ALSCAL, Table 4 lists the specifications needed to produce these
analyses for nonmetric models, and Table 5 lists the specifications for metric models. You
can include additional specifications to control the precision of your analysis with CRITERIA.

Table 3 Models for types of matrix input

Matrix
mode

Matrix
form

Model
class Single matrix Replications of

single matrix
Two or more
individual matrices

Object
by
object

Symmetric Multi-
dimensional
scaling

CMDS
Classical multi-
dimensional scaling

RMDS
Replicated multi-
dimensional scaling

WMDS(INDSCAL)
Weighted multi-
dimensional scaling

Asymmetric
single
process

Multi-
dimensional
scaling

CMDS(row conditional)
Classical row
conditional multi-
dimensional scaling

RMDS(row conditional)
Replicated row
conditional multi-
dimensional scaling

WMDS(row conditional)
Weighted row
conditional multi-
dimensional scaling

Asymmetric
multiple
process

Internal
asymmetric
multi-
dimensional
scaling

CAMDS
Classical asymmetric
multidimensional
scaling

RAMDS
Replicated asymmetric
multidimensional
scaling

WAMDS
Weighted asymmetric
multidimensional scaling

External
asymmetric
multi-
dimensional
scaling

CAMDS(external)
Classical external
asymmetric
multidimensional
scaling

RAMDS(external)
Replicated external
asymmetric multi-
dimensional scaling

WAMDS(external)
Weighted external
asymmetric multi-
dimensional scaling

Object
by
attribute

Rectangular Internal
unfolding

CMDU
Classical internal
multidimensional
unfolding

RMDU
Replicated internal
multidimensional
unfolding

WMDU
Weighted internal multi-
dimensional unfolding

External
unfolding

CMDU(external)
Classical external
multidimensional
unfolding

RMDU(external)
Replicated external
multidimensional
unfolding

WMDU(external)
Weighted external multi-
dimensional unfolding

ALSCAL 115

Table 4 ALSCAL specifications for nonmetric models

Matrix
mode

Matrix
form

Model
class Single matrix Replications of

single matrix
Two or more
individual matrices

Object
by
object

Symmetric Multi-
dimensional
scaling

ALSCAL VAR= varlist. ALSCAL VAR= varlist. ALSCAL VAR= varlist
/MODEL=INDSCAL.

Asymmetric
single
process

Multi-
dimensional
scaling

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/CONDITION=ROW.

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/CONDITION=ROW.

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/CONDITION=ROW
/MODEL=INDSCAL.

Asymmetric
multiple
process

Internal
asymmetric
multi-
dimensional
scaling

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/MODEL=ASCAL.

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/MODEL=ASCAL.

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/MODEL=AINDS.

External
asymmetric
multi-
dimensional
scaling

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/MODEL=ASCAL
/FILE=file

COLCONF(FIX).

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/MODEL=ASCAL
/FILE=file

COLCONF(FIX).

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/MODEL=AINDS
/FILE=file

COLCONF(FIX).

Object
by
attribute

Rectangular Internal
unfolding

ALSCAL VAR= varlist
/SHAPE=REC
/INP=ROWS
/CONDITION=ROW.

ALSCAL VAR= varlist
/SHAPE=REC
/INP=ROWS
/CONDITION(ROW).

ALSCAL VAR= varlist
/SHAPE=REC
/INP=ROWS
/CONDITION=ROW
/MODEL=INDSCAL.

External
unfolding

ALSCAL VAR= varlist
/SHAPE=REC
/INP=ROWS
/CONDITION=ROW
/FILE=file

ROWCONF(FIX).

ALSCAL VAR= varlist
/SHAPE=REC
/INP=ROWS
/CONDITION=ROW
/FILE=file

ROWCONF(FIX).

ALSCAL VAR= varlist
/SHAPE=REC
/INP=ROWS
/CONDITION=ROW
/FILE=file

ROWCONF(FIX)
/MODEL=INDSCAL.

116 ALSCAL

References

Carroll, J. D., and J. J. Chang. 1970. Analysis of individual differences in multidimensional
scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika,
35: 238–319.

Johnson, R., and D. W. Wichern. 1982. Applied multivariate statistical analysis. Englewood
Cliffs, N.J.: Prentice-Hall.

Kruskal, J. B. 1964. Nonmetric multidimensional scaling. Psychometrika, 29: 1–27,
115–129.

Takane, Y., F. W. Young, and J. de Leeuw. 1977. Nonmetric individual differences multidi-
mensional scaling: An alternating least squares method with optimal scaling features.
Psychometrika, 42: 7–67.

Young, F. W. 1975. An asymmetric Euclidean model for multiprocess asymmetric data. In:
Proceedings of US–Japan Seminar on Multidimensional Scaling.

Table 5 ALSCAL specifications for metric models

Matrix
mode

Matrix
form

Model
class Single matrix Replications of

single matrix
Two or more
individual matrices

Object
by
object

Symmetric Multi-
dimensional
scaling

ALSCAL VAR= varlist
/LEVEL=INT.

ALSCAL VAR= varlist
/LEVEL=INT.

ALSCAL VAR= varlist
/LEVEL=INT
/MODEL=INDSCAL.

Asymmetric
single
process

Multi-
dimensional
scaling

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/CONDITION=ROW
/LEVEL=INT.

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/CONDITION=ROW
/LEVEL=INT.

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/CONDITION=ROW
/LEVEL=INT
/MODEL=INDSCAL.

Asymmetric
multiple
process

Internal
asymmetric
multi-
dimensional
scaling

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/LEVEL=INT
/MODEL=ASCAL.

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/LEVEL=INT
/MODEL=ASCAL.

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/LEVEL=INT
/MODEL=AINDS.

External
asymmetric
multi-
dimensional
scaling

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/LEVEL=INT
/MODEL=ASCAL
/FILE=file

COLCONF(FIX).

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/LEVEL=INT
/MODEL=ASCAL
/FILE=file

COLCONF(FIX).

ALSCAL VAR= varlist
/SHAPE=ASYMMETRIC
/LEVEL=INT
/MODEL=AINDS
/FILE=file

COLCONF(FIX).

Object
by
attribute

Rectangular Internal
unfolding

ALSCAL VAR= varlist
/SHAPE=REC
/INP=ROWS
/CONDITION=ROW
/LEVEL=INT.

ALSCAL VAR= varlist
/SHAPE=REC
/INP=ROWS
/CONDITION=ROW
/LEVEL=INT.

ALSCAL VAR= varlist
/SHAPE=REC
/INP=ROWS
/CONDITION=ROW
/LEVEL=INT
/MODEL=INDSCAL.

External
unfolding

ALSCAL VAR= varlist
/SHAPE=REC
/INP=ROWS
/CONDITION=ROW
/LEVEL=INT
/FILE=file

ROWCONF(FIX).

ALSCAL VAR= varlist
/SHAPE=REC
/INP=ROWS
/CONDITION=ROW
/LEVEL=INT
/FILE=file

ROWCONF(FIX).

ALSCAL VAR= varlist
/SHAPE=REC
/INP=ROWS
/CONDITION=ROW
/LEVEL=INT
/FILE=file

ROWCONF(FIX)
/MODEL=INDSCAL.

117

ANACOR

ANACOR is available in the Categories option.

ANACOR TABLE={row var (min, max) BY column var (min, max)}
 {ALL (# of rows, # of columns) }

[/DIMENSION={2** }]
 {value}

[/NORMALIZATION={CANONICAL**}]
 {PRINCIPAL }
 {RPRINCIPAL }
 {CPRINCIPAL }
 {value }

[/VARIANCES=[SINGULAR] [ROWS] [COLUMNS]]

[/PRINT=[TABLE**] [PROFILES] [SCORES**] [CONTRIBUTIONS**]
 [DEFAULT] [PERMUTATION] [NONE]]

[/PLOT=[NDIM=({1, 2** })]
 {value, value}
 {ALL, MAX }
 [ROWS**[(n)]][COLUMNS**[(n)]][DEFAULT[(n)]]
 [TRROWS] [TRCOLUMNS] [JOINT[(n)]] [NONE]]

[/MATRIX OUT=[SCORE({* })] [VARIANCE({* })]]
 {file} {file}

**Default if subcommand or keyword is omitted.

Overview

ANACOR performs correspondence analysis, which is an isotropic graphical representation
of the relationships between the rows and columns of a two-way table.

Options

Number of dimensions. You can specify how many dimensions ANACOR should compute.

Method of normalization. You can specify one of five different methods for normalizing the
row and column scores.

Computation of variances and correlations. You can request computation of variances and cor-
relations for singular values, row scores, or column scores.

Data input. You can analyze the usual individual casewise data or aggregated data from
table cells.

Display output. You can control which statistics are displayed and plotted. You can also con-
trol how many value-label characters are used on the plots.

118 Syntax Reference

Writing matrices. You can write matrix data files containing row and column scores and
variances for use in further analyses.

Basic Specification

• The basic specification is ANACOR and the TABLE subcommand. By default, ANACOR
computes a two-dimensional solution, displays the TABLE, SCORES, and CONTRIBUTIONS
statistics, and plots the row scores and column scores of the first two dimensions.

Subcommand Order

• Subcommands can appear in any order.

Operations

• If a subcommand is specified more than once, only the last occurrence is executed.

Limitations

• The data within table cells cannot contain negative values. ANACOR will treat such values
as 0.

Example

ANACOR TABLE=MENTAL(1,4) BY SES(1,6)
 /PRINT=SCORES CONTRIBUTIONS
 /PLOT=ROWS COLUMNS.

• Two variables, MENTAL and SES, are specified on the TABLE subcommand. MENTAL has
values ranging from 1 to 4 and SES has values ranging from 1 to 6.

• The row and column scores and the contribution of each row and column to the inertia of
each dimension are displayed.

• Two plots are produced. The first one plots the first two dimensions of row scores and the
second one plots the first two dimensions of column scores.

TABLE Subcommand

TABLE specifies the row and column variables along with their value ranges for individual
casewise data. For table data, TABLE specifies the keyword ALL and the number of rows and
columns.
• The TABLE subcommand is required.

ANACOR 119

Casewise Data

• Each variable is followed by a value range in parentheses. The value range consists of the
variable’s minimum value, a comma, and its maximum value.

• Values outside of the specified range are not included in the analysis.

• Values do not have to be sequential. Empty categories receive scores of 0 and do not
affect the rest of the computations.

Example
DATA LIST FREE/VAR1 VAR2.
BEGIN DATA
3 1
6 1
3 1
4 2
4 2
6 3
6 3
6 3
3 2
4 2
6 3
END DATA.
ANACOR TABLE=VAR1(3,6) BY VAR2(1,3).

• DATA LIST defines two variables, VAR1 and VAR2.
• VAR1 has three levels, coded 3, 4, and 6, while VAR2 also has three levels, coded 1, 2, and 3.

• Since a range of (3,6) is specified for VAR1, ANACOR defines four categories, coded 3, 4,
5, and 6. The empty category, 5, for which there is no data, receives zeros for all statistics
but does not affect the analysis.

Table Data

• The cells of a table can be read and analyzed directly by using the keyword ALL after TABLE.

• The columns of the input table must be specified as variables on the DATA LIST command.
Only columns are defined, not rows.

• ALL is followed by the number of rows in the table, a comma, and the number of columns
in the table, in parentheses.

• The number of rows and columns specified can be smaller than the actual number of rows
and columns if you want to analyze only a subset of the table.

• The variables (columns of the table) are treated as the column categories, and the cases
(rows of the table) are treated as the row categories.

• Rows cannot be labeled when you specify TABLE=ALL. If labels in your output are impor-
tant, use the WEIGHT command method to enter your data (see “Analyzing Aggregated
Data” on p. 124).

120 Syntax Reference

Example
DATA LIST /COL01 TO COL07 1-21.
BEGIN DATA
 50 19 26 8 18 6 2
 16 40 34 18 31 8 3
 12 35 65 66123 23 21
 11 20 58110223 64 32
 14 36114185714258189
 0 6 19 40179143 71
END DATA.
ANACOR TABLE=ALL(6,7).

• DATA LIST defines the seven columns of the table as the variables.
• The TABLE=ALL specification indicates that the data are the cells of a table. The (6,7)

specification indicates that there are six rows and seven columns.

DIMENSION Subcommand

DIMENSION specifies the number of dimensions you want ANACOR to compute.

• If you do not specify the DIMENSION subcommand, ANACOR computes two dimensions.

• DIMENSION is followed by an integer indicating the number of dimensions.

• In general, you should choose as few dimensions as needed to explain most of the varia-
tion. The minimum number of dimensions that can be specified is 1. The maximum num-
ber of dimensions that can be specified is equal to the number of levels of the variable with
the least number of levels, minus 1. For example, in a table where one variable has five
levels and the other has four levels, the maximum number of dimensions that can be spec-
ified is (4 – 1), or 3. Empty categories (categories with no data, all zeros, or all missing
data) are not counted toward the number of levels of a variable.

• If more than the maximum allowed number of dimensions is specified, ANACOR reduces
the number of dimensions to the maximum.

NORMALIZATION Subcommand

The NORMALIZATION subcommand specifies one of five methods for normalizing the row
and column scores. Only the scores and variances are affected; contributions and profiles are
not changed.

The following keywords are available:

CANONICAL For each dimension, rows are the weighted average of columns divided by
the matching singular value, and columns are the weighted average of rows
divided by the matching singular value. This is the default if the
NORMALIZATION subcommand is not specified. DEFAULT is an alias for
CANONICAL. Use this normalization method if you are primarily interested
in differences or similarities between variables.

PRINCIPAL Distances between row points and column points are approximations of chi-
square distances. The distances represent the distance between the row or

ANACOR 121

column and its corresponding average row or column profile. Use this
normalization method if you want to examine both differences between
categories of the row variable and differences between categories of the col-
umn variable (but not differences between variables).

RPRINCIPAL Distances between row points are approximations of chi-square distances.
This method maximizes distances between row points. This is useful when
you are primarily interested in differences or similarities between categories
of the row variable.

CPRINCIPAL Distances between column points are approximations of chi-square
distances. This method maximizes distances between column points. This is
useful when you are primarily interested in differences or similarities be-
tween categories of the column variable.

The fifth method has no keyword. Instead, any value in the range –2 to +2 is specified after
NORMALIZATION. A value of 1 is equal to the RPRINCIPAL method, a value of 0 is equal to
CANONICAL, and a value of –1 is equal to the CPRINCIPAL method. The inertia is spread
over both row and column scores. This method is useful for interpreting joint plots.

VARIANCES Subcommand

Use VARIANCES to display variances and correlations for the singular values, the row scores,
and/or the column scores. If VARIANCES is not specified, variances and correlations are not
included in the output.

The following keywords are available:

SINGULAR Variances and correlations of the singular values.

ROWS Variances and correlations of the row scores.

COLUMNS Variances and correlations of the column scores.

PRINT Subcommand

Use PRINT to control which of several correspondence statistics are displayed. If PRINT is
not specified, the numbers of rows and columns, all nontrivial singular values, proportions
of inertia, and the cumulative proportion of inertia accounted for are displayed.

The following keywords are available:

TABLE A crosstabulation of the input variables showing row and column
marginals.

PROFILES The row and column profiles. PRINT=PROFILES is analogous to the
CELLS=ROW COLUMN subcommand in CROSSSTABS.

SCORES The marginal proportions and scores of each row and column.

122 Syntax Reference

CONTRIBUTIONS The contribution of each row and column to the inertia of each dimen-
sion, and the proportion of distance to the origin accounted for in each
dimension.

PERMUTATION The original table permuted according to the scores of the rows and
columns for each dimension.

NONE No output other than the singular values.

DEFAULT TABLE, SCORES, and CONTRIBUTIONS. These statistics are displayed
if you omit the PRINT subcommand.

PLOT Subcommand

Use PLOT to produce plots of the row scores, column scores, row and column scores, trans-
formations of the row scores, and transformations of the column scores. If PLOT is not spec-
ified, a plot of the row scores in the first two dimensions and a plot of the column scores in
the first two dimensions are produced.

The following keywords are available:

TRROWS Plot of transformations of the row category values into row scores.

TRCOLUMNS Plot of transformations of the column category values into column scores.

ROWS Plot of row scores.

COLUMNS Plot of column scores.

JOINT A combined plot of the row and column scores. This plot is not available
when NORMALIZATION=PRINCIPAL.

NONE No plots.

DEFAULT ROWS and COLUMNS.

• The keywords ROWS, COLUMNS, JOINT, and DEFAULT can be followed by an integer val-
ue in parentheses to indicate how many characters of the value label are to be used on the
plot. The value can range from 1 to 20; the default is 3. Spaces between words count as
characters.

• TRROWS and TRCOLUMNS plots use the full value labels up to 20 characters.

• If a label is missing for any value, the actual values are used for all values of that variable.
• Value labels should be unique.

• The first letter of a label on a plot marks the place of the actual coordinate. Be careful that
multiple-word labels are not interpreted as multiple points on a plot.

In addition to the plot keywords, the following can be specified:

NDIM Dimension pairs to be plotted. NDIM is followed by a pair of values in parentheses.
If NDIM is not specified, plots are produced for dimension 1 by dimension 2.

ANACOR 123

• The first value indicates the dimension that is plotted against all higher dimensions. This
value can be any integer from 1 to the number of dimensions minus 1.

• The second value indicates the highest dimension to be used in plotting the dimension
pairs. This value can be any integer from 2 to the number of dimensions.

• Keyword ALL can be used instead of the first value to indicate that all dimensions are
paired with higher dimensions.

• Keyword MAX can be used instead of the second value to indicate that plots should be pro-
duced up to, and including, the highest dimension fit by the procedure.

Example
ANACOR TABLE=MENTAL(1,4) BY SES(1,6)
 /PLOT NDIM(1,3) JOINT(5).

• The NDIM (1,3) specification indicates that plots should be produced for two dimension
pairs—dimension 1 versus dimension 2 and dimension 1 versus dimension 3.

• JOINT requests combined plots of row and column scores. The (5) specification indicates
that the first five characters of the value labels are to be used on the plots.

Example
ANACOR TABLE=MENTAL(1,4) BY SES(1,6)
 /PLOT NDIM(ALL,3) JOINT(5).

• This plot is the same as above except for the ALL specification following NDIM. This in-
dicates that all possible pairs up to the second value should be plotted, so JOINT plots will
be produced for dimension 1 versus dimension 2, dimension 2 versus dimension 3, and
dimension 1 versus dimension 3.

MATRIX Subcommand

Use MATRIX to write row and column scores and variances to matrix data files.

MATRIX is followed by keyword OUT, an equals sign, and one or both of the following
keywords:

SCORE (file) Write row and column scores to a matrix data file.

VARIANCE (file) Write variances to a matrix data file.

• You can specify the file with either an asterisk (*) to replace the working data file with
the matrix file or the name of an external file.

• If you specify both SCORE and VARIANCE on the same MATRIX subcommand, you must
specify two different files.

The variables in the SCORE matrix data file and their values are:

ROWTYPE_ String variable containing the value ROW for all of the rows and
COLUMN for all of the columns.

LEVEL String variable containing the values (or value labels, if present) of
each original variable.

124 Syntax Reference

VARNAME_ String variable containing the original variable names.

DIM1...DIMn Numeric variables containing the row and column scores for each
dimension. Each variable is labeled DIMn, where n represents the
dimension number.

The variables in the VARIANCE matrix data file and their values are:

ROWTYPE_ String variable containing the value COV for all of the cases in the
file.

SCORE String variable containing the values SINGULAR, ROW, and
COLUMN.

LEVEL String variable containing the system-missing value for SINGULAR
and the sequential row or column number for ROW and COLUMN.

VARNAME_ String variable containing the dimension number.

DIM1...DIMn Numeric variable containing the covariances for each dimension.
Each variable is labeled DIMn, where n represents the dimension number.

See the SPSS Syntax Reference Guide for more information on matrix data files.

Analyzing Aggregated Data

To analyze aggregated data, such as data from a crosstabulation where cell counts are avail-
able but the original raw data are not, you can use the TABLE=ALL option or the WEIGHT com-
mand before ANACOR.

Example

To analyze a table such as the one shown in Table 1, you could use these commands:
DATA LIST FREE/ BIRTHORD ANXIETY COUNT.
BEGIN DATA
1 1 48
1 2 27
1 3 22
2 1 33
2 2 20
2 3 39
3 1 29
3 2 42
3 3 47
END DATA.
WEIGHT BY COUNT.
ANACOR TABLE=BIRTHORD (1,3) BY ANXIETY (1,3).

• The WEIGHT command weights each case by the value of COUNT, as if there are 48 sub-
jects with BIRTHORD=1 and ANXIETY=1, 27 subjects with BIRTHORD=1 and ANXIETY=2,
and so on.

• ANACOR can then be used to analyze the data.
• If any of the table cell values equal 0, the WEIGHT command issues a warning, but the

ANACOR analysis is done correctly.

3 3×

ANACOR 125

• The table cell values (the WEIGHT values) cannot be negative. WEIGHT changes system-
missing and negative values to 0.

• For large aggregated tables, you can use the TABLE=ALL option or the transformation
language to enter the table “as is.”

Table 1 3 x 3 table

Anxiety

High Med Low

Birth order

First 48 27 22

Second 33 20 39

Other 29 42 47

127

ANOVA

ANOVA [VARIABLES=] varlist BY varlist(min,max)...varlist(min,max)
 [WITH varlist] [/VARIABLES=...]

 [/COVARIATES={FIRST**}]
 {WITH }
 {AFTER }

 [/MAXORDERS={ALL** }]
 {n }
 {NONE }

 [/METHOD={UNIQUE** }]
 {EXPERIMENTAL}
 {HIERARCHICAL}

 [/STATISTICS=[MCA] [REG†] [MEAN] [ALL] [NONE]]

 [/MISSING={EXCLUDE**}]
 {INCLUDE }

**Default if the subcommand is omitted.
 †REG (table of regression coefficients) is displayed only if the design is relevant.

Example
ANOVA VARIABLES=PRESTIGE BY REGION(1,9) SEX,RACE(1,2)
/MAXORDERS=2
/STATISTICS=MEAN.

Overview

ANOVA performs analysis of variance for factorial designs. The default is the full factorial
model if there are five or fewer factors. Analysis of variance tests the hypothesis that the
group means of the dependent variable are equal. The dependent variable is interval level,
and one or more categorical variables define the groups. These categorical variables are
termed factors. ANOVA also allows you to include continuous explanatory variables, termed
covariates. Other procedures that perform analysis of variance are ONEWAY, SUMMARIZE,
and GLM. To perform a comparison of two means, use TTEST.

Options

Specifying Covariates. You can introduce covariates into the model using the WITH keyword
on the VARIABLES subcommand.

Order of Entry of Covariates. By default, covariates are processed before main effects for factors.
You can process covariates with or after main effects for factors using the COVARIATES
subcommand.

Suppressing Interaction Effects. You can suppress the effects of various orders of interaction
using the MAXORDERS subcommand.

128 ANOVA

Methods for Decomposing Sums of Squares. By default, the regression approach (keyword
UNIQUE) is used. You can request the classic experimental or hierarchical approach using the
METHOD subcommand.

Statistical Display. Using the STATISTICS subcommand, you can request means and counts for
each dependent variable for groups defined by each factor and each combination of factors up
to the fifth level. You also can request unstandardized regression coefficients for covariates
and multiple classification analysis (MCA) results, which include the MCA table, the Factor
Summary table, and the Model Goodness of Fit table. The MCA table shows treatment
effects as deviations from the grand mean and includes a listing of unadjusted category effects
for each factor, category effects adjusted for other factors, and category effects adjusted for all
factors and covariates. The Factor Summary table displays eta and beta values. The Goodness
of Fit table shows R and R2 for each model.

Basic Specification

• The basic specification is a single VARIABLES subcommand with an analysis list. The
minimum analysis list specifies a list of dependent variables, the keyword BY, a list of factor
variables, and the minimum and maximum integer values of the factors in parentheses.

• By default, the model includes all interaction terms up to five-way interactions. The sums
of squares are decomposed using the regression approach, in which all effects are assessed
simultaneously, with each effect adjusted for all other effects in the model. A case that has
a missing value for any variable in an analysis list is omitted from the analysis.

Subcommand Order

• The analysis list must be first if the keyword VARIABLES is omitted from the specification.
• The remaining subcommands can be named in any order.

Operations

A separate analysis of variance is performed for each dependent variable in an analysis list,
using the same factors and covariates.

Limitations

• Maximum 5 analysis lists.

• Maximum 5 dependent variables per analysis list.

• Maximum 10 factor variables per analysis list.

• Maximum 10 covariates per analysis list.

• Maximum 5 interaction levels.

• Maximum 25 value labels per variable displayed in the MCA table.
• The combined number of categories for all factors in an analysis list plus the number of

covariates must be less than the sample size.

ANOVA 129

Example

ANOVA VARIABLES=PRESTIGE BY REGION(1,9) SEX, RACE(1,2)
/MAXORDERS=2
/STATISTICS=MEAN.

• VARIABLES specifies a three-way analysis of variance—PRESTIGE by REGION, SEX, and
RACE.

• The variables SEX and RACE each have two categories, with values 1 and 2 included in
the analysis. REGION has nine categories, valued 1 through 9.

• MAXORDERS examines interaction effects up to and including the second order. All three-
way interaction terms are pooled into the error sum of squares.

• STATISTICS requests a table of means of PRESTIGE within the combined categories of
REGION, SEX, and RACE.

Example

ANOVA VARIABLES=PRESTIGE BY REGION(1,9) SEX,RACE(1,2)
/RINCOME BY SEX,RACE(1,2).

• ANOVA specifies a three-way analysis of variance of PRESTIGE by REGION, SEX, and
RACE, and a two-way analysis of variance of RINCOME by SEX and RACE.

VARIABLES Subcommand

VARIABLES specifies the analysis list. The actual keyword VARIABLES can be omitted.

• More than one design can be specified on the same ANOVA command by separating the
analysis lists with a slash.

• Variables named before keyword BY are dependent variables. Value ranges are not
specified for dependent variables.

• Variables named after BY are factor (independent) variables.
• Every factor variable must have a value range indicating its minimum and maximum values.

The values must be separated by a space or a comma and enclosed in parentheses.

• Factor variables must have integer values. Noninteger values for factors are truncated.

• Cases with values outside the range specified for a factor are excluded from the analysis.

• If two or more factors have the same value range, you can specify the value range once
following the last factor to which it applies. You can specify a single range that
encompasses the ranges of all factors on the list. For example, if you have two factors,
one with values 1 and 2 and the other with values 1 through 4, you can specify the range
for both as 1,4. However, this may reduce performance and cause memory problems if
the specified range is larger than some of the actual ranges.

• Variables named after the keyword WITH are covariates.

• Each analysis list can include only one BY and one WITH keyword.

130 ANOVA

COVARIATES Subcommand

COVARIATES specifies the order for assessing blocks of covariates and factor main effects.

• The order of entry is irrelevant when METHOD=UNIQUE.

FIRST Process covariates before factor main effects. This is the default.

WITH Process covariates concurrently with factor main effects.

AFTER Process covariates after factor main effects.

MAXORDERS Subcommand

MAXORDERS suppresses the effects of various orders of interaction.

ALL Examine all interaction effects up to and including the fifth order. This is the default.

n Examine all interaction effects up to and including the nth order. For example,
MAXORDERS=3 examines all interaction effects up to and including the third order.
All higher-order interaction sums of squares are pooled into the error term.

NONE Delete all interaction terms from the model. All interaction sums of squares are
pooled into the error sum of squares. Only main and covariate effects appear in the
ANOVA table.

METHOD Subcommand

METHOD controls the method for decomposing sums of squares.

UNIQUE Regression approach. UNIQUE overrides any keywords on the COVARIATES
subcommand. All effects are assessed simultaneously for their partial contri-
bution. The MCA and MEAN specifications on the STATISTICS subcommand
are not available with the regression approach. This is the default if METHOD
is omitted.

EXPERIMENTAL Classic experimental approach. Covariates, main effects, and ascending
orders of interaction are assessed separately in that order.

HIERARCHICAL Hierarchical approach.

Regression Approach

All effects are assessed simultaneously, with each effect adjusted for all other effects in
the model. This is the default when the METHOD subcommand is omitted. Since MCA
tables cannot be produced when the regression approach is used, specifying MCA or ALL
on STATISTICS with the default method triggers a warning.

ANOVA 131

Some restrictions apply to the use of the regression approach:

• The lowest specified categories of all the independent variables must have a marginal fre-
quency of at least 1, since the lowest specified category is used as the reference category.
If this rule is violated, no ANOVA table is produced and a message identifying the first
offending variable is displayed.

• Given an n-way crosstabulation of the independent variables, there must be no empty
cells defined by the lowest specified category of any of the independent variables. If this
restriction is violated, one or more levels of interaction effects are suppressed and a
warning message is issued. However, this constraint does not apply to categories defined
for an independent variable but not occurring in the data. For example, given two
independent variables, each with categories of 1, 2, and 4, the (1,1), (1,2), (1,4), (2,1), and
(4,1) cells must not be empty. The (1,3) and (3,1) cells will be empty but the restriction
on empty cells will not be violated. The (2,2), (2,4), (4,2), and (4,4) cells may be empty,
although the degrees of freedom will be reduced accordingly.

To comply with these restrictions, specify precisely the lowest nonempty category of each
independent variable. Specifying a value range of (0,9) for a variable that actually has values
of 1 through 9 results in an error, and no ANOVA table is produced.

Classic Experimental Approach

Each type of effect is assessed separately in the following order (unless WITH or AFTER is
specified on the COVARIATES subcommand):

• Effects of covariates

• Main effects of factors

• Two-way interaction effects
• Three-way interaction effects

• Four-way interaction effects

• Five-way interaction effects

The effects within each type are adjusted for all other effects of that type and also for the
effects of all prior types (see Table 1).

Hierarchical Approach

The hierarchical approach differs from the classic experimental approach only in the way it
handles covariate and factor main effects. In the hierarchical approach, factor main effects
and covariate effects are assessed hierarchically—factor main effects are adjusted only for
the factor main effects already assessed, and covariate effects are adjusted only for the
covariates already assessed (see Table 1). The order in which factors are listed on the ANOVA
command determines the order in which they are assessed.

132 ANOVA

Example

The following analysis list specifies three factor variables named A, B, and C:

ANOVA VARIABLES=Y BY A,B,C(0,3).

Table 1 summarizes the three methods for decomposing sums of squares for this example.

• With the default regression approach, each factor or interaction is assessed with all other
factors and interactions held constant.

• With the classic experimental approach, each main effect is assessed with the two other
main effects held constant, and two-way interactions are assessed with all main effects
and other two-way interactions held constant. The three-way interaction is assessed with
all main effects and two-way interactions held constant.

• With the hierarchical approach, the factor main effects A, B, and C are assessed with all
prior main effects held constant. The order in which the factors and covariates are listed on
the ANOVA command determines the order in which they are assessed in the hierarchical
analysis. The interaction effects are assessed the same way as in the experimental approach.

Summary of Analysis Methods

Table 2 describes the results obtained with various combinations of methods for controlling
entry of covariates and decomposing the sums of squares.

Table 1 Terms adjusted for under each option

Effect Regression
(UNIQUE) Experimental Hierarchical

A All others B,C None
B All others A,C A
C All others A,B A,B
AB All others A,B,C,AC,BC A,B,C,AC,BC
AC All others A,B,C,AB,BC A,B,C,AB,BC
BC All others A,B,C,AB,AC A,B,C,AB,AC
ABC All others A,B,C,AB,AC,BC A,B,C,AB,AC,BC

ANOVA 133

Table 2 Combinations of COVARIATES and METHOD subcommands

Assessments between
types of effects

Assessments within the
same type of effect

METHOD=UNIQUE Covariates, Factors,
and Interactions
simultaneously

Covariates: adjust for factors,
interactions, and all other covariates
Factors: adjust for covariates,
interactions, and all other factors
Interactions: adjust for covariates,
factors, and all other interactions

METHOD=EXPERIMENTAL Covariates
then
Factors
then
Interactions

Covariates: adjust for all other
covariates
Factors: adjust for covariates and all
other factors
Interactions: adjust for covariates,
factors, and all other interactions of the
same and lower orders

METHOD=HIERARCHICAL Covariates
then
Factors
then
Interactions

Covariates: adjust for covariates that
are preceding in the list
Factors: adjust for covariates and
factors preceding in the list
Interactions: adjust for covariates,
factors, and all other interactions of the
same and lower orders

COVARIATES=WITH
and
METHOD=EXPERIMENTAL

Factors and Covariates
concurrently
then
Interactions

Covariates: adjust for factors and all
other covariates
Factors: adjust for covariates and all
other factors
Interactions: adjust for covariates,
factors, and all other interactions of the
same and lower orders

COVARIATES=WITH
and
METHOD=HIERARCHICAL

Factors and Covariates
concurrently
then
Interactions

Factors: adjust only for preceding
factors
Covariates: adjust for factors and
preceding covariates
Interactions: adjust for covariates,
factors, and all other interactions of the
same and lower orders

COVARIATES=AFTER
and
METHOD=EXPERIMENTAL

Factors
then
Covariates
then
Interactions

Factors: adjust for all other factors
Covariates: adjust for factors and all
other covariates
Interactions: adjust for covariates,
factors, and all other interactions of the
same and lower orders

COVARIATES=AFTER
and
METHOD=HIERARCHICAL

Factors
then
Covariates
then
Interactions

Factors: adjust only for preceding
factors
Covariates: adjust factors and
preceding covariates
Interactions: adjust for covariates,
factors, and all other interactions of the
same and lower orders

134 ANOVA

STATISTICS Subcommand

STATISTICS requests additional statistics. STATISTICS can be specified by itself or with one
or more keywords.

• If you specify STATISTICS without keywords, ANOVA calculates MEAN and REG (each
defined below).

• If you specify a keyword or keywords on the STATISTICS subcommand, ANOVA
calculates only the additional statistics you request.

MEAN Means and counts table. This statistic is not available when METHOD is omitted or
when METHOD=UNIQUE. See “Cell Means” below.

REG Unstandardized regression coefficients. Displays unstandardized regression
coefficients for the covariates. See “Regression Coefficients for the Covariates”
below.

MCA Multiple classification analysis. The MCA, the Factor Summary, and the Goodness
of Fit tables are not produced when METHOD is omitted or when METHOD=UNIQUE.
See “Multiple Classification Analysis” on p. 135.

ALL Means and counts table, unstandardized regression coefficients, and multiple
classification analysis.

NONE No additional statistics. ANOVA calculates only the statistics needed for analysis of
variance. This is the default if the STATISTICS subcommand is omitted.

Cell Means

STATISTICS=MEAN displays the Cell Means table.

• This statistic is not available with METHOD=UNIQUE.

• The Cell Means table shows means and counts of each dependent variable for each cell
defined by the factors and combinations of factors. Dependent variables and factors
appear in their order on the VARIABLES subcommand.

• If MAXORDERS is used to suppress higher-order interactions, cell means corresponding
to suppressed interaction terms are not displayed.

• The means displayed are the observed means in each cell, and they are produced only for
dependent variables, not for covariates.

Regression Coefficients for the Covariates

STATISTICS=REG requests the unstandardized regression coefficients for the covariates.

• The regression coefficients are computed at the point where the covariates are entered into
the equation. Thus, their values depend on the type of design specified by the COVARIATES
or METHOD subcommands.

• The coefficients are displayed in the ANOVA table.

ANOVA 135

Multiple Classification Analysis

STATISTICS=MCA displays the MCA, the Factor Summary, and the Model Goodness of Fit
tables.

• The MCA table presents counts, predicted means, and deviations of predicted means from
the grand mean for each level of each factor. The predicted and deviation means each
appear in up to three forms: unadjusted, adjusted for other factors, and adjusted for other
factors and covariates.

• The Factor Summary table displays the correlation ratio (eta) with the unadjusted
deviations (the square of eta indicates the proportion of variance explained by all
categories of the factor), a partial beta equivalent to the standardized partial regression
coefficient that would be obtained by assigning the unadjusted deviations to each factor
category and regressing the dependent variable on the resulting variables, and the parallel
partial betas from a regression that includes covariates in addition to the factors.

• The Model Goodness of Fit table shows R and R2 for each model.

• The tables cannot be produced if METHOD is omitted or if METHOD=UNIQUE. When pro-
duced, the MCA table does not display values adjusted for factors if COVARIATES is omitted,
if COVARIATES=FIRST, or if COVARIATES=WITH and METHOD=EXPERIMENTAL. A full
MCA table is produced only if METHOD=HIERARCHICAL or if METHOD=EXPERIMENTAL
and COVARIATES=AFTER.

MISSING Subcommand

By default, a case that has a missing value for any variable named in the analysis list is deleted
for all analyses specified by that list. Use MISSING to include cases with user-missing data.

EXCLUDE Exclude cases with missing data. This is the default.

INCLUDE Include cases with user-defined missing data.

References

Andrews, F., J. Morgan, J. Sonquist, and L. Klein. 1973. Multiple classification analysis. 2nd ed.
Ann Arbor: University of Michigan.

136

APPLY DICTIONARY

APPLY DICTIONARY FROM [{filename}]
 {* }

 [/SOURCE VARIABLES = varlist]

 [/TARGET VARIABLES = varlist]

 [/NEWVARS]

 [/FILEINFO [DOCUMENTS = [{REPLACE}]]]
 {MERGE }

 [FILELABEL]
 [MRSETS = [{REPLACE}]]
 {MERGE }

 [VARSETS = [{REPLACE}]]
 {MERGE }

 [WEIGHT**]

 [ALL]

[/VARINFO [ALIGNMENT**]]

 [FORMATS**]

 [LEVEL**]

 [MISSING**]

 [VALLABELS = [{REPLACE**}]]
 {MERGE }

 [VARLABEL**]

 [WIDTH**]

 [ALL]

**Default if the subcommand is not specified.

Example
APPLY DICTIONARY FROM = ’lastmonth.sav’.

Overview

APPLY DICTIONARY can apply variable and file-based dictionary information from an external
SPSS-format data file to the current working data file. Variable-based dictionary information
in the current working file can be applied to other variables in the current working file.

• The applied variable information includes variable and value labels, missing-value flags,
alignments, variable print and write formats, measurement levels, and widths.

APPLY DICTIONARY 137

• The applied file information includes variable and multiple response sets, documents, file
label, and weight.

• APPLY DICTIONARY can apply information selectively to variables and can apply selec-
tive file-based dictionary information.

• Individual variable attributes can be applied to individual and multiple variables of the
same type (strings of the same character length or numeric).

• APPLY DICTIONARY can add new variables but cannot remove variables, change data, or
change a variable’s name or type.

• Undefined (empty) attributes in the source data file do not overwrite defined attributes in
the working (target) data file.

Basic Specification

The basic specification is the FROM subcommand and the name of an SPSS-format data file.
The file specification may vary from operating system to operating system, but enclosing the
filename in apostrophes generally works.

Subcommand Order

The subcommands can be specified in any order.

Syntax Rules

• The file containing the dictionary information to be applied (the source file) must be an
SPSS-format data file or the working file.

• The file to which the dictionary information is applied (the target file) must be the
working data file. You cannot specify another file.

• If a subcommand is issued more than once, APPLY DICTIONARY will ignore all but the last
instance of the subcommand.

• Equal signs displayed in the syntax chart and in the examples presented here are required
elements; they are not optional.

Matching Variable Type

APPLY DICTIONARY considers two variables to have a matching variable type if:

• Both variables are numeric. This includes all numeric, currency, and date formats.

• Both variables are string (alphanumeric).

FROM Subcommand

FROM specifies an SPSS-format data file or the working file as the source file whose
dictionary information is to be applied to the working file.

138 APPLY DICTIONARY

• FROM is required.

• Only one SPSS-format data file (including the working file) can be specified on FROM.

• The working file can be specified in the FROM subcommand by using an asterisk as the
value. File-based dictionary information (FILEINFO subcommand) is ignored when the
working file is used as the source file.

Example
APPLY DICTIONARY FROM “lastmonth.sav”.

• This will apply variable information from lastmonth.sav to matching variables in the
working data file.

• The default variable information applied from the source file includes variable labels,
value labels, missing values, level of measurement, alignment, column width (for Data
Editor display), and print and write formats.

• If weighting is on in the source data file and a matching weight variable exists in the
working (target) data file, weighting by that variable is turned on in the working data file.
No other file information (documents, file label, multiple response sets) from the source
file is applied to the working data file.

NEWVARS Subcommand

NEWVARS is required to create new variables in the working (target) data file.

Example
APPLY DICTIONARY FROM “lastmonth.sav”
 /NEWVARS.

• For a new, blank working data file, all variables with all their variable definition attributes
are copied from the source data file, creating a new data file with an identical set of vari-
ables (but no data values).

• For a working data file that contains any variables, variable definition attributes from the
source data file are applied to the matching variables in the working (target) data file. If
the source data file contains any variables that are not present in the working data file
(determined by variable name), these variables are created in the working data file.

SOURCE and TARGET Subcommands

The SOURCE subcommand is used to specify variables in the source file from which to apply
variable definition attributes. The TARGET subcommand is used to specify variables in the
working data file to which to apply variable definition attributes.

• All variables specified in the SOURCE subcommand must exist in the source file.

• If the TARGET subcommand is specified without the SOURCE subcommand, all variables
specified must exist in the source file.

• If the NEWVARS subcommand is specified, variables that are specified in the SOURCE
subcommand that exist in the source file but not in the target file will be created in the

APPLY DICTIONARY 139

target file as new variables using the variable definition attributes (variable and value
labels, missing values, etc.) from the source variable.

• For variables with matching name and type, variable definition attributes from the source
variable are applied to the matching target variable.

• If both SOURCE and TARGET are specified, the SOURCE subcommand can only specify
one variable. Variable definition attributes from that single variable in the SOURCE sub-
command are applied to all variables of matching type. When applying the attributes of
one variable to many variables, all variables specified in the SOURCE and TARGET sub-
commands must be of the same type.

• For variables with matching names but different types, only variable labels are applied to
the target variables.

Example
APPLY DICTIONARY from *
 /SOURCE VARIABLES = var1
 /TARGET VARIABLES = var2 var3 var4
 /NEWVARS.

• Variable definition attributes for var1 in the working data file are copied to var2, var3, var4
in the same data file if they have a matching type.

Table 1 Variable mapping for SOURCE and TARGET subcommands

SOURCE
subcommand

TARGET
subcommand Variable Mapping

none none Variable definition attributes from the source data file are
applied to matching variables in the working (target) data file.
New variables may be created if the NEWVARS subcommand
is specified.

many none Variable definition attributes for the specified variables are
copied from the source data file to the matching variables in
the working (target) data file. All specified variables must
exist in the source data file. New variables may be created if
the NEWVARS subcommand is specified.

none many Variable definition attributes for the specified variables are
copied from the source data file to the matching variables in
the working (target) data file. All specified variables must
exist in the source data file. New variables may be created if
the NEWVARS subcommand is specified.

one many Variable definition attributes for the specified variable in the
source data file are applied to all specified variables in the
working (target) data file that have a matching type. New
variables may be created if the NEWVARS subcommand is
specified.

many many Invalid. Command not executed.

140 APPLY DICTIONARY

• Any variables specified in the TARGET subcommand that do not already exist are created,
using the variable definition attributes of the variable specified in the SOURCE subcommand.

Example
APPLY DICTIONARY from “lastmonth.sav”
 /SOURCE VARIABLES = var1, var2, var3.

• Variable definition attributes from the specified variables in the source data file are
applied to matching variables in the working data file.

• For variables with matching names but different types, only variable labels from the
source variable are copied to the target variable.

• In the absence of a NEWVARS subcommand, no new variables will be created.

FILEINFO Subcommand

FILEINFO applies global file definition attributes from the source data file to the working
(target) data file.

• File definition attributes in the working (target) data file that are undefined in the source
data file are not affected.

• This subcommand is ignored if the source data file is the working data file.
• This subcommand is ignored if no keywords are specified.

• For keywords that contain an associated value, the equal sign between the keyword and
the value are required—for example, DOCUMENTS = MERGE.

DOCUMENTS Applies documents (defined with the DOCUMENTS command) from the
source data file to the working (target) data file. You can REPLACE or
MERGE documents.

DOCUMENTS = REPLACE replaces any documents in the working data file,
deleting pre-existing documents in the file. This is the default if DOCUMENTS
is specified without a value.

DOCUMENTS = MERGE merges documents from the source and working
(target) data file. Unique documents in the source file that don’t exist in the
working (target) data file are added to the working data file. All documents
are then sorted by date.

FILELABEL Replaces the file label (defined with the FILE LABEL command).

MRSETS Applies multiple response set definitions from the source data file to the
working (target) data file. (Note that multiple response sets are currently used
only by the TABLES add-on component.) Multiple response sets in the source
data file that contain variables that don’t exist in the working data file are
ignored, unless those variables are created by the same APPLY DICTIONARY
command. You can REPLACE or MERGE multiple response sets.

MRSETS = REPLACE deletes any existing multiple response sets in the
working (target) data file, replacing them with multiple response sets from
the source data file.

APPLY DICTIONARY 141

MRSETS = MERGE adds multiple response sets from the source data file to
the collection of multiple response sets in the working data file. If a set with
the same name exists in both files, the existing set in the working data file is
unchanged.

VARSETS Applies variable set definitions from the source data file to the working
(target) data file. Variable sets are used to control the list of variables that
are displayed in dialog boxes. Variable sets are defined by selecting Define
Sets from the Utilities menu. Sets in the source data file that contain
variables that don’t exist in the working data file are ignored, unless those
variables are created by the same APPLY DICTIONARY command. You can
REPLACE or MERGE variable sets.

VARSETS = REPLACE deletes any existing variable sets in the working (tar-
get) data file, replacing them with variable sets from the source data file.

VARSETS = MERGE adds variable sets from the source data file to the collec-
tion of variable sets in the working data file. If a set with the same name ex-
ists in both files, the existing set in the working data file is unchanged.

WEIGHT Weights cases by the variable specified in the source file if there’s a
matching variable in the target file. This is the default if the subcommand is
omitted.

ALL Applies all file information from the source data file to the working (target)
data file. Documents, multiple response sets, and variable sets are merged,
not replaced. File definition attributes in the working data file that are unde-
fined in the source data file are not affected.

Example
APPLY DICTIONARY FROM “lastmonth.sav”
 /FILEINFO DOCUMENTS = REPLACE MRSETS = MERGE.

• Documents in the source data file replace documents in the working (target) data file, un-
less there are no defined documents in the source data file.

• Multiple response sets from the source data file are added to the collection of defined
multiple response sets in the working data file. Sets in the source data file that contain
variables that don’t exist in the working data file are ignored. If the same set name exists
in both data files, the set in the working data file remains unchanged.

VARINFO Subcommand

VARINFO applies variable definition attributes from the source data file to the matching
variables in the working (target) data file. With the exception of VALLABELS, all keywords
replace the variable definition attributes in the working data file with the attributes from the
matching variables in the source data file.

ALIGNMENT Applies variable alignment for Data Editor display. This setting affects only
alignment (left, right, center) in the Data view display of the Data Editor.

142 APPLY DICTIONARY

FORMATS Applies variable print and write formats. This is the same variable definition
attribute that can be defined with the FORMATS command. This setting is
primarily applicable only to numeric variables. For string variables, this
affects only the formats if the source or target variable is AHEX format and
the other is A format.

LEVEL Applies variable measurement level (nominal, ordinal, scale). This is the
same variable definition attribute that can be defined with the VARIABLE
LEVEL command.

MISSING Applies variable missing value definitions. Any existing defined missing
values in the matching variables in the working data file are deleted. This is
the same variable definition attribute that can be defined with the MISSING
VALUES command. Missing value definitions are not applied to long string
(more than eight characters) target variables. Missing values definitions are
not applied to short string variables if the source variable contains missing
values of a longer width than the defined width of the target variable.

VALLABELS Applies value label definitions. Value labels are not applied to long string
(more than eight characters) target variables. Value labels are not applied
to short string variables if the source variable contains defined value
labels for values longer than the defined width of the target variable. You
can REPLACE or MERGE value labels.

VALLABELS = REPLACE replaces any defined value labels from variable in
the working (target) data file with the value labels from the matching vari-
able in the source data file.

VALLABELS = MERGE merges defined value labels for matching variables. If
the same value has a defined value label in both the source and working
(target) data files, the value label in the working data file is unchanged.

Example
APPLY DICTIONARY from “lastmonth.sav”
 /VARINFO LEVEL MISSING VALLABELS = MERGE.

• Level of measurement and defined missing values from the source data file are applied to
matching variables in the working (target) data file. Any existing missing values
definitions for those variables in the working data file are deleted.

• Value labels for matching variables in the two data files are merged. If the same value has
a defined value label in both the source and working (target) data files, the value label in
the working data file is unchanged.

APPLY DICTIONARY 143

144 Syntax Reference

AREG

AREG is available in the Trends option.

AREG [VARIABLES=] dependent series name WITH independent series names

 [/METHOD={PW**}]
 {CO }
 {ML }

 [/{CONSTANT† }]
 {NOCONSTANT}

 [/RHO={0** }]
 {value}

 [/MXITER={10**}]
 {n }

 [/APPLY [=’model name’] [{SPECIFICATIONS}]]
 {INITIAL }
 {FIT }

**Default if the subcommand is omitted.
†Default if the subcommand or keyword is omitted and there is no corresponding specification on the TSET
command.

Method definitions:

Example:
AREG VARY WITH VARX
 /METHOD=ML.

Overview

AREG estimates a regression model with AR(1) (first-order autoregressive) errors. (Models
whose errors follow a general ARIMA process can be estimated using the ARIMA procedure.)
AREG provides a choice among three estimation techniques.

For the Prais-Winsten and Cochrane-Orcutt estimation methods (keywords PW and CO),
you can obtain the rho values and statistics at each iteration, and regression statistics for the
ordinary least-square and final Prais-Winsten or Cochrane-Orcutt estimates. For the maxi-
mum-likelihood method (keyword ML), you can obtain the adjusted sum of squares and Mar-
quardt constant at each iteration and, for the final parameter estimates, regression statistics,
correlation and covariance matrices, Akaike’s information criterion (AIC) (Akaike, 1974),
and Schwartz’s Bayesian criterion (SBC) (Schwartz, 1978).

PW Prais-Winsten (GLS) estimation
CO Cochrane-Orcutt estimation
ML Exact maximum-likelihood estimation

AREG 145

Options

Estimation Technique. You can select one of three available estimation techniques (Prais-Win-
sten, Cochrane-Orcutt, or exact maximum-likelihood) on the METHOD subcommand. You
can request regression through the origin or inclusion of a constant in the model by specify-
ing NOCONSTANT or CONSTANT to override the setting on the TSET command.

Rho Value. You can specify the value to be used as the initial rho value (estimate of the first
autoregressive parameter) on the RHO subcommand.

Iterations. You can specify the maximum number of iterations the procedure is allowed to cy-
cle through in calculating estimates on the MXITER subcommand.

Statistical Output. To display estimates and statistics at each iteration in addition to the default
output, specify TSET PRINT=DETAILED before AREG. To display only the final parameter es-
timates, use TSET PRINT=BRIEF (see TSET in the SPSS Syntax Reference Guide).

New Variables. To evaluate the regression summary table without creating new variables,
specify TSET NEWVAR=NONE prior to AREG. This can result in faster processing time. To
add new variables without erasing the values of previous Trends-generated variables, specify
TSET NEWVAR=ALL. This saves all new variables generated during the session in the working
data file and may require extra processing time.

Basic Specification

The basic specification is one dependent series name, the keyword WITH, and one or more
independent series names.

• By default, procedure AREG estimates a regression model using the Prais-Winsten (GLS)
technique. The number of iterations is determined by the convergence value set on TSET
CNVERGE (default of 0.001), up to the default maximum number of 10 iterations. A 95%
confidence interval is used unless it is changed by a TSET CIN command prior to the AREG
procedure.

• Unless the default on TSET NEWVAR is changed prior to AREG, five variables are auto-
matically created, labeled, and added to the working data file: fitted values (FIT#1), resid-
uals (ERR#1), lower confidence limits (LCL#1), upper confidence limits (UCL#1), and
standard errors of prediction (SEP#1). (For variable naming and labeling conventions, see
“New Variables” on p. 1734.)

Subcommand Order

• VARIABLES must be specified first.

• The remaining subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.

146 Syntax Reference

• Other subcommands can be specified more than once, but only the last specification of
each one is executed.

Operations

• AREG cannot forecast beyond the end of the regressor (independent) series (see PREDICT
in the SPSS Syntax Reference Guide).

• Method ML allows missing data anywhere in the series. Missing values at the beginning
and end are skipped and the analysis proceeds with the first nonmissing case using
Melard’s algorithm. If imbedded missing values are found, they are noted and the Kalman
filter is used for estimation.

• Methods PW and CO allow missing values at the beginning or end of the series but not
within the series. Missing values at the beginning or end of the series are skipped. If im-
bedded missing values are found, a warning is issued suggesting the ML method be used
instead and the analysis terminates. (See RMV in the SPSS Syntax Reference Guide for in-
formation on replacing missing values.)

• Series with missing cases may require extra processing time.

Limitations

• Maximum 1 VARIABLES subcommand.

• Maximum 1 dependent series in the series list. There is no limit on the number of inde-
pendent series.

Example

AREG VARY WITH VARX
 /METHOD=ML.

• This command performs an exact maximum-likelihood (ML) regression using series
VARY as the dependent variable and series VARX as the independent variable.

VARIABLES Subcommand

VARIABLES specifies the series list and is the only required subcommand. The actual key-
word VARIABLES can be omitted.

• The dependent series is specified first, followed by the keyword WITH and one or more
independent series.

METHOD Subcommand

METHOD specifies the estimation technique. Three different estimation techniques are available.
• If METHOD is not specified, the Prais-Winsten method is used.

AREG 147

• Only one method can be specified on the METHOD subcommand.

148 Syntax Reference

The available methods are:

PW Prais-Winsten method. This generalized least-squares approach is the default (see
Johnston, 1984).

CO Cochrane-Orcutt method. (See Johnston, 1984.)

ML Exact maximum-likelihood method. This method can be used when one of the in-
dependent variables is the lagged dependent variable. It can also handle missing
data anywhere in the series (see Kohn & Ansley, 1986).

Example
AREG VARY WITH VARX
 /METHOD=CO.

In this example, the Cochrane-Orcutt method is used to estimate the regression model.

CONSTANT and NOCONSTANT Subcommands

CONSTANT and NOCONSTANT indicate whether a constant term should be estimated in the re-
gression equation. The specification overrides the corresponding setting on the TSET command.
• CONSTANT indicates that a constant should be estimated. It is the default unless changed

by TSET NOCONSTANT prior to the current procedure.

• NOCONSTANT eliminates the constant term from the model.

RHO Subcommand

RHO specifies the initial value of rho, an estimate of the first autoregressive parameter.

• If RHO is not specified, the initial rho value defaults to 0 (equivalent to ordinary least
squares).

• The value specified on RHO can be any value greater than −1 and less than 1.
• Only one rho value can be specified per AREG command.

Example
AREG VAR01 WITH VAR02 VAR03
 /METHOD=CO
 /RHO=0.5.

• In this example, the Cochrane-Orcutt (CO) estimation method with an initial rho value of
0.5 is used.

MXITER Subcommand

MXITER specifies the maximum number of iterations of the estimation process.

• If MXITER is not specified, the maximum number of iterations defaults to 10.

• The specification on MXITER can be any positive integer.

AREG 149

• Iteration stops either when the convergence criterion is met or when the maximum is
reached, whichever occurs first. The convergence criterion is set on the TSET CNVERGE
command. The default is 0.001.

Example
AREG VARY WITH VARX
 /MXITER=5.

• In this example, AREG generates Prais-Winsten estimates and associated statistics with a
maximum of 5 iterations.

APPLY Subcommand

APPLY allows you to use a previously defined AREG model without having to repeat the spec-
ifications. For general rules on APPLY, see the APPLY subcommand on p. 1737.

• The specifications on APPLY can include the name of a previous model in quotes and one
of three keywords. All of these specifications are optional.

• If a model name is not specified, the model specified on the previous AREG command is
used.

• To change one or more specifications of the model, specify the subcommands of only
those portions you want to change after the APPLY subcommand.

• If no series are specified on the AREG command, the series that were originally specified
with the model being reapplied are used.

• To change the series used with the model, enter new series names before or after the
APPLY subcommand. If a series name is specified before APPLY, the slash before the sub-
command is required.

• APPLY with the keyword FIT sets MXITER to 0. If you apply a model that used FIT and want
to obtain estimates, you will need to respecify MXITER.

The keywords available for APPLY with AREG are:

SPECIFICATIONS Use only the specifications from the original model. AREG should cre-
ate the initial values. This is the default.

INITIAL Use the original model’s final estimates as initial values for
estimation.

FIT No estimation. Estimates from the original model should be applied
directly.

150 Syntax Reference

Example
AREG VARY WITH VARX
 /METHOD=CO
 /RHO=0.25
 /MXITER=15.
AREG VARY WITH VARX
 /METHOD=ML.
AREG VARY WITH VAR01
 /APPLY.
AREG VARY WITH VAR01
 /APPLY=’MOD_1’
 /MXITER=10.
AREG VARY WITH VAR02
 /APPLY FIT.

• The first command estimates a regression model for VARY and VARX using the Cochrane-
Orcutt method, an initial rho value of 0.25, and a maximum of 15 iterations. This model
is assigned the name MOD_1.

• The second command estimates a regression model for VARY and VARX using the ML
method. This model is assigned the name MOD_2.

• The third command displays the regression statistics for the series VARY and VAR01 using
the same method, ML, as in the second command. This model is assigned the name
MOD_3.

• The fourth command applies the same method and rho value as in the first command but
changes the maximum number of iterations to 10. This new model is named MOD_4.

• The last command applies the last model, MOD_4, using the series VARY and VAR02. The
FIT specification means the final estimates of MOD_4 should be applied directly to the
new series with no new estimation.

References

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transaction on Auto-
matic Control AC–19: 716–723.

Harvey, A. C. 1981. The econometric analysis of time series. Oxford: Philip Allan.
Johnston, J. 1984. Econometric methods. New York: McGraw-Hill.
Kohn, R., and C. Ansley. 1986. Estimation, prediction, and interpolation for ARIMA models with

missing data. Journal of the American Statistical Association 81: 751–761.
Schwartz, G. 1978. Estimating the dimensions of a model. Annals of Statistics 6: 461–464.

AREG 151

152 Syntax Reference

ARIMA

ARIMA is available in the Trends option.

ARIMA [VARIABLES=] dependent series name [WITH independent series names]

 [/MODEL =[(p,d,q)[(sp,sd,sq)[period]]]

 [{CONSTANT† }] [{NOLOG† }]]
 {NOCONSTANT} {LG10 or LOG}
 {LN }

 [/P={value }] [/D=value] [/Q={value }]
 {(value list)} {(value list)}

 [/SP={value }] [/SD=value] [/SQ={value }]
 {(value list)} {(value list)}

 [/AR=value list] [/MA=value list]

 [/SAR=value list] [/SMA=value list]

 [/REG=value list] [/CON=value]

 [/MXITER={10** }] [/MXLAMB={1.0E9**}]
 {value} {value }

 [/SSQPCT={0.001**}] [/PAREPS={0.001†}]
 {value } {value }

 [/CINPCT={95† }]
 {value}

 [/APPLY [='model name'] [{SPECIFICATIONS}]]
 {INITIAL }
 {FIT }

 [/FORECAST=[{EXACT }]]
 {CLS }
 {AUTOINIT}

**Default if the subcommand is omitted.
†Default if the subcommand or keyword is omitted and there is no corresponding specification on the TSET
command.

Example:
ARIMA SALES WITH INTERVEN
 /MODEL=(0,1,1)(0,1,1).

Overview

ARIMA estimates nonseasonal and seasonal univariate ARIMA models with or without fixed
regressor variables. The procedure uses a subroutine library written by Craig Ansley that pro-
duces maximum-likelihood estimates and can process time series with missing observations.

ARIMA 153

Options

Model Specification. The traditional ARIMA (p,d,q)(sp,sd,sq) model incorporates nonseasonal
and seasonal parameters multiplicatively and can be specified on the MODEL subcommand.
You can also specify ARIMA models and constrained ARIMA models by using the separate
parameter-order subcommands P, D, Q, SP, SD, and SQ.

Parameter Specification. If you specify the model in the traditional (p,d,q) (sp,sd,sq) format on
the MODEL subcommand, you can additionally specify the period length, whether a constant
should be included in the model (using the keyword CONSTANT or NOCONSTANT), and
whether the series should first be log transformed (using the keyword NOLOG, LG10, or LN).
You can fit single or nonsequential parameters by using the separate parameter-order sub-
commands to specify the exact lags. You can also specify initial values for any of the param-
eters using the AR, MA, SAR, SMA, REG, and CON subcommands.

Iterations. You can specify termination criteria using the MXITER, MXLAMB, SSQPCT, and
PAREPS subcommands.

Confidence Intervals. You can control the size of the confidence interval using the CINPCT sub-
command.

Statistical Output. To display only the final parameter statistics, specify TSET PRINT=BRIEF
before ARIMA. To include parameter estimates at each iteration in addition to the default out-
put, specify TSET PRINT=DETAILED.

New Variables. To evaluate model statistics without creating new variables, specify TSET
NEWVAR=NONE prior to ARIMA. This could result in faster processing time. To add new vari-
ables without erasing the values of Trends-generated variables, specify TSET NEWVAR=ALL.
This saves all new variables generated during the current session in the working data file and
may require extra processing time.

Forecasting. When used with the PREDICT command, an ARIMA model with no regressor vari-
ables can produce forecasts and confidence limits beyond the end of the series (see PREDICT
in the SPSS Syntax Reference Guide).

Basic Specification

The basic specification is the dependent series name. To estimate an ARIMA model, the
MODEL subcommand and/or separate parameter-order subcommands (or the APPLY subcom-
mand) must also be specified. Otherwise, only the constant will be estimated.

• ARIMA estimates the parameter values of a model using the parameter specifications on
the MODEL subcommand and/or the separate parameter-order subcommands P, D, Q, SP,
SD, and SQ.

• A 95% confidence interval is used unless it is changed by a TSET CIN command prior to
the ARIMA procedure.

• Unless the default on TSET NEWVAR is changed prior to ARIMA, five variables are auto-
matically created, labeled, and added to the working data file: fitted values (FIT#1), resid-
uals (ERR#1), lower confidence limits (LCL#1), upper confidence limits (UCL#1), and

154 Syntax Reference

standard errors of prediction (SEP#1). (For variable naming and labeling conventions, see
“New Variables” on p. 1734.)

• By default, ARIMA will iterate up to a maximum of 10 unless one of three termination cri-
teria is met: the change in all parameters is less than the TSET CNVERGE value (the de-
fault value is 0.001); the sum-of-squares percentage change is less than 0.001%; or the
Marquardt constant exceeds 109 (1.0E9).

• At each iteration, the Marquardt constant and adjusted sum of squares are displayed. For
the final estimates, the displayed results include the parameter estimates, standard errors,
t ratios, estimate of residual variance, standard error of the estimate, log likelihood,
Akaike’s information criterion (AIC) (Akaike, 1974), Schwartz’s Bayesian criterion
(SBC) (Schwartz, 1978), and covariance and correlation matrices.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.

• Other subcommands can be specified more than once, but only the last specification of
each one is executed.

• The CONSTANT, NOCONSTANT, NOLOG, LN, and LOG specifications are optional key-
words on the MODEL subcommand and are not independent subcommands.

Operations

• If differencing is specified in models with regressors, both the dependent series and the
regressors are differenced. To difference only the dependent series, use the DIFF or SDIFF
function on CREATE to create a new series (see CREATE in the SPSS Syntax Reference
Guide).

• When ARIMA is used with the PREDICT command to forecast values beyond the end of
the series, the original series and residual variable are assigned the system-missing value
after the last case in the original series.

• The USE and PREDICT ranges cannot be exactly the same; at least one case from the USE
period must precede the PREDICT period. (See USE and PREDICT in the SPSS Syntax Ref-
erence Guide

• If a LOG or LN transformation is specified, the residual (error) series is reported in the
logged metric; it is not transformed back to the original metric. This is so the proper di-
agnostic checks can be done on the residuals. However, the predicted (forecast) values
are transformed back to the original metric. Thus, the observed value minus the predicted
value will not equal the residual value. A new residual variable in the original metric can
be computed by subtracting the predicted value from the observed value.

• Specifications on the P, D, Q, SP, SD, and SQ subcommands override specifications on
the MODEL subcommand.

ARIMA 155

• For ARIMA models with a fixed regressor, the number of forecasts and confidence inter-
vals produced cannot exceed the number of observations for the regressor (independent)
variable. Regressor series cannot be extended.

• Models of series with imbedded missing observations can take longer to estimate.

Limitations

• Maximum 1 VARIABLES subcommand.

• Maximum 1 dependent series. There is no limit on the number of independent series.

• Maximum 1 model specification.

Example

ARIMA SALES WITH INTERVEN
 /MODEL=(0,1,1)(0,1,1).

• This example specifies a multiplicative seasonal ARIMA model with a fixed regressor
variable.

• The dependent series is SALES, the regressor series is INTERVEN, and an ARIMA
(0,1,1)(0,1,1) model with a constant term is estimated.

VARIABLES Subcommand

VARIABLES specifies the dependent series and regressors, if any, and is the only required sub-
command. The actual keyword VARIABLES can be omitted.

• The dependent series is specified first, followed by the keyword WITH and the regressors
(independent series).

MODEL Subcommand

MODEL specifies the ARIMA model, period length, whether a constant term should be in-
cluded in the model, and whether the series should be log transformed.

• The model parameters are listed using the traditional ARIMA (p,d,q) (sp,sd,sq) syntax.

• Nonseasonal parameters are specified with the appropriate p, d, and q values separated by
commas and enclosed in parentheses.

• The value p is a positive integer indicating the order of nonseasonal autoregressive pa-
rameters, d is a positive integer indicating the degree of nonseasonal differencing, and q
is a positive integer indicating the nonseasonal moving-average order.

• Seasonal parameters are specified after the nonseasonal parameters with the appropriate
sp, sd, and sq values. They are also separated by commas and enclosed in parentheses.

• The value sp is a positive integer indicating the order of seasonal autoregressive parame-
ters, sd is a positive integer indicating the degree of seasonal differencing, and sq is a pos-
itive integer indicating the seasonal moving-average order.

156 Syntax Reference

• After the seasonal model parameters, a positive integer can be specified to indicate the
length of a seasonal period.

• If the period length is not specified, the periodicity established on TSET PERIOD is in ef-
fect. If TSET PERIOD is not specified, the periodicity established on the DATE command
is used. If periodicity was not established anywhere and a seasonal model is specified, the
ARIMA procedure is not executed.

The following optional keywords can be specified on MODEL:

CONSTANT Include a constant in the model. This is the default unless the default setting
on the TSET command is changed prior to the ARIMA procedure.

NOCONSTANT Do not include a constant.

NOLOG Do not log transform the series. This is the default.

LG10 Log transform the series before estimation using the base 10 logarithm. The
keyword LOG is an alias for LG10.

LN Log transform the series before estimation using the natural logarithm
(base e).

• Keywords can be specified anywhere on the MODEL subcommand.

• CONSTANT and NOCONSTANT are mutually exclusive. If both are specified, only the last
one is executed.

• LG10 (LOG), LN, and NOLOG are mutually exclusive. If more than one is specified, only
the last one is executed.

• CONSTANT and NOLOG are generally used as part of an APPLY subcommand to turn off
previous NOCONSTANT, LG10, or LN specifications

Example
ARIMA SALES WITH INTERVEN
 /MODEL=(1,1,1)(1,1,1) 12 NOCONSTANT LN.

• This example specifies a model with a first-order nonseasonal autoregressive parameter,
one degree of nonseasonal differencing, a first-order nonseasonal moving average, a first-
order seasonal autoregressive parameter, one degree of seasonal differencing, and a first-
order seasonal moving average.

• The 12 indicates that the length of the period for SALES is 12.
• The keywords NOCONSTANT and LN indicate that a constant is not included in the model

and that the series is log transformed using the natural logarithm before estimation.

Parameter-Order Subcommands

P, D, Q, SP, SD, and SQ can be used as additions or alternatives to the MODEL subcommand
to specify particular lags in the model and degrees of differencing for fitting single or non-
sequential parameters. These subcommands are also useful for specifying a constrained
model. The subcommands represent the following parameters:

P Autoregressive order.

ARIMA 157

D Order of differencing.

Q Moving-average order.

SP Seasonal autoregressive order.

SD Order of seasonal differencing.

SQ Seasonal moving-average order.

• The specification on P, Q, SP, or SQ indicates which lags are to be fit and can be a single
positive integer or a list of values in parentheses.

• A single value n denotes lags 1 through n.
• A single value in parentheses, for example (n), indicates that only lag n should be fit.

• A list of values in parentheses (i, j, k) denotes lags i, j, and k only.

• You can specify as many values in parentheses as you want.

• D and SD indicate the degrees of differencing and can be specified only as single values,
not value lists.

• Specifications on P, D, Q, SP, SD, and SQ override specifications for the corresponding
parameters on the MODEL subcommand.

Example
ARIMA SALES
 /P=2
 /D=1.
ARIMA INCOME
 /MODEL=LOG NOCONSTANT
 /P=(2).
ARIMA VAR01
 /MODEL=(1,1,4)(1,1,4)
 /Q=(2,4)
 /SQ=(2,4).
ARIMA VAR02
 /MODEL=(1,1,0)(1,1,0)
 /Q=(2,4)
 /SQ=(2,4).

• The first command fits a model with autoregressive parameters at lags 1 and 2 (P=2) and
one degree of differencing (D=1) for the series SALES. This command is equivalent to:

ARIMA SALES
 /MODEL=(2,1,0).

• In the second command, the series INCOME is log transformed and no constant term is es-
timated. There is one autoregressive parameter at lag 2, as indicated by P=(2).

• The third command specifies a model with one autoregressive parameter, one degree of
differencing, moving-average parameters at lags 2 and 4, one seasonal autoregressive pa-
rameter, one degree of seasonal differencing, and seasonal moving-average parameters at
lags 2 and 4. The 4’s in the MODEL subcommand for moving average and seasonal mov-
ing average are ignored because of the Q and SQ subcommands.

158 Syntax Reference

• The last command specifies the same model as the previous command. Even though the
MODEL command specifies no nonseasonal or seasonal moving-average parameters,
these parameters are estimated at lags 2 and 4 because of the Q and SQ specifications.

Initial Value Subcommands

AR, MA, SAR, SMA, REG, and CON specify initial values for parameters. These subcommands
refer to the following parameters:

AR Autoregressive parameter values.

MA Moving-average parameter values.

SAR Seasonal autoregressive parameter values.

SMA Seasonal moving-average parameter values.

REG Fixed regressor parameter values.

CON Constant value.

• Each subcommand specifies a value or value list indicating the initial values to be used
in estimating the parameters.

• CON can be specified only as a single value, not a value list.

• Values are matched to parameters in sequential order. That is, the first value is used as the
initial value for the first parameter of that type, the second value is used as the initial value
for the second parameter of that type, and so on.

• Specify only the subcommands for which you can supply a complete list of initial values
(one for every lag to be fit for that parameter type).

• If you specify an inappropriate initial value for AR, MA, SAR, or SMA, ARIMA will reset
the value and issue a message.

• If MXITER=0, these subcommands specify final parameter values to use for forecasting.

Example
ARIMA VARY
 /MODEL (1,0,2)
 /AR=0.5
 /MA=0.8, -0.3.
ARIMA VARY
 /MODEL (1,0,2)
 /AR=0.5.

• The first command specifies initial estimation values for the autoregressive term and for
the two moving-average terms.

• The second command specifies the initial estimation value for the autoregressive term
only. The moving-average initial values are estimated by ARIMA.

ARIMA 159

Termination Criteria Subcommands

ARIMA will continue to iterate until one of four termination criteria is met. The values of these
criteria can be changed using any of the following subcommands followed by the new value:

MXITER Maximum number of iterations. The value specified can be any integer equal to or
greater than 0. If MXITER equals 0, initial parameter values become final estimates
to be used in forecasting. The default value is 10.

PAREPS Parameter change tolerance. The value specified can be any real number greater
than 0. A change in all of the parameters by less than this amount causes termina-
tion. The default is the value set on TSET CNVERGE. If TSET CNVERGE is not spec-
ified, the default is 0.001. A value specified on PAREPS overrides the value set on
TSET CNVERGE.

SSQPCT Sum of squares percentage. The value specified can be a real number greater than
0 and less than or equal to 100. A relative change in the adjusted sum of squares by
less than this amount causes termination. The default value is 0.001%.

MXLAMB Maximum lambda. The value specified can be any integer. If the Marquardt con-
stant exceeds this value, estimation is terminated. The default value is
1,000,000,000 (109).

CINPCT Subcommand

CINPCT controls the size of the confidence interval.

• The specification on CINPCT can be any real number greater than 0 and less than 100.

• The default is the value specified on TSET CIN. If TSET CIN is not specified, the default is 95.

• CINPCT overrides the value set on the TSET CIN command.

APPLY Subcommand

APPLY allows you to use a previously defined ARIMA model without having to repeat the
specifications. For general rules on APPLY, see the APPLY subcommand on p. 1737.

• The specifications on APPLY can include the name of a previous model in quotes and one
of three keywords. All of these specifications are optional.

• If a model name is not specified, the model specified on the previous ARIMA command is
used.

• To change one or more of the specifications of the model, specify the subcommands of
only those portions you want to change after the subcommand APPLY.

• If no series are specified on the ARIMA command, the series that were originally specified
with the model being reapplied are used.

• To change the series used with the model, enter new series names before or after the
APPLY subcommand. If a series name is specified before APPLY, the slash before the sub-
command is required.

160 Syntax Reference

• APPLY with the keyword FIT sets MXITER to 0. If you apply a model that used FIT and
want to obtain estimates, you will need to respecify MXITER.

The keywords available for APPLY with ARIMA are:

SPECIFICATIONS Use only the specifications from the original model. ARIMA should
create the initial values. This is the default.

INITIAL Use the original model’s final estimates as initial values for
estimation.

FIT No estimation. Estimates from the original model should be applied
directly.

Example
ARIMA VAR1
 /MODEL=(0,1,1)(0,1,1) 12 LOG NOCONSTANT.
ARIMA APPLY
 /MODEL=CONSTANT.
ARIMA VAR2
 /APPLY INITIAL.
ARIMA VAR2
 /APPLY FIT.

• The first command specifies a model with one degree of differencing, one moving-aver-
age term, one degree of seasonal differencing, and one seasonal moving-average term.
The length of the period is 12. A base 10 log of the series is taken before estimation and
no constant is estimated. This model is assigned the name MOD_1.

• The second command applies the same model to the same series, but this time estimates
a constant term. Everything else stays the same. This model is assigned the name MOD_2.

• The third command uses the same model as the previous command (MOD_2) but applies
it to series VAR2. Keyword INITIAL specifies that the final estimates of MOD_2 are to be
used as the initial values for estimation.

• The last command uses the same model but this time specifies no estimation. Instead, the
values from the previous model are applied directly.

FORECAST Subcommand

The FORECAST subcommand specifies the forecasting method to use. Available methods
are:

EXACT Unconditional least squares. The forecasts are unconditional least squares
forecasts. They are also called finite memory forecasts. This is the default.

CLS Conditional least squares using model constraint for initialization. The fore-
casts are computed by assuming that the unobserved past errors are zero and
the unobserved past values of the response series are equal to the mean.

AUTOINIT Conditional least squares using the beginning series values for initializa-
tion. The beginning series values are used to initialize the recursive condi-
tional least squares forecasting algorithm.

ARIMA 161

References

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transaction on Auto-
matic Control AC-19: 716–723.

Box, G. E., and G. C. Tiao. 1975. Intervention analysis with applications to economic and envi-
ronmental problems. Journal of the American Statistical Association 70: 70–79.

Cryer, J. D. 1986. Time series analysis. Boston: Duxbury Press.
Harvey, A. C. 1981. The econometric analysis of time series. Oxford: Philip Allan.
Harvey, A. C. 1981. Time series models. Oxford: Philip Allan.
Kohn, R., and C. Ansley. 1985. Regression algorithm. Biometrika 81: 751–761.
Kohn, R., and C. Ansley. 1986. Estimation, prediction, and interpolation for ARIMA models with

missing data. Journal of the American Statistical Association 81: 751–761.
McCleary, R., and R. A. Hay. 1980. Applied time series analysis for the social sciences. Beverly

Hills, Calif.: Sage Publications.
Melard, G. 1984. A fast algorithm for the exact likelihood of autoregressive-moving average mod-

els. Applied Statistics 33(1): 104–119.
Schwartz, G. 1978. Estimating the dimensions of a model. Annals of Statistics 6: 461–464.

162

AUTORECODE

AUTORECODE VARIABLES=varlist

 /INTO new varlist

 [/DESCENDING]

 [/PRINT]

Example
AUTORECODE VARIABLES=COMPANY /INTO RCOMPANY.

Overview

AUTORECODE recodes the values of string and numeric variables to consecutive integers and
puts the recoded values into a new variable called a target variable. The value labels or
values of the original variable are used as value labels for the target variable. AUTORECODE
is useful for creating numeric independent (grouping) variables from string variables for
procedures like ONEWAY, ANOVA, MANOVA, and DISCRIMINANT. AUTORECODE can also
recode the values of factor variables to consecutive integers, which is required by MANOVA
and which reduces the amount of workspace needed by other statistical procedures like
ANOVA. AUTORECODE is also useful with the TABLES procedure, where string values are
truncated to eight characters but value labels can be displayed in full. (See the SPSS Tables
manual for more information.)

AUTORECODE is similar to the RECODE command. The main difference is that
AUTORECODE automatically generates the values. In RECODE, you must specify the new
values.

Options

Displaying Recoded Variables. You can display the values of the original and recoded
variables using the PRINT subcommand.

Ordering of Values. By default, values are recoded in ascending order (lowest to highest).
You can recode values in descending order (highest to lowest) using the DESCENDING
subcommand.

Basic Specification

The basic specification is VARIABLES, and INTO. VARIABLES specifies the variables to be
recoded. INTO provides names for the target variables that store the new values. VARIABLES
and INTO must name or imply the same number of variables.

AUTORECODE 163

Subcommand Order

• VARIABLES must be specified first.
• INTO must immediately follow VARIABLES.

Syntax Rules

A variable cannot be recoded into itself. More generally, target variable names cannot dupli-
cate any variable names already in the working file.

Operations

• The values of each variable to be recoded are sorted and then assigned numeric values.
By default, the values are assigned in ascending order: 1 is assigned to the lowest non-
missing value of the original variable, 2 to the second-lowest nonmissing value, and so
on for each value of the original variable.

• Values of the original variables are unchanged.
• Missing values are recoded into values higher than any nonmissing values, with their

order preserved. For example, if the original variable has 10 nonmissing values, the first
missing value is recoded as 11 and retains its user-missing status. System-missing values
remain system-missing.

• AUTORECODE does not sort the cases in the working file. As a result, the consecutive
numbers assigned to the target variables may not be in order in the file.

• Target variables are assigned the same variable labels as the original source variables. To
change the variable labels, use the VARIABLE LABELS command after AUTORECODE.

• Value labels are automatically generated for each value of the target variables. If the orig-
inal value had a label, that label is used for the corresponding new value. If the original
value did not have a label, the old value itself is used as the value label for the new value.
The defined print format of the old value is used to create the new value label.

• AUTORECODE ignores SPLIT FILE specifications. However, any SELECT IF specifications
are in effect for AUTORECODE.

164 AUTORECODE

Example

DATA LIST / COMPANY 1-21 (A) SALES 24-28.
BEGIN DATA
CATFOOD JOY 10000
OLD FASHIONED CATFOOD 11200
. . .
PRIME CATFOOD 10900
CHOICE CATFOOD 14600
END DATA.

AUTORECODE VARIABLES=COMPANY /INTO=RCOMPANY /PRINT.

TABLES TABLE = SALES BY RCOMPANY
/TTITLE=’CATFOOD SALES BY COMPANY’.

• Because TABLES truncates string variables to eight characters, AUTORECODE is used to
recode the string variable COMPANY, which contains the names of various hypothetical
cat food companies.

• AUTORECODE recodes COMPANY into a numeric variable RCOMPANY. Values of
RCOMPANY are consecutive integers beginning with 1 and ending with the number of
different values entered for COMPANY. The values of COMPANY are used as value
labels for RCOMPANY’s numeric values. The PRINT subcommand displays a table of
the original and recoded values.

• The variable RCOMPANY is used as the banner variable in the TABLES procedure to
produce a table of sales figures for each cat food company. The value labels for
RCOMPANY are used as column headings. Since TABLES does not truncate value labels,
the full company names appear.

Example

AUTORECODE VARIABLES=REGION /INTO=RREGION /PRINT.
ANOVA Y BY RREGION (1,5).

• In statistical procedures, empty cells can reduce performance and increase memory
requirements. In this example, assume that the factor REGION has only five nonempty
categories, represented by the numeric codes 1, 4, 6, 14, and 20. AUTORECODE recodes
those values into 1, 2, 3, 4, and 5 for target variable RREGION.

• The variable RREGION is used in ANOVA. If the original variable REGION were used, the
amount of memory required by ANOVA would be 4429 bytes. Using variable RREGION,
ANOVA requires only 449 bytes of memory.

AUTORECODE 165

Example

DATA LIST / RELIGION 1-8 (A) Y 10-13.
MISSING VALUES RELIGION (’ ’).
BEGIN DATA
CATHOLIC 2013
PROTEST 3234
JEWISH 5169
NONE 714
OTHER 2321

. . .
END DATA.
AUTORECODE VARIABLES=RELIGION /INTO=NRELIG /PRINT /DESCENDING.
MANOVA Y BY NRELIG(1,5).

• Because MANOVA requires consecutive integer values for factor levels, the string variable
RELIGION is recoded into a numeric variable. The five values for RELIGION are first sorted
in descending order (Z to A) and are then assigned values 1, 2, 3, 4, and 5 in target variable
NRELIG.

• Since a blank space is specified as a user-missing value, it is assigned the value 6. In the
table produced by PRINT, the value 6 is displayed as 6M for the variable NRELIG to flag
it as a user-missing value.

• The values of RELIGION are used as value labels for the corresponding new values in
NRELIG.

• Target variable NRELIG is used as a factor variable in MANOVA.

VARIABLES Subcommand

VARIABLES specifies the variables to be recoded. VARIABLES is required and must be
specified first. The actual keyword VARIABLES is optional.

• Values from the specified variables are recoded and stored in the target variables listed on
INTO. Values of the original variables are unchanged.

INTO Subcommand

INTO provides names for the target variables that store the new values. INTO is required and
must immediately follow VARIABLES.

• The number of target variables named or implied on INTO must equal the number of
source variables listed on VARIABLES.

Example
AUTORECODE VARIABLES=V1 V2 V3 /INTO=NEWV1 TO NEWV3 /PRINT.

• AUTORECODE stores the recoded values of V1, V2, and V3 into target variables named
NEWV1, NEWV2, and NEWV3.

166 AUTORECODE

PRINT Subcommand

PRINT displays a correspondence table of the original values of the source variables and the
new values of the target variables. The new value labels are also displayed.

• The only specification is keyword PRINT. There are no additional specifications.

DESCENDING Subcommand

By default, values for the source variable are recoded in ascending order (from lowest to
highest). DESCENDING assigns the values to new variables in descending order (from high-
est to lowest). The largest value is assigned 1, the second-largest, 2, and so on.
• The only specification is keyword DESCENDING. There are no additional specifications.

167

BEGIN DATA—END DATA

BEGIN DATA
data records
END DATA

Example
BEGIN DATA
1 3424 274 ABU DHABI 2
2 39932 86 AMSTERDAM 4
3 8889 232 ATHENS
4 3424 294 BOGOTA 3
END DATA.

Overview

BEGIN DATA and END DATA are used when data are entered within the command sequence
(inline data). BEGIN DATA and END DATA are also used for inline matrix data. BEGIN DATA
signals the beginning of data lines and END DATA signals the end of data lines.

Basic Specification

The basic specification is BEGIN DATA, the data lines, and END DATA. BEGIN DATA must be
specified by itself on the line that immediately precedes the first data line. END DATA is
specified by itself on the line that immediately follows the last data line.

Syntax Rules

• BEGIN DATA, the data, and END DATA must precede the first procedure.

• The command terminator after BEGIN DATA is optional. It is best to leave it out so that
the program will treat inline data as one continuous specification.

• END DATA must always begin in column 1. It must be spelled out in full and can have
only one space between the words END and DATA. Procedures and additional transforma-
tions can follow the END DATA command.

• Data lines must not have a command terminator. For inline data formats, see DATA LIST.

• Inline data records are limited to a maximum of 80 columns. (On some systems, the
maximum may be fewer than 80 columns.) If data records exceed 80 columns, they must
be stored in an external file that is specified on the FILE subcommand of the DATA LIST
(or similar) command.

168 BEGIN DATA—END DATA

Operations

• When the program encounters BEGIN DATA, it begins to read and process data on the next
input line. All preceding transformation commands are processed as the working file is
built.

• The program continues to evaluate input lines as data until it encounters END DATA, at
which point it begins evaluating input lines as commands.

• No other commands are recognized between BEGIN DATA and END DATA.

• The INCLUDE command can specify a file that contains BEGIN DATA, data lines, and END
DATA. The data in such a file are treated as inline data. Thus, the FILE subcommand should
be omitted from the DATA LIST (or similar) command.

• When running the program from prompts, the prompt DATA> appears immediately after
BEGIN DATA is specified. After END DATA is specified, the command line prompt returns.

Example

DATA LIST /XVAR 1 YVAR ZVAR 3-12 CVAR 14-22(A) JVAR 24.
BEGIN DATA
1 3424 274 ABU DHABI 2
2 39932 86 AMSTERDAM 4
3 8889 232 ATHENS
4 3424 294 BOGOTA 3
5 11323 332 HONG KONG 3
6 323 232 MANILA 1
7 3234 899 CHICAGO 4
8 78998 2344 VIENNA 3
9 8870 983 ZURICH 5
END DATA.
MEANS XVAR BY JVAR.

• DATA LIST defines the names and column locations of the variables. The FILE subcom-
mand is omitted because the data are inline.

• There are nine cases in the inline data. Each line of data completes a case.

• END DATA signals the end of data lines. It begins in column 1 and has only a single space
between END and DATA.

169

BREAK

BREAK

Overview

BREAK controls looping that cannot be fully controlled with IF clauses. Generally, BREAK
is used within a DO IF—END IF structure. The expression on the DO IF command specifies
the condition in which BREAK is executed.

Basic Specification

• The only specification is keyword BREAK. There are no additional specifications.

• BREAK must be specified within a loop structure. Otherwise, an error results.

Operations

• A BREAK command inside a loop structure but not inside a DO IF—END IF structure
terminates the first iteration of the loop for all cases, since no conditions for BREAK
are specified.

• A BREAK command within an inner loop terminates only iterations in that structure, not
in any outer loop structures.

Example

VECTOR #X(10).
LOOP #I = 1 TO #NREC.
+ DATA LIST NOTABLE/ #X1 TO #X10 1-20.
+ LOOP #J = 1 TO 10.
+ DO IF SYSMIS(#X(#J)).
+ BREAK.
+ END IF.
+ COMPUTE X = #X(#J).
+ END CASE.
+ END LOOP.
END LOOP.

• The inner loop terminates when there is a system-missing value for any of the variables
#X1 to #X10.

• The outer loop continues until all records are read.

170

CACHE

CACHE.

Although the virtual active file can vastly reduce the amount of temporary disk space
required, the absence of a temporary copy of the "active" file means that the original data
source has to be re-read for each procedure. For data tables read from a database source this
means the SQL query that reads the information from the database must be re-executed for
any command or procedure that needs to read the data. Since virtually all statistical analysis
procedures and charting procedures need to read the data, the SQL query is re-executed for
each procedure you run, which can result in a significant increase in processing time if you
run a large number of procedures.

If you have sufficient disk space on the computer performing the analysis (either your local
computer or a remote server), you can eliminate multiple SQL queries and improve
processing time by creating a data cache of the active file with the CACHE command. The
CACHE command tells SPSS to copy all the data to a temporary disk file the next time the
data are passed to run a procedure. If you want the cache written immediately, use the
EXECUTE command after the CACHE command.

• The only specification is the command name CACHE.
• A cache file will not be written during a procedure which uses temporary variables.

• A cache file will not be written if the data are already in a temporary disk file and that
file has not been modified since it was written.

Example
CACHE.
TEMPORARY.
RECODE alcohol(0 thru .04 = ’sober’) (.04 thru .08 = ’tipsy’)
 (else = ’drunk’) into state.
FREQUENCIES var=state.
GRAPH...

No cache file will be written during the FREQUENCIES procedure. It will be written during
the GRAPH procedure.

171

CASEPLOT

CASEPLOT [VARIABLES=]varlist

 [/DIFF={1}]
 {n}

 [/SDIFF={1}]
 {n}

 [/PERIOD=n]

 [/{NOLOG**}]
 {LN }

 [/ID=varname]

 [/MARK={varname }]
 {date specification}

 [/SPLIT {UNIFORM**}]
 {SCALE }

 [/APPLY [=’model name’]]

For plots with one variable:

 [/FORMAT=[{NOFILL**}] [{NOREFERENCE**}]
 {RIGHT } {REFERENCE }

For plots with multiple variables:

 [/FORMAT={NOJOIN**}]
 {JOIN }
 {HILO }

**Default if the subcommand is omitted.

Example
CASEPLOT TICKETS
 /LN
 /DIFF
 /SDIFF
 /PERIOD=12
 /FORMAT=REFERENCE
 /MARK=Y 55 M 6.

Overview

CASEPLOT produces a plot of one or more time series or sequence variables. You can re-
quest natural log and differencing transformations to produce plots of transformed vari-
ables. There are several plot formats available.

172 CASEPLOT

Options

Modifying the Variables. You can request a natural log transformation of the variable using the
LN subcommand and seasonal and nonseasonal differencing to any degree using the SDIFF
and DIFF subcommands. With seasonal differencing, you can also specify the periodicity on
the PERIOD subcommand.

Plot Format. With the FORMAT subcommand, you can fill in the area on one side of the plotted
values on plots with one variable. You can also plot a reference line indicating the variable
mean. For plots with two or more variables, you can specify whether you want to join the
values for each case with a horizontal line. With the ID subcommand, you can label the ver-
tical axis with the values of a specified variable. You can mark the onset of an intervention
variable on the plot with the MARK subcommand.

Split-File Processing. You can control how to plot data that have been divided into subgroups
by a SPLIT FILE command using the SPLIT subcommand.

Basic Specification

The basic specification is one or more variable names.

• If the DATE command has been specified, the vertical axis is labeled with the DATE_ vari-
able at periodic intervals. Otherwise, sequence numbers are used. The horizontal axis is
labeled with the value scale determined by the plotted variables.

Figure 1 shows a default high-resolution plot with DATE=YEAR 1900. Figure 2 shows the
same default plot in low resolution.

Figure 1 CASEPLOT=PRICE (in high resolution)

CASEPLOT 173

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.
• Other subcommands can be specified more than once, but only the last specification of

each one is executed.

Operations

• Subcommand specifications apply to all variables named on the CASEPLOT command.

• If the LN subcommand is specified, any differencing requested on that CASEPLOT com-
mand is done on the log-transformed variables.

• Split-file information is displayed as part of the subtitle and transformation information
is displayed as part of the footnote.

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of variables
named on the list.

Example

CASEPLOT TICKETS
 /LN
 /DIFF
 /SDIFF
 /PERIOD=12
 /FORMAT=REFERENCE
 /MARK=Y 55 M 6.

• This example produces a plot of TICKETS after a natural log transformation, differencing,
and seasonal differencing have been applied.

• LN transforms the data using the natural logarithm (base e) of the variable.

• DIFF differences the variable once.

• SDIFF and PERIOD apply one degree of seasonal differencing with a period of 12.

• FORMAT=REFERENCE adds a reference line at the variable mean.
• MARK provides a marker on the plot at June 1955. The marker is displayed as a horizontal

reference line in a high-resolution plot.

VARIABLES Subcommand

VARIABLES specifies the names of the variables to be plotted and is the only required sub-
command. The actual keyword VARIABLES can be omitted.

174 CASEPLOT

DIFF Subcommand

DIFF specifies the degree of differencing used to convert a nonstationary variable to a station-
ary one with a constant mean and variance before plotting.

• You can specify any positive integer on DIFF.

• If DIFF is specified without a value, the default is 1.

• The number of values displayed decreases by 1 for each degree of differencing.

Example
CASEPLOT TICKETS
 /DIFF=2.

• In this example, TICKETS is differenced twice before plotting.

SDIFF Subcommand

If the variable exhibits a seasonal or periodic pattern, you can use the SDIFF subcommand to
seasonally difference a variable before plotting.

• The specification on SDIFF indicates the degree of seasonal differencing and can be any
positive integer.

• If SDIFF is specified without a value, the degree of seasonal differencing defaults to 1.

• The number of seasons displayed decreases by 1 for each degree of seasonal differencing.

• The length of the period used by SDIFF is specified on the PERIOD subcommand. If the
PERIOD subcommand is not specified, the periodicity established on the TSET or DATE
command is used (see the PERIOD subcommand below).

PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF subcommand.
• The specification on PERIOD indicates how many observations are in one period or sea-

son and can be any positive integer.

• PERIOD is ignored if it is used without the SDIFF subcommand.

• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If
TSET PERIOD is not specified either, the periodicity established on the DATE command
is used. If periodicity is not established anywhere, the SDIFF subcommand will not be
executed.

Example
CASEPLOT TICKETS
 /SDIFF=1
 /PERIOD=12.

• This command applies one degree of seasonal differencing with 12 observations per sea-
son to TICKETS before plotting.

CASEPLOT 175

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base e) of the variable and is used to re-
move varying amplitude over time. NOLOG indicates that the data should not be log trans-
formed. NOLOG is the default.

• If you specify LN on CASEPLOT, any differencing requested on that command will be
done on the log-transformed variable.

• There are no additional specifications on LN or NOLOG.

• Only the last LN or NOLOG subcommand on a CASEPLOT command is executed.
• If a natural log transformation is requested, any value less than or equal to zero is set to

system-missing.

• NOLOG is generally used with an APPLY subcommand to turn off a previous LN specification.

Example
CASEPLOT TICKETS
 /LN.

• In this example, TICKETS is transformed using the natural logarithm before plotting.

ID Subcommand

ID names a variable whose values will be used as the left-axis labels.

• The only specification on ID is a variable name. If you have a variable named ID in your
working data file, the equals sign after the subcommand is required.

• ID overrides the specification on TSET ID.
• If ID or TSET ID is not specified, the left vertical axis is labeled with the DATE_ variable

created by the DATE command. If the DATE_ variable has not been created, the observa-
tion or sequence number is used as the label.

Example
CASEPLOT VARA
 /ID=VARB.

• In this example, the values of variable VARB will be used to label the left axis of the plot
of VARA.

FORMAT Subcommand

FORMAT controls the plot format.

• The specification on FORMAT is one of the keywords listed below.

• Keywords NOFILL, LEFT,NOREFERENCE, and REFERENCE apply to plots with one vari-
able. NOFILL and LEFT are alternatives and indicate how the plot is filled. NOREFERENCE
and REFERENCE are alternatives and specify whether a reference line is displayed. One

176 CASEPLOT

keyword from each set can be specified for high-resolution plots. NOFILL and NOREFER-
ENCE are the defaults.

• Keywords JOIN, NOJOIN, and HILO apply to plots with multiple variables and are
alternatives. NOJOIN is the default. Only one keyword can be specified on a FORMAT
subcommand for plots with two variables.

The following formats are available for plots of one variable:

NOFILL Plot only the values for the variable with no fill. NOFILL produces a plot with
no fill to the left or right of the plotted values. This is the default format when
one variable is specified.

LEFT Plot the values for the variable and fill in the area to the left. For high-
resolution plots, if the plotted variable has missing or negative values,
keyword LEFT is ignored and the default NOFILL is used instead. Figure 2
contains a left-filled high-resolution plot.

NOREFERENCE Do not plot a reference line. This is the default when one variable is specified.

REFERENCE Plot a reference line indicating the variable mean. In low resolution, the area
between the plotted curve and the reference line is filled in with the plotting
character (the first character of the variable name). A fill chart is displayed as
an area chart with a reference line and a nofill chart is a line chart with a ref-

Figure 2 FORMAT=LEFT

CASEPLOT 177

erence line. Figure 3 shows a high-resolution plot with a reference line indi-
cating the mean of the variable.

The following formats are available for plots of multiple variables:

NOJOIN Plot the values of each variable named. In high-resolution plots, different colors or
line patterns are used for multiple variables. Multiple occurrences of the same
value for a single observation are plotted using a dollar sign ($). This is the default
format for plots of multiple variables.

JOIN Plot the values of each variable and join the values for each case. Values are plot-
ted as described for NOJOIN and the values for each case are joined together by a
line. Figure 4 contains a plot in this format with three variables (PRICE, INCOME,
and CONSUMP).

HILO Plot the highest and lowest values across variables for each case and join the
two values together. The high and low values are plotted as a pair of vertical bars
and are joined with a dashed line. HILO is ignored if more than three variables
are specified and the default NOJOIN is used instead. Figure 5 contains a plot in
this format with three variables (PRICE, INCOME, and CONSUMP).

Figure 3 FORMAT=REFERENCE

Figure 4 FORMAT=JOIN

178 CASEPLOT

MARK Subcommand

Use MARK to indicate the onset of an intervention variable. Figure 6 shows a high-resolution
plot with a reference line indicating the year 1945.

• In high resolution, the onset date is indicated by a horizontal reference line. In low
resolution it is indicated by a tick mark on the left axis.

• The specification on MARK can be either a variable name or an onset date if the DATE_
variable exists.

• If a variable is named, the reference line indicates where the values of that variable
change.

• A date specification follows the same format as the DATE command, that is, a keyword
followed by a value. For example, the specification for June 1955 is Y 1955 M 6 (or Y 55
M 6 if only the last two digits of the year are used on DATE).

SPLIT Subcommand

SPLIT specifies how to plot data that have been divided into subgroups by a SPLIT FILE
command. The specification on SPLIT is either SCALE or UNIFORM.

Figure 5 FORMAT=HILO

Figure 6 MARK=Y 1945

CASEPLOT 179

• If FORMAT=REFERENCE is specified when SPLIT=SCALE, the reference line is placed at
the mean of the subgroup. If FORMAT=REFERENCE is specified when SPLIT=UNIFORM,
the reference line is placed at the overall mean.

UNIFORM Uniform scale. The horizontal axis is scaled according to the values of the entire
data set. This is the default if SPLIT is not specified.

SCALE Individual scale. The horizontal axis is scaled according to the values of each indi-
vidual subgroup.

Example
SPLIT FILE BY REGION.
CASEPLOT TICKETS / SPLIT=SCALE.

• This example produces one plot for each REGION subgroup.

• The horizontal axis for each plot is scaled according to the values of TICKETS for each
particular region.

APPLY Subcommand

APPLY allows you to produce a caseplot using previously defined specifications without
having to repeat the CASEPLOT subcommands.

• The only specification on APPLY is the name of a previous model in quotes. If a model
name is not specified, the specifications from the previous CASEPLOT command are used.

• If no variables are specified, the variables that were specified for the original plot are used.

• To change one or more plot specifications, specify the subcommands of only those
portions you want to change after the APPLY subcommand.

• To plot different variables, enter new variable names before or after the APPLY subcommand.

Example
CASEPLOT TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PER=12.
CASEPLOT ROUNDTRP
 /APPLY.
CASEPLOT APPLY
 /NOLOG.

• The first command produces a plot of TICKETS after a natural log transformation,
differencing, and seasonal differencing.

• The second command plots ROUNDTRP using the same transformations specified for
TICKETS.

• The third command produces a plot of ROUNDTRP, but this time without any natural log
transformation. The variable is still differenced once and seasonally differenced with a
periodicity of 12.

180

CASESTOVARS

CASESTOVARS

[/ID = varlist]

[/FIXED = varlist]

[/AUTOFIX = {YES**}]
{NO }

[/VIND [ROOT = rootname]]

[/COUNT = new variable ["label"]]

[/RENAME varname=rootname varname=rootname ...]

[/SEPARATOR = {"." }]
{“string”}]

[/INDEX = varlist]

[/GROUPBY = {VARIABLE**}]
{INDEX }]

[/DROP = varlist]

**Default if the subcommand is omitted.

Example
CASESTOVARS /ID idvar /INDEX var1.

Overview

A variable contains information that you want to analyze, such as a measurement or a test
score. A case is an observation, such as an individual or an institution.

In a simple data file, each variable is a single column in your data, and each case is a
single row in your data. So, if you were recording the score on a test for all students in a
class, the scores would appear in only one column and there would be only one row for each
student.

Complex data files store data in more than one column or row. For example, in a
complex data file, information about a case could be stored in more than one row. So, if you
were recording monthly test scores for all students in a class, there would be multiple rows
for each student—one for each month.

CASESTOVARS restructures complex data that has multiple rows for a case. You can use
it to restructure data in which repeated measurements of a single case were recorded in
multiple rows (row groups) into a new data file in which each case appears as separate
variables (variable groups) in a single row. It replaces the working data file.

CASESTOVARS 181

Options

Automatic classification of fixed variables. The values of fixed variables do not vary within a
row group. You can use the AUTOFIX subcommand to let the procedure determine which
variables are fixed and which variables are to become variable groups in the new data file.

Naming new variables. You can use the RENAME, SEPARATOR, and INDEX subcommands to
control the names for the new variables.

Ordering new variables. You can use the GROUPBY subcommand to specify how to order the
new variables in the new data file.

Creating indicator variables. You can use the VIND subcommand to create indicator variables.
An indicator variable indicates the presence or absence of a value for a case. An indicator
variable has the value of 1 if the case has a value; otherwise, it is 0.

Creating a count variable. You can use the COUNT subcommand to create a count variable that
contains the number of rows in the original data that were used to create a row in the new
data file.

Variable selection. You can use the DROP subcommand to specify which variables from the
original data file are dropped from the new data file.

Basic Specification

The basic specification is simply the command keyword.

• If split file processing is in effect, the basic specification creates a row in the new data file
for each combination of values of the SPLIT FILE variables. If split file processing is not
in effect, the basic specification results in a new data file with one row.

• Because the basic specification can create quite a few new columns in the new data file,
the use of an ID subcommand to identify groups of cases is recommended.

Subcommand Order

Subcommands can be specified in any order.

Syntax Rules

Each subcommand can be specified only once.

Operations

• Original row order. CASESTOVARS assumes that the original data are sorted by SPLIT and
ID variables.

• Identifying row groups in the original file. A row group consists of rows in the original data
that share the same values of variables listed on the ID subcommand. Row groups are

182 CASESTOVARS

consolidated into a single row in the new data file. Each time a new combination of ID
values is encountered, a new row is created.

• SPLIT file processing and row groups. If split file processing is in effect, the split variables
are automatically used to identify row groups (they are treated as though they appeared
first on the ID subcommand). Split file processing remains in effect in the new data file
unless a variable that is used to split the file is named on the DROP subcommand.

• New variable groups. A variable group is a group of related columns in the new data file
that is created from a variable in the original data. Each variable group contains a variable
for each index value or combination of index values encountered.

• Candidate variables. A variable in the original data is a candidate to become a variable
group in the new data file if it is not used on the SPLIT command or the ID, FIXED, or
DROP subcommands and its values vary within the row group. Variables named on the
SPLIT, ID, and FIXED subcommands are assumed to not vary within the row group and are
simply copied into the new data file.

• New variable names. The names of the variables in a new group are constructed by the pro-
cedure. It uses the rootname specified on the RENAME subcommand and the string named
on the SEPARATOR subcommand.

• New variable formats. With the exception of names and labels, the dictionary information
for all of the new variables in a group (for example, value labels and format) is taken from
the variable in the original data.

• New variable order. New variables are created in the order specified by the GROUPBY
subcommand.

• Weighted files. The WEIGHT command does not affect the results of CASESTOVARS. If
original data are weighted, the new data file will be weighted unless the variable that is
used as the weight is dropped from the new data file.

• Selected cases. The FILTER and USE commands do not affect the results of CASESTOVARS.
It processes all cases.

Limitations

The TEMPORARY command cannot be in effect when CASESTOVARS is executed.

Example

The following is the LIST output for a data file in which repeated measurements for the same
case are stored on separate rows in a single variable:
insure caseid month bps bpd

BCBS 1 1 160 100
BCBS 2 1 120 70
BCBS 2 2 130 86
Prucare 1 1 160 94
Prucare 1 2 200 105
Prucare 1 3 180 105
Prucare 2 1 135 90

CASESTOVARS 183

The commands:

SPLIT FILE BY insure.
CASESTOVARS
/ID=caseid
/INDEX=month.

create a new variable group for bps and a new group for bpd. The LIST output for the new
working file is as follows:
insure caseid bps.1 bps.2 bps.3 bpd.1 bpd.2 bpd.3

BCBS 1 160 . . 100 . .
BCBS 2 120 130 . 70 86 .
Prucare 1 160 200 180 94 105 105
Prucare 2 135 . . 90 . .

• The row groups in the original data are identified by insure and caseid.

• There are four row groups—one for each combination of the values in insure and caseid.

• The command creates four rows in the new data file, one for each row group.

• The candidate variables from the original file are bps and bpd. They vary within the row
group, so they will become variable groups in the new data file.

• The command creates two new variable groups—one for bps and one for bpd.
• Each variable group contains three new variables—one for each unique value of the index

variable month.

ID Subcommand

The ID subcommand specifies variables that identify the rows from the original data that
should be grouped together in the new data file.

• If the ID subcommand is omitted, only SPLIT FILE variables (if any) will be used to
group rows in the original data and to identify rows in the new data file.

• CASESTOVARS expects the data to be sorted by SPLIT FILE variables and then by ID
variables. If split file processing is in effect, the original data should be sorted on the
split variables in the order given on the SPLIT FILE command, and then on the ID
variables in the order in which they appear in the ID subcommand.

• A variable may appear on both the SPLIT FILE command and the ID subcommand.

• Variables listed on the SPLIT FILE command and on the ID subcommand are copied into
the new data file with their original values and dictionary information unless they are
dropped with the DROP subcommand.

• Variables listed on the ID subcommand may not appear on the FIXED or INDEX
subcommands.

• Rows in the original data for which any ID variable has the system-missing value or is
blank are not included in the new data file, and a warning message is displayed.

• ID variables are not candidates to become a variable group in the new data file.

184 CASESTOVARS

INDEX Subcommand

In the original data, a variable appears in a single column. In the new data file, that variable
will appear in multiple new columns. The INDEX subcommand names the variables in the
original data that should be used to create the new columns. INDEX variables are also used to
name the new columns.

Optionally, with the GROUPBY subcommand, INDEX variables can be used to determine
the order of the new columns, and, with the VIND subcommand, INDEX variables can be used
to create indicator variables.

• String variables can be used as index variables. They cannot contain blank values for rows
in the original data that qualify for inclusion in the new data file.

• Numeric variables can be used as index variables. They must contain only non-negative
integer values and cannot have system-missing or blank values.

• Within each row group in the original file, each row must have a different combination
of values of the index variables.

• If the INDEX subcommand is not used, the index starts with 1 within each row group and
increments each time a new value is encountered in the original variable.

• Variables listed on the INDEX subcommand may not appear on the ID, FIXED, or DROP
subcommands.

• Index variables are not are not candidates to become a variable group in the new data file.

VIND Subcommand

The VIND subcommand creates indicator variables in the new data file. An indicator variable
indicates the presence or absence of a value for a case. An indicator variable has the value of
1 if the case has a value; otherwise, it is 0.

• One new indicator variable is created for each unique value of the variables specified on
the INDEX subcommand.

• If the INDEX subcommand is not used, an indicator variable is created each time a new
value is encountered within a row group.

• An optional rootname can be specified after the ROOT keyword on the subcommand. The
default rootname is ind.

• The format for the new indicator variables is F1.0.

Example

If the original variables are:
insure caseid month bps bpd

and the data are as shown in the first example, the commands:

SPLIT FILE BY insure.
CASESTOVARS
/ID=caseid
/INDEX=month
/VIND
/DROP=caseid bpd.

CASESTOVARS 185

create a new file with the following data:
insure ind1 ind2 ind3 bps.1 bps.2 bps.3

BCBS 1 0 0 160 . .
BCBS 1 1 0 120 130 .
Prucare 1 1 1 160 120 180
Prucare 1 0 0 135 . .

• The command created three new indicator variables—one for each unique value of the in-
dex variable month.

COUNT Subcommand

CASESTOVARS consolidates row groups in the original data into a single row in the new data
file. The COUNT subcommand creates a new variable that contains the number of rows in the
original data that were used to generate the row in the new data file.
• One new variable is named on the COUNT subcommand. It must have a unique name.

• The label for the new variable is optional and, if specified, must be delimited by
apostrophes or quotation marks.

• The format of the new count variable is F4.0.

Example

If the original data are as shown in the first example, the commands:

SPLIT FILE BY insure.
CASESTOVARS
/ID=caseid
/COUNT=countvar
/DROP=insure month bpd.

create a new file with the following data:
caseid countvar bps.1 bpd.2 bps.3

1 1 160 . .
2 2 120 130 .
1 3 160 200 180
2 1 135 . .

• The command created a count variable, countvar, which contains the number of rows in
the original data that were used to generate the current row.

FIXED Subcommand

The FIXED subcommand names the variables that should be copied from the original data to
the new data file.

• CASESTOVARS assumes that variables named on the FIXED subcommand do not vary
within row groups in the original data. If they vary, a warning message is generated and
the command is executed.

186 CASESTOVARS

• Fixed variables appear as a single column in the new data file. Their values are simply
copied to the new file.

• The AUTOFIX subcommand can automatically determine which variables in the original
data are fixed. By default, the AUTOFIX subcommand overrides the FIXED subcommand.

AUTOFIX Subcommand

The AUTOFIX subcommand evaluates candidate variables and classifies them as either fixed
or as the source of a variable group.

• A candidate variable is a variable in the original data that does not appear on the SPLIT
command or on the ID, INDEX, and DROP subcommands.

• An original variable that does not vary within the row group is classified as a fixed
variable and is copied into a single variable in the new data file.

• An original variable that does vary within the row group is classified as the source of a
variable group. It becomes a variable group in the new data file.

YES Evaluate and automatically classify all candidate variables. The procedure auto-
matically evaluates and classifies all candidate variables. This is the default.
If there is a FIXED subcommand, the procedure displays a warning message for
each misclassified variable and automatically corrects the error. Otherwise, no
warning messages are displayed.
This option overrides the FIXED subcommand.

NO Evaluate all candidate variables and issue warnings. The procedure evaluates all
candidate variables and determines if they are fixed.
If a variable is listed on the FIXED subcommand but it is not actually fixed (that is,
it varies within the row group), a warning message is displayed and the command
is not executed.
If a variable is not listed on the FIXED subcommand but it is actually fixed (that is,
it does not vary within the row group), a warning message is displayed and the
command is executed. The variable is classified as the source of a variable group
and becomes a variable group in the new data file.

RENAME Subcommand

CASESTOVARS creates variable groups with new variables. The first part of the new variable
name is either derived from the name of the original variable or is the rootname specified on
the RENAME subcommand.

• The specification is the original variable name followed by a rootname.

• The named variable cannot be a SPLIT FILE variable and cannot appear on the ID, FIXED,
INDEX, or DROP subcommands.

• A variable can be renamed only once.
• Only one RENAME subcommand can be used, but it can contain multiple specifications.

CASESTOVARS 187

SEPARATOR Subcommand

CASESTOVARS creates variable groups that contain new variables. There are two parts to the
name of a new variable—a rootname and an index. The parts are separated by a string. The
separator string is specified on the SEPARATOR subcommand.

• If a separator is not specified, the default is a period.

• A separator can contain multiple characters.

• The separator must be delimited by apostrophes or quotation marks.

• You can suppress the separator by specifying /SEPARATOR="".

GROUPBY Subcommand

The GROUPBY subcommand controls the order of the new variables in the new data file.

VARIABLE Group new variables by original variable. The procedure groups all variables
created from an original variable together. This is the default.

INDEX Group new variables by index variable. The procedure groups variables
according to the index variables.

Example

If the original variables are:
insure caseid month bps bpd

and the data are as shown in the first example, the commands:

SPLIT FILE BY insure.
CASESTOVARS
/ID=caseid
/INDEX=month
/GROUPBY=VARIABLE.

create a new data file with the following variable order:
insure caseid bps.1 bps.2 bps.3 bpd.1 bpd.2 bpd.3

• Variables are grouped by variable group—bps and bpd.

Example

Using the same original data, the commands:

SPLIT FILE BY insure.
CASESTOVARS
/ID=insure caseid
/INDEX=month
/GROUPBY=INDEX.

create a new data file with the following variable order:
insure caseid bps.1 bpd.1 bps.2 bpd.2 bps.3 bpd.3

• Variables are grouped by values of the index variable month—1, 2, and 3.

188 CASESTOVARS

DROP Subcommand

The DROP subcommand specifies the subset of variables to exclude from the new data file.

• You can drop variables that appear on the ID list.

• Variables listed on the DROP subcommand may not appear on the FIXED or INDEX
subcommand.

• Dropped variables are not candidates to become a variable group in the new data file.
• You cannot drop all variables. The new data file is required to have at least one variable.

189

CATPCA

CATPCA is available in the Categories option.

CATPCA [VARIABLES =] varlist

 /ANALYSIS varlist
 [[(WEIGHT={1**}] [LEVEL={SPORD**}] [DEGREE={2}] [INKNOT={2}]]
 {n } {n} {n}
 {SPNOM } [DEGREE={2}] [INKNOT={2}]
 {n} {n}
 {ORDI }
 {NOMI }
 {MNOM }
 {NUME }

 [/DISCRETIZATION = [varlist [([{GROUPING}] [{NCAT={7}}] [DISTR={NORMAL }])]]]
 {n} {UNIFORM}
 {RANKING } {EQINTV={n}}
 {MULTIPLYING}

 [/MISSING = [varlist [([{PASSIVE**}] [{MODEIMPU}])]]]
 {EXTRACAT}
 {ACTIVE } {MODEIMPU}
 {EXTRACAT}
 {LISTWISE}

 [/SUPPLEMENTARY = [OBJECT(varlist)] [VARIABLE(varlist)]]

 [/CONFIGURATION = [{INITIAL}] (file)]
 {FIXED }

 [/DIMENSION = {2**}]
 {n }

 [/NORMALIZATION = {VPRINCIPAL**}]
 {OPRINCIPAL }
 {SYMMETRICAL }
 {INDEPENDENT }
 {n }

 [/MAXITER = {100**}]
 {n }

 [/CRITITER = {.00001**}]
 {value }

 [/PRINT = [DESCRIP**[(varlist)]] [VAF] [LOADING**][QUANT[(varlist)]][HISTORY]
[CORR**] [OCORR] [OBJECT[([(varname)]varlist)]] [NONE]]

 [/PLOT = [OBJECT**[(varlist)][(n)]]

190 Syntax Reference

[LOADING**[(varlist [(CENTR[(varlist)])])][(n)]]
 [CATEGORY (varlist)[(n)]]
 [JOINTCAT[({varlist})][(n)]] [TRANS[(varlist[({1})])]
 {n}
 [BIPLOT[({LOADING}[(varlist)])[(varlist)]] [(n)]]
 {CENTR }
 [TRIPLOT[(varlist[(varlist)])][(n)]]
 [RESID(varlist[({1})])[(l)]]
 [PROJCENTR(varname, varlist)[(n)]] [NONE]]
 {n}

 [/SAVE = [TRDATA[({TRA }[{n}])]] [OBJECT[({OBSCO }[{n}])]]
 {rootname} {rootname}
 [APPROX[({APP })]]]
 {rootname}

 [/OUTFILE = [TRDATA*[(file)]] [DISCRDATA[(file)]]
 [OBJECT[(file)]] [APPROX[(file)]]].

** Default if the subcommand is omitted.

Overview

CATPCA performs principal components analysis on a set of variables. The variables can be
given mixed optimal scaling levels, and the relationships among observed variables are not
assumed to be linear.

In CATPCA, dimensions correspond to components (that is, an analysis with two
dimensions results in two components), and object scores correspond to component scores.

Options

Optimal scaling level. You can specify the optimal scaling level (spline ordinal, spline nominal,
ordinal, nominal, multiple nominal, or numerical) at which you want to analyze each
variable.

Discretization. You can use the DISCRETIZATION subcommand to discretize fractional-value
variables or to recode categorical variables.

Missing data. You can specify the treatment of missing data on a per variable basis with the
MISSING subcommand.

Supplementary objects and variables. You can specify objects and variables that you want to
treat as supplementary to the analysis and then fit them into the solution.

Read configuration. CATPCA can read a principal components configuration from a file
through the CONFIGURATION subcommand. This can be used as the starting point for your
analysis or as a fixed solution in which to fit objects and variables.

Number of dimensions. You can specify how many dimensions (components) CATPCA should
compute.

Normalization. You can specify one of five different options for normalizing the objects and
variables.

Tuning the algorithm. You can control the values of algorithm-tuning parameters with the
MAXITER and CRITITER subcommands.

CATPCA 191

Optional output. You can request optional output through the PRINT subcommand.

Optional plots. You can request a plot of object points, transformation plots per variable, and
plots of category points per variable or a joint plot of category points for specified variables.
Other plot options include residuals plots, a biplot, a triplot, component loadings plot, and a
plot of projected centroids.

Writing discretized data, transformed data, object (component) scores, and approximations. You
can write the discretized data, transformed data, object scores, and approximations to
external files for use in further analyses.

Saving transformed data, object (component) scores, and approximations. You can save the trans-
formed variables, object scores, and approximations to the working data file.

Basic Specification

The basic specification is the CATPCA command with the VARIABLES and ANALYSIS
subcommands.

Syntax Rules

• The VARIABLES and ANALYSIS subcommands must always appear, and the VARIABLES
subcommand must be the first subcommand specified. The other subcommands can be
specified in any order.

• Variables specified in the ANALYSIS subcommand must be found in the VARIABLES
subcommand.

• Variables specified in the SUPPLEMENTARY subcommand must be found in the
ANALYSIS subcommand.

Operations

• If a subcommand is repeated, it causes a syntax error and the procedure terminates.

Limitations

• CATPCA operates on category indicator variables. The category indicators should be
positive integers. You can use the DISCRETIZATION subcommand to convert fractional-
value variables and string variables into positive integers.

• In addition to system-missing values and user-defined missing values, CATPCA treats
category indicator values less than 1 as missing. If one of the values of a categorical
variable has been coded 0 or a negative value and you want to treat it as a valid category,
use the COMPUTE command to add a constant to the values of that variable such that the
lowest value will be 1 (see the COMPUTE command or the SPSS Base User’s Guide for
more information on COMPUTE). You can also use the RANKING option of the

192 Syntax Reference

DISCRETIZATION subcommand for this purpose, except for variables you want to treat as
numerical, since the characteristic of equal intervals in the data will not be maintained.

• There must be at least three valid cases.

• Split-file has no implications for CATPCA.

Example

CATPCA VARIABLES = TEST1 TEST2 TEST3 TO TEST6 TEST7 TEST8
 /ANALYSIS = TEST1 TO TEST2(WEIGHT=2 LEVEL=ORDI)
 TEST3 TO TEST5(LEVEL=SPORD INKNOT=3)
 TEST6 TEST7(LEVEL=SPORD DEGREE=3)
 TEST8(LEVEL=NUME)
 /DISCRETIZATION = TEST1(GROUPING NCAT=5 DISTR=UNIFORM)
 TEST6(GROUPING) TEST8(MULTIPLYING)
 /MISSING = TEST5(ACTIVE) TEST6(ACTIVE EXTRACAT) TEST8(LISTWISE)
 /SUPPLEMENTARY = OBJECT(1 3) VARIABLE(TEST1)
 /CONFIGURATION = (’iniconf.sav’)
 /DIMENSION = 2
 /NORMALIZATION = VPRINCIPAL
 /MAXITER = 150
 /CRITITER = .000001
 /PRINT = DESCRIP LOADING CORR QUANT(TEST1 TO TEST3) OBJECT
 /PLOT = TRANS(TEST2 TO TEST5) OBJECT(TEST2 TEST3)
 /SAVE = TRDATA OBJECT
 /OUTFILE = TRDATA(’c:\data\trans.sav’) OBJECT(’c:\data\obs.sav’).

• VARIABLES defines variables. The keyword TO refers to the order of the variables in the
working data file.

• The ANALYSIS subcommand defines variables used in the analysis. It is specified that
TEST1 and TEST2 have a weight of 2. For the other variables, WEIGHT is not specified;
thus, they have the default weight value of 1. The optimal scaling level for TEST1 and
TEST2 is ordinal, for TEST3 to TEST7 spline ordinal, and for TEST8 numerical. The
keyword TO refers to the order of the variables in the VARIABLES subcommand. The
splines for TEST3 to TEST5 have degree 2 (default because unspecified) and 3 interior
knots. The splines for TEST6 and TEST7 have degree 3 and 2 interior knots (default
because unspecified).

• DISCRETIZATION specifies that TEST6 and TEST8, which are fractional-value variables,
are discretized: TEST6 by recoding into 7 categories with a normal distribution (default
because unspecified) and TEST8 by “multiplying.” TEST1, which is a categorical
variable, is recoded into 5 categories with a close-to-uniform distribution.

• MISSING specifies that objects with missing values on TEST5 and TEST6 are included in
the analysis; missing values on TEST5 are replaced with the mode (default if not speci-
fied) and missing values on TEST6 are treated as an extra category. Objects with a missing
value on TEST8 are excluded from the analysis. For all other variables, the default is in
effect; that is, missing values (Note: values, not objects) are excluded from the analysis.

• CONFIGURATION specifies iniconf.sav as the file containing the coordinates of a configu-
ration that is to be used as the initial configuration (default because unspecified).

• DIMENSION specifies the number of dimensions to be 2; that is, 2 components are
computed. This is the default, so this subcommand could be omitted here.

CATPCA 193

• The NORMALIZATION subcommand specifies optimization of the association between
variables, and the normalization is given to the objects. This is the default, so this sub-
command could be omitted here.

• MAXITER specifies the maximum number of iterations to be 150 instead of the default
value of 100.

• CRITITER sets the convergence criterion to a value smaller than the default value.
• PRINT specifies descriptives, component loadings and correlations (all default),

quantifications for TEST1 to TEST3, and the object (component) scores.

• PLOT is used to request transformation plots for the variables TEST2 to TEST5, an object
points plot labeled with the categories of TEST2, and an object points plot labeled with
the categories of TEST3.

• The SAVE subcommand adds the transformed variables and the component scores to the
working data file.

• The OUTFILE subcommand writes the transformed data to a data file called trans.sav and
the component scores to a data file called obs.sav, both in the directory c:\data.

VARIABLES Subcommand

VARIABLES specifies the variables that may be analyzed in the current CATPCA procedure.

• The VARIABLES subcommand is required and precedes all other subcommands. The
actual keyword VARIABLES can be omitted.

• At least two variables must be specified, except if the CONFIGURATION subcommand is
used with the FIXED keyword.

• The keyword TO on the VARIABLES subcommand refers to the order of variables in the
working data file. This behavior of TO is different from that in the variable list in the
ANALYSIS subcommand.

ANALYSIS Subcommand

ANALYSIS specifies the variables to be used in the computations, the optimal scaling level,
and the variable weight for each variable or variable list. ANALYSIS also specifies supplemen-
tary variables and their optimal scaling level. No weight can be specified for supplementary
variables.

• At least two variables must be specified, except if the CONFIGURATION subcommand is
used with the FIXED keyword.

• All the variables on ANALYSIS must be specified on the VARIABLES subcommand.

• The ANALYSIS subcommand is required and follows the VARIABLES subcommand.

• The keyword TO in the variable list honors the order of variables in the VARIABLES
subcommand.

• Optimal scaling levels and variable weights are indicated by the keywords LEVEL and
WEIGHT in parentheses following the variable or variable list.

194 Syntax Reference

WEIGHT Specifies the variable weight with a positive integer. The default value is 1.
If WEIGHT is specified for supplementary variables, it is ignored and a syntax
warning is issued.

LEVEL Specifies the optimal scaling level.

Level Keyword

The following keywords are used to indicate the optimal scaling level:

SPORD Spline ordinal (monotonic). This is the default. The order of the categories
of the observed variable is preserved in the optimally scaled variable.
Category points will be on a straight line (vector) through the origin. The
resulting transformation is a smooth monotonic piecewise polynomial of the
chosen degree. The pieces are specified by the user-specified number and
procedure-determined placement of the interior knots.

SPNOM Spline nominal (nonmonotonic). The only information in the observed
variable that is preserved in the optimally scaled variable is the grouping of
objects in categories. The order of the categories of the observed variable is
not preserved. Category points will lie on a straight line (vector) through the
origin. The resulting transformation is a smooth, possibly nonmonotonic,
piecewise polynomial of the chosen degree. The pieces are specified by the
user-specified number and procedure-determined placement of the interior
knots.

MNOM Multiple nominal. The only information in the observed variable that is
preserved in the optimally scaled variable is the grouping of objects in
categories. The order of the categories of the observed variable is not
preserved. Category points will be in the centroid of the objects in the
particular categories. Multiple indicates that different sets of quantifications
are obtained for each dimension.

ORDI Ordinal. The order of the categories on the observed variable is preserved in
the optimally scaled variable. Category points will be on a straight line
(vector) through the origin. The resulting transformation fits better than
SPORD transformation but is less smooth.

NOMI Nominal. The only information in the observed variable that is preserved in
the optimally scaled variable is the grouping of objects in categories. The
order of the categories of the observed variable is not preserved. Category
points will be on a straight line (vector) through the origin. The resulting
transformation fits better than SPNOM transformation but is less smooth.

NUME Numerical. Categories are treated as equally spaced (interval level). The
order of the categories and the equal distances between category numbers of
the observed variables are preserved in the optimally scaled variable.
Category points will be on a straight line (vector) through the origin. When
all variables are scaled at the numerical level, the CATPCA analysis is
analogous to standard principal components analysis.

CATPCA 195

SPORD and SPNOM Keywords

The following keywords are used with SPORD and SPNOM:

DEGREE The degree of the polynomial. It can be any positive integer. The default
degree is 2.

INKNOT The number of interior knots. The minimum is 0, and the maximum is the
number of categories of the variable minus 2. The procedure adjusts the
number of interior knots to the maximum if the specified value is too large.
The default number of interior knots is 2.

DISCRETIZATION Subcommand

DISCRETIZATION specifies fractional-value variables you want to discretize. Also, you can
use DISCRETIZATION for ranking or for two ways of recoding categorical variables.

• A string variable’s values are always converted into positive integers, according to the
internal numeric representations. DISCRETIZATION for string variables applies to these
integers.

• When the DISCRETIZATION subcommand is omitted or when the DISCRETIZATION
subcommand is used without a variable list, fractional-value variables are converted into
positive integers by grouping them into seven categories with a close to “normal”
distribution.

• When no specification is given for variables in a variable list following DISCRETIZATION,
these variables are grouped into seven categories with a close to “normal” distribution.

• In CATPCA, values less than 1 are considered to be missing (see MISSING subcommand).
However, when discretizing a variable, values less than 1 are considered to be valid and
are thus included in the discretization process.

GROUPING Recode into the specified number of categories.

RANKING Rank cases. Rank 1 is assigned to the case with the smallest value on
the variable.

MULTIPLYING Multiplying the standardized values of a fractional-value variable by
10, rounding, and adding a value such that the lowest value is 1.

GROUPING Keyword

GROUPING has the following keywords:

NCAT Number of categories. When NCAT is not specified, the number of categories
is set to 7. You may either specify a number of categories or use the keyword
DISTR.

EQINTV Recode intervals of equal size. The size of the intervals must be specified (no
default). The resulting number of categories depends on the interval size.

196 Syntax Reference

DISTR Keyword

DISTR has the following keywords:

NORMAL Normal distribution. This is the default when DISTR is not specified.

UNIFORM Uniform distribution.

MISSING Subcommand

In CATPCA, we consider a system-missing value, user-defined missing values, and values
less than 1 as missing values. The MISSING subcommand allows you to indicate how to
handle missing values for each variable.

PASSIVE Exclude missing values on a variable from analysis. This is the default when
MISSING is not specified. Passive treatment of missing values means that in
optimizing the quantification of a variable, only objects with nonmissing
values on the variable are involved and that only the nonmissing values of
variables contribute to the solution. Thus, when PASSIVE is specified,
missing values do not affect the analysis. Further, if all variables are given
passive treatment of missing values, then objects with missing values on
every variable are treated as supplementary.

ACTIVE Impute missing values. You can choose to use mode imputation. You can
also consider objects with missing values on a variable as belonging to the
same category and impute missing values with an extra category indicator.

LISTWISE Exclude cases with missing value on a variable. The cases used in the
analysis are cases without missing values on the variables specified. This is the
default applied to all variables when the MISSING subcommand is omitted or
is specified without variable names or keywords. Also, any variable that is not
included in the subcommand receives this specification.

• The ALL keyword may be used to indicate all variables. If it is used, it must be the only
variable specification.

• A mode or extracat imputation is done before listwise deletion.

PASSIVE Keyword

If correlations are requested on the PRINT subcommand and passive treatment of missing
values is specified for a variable, the missing values must be imputed. For the correlations of
the quantified variables, you can specify the imputation with one of the following keywords:

MODEIMPU Impute missing values on a variable with the mode of the quantified variable.
MODEIMPU is the default.

EXTRACAT Impute missing values on a variable with the quantification of an extra
category. This implies that objects with a missing value are considered to
belong to the same (extra) category.

Note that with passive treatment of missing values, imputation applies only to correlations and
is done afterward. Thus, the imputation has no effect on the quantification or the solution.

CATPCA 197

ACTIVE Keyword

The ACTIVE keyword has the following keywords:

MODEIMPU Impute missing values on a variable with the most frequent category (mode).
When there are multiple modes, the smallest category indicator is used.
MODEIMPU is the default.

EXTRACAT Impute missing values on a variable with an extra category indicator. This
implies that objects with a missing value are considered to belong to the
same (extra) category.

Note that with active treatment of missing values, imputation is done before the analysis
starts and thus will affect the quantification and the solution.

SUPPLEMENTARY Subcommand

The SUPPLEMENTARY subcommand specifies the objects and/or variables that you want to
treat as supplementary. Supplementary variables must be found in the ANALYSIS
subcommand. You cannot weight supplementary objects and variables (specified weights are
ignored). For supplementary variables, all options on the MISSING subcommand can be
specified except LISTWISE.

• The SUPPLEMENTARY subcommand is ignored when CONFIGURATION=FIXED.

OBJECT Objects you want to treat as supplementary are indicated with an object
number list in parentheses following OBJECT. The keyword TO is allowed.

VARIABLE Variables you want to treat as supplementary are indicated with a variable
list in parentheses following VARIABLE. The keyword TO is allowed and hon-
ors the order of variables in the VARIABLES subcommand.

CONFIGURATION Subcommand

The CONFIGURATION subcommand allows you to read data from a file containing the coor-
dinates of a configuration. The first variable in this file should contain the coordinates for the
first dimension, the second variable should contain the coordinates for the second dimension,
and so forth.

INITIAL(file) Use configuration in the external file as the starting point of the analysis.

FIXED(file) Fit objects and variables in the fixed configuration found in the external file.
The variables to fit in should be specified on the ANALYSIS subcommand but
will be treated as supplementary. The SUPPLEMENTARY subcommand and
variable weights are ignored.

198 Syntax Reference

DIMENSION Subcommand

DIMENSION specifies the number of dimensions (components) you want CATPCA to
compute.

• The default number of dimensions is 2.

• DIMENSION is followed by an integer indicating the number of dimensions.

• If there are no variables specified as MNOM (multiple nominal), the maximum number of
dimensions you can specify is the smaller of the number of observations minus 1 and the
total number of variables.

• If some or all of the variables are specified as MNOM (multiple nominal), the maximum
number of dimensions is the smaller of a) the number of observations minus 1 or b) the
total number of valid MNOM variable levels (categories) plus the number of SPORD,
SPNOM, ORDI, NOMI, and NUME variables minus the number of MNOM variables without
missing values.

• CATPCA adjusts the number of dimensions to the maximum if the specified value is too
large.

• The minimum number of dimensions is 1.

NORMALIZATION Subcommand

The NORMALIZATION subcommand specifies one of five options for normalizing the object
scores and the variables. Only one normalization method can be used in a given analysis.

VPRINCIPAL This option optimizes the association between variables. With
VPRINCIPAL, the coordinates of the variables in the object space are
the component loadings (correlations with principal components such
as dimensions and object scores). This is the default if the
NORMALIZATION subcommand is not specified. This is useful when
you are primarily interested in the correlations between the variables.

OPRINCIPAL This option optimizes distances between objects. This is useful when
you are primarily interested in differences or similarities between the
objects.

SYMMETRICAL Use this normalization option if you are primarily interested in the
relation between objects and variables.

INDEPENDENT Use this normalization option if you want to examine distances
between objects and correlations between variables separately.

The fifth method allows the user to specify any real value in the closed interval [, 1]. A
value of 1 is equal to the OPRINCIPAL method, a value of 0 is equal to the SYMMETRICAL
method, and a value of is equal to the VPRINCIPAL method. By specifying a value greater
than and less than 1, the user can spread the eigenvalue over both objects and variables.
This method is useful for making a tailor-made biplot or triplot. If the user specifies a value
outside of this interval, the procedure issues a syntax error message and terminates.

1–

1–
1–

CATPCA 199

MAXITER Subcommand

MAXITER specifies the maximum number of iterations the procedure can go through in its
computations. If not all variables are specified as NUME and/or MNOM, the output starts from
iteration 0, which is the last iteration of the initial phase, in which all variables except MNOM
variables are treated as NUME.

• If MAXITER is not specified, the maximum number of iterations is 100.

• The specification on MAXITER is a positive integer indicating the maximum number of
iterations. There is no uniquely predetermined (that is, hard-coded) maximum for the
value that can be used.

CRITITER Subcommand

CRITITER specifies a convergence criterion value. CATPCA stops iterating if the difference in
fit between the last two iterations is less than the CRITITER value.

• If CRITITER is not specified, the convergence value is 0.00001.

• The specification on CRITITER is any value less than or equal to 0.1.

PRINT Subcommand

The model summary and the HISTORY statistics for the last iteration are always displayed.
That is, they cannot be controlled by the PRINT subcommand. The PRINT subcommand
controls the display of additional optional output. The output of the procedure is based on the
transformed variables. However, the correlations of the original variables can be requested
as well by the keyword OCORR.

The default keywords are DESCRIP, LOADINGS, and CORR. However, when some key-
words are specified, the default is nullified and only what was specified comes into effect. If
a keyword is duplicated or if a contradicting keyword is encountered, then the last one silent-
ly becomes effective (in case of contradicting use of NONE, this means that only the key-
words following NONE are effective). For example,

/PRINT <=> /PRINT = DESCRIP LOADING CORR

/PRINT = VAF VAF <=> /PRINT = VAF

/PRINT = VAF NONE CORR <=> /PRINT = CORR

If a keyword that can be followed by a variable list is duplicated, it will cause a syntax error,
and the procedure will terminate.

The following keywords can be specified:

DESCRIP(varlist) Descriptive statistics (frequencies, missing values, optimal scaling
level, and mode). The variables in the varlist must be specified on the
VARIABLES subcommand but need not appear on the ANALYSIS sub-
command. If DESCRIP is not followed by a varlist, descriptives tables
are displayed for all the variables in the varlist on the ANALYSIS
subcommand.

200 Syntax Reference

VAF Variance accounted for (centroid coordinates, line coordinates, and
total) per variable and per dimension.

LOADING Component loadings for variables with optimal scaling level that
result in line quantification (that is, SPORD, SPNOM, ORDI, NOMI, and
NUME).

QUANT(varlist) Category quantifications and category coordinates for each
dimension. Any variable in the ANALYSIS subcommand may be
specified in parentheses after QUANT. (For MNOM variables, the
coordinates are the quantifications.) If QUANT is not followed by a
variable list, quantification tables are displayed for all variables in the
varlist on the ANALYSIS subcommand.

HISTORY History of iterations. For each iteration (including 0), the variance
accounted for, the variance not accounted for, and the increase in
variance accounted for are shown.

CORR Correlations of the transformed variables and the eigenvalues of this
correlation matrix. If the analysis includes variables with optimal
scaling level MNOM, ndim (the number of dimensions in the analysis)
correlation matrices are computed; in the ith matrix, the quantifica-
tions of dimension i, i = 1,...ndim, of MNOM variables are used to com-
pute the correlations. For variables with missing values specified to be
treated as PASSIVE on the MISSING subcommand, the missing values
are imputed according to the specification on the PASSIVE keyword (if
not specified, mode imputation is used).

OCORR Correlations of the original variables and the eigenvalues of this
correlation matrix. For variables with missing values specified to be
treated as PASSIVE or ACTIVE on the MISSING subcommand, the
missing values are imputed with the variable mode.

OBJECT((varname)varlist)

Object scores (component scores). Following the keyword, a varlist
can be given in parentheses to display variables (category indicators)
along with object scores. If you want to use a variable to label the
objects, this variable must occur in parentheses as the first variable in
the varlist. If no labeling variable is specified, the objects are labeled
with case numbers. The variables to display along with the object
scores and the variable to label the objects must be specified on the
VARIABLES subcommand but need not appear on the ANALYSIS
subcommand. If no variable list is given, only the object scores are
displayed.

NONE No optional output is displayed. The only output shown is the model
summary and the HISTORY statistics for the last iteration.

CATPCA 201

The keyword TO in a variable list can only be used with variables that are in the ANALYSIS
subcommand, and TO applies only to the order of the variables in the ANALYSIS
subcommand. For variables that are in the VARIABLES subcommand but not in the ANALYSIS
subcommand, the keyword TO cannot be used. For example, if /VARIABLES = v1 TO
v5 and /ANALYSIS = v2 v1 v4, then /PLOT OBJECT(v1 TO v4) will give two
object plots, one labeled with v1 and one labeled with v4.

PLOT Subcommand

The PLOT subcommand controls the display of plots. The default keywords are OBJECT and
LOADING. That is, the two keywords are in effect when the PLOT subcommand is omitted or
when the PLOT subcommand is given without any keyword. If a keyword is duplicated (for
example, /PLOT = RESID RESID), then only the last one is effective. If the keyword NONE is
used together with other keywords (for example, /PLOT = RESID NONE LOADING), then only
the keywords following NONE are effective. That is, when keywords contradict, the later one
overwrites the earlier ones.
• All the variables to be plotted must be specified on the ANALYSIS subcommand.

• If the variable list following the keywords CATEGORIES, TRANS, RESID, and PROJCENTR
is empty, it will cause a syntax error, and the procedure will terminate.

• The variables in the variable list for labeling the object point following OBJECT, BIPLOT,
and TRIPLOT must be specified on the VARIABLES subcommand but need not appear on
the ANALYSIS subcommand. This means that variables not included in the analysis can
still be used to label plots.

• The keyword TO in a variable list can only be used with variables that are in the ANALYSIS
subcommand, and TO applies only to the order of the variables in the ANALYSIS subcom-
mand. For variables that are in the VARIABLES subcommand but not in the ANALYSIS sub-
command, the keyword TO cannot be used. For example, if /VARIABLES = v1 TO v5
and /ANALYSIS = v2 v1 v4, then /PLOT OBJECT(v1 TO v4) will give two
object plots, one labeled with v1 and one labeled with v4.

• For a one-dimensional solution, only unidimensional plots (transformation plot, residuals
plot, and plot of projected centroids) are produced.

• For multidimensional plots, all of the dimensions specified on the DIMENSION subcom-
mand are produced in a matrix scatterplot if the specified number of dimensions is greater
than two; if the specified number of dimensions is two, a scatterplot is produced.

The following keywords can be specified:

OBJECT (varlist)(n) Plots of the object points. Following the keyword, a list of variables in
parentheses can be given to indicate that plots of object points labeled
with the categories of the variables should be produced (one plot for
each variable). If the variable list is omitted, a plot labeled with case
numbers is produced.

202 Syntax Reference

CATEGORY(varlist)(n)

Plots of the category points. Both the centroid coordinates and the line
coordinates are plotted. A list of variables must be given in parenthe-
ses following the keyword. For variables with optimal scaling level
MNOM, categories are in the centroids of the objects. For all other
optimal scaling levels, categories are on a vector through the origin.

LOADING(varlist(CENTR(varlist)))(l)

Plot of the component loadings optionally with centroids. By default,
all variables with an optimal scaling level that results in vector quan-
tification (that is, SPORD, SPNOM, ORDI, NOMI, and NUME) are
included in this plot. LOADING can be followed by a varlist to select
the loadings to include in the plot. When "LOADING(" or the varlist
following "LOADING(" is followed by the keyword CENTR in parenthe-
ses, centroids are plotted for all variables with optimal scaling level
MNOM. CENTR can be followed by a varlist in parentheses to select
MNOM variables whose centroids are to be included in the plot. When
there is no variable whose optimal scaling level is SPORD, SPNOM,
ORDI, NOMI, or NUME in the analysis, this plot cannot be produced.

TRANS(varlist(n)) Transformation plots (optimal category quantifications against cate-
gory indicators). A list of variables must be given in parentheses
following the keyword. MNOM variables in the varlist can be followed
by a number of dimensions in parentheses to indicate that you want to
display p transformation plots, one for each of the first p dimensions.

RESID(varlist(n))(n) Plot of residuals per variable. Following the keyword, a list of vari-
ables in parentheses must be given. A variable with optimal scaling
level MNOM can be followed by a number in parentheses to indicate
the number of dimensions you want a residuals plot for. If the number
of dimensions is not specified, a plot for the first dimension is
produced.

BIPLOT(keyword(varlist))(varlist)(n)

Plot of objects and variables. The coordinates for the variables can
be chosen to be component loading or centroids, using keywords
LOADING and/or CENTR in parentheses following BIPLOT. When no
keyword is given, component loadings are plotted. When
NORMALIZATION = INDEPENDENT, this plot is incorrect and there-
fore not available.

Following LOADING and CENTR, a list of variables in parentheses
can be given to indicate the variables to be included in the plot. If
the variable list is omitted, a plot including all variables is pro-
duced. Following BIPLOT, a list of variables in parentheses can be
given to indicate that plots with objects labeled with the categories
of the variables should be produced (one plot for each variable). If
the variable list is omitted, a plot with objects labeled with case
numbers is produced.

CATPCA 203

TRIPLOT(varlist(varlist))(n)

A plot of object points, component loadings for variables with an
optimal scaling level that results in line quantification (that is,
SPORD, SPNOM, ORDI, NOMI, and NUME), and centroids for variables
with optimal scaling level MNOM. Following the keyword, a list of
variables in parentheses can be given to indicate the variables to
include in the plot. If the variable list is omitted, all variables are
included. The varlist can contain a second varlist in parentheses to
indicate that triplots with objects labeled with the categories of the
variables in this variable list should be produced (one plot for each
variable). If this second variable list is omitted, a plot with objects
labeled with case numbers is produced. When NORMALIZATION =
INDEPENDENT, this plot is incorrect and therefore not available.

JOINTCAT(varlist)(n) Joint plot of the category points for the variables in the varlist. If no
varlist is given, the category points for all variables are displayed.

PROJCENTR(varname, varlist)(n)

Plot of the centroids of a variable projected on each of the variables
in the varlist. You cannot project centroids of a variable on variables
with MNOM optimal scaling; thus, a variable that has MNOM optimal
scaling can be specified as the variable to be projected but not in the
list of variables to be projected on. When this plot is requested, a table
with the coordinates of the projected centroids is also displayed.

NONE No plots.

BIPLOT Keyword

BIPLOT takes the following keywords:

LOADING(varlist) Object points and component loadings.

CENTR(varlist) Object points and centroids.

For all of the keywords except TRANS and NONE, the user can specify an optional parameter
in order to control the global upper boundary of variable/category label lengths in the plot.
Note that this boundary is applied uniformly to all variables in the list.

The variable/category label-length parameter can take any non-negative integer less than
or equal to 20. The default length is 20. If the length is set to 0, names/values instead of
variable/value labels are displayed to indicate variables/categories. If the specified length is
greater than 20, the procedure simply resets it to 20.

When variables/values do not have labels, then the names/values themselves are used as
the labels.

204 Syntax Reference

SAVE Subcommand

The SAVE subcommand is used to add the transformed variables (category indicators
replaced with optimal quantifications), the object scores, and the approximation to the
working data file. Excluded cases are represented by a dot (the system-missing symbol) on
every saved variable.

TRDATA Transformed variables. Missing values specified to be treated as passive are
represented by a dot.

OBJECT Object (component) scores.

APPROX Approximation for variables that do not have optimal scaling level MNOM.

• Following TRDATA, a rootname and the number of dimensions to be saved for variables
specified as MNOM can be specified in parentheses.

• For variables that are not specified as MNOM, CATPCA adds two numbers separated by the
symbol _. For variables that are specified as MNOM, CATPCA adds three numbers. The
first number uniquely identifies the source variable names and the last number uniquely
identifies the CATPCA procedures with the successfully executed SAVE subcommands.
For variables that are specified as MNOM, the middle number corresponds to the dimen-
sion number (see the next bullet for more details). Only one rootname can be specified,
and it can contain up to five characters for variables that are not specified as MNOM and
three characters for variables that are specified as MNOM (if more than one rootname is
specified, the first rootname is used; if a rootname contains more than five/three charac-
ters, the first five/three characters are used at most).

• If a rootname is not specified for TRDATA, rootname TRA is used to automatically generate
unique variable names. The formulas are ROOTNAMEk_n and ROOTNAMEk_m_n, where
k increments from 1 to identify the source variable names by using the source variables’
position numbers in the ANALYSIS subcommand, m increments from 1 to identify the
dimension number, and n increments from 1 to identify the CATPCA procedures with the
successfully executed SAVE subcommands for a given data file in a continuous SPSS
session. For example, with three variables specified on ANALYSIS, LEVEL = MNOM for the
second variable, and two dimensions to save, the first set of default names, if they do not
exist in the data file, would be TRA1_1, TRA2_1_1, TRA2_2_1, and TRA3_1. The next set
of default names, if they do not exist in the data file, would be TRA1_2, TRA2_1_2,
TRA2_2_2, and TRA3_2. However, if, for example, TRA1_2 already exists in the data file,
then the default names should be attempted as TRA1_3, TRA2_1_3, TRA2_2_3, and
TRA3_3. That is, the last number increments to the next available integer.

• Following OBJECT, a rootname and the number of dimensions can be specified in
parentheses to which CATPCA adds two numbers separated by the symbol _. The first
number corresponds to the dimension number. The second number uniquely identifies the
CATPCA procedures with the successfully executed SAVE subcommands (see the next
bullet for more details). Only one rootname can be specified, and it can contain up to five
characters (if more than one rootname is specified, the first rootname is used; if a
rootname contains more than five characters, the first five characters are used at most).

• If a rootname is not specified for OBJECT, rootname OBSCO is used to automatically
generate unique variable names. The formula is ROOTNAMEm_n, where m increments
from 1 to identify the dimension number and n increments from 1 to identify the CATPCA

CATPCA 205

procedures with the successfully executed SAVE subcommands for a given data file in a
continuous SPSS session. For example, if two dimensions are specified following
OBJECT, the first set of default names, if they do not exist in the data file, would be
OBSCO1_1 and OBSCO2_1. The next set of default names, if they do not exist in the data
file, would be OBSCO1_2 and OBSCO2_2. However, if, for example, OBSCO2_2 already
exists in the data file, then the default names should be attempted as OBSCO1_3 and
OBSCO2_3. That is, the second number increments to the next available integer.

• As m and/or n increase for OBJECT, the rootname is truncated to keep variable names
within eight characters. For example, OBSCO9_1 would be followed by OBSC10_1. The
initial character (O for the default rootnames) is required. Note that the truncation is done
variable-wise, not analysis-wise.

• Following APPROX, a rootname can be specified in parentheses, to which CATPCA adds
two numbers separated by the symbol _. The first number uniquely identifies the source
variable names, and the last number uniquely identifies the CATPCA procedures with the
successfully executed SAVE subcommands (see the next bullet for more details). Only one
rootname can be specified, and it can contain up to five characters (if more than one root-
name is specified, the first rootname is used; if a rootname contains more than five
characters, the first five characters are used at most).

• If a rootname is not specified for APPROX, rootname APP is used to automatically
generate unique variable names. The formula is ROOTNAMEk_n, where k increments from
1 to identify the source variable names by using the source variables’ position numbers in
the ANALYSIS subcommand, and n increments from 1 to identify the CATPCA procedures
with the successfully executed SAVE subcommands for a given data file in a continuous
SPSS session. For example, with three variables specified on ANALYSIS, and LEVEL =
MNOM for the second variable, the first set of default names, if they do not exist in the data
file, would be APP1_1, APP2_1, and APP3_1. The next set of default names, if they do not
exist in the data file, would be APP1_2, APP2_2, and APP3_2. However, if, for example,
APP1_2 already exists in the data file, then the default names should be attempted as
APP1_3, APP2_3, and APP3_3. That is, the last number increments to the next available
integer.

• As k and/or n increase for APPROX, the rootname is truncated to keep variable names
within eight characters. For example, if APPRO is specified as a rootname, APPRO1_9
would be followed by APPR1_10. Note that the truncation is done variable-wise, not
analysis-wise.

• Variable labels are created automatically. (They are shown in the procedure information
table, or the notes table, and can also be displayed in the Data Editor window.)

• If the number of dimensions is not specified, the SAVE subcommand saves all dimensions.

OUTFILE Subcommand

The OUTFILE subcommand is used to write the discretized data, transformed data (category
indicators replaced with optimal quantifications), the object scores, and the approximation to
an external data file. Excluded cases are represented by a dot (the system-missing symbol)
on every saved variable.

DISCRDATA(file) Discretized data.

206 Syntax Reference

TRDATA(file) Transformed variables. Missing values specified to be treated as
passive are represented by a dot.

OBJECT(file) Object (component) scores.

APPROX(file) Approximation for variables that do not have optimal scaling level
MNOM.

• Following the keyword, a filename enclosed by single quotation marks should be
specified. The filenames should be different for each of the keywords.

In principle, a working data file should not be replaced by this subcommand, and the asterisk
(*) file specification is not supported. This strategy also prevents the OUTFILE interference
with the SAVE subcommand.

207

CATREG

CATREG is available in the Categories option.

CATREG [VARIABLES =] varlist

/ANALYSIS
depvar [([LEVEL={SPORD**}] [DEGREE={2}] [INKNOT={2}])]

{n} {n}
{SPNOM } [DEGREE={2}] [INKNOT={2}]

{n} {n}
{ORDI }
{NOMI }
{NUME }

WITH indvarlist [([LEVEL={SPORD**}] [DEGREE={2}] [INKNOT={2}])]
{n} {n}

{SPNOM } [DEGREE={2}] [INKNOT={2}]
{n} {n}

{ORDI }
{NOMI }
{NUME }

[/DISCRETIZATION = [varlist [([{GROUPING }] [{NCAT*={7}}] [DISTR={NORMAL }])]]]
{n} {UNIFORM}

{EQINTV=d }
{RANKING }
{MULTIPLYING}

[/MISSING = [{varlist}({LISTWISE**})]]
{ALL** } {MODEIMPU }

{EXTRACAT }

[/SUPPLEMENTARY = OBJECT(objlist)]

[/INITIAL = [{NUMERICAL**}]]
{RANDOM }

[/MAXITER = [{100**}]]
{n }

[/CRITITER = [{.00001**}]]
{n }

[/PRINT = [R**] [COEFF**] [DESCRIP**[(varlist)]] [HISTORY] [ANOVA**]
[CORR] [OCORR] [QUANT[(varlist)]] [NONE]]

[/PLOT = {TRANS(varlist)[(h)]} {RESID(varlist)[(h)]}]

[/SAVE = {TRDATA[({TRA })]} {PRED[({PRE })]} {RES[({RES })]}]
{rootname} {rootname} {rootname}

[/OUTFILE = {TRDATA(’filename’)} {DISCRDATA(’filename’)}] .

** Default if subcommand or keyword is omitted.

Overview

CATREG (Categorical regression with optimal scaling using alternating least squares) quan-
tifies categorical variables using optimal scaling, resulting in an optimal linear regression
equation for the transformed variables. The variables can be given mixed optimal scaling
levels and no distributional assumptions about the variables are made.

208 Syntax Reference

Options

Transformation type. You can specify the transformation type (spline ordinal, spline nominal,
ordinal, nominal, or numerical) at which you want to analyze each variable.

Discretization. You can use the DISCRETIZATION subcommand to discretize fractional-value
variables or to recode categorical variables.

Initial configuration. You can specify the kind of initial configuration through the INITIAL
subcommand.

Tuning the algorithm. You can control the values of algorithm-tuning parameters with the
MAXITER and CRITITER subcommands.

Missing data. You can specify the treatment of missing data with the MISSING subcommand.

Optional output. You can request optional output through the PRINT subcommand.

Transformation plot per variable. You can request a plot per variable of its quantification against
the category numbers.

Residual plot per variable. You can request an overlay plot per variable of the residuals and the
weighted quantification, against the category numbers.

Writing external data. You can write the transformed data (category numbers replaced with
optimal quantifications) to an outfile for use in further analyses. You can also write the
discretized data to an outfile.

Saving variables. You can save the transformed variables, the predicted values, and/or the
residuals in the working data file.

Basic Specification

The basic specification is the command CATREG with the VARIABLES and ANALYSIS
subcommands.

Syntax Rules

• The VARIABLES and ANALYSIS subcommands must always appear, and the VARIABLES
subcommand must be the first subcommand specified. The other subcommands, if
specified, can be in any order.

• Variables specified in the ANALYSIS subcommand must be found in the VARIABLES
subcommand.

• In the ANALYSIS subcommand, exactly one variable must be specified as a dependent
variable and at least one variable must be specified as an independent variable after the
keyword WITH.

• The word WITH is reserved as a keyword in the CATREG procedure. Thus, it may not be
a variable name in CATREG. Also, the word TO is a reserved word in SPSS.

CATREG 209

Operations

• If a subcommand is specified more than once, the last one is executed but with a syntax
warning. Note this is true also for the VARIABLES and ANALYSIS subcommands.

Limitations

• If more than one dependent variable is specified in the ANALYSIS subcommand, CATREG
is not executed.

• CATREG operates on category indicator variables. The category indicators should be pos-
itive integers. You can use the DISCRETIZATION subcommand to convert fractional-value
variables and string variables into positive integers. If DISCRETIZATION is not specified,
fractional-value variables are automatically converted into positive integers by grouping
them into seven categories with a close to normal distribution and string variables are
automatically converted into positive integers by ranking.

• In addition to system missing values and user defined missing values, CATREG treats
category indicator values less than 1 as missing. If one of the values of a categorical
variable has been coded 0 or some negative value and you want to treat it as a valid
category, use the COMPUTE command to add a constant to the values of that variable such
that the lowest value will be 1. (See the SPSS Syntax Reference Guide or the SPSS Base
User’s Guide for more information on COMPUTE). You can also use the RANKING option
of the DISCRETIZATION subcommand for this purpose, except for variables you want to
treat as numerical, since the characteristic of equal intervals in the data will not be
maintained.

• There must be at least three valid cases.

• The number of valid cases must be greater than the number of independent variables plus 1.

• The maximum number of independent variables is 200.
• Split-File has no implications for CATREG.

Example
CATREG VARIABLES = TEST1 TEST3 TEST2 TEST4 TEST5 TEST6

TEST7 TO TEST9 STATUS01 STATUS02
/ANALYSIS TEST4 (LEVEL=NUME)
WITH TEST1 TO TEST2 (LEVEL=SPORD DEGREE=1 INKNOT=3) TEST5 TEST7
(LEVEL=SPNOM) TEST8 (LEVEL=ORDI) STATUS01 STATUS02 (LEVEL=NOMI)

/DISCRETIZATION = TEST1(GROUPING NCAT=5 DISTR=UNIFORM)
TEST5(GROUPING) TEST7(MULTIPLYING)

/INITIAL = RANDOM
/MAXITER = 100
/CRITITER = .000001
/MISSING = MODEIMPU
/PRINT = R COEFF DESCRIP ANOVA QUANT(TEST1 TO TEST2 STATUS01

STATUS02)
/PLOT = TRANS (TEST2 TO TEST7 TEST4)
/SAVE
/OUTFILE = ’c:\data\qdata.sav’.

210 Syntax Reference

• VARIABLES defines variables. The keyword TO refers to the order of the variables in the
working data file.

• The ANALYSIS subcommand defines variables used in the analysis. It is specified that
TEST4 is the dependent variable, with optimal scaling level numerical and that the
variables TEST1, TEST2, TEST3, TEST5, TEST7, TEST8, STATUS01, and STATUS02 are
the independent variables to be used in the analysis. (The keyword TO refers to the order
of the variables in the VARIABLES subcommand.) The optimal scaling level for TEST1,
TEST2, and TEST3 is spline ordinal, for TEST5 and TEST7 spline nominal, for TEST8
ordinal, and for STATUS01 and STATUS02 nominal. The splines for TEST1 and TEST2
have degree 1 and three interior knots, the splines for TEST5 and TEST7 have degree 2
and two interior knots (default because unspecified).

• DISCRETIZATION specifies that TEST5 and TEST7, which are fractional-value variables,
are discretized: TEST5 by recoding into seven categories with a normal distribution
(default because unspecified) and TEST7 by “multiplying.” TEST1, which is a categorical
variable, is recoded into five categories with a close-to-uniform distribution.

• Because there are nominal variables, a random initial solution is requested by the INITIAL
subcommand.

• MAXITER specifies the maximum number of iterations to be 100. This is the default, so
this subcommand could be omitted here.

• CRITITER sets the convergence criterion to a value smaller than the default value.
• To include cases with missing values, the MISSING subcommand specifies that for each

variable, missing values are replaced with the most frequent category (the mode).

• PRINT specifies the correlations, the coefficients, the descriptive statistics for all vari-
ables, the ANOVA table, the category quantifications for variables TEST1, TEST2,
TEST3, STATUS01, and STATUS02, and the transformed data list of all cases.

• PLOT is used to request quantification plots for the variables TEST2, TEST5, TEST7, and
TEST4.

• The SAVE subcommand adds the transformed variables to the working data file. The
names of these new variables are TRANS1_1, ..., TRANS9_1.

• The OUTFILE subcommand writes the transformed data to a data file called qdata.sav in
the directory c:\data.

VARIABLES Subcommand

VARIABLES specifies the variables that may be analyzed in the current CATREG procedure.

• The VARIABLES subcommand is required and precedes all other subcommands. The
actual keyword VARIABLES can be omitted. (Note that the equals sign is always optional
in SPSS syntax.)

• The keyword TO on the VARIABLES subcommand refers to the order of variables in the
working data file. (Note that this behavior of TO is different from that in the indvarlist on
the ANALYSIS subcommand.)

CATREG 211

ANALYSIS Subcommand

ANALYSIS specifies the dependent variable and the independent variables following the
keyword WITH.

• All the variables on ANALYSIS must be specified on the VARIABLES subcommand.
• The ANALYSIS subcommand is required and follows the VARIABLES subcommand.

• The first variable list contains exactly one variable as the dependent variable, while the
second variable list following WITH contains at least one variable as an independent
variable. Each variable may have at most one keyword in parentheses indicating the
transformation type of the variable.

• The keyword TO in the independent variable list honors the order of variables on the
VARIABLES subcommand.

• Optimal scaling levels are indicated by the keyword LEVEL in parentheses following the
variable or variable list.

LEVEL Specifies the optimal scaling level.

LEVEL Keyword

The following keywords are used to indicate the optimal scaling level:

SPORD Spline ordinal (monotonic). This is the default for a variable listed
without any optimal scaling level, for example, one without LEVEL in
the parentheses after it or with LEVEL without a specification. Catego-
ries are treated as ordered. The order of the categories of the observed
variable is preserved in the optimally scaled variable. Categories will
be on a straight line through the origin. The resulting transformation is
a smooth nondecreasing piecewise polynomial of the chosen degree.
The pieces are specified by the number and the placement of the
interior knots.

SPNOM Spline nominal (non-monotonic). Categories are treated as unordered.
Objects in the same category obtain the same quantification. Catego-
ries will be on a straight line through the origin. The resulting transfor-
mation is a smooth piecewise polynomial of the chosen degree. The
pieces are specified by the number and the placement of the interior
knots.

ORDI Ordinal. Categories are treated as ordered. The order of the categories
of the observed variable is preserved in the optimally scaled variable.
Categories will be on a straight line through the origin. The resulting
transformation fits better than SPORD transformation, but is less
smooth.

NOMI Nominal. Categories are treated as unordered. Objects in the same
category obtain the same quantification. Categories will be on a
straight line through the origin. The resulting transformation fits better
than SPNOM transformation, but is less smooth.

212 Syntax Reference

NUME Numerical. Categories are treated as equally spaced (interval level).
The order of the categories and the differences between category num-
bers of the observed variables are preserved in the optimally scaled
variable. Categories will be on a straight line through the origin. When
all variables are scaled at the numerical level, the CATREG analysis is
analogous to standard multiple regression analysis.

SPORD and SPNOM Keywords

The following keywords are used with SPORD and SPNOM :

DEGREE The degree of the polynomial. If DEGREE is not specified the degree
is assumed to be 2.

INKNOT The number of the interior knots. If INKNOT is not specified the num-
ber of interior knots is assumed to be 2.

DISCRETIZATION Subcommand

DISCRETIZATION specifies fractional-value variables that you want to discretize. Also, you
can use DISCRETIZATION for ranking or for two ways of recoding categorical variables.
• A string variable’s values are always converted into positive integers by assigning

category indicators according to the ascending alphanumeric order. DISCRETIZATION for
string variables applies to these integers.

• When the DISCRETIZATION subcommand is omitted, or when the DISCRETIZATION sub-
command is used without a varlist, fractional-value variables are converted into positive
integers by grouping them into seven categories (or into the number of distinct values of
the variable if this number is less than 7) with a close to normal distribution.

• When no specification is given for variables in a varlist following DISCRETIZATION, these
variables are grouped into seven categories with a close-to-normal distribution.

• In CATREG, a system-missing value, user-defined missing values, and values less than 1
are considered to be missing values (see next section). However, in discretizing a
variable, values less than 1 are considered to be valid values, and are thus included in the
discretization process. System-missing values and user-defined missing values are
excluded.

GROUPING Recode into the specified number of categories.

RANKING Rank cases. Rank 1 is assigned to the case with the smallest value on
the variable.

MULTIPLYING Multiplying the standardized values (z-scores) of a fractional-value
variable by 10, rounding, and adding a value such that the lowest
value is 1.

CATREG 213

GROUPING Keyword

NCAT Recode into ncat categories. When NCAT is not specified, the number of
categories is set to 7 (or the number of distinct values of the variable if this
number is less than 7). The valid range is from 2 to 36. You may either
specify a number of categories or use the keyword DISTR.

EQINTV Recode intervals of equal size into categories. The interval size must be
specified (there is no default value). The resulting number of categories
depends on the interval size.

DISTR Keyword

DISTR has the following keywords:

NORMAL Normal distribution. This is the default when DISTR is not specified.

UNIFORM Uniform distribution.

MISSING Subcommand

In CATREG, we consider a system missing value, user defined missing values, and values less
than 1 as missing values. However, in discretizing a variable (see previous section), values
less than 1 are considered as valid values. The MISSING subcommand allows you to indicate
how to handle missing values for each variable.

LISTWISE Exclude cases with missing values on the specified variable(s). The
cases used in the analysis are cases without missing values on the
variable(s) specified. This is the default applied to all variables, when
the MISSING subcommand is omitted or is specified without variable
names or keywords. Also, any variable which is not included in the
subcommand gets this specification.

MODEIMPU Impute missing value with mode. All cases are included and the impu-
tations are treated as valid observations for a given variable. When
there are multiple modes, the smallest mode is used.

EXTRACAT Impute missing values on a variable with an extra category indicator.
This implies that objects with a missing value are considered to belong
to the same (extra) category. This category is treated as nominal,
regardless of the optimal scaling level of the variable.

• The ALL keyword may be used to indicate all variables. If it is used, it must be the only
variable specification.

• A mode or extra-category imputation is done before listwise deletion.

214 Syntax Reference

SUPPLEMENTARY Subcommand

The SUPPLEMENTARY subcommand specifies the objects that you want to treat as supple-
mentary. You cannot weight supplementary objects (specified weights are ignored).

OBJECT Supplementary objects. Objects that you want to treat as supplemen-
tary are indicated with an object number list in parentheses following
OBJECT. The keyword TO is allowed, for example, OBJECT(1 TO 1 3
5 TO 9).

INITIAL Subcommand

INITIAL specifies the method used to compute the initial value/configuration.

• The specification on INITIAL is keyword NUMERICAL or RANDOM. If INITIAL is not
specified, NUMERICAL is the default.

NUMERICAL Treat all variables as numerical. This is usually best to use when there
are only numerical and/or ordinal variables.

RANDOM Provide a random initial value. This should be used only when there
is at least one nominal variable.

MAXITER Subcommand

MAXITER specifies the maximum number of iterations CATREG can go through in its com-
putations. Note that the output starts from the iteration number 0, which is the initial value
before any iteration, when INITIAL = NUMERICAL is in effect.

• If MAXITER is not specified, CATREG will iterate up to 100 times.
• The specification on MAXITER is a positive integer indicating the maximum number of

iterations. There is no uniquely predetermined (hard coded) maximum for the value that
can be used.

CRITITER Subcommand

CRITITER specifies a convergence criterion value. CATREG stops iterating if the difference
in fit between the last two iterations is less than the CRITITER value.

• If CRITITER is not specified, the convergence value is 0.00001.

• The specification on CRITITER is any value less than or equal to 0.1 and greater than or
equal to .000001. (Values less than the lower bound might seriously affect performance.
Therefore, they are not supported.)

CATREG 215

PRINT Subcommand

The PRINT subcommand controls the display of output. The output of the CATREG procedure
is always based on the transformed variables. However, the correlations of the original pre-
dictor variables can be requested as well by the keyword OCORR. The default keywords are
R, COEFF, DESCRIP, and ANOVA. That is, the four keywords are in effect when the PRINT
subcommand is omitted or when the PRINT subcommand is given without any keyword. If a
keyword is duplicated or it encounters a contradicting keyword, such as /PRINT = R R NONE,
then the last one silently becomes effective.

R Multiple R. Includes R2, adjusted R2, and adjusted R2 taking the
optimal scaling into account.

COEFF Standardized regression coefficients (beta). This option gives three
tables: a Coefficients table that includes betas, standard error of the
betas, t values, and significance; a Coefficients-Optimal Scaling
table, with the standard error of the betas taking the optimal scaling
degrees of freedom into account; and a table with the zero-order, part,
and partial correlation, Pratt’s relative importance measure for the
transformed predictors, and the tolerance before and after transforma-
tion. If the tolerance for a transformed predictor is lower than the de-
fault tolerance value in the SPSS Regression procedure (0.0001), but
higher than 10E–12, this is reported in an annotation. If the tolerance
is lower than 10E–12, then the COEFF computation for this variable
is not done and this is reported in an annotation. Note that the regres-
sion model includes the intercept coefficient but that its estimate does
not exist because the coefficients are standardized.

DESCRIP(varlist) Descriptive statistics (frequencies, missing values, and mode). The
variables in the varlist must be specified on the VARIABLES subcom-
mand, but need not appear on the ANALYSIS subcommand. If DESCRIP
is not followed by a varlist, Descriptives tables are displayed for all of
the variables in the variable list on the ANALYSIS subcommand.

HISTORY History of iterations. For each iteration, including the starting values
for the algorithm, the multiple R and the regression error (square root
of (1–multiple R2)) are shown. The increase in multiple R is listed
from the first iteration.

ANOVA Analysis-of-variance tables. This option includes regression and
residual sums of squares, mean squares and F. This options gives two
ANOVA tables: one with degrees of freedom for the regression equal
to the number of predictor variables and one with degrees of freedom
for the regression taking the optimal scaling into account.

CORR Correlations of the transformed predictors.

OCORR Correlations of the original predictors.

QUANT(varlist) Category quantifications. Any variable in the ANALYSIS subcommand
may be specified in parentheses after QUANT. If QUANT is not fol-
lowed by a varlist, Quantification tables are displayed for all variables
in the variable list on the ANALYSIS subcommand.

216 Syntax Reference

NONE No PRINT output is shown. This is to suppress the default PRINT
output.

• The keyword TO in a variable list can only be used with variables that are in the ANALYSIS
subcommand, and TO applies only to the order of the variables in the ANALYSIS subcom-
mand. For variables that are in the VARIABLES subcommand but not in the ANALYSIS sub-
command, the keyword TO cannot be used. For example, if /VARIABLES = v1 TO v5 and
/ANALYSIS is v2 v1 v4, then /PRINT QUANT(v1 TO v4) will give two quantification plots,
one for v1 and one for v4. (/PRINT QUANT(v1 TO v4 v2 v3 v5) will give quantification tables
for v1, v2, v3, v4, and v5.)

PLOT Subcommand

The PLOT subcommand controls the display of plots.

• In this subcommand, if no plot keyword is given, then no plot is created. Further, if the
variable list following the plot keyword is empty, then no plot is created, either.

• All the variables to be plotted must be specified in the ANALYSIS subcommand. Further,
for the residual plots, the variables must be independent variables.

TRANS(varlist)(l) Transformation plots (optimal category quantifications against cate-
gory indicators). A list of variables must come from the ANALYSIS
variable list and must be given in parentheses following the keyword.
Further, the user can specify an optional parameter l in parentheses
after the variable list in order to control the global upper boundary of
category label lengths in the plot. Note that this boundary is applied
uniformly to all transformation plots.

RESID(varlist)(l) Residual plots (residuals when the dependent variable is predicted
from all predictor variables in the analysis except the predictor
variable in varlist, against category indicators, and the optimal
category quantifications multiplied with Beta against category
indicators). A list of variables must come from the ANALYSIS variable
list’s independent variables and must be given in parentheses follow-
ing the keyword. Further, the user can specify an optional parameter l
in parentheses after the variable list in order to control the global upper
boundary of category label lengths in the plot. Note that this boundary
is applied uniformly to all residual plots.

• The category label length parameter (l) can take any non-negative integer less than or
equal to 20. If l = 0, values instead of value labels are displayed to indicate the categories
on the x axis in the plot. If l is not specified, CATREG assumes that each value label at its
full length is displayed as a plot’s category label, but currently LINE CHART in GRAPH
limit them to 20. Thus, it is equivalent to (l = 20). (Note that the VALUE LABELS command
allows up to 60 characters.) If l is an integer larger than 20, then we reset it to 20 and issue
a warning saying l must be a non-negative integer less than or equal to 20.

• If a positive value of l is given, but if some or all of the values do not have value labels,
then for those values, the values themselves are used as the category labels, and they obey
the label length constraint.

CATREG 217

• The keyword TO in a variable list can only be used with variables that are in the ANALYSIS
subcommand, and TO applies only to the order of the variables in the ANALYSIS subcom-
mand. For variables that are in the VARIABLES subcommand but not in the ANALYSIS
subcommand, the keyword TO cannot be used. For example, if /VARIABLES = v1 TO v5 and
/ANALYSIS is v2 v1 v4, then /PLOT TRANS(v1 TO v4) will give two transformation plots,
one for v1 and for v4. (/PLOT TRANS(v1 TO v4 v2 v3 v5) will give transformation plots for
v1, v2, v3, v4, and v5.)

SAVE Subcommand

The SAVE subcommand is used to add the transformed variables (category indicators
replaced with optimal quantifications), the predicted values, and the residuals to the working
data file.

Excluded cases are represented by a dot (the sysmis symbol) on every saved variable.

TRDATA Transformed variables.

PRED Predicted values.

RES Residuals.

• A variable rootname can be specified with each of the keywords. Only one rootname can
be specified with each keyword, and it can contain up to five characters (if more than one
rootname is specified with a keyword, the first rootname is used; if a rootname contains
more than five characters, the first five characters are used at most). If a rootname is not
specified, the default rootnames (TRA, PRE, and RES) are used.

• CATREG adds two numbers separated by an underscore (_) to the rootname. The formula
is ROOTNAMEk_n where k increments from 1 to identify the source variable names by us-
ing the source variables’ position numbers in the ANALYSIS subcommand (that is, the de-
pendent variable has the position number 1, and the independent variables have the
position numbers 2, 3, ... as they are listed), and n increments from 1 to identify the
CATREG procedures with the successfully executed SAVE subcommands for a given data
file in a continuous SPSS session. For example, with two predictor variables specified on
ANALYSIS, the first set of default names for the transformed data, if they do not exist in
the data file, would be TRA1_1, for the dependent variable, and TRA2_1, TRA3_1 for the
predictor variables. The next set of default names, if they do not exist in the data file,
would be TRA1_2, TRA2_2, TRA3_2. However, if, for example, TRA1_2 already exists in
the data file, then the default names should be attempted as TRA1_3, TRA2_3, TRA3_3—
that is, the last number increments to the next available integer.

• Variable labels are created automatically. (They are shown in the Procedure Information
Table (the Notes table) and can also be displayed in the Data Editor window.)

OUTFILE Subcommand

The OUTFILE subcommand is used to write the discretized data and/or the transformed data
(category indicators replaced with optimal quantifications) to an external data file. Excluded
cases are represented by a dot (the sysmis symbol) on every saved variable.

218 Syntax Reference

DISCRDATA(’filename’) Discretized data.

TRDATA(’filename’) Transformed variables.

• Following the keyword, a filename enclosed by single quotation marks should be
specified. The filenames should be different for the each of the keywords.

• A working data file, in principle, should not be replaced by this subcommand, and the
asterisk (*) file specification is not supported. This strategy also prevents the OUTFILE
interference with the SAVE subcommand.

219

CCF

CCF [VARIABLES=] series names [WITH series names]

 [/DIFF={1}]
 {n}

 [/SDIFF={1}]
 {n}

 [/PERIOD=n]

 [/{NOLOG**}]
 {LN }

 [/SEASONAL]

 [/MXCROSS={7**}]
 {n }

 [/APPLY[=’model name’]]

**Default if the subcommand is omitted and there is no corresponding specification on the TSET command.

Example
CCF VARX VARY
 /LN
 /DIFF=1
 /SDIFF=1
 /PERIOD=12
 /MXCROSS=25.

Overview

CCF displays and plots the cross-correlation functions of two or more time series. You can
also display and plot the cross-correlations of transformed series by requesting natural log
and differencing transformations within the procedure.

Options

Modifying the Series. You can request a natural log transformation of the series using the LN
subcommand and seasonal and nonseasonal differencing to any degree using the SDIFF and
DIFF subcommands. With seasonal differencing, you can also specify the periodicity on the
PERIOD subcommand.

Statistical Display. You can control which series are paired by using the keyword WITH.
You can specify the range of lags for which you want values displayed and plotted with
the MXCROSS subcommand, overriding the maximum specified on TSET. You can also
display and plot values only at periodic lags using the SEASONAL subcommand.

220 CCF

Basic Specification

The basic specification is two or more series names. By default, CCF automatically displays
the cross-correlation coefficient and standard error for the negative lags (second series
leading), the positive lags (first series leading), and the 0 lag for all possible pair
combinations in the series list. It also plots the cross-correlations and marks the bounds of
two standard errors on the plot. By default, CCF displays and plots values up to 7 lags (lags
−7 to +7), or the range specified on TSET.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• The VARIABLES subcommand can be specified only once.

• Other subcommands can be specified more than once, but only the last specification of
each one is executed.

Operations

• Subcommand specifications apply to all series named on the CCF command.

• If the LN subcommand is specified, any differencing requested on that CCF command is
done on the log transformed series.

• Confidence limits are displayed in the plot, marking the bounds of two standard errors at
each lag.

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of series named
on the list.

Example

CCF VARX VARY
 /LN
 /DIFF=1
 /SDIFF=1
 /PERIOD=12
 /MXCROSS=25.

• This example produces a plot of the cross-correlation function for VARX and VARY after
a natural log transformation, differencing, and seasonal differencing have been applied to
both series. Along with the plot, the cross-correlation coefficients and standard errors are
displayed for each lag.

CCF 221

• LN transforms the data using the natural logarithm (base e) of each series.

• DIFF differences each series once.

• SDIFF and PERIOD apply one degree of seasonal differencing with a period of 12.

• MXCROSS specifies 25 for the maximum range of positive and negative lags for which
output is to be produced (lags −25 to +25).

VARIABLES Subcommand

VARIABLES specifies the series to be plotted and is the only required subcommand. The
actual keyword VARIABLES can be omitted.
• The minimum VARIABLES specification is a pair of series names.

• If you do not use keyword WITH, each series is paired with every other series in the list.

• If you specify keyword WITH, every series named before WITH is paired with every series
named after WITH.

Example
CCF VARIABLES=VARA VARB WITH VARC VARD.

• This example displays and plots the cross-correlation functions for the following pairs of
series: VARA with VARC, VARA with VARD, VARB with VARC, and VARB with VARD.

• VARA is not paired with VARB, and VARC is not paired with VARD.

DIFF Subcommand

DIFF specifies the degree of differencing used to convert a nonstationary series to a stationary
one with a constant mean and variance before obtaining cross-correlations.
• You can specify 0 or any positive integer on DIFF.

• If DIFF is specified without a value, the default is 1.

• The number of values used in the calculations decreases by 1 for each degree of differencing.

Example
CCF VARX VARY
 /DIFF=1.

• This command differences series VARX and VARY before calculating and plotting the
cross-correlation function.

SDIFF Subcommand

If the series exhibits seasonal or periodic patterns, you can use SDIFF to seasonally difference
the series before obtaining cross-correlations.

222 CCF

• The specification on SDIFF indicates the degree of seasonal differencing and can be 0 or
any positive integer.

• If SDIFF is specified without a value, the degree of seasonal differencing defaults to 1.

• The number of seasons used in the calculations decreases by 1 for each degree of seasonal
differencing.

• The length of the period used by SDIFF is specified on the PERIOD subcommand. If the
PERIOD subcommand is not specified, the periodicity established on the TSET or DATE
command is used (see the PERIOD subcommand below).

Example
CCF VAR01 WITH VAR02 VAR03
 /SDIFF=1.

• In this example, one degree of seasonal differencing using the periodicity established on
the TSET or DATE command is applied to the three series.

• Two cross-correlation functions are then plotted, one for the pair VAR01 and VAR02, and
one for the pair VAR01 and VAR03.

PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF or SEASONAL subcommands.

• The specification on PERIOD indicates how many observations are in one period or sea-
son and can be any positive integer greater than 1.

• PERIOD is ignored if it is used without the SDIFF or SEASONAL subcommands.

• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If
TSET PERIOD is not specified, the periodicity established on the DATE command is used.
If periodicity was not established anywhere, the SDIFF and SEASONAL subcommands
will not be executed.

Example
CCF VARX WITH VARY
 /SDIFF=1
 /PERIOD=6.

• This command applies one degree of seasonal differencing with a periodicity of 6 to both
series and computes and plots the cross-correlation function.

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base e) of each series and is used to remove
varying amplitude over time. NOLOG indicates that the data should not be log transformed. NOLOG
is the default.
• There are no additional specifications on LN or NOLOG.

• Only the last LN or NOLOG subcommand on a CCF command is executed.

• LN and NOLOG apply to all series named on the CCF command.

CCF 223

• If a natural log transformation is requested and any values in either series in a pair are less
than or equal to 0, the CCF for that pair will not be produced because nonpositive values
cannot be log transformed.

• NOLOG is generally used with an APPLY subcommand to turn off a previous LN specification.

Example
CCF VAR01 VAR02
 /LN.

• This command transforms the series VAR01 and VAR02 using the natural log before
computing cross-correlations.

SEASONAL Subcommand

Use SEASONAL to focus attention on the seasonal component by displaying and plotting
cross-correlations only at periodic lags.
• There are no additional specifications on SEASONAL.

• If SEASONAL is specified, values are displayed and plotted at the periodic lags indicated
on the PERIOD subcommand. If no PERIOD subcommand is specified, the periodicity first
defaults to the TSET PERIOD specification and then to the DATE command periodicity. If
periodicity is not established anywhere, SEASONAL is ignored (see the PERIOD subcom-
mand on p. 222).

• If SEASONAL is not used, cross-correlations for all lags up to the maximum are displayed
and plotted.

Example
CCF VAR01 VAR02 VAR03
 /SEASONAL.

• This command plots and displays cross-correlations at periodic lags.
• By default, the periodicity established on TSET PERIOD (or the DATE command) is used.

If no periodicity is established, cross-correlations for all lags are displayed and plotted.

MXCROSS Subcommand

MXCROSS specifies the maximum range of lags for a series.

• The specification on MXCROSS must be a positive integer.

• If MXCROSS is not specified, the default range is the value set on TSET MXCROSS. If
TSET MXCROSS is not specified, the default is 7 (lags −7 to +7).

• The value specified on the MXCROSS subcommand overrides the value set on TSET
MXCROSS.

Example
CCF VARX VARY
 /MXCROSS=5.

• The maximum number of cross-correlations can range from lag −5 to lag +5.

224 CCF

APPLY Subcommand

APPLY allows you to use a previously defined CCF model without having to repeat the
specifications.

• The only specification on APPLY is the name of a previous model enclosed in apostrophes.
If a model name is not specified, the model specified on the previous CCF command is
used.

• To change one or more model specifications, specify the subcommands of only those
portions you want to change after the APPLY subcommand.

• If no series are specified on the command, the series that were originally specified with
the model being applied are used.

• To change the series used with the model, enter new series names before or after the
APPLY subcommand.

Example
CCF VARX VARY
 /LN
 /DIFF=1
 /MXCROSS=25.
CCF VARX VARY
 /LN
 /DIFF=1
 /SDIFF=1
 /PERIOD=12
 /MXCROSS=25.
CCF VARX VAR01
 /APPLY.
CCF VARX VAR01
 /APPLY=’MOD_1’.

• The first command displays and plots the cross-correlation function for VARX and VARY
after each series is log transformed and differenced. The maximum range is set to 25 lags.
This model is assigned the name MOD_1 as soon as the command is executed.

• The second command displays and plots the cross-correlation function for VARX and
VARY after each series is log transformed, differenced, and seasonally differenced with a
periodicity of 12. The maximum range is again set to 25 lags. This model is assigned the
name MOD_2.

• The third command requests the cross-correlation function for the series VARX and VAR01
using the same model and the same range of lags as used for MOD_2.

• The fourth command applies MOD_1 (from the first command) to the series VARX and
VAR01.

References

Box, G. E. P., and G. M. Jenkins. 1976. Time series analysis: Forecasting and control.
San Francisco: Holden-Day.

225

CLEAR TRANSFORMATIONS

CLEAR TRANSFORMATIONS

Overview

CLEAR TRANSFORMATIONS discards previous data transformation commands.

Basic Specification

The only specification is the command itself. CLEAR TRANSFORMATIONS has no additional
specifications.

Operations

• CLEAR TRANSFORMATIONS discards all data transformation commands that have
accumulated since the last procedure.

• CLEAR TRANSFORMATIONS has no effect if a command file is submitted to your operating
system for execution. It generates a warning when a command file is present.

• Be sure to delete CLEAR TRANSFORMATIONS and any unwanted transformation
commands from the journal file if you plan to submit the file to the operating system for
batch-mode execution. Otherwise, the unwanted transformations will cause problems.

Example

GET FILE=QUERY.
FREQUENCIES=ITEM1 ITEM2 ITEM3.
RECODE ITEM1, ITEM2, ITEM3 (0=1) (1=0) (2=-1).
COMPUTE INDEXQ=(ITEM1 + ITEM2 + ITEM3)/3.
VARIABLE LABELS INDEXQ ’SUMMARY INDEX OF QUESTIONS’.
CLEAR TRANSFORMATIONS.
DISPLAY DICTIONARY.

• The GET and FREQUENCIES commands are executed.

• The RECODE, COMPUTE, and VARIABLE LABELS commands are transformations. They
do not affect the data until the next procedure is executed.

• The CLEAR TRANSFORMATIONS command discards the RECODE, COMPUTE, and
VARIABLE LABELS commands.

• The DISPLAY command displays the working file dictionary. Data values and labels are
exactly as they were when the FREQUENCIES command was executed. Variable INDEXQ
does not exist because CLEAR TRANSFORMATIONS discarded the COMPUTE command.

226

CLUSTER

CLUSTER varlist [/MISSING=[EXCLUDE**] [INCLUDE]]

[/MEASURE=[{SEUCLID** }]
 {EUCLID }
 {COSINE }
 {CORRELATION }
 {BLOCK }
 {CHEBYCHEV }
 {POWER(p,r) }
 {MINKOWSKI(p) }
 {CHISQ }
 {PH2 }
 {RR[(p[,np])] }
 {SM[(p[,np])] }
 {JACCARD[(p[,np])] }
 {DICE[(p[,np])] }
 {SS1[(p[,np])] }
 {RT[(p[,np])] }
 {SS2[(p[,np])] }
 {K1[(p[,np])] }
 {SS3[(p[,np])] }
 {K2[(p[,np])] }
 {SS4[(p[,np])] }
 {HAMANN[(p[,np])] }
 {OCHIAI[(p[,np])] }
 {SS5[(p[,np])] }
 {PHI[(p[,np])] }
 {LAMBDA[(p[,np])] }
 {D[(p[,np])] }
 {Y[(p[,np])] }
 {Q[(p[,np])] }
 {BEUCLID[(p[,np])] }
 {SIZE[(p[,np])] }
 {PATTERN[(p[,np])] }
 {BSEUCLID[(p[,np])]}
 {BSHAPE[(p[,np])] }
 {DISPER[(p[,np])] }
 {VARIANCE[(p[,np])]}
 {BLWMN[(p[,np])] }

[/METHOD={BAVERAGE**}[(rootname)] [...]]
 {WAVERAGE }
 {SINGLE }
 {COMPLETE }
 {CENTROID }
 {MEDIAN }
 {WARD }
 {DEFAULT** }

 [/SAVE=CLUSTER({level })] [/ID=varname]
 {min,max}

 [/PRINT=[CLUSTER({level })] [DISTANCE] [SCHEDULE**] [NONE]]
 {min,max}

 [/PLOT=[VICICLE**[(min[,max[,inc]])]] [DENDROGRAM] [NONE]]
 [HICICLE[(min[,max[,inc]])]]

 [/MATRIX=[IN({file})] [OUT({file})]]
 {* } {* }

** Default if subcommand or keyword is omitted.

CLUSTER 227

Example
CLUSTER V1 TO V4
/PLOT=DENDROGRAM
/PRINT=CLUSTER (2,4).

Overview

CLUSTER produces hierarchical clusters of items based on distance measures of dissimilarity
or similarity. The items being clustered are usually cases from the working data file, and the
distance measures are computed from their values for one or more variables. You can also
cluster variables if you read in a matrix measuring distances between variables. Cluster analysis
is discussed in Anderberg (1973).

Options

Cluster Measures and Methods. You can specify one of 37 similarity or distance measures on
the MEASURE subcommand and any of the seven methods on the METHOD subcommand.

New Variables. You can save cluster membership for specified solutions as new variables in
the working data file using the SAVE subcommand.

Display and Plots. You can display cluster membership, the distance or similarity matrix used
to cluster variables or cases, and the agglomeration schedule for the cluster solution with
the PRINT subcommand. You can request either a horizontal or vertical icicle plot or a den-
drogram of the cluster solution and control the cluster levels displayed in the icicle plot with
the PLOT subcommand. You can also specify a variable to be used as a case identifier in the
display on the ID subcommand.

Matrix Input and Output. You can write out the distance matrix and use it in subsequent
CLUSTER, PROXIMITIES, or ALSCAL analyses or read in matrices produced by other CLUSTER
or PROXIMITIES procedures using the MATRIX subcommand.

Basic Specification

The basic specification is a variable list. CLUSTER assumes that the items being clustered are
cases and uses the squared Euclidean distances between cases on the variables in the analysis
as the measure of distance.

Subcommand Order

• The variable list must be specified first.

• The remaining subcommands can be specified in any order.

Syntax Rules

• The variable list and subcommands can each be specified once.

228 CLUSTER

• More than one clustering method can be specified on the METHOD subcommand.

Operations

The CLUSTER procedure involves four steps:

• First, CLUSTER obtains distance measures of similarities between or distances separating
initial clusters (individual cases or individual variables if the input is a matrix measuring
distances between variables).

• Second, it combines the two nearest clusters to form a new cluster.

• Third, it recomputes similarities or distances of existing clusters to the new cluster.

• It then returns to the second step until all items are combined in one cluster.

This process yields a hierarchy of cluster solutions, ranging from one overall cluster to as
many clusters as there are items being clustered. Clusters at a higher level can contain several
lower-level clusters. Within each level, the clusters are disjoint (each item belongs to only
one cluster).

• CLUSTER identifies clusters in solutions by sequential integers (1, 2, 3, and so on).

Limitations

• CLUSTER stores cases and a lower-triangular matrix of proximities in memory. Storage
requirements increase rapidly with the number of cases. You should be able to cluster 100
cases using a small number of variables in an 80K workspace.

• CLUSTER does not honor weights.

Example

CLUSTER V1 TO V4
/PLOT=DENDROGRAM
/PRINT=CLUSTER (2 4).

• This example clusters cases based on their values for all variables between and including
V1 and V4 in the working data file.

• The analysis uses the default measure of distance (squared Euclidean) and the default
clustering method (average linkage between groups).

• PLOT requests a dendrogram.
• PRINT displays a table of the cluster membership of each case for the two-, three-, and

four-cluster solutions.

Variable List

The variable list identifies the variables used to compute similarities or distances between
cases.

CLUSTER 229

• The variable list is required except when matrix input is used. It must be specified before
the optional subcommands.

• If matrix input is used, the variable list can be omitted. The names for the items in the ma-
trix are used to compute similarities or distances.

• You can specify a variable list to override the names for the items in the matrix. This
allows you to read in a subset of cases for analysis. Specifying a variable that does not
exist in the matrix results in an error.

MEASURE Subcommand

MEASURE specifies the distance or similarity measure used to cluster cases.

• If the MEASURE subcommand is omitted or included without specifications, squared
Euclidean distances are used.

• Only one measure can be specified.

Measures for Interval Data

For interval data, use any one of the following keywords on MEASURE:

SEUCLID Squared Euclidean distance. The distance between two items, x and y, is the
sum of the squared differences between the values for the items. SEUCLID is
the measure commonly used with centroid, median, and Ward’s methods of
clustering. SEUCLID is the default and can also be requested with keyword
DEFAULT.

EUCLID Euclidean distance. This is the default specification for MEASURE. The dis-
tance between two items, x and y, is the square root of the sum of the squared
differences between the values for the items.

CORRELATION Correlation between vectors of values. This is a pattern similarity measure.

where Zxi is the Z-score (standardized) value of x for the ith case or variable,

and N is the number of cases or variables.

COSINE Cosine of vectors of values. This is a pattern similarity measure.

SEUCLID x y,() Σi xi yi–()2=

EUCLID x y,() Σi xi yi–()2=

CORRELATION x y,()
Σi ZxiZyi()

N 1–
-------------------------=

COSINE x y,()
Σi xiyi()

Σixi
2() Σiyi

2()
-----------------------------------=

230 CLUSTER

CHEBYCHEV Chebychev distance metric. The distance between two items is the maximum
absolute difference between the values for the items.

BLOCK City-block or Manhattan distance. The distance between two items is the
sum of the absolute differences between the values for the items.

MINKOWSKI(p) Distance in an absolute Minkowski power metric. The distance between two
items is the pth root of the sum of the absolute differences to the pth power
between the values for the items. Appropriate selection of the integer param-
eter p yields Euclidean and many other distance metrics.

POWER(p,r) Distance in an absolute power metric. The distance between two items is the
rth root of the sum of the absolute differences to the pth power between the
values for the items. Appropriate selection of the integer parameters p and r
yields Euclidean, squared Euclidean, Minkowski, city-block, and many
other distance metrics.

Measures for Frequency Count Data

For frequency count data, use any one of the following keywords on MEASURE:

CHISQ Based on the chi-square test of equality for two sets of frequencies. The
magnitude of this dissimilarity measure depends on the total frequencies of
the two cases or variables whose dissimilarity is computed. Expected values
are from the model of independence of cases or variables x and y.

PH2 Phi-square between sets of frequencies. This is the CHISQ measure
normalized by the square root of the combined frequency. Therefore, its
value does not depend on the total frequencies of the two cases or variables
whose dissimilarity is computed.

CHEBYCHEV x y,() maxi xi yi–=

BLOCK x y,() Σi xi yi–=

MINKOWSKI x y,() Σi xi yi– p()1 p/=

POWER x y,() Σi xi yi– p()1 r/=

CHISQ x y,()
Σi xi E xi()–()2

E xi()

Σi yi E yi()–()2

E yi()
-----------------------------------+=

PH2 x y,()

Σi xi E xi()–()2

E xi()

Σi yi E yi()–()2

E yi()
-----------------------------------+

N
---=

CLUSTER 231

Measures for Binary Data

Different binary measures emphasize different aspects of the relationship between sets of
binary values. However, all the measures are specified in the same way. Each measure has
two optional integer-valued parameters, p (present) and np (not present).

• If both parameters are specified, CLUSTER uses the value of the first as an indicator that
a characteristic is present and the value of the second as an indicator that a characteristic
is absent. CLUSTER skips all other values.

• If only the first parameter is specified, CLUSTER uses that value to indicate presence and
all other values to indicate absence.

• If no parameters are specified, CLUSTER assumes that 1 indicates presence and 0 indi-
cates absence.

Using the indicators for presence and absence within each item (case or variable), CLUSTER con-
structs a contingency table for each pair of items in turn. It uses this table to compute a
proximity measure for the pair.

CLUSTER computes all binary measures from the values of a, b, c, and d. These values are
tallied across variables (when the items are cases) or across cases (when the items are
variables). For example, if variables V, W, X, Y, Z have values 0, 1, 1, 0, 1 for case 1 and values
0, 1, 1, 0, 0 for case 2 (where 1 indicates presence and 0 indicates absence), the contingency
table is as follows:

The contingency table indicates that both cases are present for two variables (W and X), both
cases are absent for two variables (V and Y), and case 1 is present and case 2 is absent for one
variable (Z). There are no variables for which case 1 is absent and case 2 is present.

The available binary measures include matching coefficients, conditional probabilities,
predictability measures, and others.

Matching Coefficients. Table 1 shows a classification scheme for matching coefficients. In
this scheme, matches are joint presences (value a in the contingency table) or joint absences
(value d). Nonmatches are equal in number to value b plus value c. Matches and nonmatches
may be weighted equally or not. The three coefficients JACCARD, DICE, and SS2 are related
monotonically, as are SM, SS1, and RT. All coefficients in Table 1 are similarity measures,

Item 2 characteristics

Present Absent

Item 1 characteristics

Present a b

Absent c d

Case 2 characteristics

Present Absent

Case 1 characteristics

Present 2 1

Absent 0 2

2 2×

232 CLUSTER

and all except two (K1 and SS3) range from 0 to 1. K1 and SS3 have a minimum value of 0
and no upper limit.

RR[(p[,np])] Russell and Rao similarity measure. This is the binary dot product.

SM[(p[,np])] Simple matching similarity measure. This is the ratio of the number of
matches to the total number of characteristics.

JACCARD[(p[,np])] Jaccard similarity measure. This is also known as the similarity ratio.

Table 1 Binary matching coefficients in CLUSTER

Joint absences
excluded from
numerator

Joint absences
included in
numerator

All matches included
in denominator

Equal weight for
matches and nonmatches RR SM

Double weight for
matches

 SS1

Double weight for
nonmatches

 RT

Joint absences excluded
from denominator

Equal weight for
matches and nonmatches JACCARD

Double weight for
matches DICE

Double weight for
nonmatches SS2

All matches excluded
from denominator

Equal weight for
matches and nonmatches K1 SS3

RR x y,() a
a b c d+ + +
------------------------------=

SM x y,() a d+
a b c d+ + +
------------------------------=

JACCARD x y,() a
a b c+ +
---------------------=

CLUSTER 233

DICE[(p[,np])] Dice (or Czekanowski or Sorenson) similarity measure.

SS1[(p[,np])] Sokal and Sneath similarity measure 1.

RT[(p[,np])] Rogers and Tanimoto similarity measure.

SS2[(p[,np])] Sokal and Sneath similarity measure 2.

K1[(p[,np])] Kulczynski similarity measure 1. This measure has a minimum value
of 0 and no upper limit. It is undefined when there are no nonmatches
(b=0 and c=0).

SS3[(p[,np])] Sokal and Sneath similarity measure 3. This measure has a minimum
value of 0 and no upper limit. It is undefined when there are no non-
matches (b=0 and c=0).

Conditional Probabilities. The following binary measures yield values that can be interpreted
in terms of conditional probability. All three are similarity measures.

K2[(p[,np])] Kulczynski similarity measure 2. This yields the average conditional
probability that a characteristic is present in one item given that the
characteristic is present in the other item. The measure is an average
over both items acting as predictors. It has a range of 0 to 1.

SS4[(p[,np])] Sokal and Sneath similarity measure 4. This yields the conditional
probability that a characteristic of one item is in the same state (presence
or absence) as the characteristic of the other item. The measure is an
average over both items acting as predictors. It has a range of 0 to 1.

DICE x y,() 2a
2a b c+ +
------------------------=

SS1 x y,() 2 a d+()
2 a d+() b c+ +
---------------------------------------=

RT x y,() a d+
a d 2 b c+()+ +
---------------------------------------=

SS2 x y,() a
a 2 b c+()+
-----------------------------=

K1 x y,() a
b c+
------------=

SS3 x y,() a d+
b c+
------------=

K2 x y,() a a b+()⁄ a a c+()⁄+
2

--=

234 CLUSTER

HAMANN[(p[,np])] Hamann similarity measure. This measure gives the probability that a
characteristic has the same state in both items (present in both or absent
from both) minus the probability that a characteristic has different states
in the two items (present in one and absent from the other). HAMANN has
a range of −1 to +1 and is monotonically related to SM, SS1, and RT.

Predictability Measures. The following four binary measures assess the association between
items as the predictability of one given the other. All four measures yield similarities.

LAMBDA[(p[,np])] Goodman and Kruskal’s lambda (similarity). This coefficient assesses
the predictability of the state of a characteristic on one item (present
or absent) given the state on the other item. Specifically, LAMBDA
measures the proportional reduction in error using one item to predict
the other when the directions of prediction are of equal importance.
LAMBDA has a range of 0 to 1.

where
t1 = max(a,b) + max(c,d) + max(a,c) + max(b,d)

t2 = max(a + c, b + d) + max(a + d, c + d).

D[(p[,np])] Anderberg’s D (similarity). This coefficient assesses the predictability
of the state of a characteristic on one item (present or absent) given the
state on the other. D measures the actual reduction in the error
probability when one item is used to predict the other. The range of D
is 0 to 1.

where
t1 = max(a,b) + max(c,d) + max(a,c) + max(b,d)

t2 = max(a + c, b + d) + max(a + d, c + d)

Y[(p[,np])] Yule’s Y coefficient of colligation (similarity). This is a function of the
cross ratio for a table. It has a range of −1 to +1.

SS4 x y,() a a b+()⁄ a a c+()⁄ d b d+()⁄ d c d+()⁄+ + +
4

---=

HAMANN x y,() a d+() b c+()–
a b c d+ + +

--=

LAMBDA x y,()
t1 t2–

2 a b c d+ + +() t2–
---=

D x y,()
t1 t2–

2 a b c d+ + +()
---------------------------------------=

2 2×

CLUSTER 235

Q[(p[,np])] Yule’s Q (similarity). This is the version of Goodman and
Kruskal’s ordinal measure gamma. Like Yule’s Y, Q is a function of
the cross ratio for a table and has a range of −1 to +1.

Other Binary Measures. The remaining binary measures available in CLUSTER are either binary
equivalents of association measures for continuous variables or measures of special properties
of the relationship between items.

OCHIAI[(p[,np])] Ochiai similarity measure. This is the binary form of the cosine. It has
a range of 0 to 1.

SS5[(p[,np])] Sokal and Sneath similarity measure 5. The range is 0 to 1.

PHI[(p[,np])] Fourfold point correlation (similarity). This is the binary form of the
Pearson product-moment correlation coefficient.

BEUCLID[(p[,np])] Binary Euclidean distance. This is a distance measure. Its minimum
value is 0, and it has no upper limit.

BSEUCLID[(p[,np])] Binary squared Euclidean distance. This is a distance measure. Its
minimum value is 0, and it has no upper limit.

SIZE[(p[,np])] Size difference. This is a dissimilarity measure with a minimum value
of 0 and no upper limit.

PATTERN[(p[,np])] Pattern difference. This is a dissimilarity measure. The range is 0 to 1.

Y x y,() ad bc–

ad bc+
---------------------------=

2 2×

2 2×

Q x y,() ad bc–
ad bc+
------------------=

OCHIAI x y,() a
a b+
------------ a

a c+
------------⋅=

SS5 x y,() ad

a b+() a c+() b d+() c d+()
---=

PHI x y,() ad bc–

a b+() a c+() b d+() c d+()
---=

BEUCLID x y,() b c+=

BSEUCLID x y,() b c+=

SIZE x y,() b c–()2

a b c d+ + +()2
--------------------------------------=

236 CLUSTER

BSHAPE[(p[,np])] Binary shape difference. This dissimilarity measure has no upper or
lower limit.

DISPER[(p[,np])] Dispersion similarity measure. The range is −1 to +1.

VARIANCE[(p[,np])] Variance dissimilarity measure. This measure has a minimum value
of 0 and no upper limit.

BLWMN[(p[,np])] Binary Lance-and-Williams nonmetric dissimilarity measure. This
measure is also known as the Bray-Curtis nonmetric coefficient. The
range is 0 to 1.

METHOD Subcommand

METHOD specifies one or more clustering methods.

• If the METHOD subcommand is omitted or included without specifications, the method of
average linkage between groups is used.

• Only one METHOD subcommand can be used, but more than one method can be specified
on it.

• When the number of items is large, CENTROID and MEDIAN require significantly more
CPU time than other methods.

BAVERAGE Average linkage between groups (UPGMA). BAVERAGE is the default and
can also be requested with keyword DEFAULT.

WAVERAGE Average linkage within groups.

SINGLE Single linkage or nearest neighbor.

COMPLETE Complete linkage or furthest neighbor.

CENTROID Centroid clustering (UPGMC). Squared Euclidean distances are commonly
used with this method.

PATTERN x y,() bc
a b c d+ + +()2

--------------------------------------=

BSHAPE x y,() a b c d+ + +() b c+() b c–()2–
a b c d+ + +()2

---=

DISPER x y,() ad bc–
a b c d+ + +()2

--------------------------------------=

VARIANCE x y,() b c+
4 a b c d+ + +()
---------------------------------------=

BLWMN x y,() b c+
2a b c+ +
------------------------=

CLUSTER 237

MEDIAN Median clustering (WPGMC). Squared Euclidean distances are commonly
used with this method.

WARD Ward’s method. Squared Euclidean distances are commonly used with this
method.

Example
CLUSTER V1 V2 V3
/METHOD=SINGLE COMPLETE WARDS.

• This example clusters cases based on their values for variables V1, V2, and V3, and uses
three clustering methods: single linkage, complete linkage, and Ward’s method.

SAVE Subcommand

SAVE allows you to save cluster membership at specified solution levels as new variables in
the working data file.
• The specification on SAVE is the CLUSTER keyword, followed by either a single number

indicating the level (number of clusters) of the cluster solution or a range separated by a
comma indicating the minimum and maximum numbers of clusters when membership of
more than one solution is to be saved. The number or range must be enclosed in
parentheses and applies to all methods specified on METHOD.

• You can specify a rootname in parentheses after each method specification on the METHOD
subcommand. CLUSTER forms new variable names by appending the number of the cluster
solution to the rootname.

• If no rootname is specified, CLUSTER forms variable names using the formula CLUn_m,
where m increments to create a unique rootname for the set of variables saved for one
method and n is the number of the cluster solution.

• The names and descriptive labels of the new variables are displayed in the procedure
information notes.

• You cannot use the SAVE subcommand if you are replacing the working data file with
matrix materials (see “Matrix Output” on p. 240).

Example
CLUSTER A B C
/METHOD=BAVERAGE SINGLE (SINMEM) WARD
/SAVE=CLUSTERS(3,5).

• This command creates nine new variables: CLU5_1, CLU4_1, and CLU3_1 for BAVERAGE,
SINMEM5, SINMEM4, and SINMEM3 for SINGLE, and CLU5_2, CLU4_2, and CLU3_2 for
WARD. The variables contain the cluster membership for each case at the five-, four-, and
three-cluster solutions using the three clustering methods. Ward’s method is the third
specification on METHOD but uses the second set of default names since it is the second
method specified without a rootname.

• The order of the new variables in the working data file is the same as listed above, since
the solutions are obtained in the order from 5 to 3.

• New variables are listed in the procedure information notes.

238 CLUSTER

ID Subcommand

ID names a string variable to be used as the case identifier in cluster membership tables, icicle
plots, and dendrograms. If the ID subcommand is omitted, cases are identified by case num-
bers alone.

• When used with the MATRIX IN subcommand, the variable specified on the ID subcom-
mand identifies the labeling variable in the matrix file.

PRINT Subcommand

PRINT controls the display of cluster output (except plots, which are controlled by the PLOT
subcommand).

• If the PRINT subcommand is omitted or included without specifications, an
agglomeration schedule is displayed. If any keywords are specified on PRINT, the
agglomeration schedule is displayed only if explicitly requested.

• CLUSTER automatically displays summary information (the method and measure used, the
number of cases) for each method named on the METHOD subcommand. This summary is
displayed regardless of specifications on PRINT.

You can specify any or all of the following on the PRINT subcommand:

SCHEDULE Agglomeration schedule. The agglomeration schedule shows the order
and distances at which items and clusters combine to form new
clusters. It also shows the cluster level at which an item joins a cluster.
SCHEDULE is the default and can also be requested with keyword
DEFAULT.

CLUSTER(min,max) Cluster membership. For each item, the display includes the value of
the case identifier (or the variable name if matrix input is used), the
case sequence number, and a value (1, 2, 3, and so on) identifying the
cluster to which that case belongs in a given cluster solution. Specify
either a single integer value in parentheses indicating the level of a
single solution or a minimum value and a maximum value indicating
a range of solutions for which display is desired. If the number of
clusters specified exceeds the number produced, the largest number of
clusters is used (the number of items minus 1). If CLUSTER is
specified more than once, the last specification is used.

DISTANCE Proximities matrix. The proximities matrix table displays the distances
or similarities between items computed by CLUSTER or obtained from
an input matrix. DISTANCE produces a large volume of output and uses
significant CPU time when the number of cases is large.

NONE None of the above. NONE overrides any other keywords specified on
PRINT.

Example
CLUSTER V1 V2 V3 /PRINT=CLUSTER(3,5).

CLUSTER 239

• This example displays cluster membership for each case for the three-, four-, and five-
cluster solutions.

PLOT Subcommand

PLOT controls the plots produced for each method specified on the METHOD subcommand.
For icicle plots, PLOT allows you to control the cluster solution at which the plot begins and
ends and the increment for displaying intermediate cluster solutions.

• If the PLOT subcommand is omitted or included without specifications, a vertical icicle
plot is produced.

• If any keywords are specified on PLOT, only those plots requested are produced.

• The icicle plots are generated as pivot tables and the dendrogram is generated as text
output.

• If there is not enough memory for a dendrogram or an icicle plot, the plot is skipped and
a warning is issued.

• The size of an icicle plot can be controlled by specifying range values or an increment for
VICICLE or HICICLE. Smaller plots require significantly less workspace and time.

VICICLE(min,max,inc) Vertical icicle plot. This is the default. The range specifications are
optional. If used, they must be integer and must be enclosed in
parentheses. The specification min is the cluster solution at which to
start the display (the default is 1), and the specification max is the
cluster solution at which to end the display (the default is the number
of cases minus 1). If max is greater than the number of cases minus 1,
the default is used. The increment to use between cluster solutions is
inc (the default is 1). If max is specified, min must be specified, and
if inc is specified, both min and max must be specified. If VICICLE is
specified more than once, only the last range specification is used.

HICICLE(min,max,inc) Horizontal icicle plot. The range specifications are the same as for
VICICLE. If both VICICLE and HICICLE are specified, the last range
specified is used for both. If a range is not specified on the last instance
of VICICLE or HICICLE, the defaults are used even if a range is specified
earlier.

DENDROGRAM Tree diagram. The dendrogram is scaled by the joining distances of
the clusters.

NONE No plots.

Example
CLUSTER V1 V2 V3 /PLOT=VICICLE(1,20).

• This example produces a vertical icicle plot for the one-cluster through the twenty-cluster
solution.

Example
CLUSTER V1 V2 V3 /PLOT=VICICLE(1,151,5).

240 CLUSTER

• This example produces a vertical icicle plot for every fifth cluster solution starting with
1 and ending with 151 (1 cluster, 6 clusters, 11 clusters, and so on).

MISSING Subcommand

MISSING controls the treatment of cases with missing values. A case that has a missing value
for any variable on the variable list is omitted from the analysis. By default, user-missing
values are exlcuded from the analysis.

EXCLUDE Exclude cases with user-missing values. This is the default.

INCLUDE Include cases with user-missing values. Only cases with system-missing
values are excluded.

MATRIX Subcommand

MATRIX reads and writes SPSS-format matrix data files.

• Either IN or OUT and a matrix file in parentheses are required. When both IN and OUT are
used on the same CLUSTER procedure, they can be specified on separate MATRIX subcom-
mands or on the same subcommand.

• The input or output matrix information is displayed in the procedure information notes.

OUT (filename) Write a matrix data file. Specify either a filename or an asterisk in parentheses
(*). If you specify a filename, the file is stored on disk and can be retrieved at
any time. If you specify an asterisk (*), the matrix data file replaces the
working data file but is not stored on disk unless you use SAVE or XSAVE.

IN (filename) Read a matrix data file. If the matrix data file is the current working data file,
specify an asterisk (*) in parentheses. If the matrix data file is another file,
specify the filename in parentheses. A matrix file read from an external file
does not replace the working data file.

When an SPSS Matrix is produced using the MATRIX OUT subcommand, it corresponds to a
unique data set. All subsequent analyses performed on this matrix would match the corre-
sponding analysis on the original data. However, if the data file is altered in any way, this
would no longer be true.

For example, if the original file is edited or rearranged it would in general no longer corre-
spond to the initially produced matrix. You need to make sure that the data match the matrix
whenever inferring the results from the matrix analysis. Specifically, when saving the cluster
membership into a working data file in the CLUSTER procedure, the proximity matrix in the
MATRIX IN statement must match the current working data file.

Matrix Output

• CLUSTER writes proximity-type matrices with ROWTYPE_ values of PROX. CLUSTER
neither reads nor writes additional statistics with its matrix materials. See “Format of the
Matrix Data File” below for a description of the file.

CLUSTER 241

• The matrices produced by CLUSTER can be used by subsequent CLUSTER procedures or
by procedures PROXIMITIES and ALSCAL.

• Any documents contained in the working data file are not transferred to the matrix file.

Matrix Input

• CLUSTER can read matrices written by a previous CLUSTER command or by PROXIMITIES,
or created by MATRIX DATA. When the input matrix contains distances between variables,
CLUSTER clusters all or a subset of the variables.

• Values for split-file variables should precede values for ROWTYPE_. CASENO_ and the
labeling variable (if present) should come after ROWTYPE_ and before VARNAME_.

• If CASENO_ is of type string rather than numeric, it will be considered unavailable and
a warning is issued.

• If CASENO_ appears on a variable list, a syntax error results.

• CLUSTER ignores unrecognized ROWTYPE_ values.

• When you are reading a matrix created with MATRIX DATA, you should supply a value
label for PROX of either SIMILARITY or DISSIMILARITY so the matrix is correctly iden-
tified. If you do not supply a label, CLUSTER assumes DISSIMILARITY. (See “Format of
the Matrix Data File” below.)

• The program reads variable names, variable and value labels, and print and write formats
from the dictionary of the matrix data file.

• MATRIX=IN cannot be specified unless a working data file has already been defined. To
read an existing matrix data file at the beginning of a session, use GET to retrieve the
matrix file and then specify IN(*) on MATRIX.

• The variable list on CLUSTER can be omitted when a matrix data file is used as input. By
default, all cases or variables in the matrix data file are used in the analysis. Specify a vari-
able list when you want to read in a subset of items for analysis.

Format of the Matrix Data File

• The matrix data file can include three special variables created by the program:
ROWTYPE_, ID, and VARNAME_.

• Variable ROWTYPE_ is a string variable with value PROX (for proximity measure).
PROX is assigned value labels containing the distance measure used to create the matrix
and either SIMILARITY or DISSIMILARITY as an identifier. Variable VARNAME_ is a short
string variable whose values are the names of the new variables. Variable CASENO_ is a
numeric variable with values equal to the original case numbers.

• ID is included only when an identifying variable is not specified on the ID subcommand.
ID is a short string and takes the value CASE m, where m is the actual number of each
case. Note that m may not be consecutive if cases have been selected.

• If an identifying variable is specified on the ID subcommand, it takes the place of ID
between ROWTYPE_ and VARNAME_. Up to 20 characters can be displayed for the iden-
tifying variable.

242 CLUSTER

• VARNAME_ is a string variable that takes the values VAR1, VAR2 ...VARn, to correspond
to the names of the distance variables in the matrix (VAR1, VAR2 ... VARn, where n is the
number of cases in the largest split file). The numeric suffix for the variable names is con-
secutive and may not be the same as the actual case number.

• The remaining variables in the matrix file are the distance variables used to form the
matrix. The distance variables are assigned variable labels in the form of CASE m to
identify the actual number of each case.

Split Files

• When split-file processing is in effect, the first variables in the matrix data file are the split
variables, followed by ROWTYPE_, the case-identifier variable or ID, VARNAME_, and the
distance variables.

• A full set of matrix materials is written for each split-file group defined by the split variables.

• A split variable cannot have the same name as any other variable written to the matrix
data file.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by any procedure.

Missing Values

Missing-value treatment affects the values written to a matrix data file. When reading a
matrix data file, be sure to specify a missing-value treatment on CLUSTER that is compatible
with the treatment that was in effect when the matrix materials were generated.

Example

DATA LIST FILE=ALMANAC1 RECORDS=3
/1 CITY 6-18(A) POP80 53-60
/2 CHURCHES 10-13 PARKS 14-17 PHONES 18-25 TVS 26-32

RADIOST 33-35 TVST 36-38 TAXRATE 52-57(2).
N OF CASES 8.

CLUSTER CHURCHES TO TAXRATE
/ID=CITY
/MEASURE=EUCLID
/MATRIX=OUT(CLUSMTX).

• CLUSTER reads raw data from file ALMANAC1 and writes one set of matrix materials to
file CLUSMTX.

• The working data file is still the ALMANAC1 file defined on DATA LIST. Subsequent com-
mands are executed on ALMANAC1.

CLUSTER 243

Example

DATA LIST FILE=ALMANAC1 RECORDS=3
/1 CITY 6-18(A) POP80 53-60
/2 CHURCHES 10-13 PARKS 14-17 PHONES 18-25 TVS 26-32

RADIOST 33-35 TVST 36-38 TAXRATE 52-57(2).
N OF CASES 8.

CLUSTER CHURCHES TO TAXRATE
/ID=CITY
/MEASURE=EUCLID
/MATRIX=OUT(*).

LIST.

• CLUSTER writes the same matrix as in the previous example. However, the matrix data
file replaces the working data file. The LIST command is executed on the matrix file, not
on ALMANAC1.

Example

GET FILE=CLUSMTX.
CLUSTER

/ID=CITY
/MATRIX=IN(*).

• This example starts a new session and reads an existing matrix data file. GET retrieves the
matrix data file CLUSMTX.

• MATRIX=IN specifies an asterisk because the matrix data file is the working data file. If
MATRIX=IN(CLUSMTX) is specified, the program issues an error message.

• If the GET command is omitted, the program issues an error message.

Example

GET FILE=PRSNNL.
FREQUENCIES VARIABLE=AGE.

CLUSTER
/ID=CITY
/MATRIX=IN(CLUSMTX).

• This example performs a frequencies analysis on file PRSNNL and then uses a different
file for CLUSTER. The file is an existing matrix data file.

• The variable list is omitted on the CLUSTER command. By default, all cases in the matrix
file are used in the analysis.

• MATRIX=IN specifies the matrix data file CLUSMTX.

• CLUSMTX does not replace PRSNNL as the working data file.

244 CLUSTER

Example

GET FILE=CRIME.
PROXIMITIES MURDER TO MOTOR

/VIEW=VARIABLE
/MEASURE=PH2
/MATRIX=OUT(*).

CLUSTER
/MATRIX=IN(*).

• GET retrieves an SPSS-format data file.
• PROXIMITIES uses the data from the CRIME file, which is now the working data file. The

VIEW subcommand specifies computation of proximity values between variables. The
MATRIX subcommand writes the matrix to the working data file.

• MATRIX=IN(*) on the CLUSTER command reads the matrix materials from the working
data file. Since the matrix contains distances between variables, CLUSTER clusters vari-
ables based on distance measures in the input. The variable list is omitted on the CLUS-
TER command, so all variables are used in the analysis. The slash preceding the MATRIX
subcommand is required because there is an implied variable list. Without the slash,
CLUSTER would attempt to interpret MATRIX as a variable name rather than a subcom-
mand name.

245

COMMENT

{COMMENT} text
{ * }

Overview

COMMENT inserts explanatory text within the command sequence. Comments are included
among the commands printed back in the output; they do not become part of the information
saved in an SPSS-format data file. To include commentary in the dictionary of a data file,
use the DOCUMENT command.

Syntax Rules

• The first line of a comment can begin with the keyword COMMENT or with an asterisk (*).
Comment text can extend for multiple lines and can contain any characters. A period is
required at the end of the last line to terminate the comment.

• Use /* and */ to set off a comment within a command. The comment can be placed
wherever a blank is valid (except within strings) and should be preceded by a blank.
Comments within a command cannot be continued onto the next line.

• The closing */ is optional when the comment is at the end of the line. The command can
continue onto the next line just as if the inserted comment was a blank.

• Comments cannot be inserted within data lines.

Example

* Create a new variable as a combination of two old variables;
the new variable is a scratch variable used later in the

 session; it will not be saved with the data file.

COMPUTE #XYVAR=0.
IF (XVAR EQ 1 AND YVAR EQ 1) #XYVAR=1.

• The three-line comment will be included in the display file but will not be part of the data
file if the working data file is saved.

Example

IF (RACE EQ 1 AND SEX EQ 1) SEXRACE = 1. /*White males.

• The comment is entered on a command line. The closing */ is not needed because the
comment is at the end of the line.

246

COMPUTE

COMPUTE target variable=expression

For a complete discussion of functions, see “Transformation Expressions” on p. 37.

Arithmetic operators:

Arithmetic functions:

Statistical functions:

+ Addition – Subtraction
* Multiplication / Division
** Exponentiation

ABS(arg) Absolute value
RND(arg) Round
TRUNC(arg) Truncate
MOD(arg) Modulus
SQRT(arg) Square root
EXP(arg) Exponential
LG10(arg) Base 10 logarithm
LN(arg) Natural logarithm
LNGAMMA(arg) Logarithm of complete Gamma function
ARSIN(arg) Arcsine
ARTAN(arg) Arctangent
SIN(arg) Sine
COS(arg) Cosine

SUM[.n](arg list) Sum of values across argument list
MEAN[.n](arg list) Mean value across argument list
SD[.n](arg list) Standard deviation of values across list
VAR[.n](arg list) Variance of values across list
CFVAR[.n](arg list) Coefficient of variation of values across list
MIN[.n](arg list) Minimum value across list
MAX[.n](arg list) Maximum value across list

COMPUTE 247

Cumulative distribution functions (continuous):

Inverse distribution functions (continuous):

CDF.BETA(q,a,b) Return probability that the beta random variate falls below q (0≤q≤1; a>0; b>0).
CDF.BVNOR(q1,q2,r) Return probability that the standard bivariate normal variates with correlation r

are less than q1 and q2 (-1<r<1).
CDF.CAUCHY(q,a,b) Return probability that the Cauchy random variate falls below q (q≥0; b>0).
CDF.CHISQ (q,a) Return probability that the chi-square random variate falls below q (q≥0; a>0).
CDF.EXP(q,a) Return probability that the exponential random variate falls below q (q≥0; a>0).
CDF.F(q,a,b) Return probability that the F random variate falls below q (q≥0; a>0; b>0).
CDF.GAMMA(q,a,b) Return probability that the gamma random variate falls below q (q≥0; a>0; b>0).
CDF.HALFNRM(q,a,b) Return probability that the half normal variate falls below q (q≥a; b>0).
CDF.IGAUSS(q,a,b) Return probability that an inverse Gaussian random variate falls below q (a>0;

b>0)
CDF.LAPLACE(q,a,b) Return probability that the Laplace random variate falls below q (b>0).
CDF.LOGISTIC(q,a,b) Return probability that the logistic random variate falls below q (b>0).
CDF.LNORMAL(q,a,b) Return probability that the lognormal random variate falls below q (q≥0; a>0;

b>0).
CDF.NORMAL(q,a,b) Return probability that the normal random variate falls below q (b>0). When a=0,

b=1, alias CDFNORM(q).
CDF.PARETO(q,a,b) Return probability that the Pareto random variate falls below q (q≥a>0; b>0).
CDF.SMOD(q,a,b) Return probability that the studentized maximum modulus falls below q (q>0;

a≥1; b≥1).
CDF.SRANGE(q,a,b) Return probability that the studentized range falls below q (q>0; a≥1; b≥1).
CDF.T(q,a) Return probability that the Student t random variate falls below q (a>0).
CDF.UNIFORM(q,a,b) Return probability that the uniform random variate falls below q (a≤q≤b).
CDF.WEIBULL(q,a,b) Return probability that the Weibull random variate falls below q (q≥0; a>0; b>0).

IDF.BETA(p,a,b) Return value q such that CDF.BETA(q,a,b)=p (0≤p≤1; a>0; b>0).
IDF.CAUCHY(p,a,b) Return value q such that CDF.CAUCHY(q,a,b)=p (0<p<1; b>0).
IDF.CHISQ(p,a) Return value q such that CDF.CHISQ(q,a)=p (0≤p<1; a>0).
IDF.EXP(p,a) Return value q such that CDF.EXP(q,a)=p (0≤p<1; a>0).
IDF.F(p,a,b) Return value q such that CDF.F(q,a,b)=p (0≤p<1; a>0; b>0).
IDF.GAMMA(p,a,b) Return value q such that CDF.GAMMA(q,a,b)=p (0≤p<1; a>0; b>0).
IDF.HALFNRM(p,a,b) Return value q such that CDF.HALFNRM(q,a,b)=p (0≤p<1; q≥a; b>0).
IDF.IGAUSS(p,a,b) Return value q such that CDF.IGAUSS(q,a,b)=p (0≤p≤1; a>0; b>0)

248 COMPUTE

Probability density functions (continuous distributions):

Random variable functions (continuous distributions):

IDF.LAPLACE(p,a,b) Return value q such that CDF.LAPLACE(q,a,b)=p (0<p<1; b>0).
IDF.LOGISTIC(p,a,b) Return value q such that CDF.LOGISTIC(q,a,b)=p (0<p<1; b>0).
IDF.LNORMAL(p,a,b) Return value q such that CDF.LNORMAL(q,a,b)=p (0≤p≤1; a>0; b>0).
IDF.NORMAL(p,a,b) Return value q such that CDF.NORMAL(q,a,b)=p (0<p<1; b>0). When a=0,

b=1, alias PROBIT(p).
IDF.PARETO(p,a,b) Return value q such that CDF.PARETO(q,a,b)=p (0≤p<1; a>0; b>0).
IDF.SMOD(p,a,b) Return value q such that CDF.SMOD(q,a,b)=p (0≤p<1; a≥1; b≥1).
IDF.SRANGE(p,a,b) Return value q such that CDF.SRANGE(q,a,b)=p (0≤p<1; a≥1; b≥1).
IDF.T(p,a) Return value q such that CDF.T(q,a)=p (0<p<1; a>0).
IDF.UNIFORM(p,a,b) Return value q such that CDF.UNIFORM(q,a,b)=p (0≤p≤1; a≤b).
IDF.WEIBULL(p,a,b) Return value q such that CDF.WEIBULL(q,a,b)=p (0≤p<1; a>0; b>0).

PDF.BETA(q,a,b) Return density of the beta distribution at q (0≤q≤1; a>0; b>0).
PDF.BVNOR(q1,q2,r) Return density of standard bivariate normal with correlation r at (q1, q2) (-

1<r<1)
PDF.CAUCHY(q,a,b) Return density of the Cauchy distribution at q (q≥0; b>0).
PDF.CHISQ(q,a) Return density of the chi-square distribution at q (q≥0; a>0).
PDF.EXP(q,a) Return density of the exponential distribution at q (q≥0; a>0).
PDF.F(q,a,b) Return density of the F distribution at q (q≥0; a>0; b>0).
PDF.GAMMA(q,a,b) Return density of the gamma distribution at q (q≥0; a>0; b>0).
PDF.HALFNRM(q,a,b) Return density of the half normal distribution at q (q≥a; b>0).
PDF.IGAUSS(q,a,b) Return density of the inverse Gaussian distribution at q (q≥0; a>0; b>0).
PDF.LAPLACE(q,a,b) Return density of the Laplace distribution at q (q≥0; b>0).
PDF.LNORMAL(q,a,b) Return density of the lognormal distribution at q (q≥0; a>0; b>0).
PDF.LOGISTIC(q,a,b) Return density of the logistic distribution at q (b>0).
PDF.NORMAL(q,a,b) Return density of the normal distribution at q (b>0).
PDF.PARETO(q,a,b) Return density of the Pareto distribution at q (q≥a>0; b>0).
PDF.T(q,a) Return density of the Student t distribution at q (a>0).
PDF.UNIFORM(q,a,b) Return density of the uniform distribution at q (a≤q≤b).
PDF.WEIBULL(q,a,b) Return density of the Weibull distribution at q (q≥0; a>0; b>0).

RV.BETA(a,b) Generate a random variable of the beta distribution (a>0; b>0).
RV.CAUCHY(a,b) Generate a random variable of the Cauchy distribution (b>0).
RV.CHISQ(a) Generate a random variable of the chi-square distribution (a>0).
RV.EXP(a) Generate a random variable of the exponential distribution (a>0).
RV.F(a,b) Generate a random variable of the F distribution (a>0; b>0).
RV.GAMMA(a,b) Generate a random variable of the gamma distribution (a>0; b>0).

COMPUTE 249

Cumulative distribution functions (discrete):

Probability functions (discrete distributions):

RV.HALFNRM(a,b) Generate a random variable of the half normal distribution (b>0).
RV.IGAUSS(a,b) Generate a random variable of the inverse Gaussian distribution (a>0;

b>0).
RV.LAPLACE(a,b) Generate a random variable of the Laplace distribution (b>0).
RV.LOGISTIC(a,b) Generate a random variable of the logistic distribution (b>0).
RV.LNORMAL(a,b) Generate a random variable of the lognormal distribution (a>0; b>0).
RV.NORMAL(a,b) Generate a random variable of the normal distribution (b>0). When a=0,

alias NORMAL(b).
RV.PARETO(a,b) Generate a random variable of the Pareto distribution (a>0; b>0).
RV.T(a) Generate a random variable of the Student t distribution (a>0).
RV.UNIFORM(a,b) Generate a random variable of the uniform distribution (a≤b). When a=0,

alias UNIFORM(b).
RV.WEIBULL(a,b) Generate a random variable of the Weibull distribution (a>0; b>0).

CDF.BERNOULLI(q,a) Return probability that the Bernoulli distributed variate is less than or equal
to q (q=0 or 1 only, 0≤a≤1).

CDF.BINOM(q,a,b) Return probability that the binomially distributed variate is less than or equal
to q (0≤q≤a integer, 0≤b≤1).

CDF.GEOM(q,a) Return probability that the geometrically distributed variate is less than or
equal to q (q>0 integer; 0<a≤1).

CDF.HYPER(q,a,b,c) Return probability that the hypergeometrically distributed variate is less than
or equal to q (a>0 integer, 0≤c≤a, 0≤b≤a; max(0,b–a+c)≤q≤min(c,b)).

CDF.NEGBIN(q,a,b) Return probability that the negative binomially distributed variate is less
than or equal to q (a>0 integer, 0<b≤1; q≥a integer).

CDF.POISSON(q,a) Return probability that the Poisson distributed variate is less than or equal to
q (a>0; q≥0 integer).

PDF.BERNOULLI(q,a) Return probability that the Bernoulli distributed variate is equal to q (q=0 or
1 only, 0≤a≤1).

PDF.BINOM(q,a,b) Return probability that the binomially distributed variate is equal to q
(0≤q≤a integer, 0≤b≤1).

PDF.GEOM(q,a) Return probability that the geometrically distributed variate is equal to q
(q>0 integer; 0<a≤1).

PDF.HYPER(q,a,b,c) Return probability that the hypergeometrically distributed variate is equal to
q (a>0 integer, 0≤c≤a, 0≤b≤a; max(0,b–a+c)≤q≤min(c,b)).

PDF.NEGBIN(q,a,b) Return probability that the negative binomially distributed variate is equal to
q (a>0 integer, 0<b≤1; q≥a integer).

PDF.POISSON(q,a) Return probability that the Poisson distributed variate is equal to q (a>0;
q≥0 integer).

250 COMPUTE

Random variable functions (discrete distributions):

Noncentral distribution functions:

Noncentral probability density functions:

Tail distribution functions:

Missing-value functions:

Cross-case function:

RV.BERNOULLI(a) Generate a random variable from the Bernoulli distribution (0≤a≤1).
RV.BINOM(a,b) Generate a random variable from the binomial distribution (a positive

integer, 0≤b≤1).
RV.GEOM(a) Generate a random variable from the geometric distribution (0<a≤1).
RV.HYPER(a,b,c) Generate a random variable from the hypergeometric distribution (a>0

integer, 0≤c≤a, 0≤b≤a).
RV.NEGBIN(a,b) Generate a random variable from the negative binomial distribution (a>0

integer, 0<b≤1).
RV.POISSON(a) Generate a random variable from the Poisson distribution (a>0).

NCDF.BETA(q,a,b,c) Return probability that the noncentral beta distributed variate falls below q
(0≤q≤1; a>0; b>0; c≥0).

NCDF.CHISQ(q,a,c) Return probability that the noncentral chi-square distributed variate falls
below q (q≥0; a>0; c≥0).

NCDF.F(q,a,b,c) Return probability that the noncentral F distributed variate falls below q
(q≥0; a>0; b>0; c≥0).

NCDF.T(q,a,c) Return probability that the noncentral Student t distributed variate falls
below q (a>0, c≥0).

NPDF.BETA(q,a,b,c) Return density of the noncentral beta distribution at q (0≤q≤1; a>0; b>0;
c≥0).

NPDF.CHISQ(q,a,c) Return density of the noncentral chi-square distribution at q (q≥0; a>0;
c≥0).

NPDF.F(q,a,b,c) Return density of the noncentral F distribution at q (q≥0; a>0; b>0; c≥0).
NPDF.T(q,a,c) Return density of the noncentral Student t distribution at q (a>0, c≥0).

SIG.CHISQ(q,a) Return probability that the chi-square distributed variate falls above q
(q≥0; a>0).

SIG.F(q,a,b) Return probability that the F distributed variate falls above q (q≥0; a>0;
b>0).

VALUE(varname) Ignore user-missing.
MISSING(varname) True if missing.
SYSMIS(varname) True if system-missing.
NMISS(arg list) Number of missing values across list.
NVALID(arg list) Number of valid values across list.

LAG(varname,n) Value of variable n cases before.

COMPUTE 251

Logical functions:

Other functions:

Date and time aggregation functions:

Date and time conversion functions:

Date and time extraction functions:

RANGE(varname,range) True if value of variable is in range.
ANY(arg,arg list) True if value of first argument is included on argument list.

UNIFORM(arg) Uniform pseudo-random number between 0 and arg.
NORMAL(arg) Normal pseudo-random number with mean of 0 and standard deviation of

arg.
CDFNORM(arg) Probability that random variable falls below arg.
PROBIT(arg) Inverse of CDFNORM.

DATE.DMY(d,m,y) Read day, month, year, and return date.
DATE.MDY(m,d,y) Read month, day, year, and return date.
DATE.YRDAY(y,d) Read year, day, and return date.
DATE.QYR(q,y) Read quarter, year, and return quarter start date.
DATE.MOYR(m,y) Read month, year, and return month start date.
DATE.WKYR(w,y) Read week, year, and return week start date.
TIME.HMS(h,m,s) Read hour, minutes, seconds, and return time interval.
TIME.DAYS(d) Read days and return time interval.

YRMODA(yr,mo,da) Convert year, month, day to day number.
CTIME.DAYS(arg) Convert time interval to days.
CTIME.HOURS(arg) Convert time interval to hours.
CTIME.MINUTES(arg) Convert time interval to minutes.

XDATE.MDAY(arg) Return day of the month.
XDATE.MONTH(arg) Return month of the year.
XDATE.YEAR(arg) Return four-digit year.
XDATE.HOUR(arg) Return hour of a day.
XDATE.MINUTE(arg) Return minute of an hour.
XDATE.SECOND(arg) Return second of a minute.
XDATE.WKDAY(arg) Return weekday number.
XDATE.JDAY(arg) Return day number of day in given year.
XDATE.QUARTER(arg) Return quarter of date in given year.
XDATE.WEEK(arg) Return week number of date in given year.
XDATE.TDAY(arg) Return number of days in time interval.
XDATE.TIME(arg) Return time portion of given date and time.
XDATE.DATE(arg) Return integral portion of date.

252 COMPUTE

String functions:

Example
COMPUTE NEWVAR=RND((V1/V2)*100).
STRING DEPT(A20).
COMPUTE DEPT=’PERSONNEL DEPARTMENT’.

Overview

COMPUTE creates new numeric variables or modifies the values of existing string or numeric
variables. The variable named on the left of the equals sign is the target variable. The variables,
constants, and functions on the right side of the equals sign form an assignment expression.
For a complete discussion of functions, see “Transformation Expressions” on p. 37.

Numeric Transformations

Numeric variables can be created or modified with COMPUTE. The assignment expression
for numeric transformations can include combinations of constants, variables, numeric
operators, and functions.

ANY(arg,arg list) Return 1 if value of argument is included on argument list.
CONCAT(arg list) Join the arguments into a string.
INDEX(a1,a2,a3) Return number indicating position of first occurrence of a2 in a1;

optionally, a2 in a3 evenly divided substrings of a1.
LAG(arg,n) Return value of argument n cases before.
LENGTH(arg) Return length of argument.
LOWER(arg list) Convert upper case to lower case.
LPAD(a1,a2,a3) Left-pad beginning of a1 to length a2 with character a3.
LTRIM(a1,a2) Trim character a2 from beginning of a1.
MAX(arg list) Return maximum value of argument list.
MIN(arg list) Return minimum value of argument list.
NUMBER(arg,format) Convert argument into number using format.
RANGE(arg,arg list) Return 1 if value of argument is in inclusive range of argument list.
RINDEX(a1,a2,a3) Return number indicating rightmost occurrence of a2 in a1;

optionally, a2 in a3 evenly divided substrings of a1.
RPAD(a1,a2,a3) Right-pad end of a1 to length a2 with character a3.
RTRIM(a1,a2) Trim character a2 from end of a1.
STRING(arg,format) Convert argument into string using format.
SUBSTR(a1,a2,a3) Return substring of a1 beginning with position a2 for length a3.
UPCASE(arg list) Convert lower case to upper case.
MBLEN.BYTE(arg,a1) Return the number of bytes for the character beginning at position a1

in the string argument. If a1 is not specified, it defaults to 1.

COMPUTE 253

String Transformations

String variables can be modified but cannot be created with COMPUTE. However, a new
string variable can be declared and assigned a width with the STRING command and then
assigned values by COMPUTE. The assignment expression can include string constants,
string variables, and any of the string functions. All other functions are available for numeric
transformations only.

Basic Specification

The basic specification is a target variable, an equals sign (required), and an assignment
expression.

Syntax Rules

• The target variable must be named first, and the equals sign is required. Only one target
variable is allowed per COMPUTE command.

• Numeric and string variables cannot be mixed in an expression. In addition, if the target
variable is numeric, the expression must yield a numeric value; if the target variable is a
string, the expression must yield a string value.

• Each function must specify at least one argument enclosed in parentheses. If a function has
two or more arguments, the arguments must be separated by commas. For a complete
discussion of the functions and their arguments, see “Transformation Expressions” on p. 37.

• You can use the TO keyword to refer to a set of variables where the argument is a list of
variables.

Numeric Variables

• Parentheses are used to indicate the order of execution and to set off the arguments to a
function.

• Numeric functions use simple or complex expressions as arguments. Expressions must be
enclosed in parentheses.

String Variables

• String values and constants must be enclosed in apostrophes or quotation marks.

• When strings of different lengths are compared using the ANY or RANGE functions, the
shorter string is right-padded with blanks so that its length equals that of the longer string.

254 COMPUTE

Operations

• If the target variable already exists, its values are replaced.

• If the target variable does not exist and the assignment expression is numeric, the program
creates a new variable.

• If the target variable does not exist and the assignment expression is a string, the program
displays an error message and does not execute the command.

• COMPUTE is not executed if it contains invalid syntax. New variables are not created and
existing target variables remain unchanged.

Numeric Variables

• New numeric variables created with COMPUTE are assigned a dictionary format of F8.2
and are initialized to the system-missing value for each case (unless the LEAVE command
is used). Existing numeric variables transformed with COMPUTE retain their original
dictionary formats. The format of a numeric variable can be changed with the FORMATS
command.

• All expressions are evaluated in the following order: first functions, then exponentiation,
and then arithmetic operations. The order of operations can be changed with parentheses.

• COMPUTE returns the system-missing value when it doesn’t have enough information to
evaluate a function properly. Arithmetic functions that take only one argument cannot be
evaluated if that argument is missing. The date and time functions cannot be evaluated if
any argument is missing. Statistical functions are evaluated if a sufficient number of
arguments is valid. For example, in the command

COMPUTE FACTOR = SCORE1 + SCORE2 + SCORE3

FACTOR is assigned the system-missing value for a case if any of the three score values
is missing. It is assigned a valid value only when all score values are valid. In the
command

COMPUTE FACTOR = SUM(SCORE1 TO SCORE3).

FACTOR is assigned a valid value if at least one score value is valid. It is system-missing
only when all three score values are missing.

String Variables

• String variables can be modified but not created on COMPUTE. However, a new string
variable can be created and assigned a width with the STRING command and then
assigned new values with COMPUTE.

• Existing string variables transformed with COMPUTE retain their original dictionary
formats. String variables declared on STRING and transformed with COMPUTE retain the
formats assigned to them on STRING.

• The format of string variables cannot be changed with FORMATS. Instead, use STRING to
create a new variable with the desired width and then use COMPUTE to set the values of
the new string equal to the values of the original.

COMPUTE 255

• The string returned by a string expression does not have to be the same width as the target
variable. If the target variable is shorter, the result is right-trimmed. If the target variable
is longer, the result is right-padded. The program displays no warning messages when
trimming or padding.

• To control the width of strings, use the functions that are available for padding (LPAD,
RPAD), trimming (LTRIM, RTRIM), and selecting a portion of strings (SUBSTR).

• To determine whether a character in a string is single-byte or double-byte, use the
MBLEN.BYTE function. Specify the string and, optionally, its beginning byte position. If
the position is not specified, it defaults to 1.

Examples

The following examples illustrate the use of COMPUTE. For a complete discussion of each
function, see “Transformation Expressions” on p. 37.

Arithmetic Operations

COMPUTE V1=25-V2.
COMPUTE V3=(V2/V4)*100.

DO IF TENURE GT 5.
COMPUTE RAISE=SALARY*.12.
ELSE IF TENURE GT 1.
COMPUTE RAISE=SALARY*.1.
ELSE.
COMPUTE RAISE=0.
END IF.

• V1 is 25 minus V2 for all cases. V3 is V2 expressed as a percentage of V4.

• RAISE is 12% of SALARY if TENURE is greater than 5. For remaining cases, RAISE is 10%
of SALARY if TENURE is greater than 1. For all other cases, RAISE is 0.

Arithmetic Functions

COMPUTE WTCHANGE=ABS(WEIGHT1-WEIGHT2).
COMPUTE NEWVAR=RND((V1/V2)*100).
COMPUTE INCOME=TRUNC(INCOME).
COMPUTE MINSQRT=SQRT(MIN(V1,V2,V3,V4)).

COMPUTE TEST = TRUNC(SQRT(X/Y)) * .5.
COMPUTE PARENS = TRUNC(SQRT(X/Y) * .5).

• WTCHANGE is the absolute value of WEIGHT1 minus WEIGHT2.

• NEWVAR is the percentage V1 is of V2, rounded to an integer.

• INCOME is truncated to an integer.
• MINSQRT is the square root of the minimum value of the four variables V1 to V4. MIN

determines the minimum value of the four variables, and SQRT computes the square root.

256 COMPUTE

• The last two examples above illustrate the use of parentheses to control the order of
execution. For a case with value 2 for X and Y, TEST equals 0.5, since 2 divided by 2 (X/Y)
is 1, the square root of 1 is 1, truncating 1 returns 1, and 1 times 0.5 is 0.5. However,
PARENS equals 0 for the same case, since SQRT(X/Y) is 1, 1 times 0.5 is 0.5, and
truncating 0.5 returns 0.

Statistical Functions

COMPUTE NEWSAL = SUM(SALARY,RAISE).
COMPUTE MINVAL = MIN(V1,V2,V3,V4).
COMPUTE MEANVAL = MEAN(V1,V2,V3,V4).
COMPUTE NEWMEAN = MEAN.3(V1,V2,V3,V4).

• NEWSAL is the sum of SALARY plus RAISE.

• MINVAL is the minimum of the values for V1 to V4.

• MEANVAL is the mean of the values for V1 to V4. Since the mean can be computed for one,
two, three, or four values, MEANVAL is assigned a valid value as long as any one of the
four variables has a valid value for that case.

• In the last example above, the .3 suffix specifies the minimum number of valid arguments
required. NEWMEAN is the mean of variables V1 to V4 only if at least three of these
variables have valid values. Otherwise, NEWMEAN is system-missing for that case.

Missing-Value Functions

MISSING VALUE V1 V2 V3 (0).
COMPUTE ALLVALID=V1 + V2 + V3.
COMPUTE UM=VALUE(V1) + VALUE(V2) + VALUE(V3).
COMPUTE SM=SYSMIS(V1) + SYSMIS(V2) + SYSMIS(V3).
COMPUTE M=MISSING(V1) + MISSING(V2) + MISSING(V3).

• The MISSING VALUE command declares value 0 as missing for V1, V2, and V3.

• ALLVALID is the sum of three variables only for cases with valid values for all three
variables. ALLVALID is assigned the system-missing value for a case if any variable in the
assignment expression has a system- or user-missing value.

• The VALUE function overrides user-missing value status. Thus, UM is the sum of V1, V2,
and V3 for each case, including cases with value 0 (the user-missing value) for any of the
three variables. Cases with the system-missing value for V1, V2, and V3 are system-missing.

• The SYSMIS function on the third COMPUTE returns the value 1 if the variable is system-
missing. Thus, SM ranges from 0 to 3 for each case, depending on whether variables V1,
V2, and V3 are system-missing for that case.

• The MISSING function on the fourth COMPUTE returns the value 1 if the variable named is
system- or user-missing. Thus, M ranges from 0 to 3 for each case, depending on whether
variables V1, V2, and V3 are user- or system-missing for that case.

COMPUTE 257

• Alternatively, you could use the COUNT command to create variables SM and M.

* Test for listwise deletion of missing values.

DATA LIST /V1 TO V6 1-6.
BEGIN DATA
213 56
123457
123457
9234 6
END DATA.
MISSING VALUES V1 TO V6(6,9).

COMPUTE NOTVALID=NMISS(V1 TO V6).
FREQUENCIES VAR=NOTVALID.

• COMPUTE determines the number of missing values for each case. For each case without
missing values, the value of NOTVALID is 0. For each case with one missing value, the value
of NOTVALID is 1, and so on. Both system- and user-missing values are counted.

• FREQUENCIES generates a frequency table for NOTVALID. The table gives a count of how
many cases have all valid values, how many cases have one missing value, how many cases
have two missing values, and so on, for variables V1 to V6. This table can be used to deter-
mine how many cases would be dropped in an analysis that uses listwise deletion of missing
values. See p. 497 and p. 740 for other ways to check listwise deletion.

Cross-Case Operations

COMPUTE LV1=LAG(V1).
COMPUTE LV2=LAG(V2,3).

• LV1 is the value of V1 for the previous case.

• LV2 is the value of V2 for three cases previous. The first three cases of LV2 receive the
system-missing value.

Logical Functions

COMPUTE WORKERS=RANGE(AGE,18,65).
COMPUTE QSAME=ANY(Q1,Q2).

• WORKERS is 1 for cases where AGE is from 18 through 65, 0 for all other valid values of
AGE, and system-missing for cases with a missing value for AGE.

• QSAME is 1 whenever Q1 equals Q2 and 0 whenever they are different.

Other Functions

COMPUTE V1=UNIFORM(10).
COMPUTE V2=NORMAL(1.5).

• V1 is a pseudo-random number from a distribution with values ranging between 0 and the
specified value of 10.

258 COMPUTE

• V2 is a pseudo-random number from a distribution with a mean of 0 and a standard deviation
of the specified value of 1.5.

• You can change the seed value of the pseudo-random-number generator with the SEED
specification on SET.

Date and Time Aggregation Functions

COMPUTE OCTDAY=DATE.YRDAY(1688,301).
COMPUTE QUART=DATE.QYR(QTR,YEAR).
COMPUTE WEEK=DATE.WKYR(WK,YEAR).

• OCTDAY is the 301st day of the year 1688. With a DATE format, OCTDAY displays as
27-OCT-1688.

• QUART reads values for the quarter from the variable QTR and values for the year from
the variable YEAR. If QTR is 3 and YEAR is 88, QUART with a QDATE format displays as
3 Q 88.

• WEEK takes the value for the week from the variable WK and the value for the year from
the variable YEAR. If WK is 48 and YEAR is 57, WEEK with a DATE format displays as
26-NOV-57.

Date and Time Conversion Functions

COMPUTE NMINS=CTIME.MINUTES(TIME.HMS(HR,MIN,SEC)).
COMPUTE AGER=(YRMODA(1992,10,01)-
 YRMODA(YRBIRTH,MOBIRTH,DABIRTH))/365.25.

• The CTIME.MINUTES function converts a time interval to number of minutes. If HR equals
12, MIN equals 30, and SEC equals 30, the TIME.HMS function returns an interval of
45,030, which CTIME.MINUTES converts to minutes. NMINS equals 750.50.

• The YRMODA function converts the current date (in this example, October 1, 1992) and
birthdate to a number of days. The birthdate is subtracted from the current date and the
remainder is divided by the number of days in a year to yield the age in years.

Date and Time Extraction Functions

COMPUTE MONTHNUM=XDATE.MONTH(BIRTHDAY).
COMPUTE DAYNUM=XDATE.JDAY(BIRTHDAY).

• The XDATE.MONTH function reads a date and returns the month number expressed as an
integer from 1 to 12. If BIRTHDAY is formatted as DATETIME20 and contains the value
05-DEC-1954 5:30:15, MONTHNUM equals 12.

• The XDATE.JDAY function returns the day of the year, expressed as an integer between 1
and 366. For the value BIRTHDAY used by the first COMPUTE, DAYNUM equals 339.

COMPUTE 259

Equivalence

STRING DEPT(A20).
COMPUTE DEPT=’Personnel Department’.
COMPUTE OLDVAR=NEWVAL.

• DEPT is a new string variable and must be specified on STRING before it can be specified
on COMPUTE. STRING assigns DEPT a width of 20 characters, and COMPUTE assigns the
value Personnel Department to DEPT for each case.

• OLDVAR must already exist; otherwise, it would have to be declared on STRING. The
values of OLDVAR are modified to equal the values of NEWVAL. NEWVAL must be an
existing string variable. If the dictionary width of NEWVAL is longer than the dictionary
width of OLDVAR, the modified values of OLDVAR are truncated.

String Functions

STRING NEWSTR(A7) / DATE(A8) / #MO #DA #YR (A2).
COMPUTE NEWSTR=LAG(OLDSTR,2).

COMPUTE #MO=STRING(MONTH,F2.0).
COMPUTE #DA=STRING(DAY,F2.0).
COMPUTE #YR=STRING(YEAR,F2.0).
COMPUTE DATE=CONCAT(#MO,’/’,#DA,’/’,#YR).

COMPUTE LNAME=UPCASE(LNAME).

• STRING declares NEWSTR as a new string variable with a width of seven characters, DATE
with a width of eight characters, and scratch variables #MO, #DA, and #YR with a width of
two characters each.

• The first COMPUTE sets NEWSTR equal to the value of OLDSTR for two cases previous.
The first two cases receive the system-missing value for NEWSTR.

• The next three COMPUTE commands convert the existing numeric variables MONTH,
DAY, and YEAR to the temporary string variables #MO, #DA, and #YR so that they can be
used with the CONCAT function. The next COMPUTE assigns the concatenated value of
#MO, #DA, and #YR, separated by slashes, to DATE. If #MO is 10, #DA is 16, and #YR is
49, DATE is 10/16/49.

• The final COMPUTE converts lowercase letters for the existing string variable LNAME to
uppercase letters.

260 COMPUTE

261

CONJOINT

CONJOINT is available in the Conjoint option.

CONJOINT [PLAN={* }]
 {file}

 [/DATA={* }]
 {file}

 /{SEQUENCE}=varlist

 {RANK }
 {SCORE }

 [/SUBJECT=variable]

 [/FACTORS=varlist[’labels’] ([{DISCRETE[{MORE}]}]
 { {LESS} }
 {LINEAR[{MORE}] }
 { {LESS} }
 {IDEAL }
 {ANTIIDEAL }
 [values[’labels’]])]

 varlist...

 [/PRINT={ALL** } [SUMMARYONLY]]
 {ANALYSIS }
 {SIMULATION }
 {NONE }

[/UTILITY=file]

 [/PLOT={[SUMMARY] [SUBJECT] [ALL]}]
 {[NONE**] }

**Default if subcommand or keyword is omitted.

Example:
CONJOINT PLAN=’CARPLAN.SAV’
 /FACTORS=SPEED (LINEAR MORE) WARRANTY (DISCRETE MORE)
 PRICE (LINEAR LESS) SEATS
 /SUBJECT=SUBJ /RANK=RANK1 TO RANK15 /UTILITY=’UTIL.SAV’.

Overview

CONJOINT analyzes score or rank data from full-concept conjoint studies. A plan file
generated by ORTHOPLAN or entered by the user describes the set of full concepts scored
or ranked in terms of preference. A variety of continuous and discrete models is available
to estimate utilities for each individual subject and for the group. Simulation estimates for
concepts not rated can also be computed.

262 CONJOINT

Options

Data Input. You can analyze data recorded as rankings of an ordered set of profiles, or cards,
as the profile numbers arranged in rank order, or as preference scores of an ordered set of
profiles.

Model Specification. You can specify how each factor is expected to be related to the scores or
ranks.

Display Output. The output can include the analysis of the experimental data, results of simu-
lation data, or both.

Writing an External File. An SPSS data file containing utility estimates and associated statistics
for each subject can be written for use in further analyses or graphs.

Basic Specification

• The basic specification is CONJOINT, a PLAN or DATA subcommand, and a SEQUENCE,
RANK, or SCORE subcommand to describe the type of data.

• CONJOINT requires two files: a plan file and a data file. If only the PLAN subcommand or
the DATA subcommand, but not both, is specified, CONJOINT will read the file specified
on the PLAN or DATA subcommand and use the working data file as the other file.

• By default, estimates are computed using the DISCRETE model for all variables in the
plan file (except those named STATUS_ and CARD_). Output includes Kendall’s tau and
Pearson’s product-moment correlation coefficients measuring the relationship between
predicted and actual scores. Significance levels for one-tailed tests are displayed.

Subcommand Order

• Subcommands can appear in any order.

Syntax Rules

• Multiple FACTORS subcommands are all executed. For all other subcommands, only the
last occurrence is executed.

Operations

• Both the plan and data files can be external SPSS data files. In this case, CONJOINT can
be used before a working data file is defined.

• The variable STATUS_ in the plan file must equal 0 for experimental profiles, 1 for
holdout profiles, and 2 for simulation profiles. Holdout profiles are judged by the subjects
but are not used when CONJOINT estimates utilities. Instead, they are used as a check on
the validity of the estimated utilities. Simulation profiles are factor-level combinations
that are not rated by the subjects but are estimated by CONJOINT based on the ratings of

CONJOINT 263

the experimental profiles. If there is no STATUS_ variable, all profiles in the plan file are
assumed to be experimental profiles.

• All variables in the plan file except STATUS_ and CARD_ are used by CONJOINT as factors.

• In addition to the estimates for each individual subject, average estimates for each split-
file group identified in the data file are computed. The plan file cannot have a split-file
structure.

• Factors are tested for orthogonality by CONJOINT. If all of the factors are not orthogonal,
a matrix of Cramér’s V statistics is displayed to describe the nonorthogonality.

• When SEQUENCE or RANK data are used, CONJOINT internally reverses the ranking scale
so that the coefficients computed are positive.

• The plan file cannot be sorted or modified in any way once the data are collected, since
the sequence of profiles in the plan file must match the sequence of values in the data file
in a one-to-one correspondence. (CONJOINT uses the order of profiles as they appear in
the plan file, not the value of CARD_, to determine profile order.) If RANK or SCORE is
the data-recording method, the first response from the first subject in the data file is the
rank or score of the first profile in the plan file. If SEQUENCE is the data-recording meth-
od, the first response from the first subject in the data file is the profile number (deter-
mined by the order of profiles in the plan file) of the most preferred profile.

Limitations

• Factors must be numeric.
• The plan file cannot contain missing values or case weights. In the working data file,

profiles with missing values on the SUBJECT variable are grouped together and averaged
at the end. If any preference data (the ranks, scores, or profile numbers) are missing, that
subject is skipped.

• Factors must have at least two levels. The maximum number of levels for each factor is 99.

Example

CONJOINT PLAN=’CARPLAN.SAV’
 /FACTORS=SPEED (LINEAR MORE) WARRANTY (DISCRETE MORE)
 PRICE (LINEAR LESS) SEATS
 /SUBJECT=SUBJ /RANK=RANK1 TO RANK15 /UTILITY=’UTIL.SAV’.

• The PLAN subcommand specifies the SPSS data file CARPLAN.SAV as the plan file con-
taining the full-concept profiles. Since there is no DATA subcommand, the working data
file is assumed to contain the subjects’ rankings of these profiles.

• The FACTORS subcommand specifies the ways in which the factors are expected to be re-
lated to the rankings. For example, speed is expected to be linearly related to the rankings,
so that cars with higher speeds will receive lower (more-preferred) rankings.

• The SUBJECT subcommand specifies the variable SUBJ in the working data file as an
identification variable. All consecutive cases with the same value on this variable are
combined to estimate utilities.

264 CONJOINT

• The RANK subcommand specifies that each data point is a ranking of a specific profile
and identifies the variables in the working data file that contain these rankings.

• UTILITY writes out an external data file named UTIL.SAV containing the utility estimates
and associated statistics for each subject.

PLAN Subcommand

PLAN identifies the file containing the full-concept profiles.
• PLAN is followed by the name of an external SPSS data file containing the plan or an

asterisk to indicate the working data file.

• If the PLAN subcommand is omitted, the working data file is assumed by default. However,
you must specify at least one external SPSS data file on a PLAN or a DATA subcommand.
The working data file cannot be specified as both the plan and the data file.

• The file is specified in the usual manner for your operating system.
• The plan file is a specially prepared file generated by ORTHOPLAN or entered by the user.

The plan file can contain the variables CARD_ and STATUS_, and it must contain the
factors of the conjoint study. The value of CARD_ is a profile identification number. The
value of STATUS_ is 0, 1, or 2, depending on whether the profile is an experimental profile
(0), a holdout profile (1), or a simulation profile (2).

• The sequence of the profiles in the plan file must match the sequence of values in the data
file (see “Operations” on p. 262).

• Any simulation profiles (STATUS_=2) must follow experimental and holdout profiles in
the plan file.

• All variables in the plan file except CARD_ and STATUS_ are used as factors by CONJOINT.

Example
DATA LIST FREE /CARD_ WARRANTY SEATS PRICE SPEED STATUS_.
BEGIN DATA
1 1 4 14000 130 2
2 1 4 14000 100 2
3 3 4 14000 130 2
4 3 4 14000 100 2
END DATA.
ADD FILES FILE=’CARPLAN.SAV’/FILE=*.
CONJOINT PLAN=* /DATA=’DATA.SAV’
 /FACTORS=PRICE (ANTIIDEAL) SPEED (LINEAR) WARRANTY (DISCRETE MORE)
 /SUBJECT=SUBJ /RANK=RANK1 TO RANK15 /PRINT=SIMULATION.

• DATA LIST defines six variables—a CARD_ identification variable, four factors, and a
STATUS_ variable.

• The data between BEGIN DATA and END DATA are four simulation profiles. Each one con-
tains a CARD_ identification number and the specific combination of factor levels of interest.

• The variable STATUS_ is equal to 2 for all cases (profiles). CONJOINT interprets profiles
with STATUS_ equal to 2 as simulation profiles.

CONJOINT 265

• The ADD FILES command joins an old plan file, CARPLAN.SAV, with the working data
file. Note that the working data file is indicated last on the ADD FILES command so that
the simulation profiles are appended to the end of CARPLAN.SAV.

• The PLAN subcommand on CONJOINT defines the new working data file as the plan file.
The DATA subcommand specifies a data file from a previous CONJOINT analysis.

DATA Subcommand

DATA identifies the file containing the subjects’ preference scores or rankings.

• DATA is followed by the name of an external SPSS data file containing the data or an
asterisk to indicate the current working data file.

• If the DATA subcommand is omitted, the working data file is assumed by default. However,
you must specify at least one external SPSS data file on a DATA or a PLAN subcommand.
The working data file cannot be specified as both the plan and the data file.

• The file is specified in the usual manner for your operating system.

• One variable in the data file can be a subject identification variable. All other variables
are the subject responses and are equal in number to the number of experimental and hold-
out profiles in the plan file.

• The subject responses can be in the form of ranks assigned to an ordered sequence of pro-
files, scores assigned to an ordered sequence of profiles, or profile numbers in preference
order from most to least liked.

• Tied ranks or scores are allowed. CONJOINT issues a warning if tied ranks are present and
then proceeds with the analysis. Data recorded in SEQUENCE format, however, cannot
have ties, since each profile number must be unique.

266 CONJOINT

Example
DATA LIST FREE /SUBJ RANK1 TO RANK15.
BEGIN DATA
01 3 7 6 1 2 4 9 12 15 13 14 5 8 10 11
02 7 3 4 9 6 15 10 13 5 11 1 8 4 2 12
03 12 13 5 1 14 8 11 2 7 6 3 4 15 9 10
04 3 6 7 4 2 1 9 12 15 11 14 5 8 10 13
05 9 3 4 7 6 10 15 13 5 12 1 8 4 2 11
50 12 13 8 1 14 5 11 6 7 2 3 4 15 10 9
END DATA.
SAVE OUTFILE=’RANKINGS.SAV’.
DATA LIST FREE /CARD_ WARRANTY SEATS PRICE SPEED.
BEGIN DATA
 1 1 4 14000 130
 2 1 4 14000 100
 3 3 4 14000 130
 4 3 4 14000 100
 5 5 2 10000 130
 6 1 4 10000 070
 7 3 4 10000 070
 8 5 2 10000 100
 9 1 4 07000 130
10 1 4 07000 100
11 5 2 07000 070
12 5 4 07000 070
13 1 4 07000 070
14 5 2 10000 070
15 5 2 14000 130
END DATA.
CONJOINT PLAN=* /DATA=’RANKINGS.SAV’
 /FACTORS=PRICE (ANTIIDEAL) SPEED (LINEAR)
 WARRANTY (DISCRETE MORE)
 /SUBJECT=SUBJ /RANK=RANK1 TO RANK15.

• The first set of DATA LIST and BEGIN–END DATA commands creates a data file containing
the rankings. This file is saved in the external file RANKINGS.SAV.

• The second set of DATA LIST and BEGIN–END DATA commands defines the plan file as the
working data file.

• The CONJOINT command uses the working data file as the plan file and RANKINGS.SAV
as the data file.

SEQUENCE, RANK, or SCORE Subcommand

The SEQUENCE, RANK, or SCORE subcommand is specified to indicate the way in which
the preference data were recorded.

SEQUENCE Each data point in the data file is a profile number, starting with the most-
preferred profile and ending with the least-preferred profile. This is how the
data are recorded if the subject is asked to order the deck of profiles from
most to least preferred. The researcher records which profile number was
first, which profile number was second, and so on.

RANK Each data point is a ranking, starting with the ranking of profile 1, then the
ranking of profile 2, and so on. This is how the data are recorded if the

CONJOINT 267

subject is asked to assign a rank to each profile, ranging from 1 to n, where
n is the number of profiles. A lower rank implies greater preference.

SCORE Each data point is a preference score assigned to the profiles, starting with
the score of profile 1, then the score of profile 2, and so on. These types of
data might be generated, for example, by asking subjects to use a Likert scale
to assign a score to each profile or by asking subjects to assign a number from
1 to 100 to show how much they like the profile. A higher score implies great-
er preference.

• You must specify one, and only one, of these three subcommands.

• After each subcommand, the names of the variables containing the preference data (the
profile numbers, ranks, or scores) are listed. There must be as many variable names listed
as there are experimental and holdout profiles in the plan file.

Example
CONJOINT PLAN=* /DATA=’DATA.SAV’
 /FACTORS=PRICE (ANTIIDEAL) SPEED (LINEAR) WARRANTY (DISCRETE MORE)
 /SUBJECT=SUBJ
 /RANK=RANK1 TO RANK15.

• The RANK subcommand indicates that the data are rankings of an ordered sequence of
profiles. The first data point after SUBJ is variable RANK1, which is the ranking given by
subject 1 to profile 1.

• There are 15 profiles in the plan file, so there must be 15 variables listed on the RANK
subcommand.

• The example uses the TO keyword to refer to the 15 rank variables.

SUBJECT Subcommand

SUBJECT specifies an identification variable. All consecutive cases having the same value
on this variable are combined to estimate the utilities.

• If SUBJECT is not specified, all data are assumed to come from one subject and only a
group summary is displayed.

• SUBJECT is followed by the name of a variable in the working data file.

• If the same SUBJECT value appears later in the data file, it is treated as a different subject.

FACTORS Subcommand

FACTORS specifies the way in which each factor is expected to be related to the rankings or
scores.

• If FACTORS is not specified, the DISCRETE model is assumed for all factors.

• All variables in the plan file except CARD_ and STATUS_ are used as factors, even if they
are not specified on FACTORS.

268 CONJOINT

• FACTORS is followed by a variable list and a model specification in parentheses that
describes the expected relationship between scores or ranks and factor levels for that vari-
able list.

• The model specification consists of a model name and, for the DISCRETE and LINEAR
models, an optional MORE or LESS keyword to indicate the direction of the expected
relationship. Values and value labels can also be specified.

• MORE and LESS keywords will not affect estimates of utilities. They are used simply to
identify subjects whose estimates do not match the expected direction.

The four available models are:

DISCRETE No assumption. The factor levels are categorical and no assumption is made
about the relationship between the factor and the scores or ranks. This is the
default. Specify keyword MORE after DISCRETE to indicate that higher lev-
els of a factor are expected to be more preferred. Specify keyword LESS after
DISCRETE to indicate that lower levels of a factor are expected to be more
preferred.

LINEAR Linear relationship. The scores or ranks are expected to be linearly related
to the factor. Specify keyword MORE after LINEAR to indicate that higher
levels of a factor are expected to be more preferred. Specify keyword LESS
after LINEAR to indicate that lower levels of a factor are expected to be more
preferred.

IDEAL Quadratic relationship, decreasing preference. A quadratic relationship is
expected between the scores or ranks and the factor. It is assumed that there
is an ideal level for the factor, and distance from this ideal point, in either
direction, is associated with decreasing preference. Factors described with
this model should have at least three levels.

ANTIIDEAL Quadratic relationship, increasing preference. A quadratic relationship is
expected between the scores or ranks and the factor. It is assumed that there
is a worst level for the factor, and distance from this point, in either direction,
is associated with increasing preference. Factors described with this model
should have at least three levels.

• The DISCRETE model is assumed for those variables not listed on the FACTORS subcom-
mand.

• When a MORE or LESS keyword is used with DISCRETE or LINEAR, a reversal is noted
when the expected direction does not occur.

• Both IDEAL and ANTIIDEAL create a quadratic function for the factor. The only difference
is whether preference increases or decreases with distance from the point. The estimated
utilities are the same for these two models. A reversal is noted when the expected model
(IDEAL or ANTIIDEAL) does not occur.

• The optional value and value label lists allow you to recode data and/or replace value
labels. The new values, in the order in which they appear on the value list, replace existing
values starting with the smallest existing value. If a new value is not specified for an
existing value, the value remains unchanged.

CONJOINT 269

• New value labels are specified in apostrophes or quotation marks. New values without
new labels retain existing labels; new value labels without new values are assigned to
values in the order in which they appear, starting with the smallest existing value.

• A table is displayed for each factor that is recoded, showing the original and recoded
values and the value labels.

• If the factor levels are coded in discrete categories (for example, 1, 2, 3), these are the val-
ues used by CONJOINT in computations, even if the value labels contain the actual values
(for example, 80, 100, 130). Value labels are never used in computations. You can recode
the values as described above to change the coded values to the real values. Recoding
does not affect DISCRETE factors but does change the coefficients of LINEAR, IDEAL, and
ANTIIDEAL factors.

• In the output, variables are described in the following order:

1. All DISCRETE variables in the order in which they appear on the FACTORS subcommand.

2. All LINEAR variables in the order in which they appear on the FACTORS subcommand.

3. All IDEAL and ANTIIDEAL factors in the order in which they appear on the FACTORS sub-
command.

Example
CONJOINT DATA=’DATA.SAV’
 /FACTORS=PRICE (LINEAR LESS) SPEED (IDEAL 70 100 130)
 WARRANTY (DISCRETE MORE)
 /RANK=RANK1 TO RANK15.

• The FACTORS subcommand specifies the expected relationships. A linear relationship is
expected between price and rankings, so that the higher the price, the lower the preference
(higher ranks). A quadratic relationship is expected between speed levels and rankings,
and longer warranties are expected to be associated with greater preference (lower ranks).

• The SPEED factor has a new value list. If the existing values were 1, 2, and 3, 70 replaces
1, 100 replaces 2, and 130 replaces 3.

• Any variable in the plan file (except CARD_ and STATUS_) not listed on the FACTORS
subcommand uses the DISCRETE model.

PRINT Subcommand

PRINT controls whether your output includes the analysis of the experimental data, the results
of the simulation data, both, or none.

The following keywords are available:

ANALYSIS Only the results of the experimental data analysis.

SIMULATIONS Only the results of the simulation data analysis. The results of three
simulation models—maximum utility, Bradley-Terry-Luce (BTL),
and logit—are displayed.

270 CONJOINT

SUMMARYONLY Only the summaries in the output, not the individual subjects. Thus, if
you have a large number of subjects, you can see the summary results
without having to generate output for each subject.

ALL The results of both the experimental data and simulation data
analyses. ALL is the default.

NONE No results are written to the display file. This keyword is useful if you
are interested only in writing the utility file (see “UTILITY Subcom-
mand” below).

UTILITY Subcommand

UTILITY writes a utility file to the file specified. The utility file is an SPSS data file.

• If UTILITY is not specified, no utility file is written.

• UTILITY is followed by the name of the file to be written.
• The file is specified in the usual manner for your operating system.

• The utility file contains one case for each subject.

The variables written to the utility file are in the following order:

• Any SPLIT FILE variables in the working data file.

• Any SUBJECT variable.

• The constant for the regression equation for the subject. The regression equation constant
is named CONSTANT.

• For DISCRETE factors, all of the utilities estimated for the subject. The names of the util-
ities estimated with DISCRETE factors are formed by appending a digit after the factor
name. The first utility gets a 1, the second a 2, and so on.

• For LINEAR factors, a single coefficient. The name of the coefficient for LINEAR factors
is formed by appending _L to the factor name. (To calculate the predicted score, multiply
the factor value by the coefficient.)

• For IDEAL or ANTIIDEAL factors, two coefficients. The name of the two coefficients for
IDEAL or ANTIIDEAL factors are formed by appending _L and _Q, respectively, to the fac-
tor name. (To use these coefficients in calculating the predicted score, multiply the factor
value by the first and add that to the product of the second coefficient and the square of
the factor value.)

• The estimated ranks or scores for all profiles in the plan file. The names of the estimated
ranks or scores are of the form SCOREn for experimental and holdout profiles, or SIMULn
for simulation profiles, where n is the position in the plan file. The name is SCORE for
experimental and holdout profiles even if the data are ranks.

If the variable names created are too long, letters are truncated from the end of the original
variable name before new suffixes are appended.

CONJOINT 271

PLOT Subcommand

The PLOT subcommand produces high-resolution plots in addition to the output usually pro-
duced by CONJOINT.

• If high-resolution graphics is turned off, the plots are not produced and a warning is
displayed (see the HIGHRES subcommand of the SET command in the SPSS Base Syntax
Reference Guide).

The following keywords are available for this subcommand:

SUMMARY Plots a high-resolution bar chart of the importance values for all variables,
plus a utility bar chart for each variable. This is the default if the PLOT sub-
command is specified with no keywords.

SUBJECT Plots a clustered bar chart of the importance values for each factor,
clustered by subjects, and one clustered bar chart for each factor showing
the utilities for each factor level, clustered by subjects. If no SUBJECT sub-
command was specified naming the variables, no plots are produced and a
warning is displayed.

ALL Plots both summary and subject charts.

NONE Does not plot any high-resolution charts. This is the default if the subcom-
mand is omitted.

272

CORRELATIONS

CORRELATIONS [VARIABLES=] varlist [WITH varlist] [/varlist...]

 [/MISSING={PAIRWISE**} [{INCLUDE}]]
 {LISTWISE } {EXCLUDE}

 [/PRINT={TWOTAIL**} {SIG**}]
 {ONETAIL } {NOSIG}

[/MATRIX=OUT({* })]
 {file}

 [/STATISTICS=[DESCRIPTIVES] [XPROD] [ALL]]

**Default if the subcommand is omitted.

Example
CORRELATIONS VARIABLES=FOOD RENT PUBTRANS TEACHER COOK ENGINEER

/MISSING=INCLUDE.

Overview

CORRELATIONS (alias PEARSON CORR) produces Pearson product-moment correlations
with significance levels and, optionally, univariate statistics, covariances, and cross-
product deviations. Other procedures that produce correlation matrices are PARTIAL
CORR, REGRESSION, DISCRIMINANT, and FACTOR.

Options

Types of Matrices. A simple variable list on the VARIABLES subcommand produces a square
matrix. You can also request a rectangular matrix of correlations between specific pairs of
variables or between variable lists using the keyword WITH on VARIABLES.

Significance Levels. By default, CORRELATIONS displays the number of cases and signifi-
cance levels for each coefficient. Significance levels are based on a two-tailed test. You can
request a one-tailed test, and you can display the significance level for each coefficient as
an annotation using the PRINT subcommand.

Additional Statistics. You can obtain the mean, standard deviation, and number of nonmissing
cases for each variable, and the cross-product deviations and covariance for each pair of
variables using the STATISTICS subcommand.

Matrix Output. You can write matrix materials to a data file using the MATRIX subcommand.
The matrix materials include the mean, standard deviation, number of cases used to com-
pute each coefficient, and Pearson correlation coefficient for each variable. The matrix data
file can be read by several other procedures.

CORRELATIONS 273

Basic Specification

• The basic specification is the VARIABLES subcommand, which specifies the variables to
be analyzed. The actual keyword VARIABLES can be omitted.

• By default, CORRELATIONS produces a matrix of correlation coefficients. The number of
cases and the significance level are displayed for each coefficient. The significance level
is based on a two-tailed test.

Subcommand Order

• The VARIABLES subcommand must be first.

• The remaining subcommands can be specified in any order.

Operations

• The correlation of a variable with itself is displayed as 1.0000.

• A correlation that cannot be computed is displayed as a period (.).
• CORRELATIONS does not execute if long or short string variables are specified on the

variable list.

Limitations

• Maximum 40 variable lists.

• Maximum 500 variables total per command.

• Maximum 250 syntax elements. Each individual occurrence of a variable name, keyword,
or special delimiter counts as 1 toward this total. Variables implied by the TO keyword do
not count toward this total.

Example

CORRELATIONS VARIABLES=FOOD RENT PUBTRANS TEACHER COOK ENGINEER
/VARIABLES=FOOD RENT WITH COOK TEACHER MANAGER ENGINEER
/MISSING=INCLUDE.

• The first VARIABLES subcommand requests a square matrix of correlation coefficients
among variables FOOD, RENT, PUBTRANS, TEACHER, COOK, and ENGINEER.

• The second VARIABLES subcommand requests a rectangular correlation matrix in which
FOOD and RENT are the row variables and COOK, TEACHER, MANAGER, and ENGINEER
are the column variables.

• MISSING requests that user-missing values be included in the computation of each coefficient.

274 CORRELATIONS

VARIABLES Subcommand

VARIABLES specifies the variable list. The actual keyword VARIABLES is optional.

• A simple variable list produces a square matrix of correlations of each variable with every
other variable.

• Variable lists joined by the keyword WITH produce a rectangular correlation matrix.
Variables before WITH define the rows of the matrix and variables after WITH define the
columns.

• The keyword ALL can be used on the variable list to refer to all user-defined variables.

• You can specify multiple VARIABLES subcommands on a single CORRELATIONS
command. The slash between the subcommands is required; the keyword VARIABLES is not.

PRINT Subcommand

PRINT controls whether the significance level is based on a one- or two-tailed test and whether
the number of cases and the significance level for each correlation coefficient are displayed.

TWOTAIL Two-tailed test of significance. This test is appropriate when the direction of
the relationship cannot be determined in advance, as is often the case in
exploratory data analysis. This is the default.

ONETAIL One-tailed test of significance. This test is appropriate when the direction of
the relationship between a pair of variables can be specified in advance of
the analysis.

SIG Do not flag significant values. SIG is the default.

NOSIG Flag significant values. Values significant at the 0.05 level are flagged with
a single asterisk; those that are significant at the 0.01 level are flagged with
two asterisks.

STATISTICS Subcommand

The correlation coefficients are automatically displayed in the Correlations table for an
analysis specified by a VARIABLES list. STATISTICS requests additional statistics.

DESCRIPTIVES Display mean, standard deviation, and number of nonmissing cases for each
variable on the Variables list in the Descriptive Statistics table. This table
precedes all Correlations tables. Variables specified on more than one
VARIABLES lists are displayed only once. Missing values are handled on a
variable-by-variable basis regardless of the missing-value option in effect
for the correlations.

XPROD Display cross-product deviations and covariance for each pair of variables
in the Correlations table(s).

ALL All additional statistics. This produces the same statistics as DESCRIPTIVES
and XPROD together.

CORRELATIONS 275

MISSING Subcommand

MISSING controls the treatment of missing values.
• The PAIRWISE and LISTWISE keywords are alternatives; however, each can be specified

with INCLUDE or EXCLUDE.

• The default is LISTWISE and EXCLUDE.

PAIRWISE Exclude missing values pairwise. Cases that have missing values for one or
both of a pair of variables for a specific correlation coefficient are excluded
from the computation of that coefficient. Since each coefficient is based on all
cases that have valid values for that particular pair of variables, this can result
in a set of coefficients based on a varying number of cases. The valid number
of cases is displayed in the Correlations table. This is the default.

LISTWISE Exclude missing values listwise. Cases that have missing values for any
variable named on any VARIABLES list are excluded from the computation of
all coefficients across lists. The valid number of cases is the same for all
analyses and is displayed in a single annotation.

INCLUDE Include user-missing values. User-missing values are included in the analysis.

EXCLUDE Exclude all missing values. Both user- and system-missing values are ex-
cluded from the analysis.

MATRIX Subcommand

MATRIX writes matrix materials to a data file. The matrix materials include the mean and stan-
dard deviation for each variable, the number of cases used to compute each coefficient, and
the Pearson correlation coefficients. Several procedures can read matrix materials produced
by CORRELATIONS, including PARTIAL CORR, REGRESSION, FACTOR, and CLUSTER (see
“SPSS Matrix Data Files” on p. 15).

• CORRELATIONS cannot write rectangular matrices (those specified with the keyword
WITH) to a file.

• If you specify more than one variable list on CORRELATIONS, only the last list that does
not use the keyword WITH is written to the matrix data file.

• The keyword OUT specifies the file to which the matrix is written. The filename must be
specified in parentheses.

• Documents from the original file will not be included in the matrix file and will not be
present if the matrix file becomes the working data file.

OUT (filename) Write a matrix data file. Specify either a file or an asterisk (*), enclosed in
parentheses. If you specify a file, the file is stored on disk and can be
retrieved at any time. If you specify an asterisk, the matrix data file replaces
the working file but is not stored on disk unless you use SAVE or XSAVE.

276 CORRELATIONS

Format of the Matrix Data File

• The matrix data file has two special variables created by the program: ROWTYPE_ and
VARNAME_. The variable ROWTYPE_ is a short string variable with values MEAN, STDDEV,
N, and CORR (for Pearson correlation coefficient). The next variable, VARNAME_, is a short
string variable whose values are the names of the variables used to form the correlation matrix.
When ROWTYPE_ is CORR, VARNAME_ gives the variable associated with that row of the
correlation matrix.

• The remaining variables in the file are the variables used to form the correlation matrix.

Split Files

• When split-file processing is in effect, the first variables in the matrix file will be split
variables, followed by ROWTYPE_, VARNAME_, and the variables used to form the
correlation matrix.

• A full set of matrix materials is written for each subgroup defined by the split variables.

• A split variable cannot have the same name as any other variable written to the matrix
data file.

• If split-file processing is in effect when a matrix is written, the same split-file specifica-
tions must be in effect when that matrix is read by another procedure.

Missing Values

• With pairwise treatment of missing values (the default), a matrix of the number of cases
used to compute each coefficient is included with the matrix materials.

• With listwise treatment, a single number indicating the number of cases used to calculate
all coefficients is included.

Example

GET FILE=CITY /KEEP FOOD RENT PUBTRANS TEACHER COOK ENGINEER.
CORRELATIONS VARIABLES=FOOD TO ENGINEER
/MATRIX OUT(CORRMAT).

• CORRELATIONS reads data from the file CITY and writes one set of matrix materials to the
file CORRMAT. The working file is still CITY. Subsequent commands are executed on
CITY.

Example

GET FILE=CITY /KEEP FOOD RENT PUBTRANS TEACHER COOK ENGINEER.
CORRELATIONS VARIABLES=FOOD TO ENGINEER
/MATRIX OUT(*).
LIST.
DISPLAY DICTIONARY.

CORRELATIONS 277

• CORRELATIONS writes the same matrix as in the example above. However, the matrix
data file replaces the working file. The LIST and DISPLAY commands are executed on the
matrix file, not on the CITY file.

Example

CORRELATIONS VARIABLES=FOOD RENT COOK TEACHER MANAGER ENGINEER
/FOOD TO TEACHER /PUBTRANS WITH MECHANIC
/MATRIX OUT(*).

• Only the matrix for FOOD TO TEACHER is written to the matrix data file because it is the
last variable list that does not use the keyword WITH.

278 CORRELATIONS

279

CORRESPONDENCE

CORRESPONDENCE is available in the Categories option.

CORRESPONDENCE

/TABLE = {rowvar (min, max) BY colvar (min, max)}
{ALL (# of rows, # of columns) }

[/SUPPLEMENTARY = [rowvar (valuelist)] [colvar (valuelist)]]

[/EQUAL = [rowvar (valuelist)... (valuelist)]
[colvar (valuelist)... (valuelist)]]

[/MEASURE = {CHISQ**}]
{EUCLID }

[/STANDARDIZE = {RMEAN }]
{CMEAN }
{RCMEAN**}
{RSUM }
{CSUM }

[/DIMENSION = {2** }]
{value}

[/NORMALIZATION = {SYMMETRICAL**}]
{PRINCIPAL }
{RPRINCIPAL }
{CPRINCIPAL }
{value }

[/PRINT = [TABLE**] [RPROF] [CPROF] [RPOINTS**] [CPOINTS**]
[RCONF] [CCONF] [PERMUTATION[(n)]] [DEFAULT] [NONE]]

[/PLOT = [NDIM({1** ,2** })]
{value,value}
{ALL ,MAX }

[RPOINTS[(n)]] [CPOINTS[(n)] [TRROWS[(n)]]
[TRCOLUMNS[(n)]] [BIPLOT**[(n)]] [NONE]]

[/OUTFILE = {SCORE(filename) }]
{ VARIANCE(filename)}
{SCORE(filename) VARIANCE(filename)}

**Default if subcommand or keyword is omitted.

280 Syntax Reference

Overview

CORRESPONDENCE displays the relationships between rows and columns of a two-way
table graphically by a scatterplot matrix. It computes the row and column scores and sta-
tistics and produces plots based on the scores. Also, confidence statistics are computed.

Options

Number of dimensions. You can specify how many dimensions CORRESPONDENCE should
compute.

Supplementary points. You can specify supplementary rows and columns.

Equality restrictions. You can restrict rows and columns to have equal scores.

Measure. You can specify the distance measure to be the chi-square of Euclidean.

Standardization. You can specify one of five different standardization methods.

Method of normalization. You can specify one of five different methods for normalizing the
row and column scores.

Confidence statistics. You can request computation of confidence statistics (standard devia-
tions and correlations) for row and column scores. For singular values, confidence statistics
are always computed.

Data input. You can analyze individual casewise data, aggregated data, or table data.

Display output. You can control which statistics are displayed and plotted.

Writing matrices. You can write a matrix data file containing the row and column scores, and
a matrix data file containing confidence statistics (variances and covariances) for the singular
values, row scores, and column scores.

Basic Specification

• The basic specification is CORRESPONDENCE and the TABLE subcommand. By default,
CORRESPONDENCE computes a two-dimensional solution and displays the correspon-
dence table, the summary table, an overview of the row and column points, and a scatterplot
matrix of biplots of the row and column scores for the first two dimensions.

Subcommand Order

• The TABLE subcommand must appear first.
• All other subcommands can appear in any order.

CORRESPONDENCE 281

Syntax Rules

• Only one keyword can be specified on the MEASURE subcommand.

• Only one keyword can be specified on the STANDARDIZE subcommand.

• Only one keyword can be specified on the NORMALIZATION subcommand.
• Only one parameter can be specified on the DIMENSION subcommand.

Operations

• If a subcommand is specified more than once, only the last occurrence is executed.

Limitations

• The table input data and the aggregated input data cannot contain negative values.
CORRESPONDENCE will treat such values as 0.

• Rows and columns that are specified as supplementary cannot be equalized.

• The maximum number of supplementary points for a variable is 200.

• The maximum number of equalities for a variable is 200.

Example

CORRESPONDENCE TABLE=MENTAL(1,4) BY SES(1,6)
/PRINT=RPOINTS CPOINTS
/PLOT=RPOINTS CPOINTS.

• Two variables, MENTAL and SES, are specified on the TABLE subcommand. MENTAL has
values ranging from 1 to 4 and SES has values ranging from 1 to 6.

• The summary table and overview tables of the row and column points are displayed.

• Two scatterplot matrices are produced. The first one plots the first two dimensions of row
scores and the second one plots the first two dimensions of column scores.

TABLE Subcommand

TABLE specifies the row and column variables along with their integer value ranges. The two
variables are separated by the keyword BY.

• The TABLE subcommand is required.

Casewise Data

• Each variable is followed by an integer value range in parentheses. The value range con-
sists of the variable’s minimum value and its maximum value.

• Values outside of the specified range are not included in the analysis.

282 Syntax Reference

• Values do not have to be sequential. Empty categories yield a zero in the input table and
do not affect the statistics for other categories.

Example
DATA LIST FREE/VAR1 VAR2.
BEGIN DATA
3 1
6 1
3 1
4 2
4 2
6 3
6 3
6 3
3 2
4 2
6 3
END DATA.
CORRESPONDENCE TABLE=VAR1(3,6) BY VAR2(1,3).

• DATA LIST defines two variables, VAR1 and VAR2.

• VAR1 has three levels, coded 3, 4, and 6. VAR2 also has three levels, coded 1, 2, and 3.
• Since a range of (3,6) is specified for VAR1, CORRESPONDENCE defines four categories,

coded 3, 4, 5, and 6. The empty category, 5, for which there is no data, receives system-
missing values for all statistics and does not affect the analysis.

Table Data

• The cells of a table can be read and analyzed directly by using the keyword ALL after TABLE.
• The columns of the input table must be specified as variables on the DATA LIST command.

Only columns are defined, not rows.

• ALL is followed by the number of rows in the table, a comma, and the number of columns
in the table, all in parentheses.

• The row variable is named ROW, and the column variable is named COLUMN.

• The number of rows and columns specified can be smaller than the actual number of rows
and columns if you want to analyze only a subset of the table.

• The variables (columns of the table) are treated as the column categories, and the cases
(rows of the table) are treated as the row categories.

• Row categories can be assigned values (category codes) when you specify TABLE=ALL by
the optional variable ROWCAT_. This variable must be defined as a numeric variable with
unique values corresponding to the row categories. If ROWCAT_ is not present, the row
index numbers are used as row category values.

Example
DATA LIST /ROWCAT_ 1 COL1 3-4 COL2 6-7 COL3 9-10.
BEGIN DATA
1 50 19 26
2 16 40 34
3 12 35 65
4 11 20 58
END DATA.
VALUE LABELS ROWCAT_ 1 ‘ROW1’ 2 ‘ROW2’ 3 ‘ROW3’ 4 ‘ROW4’.
CORRESPONDENCE TABLE=ALL(4,3).

CORRESPONDENCE 283

• DATA LIST defines the row category naming variable ROWCAT_ and the three columns of
the table as the variables.

• The TABLE=ALL specification indicates that the data are the cells of a table. The (4,3)
specification indicates that there are four rows and three columns.

• The column variable is named COLUMN with categories labeled COL1, COL2, and COL3.

• The row variable is named ROW with categories labeled ROW1, ROW2, ROW3, and
ROW4.

DIMENSION Subcommand

DIMENSION specifies the number of dimensions you want CORRESPONDENCE to compute.

• If you do not specify the DIMENSION subcommand, CORRESPONDENCE computes two
dimensions.

• DIMENSION is followed by a positive integer indicating the number of dimensions. If this
parameter is omitted, a value of 2 is assumed.

• In general, you should choose as few dimensions as needed to explain most of the
variation. The minimum number of dimensions that can be specified is 1. The maximum
number of dimensions that can be specified equals the minimum of the number of active
rows and the number of active columns, minus 1. An active row or column is a nonsupple-
mentary row or column that is used in the analysis. For example, in a table where the num-
ber of rows is 5 (2 of which are supplementary) and the number of columns is 4, the number
of active rows (3) is smaller than the number of active columns (4). Thus, the maximum
number of dimensions that can be specified is , or 2. Rows and columns that
are restricted to have equal scores count as 1 toward the number of active rows or columns.
For example, in a table with five rows and four columns, where two columns are restricted
to have equal scores, the number of active rows is 5 and the number of active columns is
(4 – 1), or 3. The maximum number of dimensions that can be specified is (3 – 1), or 2.
Empty rows and columns (rows or columns with no data, all zeros, or all missing data) are
not counted toward the number of rows and columns.

• If more than the maximum allowed number of dimensions is specified, CORRESPONDENCE
reduces the number of dimensions to the maximum.

SUPPLEMENTARY Subcommand

The SUPPLEMENTARY subcommand specifies the rows and columns that you want to treat
as supplementary (also called passive or illustrative).

• For casewise data, the specification on SUPPLEMENTARY is a variable name, followed by
a value list in parentheses. The values must be in the value range specified on the TABLE
subcommand for the row or column variable.

• For table data, the specification on SUPPLEMENTARY is ROW and/or COLUMN, followed
by a value list in parentheses. The values represent the row or column indices of the table
input data.

• The maximum number of supplementary rows or columns is the number of active rows
or columns minus 2.

5 2–() 1–

284 Syntax Reference

• Supplementary rows and columns cannot be equalized.

Example
CORRESPONDENCE TABLE=MENTAL(1,8) BY SES(1,6)
/SUPPLEMENTARY MENTAL(3) SES(2,6).

• SUPPLEMENTARY specifies the third level of MENTAL and the second and sixth levels of
SES to be supplementary.

Example
CORRESPONDENCE TABLE=ALL(8,6)
/SUPPLEMENTARY ROW(3) COLUMN(2,6).

• SUPPLEMENTARY specifies the third level of the row variable and the second and sixth
levels of the column variable to be supplementary.

EQUAL Subcommand

The EQUAL subcommand specifies the rows or columns that you want to restrict to have
equal scores.

• For casewise data, the specification on EQUAL is a variable name, followed by a list of at
least two values in parentheses. The values must be in the value range specified on the
TABLE subcommand for the row or column variable.

• For table data, the specification on EQUAL is ROW and/or COLUMN, followed by a value
list in parentheses. The values represent the row or column indices of the table input data.

• Rows or columns that are restricted to have equal scores cannot be supplementary.

• The maximum number of equal rows or columns is the number of active rows or columns
minus 1.

Example
CORRESPONDENCE TABLE=MENTAL(1,8) BY SES(1,6)
/EQUAL MENTAL(1,2) (6,7) SES(1,2,3).

• EQUAL specifies the first and second level of MENTAL, the sixth and seventh level of
MENTAL, and the first, second, and third levels of SES to have equal scores.

MEASURE Subcommand

The MEASURE subcommand specifies the measure of distance between the row and column
profiles.

• Only one keyword can be used in a given analysis.

The following keywords are available:

CHISQ Chi-square distance. This is the weighted distance, where the weight is the
mass of the rows or columns. This is the default specification for MEASURE
and is the necessary specification for standard correspondence analysis.

CORRESPONDENCE 285

EUCLID Euclidean distance. The distance is the square root of the sum of squared dif-
ferences between the values for two rows or columns.

STANDARDIZE Subcommand

When MEASURE=EUCLID, the STANDARDIZE subcommand specifies the method of
standardization.

• Only one keyword can be used.

• If MEASURE is CHISQ, the standardization is automatically set to RCMEAN and
corresponds to standard correspondence analysis.

The following keywords are available:

RMEAN The row means are removed.

CMEAN The column means are removed.

RCMEAN Both the row and column means are removed. This is the default specification.

RSUM First the row totals are equalized and then the row means are removed.

CSUM First the column totals are equalized and then the column means are
removed.

NORMALIZATION Subcommand

The NORMALIZATION subcommand specifies one of five methods for normalizing the row
and column scores. Only the scores and confidence statistics are affected; contributions and
profiles are not changed.

The following keywords are available:

SYMMETRICAL For each dimension, rows are the weighted average of columns divided by
the matching singular value, and columns are the weighted average of rows
divided by the matching singular value. This is the default if the
NORMALIZATION subcommand is not specified. Use this normalization
method if you are primarily interested in differences or similarities between
rows and columns.

PRINCIPAL Distances between row points and column points are approximations of chi-
square distances or of Euclidean distances (depending on MEASURE). The
distances represent the distance between the row or column and its corre-
sponding average row or column profile. Use this normalization method if
you want to examine both differences between categories of the row
variable and differences between categories of the column variable (but not
differences between variables).

RPRINCIPAL Distances between row points are approximations of chi-square distances or
of Euclidean distances (depending on MEASURE). This method maximizes
distances between row points. The row points are weighted averages of the

286 Syntax Reference

column points. This is useful when you are primarily interested in differences
or similarities between categories of the row variable.

CPRINCIPAL Distances between column points are approximations of chi-square
distances or of Euclidean distances (depending on MEASURE). This method
maximizes distances between column points. The column points are weighted
averages of the row points. This is useful when you are primarily interested
in differences or similarities between categories of the column variable.

The fifth method allows the user to specify any value in the range –1 to +1, inclusive. A value
of 1 is equal to the RPRINCIPAL method, a value of 0 is equal to the SYMMETRICAL method,
and a value of –1 is equal to the CPRINCIPAL method. By specifying a value between –1 and
1, the user can spread the inertia over both row and column scores to varying degrees. This
method is useful for making tailor-made biplots.

PRINT Subcommand

Use PRINT to control which of several correspondence statistics are displayed. The summary
table (singular values, inertia, proportion of inertia accounted for, cumulative proportion of
inertia accounted for, and confidence statistics for the maximum number of dimensions) is
always produced. If PRINT is not specified, the input table, the summary table, the overview
of row points table, and the overview of column points table are displayed.

The following keywords are available:

TABLE A crosstabulation of the input variables showing row and column
marginals.

RPROFILES The row profiles. PRINT=RPROFILES is analogous to the CELLS=ROW
subcommand in CROSSTABS.

CPROFILES The column profiles. PRINT=CPROFILES is analogous to the CELLS=
COLUMN subcommand in CROSSTABS.

RPOINTS Overview of row points (mass, scores, inertia, contribution of the
points to the inertia of the dimension, and the contribution of the
dimensions to the inertia of the points).

CPOINTS Overview of column points (mass, scores, inertia, contribution of the
points to the inertia of the dimension, and the contribution of the
dimensions to the inertia of the points).

RCONF Confidence statistics (standard deviations and correlations) for the
active row points.

CCONF Confidence statistics (standard deviations and correlations) for the
active column points.

PERMUTATION(n) The original table permuted according to the scores of the rows and
columns. PERMUTATION can be followed by a number in parentheses
indicating the maximum number of dimensions for which you want
permuted tables. The default number of dimensions is 1.

CORRESPONDENCE 287

NONE No output other than the SUMMARY table.

DEFAULT TABLE, RPOINTS, CPOINTS, and the SUMMARY tables. These statistics
are displayed if you omit the PRINT subcommand.

PLOT Subcommand

Use PLOT to produce plots of the row scores, column scores, row and column scores, trans-
formations of the row scores, and transformations of the column scores. If PLOT is not
specified or is specified without keywords, a biplot is produced.

The following keywords are available:

TRROWS(n) Line chart of transformations of the row category values into row
scores.

TRCOLUMNS(n) Line chart of transformations of the column category values into
column scores.

RPOINTS(n) Scatterplot matrix of row scores.

CPOINTS(n) Scatterplot matrix of column scores.

BIPLOT(n) Biplot matrix of the row and column scores. This is the default plot.
This plot is not available when NORMALIZATION=PRINCIPAL. From
the Chart Editor, you can create a two-dimensional biplot of any
pair of dimensions in the biplot matrix. You can also create a three-
dimensional biplot of any three dimensions in the biplot matrix.

NONE No plots.

• All keywords can be followed by an integer value in parentheses to indicate how many
characters of the value label are to be used in the plot. The value can range from 0 to 20.
Spaces between words count as characters. A value of 0 corresponds to using the values
instead of the value labels.

• If a label is missing for a value, the actual value is used. However, the length of the value
is truncated in accordance with the length parameter. For example, a category coded as
100 with no value label appears as 10 if the length parameter is 2.

• TRROWS and TRCOLUMNS produce line charts. RPOINTS and CPOINTS produce scatter-
plot matrices. BIPLOT produces a biplot matrix. For line charts, the value labels are used
to label the category axis. For scatterplot matrices and biplot matrices, the value labels are
used to label the points in the plot.

In addition to the plot keywords, the following can be specified:

NDIM Dimensions to be plotted. NDIM is followed by a pair of values in parentheses. If
NDIM is not specified, NDIM(1,2) is assumed.

• The first value must be any integer from 1 to the number of dimensions minus 1.

288 Syntax Reference

• The second value can be any integer from 2 to the number of dimensions. The second value
must exceed the first. Alternatively, the keyword MAX can be used instead of a value to
indicate the highest dimension of the solution.

• For TRROWS and TRCOLUMNS, the first and second values indicate the range of dimen-
sions for which the plots are created.

• For RPOINTS, CPOINTS, and BIPLOT, the first and second values indicate the range of di-
mensions included in the scatterplot matrix or biplot matrix.

Example
CORRESPONDENCE TABLE=MENTAL(1,4) BY SES(1,6)
/PLOT NDIM(1,3) BIPLOT(5).

• BIPLOT and NDIM(1,3) request a biplot matrix of the first three dimensions.

• The 5 following BIPLOT indicates that only the first five characters of each label are to be
shown in the biplot matrix.

Example
CORRESPONDENCE TABLE=MENTAL(1,4) BY SES(1,6)
/DIMENSION = 3
/PLOT NDIM(1,MAX) TRROWS.

• Three transformation plots of row categories into row points are produced, one for each
dimension from 1 to the highest dimension of the analysis (in this case, 3).

OUTFILE Subcommand

Use OUTFILE to write row and column scores and/or confidence statistics (variances and co-
variances) for the singular values and row and column scores to matrix data files.

OUTFILE must be followed by one or both of the following keywords:

SCORE (filename) Write row and column scores to a matrix data file.

VARIANCE (filename) Write variances and covariances to a matrix data file.

• You must specify the name of an external file.

• If you specify both SCORE and VARIANCE on the same OUTFILE subcommand, you must
specify two different filenames.

• For VARIANCE, supplementary and equality constrained rows and columns are not pro-
duced in the matrix file.

The variables in the SCORE matrix data file and their values are:

ROWTYPE_ String variable containing the value ROW for all of the rows and
COLUMN for all of the columns.

LEVEL_ String variable containing the values (or value labels, if present) of
each original variable.

VARNAME_ String variable containing the original variable names.

CORRESPONDENCE 289

DIM1...DIMn Numerical variables containing the row and column scores for each
dimension. Each variable is labeled DIMn, where n represents the
dimension number.

The variables in the VARIANCE matrix data file and their values are:

ROWTYPE_ String variable containing the value COV for all of the cases in the file.

SCORE_ String variable containing the value SINGULAR, the row variable’s
name (or label), and the column variable’s name (or label).

LEVEL_ String variable containing the row variable’s values (or labels), the
column variable’s values (or labels), and a blank value for score_ =
SINGULAR.

VARNAME_ String variable containing the dimension number.

DIM1...DIMn Numerical variables containing the variances and covariances for
each dimension. Each variable is named DIMn, where n represents the
dimension number.

See the SPSS Syntax Reference Guide for more information on matrix data files.

Analyzing Aggregated Data

To analyze aggregated data, such as data from a crosstabulation where cell counts are
available but the original raw data are not, you can use the WEIGHT command before
CORRESPONDENCE.

Example

To analyze a table such as the one shown in Table 1, you could use these commands:
DATA LIST FREE/ BIRTHORD ANXIETY COUNT.
BEGIN DATA
1 1 48
1 2 27
1 3 22
2 1 33
2 2 20
2 3 39
3 1 29
3 2 42
3 3 47
END DATA.
WEIGHT BY COUNT.
CORRESPONDENCE TABLE=BIRTHORD (1,3) BY ANXIETY (1,3).

• The WEIGHT command weights each case by the value of COUNT, as if there are 48 sub-
jects with BIRTHORD=1 and ANXIETY=1, 27 subjects with BIRTHORD=1 and ANXIETY=2,
and so on.

• CORRESPONDENCE can then be used to analyze the data.
• If any of the table cell values equals 0, the WEIGHT command issues a warning, but the

CORRESPONDENCE analysis is done correctly.

3 3×

290 Syntax Reference

• The table cell values (the WEIGHT values) cannot be negative.

Table 1 3 x 3 table

Anxiety

High Med Low

Birth order

First 48 27 22

Second 33 20 39

Other 29 42 47

291

COUNT

COUNT varname=varlist(value list) [/varname=...]

Keywords for numeric value lists:

LOWEST, LO, HIGHEST, HI, THRU, MISSING, SYSMIS

Example
COUNT TARGET=V1 V2 V3 (2).

Overview

COUNT creates a numeric variable that, for each case, counts the occurrences of the same
value (or list of values) across a list of variables. The new variable is called the target
variable. The variables and values that are counted are the criterion variables and values.
Criterion variables can be either numeric or string.

Basic Specification

The basic specification is the target variable, an equals sign, the criterion variable(s), and
the criterion value(s) enclosed in parentheses.

Syntax Rules

• Use a slash to separate the specifications for each target variable.

• The criterion variables specified for a single target variable must be either all numeric or
all string.

• Each value on a list of criterion values must be separated by a comma or space. String
values must be enclosed in apostrophes.

• The keywords THRU, LOWEST (LO), HIGHEST (HI), SYSMIS, and MISSING can be used
only with numeric criterion variables.

• A variable can be specified on more than one criterion variable list.

• You can use the keyword TO to specify consecutive criterion variables that have the
same criterion value or values.

• You can specify multiple variable lists for a single target variable to count different values
for different variables.

292 COUNT

Operations

• Target variables are always numeric and are initialized to 0 for each case. They are assigned
a dictionary format of F8.2.

• If the target variable already exists, its previous values are replaced.

• COUNT ignores the missing-value status of user-missing values. It counts a value even if
that value has been previously declared as missing.

• The target variable is never system-missing. To define user-missing values for target vari-
ables, use the RECODE or MISSING VALUES command.

• SYSMIS counts system-missing values for numeric variables.

• MISSING counts both user- and system-missing values for numeric variables.

Example

COUNT TARGET=V1 V2 V3 (2).

• The value of TARGET for each case will be either 0, 1, 2, or 3, depending on the number
of times the value 2 occurs across the three variables for each case.

• TARGET is a numeric variable with an F8.2 format.

Example

COUNT QLOW=Q1 TO Q10 (LO THRU 0)
/QSYSMIS=Q1 TO Q10 (SYSMIS).

• Assuming that there are 10 variables between and including Q1 and Q10 in the working
data file, QLOW ranges from 0 to 10, depending on the number of times a case has a neg-
ative or 0 value across the variables Q1 to Q10.

• QSYSMIS ranges from 0 to 10, depending on how many system-missing values are en-
countered for Q1 to Q10 for each case. User-missing values are not counted.

• Both QLOW and QSYSMIS are numeric variables and have F8.2 formats.

Example

COUNT SVAR=V1 V2 (’male ’) V3 V4 V5 (’female’).

• SVAR ranges from 0 to 5, depending on the number of times a case has a value of male
for V1 and V2 and a value of female for V3, V4, and V5.

• SVAR is a numeric variable with an F8.2 format.

293

COXREG

COXREG is available in the Advanced Models option.
[TIME PROGRAM]*
[commands to compute time dependent covariates]

[CLEAR TIME PROGRAM]

COXREG [VARIABLES =] survival varname [WITH varlist]
 / STATUS = varname [EVENT] (vallist) [LOST (vallist)]
 [/STRATA = varname]
 [/CATEGORICAL = varname]
 [/CONTRAST (varname) = {DEVIATION (refcat)}]
 {SIMPLE (refcat) }
 {DIFFERENCE }
 {HELMERT }
 {REPEATED }
 {POLYNOMIAL(metric)}
 {SPECIAL (matrix) }
 {INDICATOR (refcat)}

 [/METHOD = {ENTER** } [{varlist}]]
 {BSTEP [{COND}]} {ALL }
 {LR }
 {WALD}
 {FSTEP [{COND}]}
 {LR }
 {WALD}

 [/MISSING = {EXCLUDE**}]
 {INCLUDE }

 [/PRINT = [{DEFAULT**}] [CI ({95})]]
 {SUMMARY } {n }
 {BASELINE }
 {CORR }
 {ALL }

 [/CRITERIA = [{BCON}({1E-4**})] [LCON({1E-5**})]
 {PCON} { n } { n }
 [ITERATE({20**})]
 { n }
 [PIN({0.05**})] [POUT({0.1**})]]
 { n } { n }

 [/PLOT = [NONE**] [SURVIVAL] [HAZARD] [LML] [OMS]]
 [/PATTERN = [varname(value)...] [BY varname]]
 [/OUTFILE = [COEFF(file)] [TABLE(file)]]
 [/SAVE = tempvar [(newvarname)],tempvar ...]
 [/EXTERNAL]

* TIME PROGRAM is required to generate time-dependent covariates.
**Default if subcommand or keyword is omitted.

294 COXREG

Temporary variables created by COXREG are:

SURVIVAL
SE
HAZARD
RESID
LML
DFBETA
PRESID
XBETA

Example
TIME PROGRAM.
COMPUTE Z=AGE + T_.

COXREG SURVIVAL WITH Z
 /STATUS SURVSTA EVENT(1).

Overview

COXREG applies Cox proportional hazards regression to analysis of survival times—that is,
the length of time before the occurrence of an event. COXREG supports continuous and cate-
gorical independent variables (covariates), which can be time-dependent. Unlike SURVIVAL
and KM, which compare only distinct subgroups of cases, COXREG provides an easy way of
considering differences in subgroups as well as analyzing effects of a set of covariates.

Options

Processing of Independent Variables. You can specify which of the independent variables are
categorical with the CATEGORICAL subcommand and control treatment of these variables
with the CONTRAST subcommand. You can select one of seven methods for entering inde-
pendent variables into the model using the METHOD subcommand. You can also indicate
interaction terms using the keyword BY between variable names on either the VARIABLES
subcommand or the METHOD subcommand.

Specifying Termination and Model-Building Criteria. You can specify the criteria for termination
of iteration and control variable entry and removal with the CRITERIA subcommand.

Adding New Variables to Working Data File. You can use the SAVE subcommand to save the
cumulative survival, standard error, cumulative hazard, log-minus-log-of-survival function,
residuals, XBeta, and, wherever available, partial residuals and DfBeta.

Output. You can print optional output using the PRINT subcommand, suppress or request plots
with the PLOT subcommand, and, with the OUTFILE subcommand, write SPSS data files
containing coefficients from the final model or a survival table. When only time-constant
covariates are used, you can use the PATTERN subcommand to specify a pattern of covariate
values in addition to the covariate means to use for the plots and the survival table.

COXREG 295

Basic Specification

• The minimum specification on COXREG is a dependent variable with the STATUS
subcommand.

• To analyze the influence of time-constant covariates on the survival times, the minimum
specification requires either the WITH keyword followed by at least one covariate (inde-
pendent variable) on the VARIABLES subcommand or a METHOD subcommand with at
least one independent variable.

• To analyze the influence of time-dependent covariates on the survival times, the TIME
PROGRAM command and transformation language are required to define the functions for
the time-dependent covariate(s).

Subcommand Order

• The VARIABLES subcommand must be specified first; the subcommand keyword is optional.

• Remaining subcommands can be named in any order.

Syntax Rules

• Only one dependent variable can be specified for each COXREG command.

• Any number of covariates (independent variables) can be specified. The dependent
variable cannot appear on the covariate list.

• The covariate list is required if any of the METHOD subcommands are used without a
variable list or if the METHOD subcommand is not used.

• Only one status variable can be specified on the STATUS subcommand. If multiple
STATUS subcommands are specified, only the last specification is in effect.

• You can use the BY keyword to specify interaction between covariates.

Operations

• TIME PROGRAM computes the values for time-dependent covariates.
• COXREG replaces covariates specified on CATEGORICAL with sets of contrast variables.

In stepwise analyses, the set of contrast variables associated with one categorical variable
is entered or removed from the model as a block.

• Covariates are screened to detect and eliminate redundancies.

• COXREG deletes all cases that have negative values for the dependent variable.

Limitations

• Only one dependent variable is allowed.

• Maximum 100 covariates in a single interaction term.

• Maximum 35 levels for a BY variable on PATTERN.

296 COXREG

Example

TIME PROGRAM.
COMPUTE Z=AGE + T_.

COXREG SURVIVAL WITH Z
 /STATUS SURVSTA EVENT (1).

• TIME PROGRAM defines the time-dependent covariate Z as the current age. Z is then specified as
a covariate.

• The dependent variable SURVIVAL contains the length of time to the terminal event or to
censoring.

• A value of 1 on the variable SURVSTA indicates an event.

TIME PROGRAM Command

TIME PROGRAM is required to define time-dependent covariates. These are covariates whose
values change during the course of the study.
• TIME PROGRAM and the transformations that define the time-dependent covariate(s) must

precede the COXREG command.

• A time-dependent covariate is a function of the current time, which is represented by the
special variable T_.

• The working data file must not have a variable named T_. If it does, rename the variable
before you run the COXREG command. Otherwise, you will trigger an error.

• T_ cannot be specified as a covariate. Any other variable in the TIME PROGRAM can be
specified on the covariate list.

• For every time-dependent covariate, values are generated for each valid case for all un-
censored times in the same stratum that occur before the observed time. If no STRATA
subcommand is specified, all cases are considered to belong to one stratum.

• If any function defined by the time program results in a missing value for a case that has
no missing values for any other variable used in the procedure, COXREG terminates with
an error.

CLEAR TIME PROGRAM Command

CLEAR TIME PROGRAM deletes all time-dependent covariates created in the previous time
program. It is primarily used in interactive mode to remove temporary variables associated with
the time program so that you can redefine time-dependent covariates for the Cox Regression
procedure. It is not necessary to use this command if you have already executed COXREG. All
temporary variables created by the time program are automatically deleted.

COXREG 297

VARIABLES Subcommand

VARIABLES identifies the dependent variable and the covariates to be included in the analysis.
• The minimum specification is the dependent variable. The subcommand keyword is optional.

• Cases whose dependent variable values are negative are excluded from the analysis.

• You must specify the keyword WITH and a list of all covariates if no METHOD subcom-
mand is specified or if a METHOD subcommand is specified without naming the variables
to be used.

• If the covariate list is not specified on VARIABLES but one or more METHOD subcom-
mands are used, the covariate list is assumed to be the union of the sets of variables listed
on all the METHOD subcommands.

• You can specify an interaction of two or more covariates using the keyword BY. For
example, A B BY C D specifies the three terms A, B*C, and D.

• The keyword TO can be used to specify a list of covariates. The implied variable order is
the same as in the working data file.

STATUS Subcommand

To determine whether the event has occurred for a particular observation, COXREG checks
the value of a status variable. STATUS lists the status variable and the code for the occurrence
of the event.

• Only one status variable can be specified. If multiple STATUS subcommands are speci-
fied, COXREG uses the last specification and displays a warning.

• The keyword EVENT is optional, but the value list in parentheses must be specified.

• The value list must be enclosed in parentheses. All cases with non-negative times that do
not have a code within the range specified after EVENT are classified as censored cases—
that is, cases for which the event has not yet occurred.

• The value list can be one value, a list of values separated by blanks or commas, a range
of values using the keyword THRU, or a combination.

• If missing values occur within the specified ranges, they are ignored if MISSING=EXCLUDE
(the default) is specified, but they are treated as valid values for the range if MISSING=INCLUDE
is specified.

• The status variable can be either numeric or string. If a string variable is specified, the
EVENT values must be enclosed in apostrophes and the keyword THRU cannot be used.

Example
COXREG SURVIVAL WITH GROUP
 /STATUS SURVSTA (3 THRU 5, 8 THRU 10).

• STATUS specifies that SURVSTA is the status variable.

• A value between either 3 and 5, or 8 and 10, inclusive, means that the terminal event
occurred.

• Values outside the specified ranges indicate censored cases.

298 COXREG

STRATA Subcommand

STRATA identifies a stratification variable. A different baseline survival function is computed
for each stratum.

• The only specification is the subcommand keyword with one, and only one, variable name.

• If you have more than one stratification variable, create a new variable that corresponds
to the combination of categories of the individual variables before invoking the COXREG
command.

• There is no limit to the number of levels for the strata variable.

Example
COXREG SURVIVAL WITH GROUP
 /STATUS SURVSTA (1)
 /STRATA=LOCATION.

• STRATA specifies LOCATION as the strata variable.

• Different baseline survival functions are computed for each value of LOCATION.

CATEGORICAL Subcommand

CATEGORICAL identifies covariates that are nominal or ordinal. Variables that are declared to
be categorical are automatically transformed to a set of contrast variables (see “CONTRAST
Subcommand” below). If a variable coded as is declared as categorical, by default, its
coding scheme will be changed to deviation contrasts.

• Covariates not specified on CATEGORICAL are assumed to be at least interval, except for
strings.

• Variables specified on CATEGORICAL but not on VARIABLES or any METHOD subcom-
mand are ignored.

• Variables specified on CATEGORICAL are replaced by sets of contrast variables. If the
categorical variable has n distinct values, there will be contrast variables gener-
ated. The set of contrast variables associated with one categorical variable are entered
or removed from the model together.

• If any one of the variables in an interaction term is specified on CATEGORICAL, the inter-
action term is replaced by contrast variables.

• All string variables are categorical. Only the first eight characters of each value of a string
variable are used in distinguishing among values. Thus, if two values of a string variable are
identical for the first eight characters, the values are treated as though they were the same.

CONTRAST Subcommand

CONTRAST specifies the type of contrast used for categorical covariates. The interpretation
of the regression coefficients for categorical covariates depends on the contrasts used. The
default is DEVIATION. For illustration of contrast types, see the appendix.
• The categorical covariate is specified in parentheses following CONTRAST.

0 1–

n 1–

COXREG 299

• If the categorical variable has n values, there will be rows in the contrast matrix.
Each contrast matrix is treated as a set of independent variables in the analysis.

• Only one variable can be specified per CONTRAST subcommand, but multiple
CONTRAST subcommands can be specified.

• You can specify one of the contrast keywords in the parentheses after the variable speci-
fication to request a specific contrast type.

The following contrast types are available:

DEVIATION(refcat) Deviations from the overall effect. This is the default. The effect for
each category of the independent variable except one is compared to
the overall effect. Refcat is the category for which parameter estimates
are not displayed (they must be calculated from the others). By default,
refcat is the last category. To omit a category other than the last, specify
the sequence number of the omitted category (which is not necessarily
the same as its value) in parentheses after the keyword DEVIATION.

SIMPLE(refcat) Each category of the independent variable except the last is compared
to the last category. To use a category other than the last as the omitted
reference category, specify its sequence number (which is not
necessarily the same as its value) in parentheses following the keyword
SIMPLE.

DIFFERENCE Difference or reverse Helmert contrasts. The effects for each category
of the covariate except the first are compared to the mean effect of the
previous categories.

HELMERT Helmert contrasts. The effects for each category of the independent
variable except the last are compared to the mean effects of subse-
quent categories.

POLYNOMIAL(metric) Polynomial contrasts. The first degree of freedom contains the linear effect
across the categories of the independent variable, the second contains the
quadratic effect, and so on. By default, the categories are assumed to be
equally spaced; unequal spacing can be specified by entering a metric
consisting of one integer for each category of the independent variable in
parentheses after the keyword POLYNOMIAL. For example, CONTRAST
(STIMULUS) = POLYNOMIAL(1,2,4) indicates that the three levels
of STIMULUS are actually in the proportion 1:2:4. The default metric is
always (1,2,...,k), where k categories are involved. Only the relative
differences between the terms of the metric matter: (1,2,4) is the same metric
as (2,3,5) or (20,30,50) because, in each instance, the difference between the
second and third numbers is twice the difference between the first and second.

REPEATED Comparison of adjacent categories. Each category of the independent
variable except the first is compared to the previous category.

SPECIAL(matrix) A user-defined contrast. After this keyword, a matrix is entered in
parentheses with rows and k columns, where k is the number of
categories of the independent variable. The rows of the contrast matrix
contain the special contrasts indicating the desired comparisons
between categories. If the special contrasts are linear combinations of
each other, COXREG reports the linear dependency and stops

n 1–

k 1–

300 COXREG

processing. If k rows are entered, the first row is discarded and only the
last rows are used as the contrast matrix in the analysis.

INDICATOR(refcat) Indicator variables. Contrasts indicate the presence or absence of
category membership. By default, refcat is the last category (represented
in the contrast matrix as a row of zeros). To omit a category other than the
last, specify the sequence number of the category (which is not necessarily
the same as its value) in parentheses after keyword INDICATOR.

Example
COXREG SURVIVAL WITH GROUP
 /STATUS SURVSTA (1)
 /STRATA=LOCATION
/CATEGORICAL = GROUP
 /CONTRAST(GROUP)=SPECIAL(2 -1 -1
 0 1 -1).

• The specification of GROUP on CATEGORICAL replaces the variable with a set of contrast
variables.

• GROUP identifies whether a case is in one of the three treatment groups.

• A SPECIAL type contrast is requested. A three-column, two-row contrast matrix is entered
in parentheses.

METHOD Subcommand

METHOD specifies the order of processing and the manner in which the covariates enter the
model. If no METHOD subcommand is specified, the default method is ENTER.
• The subcommand keyword METHOD can be omitted.

• You can list all covariates to be used for the method on a variable list. If no variable list
is specified, the default is ALL: all covariates named after WITH on the VARIABLES sub-
command are used for the method.

• The keyword BY can be used between two variable names to specify an interaction term.

• Variables specified on CATEGORICAL are replaced by sets of contrast variables. The con-
trast variables associated with a categorical variable are entered or removed from the
model together.

Three keywords are available to specify how the model is to be built:

ENTER Forced entry. All variables are entered in a single step. This is the default if the
METHOD subcommand is omitted.

FSTEP Forward stepwise. The covariates specified on FSTEP are tested for entry into the
model one by one based on the significance level of the score statistic. The variable with
the smallest significance less than PIN is entered into the model. After each entry,
variables that are already in the model are tested for possible removal based on the
significance of the Wald statistic, likelihood ratio, or conditional criterion. The variable
with the largest probability greater than the specified POUT value is removed and the
model is reestimated. Variables in the model are then again evaluated for removal.
Once no more variables satisfy the removal criteria, covariates not in the model are
evaluated for entry. Model building stops when no more variables meet entry or
removal criteria, or when the current model is the same as a previous one.

k 1–

COXREG 301

BSTEP Backward stepwise. As a first step, the covariates specified on BSTEP are entered
into the model together and are tested for removal one by one. Stepwise removal
and entry then follow the same process as described for FSTEP until no more vari-
ables meet entry and removal criteria, or when the current model is the same as a
previous one.

• Multiple METHOD subcommands are allowed and are processed in the order in which they
are specified. Each method starts with the results from the previous method. If BSTEP is
used, all eligible variables are entered at the first step. All variables are then eligible for
entry and removal unless they have been excluded from the METHOD variable list.

The statistic used in the test for removal can be specified by an additional keyword in
parentheses following FSTEP or BSTEP. If FSTEP or BSTEP is specified by itself, the default
is COND.

COND Conditional statistic. This is the default if FSTEP or BSTEP is specified by itself.

WALD Wald statistic. The removal of a covariate from the model is based on the signifi-
cance of the Wald statistic.

LR Likelihood ratio. The removal of a covariate from the model is based on the
significance of the change in the log-likelihood. If LR is specified, the model must be
reestimated without each of the variables in the model. This can substantially increase
computational time. However, the likelihood-ratio statistic is better than the Wald
statistic for deciding which variables are to be removed.

Example
COXREG SURVIVAL WITH GROUP SMOKE DRINK
 /STATUS SURVSTA (1)
/CATEGORICAL = GROUP SMOKE DRINK
 /METHOD ENTER GROUP
/METHOD BSTEP (LR) SMOKE DRINK SMOKE BY DRINK.

• GROUP, SMOKE, and DRINK are specified as covariates and as categorical variables.

• The first METHOD subcommand enters GROUP into the model.
• Variables in the model at the termination of the first METHOD subcommand are included

in the model at the beginning of the second METHOD subcommand.

• The second METHOD subcommand adds SMOKE, DRINK, and the interaction of SMOKE
with DRINK to the previous model.

• Backward stepwise regression analysis is then done using the likelihood-ratio statistic as
the removal criterion. The variable GROUP is not eligible for removal because it was not
specified on the BSTEP subcommand.

• The procedure continues until the removal of a variable will result in a decrease in the log-
likelihood with a probability smaller than POUT.

MISSING Subcommand

MISSING controls missing value treatments. If MISSING is omitted, the default is EXCLUDE.

302 COXREG

• Cases with negative values on the dependent variable are automatically treated as missing
and are excluded.

• To be included in the model, a case must have nonmissing values for the dependent,
status, strata, and all independent variables specified on the COXREG command.

EXCLUDE Exclude user-missing values. User-missing values are treated as missing.
This is the default if MISSING is omitted.

INCLUDE Include user-missing values. User-missing values are included in the analysis.

PRINT Subcommand

By default, COXREG prints a full regression report for each step. You can use the PRINT
subcommand to request specific output. If PRINT is not specified, the default is DEFAULT.

DEFAULT Full regression output including overall model statistics and statistics for
variables in the equation and variables not in the equation. This is the
default when PRINT is omitted.

SUMMARY Summary information. The output includes –2 log-likelihood for the initial
model, one line of summary for each step, and the final model printed with
full detail.

CORR Correlation/covariance matrix of parameter estimates for the variables in
the model.

BASELINE Baseline table. For each stratum, a table is displayed showing the baseline
cumulative hazard, as well as survival, standard error, and cumulative hazard
evaluated at the covariate means for each observed time point in that stratum.

CI (value) Confidence intervals for . Specify the confidence level in parentheses.
The requested intervals are displayed whenever a variables-in-equation table
is printed. The default is 95%.

ALL All available output.

• Estimation histories showing the last 10 iterations are printed if the solution fails to
converge.

Example
COXREG SURVIVAL WITH GROUP
 /STATUS = SURVSTA (1)
 /STRATA = LOCATION
/CATEGORICAL = GROUP

 /METHOD = ENTER
 /PRINT ALL.

• PRINT requests summary information, a correlation matrix for parameter estimates, a
baseline survival table for each stratum, and confidence intervals for with each
variables-in-equation table, in addition to the default output.

eβ

eβ

COXREG 303

CRITERIA Subcommand

CRITERIA controls the statistical criteria used in building the Cox Regression models. The
way in which these criteria are used depends on the method specified on the METHOD
subcommand. The default criteria are noted in the description of each keyword below. Itera-
tions will stop if any of the criteria for BCON, LCON, or ITERATE are satisfied.

BCON(value) Change in parameter estimates for terminating iteration. Alias PCON.
Iteration terminates when the parameters change by less than the specified value.
BCON defaults to . To eliminate this criteria, specify a value of 0.

ITERATE(value) Maximum number of iterations. If a solution fails to converge after the
maximum number of iterations has been reached, COXREG displays an
iteration history showing the last 10 iterations and terminates the procedure.
The default for ITERATE is 20.

LCON(value) Percentage change in the log-likelihood ratio for terminating iteration. If the
log-likelihood decreases by less than the specified value, iteration terminates.
LCON defaults to . To eliminate this criterion, specify a value of 0.

PIN(value) Probability of score statistic for variable entry. A variable whose significance
level is greater than PIN cannot enter the model. The default for PIN is 0.05.

POUT(value) Probability of Wald, LR, or conditional LR statistic to remove a variable. A
variable whose significance is less than POUT cannot be removed. The
default for POUT is 0.1.

Example
COXREG SURVIVAL WITH GROUP AGE BP TMRSZ
 /STATUS = SURVSTA (1)
 /STRATA = LOCATION
/CATEGORICAL = GROUP
/METHOD BSTEP
/CRITERIA BCON(0) ITERATE(10) PIN(0.01) POUT(0.05).

• A backward stepwise Cox Regression analysis is performed.

• CRITERIA alters four of the default statistical criteria that control the building of a model.

• Zero specified on BCON indicates that change in parameter estimates is not a criterion for
termination. BCON can be set to 0 if only LCON and ITER are to be used.

• ITERATE specifies that the maximum number of iterations is 10. LCON is not changed and
the default remains in effect. If either ITERATE or LCON is met, iterations will terminate.

• POUT requires that the probability of the statistic used to test whether a variable should re-
main in the model be smaller than 0.05. This is more stringent than the default value of 0.1.

• PIN requires that the probability of the score statistic used to test whether a variable should
be included be smaller than 0.01. This makes it more difficult for variables to be included
in the model than does the default PIN, which has a value of 0.05.

1E 4–

1E 5–

304 COXREG

PLOT Subcommand

You can request specific plots to be produced with the PLOT subcommand. Each requested
plot is produced once for each pattern specified on the PATTERN subcommand. If PLOT is
not specified, the default is NONE (no plots are printed). Requested plots are displayed at the
end of the final model.

• The set of plots requested is displayed for the functions at the mean of the covariates and
at each combination of covariate values specified on PATTERN.

• If time-dependent covariates are included in the model, no plots are produced.

• Lines on a plot are connected as step functions.

NONE Do not display plots.

SURVIVAL Plot the cumulative survival distribution.

HAZARD Plot the cumulative hazard function.

LML Plot the log-minus-log-of-survival function.

OMS Plot the one-minus-survival function.

PATTERN Subcommand

PATTERN specifies the pattern of covariate values to be used for the requested plots and
coefficient tables.

• A value must be specified for each variable specified on PATTERN.

• Continuous variables that are included in the model but not named on PATTERN are
evaluated at their means.

• Categorical variables that are included in the model but not named on PATTERN are
evaluated at the means of the set of contrasts generated to replace them.

• You can request separate lines for each category of a variable that is in the model. Specify
the name of the categorical variable after the keyword BY. The BY variable must be a cat-
egorical covariate. You cannot specify a value for the BY covariate.

• Multiple PATTERN subcommands can be specified. COXREG produces a set of requested
plots for each specified pattern.

• PATTERN cannot be used when time-dependent covariates are included in the model.

OUTFILE Subcommand

OUTFILE writes an external SPSS data file. COXREG writes two types of data files. You can
specify the file type to be created with one of the two keywords, followed by the file
specification in parentheses.

COEFF Write an SPSS data file containing the coefficients from the final model.

COXREG 305

TABLE Write the survival table to an SPSS data file. The file contains cumulative
survival, standard error, and cumulative hazard statistics for each uncensored
time within each stratum evaluated at the baseline and at the mean of the co-
variates. Additional covariate patterns can be requested on PATTERN.

• The specified SPSS data file must be an external file. You cannot specify an asterisk (*)
to identify the working data file.

• The variables saved in the external file are listed in the output.

SAVE Subcommand

SAVE saves the temporary variables created by COXREG. The temporary variables include:

SURVIVAL Survival function evaluated at the current case.

SE Standard error of the survival function.

HAZARD Cumulative hazard function evaluated at the current case. Alias RESID.

LML Log-minus-log-of-survival function.

DFBETA Change in the coefficient if the current case is removed. There is one
DFBETA for each covariate in the final model. If there are time-dependent
covariates, only DFBETA can be requested. Requests for any other temporary
variable are ignored.

PRESID Partial residuals. There is one residual variable for each covariate in the
final model. If a covariate is not in the final model, the corresponding new
variable has the system-missing value.

XBETA Linear combination of mean corrected covariates times regression coeffi-
cients from the final model.

• To specify variable names for the new variables, assign the new names in parentheses
following each temporary variable name.

• Assigned variable names must be unique in the working data file. Scratch or system
variable names cannot be used (that is, the variable names cannot begin with # or $).

• If new variable names are not specified, COXREG generates default names. The default
name is composed of the first three characters of the name of the temporary variable (two
for SE), followed by an underscore and a number to make it unique.

• A temporary variable can be saved only once on the same SAVE subcommand.

Example
COXREG SURVIVAL WITH GROUP
 /STATUS = SURVSTA (1)
 /STRATA = LOCATION
/CATEGORICAL = GROUP
/METHOD = ENTER
 /SAVE SURVIVAL HAZARD.

• COXREG saves cumulative survival and hazard in two new variables, SUR_1 and HAZ_1,
provided that neither of the two names exists in the working data file. If one does, the
numeric suffixes will be incremented to make a distinction.

306 COXREG

EXTERNAL Subcommand

EXTERNAL specifies that the data for each split-file group should be held in an external
scratch file during processing. This helps conserve working space when running analyses
with large data sets.

• The EXTERNAL subcommand takes no other keyword and is specified by itself.

• If time-dependent covariates exist, external data storage is unavailable, and EXTERNAL is
ignored.

307

CREATE

CREATE new series={CSUM (series) }
 {DIFF (series, order) }
 {FFT (series) }
 {IFFT (series) }
 {LAG (series, order [,order]) }
 {LEAD (series, order [,order]) }
 {MA (series, span [,minimum span]) }
 {PMA (series, span) }
 {RMED (series, span [,minimum span]) }
 {SDIFF (series, order [,periodicity])}
 {T4253H (series) }

[/new series=function (series {,span {,minimum span}})]
 {,order {,order }}
 {,periodicity }

Function keywords:

Example
CREATE NEWVAR1 NEWVAR2 = CSUM(TICKETS RNDTRP).

Overview

CREATE produces new series as a function of existing series. You can also use CREATE to
replace the values of existing series. The new or revised series can be used in any procedure
and can be saved in an SPSS-format data file.

CREATE displays a list of the new series, the case numbers of the first and last
nonmissing cases, the number of valid cases, and the functions used to create the variables.

Basic Specification

The basic specification is a new series name, an equals sign, a function, and the existing
series, along with any additional specifications needed.

CSUM Cumulative sum
DIFF Difference
FFT Fast Fourier transform
IFFT Inverse fast Fourier transform
LAG Lag
LEAD Lead
MA Centered moving averages
PMA Prior moving averages
RMED Running medians
SDIFF Seasonal difference
T4253H Smoothing

308 CREATE

Syntax Rules

• The existing series together with any additional specifications (order, span, or periodici-
ty) must be enclosed in parentheses.

• The equals sign is required.

• Series names and additional specifications must be separated by commas or spaces.

• You can specify only one function per equation.
• You can create more than one new series per equation by specifying more than one new

series name on the left side of the equation and either multiple existing series names or
multiple orders on the right.

• The number of new series named on the left side of the equation must equal the number
of series created on the right. Note that the FFT function creates two new series for each
existing series, and IFFT creates one series from two existing series.

• You can specify more than one equation on a CREATE command. Equations are separated
by slashes.

• A newly created series can be specified in subsequent equations on the same CREATE command.

Operations

• Each new series created is added to the working data file.

• If the new series named already exist, their values are replaced.

• If the new series named do not already exist, they are created.

• Series are created in the order in which they are specified on the CREATE command.
• If multiple series are created by a single equation, the first new series named is assigned

the values of the first series created, the second series named is assigned the values of the
second series created, and so on.

• CREATE automatically generates a variable label for each new series describing the func-
tion and series used to create it.

• The format of the new series is based on the function specified and the format of the ex-
isting series.

• CREATE honors the TSET MISSING setting that is currently in effect.

• CREATE does not honor the USE command.

• When an even-length span is specified for functions MA and RMED, the centering algo-
rithm uses an average of two spans of the specified length. The first span ranges from
span/2 cases before the current observation to the span length. The second span ranges
from (span/2)−1 cases before the current observation to the span length.

Limitations

• Maximum 1 function per equation.

• There is no limit on the number of series created by an equation.

• There is no limit on the number of equations.

CREATE 309

Example

CREATE NEWVAR1 = DIFF(OLDVAR,1).

• In this example, the series NEWVAR1 is created by taking the first-order difference of
OLDVAR.

CSUM Function

CSUM produces new series based on the cumulative sums of the existing series. Cumulative
sums are the inverse of first-order differencing.

• The only specification on CSUM is the name or names of the existing series in parentheses.

• Cases with missing values in the existing series are not used to compute values for the
new series. The values of these cases are system-missing in the new series.

Example
CREATE NEWVAR1 NEWVAR2 = CSUM(TICKETS RNDTRP).

• This example produces a new series called NEWVAR1, which is the cumulative sum of the
series TICKETS, and a new series called NEWVAR2, which is the cumulative sum of the
series RNDTRP.

DIFF Function

DIFF produces new series based on nonseasonal differences of existing series.

• The specification on DIFF is the name or names of the existing series and the degree of
differencing, in parentheses.

• The degree of differencing must be specified; there is no default.

• Since one observation is lost for each order of differencing, system-missing values will
appear at the beginning of the new series.

• You can specify only one degree of differencing per DIFF function.

• If either of the pair of values involved in a difference computation is missing, the result
is set to system-missing in the new series.

Example
CREATE ADIF2 = DIFF(VARA,2) /
 YDIF1 ZDIF1 = DIFF(VARY VARZ,1).

• The series ADIF2 is created by differencing VARA twice.

• The series YDIF1 is created by differencing VARY once.

• The series ZDIF1 is created by differencing VARZ once.

310 CREATE

FFT Function

FFT produces new series based on fast Fourier transformations of existing series (Brigham,
1974).

• The only specification on FFT is the name or names of the existing series in parentheses.

• FFT creates two series, the cosine and sine parts (also called real and imaginary parts), for
each existing series named. Thus, you must specify two new series names on the left side
of the equation for each existing series specified on the right side.

• The first new series named becomes the real series, and the second new series named be-
comes the imaginary series.

• The existing series cannot have imbedded missing values.

• The existing series must be of even length. If an odd-length series is specified, FFT pads
it with a 0 to make it even. Alternatively, you can make the series even by adding or drop-
ping an observation.

• The new series will be only half as long as the existing series. The remaining cases are
assigned the system-missing value.

Example
CREATE A B = FFT(C).

• Two series, A (real) and B (imaginary), are created by applying a fast Fourier transforma-
tion to series C.

IFFT Function

IFFT produces new series based on the inverse Fourier transformation of existing series.

• The only specification on IFFT is the name or names of the existing series in parentheses.

• IFFT needs two existing series to compute each new series. Thus, you must specify two
existing series names on the right side of the equation for each new series specified on the
left.

• The first existing series specified is the real series and the second series is the imaginary.

• The existing series cannot have imbedded missing values.

• The new series will be twice as long as the existing series. Thus, the last half of each ex-
isting series must be system-missing to allow enough room to create the new series.

Example
CREATE C = IFFT(A B).

• This command creates one new series, C, from the series A (real) and B (imaginary).

CREATE 311

LAG Function

LAG creates new series by copying the values of the existing series and moving them forward
the specified number of observations. This number is called the lag order. Table 1 shows a
first-order lag for a hypothetical data set.

• The specification on LAG is the name or names of the existing series and one or two lag
orders, in parentheses.

• At least one lag order must be specified; there is no default.

• Two lag orders indicate a range. For example, 2,6 indicates lag orders two through six. A
new series is created for each lag order in the range.

• The number of new series specified must equal the number of existing series specified
times the number of lag orders in the range.

• The first n cases at the beginning of the new series, where n is the lag order, are assigned
the system-missing value.

• Missing values in the existing series are lagged and are assigned the system-missing value
in the new series.

• A first-order lagged series can also be created using COMPUTE. COMPUTE does not cause
a data pass (see COMPUTE).

Example
CREATE LAGVAR2 TO LAGVAR5 = LAG(VARA,2,5).

• Four new variables are created based on lags on VARA. LAGVAR2 is VARA lagged two
steps, LAGVAR3 is VARA lagged three steps, LAGVAR4 is VARA lagged four steps, and
LAGVAR5 is VARA lagged five steps.

LEAD Function

LEAD creates new series by copying the values of the existing series and moving them back
the specified number of observations. This number is called the lead order. Table 1 shows a
first-order lead for a hypothetical data set.

• The specification on LEAD is the name or names of the existing series and one or two lead
orders, in parentheses.

• At least one lead order must be specified; there is no default.

Table 1 First-order lag and lead of series X

X Lag Lead

198 . 220

220 198 305
305 220 470
470 305 .

312 CREATE

• Two lead orders indicate a range. For example, 1,5 indicates lead orders one through five.
A new series is created for each lead order in the range.

• The number of new series must equal the number of existing series specified times the
number of lead orders in the range.

• The last n cases at the end of the new series, where n equals the lead order, are assigned
the system-missing value.

• Missing values in the existing series are moved back and are assigned the system-missing
value in the new series.

Example
CREATE LEAD1 TO LEAD4 = LEAD(VARA,1,4).

• Four new series are created based on leads of VARA. LEAD1 is VARA led one step, LEAD2
is VARA led two steps, LEAD3 is VARA led three steps, and LEAD4 is VARA led four steps.

MA Function

MA produces new series based on the centered moving averages of existing series.

• The specification on MA is the name or names of the existing series and the span to be
used in averaging, in parentheses.

• A span must be specified; there is no default.

• If the specified span is odd, the MA is naturally associated with the middle term. If the
specified span is even, the MA is centered by averaging each pair of uncentered means
(Velleman and Hoaglin, 1981).

• After the initial span, a second span can be specified to indicate the minimum number of
values to use in averaging when the number specified for the initial span is unavailable.
This makes it possible to produce nonmissing values at or near the ends of the new series.

• The second span must be greater than or equal to 1 and less than or equal to the first span.

• The second span should be even (or 1) if the first span is even; it should be odd if the first
span is odd. Otherwise, the next higher span value will be used.

• If no second span is specified, the minimum span is simply the value of the first span.

• If the number of values specified for the span or the minimum span is not available, the
case in the new series is set to system-missing. Thus, unless a minimum span of 1 is spec-
ified, the endpoints of the new series will contain system-missing values.

• When MA encounters an imbedded missing value in the existing series, it creates two sub-
sets, one containing cases before the missing value and one containing cases after the
missing value. Each subset is treated as a separate series for computational purposes.

• The endpoints of these subset series will have missing values according to the rules de-
scribed above for the endpoints of the entire series. Thus, if the minimum span is 1, the
endpoints of the subsets will be nonmissing; the only cases that will be missing in the new
series are cases that were missing in the original series.

CREATE 313

Example
CREATE TICKMA = MA(TICKETS,4,2).

• This example creates the series TICKMA based on centered moving average values of the
series TICKETS.

• A span of 4 is used for computing averages. At the endpoints, where four values are not
available, the average is based on the specified minimum of two values.

PMA Function

PMA creates new series based on the prior moving averages of existing series. The prior
moving average for each case in the original series is computed by averaging the values of a
span of cases preceding it.

• The specification on PMA is the name or names of the existing series and the span to be
used, in parentheses.

• Only one span can be specified and it is required. There is no default span.

• If the number of values specified for the span is not available, the case is set to system-
missing. Thus, the number of cases with system-missing values at the beginning of the
new series equals the number specified for the span.

• When PMA encounters an imbedded missing value in the existing series, it creates two
subsets, one containing cases before the missing value and one containing cases after the
missing value. Each subset is treated as a separate series for computational purposes. The
first n cases in the second subset will be system-missing, where n is the span.

Example
CREATE PRIORA = PMA(VARA,3).

• This command creates series PRIORA by computing prior moving averages for series
VARA. Since the span is 3, the first three cases in series PRIORA are system-missing. The
fourth case equals the average of cases 1, 2, and 3 of VARA, the fifth case equals the av-
erage of cases 2, 3, and 4 of VARA, and so on.

RMED Function

RMED produces new series based on the centered running medians of existing series.

• The specification on RMED is the name or names of the existing series and the span to be
used in finding the median, in parentheses.

• A span must be specified; there is no default.

• If the specified span is odd, RMED is naturally the middle term. If the specified span is
even, the RMED is centered by averaging each pair of uncentered medians (Velleman and
Hoaglin, 1981).

• After the initial span, a second span can be specified to indicate the minimum number of
values to use in finding the median when the number specified for the initial span is un-
available. This makes it possible to produce nonmissing values at or near the ends of the
new series.

314 CREATE

• The second span must be greater than or equal to 1 and less than or equal to the first span.

• The second span should be even (or 1) if the first span is even; it should be odd if the first
span is odd. Otherwise, the next higher span value will be used.

• If no second span is specified, the minimum span is simply the value of the first span.
• If the number of values specified for the span or the minimum span is not available, the

case in the new series is set to system-missing. Thus, unless a minimum span of 1 is spec-
ified, the endpoints of the new series will contain system-missing values.

• When RMED encounters an imbedded missing value in the existing series, it creates two
subsets, one containing cases before the missing value and one containing cases after the
missing value. Each subset is treated as a separate series for computational purposes.

• The endpoints of these subset series will have missing values according to the rules de-
scribed above for the endpoints of the entire series. Thus, if the minimum span is 1, the
endpoints of the subsets will be nonmissing; the only cases that will be missing in the new
series are cases that were missing in the original series.

Example
CREATE TICKRMED = RMED(TICKETS,4,2).

• This example creates the series TICKRMED using centered running median values of the
series TICKETS.

• A span of 4 is used for computing medians. At the endpoints, where four values are not
available, the median is based on the specified minimum of two values.

SDIFF Function

SDIFF produces new series based on seasonal differences of existing series.
• The specification on SDIFF is the name or names of the existing series, the degree of dif-

ferencing, and, optionally, the periodicity, all in parentheses.

• The degree of differencing must be specified; there is no default.

• Since the number of seasons used in the calculations decreases by 1 for each order of dif-
ferencing, system-missing values will appear at the beginning of the new series.

• You can specify only one degree of differencing per SDIFF function.
• If no periodicity is specified, the periodicity established on TSET PERIOD is in effect. If

TSET PERIOD has not been specified, the periodicity established on the DATE command is
used. If periodicity was not established anywhere, the SDIFF function cannot be executed.

• If either of the pair of values involved in a seasonal difference computation is missing,
the result is set to system-missing in the new series.

Example
CREATE SDVAR = SDIFF(VARA,1,12).

• The series SDVAR is created by applying one seasonal difference with a periodicity of 12
to the series VARA.

CREATE 315

T4253H Function

T4253H produces new series by applying a compound data smoother to the original series.
The smoother starts with a running median of 4, which is centered by a running median of 2.
It then resmooths these values by applying a running median of 5, a running median of 3, and
hanning (running weighted averages). Residuals are computed by subtracting the smoothed
series from the original series. This whole process is then repeated on the computed resid-
uals. Finally, the smoothed residuals are added to the smoothed values obtained the first time
through the process (Velleman and Hoaglin, 1981).
• The only specification on T4253H is the name or names of the existing series in parentheses.

• The existing series cannot contain imbedded missing values.

• Endpoints are smoothed through extrapolation and are not system-missing.

Example
CREATE SMOOTHA = T4253H(VARA).

• The series SMOOTHA is a smoothed version of the series VARA.

References

Box, G. E. P., and G. M. Jenkins. 1976. Time series analysis: Forecasting and control. San Fran-
cisco: Holden-Day.

Brigham, E. O. 1974. The fast Fourier transform. Englewood Cliffs, N.J.: Prentice-Hall.
Cryer, J. D. 1986. Time series analysis. Boston: Duxbury Press.
Makridakis, S., S. C. Wheelwright, and V. E. McGee. 1983. Forecasting: Methods and applica-

tions. New York: John Wiley and Sons.
Monro, D. M. 1975. Algorithm AS 83: Complex discrete fast Fourier transform. Applied Statis-

tics, 24: 153–160.
Monro, D. M., and J. L. Branch. 1977. Algorithm AS 117: The Chirp discrete Fourier transform

of general length. Applied Statistics, 26: 351–361.
Velleman, P. F., and D. C. Hoaglin. 1981. Applications, basics, and computing of exploratory data

analysis. Boston: Duxbury Press.

316

CROSSTABS

General mode:

CROSSTABS [TABLES=]varlist BY varlist [BY...] [/varlist...]

 [/MISSING={TABLE**}]
 {INCLUDE}

 [/WRITE[={NONE**}]]
 {CELLS }

Integer mode:

CROSSTABS VARIABLES=varlist(min,max) [varlist...]

 /TABLES=varlist BY varlist [BY...] [/varlist...]

 [/MISSING={TABLE**}]
{INCLUDE}

 {REPORT }

 [/WRITE[={NONE**}]]
 {CELLS }
 {ALL }

Both modes:

[/FORMAT= {AVALUE**} {TABLES**}]
 {DVALUE } {NOTABLES}

[/COUNT = [{ASIS}] [{ROUND }]
 {CASE} {TRUNCATE}
{CELL}

 [/CELLS=[{COUNT**}] [ROW] [EXPECTED] [SRESID]]
 {NONE } [COLUMN] [RESID] [ASRESID]
 [TOTAL] [ALL]

 [/STATISTICS=[CHISQ] [LAMBDA] [BTAU] [GAMMA] [ETA]]
 [PHI] [UC] [CTAU] [D] [CORR]
 [CC] [RISK] [KAPPA] [MCNEMAR] [CMH(1*)]
 [ALL] [NONE]

 [/METHOD={MC [CIN({99.0 })] [SAMPLES({10000})]}]††
 {value} {value}
 {EXACT [TIMER({5 })] }
 {value}

 [/BARCHART]

**Default if the subcommand is omitted.

†† The METHOD subcommand is available only if the Exact Tests option is installed.

Example
CROSSTABS TABLES=FEAR BY SEX
/CELLS=ROW COLUMN EXPECTED RESIDUALS
/STATISTICS=CHISQ.

CROSSTABS 317

Overview

CROSSTABS produces contingency tables showing the joint distribution of two or more vari-
ables that have a limited number of distinct values. The frequency distribution of one vari-
able is subdivided according to the values of one or more variables. The unique combination
of values for two or more variables defines a cell.

CROSSTABS can operate in two different modes: general and integer. Integer mode
builds some tables more efficiently but requires more specifications than general mode.
Some subcommand specifications and statistics are available only in integer mode.

Options

Methods for building tables. To build tables in general mode, use the TABLES subcommand.
Integer mode requires the TABLES and VARIABLES subcommands and minimum and
maximum values for the variables.

Cell contents. By default, CROSSTABS displays only the number of cases in each cell. You
can request row, column, and total percentages, and also expected values and residuals by
using the CELLS subcommand.

Statistics. In addition to the tables, you can obtain measures of association and tests of
hypotheses for each subtable using the STATISTICS subcommand.

Formatting options. With the FORMAT subcommand, you can control the display order for
categories in rows and columns of subtables and suppress crosstabulation.

Writing and reproducing tables. You can write cell frequencies to a file and reproduce the orig-
inal tables with the WRITE subcommand.

Basic Specification

In general mode, the basic specification is TABLES with a table list. The actual keyword
TABLES can be omitted. In integer mode, the minimum specification is the VARIABLES
subcommand, specifying the variables to be used and their value ranges, and the TABLES
subcommand with a table list.

• The minimum table list specifies a list of row variables, the keyword BY, and a list of
column variables.

• In integer mode, all variables must be numeric with integer values. In general mode, vari-
ables can be numeric (integer or non-integer) or string.

• The default table shows cell counts.

Subcommand Order

• In general mode, the table list must be first if the keyword TABLES is omitted. If the key-
word TABLES is explicitly used, subcommands can be specified in any order.

318 CROSSTABS

• In integer mode, VARIABLES must precede TABLES. The keyword TABLES must be explic-
itly specified.

Operations

• Integer mode builds tables more quickly but requires more workspace if a table has many
empty cells.

• If a long string variable is used in general mode, only the short string portion (first eight
characters) is tabulated.

• Statistics are calculated separately for each two-way table or two-way subtable. Missing
values are reported for the table as a whole.

• In general mode, the keyword TO on the TABLES subcommand refers to the order of vari-
ables in the working file. ALL refers to all variables in the working file. In integer mode,
TO and ALL refer to the position and subset of variables specified on the VARIABLES
subcommand.

Limitations

The following limitations apply to CROSSTABS in general mode:

• Maximum 200 variables named or implied on the TABLES subcommand

• Maximum 1000 non-empty rows or columns for each table

• Maximum 20 table lists per CROSSTABS command

• Maximum 10 dimensions (9 BY keywords) per table

• Maximum 400 value labels displayed on any single table

The following limitations apply to CROSSTABS in integer mode:

• Maximum 100 variables named or implied on the VARIABLES subcommand

• Maximum 100 variables named or implied on the TABLES subcommand

• Maximum 1000 non-empty rows or columns for each table

• Maximum 20 table lists per CROSSTABS command

• Maximum 8 dimensions (7 BY keywords) per table
• Maximum 20 rows or columns of missing values when REPORT is specified on MISSING

• Minimum value that can be specified is –99,999

• Maximum value that can be specified is 999,999

Example

CROSSTABS TABLES=FEAR BY SEX
/CELLS=ROW COLUMN EXPECTED RESIDUALS
/STATISTICS=CHISQ.

• CROSSTABS generates a Case Processing Summary table, a Crosstabulation table, and a
Chi-Square Tests table.

CROSSTABS 319

• The variable FEAR defines the rows and the variable SEX defines the columns of the
Crosstabulation table. CELLS requests row and column percentages, expected cell
frequencies, and residuals.

• STATISTICS requests the chi-square statistics displayed in the Chi-Square Tests table.

Example

CROSSTABS TABLES=JOBCAT BY EDCAT BY SEX BY INCOME3.

• This table list produces a subtable of JOBCAT by EDCAT for each combination of values
of SEX and INCOME3.

VARIABLES Subcommand

The VARIABLES subcommand is required for integer mode. VARIABLES specifies a list of vari-
ables to be used in the crosstabulations and the lowest and highest values for each variable.
Values are specified in parentheses and must be integers. Non-integer values are truncated.

• Variables can be specified in any order. However, the order in which they are named on
VARIABLES determines their implied order on TABLES (see the TABLES subcommand
below).

• A range must be specified for each variable. If several variables can have the same range,
it can be specified once after the last variable to which it applies.

• CROSSTABS uses the specified ranges to allocate tables. One cell is allocated for each
possible combination of values of the row and column variables before the data are read.
Thus, if the specified ranges are larger than the actual ranges, workspace will be wasted.

• Cases with values outside the specified range are considered missing and are not used in
the computation of the table. This allows you to select a subset of values within
CROSSTABS.

• If the table is sparse because the variables do not have values throughout the specified
range, consider using general mode or recoding the variables.

Example
CROSSTABS VARIABLES=FEAR SEX RACE (1,2) MOBILE16 (1,3)

/TABLES=FEAR BY SEX MOBILE16 BY RACE.

• VARIABLES defines values 1 and 2 for FEAR, SEX, and RACE, and values 1, 2, and 3 for
MOBILE16.

TABLES Subcommand

TABLES specifies the table lists and is required in both integer mode and general mode. The
following rules apply to both modes:

• You can specify multiple TABLES subcommands on a single CROSSTABS command. The
slash between the subcommands is required; the keyword TABLES is required only in
integer mode.

320 CROSSTABS

• Variables named before the first BY on a table list are row variables, and variables named
after the first BY on a table list are column variables.

• When the table list specifies two dimensions (one BY keyword), the first variable before
BY is crosstabulated with each variable after BY, then the second variable before BY with
each variable after BY, and so on.

• Each subsequent use of the keyword BY on a table list adds a new dimension to the tables
requested. Variables named after the second (or subsequent) BY are control variables.

• When the table list specifies more than two dimensions, a two-way subtable is produced
for each combination of values of control variables. The value of the last specified control
variable changes the most slowly in determining the order in which tables are displayed.

• You can name more than one variable in each dimension.

General Mode

• The actual keyword TABLES can be omitted in general mode.

• In general mode, both numeric and string variables can be specified. Long strings are
truncated to short strings for defining categories.

• The keywords ALL and TO can be specified in any dimension. In general mode, TO refers
to the order of variables in the working data file and ALL refers to all variables defined in
the working data file.

Example
CROSSTABS TABLES=FEAR BY SEX BY RACE.

• This example crosstabulates FEAR by SEX controlling for RACE. In each subtable, FEAR
is the row variable and SEX is the column variable.

• A subtable is produced for each value of the control variable RACE.

Example
CROSSTABS TABLES=CONFINAN TO CONARMY BY SEX TO REGION.

• This command produces crosstabulations of all variables in the working data file between
and including CONFINAN and CONARMY by all variables between and including SEX and
REGION.

Integer Mode

• In integer mode, variables specified on TABLES must first be named on VARIABLES.

• The keywords TO and ALL can be specified in any dimension. In integer mode, TO and
ALL refer to the position and subset of variables specified on the VARIABLES subcom-
mand, not to the variables in the working data file.

Example
CROSSTABS VARIABLES=FEAR (1,2) MOBILE16 (1,3)

/TABLES=FEAR BY MOBILE16.

CROSSTABS 321

• VARIABLES names two variables, FEAR and MOBILE16. Values 1 and 2 for FEAR are used
in the tables, and values 1, 2, and 3 are used for the variable MOBILE16.

• TABLES specifies a Crosstabulation table with two rows (values 1 and 2 for FEAR) and
three columns (values 1, 2, and 3 for MOBILE16). FEAR and MOBILE16 can be named on
TABLES because they were named on the previous VARIABLES subcommand.

Example
CROSSTABS VARIABLES=FEAR SEX RACE DEGREE (1,2)
 /TABLES=FEAR BY SEX BY RACE BY DEGREE.

• This command produces four subtables. The first subtable crosstabulates FEAR by SEX,
controlling for the first value of RACE and the first value of DEGREE; the second subtable
controls for the second value of RACE and the first value of DEGREE; the third subtable
controls for the first value of RACE and the second value of DEGREE; and the fourth sub-
table controls for the second value of RACE and the second value of DEGREE.

CELLS Subcommand

By default, CROSSTABS displays only the number of cases in each cell of the Crosstabulation
table. Use CELLS to display row, column, or total percentages, expected counts, or residuals.
These are calculated separately for each Crosstabulation table or subtable.

• CELLS specified without keywords displays cell counts plus row, column, and total
percentages for each cell.

• If CELLS is specified with keywords, CROSSTABS displays only the requested cell
information.

• Scientific notation is used for cell contents when necessary.

COUNT Observed cell counts. This is the default if CELLS is omitted.

ROW Row percentages. The number of cases in each cell in a row is expressed as a
percentage of all cases in that row.

COLUMN Column percentages. The number of cases in each cell in a column is
expressed as a percentage of all cases in that column.

TOTAL Two-way table total percentages. The number of cases in each cell of a
subtable is expressed as a percentage of all cases in that subtable.

EXPECTED Expected counts. Expected counts are the number of cases expected in each
cell if the two variables in the subtable are statistically independent.

RESID Residuals. Residuals are the difference between the observed and expected
cell counts.

SRESID Standardized residuals (Haberman, 1978).

ASRESID Adjusted standardized residuals (Haberman, 1978).

322 CROSSTABS

ALL All cell information. This includes cell counts; row, column, and total percent-
ages; expected counts; residuals; standardized residuals; and adjusted stan-
dardized residuals.

NONE No cell information. Use NONE when you want to write tables to a procedure
output file without displaying them (see the WRITE subcommand on p. 325).
This is the same as specifying NOTABLES on FORMAT.

STATISTICS Subcommand

STATISTICS requests measures of association and related statistics. By default, CROSSTABS
does not display any additional statistics.

• STATISTICS without keywords displays the chi-square test.

• If STATISTICS is specified with keywords, CROSSTABS calculates only the requested
statistics.

• In integer mode, values that are not included in the specified range are not used in the
calculation of the statistics, even if these values exist in the data.

• If user-missing values are included with MISSING, cases with user-missing values are
included in the calculation of statistics as well as in the tables.

CHISQ Display the Chi-Square Test table. Chi-square statistics include Pearson chi-
square, likelihood-ratio chi-square, and Mantel-Haenszel chi-square (linear-
by-linear association). Mantel-Haenszel is valid only if both variables are
numeric. Fisher’s exact test and Yates’ corrected chi-square are computed for
all 2 × 2 tables. This is the default if STATISTICS is specified with no
keywords.

PHI Display phi and Cramér’s V in the Symmetric Measures table.

CC Display contingency coefficient in the Symmetric Measures table.

LAMBDA Display lambda (symmetric and asymmetric) and Goodman and Kruskal’s
tau in the Directional Measures table.

UC Display uncertainty coefficient (symmetric and asymmetric) in the Direc-
tional Measures table.

BTAU Display Kendall’s tau-b in the Symmetric Measures table.

CTAU Display Kendall’s tau-c in the Symmetric Measures table.

GAMMA Display gamma in the Symmetric Measures table or Zero-Order and Partial
Gammas table. The Zero-Order and Partial Gammas table is produced only
for tables with more than two variable dimensions in integer mode.

D Display Somers’ d (symmetric and asymmetric) in the Directional Measures
table.

ETA Display eta in the Directional Measures table. Available for numeric data
only.

CROSSTABS 323

CORR Display Pearson’s r and Spearman’s correlation coefficient in the
Symmetric Measures table. This is available for numeric data only.

KAPPA Display kappa coefficient (Kraemer, 1982) in the Symmetric Measures table.
Kappa can be computed only for square tables in which the row and column
values are identical.

RISK Display relative risk (Bishop et al., 1975) in the Risk Estimate table. Relative
risk can be calculated only for tables.

MCNEMAR Display a test of symmetry for square tables. The McNemar test is displayed
for tables, the McNemar-Bowker test for larger tables.

CMH(1*) Conditional independence and homogeneity tests. Cochran’s and the Mantel-
Haenszel statistics are computed for the test for conditional independence.
The Breslow-Day and Taron’s statistics are computed for the test for homoge-
neity. For each test, the chi-squared statistic with its degrees of freedom and
asymptotic p value are computed. Mantel-Haenszel relative risk (common
odds ratio) estimate. The Mantel-Haenszel relative risk (common odds ratio)
estimate, the natural log of the estimate, the standard error of the natural log
of the estimate, the asymptotic p value, and the asymptotic confidence inter-
vals for common odds ratio and for the natural log of the common odds ratio
are computed. The user can specify the null hypothesis for the common odds
ratio in parentheses after the keyword. The passive default is 1. (The param-
eter value must be positive.)

ALL All statistics available.

NONE No summary statistics. This is the default if STATISTICS is omitted.

METHOD Subcommand

METHOD displays additional results for each statistic requested. If no METHOD subcommand
is specified, the standard asymptotic results are displayed. If fractional weights have been spec-
ified, results for all methods will be calculated on the weight rounded to the nearest integer.

MC Displays an unbiased point estimate and confidence interval based on the
Monte Carlo sampling method, for all statistics. Asymptotic results are also
displayed. When exact results can be calculated, they will be provided instead
of the Monte Carlo results.

CIN(n) Controls the confidence level for the Monte Carlo estimate. CIN is available
only when /METHOD=MC is specified. CIN has a default value of 99.0. You
can specify a confidence interval between 0.01 and 99.9, inclusive.

SAMPLES Specifies the number of tables sampled from the reference set when calcu-
lating the Monte Carlo estimate of the exact p value. Larger sample sizes lead
to narrower confidence limits but also take longer to calculate. You can
specify any integer between 1 and 1,000,000,000 as the sample size.
SAMPLES has a default value of 10,000.

2 2×

2 2×

324 CROSSTABS

EXACT Computes the exact significance level for all statistics in addition to the asymp-
totic results. If both the EXACT and MC keywords are specified, only exact
results are provided. Calculating the exact p value can be memory-intensive. If
you have specified /METHOD=EXACT and find that you have insufficient
memory to calculate results, you should first close any other applications that
are currently running in order to make more memory available. You can also
enlarge the size of your swap file (see your Windows manual for more informa-
tion). If you still cannot obtain exact results, specify /METHOD=MC to obtain
the Monte Carlo estimate of the exact p value. An optional TIMER keyword is
available if you choose /METHOD=EXACT.

TIMER(n) Specifies the maximum number of minutes allowed to run the exact analysis
for each statistic. If the time limit is reached, the test is terminated, no exact
results are provided, and the program begins to calculate the next test in the
analysis. TIMER is available only when /METHOD=EXACT is specified. You
can specify any integer value for TIMER. Specifying a value of 0 for TIMER
turns the timer off completely. TIMER has a default value of 5 minutes. If a test
exceeds a time limit of 30 minutes, it is recommended that you use the Monte
Carlo, rather than the exact, method.

Example
CROSSTABS TABLES=FEAR BY SEX
/CELLS=ROW COLUMN EXPECTED RESIDUALS
/STATISTICS=CHISQ
 /METHOD=MC SAMPLES(10000) CIN(95).

• This example requests chi-square statistics.

• An unbiased point estimate and confidence interval based on the Monte Carlo sampling
method are displayed with the asymptotic results.

MISSING Subcommand

By default, CROSSTABS deletes cases with missing values on a table-by-table basis. Cases
with missing values for any variable specified for a table are not used in the table or in the
calculation of statistics. Use MISSING to specify alternative missing-value treatments.

• The only specification is a single keyword.

• The number of missing cases is always displayed in the Case Processing Summary table.

• If the missing values are not included in the range specified on VARIABLES, they are ex-
cluded from the table regardless of the keyword you specify on MISSING.

TABLE Delete cases with missing values on a table-by-table basis. When multiple table
lists are specified, missing values are handled separately for each list. This is the
default.

INCLUDE Include user-missing values. Available in integer mode only.

REPORT Report missing values in the tables. This option includes missing values in tables
but not in the calculation of percentages or statistics. The missing status is indicated
on the categorical label. REPORT is available only in integer mode.

CROSSTABS 325

FORMAT Subcommand

By default, CROSSTABS displays tables and subtables. The values for the row and column
variables are displayed in order from lowest to highest. Use FORMAT to modify the default
table display.

AVALUE Display row and column variables from lowest to highest value. This is the
default.

DVALUE Display row and column variables from highest to lowest.

TABLES Display tables. This is the default.

NOTABLES Suppress Crosstabulation tables. NOTABLES is useful when you want to
write tables to a file without displaying them or when you want only the
Statistics table. This is the same as specifying NONE on CELLS.

COUNT Subcommand

The COUNT subcommand controls how case weights are handled.

ASIS The case weights are used as is. However, when Exact Statistics are
requested, the accumulated weights in the cells are either truncated or rounded
before computing the Exact test statistics.

CASE The case weights are either rounded or truncated before use.

CELL The case weights are used as is but the accumulated weights in the cells are
either truncated or rounded before computing any statistics.

ROUND Performs Rounding operation.

TRUNCATE Performs Truncation opertion.

BARCHART Subcommand

BARCHART produces a clustered bar chart where bars represent categories defined by the
first variable in a crosstabulation while clusters represent categories defined by the second
variable in a crosstabulation. Any controlling variables in a crosstabulation are collapsed
over before the clustered bar chart is created.

• BARCHART takes no further specification.

• If integer mode is in effect and MISSING=REPORT, BARCHART displays valid and user-
missing values. Otherwise only valid values are used.

WRITE Subcommand

Use the WRITE subcommand to write cell frequencies to a file for subsequent use by the
current program or another program. CROSSTABS can also use these cell frequencies as input

326 CROSSTABS

to reproduce tables and compute statistics. When WRITE is specified, an Output File
Summary table is displayed before all other tables.

• The only specification is a single keyword.

• The name of the file must be specified on the PROCEDURE OUTPUT command preceding
CROSSTABS.

• If both CELLS and ALL are specified, CELLS is in effect and only the contents of non-empty
cells are written to the file.

• If you include missing values with INCLUDE or REPORT on MISSING, no values are con-
sidered missing and all non-empty cells, including those with missing values, are written,
even if CELLS is specified.

• If you exclude missing values on a table-by-table basis (the default), no records are writ-
ten for combinations of values that include a missing value.

• If multiple tables are specified, the tables are written in the same order as they are
displayed.

NONE Do not write cell counts to a file. This is the default.

CELLS Write cell counts for non-empty and nonmissing cells to a file. Combinations
of values that include a missing value are not written to the file.

ALL Write cell counts for all cells to a file. A record for each combination of
values defined by VARIABLES and TABLES is written to the file. ALL is avail-
able only in integer mode.

The file contains one record for each cell. Each record contains the following:

Columns Contents

1–4 Split-file group number, numbered consecutively from 1. Note that this is not
the value of the variable or variables used to define the splits.

5–8 Table number. Tables are defined by the TABLES subcommand.

9–16 Cell frequency. The number of times this combination of variable values
occurred in the data, or, if case weights are used, the sum of case weights for
cases having this combination of values.

17–24 The value of the row variable (the one named before the first BY).

25–32 The value of the column variable (the one named after the first BY).

33–40 The value of the first control variable (the one named after the second BY).

41–48 The value of the second control variable (the one named after the third BY).

49–56 The value of the third control variable (the one named after the fourth BY).

57–64 The value of the fourth control variable (the one named after the fifth BY).

65–72 The value of the fifth control variable (the one named after the sixth BY).

73–80 The value of the sixth control variable (the one named after the seventh BY).

CROSSTABS 327

• The split-file group number, table number, and frequency are written as integers.

• In integer mode, the values of variables are also written as integers. In general mode, the
values are written according to the print format specified for each variable. Alphanumeric
values are written at the left end of any field in which they occur.

• Within each table, records are written from one column of the table at a time, and the
value of the last control variable changes the most slowly.

Example
PROCEDURE OUTPUT OUTFILE=CELLDATA.
CROSSTABS VARIABLES=FEAR SEX (1,2)
/TABLES=FEAR BY SEX
/WRITE=ALL.

• CROSSTABS writes a record for each cell in the table FEAR by SEX to the file CELLDATA.
Figure 1 shows the contents of the CELLDATA file.

Example
PROCEDURE OUTPUT OUTFILE=XTABDATA.
CROSSTABS TABLES=V1 TO V3 BY V4 BY V10 TO V15

/WRITE=CELLS.

• CROSSTABS writes a set of records for each table to file XTABDATA.

• Records for the table V1 by V4 by V10 are written first, followed by records for V1 by V4
by V11, and so on. The records for V3 by V4 by V15 are written last.

Reading a CROSSTABS Procedure Output File

You can use the file created by WRITE in a subsequent session to reproduce a table and
compute statistics for it. Each record in the file contains all the information used to build the
original table. The cell frequency information can be used as a weight variable on the
WEIGHT command to replicate the original cases.

Example
DATA LIST FILE=CELLDATA
/WGHT 9-16 FEAR 17-24 SEX 25-32.
VARIABLE LABELS FEAR ’AFRAID TO WALK AT NIGHT IN NEIGHBORHOODS’.
VALUE LABELS FEAR 1 ’YES’ 2 ’NO’/ SEX 1 ’MALE’ 2 ’FEMALE’.
WEIGHT BY WGHT.
CROSSTABS TABLES=FEAR BY SEX
/STATISTICS=ALL.

• DATA LIST reads the cell frequencies and row and column values from the CELLDATA file
shown in Figure 1. The cell frequency is read as a weighting factor (variable WGHT). The

Figure 1 Cell records
 1 1 55 1 1
 1 1 172 2 1
 1 1 180 1 2
 1 1 89 2 2

328 CROSSTABS

values for the rows are read as FEAR, and the values for the columns are read as SEX, the
two original variables.

• The WEIGHT command recreates the sample size by weighting each of the four cases
(cells) by the cell frequency.

If you do not have the original data or the CROSSTABS procedure output file, you can repro-
duce a crosstabulation and compute statistics simply by entering the values from the table:

DATA LIST /FEAR 1 SEX 3 WGHT 5-7.
VARIABLE LABELS FEAR ’AFRAID TO WALK AT NIGHT IN NEIGHBORHOOD’.
VALUE LABELS FEAR 1 ’YES’ 2 ’NO’/ SEX 1 ’MALE’ 2 ’FEMALE’.
WEIGHT BY WGHT.
BEGIN DATA
1 1 55
2 1 172
1 2 180
2 2 89
END DATA.
CROSSTABS TABLES=FEAR BY SEX
/STATISTICS=ALL.

References

Bishop, Y. M. M., S. E. Feinberg, and P. W. Holland. 1975. Discrete multivariate analysis: Theory
and practice. Cambridge, Mass.: MIT Press.

Haberman, S. J. 1978. Analysis of qualitative data. Vol. 1. London: Academic Press.
Kraemer, H. C. 1982. Kappa coefficient. In: Encyclopedia of Statistical Sciences, S. Katz and N. L.

Johnson, eds. New York: John Wiley and Sons.

CROSSTABS 329

CSDESCRIPTIVES

CSDESCRIPTIVES is available in the Complex Samples option.

CSDESCRIPTIVES

/PLAN FILE = file

[/JOINTPROB FILE = file]

[/SUMMARY VARIABLES = varlist]

[/MEAN [TTEST = {value }]
 {valuelist}

[/SUM [TTEST = {value }]
 {valuelist}

[/RATIO NUMERATOR = varlist DENOMINATOR = varlist

 [TTEST = {value }]]
 {valuelist}

[/RATIO...]

[/STATISTICS [COUNT] [POPSIZE] [SE] [CV] [DEFF] [DEFFSQRT]
 [CIN [({95** })]]]
 {value}

[/SUBPOP TABLE = varname [BY varname [BY ...]] [DISPLAY = {LAYERED }]]
 {SEPARATE}

[/MISSING [SCOPE = {ANALYSIS}] [CLASSMISSING = {EXCLUDE}]]
 {LISTWISE} {INCLUDE}

** Default if subcommand omitted.

Overview

CSDESCRIPTIVES estimates means, sums, and ratios, and computes their standard errors, design
effects, confidence intervals, and hypothesis tests, for samples drawn by complex sampling methods.
The procedure estimates variances by taking into account the sample design used to select the sample,
including equal probability and probability proportional to size (PPS) methods, and with replacement
(WR) and without replacement (WOR) sampling procedures. Optionally, CSDESCRIPTIVES performs
analyses for subpopulations.

Basic Specification

• The basic specification is a PLAN subcommand and the name of a complex sample analysis plan
file, which may be generated by the CSPLAN procedure, and a MEAN, SUM, or RATIO subcommand.
If a MEAN or SUM subcommand is specified, then a SUMMARY subcommand must also be present..

• The basic specification displays the overall population size estimate. Additional subcommands
must be used for other results.

CSDESCRIPTIVES 331

Operations

• CSDESCRIPTIVES computes estimates for sampling designs supported by the CSPLAN
and CSSELECT procedures.

• The input data set must contain the variables to be analyzed and variables related to the
sampling design.

• The complex sample analysis plan file provides an analysis plan based on the sampling
design.

• The default output for each mean, sum, or ratio requested is the estimate and its standard
error.

• WEIGHT and SPLIT FILE settings are ignored by the CSDESCRIPTIVES procedure.

Syntax Rules

• The PLAN subcommand is required. In addition, either the SUMMARY subcommand and
the MEAN or SUM subcommand must be specified, or the RATIO subcommand must be
specified. All other subcommands are optional.

• Multiple instances of the RATIO subcommand are allowed – each is treated independently.
All other subcommands may be specified only once.

• Subcommands can be specified in any order.

• All subcommand names and keywords must be spelled in full.

• Equals signs (=) shown in the syntax chart are required.

• The MEAN and SUM subcommands can be specified without further keywords, but no oth-
er subcommands may be empty.

Examples

CSDESCRIPTIVES
 /PLAN FILE = ‘c:\survey\myfile.xml’
 /SUMMARY VARIABLES = y1 y2
 /MEAN.

• The CDSDESCRIPTIVES procedure will compute estimates based on the complex sample
analysis plan given in ‘c:\survey\myfile.xml’.

• CDSDESCRIPTIVES will estimate the mean and its standard error for variables Y1 and Y2.

CSDESCRIPTIVES
 /PLAN FILE = ‘c:\survey\myfile.xml’
 /SUMMARY VARIABLES = y1 y2
 /SUM TTEST = 10, 20
 /STATISTICS SE CIN.

332 CSDESCRIPTIVES

• CDSDESCRIPTIVES will estimate the sum, its standard error, and 95% confidence interval
for variables Y1 and Y2.

• In addition, t tests will be performed for the Y1 and Y2 sums. For the Y1 sum, the null
hypothesis value is 10. For the Y2 sum, it is 20.

CSDESCRIPTIVES
 /PLAN FILE = ‘c:\survey\myfile.xml’
 /JOINTPROB FILE = ‘c:\survey\myfile.sav’
 /RATIO NUMERATOR = y1 DENOMINATOR = y2.

• The JPROBFILE subcommand specifies that joint inclusion probabilities are given in the
file ‘c:\survey\myfile.sav’. Joint inclusion probabilities are required for
UNEQUAL_WOR estimation.

• CSDESCRIPTIVES will estimate the ratio Y1/Y2 and its standard error.

PLAN Subcommand

The PLAN subcommand specifies the name of an XML file containing analysis design spec-
ifications. This file is written by the CSPLAN procedure.

The PLAN subcommand is required.

FILE Specifies the name of an external file.

JOINTPROB Subcommand

The JOINTPROB subcommand is used to specify the file containing the first stage joint inclu-
sion probabilities for UNEQUAL_WOR estimation. The CSSELECT procedure writes this
file in the same location and with the same name (but different extension) as the plan file.
When UNEQUAL_WOR estimation is specified, the CSDESCRIPTIVES procedure will use
the default location and name of the file unless the JOINTPROB subcommand is used to over-
ride them.

FILE Specifies the name of the joint inclusion probabilities file.

SUMMARY Subcommand

The SUMMARY subcommand specifies the analysis variables used by the MEAN and SUM
subcommands.

• A variable list is required only if means or sums are to be estimated. If only ratios are to
be estimated (i.e., if the RATIO subcommand is specified but the MEAN and SUM subcom-
mands are not), then the SUMMARY subcommand is ignored.

• All specified variables must be numeric.
• All specified variables must be unique.

CSDESCRIPTIVES 333

• Plan file and subpopulation variables may not be specified on the SUMMARY subcom-
mand.

VARIABLES Specifies the variables used by the MEAN and SUM subcommands.

MEAN Subcommand

The MEAN subcommand is used to request that means be estimated for variables specified on
the SUMMARY subcommand.

The TTEST keyword requests t tests of the population means(s) and gives the null hypothesis
value(s). If subpopulations are defined on the SUBPOP subcommand, then null hypothesis
values are used in the test(s) for each subpopulation as well as for the entire population.

value The null hypothesis is that the population mean equals the specified value for
all t tests.

valuelist This list gives the null hypothesis value of the population mean for each vari-
able on the SUMMARY subcommand. The number and order of values must
correspond to the variables on the SUMMARY subcommand.

Commas or spaces must be used to separate the values.

SUM Subcommand

The SUM subcommand is used to request that sums be estimated for variables specified on
the SUMMARY subcommand.

The TTEST keyword requests t tests of the population sum(s) and gives the null hypothesis
value(s). If subpopulations are defined on the SUBPOP subcommand, then null hypothesis
values are used in the test(s) for each subpopulation as well as for the entire population.

value The null hypothesis is that the population sum equals the specified value for
all t tests.

valuelist This list gives the null hypothesis value of the population sum for each vari-
able on the SUMMARY subcommand. The number and order of values must
correspond to the variables on the SUMMARY subcommand.

Commas or spaces must be used to separate the values.

RATIO Subcommand

The RATIO subcommand is used to specify ratios of variables to be estimated.
• Ratios are defined by crossing variables on the NUMERATOR keyword with variables on

the DENOMINATOR keyword, with DENOMINATOR variables looping fastest irrespective
of the order of the keywords.

334 CSDESCRIPTIVES

• For example, /RATIO NUMERATOR = N1 N2 DENOMINATOR = D1 D2 yields the following
ordered list of ratios: N1/D1, N1/D2, N2/D1, N2/D2.

• Multiple RATIO subcommands are allowed. Each subcommand is treated independently.

• Variables specified on the RATIO subcommand do not need to be specified on the SUM-
MARY subcommand.

• All specified variables must be numeric.

• Within each variable list, all specified variables must be unique.

• Plan file and subpopulation variables may not be specified on the RATIO subcommand.

The TTEST keyword requests t tests of the population ratio(s) and gives the null hypothesis
value(s). If subpopulations are defined on the SUBPOP subcommand, then null hypothesis
values are used in the test(s) for each subpopulation as well as for the entire population.

value The null hypothesis is that the population ratio equals the specified value for
all t tests.

valuelist This list gives the null hypothesis value of the population ratio for each ratio
specified on the RATIO subcommand. The number and order of values must
correspond to the ratios defined on the RATIO subcommand.

Commas or spaces must be used to separate the values.

STATISTICS Subcommand

The STATISTICS subcommand requests various statistics associated with the mean, sum, or
ratio estimates. If the STATISTICS subcommand is not specified, then the standard error is
computed for any displayed estimates. If the STATISTICS subcommand is specified, then
only statistics that are requested are computed.

COUNT The number of valid observations in the data set for each mean, sum, or ratio
estimate.

POPSIZE The population size for each mean, sum, or ratio estimate.

SE The standard error for each mean, sum, or ratio estimate. This is default out-
put if the STATISTICS subcommand is not specified.

CV Coefficient of variation.

DEFF Design effect.

DEFFSQRT Square root of the design effect.

CIN [(value)] Confidence interval. If the CIN keyword is specified alone, then the default
95% confidence interval is computed. Optionally, CIN may be followed by
a value in parentheses, where 0 ≤�value < 100.

SUBPOP Subcommand

The SUBPOP subcommand specifies subpopulations for which analyses are to be performed.

CSDESCRIPTIVES 335

• The set of subpopulations is defined by specifying a single categorical variable, or two or
more categorical variables, separated by the BY keyword, whose values are crossed.

• For example, /SUBPOP TABLE = A defines subpopulations based on the levels of variable
A.

• For example, /SUBPOP TABLE = A BY B defines subpopulations based on crossing the lev-
els of variables A and B.

• A maximum of 17 variables may be specified.

• Numeric or string variables may be specified.

• All specified variables must be unique.

• Stratification or cluster variables may be specified, but no other plan file variables are al-
lowed on the SUBPOP subcommand.

• Analysis variables may not be specified on the SUBPOP subcommand.
• The BY keyword is used to separate variables.

The DISPLAY keyword specifies the layout of results for subpopulations.

LAYERED Results for all subpopulations are displayed in the same table. This is the de-
fault.

SEPARATE Results for different subpopulations are displayed in different tables.

MISSING Subcommand

The MISSING subcommand specifies how missing values are handled.

• All design variables must have valid data. Cases with invalid data for any design variable
are deleted from the analysis.

The SCOPE keyword specifies which cases are used in the analyses. This specification is
applied to analysis variables but not design variables.

ANALYSIS Each statistic is based on all valid data for the analysis variable(s) used in
computing the statistic. Ratios are computed using all cases with valid data
for both of the specified variables. Statistics for different variables may be
based on different sample sizes. This is the default.

LISTWISE Only cases with valid data for all analysis variables are used in computing any
statistics. Statistics for different variables are always based on the same sam-
ple size.

The CLASSMISSING keyword specifies whether user-missing values are treated as valid.
This specification is applied to categorical design variables (i.e., strata, cluster, and subpop-
ulation variables) only.

EXCLUDE Exclude user-missing values among the strata, cluster, and subpopulation
variables. This is the default.

INCLUDE Include user-missing values among the strata, cluster, and subpopulation
variables. Treat user-missing values for these variables as valid data.

336 CSDESCRIPTIVES

CSDESCRIPTIVES 337

CSSELECT

CSSELECT is available in the Complex Samples option.

CSSELECT

/PLAN FILE=file

[/CRITERIA [STAGES=n [n [n]]] [SEED={RANDOM**}]]
{value }

[/CLASSMISSING {EXCLUDE**}]
 {INCLUDE }

[/DATA [RENAMEVARS] [PRESORTED]]

[/SAMPLEFILE OUTFILE=file [KEEP=varlist] [DROP=varlist]]

[/JOINTPROB OUTFILE=file]

[/SELECTRULE OUTFILE=file]

[/PRINT [SELECTION**] [CPS]]

** Default if subcommand omitted.

Overview

The CSSELECT procedure selects complex, probability-based samples from a population.
CSSELECT selects units according to a sample design created using the CSPLAN procedure.

Options

Scope of Execution. By default CSSELECT executes all stages defined in the sampling plan.
Optionally you can execute specific stages of the design. This capability is useful if a full
sampling frame is not available at the outset of the sampling process, in which case new
stages can be sampled as become available. For example, CSSELECT might first be used to
sample cities, then to sample blocks, and finally to sample individuals. Each time a different
stage of the sampling plan would be executed.

Seed. By default a random seed value is used by the CSSELECT random number generator.
You can specify a seed to insure that the same sample will be drawn when CSSELECT is
invoked repeatedly using the same sample plan and population frame. The CSSELECT seed
value is independent of the global SPSS seed specified via the SET command.

Missing Values. A case is excluded from the sample frame if it has a system missing value
for any input variable in the plan file. You can control whether user-missing values of strat-
ification and cluster variables are treated as invalid. User-missing values of measure vari-
ables are always treated as invalid.

Input Data. If the sampling frame is sorted in advance you can specify that the data are
presorted, which may improve performance when stratification and/or clustering is
requested for a large sampling frame.

Sample Data. CSSELECT writes data to the working data file (the default) or an external file.
Regardless of the data destination, CSSELECT generates final sampling weights, stagewise

CSSELECT 339

inclusion probabilities, stagewise cumulative sampling weights, as well as variables
requested in the sampling plan.

External files produced by CSSELECT include selected cases only. By default all variables in
the working data file are copied to the external file. Optionally you can specify that only
certain variables are to be copied.

Joint Probabilities. First stage joint inclusion probabilities are automatically saved to an
external file when the plan file specifies a PPS without-replacement sampling method. Joint
probabilities are used by Complex Samples analysis procedures such as CSDESCRIPTIVES
and CSTABULATE. You can control the name and location of the joint probabilities file.

Output. By default CSSELECT displays the distribution of selected cases by stratum. Option-
ally you can display a case processing summary.

Basic Specification

• The basic specification is a PLAN subcommand that specifies a sample design file.

• By default CSPLAN writes output data to the working data file including final sample
weights, stagewise cumulative weights, and stagewise inclusion probabilities. See the CS-
PLAN design for a description of available output variables.

Operations

• CSSELECT selects sampling units according to specifications given in a sample plan.
Typically the plan is created using the CSPLAN procedure.

• In general, elements are selected. If cluster sampling is performed groups of elements are
selected.

• CSSELECT assumes that the working data file represents the sampling frame. If a multi-
stage sample design is executed the working data file should contain data for all stages.
For example, if you want to sample individuals within cities and city blocks, then each
case should be an individual and city and block variables should be coded for each indi-
vidual. When CSSELECT is used to execute particular stages of the sample design the
working data file should represent the subframe for those stages only.

• A case is excluded from the sample frame if it has a system missing value for any input
variable in the plan.

• You can control whether user-missing values of stratification and cluster variables are
treated as valid. By default they are treated as invalid.

• User-missing values of measure variables are always treated as invalid.

• The CSSELECT procedure has its own seed specification that is independent of the global
SET command.

• First stage joint inclusion probabilities are automatically saved to an external file when
the plan file specifies a PPS without-replacement sampling method. By default the joint
probabilities file is given the same name as the plan file (with a different extension) and
is written to the same location.

340 CSSELECT

• Output data must be written to an external data file if with-replacement sampling is spec-
ified in the plan file.

Syntax Rules

• The PLAN subcommand is required. All other subcommands are optional.

• Only a single instance of each subcommand is allowed.

• An error occurs if an attribute or keyword is specified more than once within a subcom-
mand.

• An error occurs if the same output file is specified for more than one subcommand.

• Equals signs shown in the syntax chart are required.

• Subcommand names and keywords must be spelled in full.

• Empty subcommands are not allowed.

Limitations

• WEIGHT and SPLIT FILE settings are ignored with a warning by the CSSELECT procedure.

Examples

CSSELECT
 /PLAN FILE=’c:\survey\myfile.csplan’.

• CSSELECT reads the plan file myfile.csplan.

• CSSELECT draws cases according to the sampling design specified in the plan file.

• By default output data are written to the working data file including final sample weights,
stagewise inclusion probabilities, stagewise cumulative weights, and any other variables
requested in the sample plan.

Example

CSSELECT
 /PLAN FILE=’c:\survey\myfile.csplan’
 /CRITERIA SEED=99999
 /SAMPLEFILE OUTFILE=’c:\survey\sample.sav’.

• CSSELECT reads the plan file myfile.csplan.

• Sampled cases and weights are written to an external file.

• The seed value for the random number generator is 99999.

CSSELECT 341

PLAN Subcommand

The PLAN subcommand identifies the plan file whose specifications are to be used for
selecting sampling units. FILE specifies the name of the file. An error occurs if the file does
not exist.

CRITERIA Subcommand

The criteria subcommand is used to control the scope of execution and specify a seed value.

STAGES Keyword

STAGES specifies the scope of execution.

• By default all stages defined in the sampling plan are executed. STAGES is used to limit
execution to specific stages of the design.

• Specify one or more stages. The list can include up to three integer values. For example,
STAGES=1 2 3. If two or more values are provided they must be consecutive. An error
occurs if a stage is specified that does not correspond to a stage in the plan file.

• If the sample plan specifies a previous weight variable it is used in the first stage of the
plan.

• When executing latter stages of a multistage sampling design in which the earlier stages
have already been sampled, CSSELECT requires the cumulative sampling weights of the
last stage sampled in order to compute the correct final sampling weights for the whole
design. For example, say you have a three-stage design and have already executed the first
two stages of the design, saving the second-stage cumulative weights to
SampleWeightCumulative_2_. When you sample the third stage of the design, the work-
ing data file must contain SampleWeightCumulative_2_ in order to compute the final
sampling weights.

SEED Keyword

SEED specifies the random number seed used by the CSSELECT procedure.

• By default, a random seed value is selected. To replicate a particular sample, the same
seed, sample plan, and sample frame should be specified when the procedure is executed.

• The CSSELECT seed value is independent of the global SPSS seed specified via the SET
command.

RANDOM A seed value is selected at random. This is the default.

value Specifies a custom seed value. The seed value must be a positive integer.

342 CSSELECT

CLASSMISSING Subcommand

The CLASSMISSING subcommand is used to control whether user-missing values of classifi-
cation (stratification and clustering) variables are treated as valid values. By default they are
treated as invalid.

EXCLUDE User-missing values of stratification and cluster variables are treated as in-
valid. This is the default.

INCLUDE User-missing values of stratification and cluster variables are treated as valid
values.

CSSELECT always treats user-missing values of measure variables (previous weight, MOS,
size, and rate) as invalid.

DATA Subcommand

The DATA subcommand specifies general options concerning input and output files.

RENAMEVARS Keyword

The RENAMEVARS keyword specifies that existing variables should be renamed when the
CSSELECT procedure writes sample weight variables and stagewise output variables
requested in the plan file such inclusion probabilities.

• By default, an error is generated if variable names conflict.

• If output data are directed to the working data file RENAMEVARS specifies that an existing
variable should be renamed with a warning if its name conflicts with that of a variable
created by the CSSELECT procedure.

• If output data are directed to an external file RENAMEVARS specifies that a variable to be
copied from the working data file should be renamed with a warning if its name conflicts
with that of a variable created by the CSSELECT procedure. See the SAMPLEFILE subcom-
mand for details about copying variables from the working data file.

PRESORTED Keyword

By default CSSELECT assumes that the working data file is unsorted. The PRESORTED
keyword specifies that the data are sorted in advance, which may improve performance when
stratification and/or clustering is requested for a large sample frame.

If PRESORTED is used, the data should be sorted first by all stratification variables then by
cluster variables consecutively in each stage. The data can be sorted in ascending or
descending order. For example, given a sample plan created using the following CSPLAN
syntax the sample frame should be sorted by Region, Ses, District, Type, and School, in that
order.

CSSELECT 343

Example

CSPLAN
 /PLAN OUTFILE=’c:\survey\myfile.csplan’
 /DESIGN STRATA=region ses CLUSTER=district type
 /SAMPLE RATE=.2 MOS=districtsize METHOD=PPS_WOR
 /DESIGN CLUSTER=school
 /SAMPLE RATE=.3 METHOD=SIMPLE_WOR.

An error occurs if PRESORTED is specified and the data are not sorted in proper order.

SAMPLEFILE Subcommand

The SAMPLEFILE subcommand is used to write sampled units to an external file.

• The external file contains sampled cases only. By default all variables in the working data
file are copied to the external file.

• If SAMPLEFILE is specified data are not written to the working data file.

• SAMPLEFILE must be used if with-replacement sampling is specified in the plan file. Oth-
erwise an error is generated.

• KEEP and DROP can be used simultaneously; the effect is cumulative. An error occurs if
you specify a variable already named on a previous DROP or one not named on a previous
KEEP.

OUTFILE Keyword

The OUTFILE keyword specifies the name of the external file. An external file or file handle
must be specified. If the file exists it is overwritten without warning.

KEEP Keyword

The KEEP keyword lists variables to be copied from the working data file to the external file.
KEEP has no bearing on the working data file.

• At least one variable must be specified.

• Variables not listed are not copied.

• An error occurs if a specified variable does not exist in the working data file.

• Variables are copied to the external file in the order in which they are listed.

DROP Keyword

The DROP keyword excludes variables from the external file. DROP has no bearing on the
working data file.

• At least one variable must be specified.

• Variables not listed are copied.

344 CSSELECT

• The ALL keyword can be used to drop all variables.

• An error occurs if a specified variable does not exist in the working data file.

JOINTPROB Subcommand

First stage joint inclusion probabilities are automatically saved to an external file when the
plan file specifies a PPS without-replacement sampling method. By default the joint proba-
bilities file is given the same name as the plan file (with a different extension) and is written
to the same location. JOINTPROB is used to override the default name and location of the file.

• OUTFILE specifies the name of the file. In general, if the file exists it is overwritten with-
out warning.

• The joint probabilities file is generated only when the plan file specifies PPS_WOR,
PPS_BREWER, PPS_SAMPFORD, or PPS_MURTHY as the sampling method A warning is
generated if JOINTPROB is used when any other sampling method is requested in the plan
file.

SELECTRULE Subcommand

The SELECTRULE subcommand generates a text file containing a rule that describes charac-
teristics of selected units.

• The selection rule is not generated by default.

• OUTFILE specifies the name of the file. If the file exists it is overwritten without warning.

• The selection rule is written in generic notation e.g., ‘(a EQ 1) AND (b EQ 2)’. You can
transform the selection rule into SQL code or SPSS syntax that can be used to extract a
subframe for the next stage of a multistage extraction.

PRINT Subcommand

The PRINT subcommand controls output display.

SELECTION Summarizes the distribution of selected cases across strata. The information
is reported per design stage. The table is shown by default.

CPS Displays a case processing summary.

CSSELECT 345

CSPLAN

CSPLAN is available in the Complex Samples option.

CSPLAN SAMPLE

/PLAN FILE=file

[/PLANVARS [SAMPLEWEIGHT=varname]]
 [PREVIOUSWEIGHT=varname]

[/PRINT [PLAN**] [MATRIX]]

Design Block: Stage 1

/DESIGN [STAGELABEL=‘label’]
 [STRATA=varname [varname [...]]]
 [CLUSTER=varname [varname [...]]]

/METHOD TYPE={SIMPLE_WOR } [ESTIMATION={DEFAULT**}]
 {SIMPLE_WR } {WR }
 {SIMPLE_SYSTEMATIC}
 {SIMPLE_CHROMY }
 {PPS_WOR }
 {PPS_WR }
 {PPS_SYSTEMATIC }
 {PPS_BREWER }
 {PPS_MURTHY }
 {PPS_SAMPFORD }
 {PPS_CHROMY }

[/MOS {VARIABLE=varname} [MIN=value] [MAX=value]]
 {SOURCE=FROMDATA }

[/SIZE {VALUE=sizevalue }]
 {VARIABLE=varname }
 {MATRIX=varname [varname [...]]; catlist value [;catlist value [;...]]}

[/RATE {VALUE=ratevalue }]
 {VARIABLE=varname }
 {MATRIX=varname [varname [...]]; catlist value [;catlist value [;...]]}
 [MINSIZE=value]
 [MAXSIZE=value]

[/STAGEVARS [INCLPROB[(varname)]]]
 [CUMWEIGHT[varname)]]
 [INDEX[(varname)]]
 [POPSIZE[(varname)]]
 [SAMPSIZE[(varname)]]
 [RATE[(varname)]]
 [WEIGHT[(varname)]]

CSPLAN 347

Design Block: Stages 2 and 3

/DESIGN [STAGELABEL=‘label’]
 [STRATA=varname [varname [...]]]
 [CLUSTER=varname [varname [...]]]

/METHOD TYPE={SIMPLE_WOR }
 {SIMPLE_WR }
 {SIMPLE_SYSTEMATIC}
 {SIMPLE_CHROMY }

[/SIZE {VALUE=sizevalue }]
 {VARIABLE=varname }
 {MATRIX=varname [varname [...]]; catlist value [;catlist value [;...]]}

[/RATE {VALUE=ratevalue }]
 {VARIABLE=varname }
 {MATRIX=varname [varname [...]]; catlist value [;catlist value [;...]]}
 [MINSIZE=value]
 [MAXSIZE=value]

[/STAGEVARS [INCLPROB[(varname)]]]
 [CUMWEIGHT[varname)]]
 [INDEX[(varname)]]
 [POPSIZE[(varname)]]
 [SAMPSIZE[(varname)]]
 [RATE[(varname)]]
 [WEIGHT[(varname)]]

Create an Analysis Design

CSPLAN ANALYSIS

/PLAN FILE=file

/PLANVARS ANALYSISWEIGHT=varname

[/PRINT [PLAN**] [MATRIX]]

348 CSPLAN

Design Block: Stage 1

/DESIGN [STAGELABEL=‘label’]
 [STRATA=varname [varname [...]]]
 [CLUSTER=varname [varname [...]]]

/ESTIMATOR TYPE= {EQUAL_WOR }
 {UNEQUAL_WOR}
 {WR }

[/POPSIZE {VALUE=sizevalue }]
 {VARIABLE=varname }
 {MATRIX=varname [varname [...]]; catlist value [;catlist value [;...]]}

[/INCLPROB {VALUE=probvalue }]
 {VARIABLE=varname }
 {MATRIX=varname [varname [...]]; catlist value [;catlist value[;...]]}

Design Block: Stages 2 and 3

/DESIGN [STAGELABEL=‘label’]
 [STRATA=varname [varname [...]]]
 [CLUSTER=varname [varname [...]]]

/ESTIMATOR TYPE= {EQUAL_WOR}
 {WR }

[/POPSIZE {VALUE=sizevalue }]
 {VARIABLE=varname }
 {MATRIX=varname [varname [...]]; catlist value [;catlist value [;...]]}

[/INCLPROB {VALUE=probvalue }]
 {VARIABLE=varname }
 {MATRIX=varname [varname [...]]; catlist value [;catlist value[;...]]}

Display An Existing Plan

CSPLAN VIEW

/PLAN FILE=file

[/PRINT [PLAN**] [MATRIX]]

** Default if subcommand omitted.

CSPLAN 349

Example

CSPLAN SAMPLE
 /PLAN FILE=’c:\survey\myfile.csplan’
 /DESIGN STRATA=region CLUSTER=school
 /METHOD TYPE=PPS_WOR
 /MOS VARIABLE=mysizevar
 /SIZE VALUE=100.

CSPLAN ANALYSIS
 /PLAN FILE=’ c:\survey\myfile.csaplan’
 /PLANVARS ANALYSISWEIGHT=sampleweight
 /DESIGN CLUSTER=district
 /ESTIMATOR TYPE=UNEQUAL_WOR
 /DESIGN CLUSTER=school
 /ESTIMATOR TYPE=EQUAL_WOR
 /INCLPROB VARIABLE=sprob.

CSPLAN VIEW
 /PLAN FILE=’ c:\survey\myfile.csplan’.

Overview

The CSPLAN procedure creates a complex sample design or analysis specification that is used
by companion procedures in the Complex Samples Option. The CSSELECT procedure uses
specifications from a plan file when selecting cases from the active file. Analysis procedures
in the Complex Samples Option such as CSDESCRIPTIVES require a plan file in order to
produce summary statistics for a complex sample. You can also use CSPLAN to view sample
or analysis specifications within an existing plan file.

The CSPLAN design specification is used only by procedures in the Complex Samples
Option.

Options

Design Specification. CSPLAN writes a sample or analysis design to a file. A sample design
can be used to extract sampling units from the active file. An analysis design is used to
analyze a complex sample. When a sample design is created the procedure automatically
saves an appropriate analysis design to the plan file. Thus, a plan file created for designing a
sample can be used for both sample selection and analysis.

Both sample and analysis designs can specify stratification, or independent sampling within
nonoverlapping groups, as well as cluster sampling, in which groups of sampling units are
selected. A single or multistage design can be specified with a maximum of three stages.

CSPLAN does not actually execute the plan (that is, it does not extract the sample or analyze
data). To sample cases, use a sample design created by CSPLAN as input to the CSSELECT
procedure. To analyze sample data, use an analysis design created by CSPLAN as input to
Complex Samples procedures such as CSDESCRIPTIVES.

350 CSPLAN

Sample Design. A variety of equal- and unequal-probability methods are available for
sample selection including simple and systematic random sampling. CSPLAN offers several
methods for sampling with probability proportionate to size (PPS) including Brewer’s
method, Murthy’s method, and Sampford’s method. Units can be drawn with replacement
(WR) or without replacement (WOR) from the population. At each stage of the design you
can control the number or percentage of units to be drawn. You can also choose output vari-
ables such as stagewise sampling weights that are created when the sample design is
executed.

Analysis Design. The following estimation methods are available: with replacement, equal
probability without replacement, and unequal probability without replacement. Unequal
probability estimation without replacement can be requested in the first stage only. You can
specify variables to be used as input to the estimation process such as overall sample weights
and inclusion probabilities.

Basic Specification

You can specify a sample or analysis design to be created or a plan file to be displayed.

Creating a Sample Plan

• The SAMPLE keyword must be specified on the CSPLAN command.
• A PLAN subcommand is required that specifies a file that will contain the design specifi-

cation.

• A DESIGN subcommand is required.

• A METHOD subcommand must specify an extraction method.

• Sample size or rate must be specified unless the PPS_MURTHY or PPS_BREWER extrac-
tion method is chosen.

Creating an Analysis Plan

• The ANALYSIS keyword must be specified on the CSPLAN command.

• A PLAN subcommand is required that specifies a file that will contain the analysis speci-
fication.

• A PLANVARS subcommand is required that specifies a sample weight variable.
• A DESIGN subcommand is required.

• An ESTIMATOR subcommand must specify an estimator.

• The POPSIZE or INCLPROB subcommand must be specified if the EQUAL_WOR es-
timator is selected.

Displaying an Existing Plan

• The VIEW keyword must be specified on the CSPLAN command.

CSPLAN 351

• A PLAN subcommand is required that specifies a file whose specifications are to be dis-
played.

Operations

• If a sample design is created the procedure automatically writes a suitable analysis design
to the plan file. The default analysis design specifies stratification variables and cluster
variables for each stage as well as an estimation method appropriate for the chosen ex-
traction method.

• CSPLAN writes design specifications in XML format.
• By default CSPLAN displays output that summarizes the sample or analysis design.

Syntax Rules

General

• PLAN, PLANVARS, and PRINT are global. Only a single instance of each global subcom-
mand is allowed.

• Within a subcommand an error occurs if a keyword or attribute is specified more than
once.

• Equals signs shown in the syntax chart are required.

• Subcommand names and keywords (e.g., PPS_WR) must be spelled in full.

• In general empty subcommands (i.e., those that have no specifications) generate an error.
DESIGN is the only subcommand that can be empty.

• Any variable names that are specified must be valid SPSS variable names.

Creating a Plan

• Stages are specified in design blocks. The DESIGN subcommand signals the start of a
block. The first block corresponds to stage 1, the second to stage 2, and the third to stage
3. One DESIGN subcommand must be specified per stage.

• The following subcommands are local and apply to the immediately preceding DESIGN
subcommand: METHOD, MOS, SIZE, RATE, STAGEVARS, ESTIMATOR, POPSIZE, IN-
CLPROB. An error occurs if any of these subcommands appears more than once within a
block.

• Available METHOD and ESTIMATOR options depend on the stage.

• The following subcommands are honored only if a sample design is requested: METHOD,
MOS, SIZE, RATE, and STAGEVARS. An error occurs if any of these subcommands is spec-
ified for an analysis design.

• MOS can be specified in stage one only.

352 CSPLAN

• The following subcommands can be used only if an analysis design is requested: ESTIMA-
TOR, POPSIZE, and INCLPROB. An error occurs if any of these subcommands is specified
for a sample design.

• In general, each variable specified in the design can assume only one role. For example a
weight variable cannot be used as a stratification or cluster variable. Exceptions are listed
below.

Displaying a Plan

• If CSPLAN VIEW is used only the PLAN and PRINT subcommands can be specified.

Subcommand Order

• The first DESIGN subcommand must precede all other subcommands except PLAN, PLAN-
VARS, and PRINT.

• PLAN, PLANVARS, and PRINT subcommands can be used in any order.

Limitations

• A maximum of three design blocks can be specified.

• CSPLAN ignores SPLIT FILE and WEIGHT commands with a warning.

Examples

Simple sample design

CSPLAN SAMPLE
 /PLAN FILE=’c:\survey\myfile.csplan’
 /DESIGN
 /METHOD TYPE=SIMPLE_WOR
 /SIZE VALUE=100.

• A single-stage sample design is created that is saved in myfile.csplan.

• 100 cases will be selected from the active file when the sample design is executed by the
CSSELECT procedure.

• The extraction method is simple random sampling without replacement.

• The plan file also includes a default analysis design that uses the EQUAL_WOR estimator
(the default when units are extracted using the SIMPLE_WOR method).

CSPLAN 353

Stratified sample design

CSPLAN SAMPLE
 /PLAN FILE=’c:\survey\myfile.csplan’
 /DESIGN STRATA=region
 /METHOD TYPE=SIMPLE_WOR
 /RATE MATRIX=REGION; ‘East’ 0.1 ; ‘West’ 0.2;
 ‘North’ 0.1; ‘South’ 0.3.

• A stratified sample design is specified with disproportionate sampling rates for the strata.
Sample elements will be drawn independently within each region.

• The extraction method is simple random sampling without replacement.

• CSPLAN generates a default analysis design using region as a stratification variable and
the EQUAL_WOR estimator.

Stratified cluster sample design

CSPLAN SAMPLE
 /PLAN FILE=’c:\survey\myfile.csplan’
 /DESIGN STRATA=region CLUSTER=school
 /METHOD TYPE=PPS_WOR
 /SIZE VALUE=10
 /MOS VARIABLE=mysizevar.

• A stratified cluster sample design is specified.

• Ten schools will be selected within each region with probability proportionate to size.

• Size values for the strata are read from mysizevar.

• CSPLAN generates a default analysis design using region as a stratification variable and
school as a cluster variable.

• The UNEQUAL_WOR estimator will be used for analysis. UNEQUAL_WOR is the default
when units are sampled with probability proportionate to size.

Multistage cluster sample design

CSPLAN SAMPLE
 /PLAN FILE=’c:\survey\myfile.csplan’
 /DESIGN STAGELABEL=’school districts’ CLUSTER=district
 /METHOD TYPE=PPS_WOR
 /RATE VALUE=.2
 /MOS VARIABLE=districtsize
 /DESIGN STAGELABEL=’schools’ CLUSTER=school
 /METHOD TYPE=SIMPLE_WOR
 /RATE VALUE=0.3.

• A multistage cluster sample design is specified.
• Twenty percent of school districts will be drawn with probability proportionate to size.

• Within each selected school district 30% of schools will be drawn without replacement.

354 CSPLAN

• CSPLAN generates a default analysis design. Since the PPS_WOR sampling method is
specified in stage 1 the UNEQUAL_WOR estimator will be used for analysis for that stage.
The EQUAL_WOR method will be used to analyze stage two.

Simple analysis design

CSPLAN ANALYSIS
 /PLAN FILE=’c:\survey\myfile.csaplan’
 /PLANVARS ANALYSISWEIGHT=sampleweight
 /DESIGN
 /ESTIMATOR TYPE=EQUAL_WOR
 /POPSIZE VALUE=5000.

• An analysis design is specified.

• The variable sampleweight is specified as the variable containing sample weights for anal-
ysis.

• The EQUAL_WOR estimator will be used for analysis.

• POPSIZE specifies that the sample was drawn from a population of 5000.

Simple analysis design

CSPLAN ANALYSIS
 /PLAN FILE=’c:\survey\myfile.csaplan’
 /PLANVARS ANALYSISWEIGHT=sampleweight
 /DESIGN
 /ESTIMATOR TYPE=EQUAL_WOR
 /INCLPROB VALUE=0.10.

• An analysis design is specified.

• The variable sampleweight is specified as the variable containing sample weights for anal-
ysis.

• The EQUAL_WOR estimator will be used for analysis.

• INCLPROB specifies that 10% of population units were selected for inclusion in the sam-
ple.

Stratified analysis design

CSPLAN ANALYSIS
 /PLAN FILE=’c:\survey\myfile.csaplan’
 /PLANVARS ANALYSISWEIGHT=sampleweight
 /DESIGN STRATA=region
 /ESTIMATOR TYPE=EQUAL_WOR
 /INCLPROB MATRIX=REGION; ‘East’ 0.1; ‘West’ 0.2;
 ‘North’ 0.1; ‘South’ 0.3.

• The analysis design specifies that the sample is stratified by region.

• Inclusion probabilities are specified for each stratum.

CSPLAN 355

• The variable sampleweight is specified as the variable containing sample weights for anal-
ysis.

Stratified clustering analysis design

CSPLAN ANALYSIS
 /PLAN FILE=’c:\survey\myfile.csaplan’
 /PLANVARS ANALYSISWEIGHT=sampleweight
 /DESIGN STRATA=district CLUSTER=school
 /ESTIMATOR TYPE=UNEQUAL_WOR.

• The analysis design specifies that units were sampled using stratified clustering.

• The variable sampleweight is specified as the variable containing sample weights for anal-
ysis.

• District is defined as a stratification variable and school is defined as a cluster variable.

• The UNEQUAL_WOR estimator will be used for analysis.

Multistage analysis design

CSPLAN ANALYSIS
 /PLAN FILE=’c:\survey\myfile.csaplan’
 /PLANVARS ANALYSISWEIGHT=sampleweight
 /DESIGN CLUSTER=district
 /ESTIMATOR TYPE=UNEQUAL_WOR
 /DESIGN CLUSTER=school
 /ESTIMATOR TYPE=EQUAL_WOR
 /INCLPROB VARIABLE=sprob.

• The analysis design specifies that cases were sampled using multistage clustering.
Schools were sampled within districts.

• The UNEQUAL_WOR estimator will be used in stage 1.
• The EQUAL_WOR estimator will be used in stage 2.

• The variable sprob contains inclusion probabilities, which are required for analysis of the
second stage.

• The variable sampleweight is specified as the variable containing sample weights for anal-
ysis.

Display Plan

CSPLAN VIEW
 /PLAN FILE=’c:\survey\myfile.csplan’.

• The syntax displays the specifications in the plan file myfile.csplan.

356 CSPLAN

CSPLAN Command

The CSPLAN procedure creates a complex sample design or analysis specification.

SAMPLE Create a sample design.

ANALYSIS Create an analysis design.

VIEW Displays a sample or analysis design.

PLAN Subcommand

The PLAN subcommand specifies the name of a design file to be written or displayed by the
CSPLAN procedure. The file contains sample and/or analysis design specifications.

FILE Sampling design file. Specify the file name in full. If you are creating a plan
and the file already exists it is overwritten without warning.

PLANVARS Subcommand

PLANVARS is used to name planwise variables to be created when a sample is extracted or
used as input to the selection or estimation process.

ANALYSISWEIGHT
Final sample weights for each unit to be used by Complex Samples analysis
procedures in the estimation process.

ANALYSISWEIGHT is required if an analysis design is specified. It is ignored
with a warning if a sample design is specified.

SAMPLEWEIGHT Overall sample weights that will be generated when the sample design is ex-
ecuted using the CSSELECT procedure. A final sampling weight is created
automatically when the sample plan is executed.

SAMPLEWEIGHT is honored only if a sampling design is specified. It is
ignored with a warning if an analysis design is specified.

Sample weights are positive for selected units. They take into account all
stages of the design as well as previous sampling weights if specified.

If SAMPLEWEIGHT is not specified a default name (SampleWeight_Final_)
is used for the sample weight variable.

PREVIOUSWEIGHT
Weights to be used in computing final sampling weights in a multistage de-
sign.

PREVIOUSWEIGHT is honored only if a sampling design is specified. It is ig-
nored with a warning if an analysis design is specified.

CSPLAN 357

Typically the previous weight variable is produced in an earlier stage of a
stage-by-stage sample selection process. The CSSELECT procedure multi-
plies previous weights with those for the current stage to obtain final sam-
pling weights.

For example, suppose you wish to sample individuals within cities but only
city data are available at the outset of the study. For the first stage of extrac-
tion a design plan is created that specifies that 10 cities are to be sampled
from the active file. The PLANVARS subcommand specifies that sampling
weights are to be saved under the name CityWeights:

CSPLAN SAMPLE
 /PLAN FILE=’c:\survey\city.csplan’
 /PLANVARS SAMPLEWEIGHT=CityWeights
 /DESIGN CLUSTER=city
 /METHOD TYPE=PPS_WOR
 /MOS VARIABLE=SizeVar
 /SIZE VALUE=10.

This plan would be executed using the CSSELECT procedure on an active file
in which each case is a city.

For the next stage of extraction, a design plan is created that specifies that 50
individuals are to be sampled within cities. The design uses the PREVIOUS-
WEIGHT keyword to specify that sample weights generated in the first stage
are to be used when computing final sampling weights for selected individ-
uals. Final weights are saved to variable FinalWeights.

CSPLAN SAMPLE
 /PLAN FILE=’c:\survey\individuals.csplan’
 /PLANVARS PREVIOUSWEIGHT=CityWeights
 SAMPLEWEIGHT=FinalWeights
 /DESIGN STRATA=city
 /METHOD TYPE=SIMPLE_WOR
 /SIZE VALUE=50.

The plan for stage two would be executed using the CSSELECT procedure on
an active file in which cases represent individuals and both city and city
weight are recorded for each individual. Note that city is identified as a strat-
ification variable in this stage so individuals are sampled within cities.

358 CSPLAN

PRINT Subcommand

PLAN Displays a summary of plan specifications. The output reflects your
specifications at each stage of the design. The plan is shown by default. The
PRINT subcommand is used to control output from the CSPLAN procedure.

MATRIX Displays a table of MATRIX specifications. MATRIX is ignored if you do
not use the MATRIX form of the SIZE, RATE, POPSIZE or INCLPROB subcom-
mand. By default the table is not shown.

DESIGN Subcommand

The DESIGN subcommand signals a stage of the design. It also can be used to define strati-
fication variables, cluster variables, or a descriptive label for a particular stage.

STAGELABEL Keyword

STAGELABEL allows a descriptive label to be entered for the stage that appears in Complex
Samples procedure output.

‘Label’ Descriptive stage label. The label must be specified within quotes. If a label
is not provided a default label is generated that indicates the stage number.

STRATA Keyword

STRATA is used to identify stratification variables whose values represent nonoverlapping
subgroups. Stratification is typically done to decrease sampling variation and/or ensure
adequate representation of small groups in a sample.

If STRATA is used the CSSELECT procedure draws samples independently within each
stratum. For example, if region is a stratification variable, separate samples are drawn for
each region (e.g., East, West, North, and South). If multiple STRATA variables are specified
sampling is performed within each combination of strata.

varlist Stratification variables.

CLUSTER Keyword

CLUSTER is used to sample groups of sampling units such as states, counties, or school
districts. Cluster sampling is often performed to reduce travel and/or interview costs in social
surveys. For example, if census tracts are sampled within a particular city and each inter-
viewer works within a particular tract, he or she would be able to conduct interviews within
a small area, thus minimizing time and travel expenses.

• If CLUSTER is used the CSSELECT procedure samples from values of the cluster variable
as opposed to sampling elements (cases).

• If two or more cluster variables are specified samples are drawn from among all combi-
nations of values of the variables.

CSPL AN 359

• CLUSTER is required for nonfinal stages of a sample or analysis plan.

• CLUSTER is required if any of the following sampling methods is specified: PPS_WOR,
PPS_BREWER, PPS_MURTHY, or PPS_SAMPFORD.

• CLUSTER is required if the UNEQUAL_WOR estimator is specified.

varlist Cluster variables.

METHOD Subcommand

The METHOD subcommand specifies the sample extraction method. A variety of equal- and
unequal-probability methods are available.

The following table lists extraction methods and their availability at each stage of the design.
For details on each method see the CSSELECT Algorithms document.

• PPS methods are available only in stage one. WR methods are only available in the final
stage. Other methods are available in any stage.

• If a PPS method is chosen a measure of size (MOS) must be specified.

• If the PPS_WOR, PPS_BREWER, PPS_SAMPFORD, or PPS_MURTHY method is selected
first stage joint inclusion probabilities are written to an external file when the sample plan
is executed. Joint probabilities are needed for UNEQUAL_WOR estimation by Complex
Samples analysis procedures.

• By default, CSPLAN chooses an appropriate estimation method for the selected sampling
method. If ESTIMATION=WR Complex Samples analysis procedures use the WR (with re-
placement) estimator regardless of the sampling method.

360 CSPLAN

ESTIMATION Keyword

By default the estimation method used when sample data is analyzed is implied by the spec-
ified extraction method. If ESTIMATION=WR is specified the with replacement estimator is
used when summary statistics are produced using Complex Samples analysis procedures.

• The WR keyword has no effect if the specified METHOD implies WR estimation.

• If ESTIMATION=WR is specified the joint probabilities file is not created when the sample
plan is executed.

• ESTIMATION=WR is available only in the first stage.

Type Description Default Estimator

SIMPLE_WOR Selects units with equal probability.
Units are extracted without
replacement.

EQUAL_WOR

SIMPLE_WR Selects units with equal probability.
Units are extracted with replacement.

WR

SIMPLE_SYSTEMATIC Selects units at a fixed interval
throughout the sampling frame or
stratum. A random starting point is
chosen within the first interval.

WR

SIMPLE_CHROMY Selects units sequentially with equal
probability. Units are extracted
without replacement.

WR

PPS_WOR Selects units with probability
proportional to size. Units are
extracted without replacement.

UNEQUAL_WOR

PPS_WR Selects units with probability
proportional to size. Units are
extracted with replacement.

WR

PPS_SYSTEMATIC Selects units by systematic random
sampling with probability
proportional to size. Units are
extracted without replacement.

WR

PPS_CHROMY Selects units sequentially with
probability proportional to size
without replacement.

WR

PPS_BREWER Selects two units from each stratum
with probability proportional to size.
Units are extracted without
replacement.

UNEQUAL_WOR

PPS_MURTHY Selects two units from each stratum
with probability proportional to size.
Units are extracted without
replacement.

UNEQUAL_WOR

PPS_SAMPFORD An extension of the Brewer’s method
that selects more than two units from
each stratum with probability
proportional to size. Units are
extracted without replacement.

UNEQUAL_WOR

CSPLAN 361

SIZE Subcommand

The SIZE subcommand specifies the number of sampling units to draw at the current stage.
• You can specify a single value, a variable name, or a matrix of counts for design strata.

• Size values must be positive integers.

• The SIZE subcommand is ignored with a warning if the PPS_MURTHY or PPS_BREWER
method is specified.

• The SIZE or RATE subcommand must be specified for each stage. An error occurs if both
are specified.

VALUE Apply a single value to all strata. For example, VALUE=10 selects 10 units per
stratum.

MATRIX Specify disproportionate sample sizes for different strata. Specify one or more
variables after the MATRIX keyword. Then provide one size specification per
stratum. A size specification includes a set of category values and a size val-
ue. Category values should be listed in the same order as variables to which
they apply. Semicolons are used to separate the size specifications.

For example, the following syntax selects 10 units from the North stratum
and 20 from the South stratum:

/SIZE MATRIX=region; ‘North’ 10; ‘South’ 20

If there is more than one variable, specify one size per combination of strata.
For example, the following syntax specifies rate values for combinations of
Region and Sex strata:

/SIZE MATRIX=region sex; ‘North’ ‘Male’ 10; ‘North’ ‘Female’15; ‘South’ ‘Male’ 24;
‘South’ ‘Female’ 30

The variable list must contain all or a subset of stratification variables from
the same and previous stages and cluster variables from the previous stages.
An error occurs if the list contains variables that are not defined as strata or
cluster variables.

Each size specification must contain one category value per variable. If mul-
tiple size specifications are provided for the same strata or combination of
strata only the last one is honored.

String and date category values must be quoted.

A semicolon must appear after the variable list and after each size specifica-
tion. The semicolon is not allowed after the last size specification.

VARIABLE Specify the name of a single variable that contains the sample sizes.

362 CSPLAN

RATE Subcommand

The RATE subcommand specifies the percentage of units to draw at the current stage, i.e., the
sampling fraction.

• Specify a single value, a variable name, or a matrix of rates for design strata. In all cases
the value 1 is treated as 100%.

• Rate values must be positive.
• RATE is ignored with a warning if the PPS_MURTHY or PPS_BREWER method is speci-

fied.

• Either SIZE or RATE must be specified for each stage. An error occurs if both are speci-
fied.

VALUE Apply a single value to all strata. For example, VALUE=.10 selects 10 percent
of units per stratum.

MATRIX Specify disproportionate rates for different strata. Specify one or more vari-
ables after the MATRIX keyword. Then provide one rate specification per
stratum. A rate specification includes a set of category values and a rate val-
ue. Category values should be listed in the same order as variables to which
they apply. Semicolons are used to separate the rate specifications.

For example, the following syntax selects 10 percent of units from the North
stratum and 20 from the South stratum:

/RATE MATRIX=region; ‘North’ .1; ‘South’ .2

If there is more one than variable, specify one rate per combination of strata.
For example, the following syntax specifies rate values for combinations of
Region and Sex strata:

/RATE MATRIX=region sex; ‘North’ ‘Male’ .1; ‘North’ ‘Female’ .15; ‘South’ ‘Male’
.24; ‘South’ ‘Female’ .3

The variable list must contain all or a subset of stratification variables from
the same and previous stages and cluster variables from the previous stages.
An error occurs if the list contains variables that are not defined as strata or
cluster variables.

Each rate specification must contain one category value per variable. If mul-
tiple rate specifications are provided for the same strata or combination of
strata only the last one is honored.

String and date category values must be quoted.

A semicolon must appear after the variable list and after each rate specifica-
tion. The semicolon is not allowed after the last rate specification.

VARIABLE Specify the name of a single variable that contains the sample rates.

CSPLAN 363

MINSIZE Keyword

MINSIZE specifies the minimum number of units to draw when RATE is specified. MINSIZE is
useful when the sampling rate for a particular stratum turns out to be very small due to
rounding.

value The value must be a positive integer. An error occurs if the value exceeds
MAXSIZE.

MAXSIZE Keyword

MAXSIZE specifies the maximum number of units to draw when RATE is specified. MAXSIZE
is useful when the sampling rate for a particular stratum turns out to be larger than desired
due to rounding.

value The value must be a positive integer. An error occurs if the value is less than
MINSIZE.

MOS Subcommand

The MOS subcommand specifies the measure of size for population units in a PPS design.
Specify a variable that contains the sizes or request that sizes be determined when the CSSE-
LECT procedure scans the sample frame.

VARIABLE Specify a variable containing the sizes.

SOURCE=FROMDATA
The CSSELECT procedure counts the number of cases that belong to each
cluster to determine the MOS.

SOURCE=FROMDATA can be used only if a CLUSTER variable is defined.
Otherwise an error is generated.

The MOS subcommand is required for PPS designs. Otherwise it is ignored with a warning.

MIN Keyword

MIN specifies a minimum MOS for population units that overrides the value specified in the
MOS variable or obtained by scanning the data.

value The value must be positive. MIN must be less than or equal to MAX.

MIN is optional for PPS methods. It is ignored for other methods.

MAX Keyword

MAX specifies a maximum MOS for population units that overrides the value specified in the
MOS variable or obtained by scanning the data.

364 CSPLAN

value The value must be positive. MAX must be greater than or equal to MIN.

MAX is optional for PPS methods. It is ignored for other methods.

STAGEVARS Subcommand

The STAGEVARS subcommand is used to obtain stagewise sample information variables
when a sample design is executed. Certain variables are created automatically and cannot be
suppressed. The names of both automatic and optional stagewise variables can be user-spec-
ified.

• Stagewise inclusion probabilities and cumulative sampling weights are always created.

• A stagewise duplication index is created only when sampling is done with replacement.
A warning occurs if index variables are requested when sampling is done without replace-
ment.

• If a keyword is specified without a variable name a default name is used. The default
name indicates the stage to which the variable applies.

Example

/STAGEVARS POPSIZE
 INCLPROB(SelectionProb)

• The syntax requests that the population size for the stage be saved using a default name.

• Inclusion probabilities for the stage will be saved using the name SelectionProb. (Note
that inclusion probabilities are always saved when the sample design is executed. The
syntax shown here requests that they be saved using a nondefault name.)

Variables

The following table shows available STAGEVARS variables. See the CSSELECT Algorithms
document for a detailed explanation of each quantity.

If the default variable name is used a numeric suffix that corresponds to the stage number is
added to the root shown below. All names end in an underscore. For example,
InclusionProbability_1_.

CSPLAN 365

ESTIMATOR Subcommand

The ESTIMATOR subcommand is used to choose an estimation method for the current stage.
There is no default estimator.

Available estimators depend on the stage:
• EQUAL_WOR can be specified in any stage of the design.

• UNEQUAL_WOR can be specified in the first stage only. An error occurs if it is used in
stage two or three.

• WR can be specified in any stage. However, the stage in which it is specified is treated as
the last stage. Any subsequent stages are ignored when the data are analyzed.

Keyword Default Root Name Description

Generated
Automatically
When Sample
Executed?

INCLPROB InclusionProbability_ Stagewise inclusion
(selection)
probabilities. The
proportion of units
drawn from the
population at a
particular stage.

Yes

CUMWEIGHT SampleWeightCumulative_ Cumulative sampling
weight for a given
stage. Takes into
account prior stages.

Yes

INDEX Index_ Duplication index for
units selected in a
given stage. The index
uniquely identifies
units selected more
than once when
sampling is done with
replacement.

Yes, when
sampling is
done with
replacement.

POPSIZE PopulationSize_ Population size for a
given stage

No

SAMPSIZE SampleSize_ Number of units
drawn at a given
stage.

No

RATE SamplingRate_ Stagewise sampling
rate.

No

WEIGHT SampleWeight_ Sampling weight for a
given stage. The
inverse of the
stagewise inclusion
probability. Stage
weights are positive
for each unit selected
in a particular stage.

No

366 CSPLAN

EQUAL_WOR
Equal selection probabilities without replacement. POPSIZE or INCLPROB
must be specified.

UNEQUAL_WOR
Unequal selection probabilities without replacement. If POPSIZE or IN-
CLPROB is specified it is ignored and a warning is issued.

WR Selection with replacement. If POPSIZE or INCLPROB is specified it is ig-
nored and a warning is issued.

POPSIZE Subcommand

The POPSIZE subcommand specifies the population size for each sample element. Specify
a single value, a variable name, or a matrix of counts for design strata.

• The POPSIZE and INCLPROB subcommands are mutually exclusive. An error occurs if
both are specified for a particular stage.

• Population size values must be positive integers.

VALUE Apply a single value to all strata. For example, VALUE=1000 indicates that
each stratum has a population size of 1000.

MATRIX Specify disproportionate population sizes for different strata. Specify one or
more variables after the MATRIX keyword. Then provide one size specifica-
tion per stratum. A size specification includes a set of category values and a
population size value. Category values should be listed in the same order as
variables to which they apply. Semicolons are used to separate the size spec-
ifications.

For example, the following syntax specifies that units in the North stratum
were sampled from a population of 1000. The population size for the South
stratum is specified as 2000:

/SIZE MATRIX=region; ‘North’ 1000; ‘South’ 2000

If there is more than one variable, specify one size per combination of strata.
For example, the following syntax specifies rate values for combinations of
Region and Sex strata:

/SIZE MATRIX=region sex; ‘North’ ‘Male’ 1000; ‘North’ ‘Female’1500; ‘South’
‘Male’ 2400; ‘South’ ‘Female’ 3000

The variable list must contain all or a subset of stratification variables from
the same and previous stages and cluster variables from the previous stages.
An error occurs if the list contains variables that are not defined as strata or
cluster variables.

Each size specification must contain one category value per variable. If mul-
tiple size specifications are provided for the same strata or combination of

CSPLAN 367

strata only the last one is honored. If multiple size specifications are provided
for the same strata or combination of strata only the last one is honored.

String and date category values must be quoted.

A semicolon must appear after the variable list and after each size specifica-
tion. The semicolon is not allowed after the last size specification.

VARIABLE Specify the name of a single variable that contains the population sizes.

INCLPROB Subcommand

The INCLPROB subcommand specifies the proportion of units drawn from the population at
a given stage. Specify a single value, a variable name, or a matrix of inclusion probabilities
for design strata.

• The POPSIZE and INCLPROB subcommands are mutually exclusive. An error occurs if
both are specified for a particular stage.

• Proportions must be a positive value less than or equal to 1.

VALUE Apply a single value to all strata. For example, VALUE=0.10 indicates that
10% of elements in each stratum were selected.

MATRIX Specify unequal proportions for different strata. Specify one or more variables
after the MATRIX keyword. Then provide one proportion per stratum. A pro-
portion specification includes a set of category values and a proportion value.
Category values should be listed in the same order as variables to which they
apply. Semicolons are used to separate the proportion specifications.

For example, the following syntax indicates that 10 percent of units were se-
lected from the North stratum and 20 percent were selected from the South
stratum:

/INCLPROB MATRIX=region; ‘North’ 0.1; ‘South’ 0.2

If there is more than one variable, specify one proportion per combination of
strata. For example, the following syntax specifies proportions for combina-
tions of Region and Sex strata:

/INCLPROB MATRIX=region sex; ‘North’ ‘Male’ 0.1; ‘North’ ‘Female’ 0.15; ‘South’
‘Male’ 0.24; ‘South’ ‘Female’ 0.3

The variable list must contain all or a subset of stratification variables from
the same and previous stages and cluster variables from the previous stages.
An error occurs if the list contains variables that are not defined as strata or
cluster variables.

Each proportion specification must contain one category value per variable.
If multiple proportions are provided for the same strata or combination of

368 CSPLAN

strata only the last one is honored.

String and date category values must be quoted.

A semicolon must appear after the variable list and after each proportion
specification. The semicolon is not allowed after the last proportion specifi-
cation.

VARIABLE Specify the name of a single variable that contains inclusion probabilities.

CSPLAN 369

CSTABULATE

CSTABULATE is available in the Complex Samples option.

CSTABULATE

/PLAN FILE = file

[/JOINTPROB FILE = file]

/TABLES VARIABLES = varlist [BY varname]

[/CELLS [POPSIZE] [ROWPCT] [COLPCT] [TABLEPCT]]

[/STATISTICS [SE] [CV] [DEFF] [DEFFSQRT] [CIN [({95** })]] [COUNT]
 {value}

 --- options for one-way frequency tables ---

 [CUMULATIVE]

 --- options for two-way crosstabulations ---

 [EXPECTED] [RESID] [ASRESID]]

[/TEST --- options for one-way frequency tables ---

 [HOMOGENEITY]

 --- options for two-way crosstabulations ---

 [INDEPENDENCE]

 --- options for two-by-two crosstabulations ---

 [ODDSRATIO] [RELRISK] [RISKDIFF]]

[/SUBPOP TABLE = varname [BY varname [BY ...]] [DISPLAY = {LAYERED }]]
 {SEPARATE }

[/MISSING [SCOPE = {TABLE }] [CLASSMISSING = {EXCLUDE }]]
{LISTWISE} {INCLUDE }

** Default if subcommand omitted.

Overview

CSTABULATE displays one-way frequency tables or two-way crosstabulations, and associ-
ated standard errors, design effects, confidence intervals, and hypothesis tests, for samples
drawn by complex sampling methods. The procedure estimates variances by taking into
account the sample design used to select the sample, including equal probability and prob-
ability proportional to size (PPS) methods, and with replacement (WR) and without replace-
ment (WOR) sampling procedures. Optionally, CSTABULATE creates tables for
subpopulations.

Basic Specification

• The basic specification is a PLAN subcommand and the name of a complex sample anal-
ysis specification file, which may be generated by the CSPLAN procedure, and a TABLES
subcommand with at least one variable specified.

CSTABULATE 371

• This specification displays a population size estimate and its standard error for each cell
in the defined table, as well as for all marginals.

Operations

• CSTABULATE computes table statistics for sampling designs supported by the CSPLAN
and CSSELECT procedures.

• The input data set must contain the variables to be analyzed and variables related to the
sampling design.

• The complex sample analysis specification file provides an analysis plan based on the
sampling design.

• For each cell and marginal in the defined table, the default output is the population size
estimate and its standard error.

• WEIGHT and SPLIT FILE settings are ignored by the CSTABULATE procedure.

Syntax Rules

• The PLAN and TABLES subcommands are required. All other subcommands are optional.

• Each subcommand may be specified only once.

• Subcommands can be specified in any order.
• All subcommand names and keywords must be spelled in full.

• Equals signs (=) shown in the syntax chart are required.

• Empty subcommands are not allowed.

Example

CSTABULATE
 /PLAN FILE = ‘c:\survey\myfile.xml’
 /TABLES VARIABLES = a BY b.

• The CSTABULATE procedure will compute estimates based on the complex sample anal-
ysis specification given in ‘c:\survey\myfile.xml’.

• CSTABULATE will display the A-by-B crosstabulation, with each cell giving the popula-
tion size estimate and its standard error.

Example

CSTABULATE
 /PLAN FILE = ‘c:\survey\myfile.xml’
 /TABLES VARIABLES = a BY b
 /CELLS TABLEPCT
 /STATISTICS CIN.

372 CSTABULATE

• CSTABULATE will display the A-by-B crosstabulation, with each cell giving the popula-
tion size estimate for the cell expressed as a percentage of the population size estimate for
the table.

• In addition, a 95% confidence interval will be displayed within each cell.

Example

CSTABULATE
 /PLAN FILE = ‘c:\survey\myfile.xml’
 /JOINTPROB FILE = ‘c:\survey\myfile.sav’
 /TABLES VARIABLES = a b.

• The JPROBFILE subcommand specifies that joint inclusion probabilities are given in the
file ‘c:\survey\myfile.sav’. Joint inclusion probabilities are required for
UNEQUAL_WOR estimation.

• CSTABULATE will display one-way frequency tables for variables A and B. The popula-
tion size estimate and its standard error will be shown for each category of each variable.

PLAN Subcommand

The PLAN subcommand specifies the name of an XML file containing analysis design spec-
ifications. This file is written by the CSPLAN procedure.

The PLAN subcommand is required.

FILE Specifies the name of an external file.

JOINTPROB Subcommand

The JOINTPROB subcommand is used to specify the file containing the first stage joint inclu-
sion probabilities for UNEQUAL_WOR estimation. The CSSELECT procedure writes this
file in the same location and with the same name (but different extension) as the plan file.
When UNEQUAL_WOR estimation is specified, the CSTABULATE procedure will use the
default location and name of the file unless the JOINTPROB subcommand is used to override
them.

FILE Specifies the name of the joint inclusion probabilities file.

TABLES Subcommand

The TABLES subcommand specifies the tabulation variables.

• If a single variable list is specified, then a one-way frequency table is displayed for each
variable in the list.

• If the variable list is followed by the BY keyword and a variable, then two-way crosstab-
ulations are displayed for each pair of variables. Pairs of variables are defined by crossing
the variable list to the left of the BY keyword with the variable to the right. Each variable

CSTABULATE 373

on the left defines the row dimension in a two-way crosstabulation, and the variable to the
right defines the column dimension. For example, TABLES VARIABLES = A B BY C dis-
plays two tables: A by C and B by C.

• Numeric or string variables may be specified.

• Plan file and subpopulation variables may not be specified on the TABLES subcommand.

• Within the variable list, all specified variables must be unique. Also, if a variable is spec-
ified after the BY keyword, then it must be different from all variables preceding the BY
keyword.

VARIABLES Specifies the tabulation variables.

CELLS Subcommand

The CELLS subcommand requests various summary value estimates associated with the table
cells.

If the CELLS subcommand is not specified, then CSTABULATE displays the population size
estimate for each cell in the defined table(s), as well as for all marginals. However, if the
CELLS subcommand is specified, then only those summary values that are requested are
displayed.

POPSIZE The population size estimate for each cell and marginal in a table. This is de-
fault output if the CELLS subcommand is not specified.

ROWPCT Row percentages. The population size estimate in each cell in a row is ex-
pressed as a percentage of the population size estimate for that row. Avail-
able for two-way crosstabulations. For one-way frequency tables, specifying
this keyword gives the same output as the TABLEPCT keyword.

COLPCT Column percentages. The population size estimate in each cell in a column
is expressed as a percentage of the population size estimate for that column.
Available for two-way crosstabulations. For one-way frequency tables,
specifying this keyword gives the same output as the TABLEPCT keyword.

TABLEPCT Table percentages. The population size estimate in each cell of a table is ex-
pressed as a percentage of the population size estimate for that table.

STATISTICS Subcommand

The STATISTICS subcommand requests various statistics associated with the summary value
estimates in the table cells.

If the STATISTICS subcommand is not specified, then CSTABULATE displays the standard
error for each summary value estimate in the defined table(s) cells. However, if the STATIS-
TICS subcommand is specified, then only those statistics that are requested are displayed.

SE The standard error for each summary value estimate. This is default output
if the STATISTICS subcommand is not specified.

CV Coefficient of variation.

374 CSTABULATE

DEFF Design effects.

DEFFSQRT Square root of the design effects.

CIN [(value)] Confidence interval. If the CIN keyword is specified alone, then the default
95% confidence interval is computed. Optionally, CIN may be followed by
a value in parentheses, where 0 ≤�value < 100.

COUNT Unweighted counts. The number of valid observations in the data set for
each summary value estimate.

CUMULATIVE Cumulative summary value estimates. Available for one-way frequency ta-
bles only.

EXPECTED Expected summary value estimates. The summary value estimate in each
cell if the two variables in a crosstabulation are statistically independent.
Available for two-way crosstabulations only, and displayed only if the TA-
BLEPCT keyword is specified on the CELLS subcommand.

RESID Residuals. The difference between the observed and expected summary val-
ue estimates in each cell. Available for two-way crosstabulations only, and
displayed only if the TABLEPCT keyword is specified on the CELLS subcom-
mand.

ASRESID Adjusted Pearson residuals. Available for two-way crosstabulations only,
and displayed only if the TABLEPCT keyword is specified on the CELLS sub-
command.

TEST Subcommand

The TEST subcommand requests statistics or tests for summarizing the entire table.

Furthermore, if subpopulations are defined on the SUBPOP subcommand using only first-
stage stratification variables (or a subset of them), then tests are performed for each subpop-
ulation also.

HOMOGENEITY Test of homogeneous proportions. Available for one-way frequency tables
only.

INDEPENDENCE Test of independence. Available for two-way crosstabulations only.

ODDSRATIO Odds ratio. Available for two-by-two crosstabulations only.

RELRISK Relative risk. Available for two-by-two crosstabulations only.

RISKDIFF Risk difference. Available for two-by-two crosstabulations only.

SUBPOP Subcommand

The SUBPOP subcommand specifies subpopulations for which analyses are to be performed.

• The set of subpopulations is defined by specifying a single categorical variable, or two or
more categorical variables, separated by the BY keyword, whose values are crossed.

CSTABULATE 375

• For example, /SUBPOP TABLE = A defines subpopulations based on the levels of variable
A.

• For example, /SUBPOP TABLE = A BY B defines subpopulations based on crossing the lev-
els of variables A and B.

• A maximum of 16 variables may be specified.

• Numeric or string variables may be specified.
• All specified variables must be unique.

• Stratification or cluster variables may be specified, but no other plan file variables are al-
lowed on the SUBPOP subcommand.

• Tabulation variables may not be specified on the SUBPOP subcommand.

• The BY keyword is used to separate variables.

The DISPLAY keyword specifies the layout of results for subpopulations.

LAYERED Results for all subpopulations are displayed in the same table. This is the de-
fault.

SEPARATE Results for different subpopulations are displayed in different tables.

MISSING Subcommand

The MISSING subcommand specifies how missing values are handled.

• All design variables must have valid data. Cases with invalid data for any design variable
are deleted from the analysis.

The SCOPE keyword specifies which cases are used in the analyses. This specification is
applied to tabulation variables but not design variables.

TABLE Each table is based on all valid data for the tabulation variable(s) used in cre-
ating the table. Tables for different variables may be based on different sam-
ple sizes. This is the default.

LISTWISE Only cases with valid data for all tabulation variables are used in creating the
tables. Tables for different variables are always based on the same sample
size.

The CLASSMISSING keyword specifies whether user-missing values are treated as valid.
This specification is applied to tabulation variables and categorical design variables (i.e.,
strata, cluster, and subpopulation variables).

EXCLUDE Exclude user-missing values. This is the default.

INCLUDE Include user-missing values. Treat user-missing values as valid data.

376

CTABLES

CTABLES is available in the Tables option.

Note: Square brackets used in the CTABLES syntax chart are required parts of the syntax and are not used
to indicate optional elements. All subcommands except /TABLE are optional.

CTABLES

 /FORMAT MINCOLWIDTH={DEFAULT} MAXCOLWIDTH={DEFAULT}
 {value } {value }

 UNITS={POINTS} EMPTY= {ZERO } MISSING= {’.’ }
 {INCHES} {BLANK } {’chars’}
 {CM } {’chars’}

 /VLABELS VARIABLES= varlist

 DISPLAY= {DEFAULT}
 {NAME }
 {LABEL }
 {BOTH }
 {NONE }

 /MRSETS COUNTDUPLICATES= {NO }
 {YES}

 /SMISSING {VARIABLE}
 {LISTWISE}

 /TABLE rows BY columns BY layers

 /SLABELS POSITION= {COLUMN} VISIBLE= {YES}
 {ROW } {NO }
 {LAYER }

 /CLABELS {AUTO }
 {ROWLABELS= {OPPOSITE} }
 {LAYER }
 {COLLABELS= {OPPOSITE} }
 {LAYER }

 /CATEGORIES VARIABLES= varlist

 { [value, value, value...] }
 { ORDER= {A} KEY= {VALUE } MISSING= {EXCLUDE} }
 {D} {LABEL } {INCLUDE}
 {summary(varname)}

 TOTAL= {NO } LABEL= "label" POSITION= {AFTER } EMPTY= {INCLUDE}
 {YES } {BEFORE} {EXCLUDE}

 Explicit value lists can include SUBTOTAL=’label’, MISSING, and OTHERNM.

 /TITLES CAPTION= ['text' 'text'...]
 CORNER= ['text' 'text'...]
 TITLE= ['text' 'text'...]
 Text can contain the symbols)DATE)TIME)TABLE

 /SIGTEST TYPE= CHISQUARE ALPHA= {0.05 }
 {significance level}

 /COMPARETEST TYPE= {PROP} ALPHA= {0.05 }
 {MEAN} {significance level}

CTABLES 377

 ADJUST= {BONFERRONI} ORIGIN=COLUMN
 {NONE }

Row, column, and layer elements each have the general form

 varname {[C]} [summary ‘label’ format...] {+} varname ...
 {[S]} {>}

When nesting (>) and concatenation (+) are combined, as in a + b > c, nesting occurs before
concatenation; parentheses can be used to change precedence, as in (a + b) > c.

Summary functions available for all variables: COUNT ROWPCT.COUNT COLPCT.COUNT
TABLEPCT.COUNT SUBTABLEPCT.COUNT LAYERPCT.COUNT LAYERROWPCT.COUNT
LAYERCOLPCT.COUNT ROWPCT.VALIDN COLPCT.VALIDN TABLEPCT.VALIDN
SUBTABLEPCT.VALIDN LAYERPCT.VALIDN LAYERROWPCT.VALIDN LAYERCOLPCT.VALIDN
ROWPCT.TOTALN COLPCT.TOTALN TABLEPCT.TOTALN SUBTABLEPCT.TOTALN LAYERPCT.TOTALN
LAYERROWPCT.TOTALN LAYERCOLPCT.TOTALN

Summary functions available for scale variables and for totals, and subtotals of numeric variables: MAXIMUM
MEAN MEDIAN MINIMUM MISSING MODE PTILE RANGE SEMEAN STDDEV SUM TOTALN
VALIDN VARIANCE ROWPCT.SUM COLPCT.SUM TABLEPCT.SUM SUBTABLEPCT.SUM
LAYERPCT.SUM LAYERROWPCT.SUM LAYERCOLPCT.SUM

Summary functions available for multiple response variables and their totals: RESPONSES
ROWPCT.RESPONSES COLPCT.RESPONSES TABLEPCT.RESPONSES SUBTABLEPCT.RESPONSES
LAYERPCT.RESPONSES LAYERROWPCT.RESPONSES LAYERCOLPCT.RESPONSES
ROWPCT.RESPONSES.COUNT COLPCT.RESPONSES.COUNT TABLEPCT.RESPONSES.COUNT
SUBTABLEPCT.RESPONSES.COUNT LAYERPCT.RESPONSES.COUNT LAYERROWPCT.RESPONSES.COUNT
LAYERCOLPCT.RESPONSES.COUNT ROWPCT.COUNT.RESPONSES COLPCT.COUNT.RESPONSES
TABLEPCT.COUNT.RESPONSES SUBTABLEPCT.COUNT.RESPONSES LAYERPCT.COUNT.RESPONSES
LAYERROWPCT. COUNT.RESPONSES LAYERCOLPCT.COUNT.RESPONSES

For unweighted summaries, prefix U to a function name, as in UCOUNT.

Formats for summaries: COMMAw.d DOLLARw.d Fw.d NEGPARENw.d NEQUALw.d PARENw.d
PCTw.d PCTPARENw.d DOTw.d CCA...CCEw.d Nw.d Ew.d and all DATE formats

Examples
CTABLES /TABLE POLVIEWS [COLPCT] BY AGECAT.

CTABLES /TABLE $MLTNEWS [COUNT COLPCT] BY SEX
 /SLABELS VISIBLE=NO
 /CATEGORIES VARIABLES=SEX TOTAL=YES.

CTABLES /TABLE (CONFINAN + CONBUS + CONBUS + CONEDUC
 + CONPRESS + CONMEDIC)[COUNT ROWPCT]
 /CLABELS ROWLABELS=OPPOSITE.

Overview

The Custom Tables procedure produces tables in one, two, or three dimensions and provides
a great deal of flexibility for organizing and displaying the contents.

• In each dimension (row, column, and layer), you can stack multiple variables to concate-
nate tables and nest variables to create subtables. See the TABLE subcommand.

• You can let Custom Tables determine summary statistics according to the measurement
level in the dictionary, or you can assign one or more summaries to specific variables and
override the measurement level without altering the dictionary. See the TABLE
subcommand.

378 CTABLES

• You can create multiple response sets with the MRSETS command and use them like
ordinary categorical variables in a table expression. You can control the percentage base
by choosing an appropriate summary function, and you can control with the MRSETS sub-
command whether duplicate responses from a single respondent are counted.

• You can assign totals to categorical variables at different nesting levels to create subtable
and table totals, and you can assign subtotals across subsets of the values of a variable.
See the CATEGORIES subcommand.

• You can determine on a per-variable basis which categories to display in the table, includ-
ing whether to display missing values and empty categories for which variable labels exist.
You can also sort categories by name, label, or the value of a summary function. See the
CATEGORIES subcommand.

• You can specify whether to show or hide summary and category labels and where to
position the labels. For variable labels, you can specify whether to show labels, names,
both, or neither. See the SLABELS, CLABELS, and VLABELS subcommands.

• You can request chi-square tests and pairwise comparisons of column proportions and
means. See the SIGTEST and COMPARETEST subcommands.

• You can assign custom titles and captions (see the TITLES subcommand) and control what
displays for empty cells and those for which a summary function cannot be computed. See
the FORMAT subcommand.

• CTABLES ignores SPLIT FILE requests if layered splits (compare groups in the graphical
user interface) are requested. You can compare groups by using the split variables at the
highest nesting level for row variables. See the TABLE subcommand for nesting variables.

Syntax Conventions

• The basic specification is a TABLE subcommand with at least one variable in one
dimension. Multiple TABLE subcommands can be included in one CTABLES command.

• The global subcommands FORMAT, VLABELS, MRSETS, and SMISSING must precede the
first TABLE subcommand and can be named in any order.

• The local subcommands SLABELS, CLABELS, CATEGORIES, TITLES, SIGTEST, and
COMPARETEST follow the TABLE subcommand in any order and refer to the immediately
preceding table expression.

• In general, if subcommands are repeated, their specifications are merged. The last value
of each specified attribute is honored.

• Equals signs shown in the syntax charts are required.

• Square brackets shown in the syntax charts are required.

• All keywords except summary function names, attribute values, and explicit category list
keywords can be truncated to as few as three characters. Function names must be spelled
in full.

• The slash before all subcommands, including the first, is required.

CTABLES 379

Example

CTABLES /TABLE POLVIEWS [COLPCT] BY AGECAT.

• POLVIEWS defines the rows and AGECAT defines the columns. Column percentages are
requested, overriding the default COUNT function.

Example

CTABLES /TABLE $MLTNEWS [COUNT COLPCT] BY SEX
 /SLABELS VISIBLE=NO
 /CATEGORIES VARIABLES=SEX TOTAL=YES.

• $MLTNEWS is a multiple response set.

• The COLPCT function uses the number of respondents as the percentage base, so each cell
shows the percentage of males or females who gave each response and the sum of per-
centage for each column is greater than 100.

• Summary labels are hidden.

• The CATEGORIES subcommand creates a total for both sexes.

4.5% 2.5% 2.1% 2.4% 1.3% 2.2%

18.8% 15.7% 14.6% 11.3% 10.5% 9.4%

13.5% 14.2% 13.2% 15.4% 10.5% 10.5%

36.8% 37.1% 32.7% 37.2% 39.3% 38.8%

14.3% 14.9% 19.3% 15.0% 18.4% 13.4%

11.7% 13.0% 14.6% 15.4% 16.4% 21.2%

.4% 2.7% 3.5% 3.3% 3.6% 4.5%

Extremely liberal

Liberal

Slightly liberal

Moderate

Slightly conservative

Conservative

Extremely conservative

Think of self as
liberal or
conservative

Column %

Less than
25

Column %

25 to 34

Column %

35 to 44

Column %

45 to 54

Column %

55 to 64

Column %

65 or older

Age category

359 40.1% 508 42.9% 867 41.7%

233 26.0% 318 26.8% 551 26.5%

451 50.3% 626 52.8% 1077 51.8%

121 13.5% 173 14.6% 294 14.1%

375 41.9% 430 36.3% 805 38.7%

Get news from internet

Get news from radio

Get news from television

Get news from news
magazines

Get news from newspapers

News
sources

Male Female Total

Gender

380 CTABLES

Example

CTABLES /TABLE (CONFINAN + CONBUS + CONBUS + CONEDUC
 + CONPRESS + CONMEDIC)[COUNT ROWPCT]
 /CLABELS ROWLABELS=OPPOSITE.

• The six confidence variables all have the same categories with the same value labels for
each.

• The CLABELS subcommand moves the category labels to the columns.

TABLE Subcommand

The TABLE subcommand specifies the structure of the table, including the variables and
summary functions that define each dimension. It has the general form

/TABLE rows BY columns BY layers

The minimum specification for a row, column, or layer is a variable name. You can specify
one or more dimensions.

Variable Types

The variables used in a table expression can be category variables, scale variables, or
multiple response sets. Multiple response sets are defined by the MRSETS command in the
SPSS Base and always begin with a $. Custom Tables uses the measurement level in the
dictionary for the active data file to identify category and scale variables. You can override
the default variable type for numeric variables by placing [C] or [S] after the variable name.
Thus, to treat the category variable HAPPY as a scale variable and obtain a mean, you would
specify

/TABLE HAPPY [S].

Category Variables and Multiple Response Sets

Category variables define one cell per value. See the CATEGORIES subcommand for
ways of controlling how categories are displayed. Multiple response sets also define one
cell per value.

490 26.3% 1068 57.3% 306 16.4%

500 27.5% 1078 59.2% 243 13.3%

500 27.5% 1078 59.2% 243 13.3%

511 27.2% 1055 56.1% 315 16.7%

176 9.5% 878 47.2% 808 43.4%

844 45.0% 864 46.1% 167 8.9%

Confidence in banks &
financial institutions

Confidence in major
companies

Confidence in major
companies

Confidence in education

Confidence in press

Confidence in medicine

Count Row %

A great deal

Count Row %

Only some

Count Row %

Hardly any

CTABLES 381

Example
CTABLES /TABLE HAPPY.

• The counts for HAPPY are in the rows.

Example
CTABLES /TABLE BY HAPPY.

• The counts for HAPPY are in the columns.

Example
CTABLES /TABLE BY BY HAPPY

• The counts for HAPPY are in layers.

Stacking and Nesting

Stacking (or concatenating) variables creates multiple logical tables within a single table
structure.

Example
CTABLES /TABLE HAPPY + HAPMAR BY CHILDCAT.

891

1575

340

Very happy

Pretty happy

Not too happy

General
happiness

Count

891 1575 340
Count

Very
happy

Count

Pretty
happy

Count

Not too
happy

General happiness

General happiness Very happy

891
Count

197 412 221 59

499 662 314 97

98 136 79 27

111 462 232 49

51 238 133 22

5 18 10 4

Very happy

Pretty happy

Not too happy

General
happiness

Very happy

Pretty happy

Not too happy

Happiness
of marriage

Count

None

Count

1-2

Count

3-4

Count

5 or more

Number of children (grouped categories)

382 CTABLES

• The output contains two tables: one for general happiness by number of children and one
for happiness in marriage by number of children. Except for missing values, all of the
cases in the data appear in both tables.

Nesting variables creates hierarchical tables.

Example
CTABLES /TABLE SEX > HAPMAR BY CHILDCAT.

• The output contains one table with a subtable for each value of SEX. The same subtables
would result from the table expression HAPMAR BY CHILDCAT BY SEX, but the subtables
would appear in separate layers.

Stacking and nesting can be combined. When they are, by default, nesting takes precedence
over stacking. You can use parentheses to alter the order of operations.

Example
CTABLES /TABLE (HAPPY + HAPMAR) > SEX.

• The output contains two tables. Without the parentheses, the first table, for general hap-
piness, would not have separate rows for male and female.

48 216 102 30

25 110 58 11

3 7 4 1

63 246 130 19

26 128 75 11

2 11 6 3

Very happy

Pretty happy

Not too happy

Happiness
of marriage

Male

Very happy

Pretty happy

Not too happy

Happiness
of marriage

Female

Gender
Count

None

Count

1-2

Count

3-4

Count

5 or more

Number of children (grouped categories)

373

518

712

863

133

207

396

459

205

240

15

22

Male

Female

GenderVery happy

Male

Female

GenderPretty happy

Male

Female

GenderNot too
happy

General
happiness

Male

Female

GenderVery happy

Male

Female

GenderPretty happy

Male

Female

GenderNot too
happy

Happiness
of marriage

Count

CTABLES 383

Scale Variables

Scale variables, such as age in years or population of towns, do not define multiple cells
within a table. The table expression /TABLE AGE creates a table with one cell containing the
mean of AGE across all cases in the data. You can use nesting and/or dimensions to display
summary statistics for scale variables within categories. The nature of scale variables
prevents their being arranged hierarchically. Therefore:

• A scale variable cannot be nested under another scale variable.

• Scale variables can be used in only one dimension.

Example
CTABLES /TABLE AGE > HAPPY BY SEX.

Specifying Summaries

You can specify one or more summary functions for variables in any one dimension. For
category variables, summaries can be specified only for the variables at the lowest nesting
level. Thus, in the table expression

/TABLE SEX > (HAPPY + HAPMAR) BY AGECAT

you can assign summaries to HAPPY and HAPMAR or to AGECAT, but not to both and not to
SEX.

If a scale variable appears in a dimension, that becomes the statistics dimension, and all
statistics must be specified for that dimension. A scale variable need not be at the lowest level
of nesting. Thus, the following is a valid specification:

CTABLES /TABLE AGE [MINIMUM, MAXIMUM, MEAN] > SEX > HAPPY.

A multiple response variable also need not be at the lowest level of nesting. The following is
a valid specification:

CTABLES /TABLE $MLTCARS [COUNT, RESPONSES] > SEX.

However, if two multiple response variables are nested, as in $MULTCARS > $MULTNEWS,
summaries can be requested only for the one at the innermost nesting level (in this case,
$MULTNEWS).

The general form for a summary specification is

[summary ’label’ format, ..., summary ’label’ format]

• The specification follows the variable name in the table expression. You can apply a sum-
mary specification to multiple variables by enclosing them in parentheses. The following

47 47

44 45

43 47

Very happy

Pretty happy

Not too happy

General
happiness

Age of
respondent

Mean

Male

Mean

Female

Gender

384 CTABLES

specifications are equivalent:

/TABLE SEX [COUNT] + HAPPY [COUNT, COLPCT]
/TABLE (SEX + HAPPY [COLPCT])[COUNT]

• The brackets are required even if only one summary is specified.

• Commas are optional.

• Label and format are both optional; defaults are used if they are not specified.

• If totals or subtotals are defined for a variable (on the CATEGORIES subcommand), by
default, the same functions specified for the variable are used for the totals. You can use
the keyword TOTALS within the summary specification to specify different summary
functions for the totals and subtotals. The specification then has the form
[summary ‘label’ format ... TOTALS [summary ‘label’ format...]].
You must still specify TOTAL=YES on the CATEGORIES subcommand to see the totals.

• Summaries that are available for category variables are also available for scale variables
and multiple response sets. Functions specific to scale variables and to multiple response
sets are also available.

• If case weighting is in effect, summaries are calculated taking into account the current
WEIGHT value. To obtain unweighted summaries, prefix a U to the function name, as in
UCOUNT. Unweighted functions are not available where weighting would not apply, as
in the MINIMUM and MAXIMUM functions.

Example
CTABLES /TABLE SEX > HAPMAR [COLPCT] BY CHILDCAT.

Example
CTABLES /TABLE AGECAT > TVHOURS [MEAN F5.2,
 STDDEV 'Standard Deviation' F5.2, PTILE 90 '90th Percentile'].

63.2% 64.9% 62.2% 71.4%

32.9% 33.0% 35.4% 26.2%

3.9% 2.1% 2.4% 2.4%

69.2% 63.9% 61.6% 57.6%

28.6% 33.2% 35.5% 33.3%

2.2% 2.9% 2.8% 9.1%

Very happy

Pretty happy

Not too happy

Happiness
of marriage

Male

Very happy

Pretty happy

Not too happy

Happiness
of marriage

Female

Gender
Column %

None

Column %

1-2

Column %

3-4

Column %

5 or more

Number of children (grouped categories)

2.85 2.03 5

2.78 2.37 5

2.56 2.11 5

2.58 1.97 5

3.02 2.22 6

3.58 2.50 6

Hours per day watching TVLess than 25

Hours per day watching TV25 to 34

Hours per day watching TV35 to 44

Hours per day watching TV45 to 54

Hours per day watching TV55 to 64

Hours per day watching TV65 or older

Age
category

Mean
Standard
Deviation 90th Percentile

CTABLES 385

• Each summary function for the row variable appears by default in a column.

• Labels for standard deviation and the 90th percentile override the defaults.

• Because TVHOURS is recorded in whole hours and has an integer print format, the default
general print formats for mean and standard deviation would also be integer, so overrides
are specified.

Table 1 Summary functions: all variables

Function Description Default Label* Default
Format

COUNT Number of cases in each
category. This is the default for
categorical and multiple
response variables.

Count Count

ROWPCT.COUNT Row percentage based on cell
counts. Computed within
subtable.

Row % Percent

COLPCT.COUNT Column percentage based on
cell counts. Computed within
subtable.

Column % Percent

TABLEPCT.COUNT Table percentage based on
cell counts.

Table % Percent

SUBTABLEPCT.COUNT Subtable percentage based on
cell counts.

Subtable % Percent

LAYERPCT.COUNT Layer percentage based on cell
counts. Same as table
percentage if no layers are
defined.

Layer % Percent

LAYERROWPCT.COUNT Row percentage based on cell
counts. Percentages sum to
100% across the entire row
(that is, across subtables).

Layer
Row %

Percent

LAYERCOLPCT.COUNT Column percentage based on
cell counts. Percentages sum
to 100% across the entire
column (that is, across
subtables).

Layer
Column %

Percent

ROWPCT.VALIDN Row percentage based on
valid count.

Row
Valid N %

Percent

COLPCT.VALIDN Column percentage based on
valid count.

Column
Valid N %

Percent

TABLEPCT.VALIDN Table percentage based on
valid count.

Table
Valid N %

Percent

SUBTABLEPCT.VALIDN Subtable percentage based on
valid count.

Subtable
Valid N %

Percent

386 CTABLES

The .COUNT suffix can be omitted from percentages based on cell counts. Thus, ROWPCT is
equivalent to ROWPCT.COUNT.

Function Description Default Label Default
Format

LAYERPCT.VALIDN Layer percentage based on
valid count.

Layer
Valid N %

Percent

LAYERROWPCT. VALIDN Row percentage based on valid
count. Percentages sum to
100% across the entire row.

Layer
Row
Valid N %

Percent

LAYERCOLPCT. VALIDN Column percentage based on
valid count. Percentages sum
to 100% across the entire
column.

Layer
Column
Valid N %

Percent

ROWPCT.TOTALN Row percentage based on total
count, including user- and
system-missing values.

Row
Total N %

Percent

COLPCT.TOTALN Column percentage based on
total count, including user- and
system-missing values.

Column
Total N %

Percent

TABLEPCT.TOTALN Table percentage based on
total count, including user- and
system-missing values.

Table
Total N %

Percent

SUBTABLEPCT.TOTALN Subtable percentage based on
total count, including user- and
system-missing values.

Subtable
Total N %

Percent

LAYERPCT.TOTALN Layer percentage based on
total count, including user- and
system-missing values.

Layer
Total N %

Percent

LAYERROWPCT. TOTALN Row percentage based on total
count, including user- and
system-missing values.
Percentages sum to 100%
across the entire row.

Layer
Row
Total N %

Percent

LAYERCOLPCT. TOTALN Column percentage based on
total count, including user- and
system-missing values.
Percentages sum to 100%
across the entire column.

Layer
Column
Total N %

Percent

* This is the default on a U.S.-English system.

Table 1 Summary functions: all variables (Continued)

CTABLES 387

Table 2 Summary functions: scale variables, totals, and subtotals

Function Description Default Label Default
Format

MAXIMUM Largest value. Maximum General

MEAN Arithmetic mean. The default for
scale variables.

Mean General

MEDIAN 50th percentile. Median General

MINIMUM Smallest value. Minimum General

MISSING Count of missing values
(both user- and system-missing).

Missing General

MODE Most frequent value. If there is a tie,
the smallest value is shown.

Mode General

PTILE Percentile. Takes a numeric value
between 0 and 100 as a required
parameter.
PTILE is computed the same way as
APTILE in SPSS Tables. Note that in
SPSS Tables, the default percentile
method was HPTILE.

Percentile
####.##

General

RANGE Difference between maximum and
minimum values.

Range General

SEMEAN Standard error of the mean. Std Error of
Mean

General

STDDEV Standard deviation. Std Deviation General

SUM Sum of values. Sum General

TOTALN Count of nonmissing, user-missing,
and system-missing values. The
count excludes valid values hidden
via the CATEGORIES subcommand.

Total N Count

VALIDN Count of nonmissing values. Valid N Count

VARIANCE Variance. Variance General

ROWPCT.SUM Row percentage based on sums. Row
Sum %

Percent

COLPCT.SUM Column percentage based on sums. Column
Sum %

Percent

TABLEPCT.SUM Table percentage based on sums. Table
Sum %

Percent

SUBTABLEPCT.SUM Subtable percentage based on sums. Subtable
Sum %

Percent

LAYERPCT.SUM Layer percentage based on sums. Layer
Sum %

Percent

388 CTABLES

Function Description Default Label Default
Format

LAYERROWPCT. SUM Row percentage based on sums.
Percentages sum to 100% across the
entire row.

Layer
Row
Sum %

Percent

LAYERCOLPCT. SUM Column percentage based on sums.
Percentages sum to 100% across the
entire column.

Layer
Column
Sum %

Percent

Table 3 Summary functions: multiple response sets

Function Description Default Label Default
Format

RESPONSES Count of responses. Responses Count

ROWPCT.RESPONSES Row percentage based on
responses. Total number of
responses is the denominator.

Row
Responses %

Percent

COLPCT.RESPONSES Column percentage based on
responses. Total number of
responses is the denominator.

Column
Responses %

Percent

TABLEPCT.RESPONSES Table percentage based on
responses. Total number of
responses is the denominator.

Table
Responses %

Percent

SUBTABLEPCT.RESPONSES Subtable percentage based on
responses. Total number of
responses is the denominator.

Subtable
Responses %

Percent

LAYERPCT.RESPONSES Layer percentage based on
responses. Total number of
responses is the denominator.

Layer
Responses %

Percent

LAYERROWPCT.RESPONSES Row percentage based on
responses. Total number of
responses is the denominator.
Percentages sum to 100% across
the entire row (that is, across
subtables).

Layer
Row
Responses %

Percent

LAYERCOLPCT. RESPONSES Column percentage based on
responses. Total number of
responses is the denominator.
Percentages sum to 100% across
the entire column (that is, across
subtables).

Layer
Column
Responses %

Percent

Table 2 Summary functions: scale variables, totals, and subtotals (Continued)

CTABLES 389

Function Description Default Label Default
Format

ROWPCT.RESPONSES.COUNT Row percentage: responses are
the numerator and total count is
the denominator.

Row
Responses %
(Base: Count)

Percent

COLPCT.RESPONSES.COUNT Column percentage: responses
are the numerator and total count
is the denominator.

Column
Responses %
(Base: Count)

Percent

TABLEPCT.RESPONSES. COUNT Table percentage: responses are
the numerator and total count is
the denominator.

Table
Responses %
(Base: Count)

Percent

SUBTABLEPCT.RESPONSES.
COUNT

Subtable percentage: responses
are the numerator and total count
is the denominator.

Subtable
Responses %
(Base: Count)

Percent

LAYERPCT. RESPONSES.COUNT Layer percentage: responses are
the numerator and total count is
the denominator.

Layer
Responses %
(Base: Count)

Percent

LAYERROWPCT.RESPONSES.
COUNT

Row percentage: responses are
the numerator and total count is
the denominator.
Percentages sum to 100% across
the entire row (that is, across
subtables).

Layer
Row
Responses %
(Base: Count)

Percent

LAYERCOLPCT.RESPONSES.
COUNT

Column percentage: responses
are the numerator and total count
is the denominator.
Percentages sum to 100% across
the entire column (that is, across
subtables).

Layer
Column
Responses %
(Base: Count)

Percent

ROWPCT.COUNT.RESPONSES Row percentage: count is the
numerator and total responses are
the denominator.

Row
Count %
(Base: Responses)

Percent

COLPCT.COUNT.RESPONSES Column percentage: count is the
numerator and total responses are
the denominator.

Column
Count %
(Base: Responses)

Percent

TABLEPCT.COUNT. RESPONSES Table percentage: count is the
numerator and total responses are
the denominator.

Table
Count %
(Base: Responses)

Percent

SUBTABLEPCT.COUNT.
RESPONSES

Subtable percentage: count is the
numerator and total responses are
the denominator.

Subtable
Count %
(Base: Responses)

Percent

LAYERPCT.COUNT. RESPONSES Layer percentage: count is the
numerator and total responses are
the denominator.

Layer
Count %
(Base: Responses)

Percent

Table 3 Summary functions: multiple response sets (Continued)

390 CTABLES

Formats for Summaries

A default format is assigned to each summary function:

Count The value is expressed in F (standard numeric) format with 0 decimal places. If you
have fractional weights and want a count that reflects those weights, use F format
with appropriate decimal places.

Percent The value is expressed with one decimal place and a percent symbol.

General The value is expressed in the variable’s print format.

These default formats are internal to CTABLES and cannot be used in TABLE expressions. To
override the default formats, use any of the print formats available in the SPSS Base except
Z, PBHEX, and HEX, or the additional formats described in Table 4.

Function Description Default Label Default
Format

LAYERROWPCT.COUNT.
RESPONSES

Row percentage: count is the
numerator and total responses are
the denominator.
Percentages sum to 100% across
the entire row (that is, across
subtables).

Layer
Row
Count %
(Base: Responses)

Percent

LAYERCOLPCT.COUNT.
RESPONSES

Row percentage: count is the
numerator and total responses are
the denominator.
Percentages sum to 100% across
the entire column (that is, across
subtables).

Layer
Column
Count %
(Base: Responses)

Percent

Table 4 Additional formats for summaries

Format Description Example

NEGPARENw.d Parentheses appear around
negative numbers.

–1234.567 formatted as
NEGPAREN9.2 yields (1234.57).

NEQUALw.d “N=” precedes the number. 1234.567 formatted as
NEQUAL9.2 yields N=1234.57.

PARENw.d The number is parenthesized. 1234.567 formatted as
PAREN8.2 yields (1234.57).

PCTPARENw.d A percent symbol follows the
value, which is parenthesized.

1234.567 formatted as
PCTPAREN10.2 yields (1234.57%).

Table 3 Summary functions: multiple response sets (Continued)

CTABLES 391

Missing Values in Summaries

Table 5 presents the rules for including cases in a table for VALIDN, COUNT, and TOTALN
functions when values are included or excluded explicitly through an explicit category list or
implicitly through inclusion or exclusion of user-missing values.

SLABELS Subcommand

The SLABELS subcommand controls the position of summary statistics in the table and
whether summary labels are shown.

/SLABELS POSITION= {COLUMN} VISIBLE= {YES}
 {ROW } {NO }
 {LAYER }

By default, summaries appear in the columns and labels are visible.

Table 5 Inclusion/exclusion of values in summaries

Variable and Value Type VALIDN COUNT TOTALN

Categorical Variable: shown valid value

Multiple Dichotomy Set: at least one “true” value

Multiple Category Set: at least one shown
valid value

Scale Variable: valid value

Include Include Include

Categorical Variable: included user-missing value

Multiple Category Set: all values are included
user-missing

Scale Variable: user-missing or system-missing

Exclude Include Include

Categorical Variable: excluded user-missing or
system-missing

Multiple Dichotomy Set: all values are “false”

Multiple Category Set: all values are excluded
user-missing, system-missing, or excluded valid,
but at least one value is not excluded valid

Exclude Exclude Include

Categorical Variable: excluded valid value

Multiple Dichotomy Set: all values are excluded
valid values

Exclude Exclude Exclude

392 CTABLES

Example: Summary Label Positioning
CTABLES /TABLE NEWS [COUNT COLPCT].

CTABLES /TABLE NEWS [COUNT COLPCT]
 /SLABELS POSITION=ROW VISIBLE=NO.

CLABELS Subcommand

The CLABELS subcommand controls the location of category labels.

/CLABELS {AUTO }
 {ROWLABELS= {OPPOSITE} }
 {LAYER }
 {COLLABELS= {OPPOSITE} }
 {LAYER }

By default, category labels are nested under the variables to which they belong. Category
labels for row and column variables can be moved to the opposite dimension or to the layers.
If labels exist in both dimensions, only one dimension, row labels or column labels, can be
moved; they cannot be swapped.

805 43.0%

420 22.5%

294 15.7%

202 10.8%

149 8.0%

Every day

Few times a week

Once a week

Less than once a week

Never

How often does
respondent read
newspaper

Count Column %

805

43.0%

420

22.5%

294

15.7%

202

10.8%

149

8.0%

Every day

Few times a week

Once a week

Less than once a week

Never

How often does
respondent read
newspaper

CTABLES 393

Example
CTABLES
 /TABLE (CONFINAN + CONEDUC + CONBUS + CONMEDIC + CONPRESS + CONTV)

• Six variables are stacked in the rows, and their category labels are stacked under them.

CTABLES
 /TABLE (CONFINAN + CONEDUC + CONBUS + CONMEDIC + CONPRESS + CONTV)
 /SLABELS VISIBLE=NO /CLABELS ROWLABELS=OPPOSITE

• The category labels are moved to the columns. Where variables are stacked, as in this
example, the value labels for all of them must be exactly the same to allow for this format.
Additionally, all must have the same category specifications, and data-dependent sorting
is not allowed.

490

1068

306

511

1055

315

500

1078

243

844

864

167

176

878

808

196

936

744

A great deal

Only some

Hardly any

Confidence in banks
& financial institutions

A great deal

Only some

Hardly any

Confidence in
education

A great deal

Only some

Hardly any

Confidence in major
companies

A great deal

Only some

Hardly any

Confidence in
medicine

A great deal

Only some

Hardly any

Confidence in press

A great deal

Only some

Hardly any

Confidence in
television

Count

490 1068 306

511 1055 315

500 1078 243

844 864 167

176 878 808

196 936 744

Confidence in banks &
financial institutions

Confidence in education

Confidence in major
companies

Confidence in medicine

Confidence in press

Confidence in television

A great deal Only some Hardly any

394 CTABLES

 CATEGORIES Subcommand

The CATEGORIES subcommand controls the order of categories in the rows and columns of
the table, the showing and hiding of ordinary and user-missing values, and the computation
of totals and subtotals.

/CATEGORIES VARIABLES= varlist

 { [value, value, value...] }
 { ORDER= {A} KEY= {VALUE } MISSING= {EXCLUDE} }
 {D} {LABEL } {INCLUDE}
 {summary(varname)}

 TOTAL= {NO } LABEL= "label" POSITION= {AFTER } EMPTY= {INCLUDE}
 {YES } {BEFORE} {EXCLUDE}

The minimum specification is a variable list and one of the following: a category specifica-
tion, TOTAL specification, or EMPTY specification. The variable list can be a list of variables
or the keyword ALL, which refers to all category variables in the table expression. ALL cannot
be used with the explicit category list.

Explicit Category Specification

The explicit category specification is a bracketed list of data values or value ranges in the
order in which they are to be displayed in the table. Values not included in the list are excluded
from the table. This form allows for subtotals and showing or hiding of specific values (both
ordinary and user-missing).

• The list can include both ordinary and user-missing values but not the system-missing
value (.).

• Values are optionally separated by commas.

• String and date values must be quoted. Date values must be consistent with the variable’s
print format.

• The LO, THRU, and HI keywords can be used in the value list to refer to a range of
categories. LO and HI can be used only as part of a range specification.

• The MISSING keyword can be used to refer to all user-missing values.
• The OTHERNM keyword can be used to refer to all nonmissing values not explicitly

named in the list. It can go anywhere within the list. The values to which it refers appear
in ascending order.

• If a value is repeated in the list, the last instance is honored. Thus, for a variable RATING
with integer values 1 through 5, the following specifications are equal:

/CATEGORIES VARIABLES = RATING [1,2,4,5,3]
/CATEGORIES VARIABLES = RATING [1 THRU 5,3]
/CATEGORIES VARIABLES = RATING [OTHERNM,3]

• For a multiple dichotomy set, you can order the variables in the set by using the names of
the variables in the set. The variable names are not enclosed in quotes.

CTABLES 395

• The SUBTOTAL keyword is used within a category list to request subtotals for a variable.
The position of a subtotal within the list determines where it will appear in the table and the
categories to which it applies. By default, a subtotal applies to all values that precede it up
to the next subtotal. If POSITION=BEFORE is specified (see Totals on p. 397), subtotals ap-
ply to the categories that follow them in the list. Hierarchical and overlapping subtotals are
not supported. You can specify a label for a subtotal by placing it in quotes immediately fol-
lowing the SUBTOTAL keyword and an equals sign, as illustrated in the following example.

Example
CTABLES /TABLE AGECAT
 /CATEGORIES VARIABLES=AGECAT [1, 2, 3, SUBTOTAL=’Subtotal < 45’,
 4, 5, 6, SUBTOTAL=’Subtotal 45+’].

Implicit Category Specification

The implicit list allows you to sort the categories and to show or hide user-missing values
without having to enumerate the values. It also provides for data-dependent sorting. If you
do not supply an explicit value list, you can use the following keywords:

ORDER The sorting order. You can select A (the default) for ascending order, or D for
descending order.

KEY The sort key. You can select VALUE (the default) to sort by the values, or LABEL to
sort by the value labels. When values are sorted by label, any unlabeled values
appear after the labeled values in the table. You can also specify a summary func-
tion for data-dependent sorting.

MISSING Whether user-missing values are included. You can specify EXCLUDE (the default)
or INCLUDE. System-missing values are never included.

Data-Dependent Sorting. The following conventions and limitations apply to sorting using a
summary function as the key:

• The sort function must be a summary function supported in CTABLES. The PTILE, MODE,
and MEDIAN functions cannot be used.

• The sort function must be used in the table. The exception to this is COUNT. You can sort
by COUNT even if counts do not appear in the table.

• Data-dependent sorting is not available if category labels are repositioned using the
CLABELS subcommand.

242

627

679

1548

481

320

479

1280

Less than 25

25 to 34

35 to 44

Subtotal < 45

45 to 54

55 to 64

65 or older

Subtotal 45+

Age
category

Count

396 CTABLES

• Summary functions available only for scale variables require that you give the variable
name in parentheses, as in MEAN(AGE). Other functions, such as COUNT, do not require
a variable name, but you can supply one to restrict the sort.

• When a variable name is given and multiple logical tables are created through stacking,
the entire table is sorted based on the first logical table that includes the categorical vari-
able being sorted and the variable specified in the key.

• When a table contains more than one dimension, the sort is based on the distribution of
the key within the categories of the sorted variable without regard to the contents of the
other dimensions. Thus, given the table
CTABLES /TABLE A BY B + C /CAT VAR=A ORDER=A KEY=COUNT(A),
the rows are sorted according to the counts for the categories of A without regard to the
values of B and C. If there are no missing values in the other dimension, the result is the
same as sorting on the totals for that dimension, in this case B or C. If the other dimension
has an unbalanced pattern of missing values, the sorting may give unexpected results;
however, the result is unaffected by differences in the pattern for B and C.

• If the sort variable is crossed with stacked category variables, the first table in the stack
determines the sort order.

• To ensure that the categories are sorted the same way in each layer of the pivot table, layer
variables are ignored for the purpose of sorting.

Example
CTABLES
 /TABLE CAR1 BY AGECAT
 /CATEGORIES VARIABLES=AGECAT TOTAL=YES
 /CATEGORIES VARIABLES=CAR1 ORDER=D KEY=COUNT.

• The first CATEGORIES subcommand requests a total across all age categories.

• The second CATEGORIES subcommand requests a sort of the categories of CAR1 in
descending order using COUNT as the key. The categories of CAR1 are sorted according
to the total counts.

99 267 293 214 140 215 1228

73 136 140 107 66 104 626

18 91 69 63 36 61 338

23 77 88 45 35 50 318

18 32 46 20 24 25 165

11 24 43 32 19 24 153

American

Japanese

German

Korean

Swedish

Other

Car
maker,
most
recent
car

Count

Less than
25

Count

25 to 34

Count

35 to 44

Count

45 to 54

Count

55 to 64

Count

65 or older

Count

Total

Age category

CTABLES 397

Example
CTABLES
 /TABLE AGE [MEAN F5.1] > CAR1 BY SEX
 /CATEGORIES VARIABLES=SEX TOTAL=YES
 /CATEGORIES VARIABLES=CAR1 KEY=MEAN(AGE).

• The first CATEGORIES subcommand requests a total across the values of SEX.

• The second CATEGORIES subcommand requests that the categories of CAR1 be sorted
according to the mean of AGE. The categories are sorted according to the total means for
both sexes, and that would be the case if the totals were not shown in the table.

Totals

A total can be specified for any category variable regardless of its level of nesting within a
dimension. Totals can be requested in more than one dimension. The following options are
available:

TOTAL Whether to display a total for a variable. You can specify TOTAL=NO (the
default) or TOTAL=YES.

LABEL The label for the total. The specification is a quoted string.

POSITION Whether a total comes after or before the categories of the variable being
totaled. You can specify AFTER (the default) or BEFORE. POSITION also
determines whether subtotals specified in an explicit list of categories apply
to the categories that precede them (AFTER) or follow them (BEFORE).

Scale variables cannot be totaled directly. To obtain a total or subtotals for a scale variable,
request the total or subtotals for the category variable within whose categories the summaries
for the scale variable appear.

42.6 45.6 44.3

43.5 45.5 44.7

43.4 46.2 45.0

45.3 46.5 45.9

44.3 47.6 46.2

48.6 46.4 47.3

Swedish

Japanese

Korean

American

German

Other

Car
maker,
most
recent
car

Age of
respondent

Mean

Male

Mean

Female

Mean

Total

Gender

398 CTABLES

Example
CTABLES /TABLE AGECAT
 /CATEGORIES VARIABLES=AGECAT TOTAL=YES LABEL=’Total Respondents’.

Example
CTABLES /TABLE AGE [MEAN ’Average’ F5.1] > SEX
 /CATEGORIES VARIABLES=SEX TOTAL=YES LABEL=’Combined’.

• The summary function for AGE appears in cells determined by the values of SEX. The
total is requested for SEX to obtain the average age across both sexes.

Empty Categories

Empty categories are those for which no cases appear in the data. For an explicit category
list, this includes all explicitly named values and all labeled values implied by THRU,
OTHERNM, or MISSING. For an implicit category list, this includes all values for which value
labels exist.

EMPTY Whether to show categories whose count is zero. You can specify
EMPTY=INCLUDE (the default) or EMPTY=EXCLUDE.

TITLES Subcommand: Titles, Captions, and Corner Text

The TITLES subcommand specifies table annotations. If the subcommand is used, a title,
caption, or corner text must be specified. No caption, title, or corner text is displayed by
default.

 /TITLES CAPTION= [’text’ ’text’...]
 CORNER= [’text’ ’text’...]
 TITLE= [’text’ ’text’...]

CAPTION Caption lines. The caption appears below the table. Multiple lines can be specified.
Each line must be quoted.

242

627

679

481

320

479

2828

Less than 25

25 to 34

35 to 44

45 to 54

55 to 64

65 or older

Total Respondents

Age
category

Count

44.6

46.3

45.6

Male

Female

Combined

GenderAge of
respondent

Average

CTABLES 399

CORNER Corner text. Corner text appears in the corner cell of the table, above row titles and
next to column titles. Multiple lines can be specified. Each line must be quoted.

Pivot tables show all corner text that fits in the corner cell. The specified text is
ignored if the table has no corner cell.

The system default TableLook uses the corner area for display of row dimension
labels. To display CTABLES corner text, the Row Dimension Labels setting in Table
Properties should be set to Nested. This choice can be preset in the default
TableLook.

TITLE Title text. The title appears above the table. Multiple lines can be specified. Each
line must be quoted.

The following symbols can be used within any caption, corner text, or title line. Each must
be specified using an opening right parenthesis and all uppercase letters.

)DATE Current date. Displays a locale-appropriate date stamp that includes the year,
month, and day.

)TIME Current time. Displays a locale-appropriate time stamp.

)TABLE Table description. Inserts a description of the table, which consists of the table
expression stripped of measurement levels, statistics specifications, and “/TABLE.”
If variable labels are available, they are used instead of variable names in the table
expression.

Example
CTABLES /VLABELS VARIABLES=SEX HAPMAR DISPLAY=NONE
 /TABLE SEX > HAPMAR BY CHILDCAT [COLPCT]
 /SLABELS VISIBLE=NO
 /TITLE TITLE = ’Marital Happiness for Men and Women ’+
 ’by Number of Children’
 CAPTION= ’Report created at)TIME on)DATE’ ’)TABLE’.

• The VLABELS subcommand suppresses the display of variable labels for SEX and
HAPMAR.

• The SLABELS subcommand suppresses the default label for the summary function.

Marital Happiness for Men and Women by Number of Children

63.2% 64.9% 62.2% 71.4%

32.9% 33.0% 35.4% 26.2%

3.9% 2.1% 2.4% 2.4%

69.2% 63.9% 61.6% 57.6%

28.6% 33.2% 35.5% 33.3%

2.2% 2.9% 2.8% 9.1%

Very happy

Pretty happy

Not too happy

Male

Very happy

Pretty happy

Not too happy

Female

None 1-2 3-4 5 or more

Number of children (grouped categories)

Report created at 08:33:53 AM on 08/26/2002
Gender > Happiness of marriage BY Number of children (grouped categories)

400 CTABLES

• The TITLE specification on the TITLE subcommand uses the standard SPSS convention to
break a single string across input lines.

• The CAPTION specification uses the)DATE,)TIME, and)TABLE keywords to print the date,
time, and a description of the table structure.

Significance Testing

Custom Tables can perform the chi-square test of independence and pairwise comparisons of
column proportions for tables that contain at least one category variable in both the rows and
the columns, and pairwise comparisons of column means for tables that contain at least one
summary variable in the rows and one category variable in the columns.

Chi-Square Tests: SIGTEST Subcommand

 /SIGTEST TYPE= CHISQUARE ALPHA= {0.05 }
 {significance level}

The SIGTEST subcommand has the following specifications:

TYPE The type of significance test. The specification is required. The only current choice
is CHISQUARE.

ALPHA The significance level for the test. The specification must be greater than 0 and less
than 1. The default is 0.05.

Example
CTABLES /TABLE AGECAT BY MARITAL
 /CATEGORIES VARIABLES=AGECAT MARITAL TOTAL=YES
 /SIGTEST TYPE=CHISQUARE.

37 1 5 5 194 242

271 13 63 16 263 626

379 11 129 44 116 679

275 18 123 13 52 481

186 31 76 7 20 320

197 209 48 8 17 479

1345 283 444 93 662 2827

Less than 25

25 to 34

35 to 44

45 to 54

55 to 64

65 or older

Total

Age
category

Count

Married

Count

Widowed

Count

Divorced

Count

Separated

Count

Never
married

Count

Total

Marital status

Pearson Chi-Square Tests

1473.381

20

.000*

Chi-square

df

Sig.

Age
category

Marital status

Results are based on nonempty rows and columns in each
innermost subtable.

The Chi-square statistic is significant at the 0.05 level.*.

CTABLES 401

Pairwise Comparisons of Proportions and Means: COMPARETEST Subcommand

 /COMPARETEST TYPE= {PROP} ALPHA= {0.05 }
 {MEAN} {significance level}

 ADJUST= {BONFERRONI} ORIGIN=COLUMN
 {NONE }

The SIGTEST subcommand has the following specifications:

TYPE The type of pairwise comparison. The specification is required. To compare pro-
portions when the test variable in the rows is categorical, choose PROP. To com-
pare means when the test variable in the rows is scale, choose MEAN.

ALPHA The significance level for the test. The specification must be greater than 0 and less
than 1. The default is 0.05.

ADJUST The method for adjusting p values for multiple comparisons. Valid options are
NONE and BONFERRONI. If ADJUST is not specified, the Bonferroni correction is
used.

ORIGIN The direction of the comparison. This specification will determine whether column
means (proportions) or row means (proportions) are being compared. In SPSS
11.5, only COLUMN is supported.

Example
CTABLES /TABLE AGECAT BY MARITAL
 /CATEGORIES VARIABLES=AGECAT MARITAL TOTAL=YES
 /COMPARETEST TYPE=PROP ALPHA=.01.

• The table of counts is identical to that shown in the example for chi-square above.

• The comparison output shows a number of predictable pairs for marital status among
different age groups that are significant at the 0.01 level specified with ALPHA in the
command.

Comparisons of Column Proportionsa

 B A B C D

B B B A B C D

B E B E A B C E B

B E B E

E E E

E A C D E E

Less than 25

25 to 34

35 to 44

45 to 54

55 to 64

65 or older

Age
category

(A)

Married

(B)

Widowed

(C)

Divorced

(D)

Separated

(E)

Never
married

Marital status

Results are based on two-sided tests with significance level .01. For each significant pair, the key of
the category with the smaller column proportion appears under the category with the larger column
proportion.

Tests are adjusted for all pairwise comparisons within each innermost subtable using the
Bonferroni correction.

a.

Comparisons of Column Proportions a

402 CTABLES

Example
CTABLES /TABLE AGE > SEX BY MARITAL
 /CATEGORIES VARIABLES=SEX TOTAL=YES
 /COMPARETEST TYPE=MEAN.

FORMAT Subcommand

 /FORMAT MINCOLWIDTH={DEFAULT} MAXCOLWIDTH={DEFAULT}
 {value } {value }

 UNITS={POINTS} EMPTY= {ZERO } MISSING= {’.’ }
 {INCHES} {BLANK } {’chars’}
 {CM } {’chars’}

The FORMAT subcommand controls the appearance of the table. At least one of the following
attributes must be specified: MINCOLWIDTH, MAXCOLWIDTH, UNITS, EMPTY, or MISSING.

MINCOLWIDTH The minimum width of columns in the table. This includes the main tables as
well as any tables of significance tests. DEFAULT honors the column labels
setting in the current TableLook. The value must be less than or equal to the
setting for MAXCOLWIDTH.

MAXCOLWIDTH The maximum width of columns in the table. This includes the main tables as
well as any tables of significance tests. DEFAULT honors column labels set-
ting in the current TableLook. The value must be greater than or equal to the
setting for MINCOLWIDTH.

UNITS The measurement system for column width values. The default is POINTS.
You can also specify INCHES or CM (centimeters). UNITS is ignored unless
MINCOLWIDTH or MAXCOLWIDTH is specified.

49 66 48 44 32

45 70 48 41 32

47 70 48 42 32

Male

Female

Total

GenderAge of
respondent

Mean

Married

Mean

Widowed

Mean

Divorced

Mean

Separated

Mean

Never
married

Marital status

Comparisons of Column Meansa

E A C D E E E

E A C D E D E E

Male

Female

GenderAge of respondent
(A)

Married

(B)

Widowed

(C)

Divorced

(D)

Separated

(E)

Never
married

Marital status

Results are based on two-sided tests assuming equal variances with significance level 0.05. For each significant
pair, the key of the smaller category appears under the category with larger mean.

Tests are adjusted for all pairwise comparisons within each innermost subtable using the Bonferroni
correction.

a.

Comparisons of Column Means a

CTABLES 403

EMPTY Fill characters used when a count or percentage is zero. ZERO (the default)
displays a 0 using the format for the cell statistic. BLANK leaves the statistic
blank. You can also specify a quoted character string. If the string is too wide
for the cell, the text is truncated.

If FORMAT EMPTY=BLANK, there will be no visible difference between cells
that have a count of 0 and cells for which no statistics are defined.

MISSING Fill characters used when a cell statistic cannot be computed. This specifi-
cation applies to non-empty cells for which a statistic, such as standard devi-
ation, cannot be computed. The default is a period (.). You can specify a
quoted string. If the string is too wide for the cell, the text is truncated.

VLABELS Subcommand

 /VLABELS VARIABLES= varlist

 DISPLAY= {DEFAULT}
 {NAME }
 {LABEL }
 {BOTH }
 {NONE }

By default, the display of variable labels is controlled by the TVARS specification on the SET
command in the SPSS Base system. The VLABELS subcommand allows you to show a name,
label, or both for each table variable. The minimum specification is a variable list and a
DISPLAY specification. To give different specifications for different variables, use multiple
VLABELS subcommands.

VARIABLES The variables to which the subcommand applies. You can use ALL or
VARNAME TO VARNAME, which refers to the order of variables in the current
active data file. If a specified variable does not appear in a table, VLABELS is
ignored for that variable.

DISPLAY Whether the variable’s name, label, both, or neither is shown in the table.
DEFAULT honors the SET TVARS setting. NAME shows the variable name
only. LABEL shows the variable label only. BOTH shows the variable name
and label. NONE hides the name and label.

SMISSING Subcommand

 /SMISSING {VARIABLE}
 {LISTWISE}

If more than one scale variable is included in a table, you can control whether cases that are
missing on one are included in summaries for which they have valid values.

VARIABLE Exclude cases variable by variable. A case is included in summaries for each
scale variable for which it has a valid value regardless of whether it has miss-
ing values for other scale variables in the table.

404 CTABLES

LISTWISE Exclude cases that are missing on any scale variable in the table. This
ensures that summaries for all scale variables in the table are based on the
same set of cases.

Listwise deletion applies on a per-table basis. Thus, given the specification

/TABLE (AGE [MEAN,COUNT]>SEX) + (AGE+CHILDS)[MEAN,COUNT] > HAPPY

all cases with valid values for AGE will be used in the AGE > SEX table regardless of whether
they have missing values for CHILDS (assuming that they also have valid values for SEX).

MRSETS Subcommand

 /MRSETS COUNTDUPLICATES= {NO }
 {YES}

For multiple response sets that combine multiple category variables, a respondent can select
the same response for more than one of the variables. Typically, only one response is desired.
For example, if $MAGS combines MAG1 to MAG5 to record which magazines a respondent
reads regularly, if a respondent indicated the same magazine for MAG1 and MAG2, you would
not want to count that magazine twice. However, if $CARS combines CAR1 to CAR5 to indi-
cate which cars a respondent owns now, and a respondent owns two cars of the same make,
you might want to count both responses. The MRSETS subcommand allows you to specify
whether duplicates are counted. By default, duplicates are not counted.

The MRSETS specification applies only to RESPONSES and percentages based on
RESPONSES. It does not affect counts, which always ignore duplicates.

405

CURVEFIT

CURVEFIT [VARIABLES=] varname [WITH varname]

 [/MODEL= [LINEAR**] [LOGARITHMIC] [INVERSE]

 [QUADRATIC] [CUBIC] [COMPOUND]

 [POWER] [S] [GROWTH] [EXPONENTIAL]

 [LGSTIC] [ALL]]

 [/CIN={95** }]
 {value}

 [/UPPERBOUND={NO**}]
 {n }

 [/{CONSTANT† }
 {NOCONSTANT}

 [/PLOT={FIT**}]
 {NONE }

 [/ID = varname]

 [/PRINT=ANOVA]

 [/SAVE=[PRED] [RESID] [CIN]]

 [/APPLY [=’model name’] [{SPECIFICATIONS}]]
 {FIT }

**Default if the subcommand is omitted.
†Default if the subcommand is omitted and there is no corresponding specification on the TSET command.

Example
CURVEFIT VARY
 /MODEL=CUBIC.

Overview

CURVEFIT fits selected curves to a line plot, allowing you to examine the relationship
between one or more dependent variables and one independent variable. CURVEFIT also fits
curves to time series and produces forecasts, forecast errors, lower confidence limits, and
upper confidence limits. You can choose curves from a variety of regression models.

Options

Model Specification. There are 11 regression models available on the MODEL subcommand.
You can fit any or all of these to the data. The keyword ALL is available to fit all 11 models.
You can control whether the regression equation includes a constant term using the
CONSTANT or NOCONSTANT subcommand.

406 CURVEFIT

Upperbound Value. You can specify the upperbound value for the logistic model using the
UPPERBOUND subcommand.

Output. You can produce an analysis-of-variance summary table using the PRINT subcom-
mand. You can suppress the display of the curve-fitting plot using the PLOT subcommand.

New Variables. To evaluate the regression statistics without saving predicted and residual vari-
ables, specify TSET NEWVAR=NONE prior to CURVEFIT. To save the new variables and
replace the variables saved earlier, use TSET NEWVAR=CURRENT (the default). To save the
new variables without erasing variables saved earlier, use TSET NEWVAR=ALL or the SAVE
subcommand on CURVEFIT.

Forecasting. When used with the PREDICT command, CURVEFIT can produce forecasts and
confidence limits beyond the end of the series (see PREDICT).

Basic Specification

The basic specification is one or more dependent variables. If the variables are not time
series, you must also specify the keyword WITH and an independent variable.

• By default, the LINEAR model is fit.

• A 95% confidence interval is used unless it is changed by a TSET CIN command prior to
the procedure.

• CURVEFIT produces a plot of the curve, a regression summary table displaying the type
of curve used, the coefficient, degrees of freedom, overall F test and significance lev-
el, and the regression coefficients.

• For each variable and model combination, CURVEFIT creates four variables: fit/forecast
values, residuals, lower confidence limits, and upper confidence limits. These variables
are automatically labeled and added to the working data file unless TSET NEWVAR=NONE
is specified prior to CURVEFIT. For the new variable names, see the SAVE subcommand
on p. 410.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.

• Other subcommands can be specified more than once, but only the last specification of
each one is executed.

R2

CURVEFIT 407

Operations

• When CURVEFIT is used with the PREDICT command to forecast values beyond the end
of a time series, the original and residual series are assigned the system-missing value af-
ter the last case in the original series.

• If a model requiring a log transformation (COMPOUND, POWER, S, GROWTH,
EXPONENTIAL, or LGSTIC) is requested and there are values in the dependent vari-
able(s) less than or equal to 0, the model cannot be fit because nonpositive values can-
not be log-transformed.

• CURVEFIT uses listwise deletion of missing values. Whenever one dependent variable is
missing a value for a particular case or observation, that case or observation will not be
included in any computations.

• For models QUADRATIC and CUBIC, a message is issued if the tolerance criterion is not
met. (See TSET for information on changing the tolerance criterion.)

• Since CURVEFIT automatically generates four variables for each dependent variable and
model combination, the ALL specification after MODEL should be used cautiously to avoid
creating and adding to the working data file many more variables than are necessary.

• The residual variable is always reported in the original metric. To compute the logged re-
sidual (which should be used for diagnostic checks) for the models COMPOUND, POWER,
S, GROWTH, and EXPONENTIAL, specify

COMPUTE NEWVAR = LN(VAR) - LN(FIT#n).

where NEWVAR is the logged residual, VAR is the name of the dependent variable or ob-
served series, and FIT#n is the name of the fitted variable generated by CURVEFIT.

For the LGSTIC (logistic) model, the logged residual can be obtained by

COMPUTE NEWERR = LN(VAR) - LN(1/FIT#n).

or, if upperbound value u is specified on the UPPERBOUND subcommand, by

COMPUTE NEWVAR = LN(1/VAR - 1/u) - LN(1/FIT#n).

• CURVEFIT obeys the WEIGHT command when there is an independent variable. The
WEIGHT specification is ignored if no independent variable is specified.

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of dependent vari-
ables or series named on the subcommand.

• Maximum 1 independent variable can be specified after the keyword WITH.

Example

CURVEFIT VARY
 /MODEL=CUBIC.

• This example fits a cubic curve to the series VARY.

408 CURVEFIT

VARIABLES Subcommand

VARIABLES specifies the variables and is the only required subcommand. The actual
keyword VARIABLES can be omitted.

• If the dependent variables specified are not time series, you must also specify the keyword
WITH and an independent variable.

MODEL Subcommand

MODEL specifies the model or models to be fit to the data. The default model is LINEAR.

• You can fit any or all of the 11 available models.
• Model name keywords can be abbreviated to the first three characters.

• You can use the keyword ALL to fit all models.

• When the LGSTIC model is specified, the upperbound value is included in the output.

The following table lists the available models and their regression equations. The linear
transformations for the last six models are also shown.

where

b0 = a constant
bn = regression coefficient
t = independent variable or time value
ln = the natural logarithm
u = upperbound value for LGSTIC

Example
CURVEFIT VARX.

Keyword Equation Linear equation

LINEAR

LOGARITHMIC

INVERSE

QUADRATIC

CUBIC

COMPOUND

POWER

S

GROWTH

EXPONENTIAL

LGSTIC
(logistic)

Y b0 b1t+=

Y b0 b1ln t()+=

Y b0 b1 t⁄+=

Y b0 b1t b2t 2+ +=

Y b0 b1t b2t 2 b3t 3+ + +=

Y b0b1
t= ln Y() ln b0() t ln b1()+=

Y b0 t b1()= ln Y() ln b0() b1ln t()+=

Y eb0 b1 t⁄+= ln Y() b0 b1 t⁄+=

Y eb0 b1t+= ln Y() b0 b1t+=

Y b0 eb1t()= ln Y() ln b0() b1t+=

Y 1 u⁄ b0b1
t+() 1–= ln 1 Y⁄ 1 u⁄–() ln b0() t ln b1()+=

CURVEFIT 409

• This command fits a curve to VARX using the linear regression model (the default).

Example
CURVEFIT VARY
 /MODEL=GROWTH EXPONENTIAL.

• This command fits two curves to VARY, one using the growth model and the other using
the exponential model.

UPPERBOUND Subcommand

UPPERBOUND is used with the logistic model (keyword LGSTIC) to specify an upper
boundary value to be used in the regression equation.

• The specification on UPPERBOUND must be a positive number and must be greater than
the largest data value in any of the specified dependent variables.

• The default UPPERBOUND value is infinity, so that 1/u = 0 and is dropped from the equation.
• You can specify UPPERBOUND NO to reset the value to infinity when applying a previous

model.

• If you specify UPPERBOUND without LGSTIC, it is ignored.

• Note that UPPERBOUND is a subcommand and cannot be used within a MODEL subcom-
mand. For example, the following specification is not valid:

 /MODEL=CUBIC LGSTIC /UPPER=99 LINEAR

The correct specification is:

 /MODEL=CUBIC LGSTIC LINEAR
 /UPPER=99

CONSTANT and NOCONSTANT Subcommands

CONSTANT and NOCONSTANT indicate whether a constant term should be estimated in the
regression equation. The specification overrides the corresponding setting on the TSET
command.

• CONSTANT indicates that a constant should be estimated. It is the default unless changed
by TSET NOCONSTANT prior to the current procedure.

• NOCONSTANT eliminates the constant term from the model.

Example
CURVEFIT Y1
 /MODEL=COMPOUND
 /NOCONSTANT.

• In this example, a compound curve is fit to Y1 with no constant term in the model.

410 CURVEFIT

CIN Subcommand

CIN controls the size of the confidence interval.

• The specification on CIN must be greater than 0 and less than 100.

• The default confidence interval is 95.

• The CIN subcommand overrides the TSET CIN setting.

PLOT Subcommand

PLOT specifies whether the curve-fitting plot is displayed. If PLOT is not specified, the
default is FIT. The curve-fitting plot is displayed. PLOT=FIT is generally used with an APPLY
subcommand to turn off a PLOT=NONE specification in the applied model.

FIT Display the curve-fitting plot.

NONE Do not display the plot.

ID Subcommand

ID specifies an identification variable. When in point selection mode, you can click on an
individual chart point to display the value of the ID variable for the selected case.

SAVE Subcommand

SAVE saves the values of predicted, residual, and/or confidence interval variables generated
during the current session in the working data file.

• SAVE saves the specified variables with default names: PRED_n for predicted values
RESID_n for residuals, LCL_n for the lower confidence limit, and UCL_n for the upper con-
fidence limit, where n increments each time any variable is saved for a model.

• SAVE overrides the CURRENT or NONE setting on TSET NEWVARS (see TSET).

PRED Predicted variable.

RESID Residual variable.

CIN Confidence interval.

PRINT Subcommand

PRINT is used to produce an additional analysis-of-variance table for each model and variable.
• The only specification on PRINT is the keyword ANOVA.

CURVEFIT 411

APPLY Subcommand

APPLY allows you to use a previously defined CURVEFIT model without having to repeat the
specifications.

• The specifications on APPLY can include the name of a previous model in quotes and one
of two keywords. All of these specifications are optional.

• If a model name is not specified, the model specified on the previous CURVEFIT command
is used.

• To change one or more of the specifications of the model, specify the subcommands of
only those portions you want to change after the subcommand APPLY.

• If no variables or series are specified on the CURVEFIT command, the dependent variables
that were originally specified with the model being reapplied are used.

• To change the dependent variables used with the model, enter new variable names before
or after the APPLY subcommand.

The keywords available for APPLY on CURVEFIT are:

SPECIFICATIONS Use only the specifications from the original model. This is the default.

FIT Use the coefficients estimated for the original model in the equation.

Example
CURVEFIT X1
 /MODEL=QUADRATIC.
CURVEFIT Z1
 /APPLY.

• The first command fits a quadratic curve to X1.

• The second command fits the same type of curve to Z1.

Example
CURVEFIT X1 Y1 Z1
 /MODEL=QUADRATIC.
CURVEFIT APPLY
 /MODEL=CUBIC.

• The first command fits quadratic curves to X1, Y1, and Z1.

• The second command fits curves to the same three series using the cubic model.

References

Abraham, B., and J. Ledolter. 1983. Statistical methods of forecasting. New York: John Wiley and
Sons.

Draper, N. R., and H. Smith. 1981. Applied regression analysis. New York: John Wiley and Sons.
Montgomery, D. C., and E. A. Peck. 1982. Introduction to linear regression analysis. New York:

John Wiley and Sons.

412

DATA LIST

DATA LIST [FILE=file] [{FIXED}] [RECORDS={1}] [SKIP={n}] [{TABLE }]
 {n} {NOTABLE}

 {FREE} [{("delimiter", "delimiter,..., TAB)}]
 {LIST}

 /{1 } varname {col location [(format)]} [varname ...]
 {rec #} {(FORTRAN-like format) }

 [/{2 } ...] [/ ...]
 {rec #}

Numeric and string input formats:

Some formats are not available on all implementations of the program.
Format elements to skip columns:

Date and time input formats:

Type Column-style format FORTRAN-like format

Numeric (default) d or F,d Fw.d
Restricted numeric N,d Nw.d
Scientific notation E,d Ew.d
Numeric with commas COMMA,d COMMAw.d
Numeric with dots DOT,d DOTw.d
Numeric with commas and
dollar sign

DOLLAR,d DOLLARw.d

Numeric with percent sign PCT,d PCTw.d
Zoned decimal Z,d Zw.d
String A Aw

Type Column-style format FORTRAN-like format

Tab to column n Tn
Skip n columns nX

Type Data input Format FORTRAN-like format

International date dd-mmm-yyyy DATE DATEw
American date mm/dd/yyyy ADATE ADATEw
European date dd/mm/yy EDATE EDATEw
Julian date yyddd JDATE JDATEw
Sorted date yy/mm/dd SDATE SDATEw
Quarter and year qQyyyy QYR QYRw
Month and year mm/yyyy MOYR MOYRw

DATA LIST 413

Example
DATA LIST /ID 1-3 SEX 5 (A) AGE 7-8 OPINION1 TO OPINION5 10-14.

Overview

DATA LIST defines a raw data file (a raw data file contains numbers and other alphanumeric
characters) by assigning names and formats to each variable in the file. Raw data can be
inline (entered with your commands between BEGIN DATA and END DATA) or stored in an
external file. They can be in fixed format (values for the same variable are always entered in
the same location on the same record for each case) or in freefield format (values for consec-
utive variables are not in particular columns but are entered one after the other, separated by
blanks or commas).

For information on defining matrix materials, see MATRIX DATA. For information on
defining complex data files that cannot be defined with DATA LIST, see FILE TYPE and
REPEATING DATA. For information on reading SPSS-format data files and SPSS-format
portable files, see GET and IMPORT.

The program can also read data files created by other software applications. Commands
that read these files include GET CAPTURE and GET TRANSLATE.

Options

Data Source. You can use inline data or data from an external file.

Data Formats. You can define numeric (with or without decimal places) and string variables
using an array of input formats (percent, dollar, date and time, and so forth). You can also
specify column binary and unaligned positive integer binary formats (available only if used
with the MODE=MULTIPUNCH setting on the FILE HANDLE command). For a complete list of
available formats, see “Variable Formats” on p. 25.

Data Organization. You can define data that are in fixed format (values in the same location
on the same record for each case), in freefield format with multiple cases per record, or in
freefield format with one case on each record using the FIXED, FREE, and LIST keywords.

Multiple Records. For fixed-format data, you can indicate the number of records per case on
the RECORDS subcommand. You can specify which records to read in the variable definition
portion of DATA LIST.

Summary Table. For fixed-format data, you can display a table that summarizes the variable
definitions using the TABLE subcommand. You can suppress this table using NOTABLE.

Week and year wkWKyyyy WKYR WKYRw
Date and time dd-mmm-yyyy hh:mm:ss.ss DATETIME DATETIMEw.d
Time hh:mm:ss.ss TIME TIMEw.d
Days and time ddd hh:mm:ss.ss DTIME DTIMEw.d
Day of the week string WKDAY WKDAYw
Month string MONTH MONTHw

414 DATA LIST

Value Delimiter. For freefield-format data (keywords FREE and LIST), you can specify the
character(s) that separate data values, or you can use the keyword TAB to specify the tab char-
acter as the delimiter. Any delimiter other than the TAB keyword must be enclosed in quota-
tion marks, and the specification must be enclosed in parentheses, as in DATA LIST FREE(“,”).

End-of-File Processing. You can specify a logical variable that indicates the end of the data
using the END subcommand. This logical variable can be used to invoke special processing
after all the cases from the data file have been read.

Basic Specification

• The basic specification is the FIXED, LIST, or FREE keyword, followed by a slash that
signals the beginning of variable definition.

• FIXED is the default.

• If the data are in an external file, the FILE subcommand must be used.
• If the data are inline, the FILE subcommand is omitted and the data are specified between

the BEGIN DATA and END DATA commands.

• Variable definition for fixed-format data includes a variable name, a column location, and
a format (unless the default numeric format is used). The column location is not specified
if FORTRAN-like formats are used, since these formats include the variable width.

• Variable definition for freefield data includes a variable name and, optionally, a delimiter
specification and a FORTRAN-like format specification. If format specifications include a
width and number of decimal positions (for example, F8.2), the width and decimal specifica-
tions are not used to read the data but are assigned as print and write formats for the variables.

Subcommand Order

Subcommands can be named in any order. However, all subcommands must precede the first
slash, which signals the beginning of variable definition.

Syntax Rules

Subcommands on DATA LIST are separated by spaces or commas, not by slashes.

Operations

• DATA LIST clears the working data file and defines a new working file.

• Variable names are stored in the working file dictionary.

• Formats are stored in the working file dictionary and are used to display and write the values.
To change output formats of numeric variables defined on DATA LIST, use the FORMATS
command.

DATA LIST 415

Fixed-Format Data

• The order of the variables in the working file dictionary is the order in which they are
defined on DATA LIST, not their sequence in the input data file. This order is important if
you later use the TO keyword to refer to variables on subsequent commands.

• In numeric format, blanks to the left or right of a number are ignored; imbedded blanks
are invalid. When the program encounters a field that contains one or more blanks inter-
spersed among the numbers, it issues a warning message and assigns the system-missing
value to that case.

• Alphabetical and special characters, except the decimal point and leading plus and minus
signs, are not valid in numeric variables and are set to system-missing if encountered in
the data.

• The system-missing value is assigned to a completely blank field for numeric variables.
The value assigned to blanks can be changed using the BLANKS specification on the SET
command.

• The program ignores data contained in columns and records that are not specified in the
variable definition.

Freefield Data

FREE can read freefield data with multiple cases recorded on one record or with one case
recorded on more than one record. LIST can read freefield data with one case on each record.

• Line endings are read as delimiters between values.

• If you use FORTRAN-like format specifications (for example, DOLLAR12.2), width and
decimal specifications are not used to read the data but are assigned as print and write
formats for the variable.

For freefield data without explicitly specified value delimiters:

• Commas and blanks are interpreted as delimiters between values.

• Extra blanks are ignored.

• Multiple commas with or without blank space between them can be used to specify
missing data.

• If a valid value contains commas or blank spaces, enclose the values in quotation marks
or apostrophes.

For data with explicitly specified value delimiters (for example, DATA LIST FREE (","):

• Multiple delimiters without any intervening space can be used to specify missing data.

• The specified delimiters cannot occur within a data value, even if you enclose the value
in quotation marks or apostrophes.

Note: Freefield format with specified value delimiters is typically used to read data in text
format written by a computer program, not for data manually entered in a text editor.

416 DATA LIST

Example

* Column-style format specifications.

DATA LIST /ID 1-3 SEX 5 (A) AGE 7-8 OPINION1 TO OPINION5 10-14.
BEGIN DATA
001 m 28 12212
002 f 29 21212
003 f 45 32145
...
128 m 17 11194
END DATA.

• The data are inline between the BEGIN DATA and END DATA commands, so the FILE
subcommand is not specified. The data are in fixed format. The keyword FIXED is not
specified because it is the default.

• Variable definition begins after the slash. Variable ID is in columns 1 through 3. Because
no format is specified, numeric format is assumed. Variable ID is therefore a numeric vari-
able that is three characters wide.

• Variable SEX is a short string variable in column 5. Variable SEX is one character wide.
• AGE is a two-column numeric variable in columns 7 and 8.

• Variables OPINION1, OPINION2, OPINION3, OPINION4, and OPINION5 are named using
the TO keyword (see “Keyword TO” on p. 23). Each is a one-column numeric variable,
with OPINION1 located in column 10 and OPINION5 located in column 14.

• The BEGIN DATA and END DATA commands enclose the inline data. Note that the values
of SEX are lowercase letters and must be specified as such on subsequent commands.

FILE Subcommand

FILE specifies the raw data file. FILE is required when data are stored in an external data file.
FILE must not be used when the data are stored in a file that is included with the INCLUDE
command or when the data are inline (see INCLUDE and BEGIN DATA—END DATA).

• FILE must be separated from other DATA LIST subcommands by at least one blank or
comma.

• FILE must precede the first slash, which signals the beginning of variable definition.

FIXED, FREE, and LIST Keywords

FIXED, FREE, or LIST indicates the format of the data. Only one of these keywords can be
used on each DATA LIST. The default is FIXED.

FIXED Fixed-format data. Each variable is recorded in the same column location on the
same record for each case in the data. FIXED is the default.

FREE Freefield data. The variables are recorded in the same order for each case but not
necessarily in the same column locations. More than one case can be entered on the
same record. By default, values are separated by blanks or commas. You can also
specify different value delimiters.

DATA LIST 417

LIST Freefield data with one case on each record. The variables are recorded in freefield
format as described for the keyword FREE except that the variables for each case
must be recorded on one record.

• FIXED, FREE, or LIST must be separated from other DATA LIST subcommands by at least
one blank or comma.

• FIXED, FREE, or LIST must precede the first slash, which signals the beginning of data
definition.

• For fixed-format data, you can use column-style or FORTRAN-like formats, or a combi-
nation of both. For freefield data, you can use only FORTRAN-like formats.

• For fixed-format data, the program reads values according to the column locations
specified or implied by the FORTRAN-like format. Values in the data do not have to be
in the same order as the variables named on DATA LIST and do not have to be separated by
a space or column.

• For freefield data, the program reads values sequentially in the order in which the
variables are named on DATA LIST. Values in the data must be in the order in which the
variables are named on DATA LIST and must be separated by at least one valid delimiter.

• For freefield data, multiple blank spaces can be used to indicate missing information only
if a blank space is explicitly specified as the delimiter. In general, it is better to use
multiple non-blank delimiters (for example, two commas with no intervening space) to
specify missing data.

• In freefield format, a value cannot be split across records.

Example
* Data in fixed format.

DATA LIST FILE=HUBDATA FIXED RECORDS=3
/1 YRHIRED 14-15 DEPT 19 SEX 20.

• FIXED indicates explicitly that the HUBDATA file is in fixed format. Because FIXED is the
default, the keyword FIXED could have been omitted.

• Variable definition begins after the slash. Column locations are specified after each vari-
able. Since formats are not specified, the default numeric format is used. Variable widths
are determined by the column specifications: YRHIRED is two characters wide, and DEPT
and SEX are each one character wide.

Example
* Data in freefield format.
DATA LIST FREE / POSTPOS NWINS.
BEGIN DATA
2, 19, 7, 5, 10, 25, 5, 17, 8, 11, 3,, 6, 8, 1, 29
END DATA.

• Data are inline, so FILE is omitted. The keyword FREE is used because data are in freefield
format with multiple cases on a single record. Two variables, POSTPOS and NWINS, are
defined. Since formats are not specified, both variables receive the default F8.2 format.

• All of the data are recorded on one record. The first two values build the first case in the
working data file. For the first case, POSTPOS has value 2 and NWINS has value 19. For

418 DATA LIST

the second case, POSTPOS has value 7 and NWINS has value 5, and so on. The working
data file will contain eight cases.

• The two commas without intervening space after the data value 3 indicate a missing data
value.

Example
* Data in list format.

DATA LIST LIST (",")/ POSTPOS NWINS.
BEGIN DATA
2,19
7,5
10,25
5,17
8,11
3,
6,8
1,29
END DATA.

• This example defines the same data as the previous example, but LIST is used because
each case is recorded on a separate record. FREE could also be used. However, LIST is
less prone to errors in data entry. If you leave out a value in the data with FREE format,
all values after the missing value are assigned to the wrong variable. Since LIST format
reads a case from each record, a missing value will affect only one case.

• A comma is specified as the delimiter between values.

• Since line endings are interpreted as delimiters between values, the second comma after
the value 3 (in the sixth line of data) is not necessary to indicate that the value of NWINS
is missing for that case.

TABLE and NOTABLE Subcommands

TABLE displays a table summarizing the variable definitions supplied on DATA LIST. NOTABLE
suppresses the summary table. TABLE is the default.

• TABLE and NOTABLE can be used only for fixed-format data.

• TABLE and NOTABLE must be separated from other DATA LIST subcommands by at least
one blank or comma.

• TABLE and NOTABLE must precede the first slash, which signals the beginning of variable
definition.

RECORDS Subcommand

RECORDS indicates the number of records per case for fixed-format data. In the variable
definition portion of DATA LIST, each record is preceded by a slash. By default, DATA LIST
reads one record per case.

• The only specification on RECORDS is a single integer indicating the total number of
records for each case (even if the DATA LIST command does not define all the records).

DATA LIST 419

• RECORDS can be used only for fixed-format data and must be separated from other DATA
LIST subcommands by at least one blank or comma. RECORDS must precede the first
slash, which signals the beginning of variable definition.

• Each slash in the variable definition portion of DATA LIST indicates the beginning of a new
record. The first slash indicates the first (or only) record. The second and any subsequent
slashes tell the program to go to a new record.

• To skip a record, specify a slash without any variables for that record.

• The number of slashes in the variable definition cannot exceed the value of the integer
specified on RECORDS.

• The sequence number of the record being defined can be specified after each slash. DATA
LIST reads the number to determine which record to read. If the sequence number is used,
you do not have to use a slash for any skipped records. However, the records to be read
must be in their sequential order.

• The slashes for the second and subsequent records can be specified within the variable
list, or they can be specified on a format list following the variable list (see the example
below).

• All variables to be read from one record should be defined before you proceed to the next
record.

• Since RECORDS can be used only with fixed format, it is not necessary to define all the
variables on a given record or to follow their order in the input data file.

Example
DATA LIST FILE=HUBDATA RECORDS=3
/2 YRHIRED 14-15 DEPT 19 SEX 20.

• DATA LIST defines fixed-format data. RECORDS can be used only for fixed-format data.

• RECORDS indicates that there are three records per case in the data. Only one record per
case is defined in the data definition.

• The sequence number (2) before the first variable definition indicates that the variables
being defined are on the second record. Because the sequence number is provided, a slash
is not required for the first record, which is skipped.

• The variables YRHIRED, DEPT, and SEX are defined and will be included in the working
data file. Any other variables on the second record or on the other records are not defined
and are not included in the working file.

Example
DATA LIST FILE=HUBDATA RECORDS=3

/ /YRHIRED 14-15 DEPT 19 SEX 20.

• This command is equivalent to the one in the previous example. Because the record
sequence number is omitted, a slash is required to skip the first record.

Example
DATA LIST FILE=HUBDATA RECORDS=3

/YRHIRED (T14,F2.0) / /NAME (T25,A24).

420 DATA LIST

• RECORDS indicates there are three records for each case in the data.

• YRHIRED is the only variable defined on the first record. The FORTRAN-like format spec-
ification T14 means tab over 14 columns. Thus, YRHIRED begins in column 14 and has
format F2.0.

• The second record is skipped. Because the record sequence numbers are not specified, a
slash must be used to skip the second record.

• NAME is the only variable defined for the third record. NAME begins in column 25 and is
a string variable with a width of 24 characters (format A24).

Example
DATA LIST FILE=HUBDATA RECORDS=3

/YRHIRED NAME (T14,F2.0 / / T25,A24).

• This command is equivalent to the one in the previous example. YRHIRED is located on
the first record, and NAME is located on the third record.

• The slashes that indicate the second and third records are specified within the format spec-
ifications. The format specifications follow the complete variable list.

SKIP Subcommand

SKIP skips the first n records of the data file.

Example
DATA LIST LIST SKIP=2 /numvar.
BEGIN DATA
Some text describing the file
followed by some more text
1
2
3
END DATA.

END Subcommand

END provides control of end-of-file processing by specifying a variable that is set to a value
of 0 until the end of the data file is encountered, at which point the variable is set to 1. The
values of all variables named on DATA LIST are left unchanged. The logical variable created
with END can then be used on DO IF and LOOP commands to invoke special processing after
all the cases from a particular input file have been built.

• DATA LIST and the entire set of commands used to define the cases must be enclosed
within an INPUT PROGRAM—END INPUT PROGRAM structure. The END FILE command
must also be used to signal the end of case generation.

• END can be used only with fixed-format data. An error is generated if the END subcom-
mand is used with FREE or LIST.

DATA LIST 421

Example
INPUT PROGRAM.
NUMERIC TINCOME (DOLLAR8.0). /* Total income
LEAVE TINCOME.
DO IF $CASENUM EQ 1.
+ PRINT EJECT.
+ PRINT / ’Name Income’.
END IF
DATA LIST FILE=INCOME END=#EOF NOTABLE / NAME 1-10(A)
 INCOME 16-20(F).
DO IF #EOF.
+ PRINT / ’TOTAL ’, TINCOME.
+ END FILE.
ELSE.
+ PRINT / NAME, INCOME (A10,COMMA8).
+ COMPUTE TINCOME = TINCOME+INCOME. /* Accumulate total income
END IF.
END INPUT PROGRAM.

EXECUTE.

• The data definition commands are enclosed within an INPUT PROGRAM—END INPUT
PROGRAM structure.

• NUMERIC indicates that a new numeric variable, TINCOME, will be created.

• LEAVE tells the program to leave variable TINCOME at its value for the previous case as
each new case is read, so that it can be used to accumulate totals across cases.

• The first DO IF structure, enclosing the PRINT EJECT and PRINT commands, tells the
program to display the headings Name and Income at the top of the display (when
$CASENUM equals 1).

• DATA LIST defines variables NAME and INCOME, and it specifies the scratch variable #EOF
on the END subcommand.

• The second DO IF prints the values for NAME and INCOME and accumulates the variable
INCOME into TINCOME by passing control to ELSE as long as #EOF is not equal to 1. At
the end of the file, #EOF equals 1, and the expression on DO IF is true. The label TOTAL
and the value for TINCOME are displayed, and control is passed to END FILE.

422 DATA LIST

Example
* Concatenate three raw data files.

INPUT PROGRAM.
NUMERIC #EOF1 TO #EOF3. /*These will be used as the END variables.

DO IF #EOF1 & #EOF2 & #EOF3.
+ END FILE.
ELSE IF #EOF1 & #EOF2.
+ DATA LIST FILE=THREE END=#EOF3 NOTABLE / NAME 1-20(A)
 AGE 25-26 SEX 29(A).
+ DO IF NOT #EOF3.
+ END CASE.
+ END IF.
ELSE IF #EOF1.
+ DATA LIST FILE=TWO END=#EOF2 NOTABLE / NAME 1-20(A)
 AGE 21-22 SEX 24(A).
+ DO IF NOT #EOF2.
+ END CASE.
+ END IF.
ELSE.
+ DATA LIST FILE=ONE END=#EOF1 NOTABLE /1 NAME 1-20(A)
 AGE 21-22 SEX 24 (A).
+ DO IF NOT #EOF1.
+ END CASE.
+ END IF.
END IF.
END INPUT PROGRAM.

REPORT FORMAT AUTOMATIC LIST /VARS=NAME AGE SEX.

• The input program contains a DO IF—ELSE IF—END IF structure.

• Scratch variables are used on each END subcommand so the value will not be reinitialized
to the system-missing value after each case is built.

• Three data files are read, two of which contain data in the same format. The third requires
a slightly different format for the data items. All three DATA LIST commands are placed
within the DO IF structure.

• END CASE builds cases from each record of the three files. END FILE is used to trigger
end-of-file processing once all data records have been read.

• This application can also be handled by creating three separate SPSS-format data files
and using ADD FILES to put them together. The advantage of using the input program is
that additional files are not required to store the separate data files prior to performing
ADD FILES.

Variable Definition

The variable definition portion of DATA LIST assigns names and formats to the variables in
the data. Depending on the format of the file, you may also need to specify record and
column location. The following sections describe variable names, location, and formats.

DATA LIST 423

Variable Names

• Variable names must conform to SPSS variable naming rules. System variables (begin-
ning with a $) cannot be defined on DATA LIST. For more information on variable naming
rules, see “Variable Names” on p. 21.

• The keyword TO can be used to generate names for consecutive variables in the data.
Leading zeros in the number are preserved in the name. X1 TO X100 and X001 TO X100
both generate 100 variable names, but the first 99 names are not the same in the two lists.
X01 TO X9 is not a valid specification. For more information on the TO keyword and other
variable-naming rules, see “Variable Names” on p. 21.

• The order in which variables are named on DATA LIST determines their order in the
working data file. If the working file is saved as an SPSS-format data file, the variables
are saved in this order unless they are explicitly reordered on the SAVE or XSAVE
command.

Example
DATA LIST FREE / ID SALARY #V1 TO #V4.

• The FREE keyword indicates that the data are in freefield format. Six variables are
defined: ID, SALARY, #V1, #V2, #V3, and #V4. #V1 to #V4 are scratch variables that are not
stored in the working data file. Their values can be used in transformations but not in
procedure commands.

Variable Location

For fixed-format data, variable locations are specified either explicitly using column loca-
tions or implicitly using FORTRAN-like formats. For freefield data, variable locations are
not specified. Values are read sequentially in the order in which variables are named on the
variable list.

Fixed-Format Data

• If column-style formats are used, you must specify the column location of each variable
after the variable name. If the variable is one column wide, specify the column number.
Otherwise, specify the first column number followed by a dash (–) and the last column
number.

• If several adjacent variables on the same record have the same width and format type, you
can use one column specification after the last variable name. Specify the beginning
column location of the first variable, a dash, and the ending column location of the last
variable. the program divides the total number of columns specified equally among the
variables. If the number of columns does not divide equally, an error message is issued.

• The same column locations can be used to define multiple variables.

• For FORTRAN-like formats, column locations are implied by the width specified on the
formats (see “Variable Formats” on p. 425). To skip columns, use the Tn or nX format
specifications.

424 DATA LIST

• With fixed format, column-style and FORTRAN-like specifications can be mixed on the
same DATA LIST command.

• Record location is indicated by a slash or a slash and record number before the names of
the variables on that record. See the RECORDS subcommand on p. 418 for information
on specifying record location.

• The program ignores data in columns and on records that are not specified on DATA LIST.

• In the data, values do not have to be separated by a space or comma.

Example
DATA LIST FILE=HUBDATA RECORDS=3

/1 YRHIRED 14-15 DEPT 19 SEX 20
/2 SALARY 21-25.

• The data are in fixed format (the default) and are read from the file HUBDATA.

• Three variables, YRHIRED, DEPT, and SEX, are defined on the first record of the
HUBDATA file. One variable, SALARY, is read from columns 21 through 25 on the second
record. The total number of records per case is specified as 3 even though no variables
are defined on the third record. The third record is simply skipped in data definition.

Example
DATA LIST FILE=HUBDATA RECORDS=3

/1 DEPT 19 SEX 20 YRHIRED 14-15 MOHIRED 12-13 HIRED 12-15
/2 SALARY 21-25.

• The first two defined variables are DEPT and SEX, located in columns 19 and 20 on record
1. The next three variables, YRHIRED, MOHIRED, and HIRED, are also located on the first
record.

• YRHIRED is read from columns 14 and 15, MOHIRED from columns 12 and 13, and HIRED
from columns 12 through 15. The variable HIRED is a four-column variable with the first
two columns representing the month when an employee was hired (the same as
MOHIRED) and the last two columns representing the year of employment (the same as
YRHIRED).

• The order of the variables in the dictionary is the order in which they are defined on DATA
LIST, not their sequence in the HUBDATA file.

Example
DATA LIST FILE=HUBDATA RECORDS=3

/1 DEPT 19 SEX 20 MOHIRED YRHIRED 12-15
/2 SALARY 21-25.

• A single column specification follows MOHIRED and YRHIRED. DATA LIST divides the
total number of columns specified equally between the two variables. Thus, each variable
has a width of two columns.

DATA LIST 425

Example
* Mixing column-style and FORTRAN-like format specifications.

DATA LIST FILE=PRSNL / LNAME M_INIT STREET (A20,A1,1X,A10)
 AGE 35-36.

• FORTRAN-like format specifications are used for string variables LNAME, M_INIT, and
STREET. These variables must be adjacent in the data file. LNAME is 20 characters wide
and is located in columns 1–20. M_INIT is one character wide and is located in column 21.
The 1X specification defines a blank column between M_INIT and STREET. STREET is 10
characters wide and is located in columns 23–32.

• A column-style format is used for the variable AGE. AGE begins in column 35, ends in
column 36, and by default has numeric format.

Freefield Data

• In freefield data, column location is irrelevant, since values are not in fixed column posi-
tions. Instead, values are simply separated from each other by blanks or by commas or a
specified delimiter. Any number of consecutive blanks are interpreted as one delimiter
unless a blank space is explicitly specified as the value delimiter. A value cannot be split
across records.

• If there are not enough values to complete the last case, a warning is issued and the incom-
plete case is dropped.

• The specified delimiter can only be used within data values if the value is enclosed in
quotations marks or apostrophes.

• To include an apostrophe in a string value, enclose the value in quotation marks. To
include quotation marks in a value, enclose the value in apostrophes (see “String Values
in Command Specifications” on p. 7).

Variable Formats

Two types of format specifications are available: column-style and FORTRAN-like. With
each type, you can specify both numeric and string formats. The difference between the two
types is that FORTRAN-like formats include the width of the variable and column-style
formats do not.

• Column-style formats are available only for fixed-format data.

• Column-style and FORTRAN-like formats can be mixed on the same DATA LIST to define
fixed-format data.

• A value that cannot be read according to the format type specified is assigned the system-
missing value and a warning message is issued.

The following sections discuss the rules for specifying column-style and FORTRAN-like
formats, followed by additional considerations for numeric and string formats. See p. 412 for
a partial list of available formats. For a complete discussion of formats, see “Variable
Formats” on p. 25.

426 DATA LIST

Column-Style Format Specifications

The following rules apply to column-style formats:

• Data must be in a fixed format.
• Column locations must be specified after variable names. The width of a variable is deter-

mined by the number of specified columns. See “Fixed-Format Data” on p. 423 for infor-
mation on specifying column location.

• Following the column location, specify the format type in parentheses. The format type
applies only to the variable or the list of variables associated with the column location
specification immediately before it. If no format type is specified, numeric (F) format is
used.

• To include decimal positions in the format, specify the format type followed by a comma
and the number of decimal positions. For example, (DOLLAR) specifies only whole dollar
amounts; (DOLLAR,2) specifies DOLLAR format with two decimal positions.

• Since column positions are explicitly specified, the variables can be named in any order.

FORTRAN-like Format Specifications

The following rules apply to FORTRAN-like formats:

• Data can be in either fixed or freefield format.

• Column locations cannot be specified. The width of a variable is determined by the width
portion (w) of the format specification. The width must specify the number of characters
in the widest value.

• One format specification applies to only one variable. The format is specified in paren-
theses after the variable to which it applies. Alternatively, a variable list can be followed
by an equal number of format specifications contained in one set of parentheses. When a
number of consecutive variables have the same format, the number can be used as a multi-
plying factor preceding the format. For example, (3F5.2) assigns the format F5.2 to three
consecutive variables.

• For fixed data, the number of formats specified (either explicitly or implied by the multi-
plication factor) must be the same as the number of variables. Otherwise, the program
issues an error message. If no formats are specified, all variables have the default format
F8.2.

• For freefield data, variables with no specified formats take the default F8.2 format.
However, an asterisk (*) must be used to indicate where the default format stops. Other-
wise, the program tries to apply the next specified format to every variable before it and
issues an error message if the number of formats specified is less than the number of vari-
ables.

• For freefield data, width and decimal specifications are not used to read the data but are
assigned as print and write formats for the variable.

• For fixed data, Tn can be used before a format to indicate that the variable begins at the
nth column, and nX can be used to skip n columns before reading the variable. When Tn
is specified, variables named do not have to follow the order of the variables in the data.

DATA LIST 427

• For freefield data, variables are located according to the sequence in which they are
named on DATA LIST. The order of variables on DATA LIST must correspond to the order
of variables in the data.

• To include decimal positions in the format for fixed-format data, specify the total width
followed by a decimal point and the number of decimal positions. For example, (DOLLAR5)
specifies a five-column DOLLAR format without decimal positions; (DOLLAR5.2) specifies
a five-column DOLLAR format, two columns of which are decimal positions.

Numeric Formats

• Format specifications on DATA LIST are input formats. Based on the width specification
and format type, the program generates output (print and write) formats for each variable.
The program automatically expands the output format to accommodate punctuation char-
acters such as decimal points, commas, dollar signs, or date and time delimiters. (The
program does not automatically expand the output formats you assign on the FORMATS,
PRINT FORMATS, and WRITE FORMATS commands. For information on assigning output
formats, refer to these commands.)

• Scientific notation is accepted in input data with F, COMMA, DOLLAR, DOT, and PCT
formats. The same rules apply to these formats as to E format. The values 1.234E3,
1.234+3, and 1.234E 3 are all legitimate. The last value (with a blank space) will
cause freefield data to be misread and therefore should be avoided when LIST or FREE
is specified.

Implied Decimal Positions

• For fixed-format data, decimal positions can be coded in the data or implied by the
format. If decimal positions are implied but are not entered in the data, the program inter-
prets the rightmost digits in each value as the decimal digits. A coded decimal point in a
value overrides the number of implied decimal places. For example, (DOLLAR,2) specifies
two decimal positions. The value 123 is interpreted as 1.23; however, the value 12.3 is
interpreted as 12.3 because the coded decimal position overrides the number of implied
decimal positions.

• For freefield data, decimal positions cannot be implied but must be coded in the data. If
decimal positions are specified in the format but a data value does not include a decimal
point, the program fills the decimal places with zeros. For example, with F3.1 format
(three columns with one decimal place), the value 22 is displayed as 22.0. If a value in the
data has more decimal digits than are specified in the format, the additional decimals are
truncated in displayed output (but not in calculations). For example, with F3.1 format, the
value 2.22 is displayed as 2.2 even though in calculations it remains 2.22.

Table 1 compares how values are interpreted for fixed and freefield formats. Values in the
table are for a four-column numeric variable.

428 DATA LIST

Example
DATA LIST

/MODEL 1 RATE 2-6(PCT,2) COST 7-11(DOLLAR) READY 12-21(ADATE).
BEGIN DATA
1935 7878811-07-1988
2 16754654606-08-1989
3 17684783612-09-1989
END DATA.

• Data are inline and in fixed format (the default).

• Each variable is followed by its column location. After the column location, a column-
style format is specified in parentheses.

• MODEL begins in column 1, is one column wide, and receives the default numeric F
format.

• RATE begins in column 2 and ends in column 6. The PCT format is specified with two
decimal places. A comma is used to separate the format type from the number of decimal
places. Decimal points are not coded in the data. Thus, the program reads the rightmost
digits of each value as decimal digits. The value 935 for the first case in the data is inter-
preted as 9.35. Note that it does not matter where numbers are entered within the column
width.

• COST begins in column 7 and ends in column 11. DOLLAR format is specified.
• READY begins in column 12 and ends in column 21. ADATE format is specified.

Example
DATA LIST FILE=DATA1

/MODEL (F1) RATE (PCT5.2) COST (DOLLAR5) READY (ADATE10).

• In this example, the FILE subcommand is used because the data are in an external file.

• The variable definition is the same as in the preceding example except that FORTRAN-
like format specifications are used rather than column-style. Column locations are not
specified. Instead, the format specifications include a width for each format type.

Table 1 Interpretation of values in fixed and freefield format

 Fixed Freefield

Values

Default
Two defined

decimal places Default
Two defined

decimal places

2001 2001 20.01 2001.00 2001.00
201 201 2.01 201.00 201.00
–201 –201 –2.01 –201.00 –201.00
2 2 .02 2.00 2.00
20 20 .20 20.00 20.00
2.2 2.2 2.2 2.20 2.20
.201 .201 .201 .201 .201
2 01 Undefined Undefined Two values Two values

DATA LIST 429

• The width (w) portion of each format must specify the total number of characters in the
widest value. DOLLAR5 format for COST accepts the five-digit value 78788, which
displays as $78,788. Thus, the specified input format DOLLAR5 generates an output
format DOLLAR7. The program automatically expands the width of the output format to
accommodate the dollar sign and comma in displayed output.

String Formats

String (alphanumeric) variables can contain any numbers, letters, or characters, including
special characters and imbedded blanks. Numbers entered as values for string variables
cannot be used in calculations unless you convert them to numeric format (see RECODE). On
DATA LIST, a string variable is defined with an A format if data are in standard character form
or an AHEX format if data are in hexadecimal form. For further discussion of string formats,
see “String Variable Formats” on p. 33.

• For fixed-format data, the width of a string variable is either implied by the column loca-
tion specification or specified by the w on the FORTRAN-like format. For freefield data,
the width must be specified on the FORTRAN-like format.

• The string formats defined on DATA LIST are both input and output formats. You cannot
change the format of a defined string variable in this program. However, you can use the
STRING command to define a new string variable and COMPUTE to copy the values from
the old variable (see COMPUTE).

• AHEX format is available only for fixed-format data. Since each set of two hexadecimal
characters represents one standard character, the width specification must be an even
number. The output format for a variable in AHEX format is A format with half the speci-
fied width.

• If a string in the data is longer than its specified width, the string is truncated and a
warning message is displayed. If the string in the data is shorter, it is right-padded with
blanks and no warning message is displayed.

• For fixed-format data, all characters within the specified or implied columns, including
leading, trailing, and imbedded blanks and punctuation marks, are read as the value of the
string.

• For freefield data without a specified delimiter, string values in the data must be enclosed
in apostrophes or quotation marks if the string contains a blank or a comma. Otherwise,
the blank or comma is treated as a delimiter between values. Apostrophes can be included
in a string by enclosing the string in quotation marks. Quotation marks can be included in
a string by enclosing the string in apostrophes.

Example
DATA LIST FILE=WINS FREE /POSTPOS NWINS * POSNAME (A24).

• POSNAME is specified as a 24-character string. The asterisk preceding POSNAME indi-
cates that POSTPOS and NWINS are read with the default format. If the asterisk was not
specified, the program would apply the A24 format to POSNAME and then issue an error
message indicating that there are more variables than specified formats.

430 DATA LIST

Example
DATA LIST FILE=WINS FREE /POSTPOS * NWINS (A5) POSWINS.

• Both POSTPOS and POSWINS receive the default numeric format F8.2.

• NWINS receives the specified format of A5.

431

DATE

DATE keyword [starting value [periodicity]]

 [keyword [starting value [periodicity]]]

 [BY increment]

Keywords for long time periods:

Keywords for short time periods:

Keywords for any time periods:

Example
DATE Y 1960 M.

Overview

DATE generates date identification variables. You can use these variables to label plots and
other output, establish periodicity, and distinguish between historical, validation, and fore-
casting periods.

Keyword Abbreviation

Default
starting value

Default
periodicity

YEAR Y 1 none
QUARTER Q 1 4
MONTH M 1 12

Keyword Abbreviation

Default
starting value

Default
periodicity

WEEK W 1 none
DAY D 1 7
HOUR H 0 24
MINUTE MI 0 60
SECOND S 0 60

Keyword Abbreviation

Default
starting value

Default
periodicity

CYCLE C 1 none
OBS O none none

432 DATE

Options

You can specify the starting value and periodicity. You can also specify an increment for the
lowest-order keyword specified.

Basic Specification

The basic specification on DATE is a single keyword.
• For each keyword specified, DATE creates a numeric variable whose name is the keyword

with an underscore as a suffix. Values for this variable are assigned to observations
sequentially, beginning with the specified starting value. DATE also creates a string vari-
able named DATE_, which combines the information from the numeric date variables and
is used for labeling.

• If no starting value is specified, either the default is used or the value is inferred from the
starting value of another DATE keyword.

• All variables created by DATE are automatically assigned variable labels that describe
periodicity and associated formats. DATE produces a list of the names of the variables it
creates and their variable labels.

Subcommand Order

• Keywords can be specified in any order.

Syntax Rules

• You can specify more than one keyword per command.

• If a keyword is specified more than once, only the last one is executed.

• Keywords that describe long time periods (YEAR, QUARTER, MONTH) cannot be used on
the same command with keywords that describe short time periods (WEEK, DAY, HOUR,
MINUTE, SECOND).

• Keywords CYCLE and OBS can be used with any other keyword.

• The lowest-order keyword specified should correspond to the level at which observations
occur. For example, if observations are daily, the lowest-order keyword should be DAY.

• Keywords (except MINUTE) can be abbreviated down to the first character. MINUTE must
have at least two characters (MI) to distinguish it from keyword MONTH.

• Keywords and additional specifications are separated by commas or spaces.

Starting Value and Periodicity

• A starting value and periodicity can be entered for any keyword except CYCLE. CYCLE
can have only a starting value.

• Starting value and periodicity must be specified for keyword OBS.

DATE 433

• The starting value is specified first, followed by the periodicity, if any.

• You cannot specify a periodicity without first specifying a starting value.

• Starting values for HOUR, MINUTE, and SECOND can range from 0 to the periodicity
minus 1 (for example, 0 to 59). For all other keywords, the range is 1 to the periodicity.

• If both MONTH and QUARTER are specified, DATE can infer the starting value of one from
the other (see “Example 5” on p. 437).

• Specifying conflicting starting values for MONTH and QUARTER, such as Q 1 M 4, results
in an error.

• For keyword YEAR, the starting value can be specified as the last two digits (93) instead
of the whole year (1993) when the series and any forecasting are all within the same
century. The same format (2 digits or 4 digits) must be used in all other commands that
use year values.

• If you specify keywords that describe short time periods and skip over a level of measure-
ment (for example, if you specify HOUR and SECOND but not MINUTE), you must specify
the starting value and periodicity of the keyword after the skipped keywords. Otherwise,
inappropriate periodicities will be generated (see “Example 7” on p. 438).

BY Keyword

• Keyword BY and a positive integer can be specified after the lowest-order keyword on the
command to indicate an increment value. This value indicates how much to increment
values of the lowest-order date variable as they are assigned to observations (see
“Example 4” on p. 436).

• The increment value must divide evenly into the periodicity of the lowest-order DATE
variable specified.

Operations

• DATE creates a numeric variable for every keyword specified, plus a string variable
DATE_, which combines information from all the specified keywords.

• DATE automatically creates variable labels for each keyword specified indicating the vari-
able name and its periodicity. For the DATE_ variable, the label indicates the variable
name and format.

• If the highest-order DATE variable specified has a periodicity, the CYCLE_ variable will
automatically be created. CYCLE_ cannot have a periodicity (see “Example 3” on p. 435).

• Default periodicities are not used for the highest-order keyword specified. The exception
is QUARTER, which will always have a default periodicity.

• The periodicity of the lowest-order variable is the default periodicity used by the proce-
dures when periodicity is not defined either within the procedure or by the TSET command.

• The keyword name with an underscore is always used as the new variable name, even if
keyword abbreviations are used in the specifications.

• Each time the DATE command is used, any DATE variables already in the working data file
are deleted.

434 DATE

• The DATE command invalidates any previous USE and PREDICT commands specified.
The USE and PREDICT periods must be respecified after DATE.

Limitations

• There is no limit on the number of keywords on the DATE command. However, keywords
that describe long time periods (YEAR, QUARTER, MONTH) cannot be used on the same
command with keywords that describe short time periods (WEEK, DAY, HOUR, MINUTE,
SECOND).

• User-defined variable names must not conflict with DATE variable names.

Example 1

DATE Y 1960 M.

• This command generates variables DATE_, YEAR_, and MONTH_.

• YEAR_ has a starting value of 1960. MONTH_ starts at the default value of 1.

• By default, YEAR_ has no periodicity, and MONTH_ has a periodicity of 12.

DATE reports the following:

 Name Label

 YEAR_ YEAR, not periodic
 MONTH_ MONTH, period 12
 DATE_ DATE. FORMAT: "MMM YYYY"

The following is a partial listing of the new variables:

 YEAR_ MONTH_ DATE_

 1960 1 JAN 1960
 1960 2 FEB 1960
 1960 3 MAR 1960
 1960 4 APR 1960
 ...
 1960 10 OCT 1960
 1960 11 NOV 1960
 1960 12 DEC 1960
 1961 1 JAN 1961
 1961 2 FEB 1961
 ...
 1999 4 APR 1999
 1999 5 MAY 1999
 1999 6 JUN 1999

Example 2

DATE WEEK DAY 1 5 HOUR 1 8.

• This command creates four variables (DATE_, WEEK_, DAY_, and HOUR_) in a file where
observations occur hourly in a 5-day, 40-hour week.

• For WEEK_, the default starting value is 1 and the default periodicity is none.

DATE 435

• For DAY_, the starting value has to be specified, even though it is the same as the default,
because a periodicity is specified. The periodicity of 5 means that observations are
measured in a 5-day week.

• For HOUR_, a starting value of 1 is specified. The periodicity of 8 means that observations
occur in an 8-hour day.

DATE reports the following:

 Name Label

 WEEK_ WEEK, not periodic
 DAY_ DAY, period 5
 HOUR_ HOUR, period 24
 DATE_ DATE. FORMAT: "WWW D HH"

The following is a partial listing of the new variables:

 WEEK_ DAY_ HOUR_ DATE_

 1 1 1 1 1 1
 1 1 2 1 1 2
 1 1 3 1 1 3
 1 1 4 1 1 4
 1 1 5 1 1 5
 ...
 1 1 22 1 1 22
 1 1 23 1 1 23
 1 2 0 1 2 0
 1 2 1 1 2 1
 1 2 2 1 2 2
 ...
 4 5 16 4 5 16
 4 5 17 4 5 17
 4 5 18 4 5 18

Example 3

DATE DAY 1 5 HOUR 3 8.

• This command creates four variables (DATE_, CYCLE_, DAY_, and HOUR_) in a file where
observations occur hourly.

• For HOUR_, the starting value is 3 and the periodicity is 8.

• For DAY_, the starting value is 1 and the periodicity is 5. Since DAY_ is the highest-order
variable and it has a periodicity assigned, variable CYCLE_ is automatically created.

DATE reports the following:

 Name Label

 CYCLE_ CYCLE, not periodic
 DAY_ DAY, period 5
 HOUR_ HOUR, period 8
 DATE_ DATE. FORMAT: "CCCC D H"

436 DATE

The following is a partial listing of the new variables:

 CYCLE_ DAY_ HOUR_ DATE_

 1 1 3 1 1 3
 1 1 4 1 1 4
 1 1 5 1 1 5
 1 1 6 1 1 6
 1 1 7 1 1 7
 1 2 0 1 2 0
 1 2 1 1 2 1
 ...
 12 4 6 12 4 6
 12 4 7 12 4 7
 12 5 0 12 5 0
 12 5 1 12 5 1
 12 5 2 12 5 2
 12 5 3 12 5 3
 12 5 4 12 5 4

Example 4

DATE DAY HOUR 1 24 BY 2.

• This command creates three variables (DATE_, DAY_, and HOUR_) in a file where obser-
vations occur every two hours in a 24-hour day.

• DAY_ uses the default starting value of 1. It has no periodicity, since none is specified,
and it is the highest-order keyword on the command.

• HOUR_ starts with a value of 1 and has a periodicity of 24.

• Keyword BY specifies an increment of 2 to use in assigning hour values.

DATE reports the following:

 Name Label

 DAY_ DAY, not periodic
 HOUR_ HOUR, period 24 by 2
 DATE_ DATE. FORMAT: "DDDD HH"

The following is a partial listing of the new variables:

 DAY_ HOUR_ DATE_

 1 1 1 1
 1 3 1 3
 1 5 1 5
 ...
 39 17 39 17
 39 19 39 19
 39 21 39 21
 39 23 39 23
 40 1 40 1
 40 3 40 3
 40 5 40 5
 40 7 40 7
 40 9 40 9
 40 11 40 11

DATE 437

Example 5

DATE Y 1950 Q 2 M.

• This example creates four variables (DATE_, YEAR_, QUARTER_, and MONTH_) in a file
where observations are quarterly, starting with April 1950.

• The starting value for MONTH_ is inferred from QUARTER_.

• This specification is equivalent to DATE Y 1950 Q M 4. Here, the starting value for
QUARTER_ (2) would be inferred from MONTH.

DATE reports the following:

 Name Label

 YEAR_ YEAR, not periodic
 QUARTER_ QUARTER, period 4
 MONTH_ MONTH, period 12
 DATE_ DATE. FORMAT: "MMM YYYY"

The following is a partial listing of the new variables:

 YEAR_ QUARTER_ MONTH_ DATE_

 1950 2 4 APR 1950
 1950 2 5 MAY 1950
 1950 2 6 JUN 1950
 1950 3 7 JUL 1950
 1950 3 8 AUG 1950
 ...
 1988 4 11 NOV 1988
 1988 4 12 DEC 1988
 1989 1 1 JAN 1989
 1989 1 2 FEB 1989
 1989 1 3 MAR 1989
 1989 2 4 APR 1989
 1989 2 5 MAY 1989
 1989 2 6 JUN 1989
 1989 3 7 JUL 1989
 1989 3 8 AUG 1989
 1989 3 9 SEP 1989

Example 6

DATE OBS 9 17.

• This command creates variables DATE_, CYCLE_, and OBS_ and assigns values to obser-
vations sequentially, starting with value 9. The periodicity is 17.

DATE reports the following:

 Name Label

 CYCLE_ CYCLE, not periodic
 OBS_ OBS, period 17
 DATE_ DATE. FORMAT: "CCCC OO"

438 DATE

The following is a partial listing of the new variables:

 CYCLE_ OBS_ DATE_

 1 9 1 9
 1 10 1 10
 1 11 1 11
 1 12 1 12
 1 13 1 13
 1 14 1 14
 1 15 1 15
 1 16 1 16
 1 17 1 17
 2 1 2 1
 2 2 2 2
 ...
 28 15 28 15
 28 16 28 16
 28 17 28 17
 29 1 29 1
 29 2 29 2
 29 3 29 3
 29 4 29 4
 29 5 29 5
 29 6 29 6

Example 7

DATE W H 1 168

• This example creates three variables (DATE_, WEEK_, and HOUR_) in a file where obser-
vations occur hourly.

• Since the DAY keyword is not specified, a periodicity must be specified for HOUR. The
value 168 indicates that there are 168 hours in a week.

• The starting value of HOUR is specified as 1.

DATE reports the following:

 Name Label

 WEEK_ WEEK, not periodic
 HOUR_ HOUR, period 168
 DATE_ DATE. FORMAT: "WWWW HHH"

DATE 439

The following is a partial listing of the new variables:
WEEK_ HOUR_ DATE_

 1 1 1 1
 1 2 1 2
 1 3 1 3
 1 4 1 4
 1 5 1 5
 1 6 1 6
 ...
 1 161 1 161
 1 162 1 162
 1 163 1 163
 1 164 1 164
 1 165 1 165
 1 166 1 166
 1 167 1 167
 2 0 2 0
 2 1 2 1
 2 2 2 2
 2 3 2 3
 2 4 2 4
 2 5 2 5
 ...
 3 131 3 131
 3 132 3 132
 3 133 3 133
 3 134 3 134
 3 135 3 135
 3 136 3 136
 3 137 3 137
 3 138 3 138

440

DEFINE—!ENDDEFINE

DEFINE macro name

 ([{argument name=} [!DEFAULT (string)] [!NOEXPAND] {!TOKENS (n) }]
 {!POSITIONAL= } {!CHAREND (’char’) }
 {!ENCLOSE (’char’, ’char’)}
 {!CMDEND }

 [/{argument name=} ...])
 {!POSITIONAL= }

macro body

!ENDDEFINE

SET command controls:

PRESERVE
RESTORE

Assignment:

!LET var=expression

Conditional processing:

!IF (expression) !THEN statements
 [!ELSE statements]
!IFEND

Looping constructs:

!DO !varname=start !TO finish [!BY step]
 statements [!BREAK]
!DOEND

!DO !varname !IN (list)
 statements [!BREAK]
!DOEND

Macro directives:

!OFFEXPAND
!ONEXPAND

String manipulation functions:

!LENGTH (string)
!CONCAT (string1,string2)
!SUBSTR (string,from,[length])
!INDEX (string1,string2)
!HEAD (string)
!TAIL (string)
!QUOTE (string)
!UNQUOTE (string)
!UPCASE (string)
!BLANKS (n)
!NULL
!EVAL (string)

DEFINE—!ENDDEFINE 441

Example
DEFINE sesvars ()

age sex educ religion.
!ENDDEFINE.

Overview

DEFINE—!ENDDEFINE defines a program macro, which can then be used within a command
sequence. A macro can be useful in several different contexts. For example, it can be used to:

• Issue a series of the same or similar commands repeatedly, using looping constructs rather
than redundant specifications.

• Specify a set of variables.

• Produce output from several program procedures with a single command.

• Create complex input programs, procedure specifications, or whole sessions that can then
be executed.

A macro is defined by specifying any part of a valid command and giving it a macro name.
This name is then specified in a macro call within a command sequence. When the program
encounters the macro name, it expands the macro.

In the examples of macro definition throughout this reference, the macro name, body, and
arguments are shown in lower case for readability. Macro keywords, which are always pre-
ceded by an exclamation point (!), are shown in upper case. For additional examples of the
macro facility, see Appendix D.

Options

Macro Arguments. You can declare and use arguments in the macro definition and then assign
specific values to these arguments in the macro call. You can define defaults for the argu-
ments and indicate whether an argument should be expanded when the macro is called. (See
pp. 444–451.)

Macro Directives. You can turn macro expansion on and off (see p. 451).

String Manipulation Functions. You can process one or more character strings and produce
either a new character string or a character representation of a numeric result (see pp.
451–453).

Conditional Processing. You can build conditional and looping constructs (see p. 455).

Macro Variables. You can directly assign values to macro variables (see p. 458).

Basic Specification

All macros must start with the DEFINE command and end with the macro command
!ENDDEFINE. These commands identify the beginning and end of a macro definition and are
used to separate the macro definition from the rest of the command sequence.

442 DEFINE—!ENDDEFINE

• Immediately after DEFINE, specify the macro name. All macros must have a name. The
name is used in the macro call to refer to the macro. Macro names can begin with an
exclamation point (!), but other than this, follow the usual naming conventions. Starting
a name with an ! ensures that it will not conflict with the other text or variables in the
session.

• Immediately after the macro name, specify an optional argument definition in paren-
theses. This specification indicates the arguments that will be read when the macro is
called. If you do not want to include arguments, specify just the parentheses; the paren-
theses are required, whether or not they enclose an argument.

• Next specify the body of the macro. The macro body can include commands, parts of
commands, or macro statements (macro directives, string manipulation statements, and
looping and conditional processing statements).

• At the end of the macro body, specify the !ENDDEFINE command.

To invoke the macro, issue a macro call in the command sequence. To call a macro, specify
the macro name and any necessary arguments. If there are no arguments, only the macro
name is required.

Operations

• When macros are used in a prompted session, the command line prompt changes to
DEFINE> between the DEFINE and !ENDDEFINE commands.

• When the program reads the macro definition, it translates into upper case all text (except
arguments) not enclosed in quotation marks. Arguments are read in upper and lower case.

• The macro facility does not build and execute commands; rather, it expands strings in a
process called macro expansion. A macro call initiates macro expansion. After the
strings are expanded, the commands (or parts of commands) that contain the expanded
strings are executed as part of the command sequence.

• Any elements on the macro call that are not used in the macro expansion are read and
combined with the expanded strings.

• The expanded strings and the remaining elements from the macro call, if any, must
conform to the syntax rules for the program. If not, the program generates either a
warning or an error message, depending on the nature of the syntax problem.

Limitations

• The BEGIN DATA—END DATA commands are not allowed within a macro.
• The DEFINE command is not allowed within a macro.

DEFINE—!ENDDEFINE 443

Example

* Macro without arguments: Specify a group of variables.

DEFINE sesvars ()
age sex educ religion.

!ENDDEFINE.

FREQUENCIES VARIABLES=sesvars.

• The macro name is sesvars. Because the parentheses are empty, sesvars has no arguments.
The macro body defines four variables: AGE, SEX, EDUC, and RELIGION.

• The macro call is specified on FREQUENCIES. When the call is executed, sesvars is
expanded into the variables AGE, SEX, EDUC, and RELIGION.

• After the macro expansion, FREQUENCIES is executed.

Example

* Macro without arguments: Repeat a sequence of commands.

DATA LIST FILE = MAC4D /GROUP 1 REACTIME 3-5 ACCURACY 7-9.
VALUE LABELS GROUP 1’normal’
 2’learning disabled’.
* Macro definition.
DEFINE check ()
split file by group.
frequencies variables = reactime accuracy

/histogram.
descriptives reactime accuracy.
list.
split file off.
regression variables = group reactime accuracy

/dependent = accuracy
/enter
/scatterplot (reactime, accuracy).

!ENDDEFINE.

check. /* First call of defined macro check

COMPUTE REACTIME = SQRT (REACTIME).
COMPUTE ACCURACY = SQRT (ACCURACY).

check. /* Second call of defined macro check

COMPUTE REACTIME = lg10 (REACTIME * REACTIME).
COMPUTE ACCURACY = lg10 (ACCURACY * ACCURACY).

check. /* Third call of defined macro check

• The name of the macro is CHECK. The empty parentheses indicate that there are no argu-
ments to the macro.

• The macro definition (between DEFINE and !ENDDEFINE) contains the command
sequence to be repeated: SPLIT FILE, FREQUENCIES, DESCRIPTIVES, LIST, SPLIT FILE,
and REGRESSION.

444 DEFINE—!ENDDEFINE

• The macro is called three times. Every time check is encountered, it is replaced with the
command sequence SPLIT FILE, FREQUENCIES, DESCRIPTIVES, LIST, SPLIT FILE OFF,
and REGRESSION. The command sequence using the macro facility is identical to the
command sequence in which the specified commands are explicitly stated three separate
times.

Example

* Macro with an argument.

DEFINE myfreq (vars = !CHAREND(’/’))
frequencies variables = !vars

/format = notable
/statistics = default skewness kurtosis.

!ENDDEFINE.

myfreq vars = AGE SEX EDUC RELIGION /.

• The macro definition defines vars as the macro argument. In the macro call, four variables
are specified as the argument to the macro myfreq. When the program expands the myfreq
macro, it substitutes the argument, AGE, SEX, EDUC, and RELIGION, for !vars and
executes the resulting commands.

Macro Arguments

The macro definition can include macro arguments, which can be assigned specific values in
the macro call. There are two types of arguments: keyword and positional. Keyword arguments
are assigned names in the macro definition; in the macro call, they are identified by name.
Positional arguments are defined after the keyword !POSITIONAL in the macro definition; in
the macro call, they are identified by their relative position within the macro definition.

• There is no limit to the number of arguments that can be specified in a macro.
• All arguments are specified in parentheses and must be separated by slashes.

• If both keyword and positional arguments are defined in the same definition, the posi-
tional arguments must be defined, used in the macro body, and invoked in the macro call
before the keyword arguments.

Example
* A keyword argument.

DEFINE macname (arg1 = !TOKENS(1))
frequencies variables = !arg1.
!ENDDEFINE.

macname arg1 = V1.

• The macro definition defines macname as the macro name and arg1 as the argument. The
argument arg1 has one token and can be assigned any value in the macro call.

DEFINE—!ENDDEFINE 445

• The macro call expands the macname macro. The argument is identified by its name, arg1,
and is assigned the value V1. V1 is substituted wherever !arg1 appears in the macro body.
The macro body in this example is the FREQUENCIES command.

Example
* A positional argument.

DEFINE macname (!POSITIONAL !TOKENS(1)
/!POSITIONAL !TOKENS(2))

frequencies variables = !1 !2.
!ENDDEFINE.

macname V1 V2 V3.

• The macro definition defines macname as the macro name with two positional arguments.
The first argument has one token and the second argument has two tokens. The tokens can
be assigned any values in the macro call.

• The macro call expands the macname macro. The arguments are identified by their posi-
tions. V1 is substituted for !1 wherever !1 appears in the macro body. V2 and V3 are substi-
tuted for !2 wherever !2 appears in the macro body. The macro body in this example is the
FREQUENCIES command.

Keyword Arguments

Keyword arguments are called with user-defined keywords that can be specified in any order.
In the macro body, the argument name is preceded by an exclamation point. On the macro
call, the argument is specified without the exclamation point.

• Keyword argument definitions contain the argument name, an equals sign, and the
!TOKENS, !ENCLOSE, !CHAREND, or !CMDEND keyword (see “Assigning Tokens to
Arguments” on p. 447).

• Argument names are limited to seven characters and cannot match the character portion
of a macro keyword, such as DEFINE, TOKENS, CHAREND, and so forth. See the syntax
chart on p. 440 for a list of macro keywords for the program.

• The keyword !POSITIONAL cannot be used in keyword argument definitions.

• Keyword arguments do not have to be called in the order they were defined.

Example
DATA LIST FILE=MAC / V1 1-2 V2 4-5 V3 7-8.

* Macro definition.
DEFINE macdef2 (arg1 = !TOKENS(1)

/arg2 = !TOKENS(1)
/arg3 = !TOKENS(1))

frequencies variables = !arg1 !arg2 !arg3.
!ENDDEFINE.

* Macro call.
macdef2 arg1=V1 arg2=V2 arg3=V3.
macdef2 arg3=V3 arg1=V1 arg2=V2.

446 DEFINE—!ENDDEFINE

• Three arguments are defined: arg1, arg2, and arg3, each with one token. In the first macro
call, arg1 is assigned the value V1, arg2 is assigned the value V2, and arg3 is assigned the
value V3. V1, V2, and V3 are then used as the variables in the FREQUENCIES command.

• The second macro call yields the same results as the first one. With keyword arguments,
you do not need to call the arguments in the order in which they were defined.

Positional Arguments

Positional arguments must be defined in the order in which they will be specified on the
macro call. In the macro body, the first positional argument is referred to by !1, the second
positional argument defined is referred to by !2, and so on. Similarly, the value of the first
argument in the macro call is assigned to !1, the value of the second argument is assigned to
!2, and so on.

• Positional arguments can be collectively referred to in the macro body by specifying !*.
The !* specification concatenates arguments, separating individual arguments with a
blank.

Example
DATA LIST FILE=MAC / V1 1-2 V2 4-5 V3 7-8.

* Macro definition.
DEFINE macdef (!POS !TOKENS(1)

/!POS !TOKENS(1)
/!POS !TOKENS(1))

frequencies variables = !1 !2 !3.
!ENDDEFINE.

* Macro call.
macdef V1 V2 V3.
macdef V3 V1 V2.

• Three positional arguments with one token each are defined. The first positional argu-
ment is referred to by !1 on the FREQUENCIES command, the second by !2, and the third
by !3.

• When the first call expands the macro, the first positional argument (!1) is assigned the
value V1, the second positional argument (!2) is assigned the value V2, and the third posi-
tional argument (!3) is assigned the value V3.

• In the second call, the first positional argument is assigned the value V3, the second posi-
tional argument is assigned the value V1, and the third positional argument is assigned the
value V2.

Example
DEFINE macdef (!POS !TOKENS(3))
frequencies variables = !1.
!ENDDEFINE.

macdef V1 V2 V3.

DEFINE—!ENDDEFINE 447

• This example is the same as the previous one, except that it assigns three tokens to one
argument instead of assigning one token to each of three arguments. The result is the
same.

Example
DEFINE macdef (!POS !TOKENS(1)

/!POS !TOKENS(1)
/!POS !TOKENS(1)

frequencies variables = !*.
!ENDDEFINE.

macdef V1 V2 V3.

• This is a third alternative for achieving the macro expansion shown in the previous two
examples. It specifies three arguments but then joins them all together on one FREQUEN-
CIES command using the symbol !*.

Assigning Tokens to Arguments

A token is a character or group of characters that has a predefined function in a specified
context. The argument definition must include a keyword that indicates which tokens
following the macro name are associated with each argument.

• Any program keyword, variable name, or delimiter (a slash, comma, etc.) is a valid token.

• The arguments for a given macro can use a combination of the token keywords.

!TOKENS (n) Assign the next n tokens to the argument. The value n can be any pos-
itive integer and must be enclosed in parentheses. !TOKENS allows you
to specify exactly how many tokens are desired.

!CHAREND (’char’) Assign all tokens up to the specified character to the argument. The
character must be a one-character string specified in apostrophes and
enclosed in parentheses. !CHAREND specifies the character that ends
the argument assignment. This is useful when the number of assigned
tokens is arbitrary or not known in advance.

!ENCLOSE (’char’,’char’) Assign all tokens between the indicated characters to the argument.
The starting and ending characters can be any one-character strings,
and they do not need to be the same. The characters are each enclosed
in apostrophes and separated by a comma. The entire specification is
enclosed in parentheses. !ENCLOSE allows you to group multiple to-
kens within a specified pair of symbols. This is useful when the num-
ber of tokens to be assigned to an argument is indeterminate, or when
the use of an ending character is not sufficient.

!CMDEND Assign to the argument all of the remaining text on the macro call, up
to the start of the next command. !CMDEND is useful for changing the
defaults on an existing command. Since !CMDEND reads up to the next
command, only the last argument on the argument list can be specified
with !CMDEND. If !CMDEND is not the final argument, the arguments
following !CMDEND are read as text.

448 DEFINE—!ENDDEFINE

Example
* Keyword !TOKENS.

DEFINE macname (!POSITIONAL !TOKENS (3)
frequencies variables = !1.
!ENDDEFINE.

macname ABC DEFG HI.

• The three tokens following macname (ABC, DEFG, and HI) are assigned to the positional
argument !1, and FREQUENCIES is then executed.

Example
* Keyword !TOKENS.

* Macro definition.
DEFINE earnrep (varrep = !TOKENS (1))
sort cases by !varrep.
report variables = earnings

/break = !varrep
 /summary = mean.
!ENDDEFINE.

* Call the macro three times.
earnrep varrep= SALESMAN. /*First macro call
earnrep varrep = REGION. /*Second macro call
earnrep varrep = MONTH. /*Third macro call

• This macro runs a REPORT command three times, each time with a different break variable.

• The macro name is earnrep, and there is one keyword argument, varrep, which has one
token.

• In the first macro call, the token SALESMAN is substituted for !varrep when the macro is
expanded. REGION and MONTH are substituted for !varrep when the macro is expanded in
the second and third calls.

Example
* Keyword !CHAREND’.

DEFINE macname (!POSITIONAL !CHAREND (’/’)
/!POSITIONAL !TOKENS(2))

frequencies variables = !1.
correlations variables= !2.
!ENDDEFINE.

macname A B C D / E F.

• When the macro is called, all tokens up to the slash (A, B, C, and D) are assigned to the
positional argument !1. E and F are assigned to the positional argument !2.

DEFINE—!ENDDEFINE 449

Example
* Keyword !CHAREND.

DEFINE macname (!POSITIONAL !CHAREND (’/’))
frequencies variables = !1.
!ENDDEFINE.

macname A B C D / E F.

• Although E and F are not part of the positional argument and are not used in the macro
expansion, the program still reads them as text and interprets them in relation to where the
macro definition ends. In this example, macro definition ends after the expanded variable
list (D). E and F are names of variables. Thus, E and F are added to the variable list and
FREQUENCIES is executed with six variables: A, B, C, D, E, and F.

Example
* Keyword !ENCLOSE.

DEFINE macname (!POSITIONAL !ENCLOSE(’(’,’)’))
frequencies variables = !1

/statistics = default skewness.
!ENDDEFINE.

macname (A B C) D E.

• When the macro is called, the three tokens enclosed in parentheses, A, B, and C, are
assigned to the positional argument !1 in the macro body.

• After macro expansion is complete, the program reads the remaining characters on the
macro call as text. In this instance, the macro definition ends with keyword SKEWNESS
on the STATISTICS subcommand. Adding variable names to the STATISTICS subcommand
is not valid syntax. The program generates a warning message but is still able to execute
the frequencies command. Frequency tables and the specified statistics are generated for
the variables A, B, and C.

Example
* Keyword !CMDEND’.

DEFINE macname (!POSITIONAL !TOKENS(2)
/!POSITIONAL !CMDEND)

frequencies variables = !1.
correlations variables= !2.
!ENDDEFINE.

macname A B C D E.

• When the macro is called, the first two tokens following macname (A and B) are assigned to
the positional argument !1. C, D, and E are assigned to the positional argument !2. Thus, the
variables used for FREQUENCIES are A and B, and the variables used for CORRELATION are
C, D, and E.

450 DEFINE—!ENDDEFINE

Example
* Incorrect order for !CMDEND.

DEFINE macname (!POSITIONAL !CMDEND
/!POSITIONAL !tokens(2))

frequencies variables = !1.
correlations variables= !2.
!ENDDEFINE.

macname A B C D E.

• When the macro is called, all five tokens, A, B, C, D, and E, are assigned to the first posi-
tional argument. No variables are included on the variable list for CORRELATIONS,
causing the program to generate an error message. The previous example declares the
arguments in the correct order.

Example
* Using !CMDEND.
SUBTITLE ’CHANGING DEFAULTS ON A COMMAND’.

DEFINE myfreq (!POSITIONAL !CMDEND)
frequencies !1

/statistics=default skewness /* Modify default statistics.
!ENDDEFINE.

myfreq VARIABLES = A B /HIST.

• The macro myfreq contains options for the FREQUENCIES command. When the macro is
called, myfreq is expanded to perform a FREQUENCIES analysis on the variables A and B.
The analysis produces default statistics and the skewness statistic, plus a histogram, as
requested on the macro call.

Example
* Keyword arguments: Using a combination of token keywords.

DATA LIST FREE / A B C D E.
DEFINE macdef3 (arg1 = !TOKENS(1)

/arg2 = !ENCLOSE (’(’,’)’)
/arg3 = !CHAREND(’%’))

frequencies variables = !arg1 !arg2 !arg3.
!ENDDEFINE.
macdef arg1 = A arg2=(B C) arg3=D E %.

• Because arg1 is defined with the !TOKENS keyword, the value for arg1 is simply specified
as A. The value for arg2 is specified in parentheses, as indicated by !ENCLOSE. The value
for arg3 is followed by a percent sign, as indicated by !CHAREND.

Defining Defaults

The optional !DEFAULT keyword in the macro definition establishes default settings for
arguments.

DEFINE—!ENDDEFINE 451

!DEFAULT Default argument. After !DEFAULT, specify the value you want to use as a
default for that argument. A default can be specified for each argument.

Example
DEFINE macdef (arg1 = !DEFAULT (V1) !TOKENS(1)

/arg2 = !TOKENS(1)
/arg3 = !TOKENS(1))

frequencies variables = !arg1 !arg2 !arg3.
!ENDDEFINE.

macdef arg2=V2 arg3=V3.

• V1 is defined as the default value for argument arg1. Since arg1 is not specified on the
macro call, it is set to V1.

• If !DEFAULT (V1) were not specified, the value of arg1 would be set to a null string.

Controlling Expansion

!NOEXPAND indicates that an argument should not be expanded when the macro is called.

!NOEXPAND Do not expand the specified argument. !NOEXPAND applies to a single argu-
ment and is useful only when a macro calls another macro (imbedded macros).

Macro Directives

!ONEXPAND and !OFFEXPAND determine whether macro expansion is on or off. !ONEXPAND
activates macro expansion and !OFFEXPAND stops macro expansion. All symbols between
!OFFEXPAND and !ONEXPAND in the macro definition will not be expanded when the macro
is called.

!ONEXPAND Turn macro expansion on.

!OFFEXPAND Turn macro expansion off. !OFFEXPAND is effective only when SET
MEXPAND is ON (the default).

Macro Expansion in Comments

When macro expansion is on, a macro is expanded when its name is specified in a comment
line beginning with *. To use a macro name in a comment, specify the comment within slashes
and asterisks (/*...*/) to avoid unwanted macro expansion. (See COMMENT.)

String Manipulation Functions

String manipulation functions process one or more character strings and produce either a new
character string or a character representation of a numeric result.

• The result of any string manipulation function is treated as a character string.

452 DEFINE—!ENDDEFINE

• The arguments to string manipulation functions can be strings, variables, or even other
macros. A macro argument or another function can be used in place of a string.

• The strings within string manipulation functions must be either single tokens, such as
ABC, or delimited by apostrophes or quotation marks, as in ‘A B C’. See Table 1 for a set
of expressions and their results.

!LENGTH (str) Return the length of the specified string. The result is a character
representation of the string length. !LENGTH(abcdef) returns 6.
If the string is specified with apostrophes around it, each apos-
trophe adds 1 to the length. !LENGTH (‘abcdef’) returns 8. If an
argument is used in place of a string and it is set to null, this
function will return 0.

!CONCAT(str1,str2 . . .) Return a string that is the concatenation of the strings. For ex-
ample, !CONCAT (abc,def) returns abcdef.

!SUBSTR (str,from,[length]) Return a substring of the specified string. The substring starts at
the from position and continues for the specified length. If the
length is not specified, the substring ends at the end of the input
string. For example, !SUBSTR (abcdef, 3, 2) returns cd.

!INDEX (haystack,needle) Return the position of the first occurrence of the needle in the
haystack. If the needle is not found in the haystack, the function
returns 0. !INDEX (abcdef,def) returns 4.

Table 1 Expressions and results

Expression Result

!UPCASE(abc) ABC
!UPCASE(‘abc’) ABC
!UPCASE(a b c) error
!UPCASE(‘a b c’) A B C
!UPCASE(a/b/c) error
!UPCASE(‘a/b/c’) A/B/C
!UPCASE(!CONCAT(a,b,c)) ABC
!UPCASE(!CONCAT(‘a’,‘b’,‘c’)) ABC
!UPCASE(!CONCAT(a, b, c)) ABC
!UPCASE(!CONCAT(‘a ’,‘b ’,‘c ’)) A B C
!UPCASE(!CONCAT(‘a,b,c’)) A,B,C
!QUOTE(abc) ‘ABC’
!QUOTE(‘abc’) abc
!QUOTE(‘Bill”s’) ‘Bill”s’
!QUOTE(“Bill’s”) “Bill’s”
!QUOTE(Bill’s) error
!QUOTE(!UNQUOTE(‘Bill”s’)) ‘Bill”s’

DEFINE—!ENDDEFINE 453

!HEAD (str) Return the first token within a string. The input string is not
changed. !HEAD (‘a b c’) returns a.

!TAIL (str) Return all tokens except the head token. The input string is not
changed. !TAIL(‘a b c’) returns b c.

!QUOTE (str) Put apostrophes around the argument. !QUOTE replicates any
imbedded apostrophe. !QUOTE(abc) returns ‘abc’. If !1 equals
Bill’s, !QUOTE(!1) returns ‘Bill’’s’.

!UNQUOTE (str) Remove quotation marks and apostrophes from the enclosed
string. If !1 equals ‘abc’, !UNQUOTE(!1) is abc. Internal paired
quotation marks are unpaired; if !1 equals ‘Bill”s’, !UNQUOTE(!1)
is Bill’s. The specification !UNQUOTE(!QUOTE(Bill)) returns Bill.

!UPCASE (str) Convert all lowercase characters in the argument to upper
case. !UPCASE(‘abc def’) returns ABC DEF.

!BLANKS (n) Generate a string containing the specified number of blanks.
The n specification must be a positive integer. !BLANKS(5)
returns a string of five blank spaces. Unless the blanks are
quoted, they cannot be processed, since the macro facility
compresses blanks.

!NULL Generate a string of length 0. This can help determine whether
an argument was ever assigned a value, as in !IF (!1 !EQ !NULL)
!THEN. . . .

!EVAL (str) Scan the argument for macro calls. During macro definition, an
argument to a function or an operand in an expression is not
scanned for possible macro calls unless the !EVAL function is
used. It returns a string that is the expansion of its argument. For
example, if mac1 is a macro, then !EVAL(mac1) returns the
expansion of mac1. If mac1 is not a macro, !EVAL(mac1) returns
mac1.

SET Subcommands for Use with Macro

Four subcommands on the SET command were designed for use with the macro facility.

MPRINT Display a list of commands after macro expansion. The specification on
MPRINT is YES or NO (alias ON or OFF). By default, the output does not
include a list of commands after macro expansion (MPRINT NO). The
MPRINT subcommand on SET is independent of the PRINTBACK command.

MEXPAND Macro expansion. The specification on MEXPAND is YES or NO (alias ON or
OFF). By default, MEXPAND is on. SET MEXPAND OFF prevents macro ex-
pansion. Specifying SET MEXPAND ON reestablishes macro expansion.

MNEST Maximum nesting level for macros. The default number of levels that can be
nested is 50. The maximum number of levels depends on storage capacity.

454 DEFINE—!ENDDEFINE

MITERATE Maximum loop iterations permitted in macro expansions. The default num-
ber of iterations is 1000.

Restoring SET Specifications

The PRESERVE and RESTORE commands bring more flexibility and control over SET.
PRESERVE and RESTORE are available generally within the program but are especially
useful with macros.
• The settings of all SET subcommands—those set explicitly and those set by default (except

MEXPAND)—are saved with PRESERVE. PRESERVE has no further specifications.

• With RESTORE, all SET subcommands are changed to what they were when the PRESERVE
command was executed. RESTORE has no further specifications.

• PRESERVE...RESTORE sequences can be nested up to five levels.

PRESERVE Store the SET specifications that are in effect at this point in the session.

RESTORE Restore the SET specifications to what they were when PRESERVE was
specified.

Example
* Two nested levels of preserve and restore’.

DEFINE macdef ()
preserve.
set format F5.3.
descriptives v1 v2.
+ preserve.
set format F3.0 blanks=999.
descriptives v3 v4.
+ restore.
descriptives v5 v6.
restore.
!ENDDEFINE.

• The first PRESERVE command saves all of the current SET conditions. If none have been
specified, the default settings are saved.

• Next, the format is set to F5.3 and descriptive statistics for V1 and V2 are obtained.

• The second PRESERVE command saves the F5.3 format setting and all other settings in
effect.

• The second SET command changes the format to F3.0 and sets BLANKS to 999 (the default
is SYSMIS). Descriptive statistics are then obtained for V3 and V4.

• The first RESTORE command restores the format to F5.3 and BLANKS to the default, the
setting in effect at the second PRESERVE. Descriptive statistics are then obtained for V5
and V6.

• The last RESTORE restores the settings in effect when the first PRESERVE was specified.

DEFINE—!ENDDEFINE 455

Conditional Processing

The !IF construct specifies conditions for processing. The syntax is as follows:

!IF (expression) !THEN statements
[!ELSE statements]

!IFEND

• !IF, !THEN, and !IFEND are all required. !ELSE is optional.

• If the result of the expression is true, the statements following !THEN are executed. If the
result of the expression is false and !ELSE is specified, the statements following !ELSE are
executed. Otherwise, the program continues.

• Valid operators for the expressions include !EQ, !NE, !GT, !LT, !GE, !LE, !OR, !NOT, and
!AND, or =, ~= (¬=), >, <, >=, <=, |, ~ (¬), and & (see “Relational Operators” on p. 50).

• When a macro is expanded, conditional processing constructs are interpreted after argu-
ments are substituted and functions are executed.

• !IF statements can be nested whenever necessary. Parentheses can be used to specify the
order of evaluation. The default order is the same as for transformations: !NOT has prece-
dence over !AND, which has precedence over !OR.

Example
define mymacro(type = !default(1) !tokens(1))
!if (!type = 1)!then
frequencies varone.
!else
descriptives vartwo.
!ifend.
!enddefine.

Unquoted String Constants in Conditional !IF Statements

Prior to SPSS 12.0, under certain circumstances unquoted string constants in conditional !IF
statements were not case-sensitive. Starting with SPSS 12.0, unquoted string constants are
case-sensitive. For backward compatibility, always use quoted string contstants.

Example
DEFINE noquote(type = !default(a) !tokens(1))
!IF (!type = A)!THEN
FREQUENCIES varone.
!ELSE
DESCRIPTIVES vartwo.
!IFEND.
!ENDDEFINE.
DEFINE yesquote(type = !DEFAULT(‘a’) !TOKENS(1)).
!IF (!type = ‘A’)!THEN
FREQUENCIES varone.
!ELSE
DESCRIPTIVES vartwo.
!IFEND.
!ENDDEFINE.

456 DEFINE—!ENDDEFINE

• In the first macro, !IF(!type = A) is evaluated as false if the value of the unquoted string
constant is lower case ‘a’ -- and is therefore evaluated as false in this example.

• Prior to SPSS 12.0, !IF (!type = A) was evaluated as true if the value of the unquoted string
constant was lower case ‘a’ or upper case ‘A’ -- and was therefore evaluated as true in
this example.

• In the second macro, !IF (!type = ‘A’) is always evaluated as false if the value of the string
constant is lower case ‘a’.

Looping Constructs

Looping constructs accomplish repetitive tasks. Loops can be nested to whatever depth is
required, but loops cannot be crossed. The macro facility has two looping constructs: the
index loop (DO loop) and the list-processing loop (DO IN loop).

• When a macro is expanded, looping constructs are interpreted after arguments are substi-
tuted and functions are executed.

Index Loop

The syntax of an index loop is as follows:

!DO !var = start !TO finish [!BY step]
statements

!BREAK
!DOEND

• The indexing variable is !var and must begin with an exclamation point.

• The start, finish, and step values must be numbers or expressions that evaluate to numbers.

• The loop begins at the start value and continues until it reaches the finish value (unless a
!BREAK statement is encountered). The step value is optional and can be used to specify
a subset of iterations. If start is set to 1, finish to 10, and step to 3, the loop will be
executed four times with the index variable assigned values 1, 4, 7, and 10.

• The statements can be any valid commands or macro keywords. !DOEND specifies the end
of the loop.

• !BREAK is an optional specification. It can be used in conjunction with conditional
processing to exit the loop.

Example
DEFINE macdef (arg1 = !TOKENS(1)
 /arg2 = !TOKENS(1))
!DO !i = !arg1 !TO !arg2.
frequencies variables = !CONCAT(var,!i).
!DOEND
!ENDDEFINE.
macdef arg1 = 1 arg2 = 3.

• The variable !i is initially assigned the value 1 (arg1) and is incremented until it equals 3
(arg2), at which point the loop ends.

DEFINE—!ENDDEFINE 457

• The first loop concatenates var and the value for !I, which is 1 in the first loop. The second loop
concatenates var and 2, and the third concatenates var and 3. The result is that FREQUENCIES
is executed three times, with variables VAR1, VAR2, and VAR3, respectively.

List-processing Loop

The syntax of a list-processing loop is as follows:

!DO !var !IN (list)
statements

!BREAK
!DOEND

• The !DO and !DOEND statements begin and end the loop. !BREAK is used to exit the loop.

• The !IN function requires one argument, which must be a list of items. The number of
items on the list determines the number of iterations. At each iteration, the index variable
!var is set to each item on the list.

• The list can be any expression, although it is usually a string. Only one list can be speci-
fied in each list-processing loop.

Example
DEFINE macdef (!POS !CHAREND(’/’))
!DO !i !IN (!1)
frequencies variables = !i.
!DOEND
!ENDDEFINE.
macdef VAR1 VAR2 VAR3 /.

• The macro call assigns three variables, VAR1, VAR2, and VAR3, to the positional argument
!1. Thus, the loop completes three iterations.

• In the first iteration, !i is set to value VAR1. In the second and third iterations, !I is set to
VAR2 and VAR3, respectively. Thus, FREQUENCIES is executed three times, respectively
with VAR1, VAR2, and VAR3.

Example
DEFINE macdef (!POS !CHAREND(’/’))
!DO !i !IN (!1)
sort cases by !i.
report var = earnings

/break = !i
/summary = mean.

!DOEND
!ENDDEFINE.

macdef SALESMAN REGION MONTH /.

• The positional argument !1 is assigned the three variables SALESMAN, REGION, and
MONTH. The loop is executed three times and the index variable !i is set to each of the vari-
ables in succession. The macro creates three reports.

458 DEFINE—!ENDDEFINE

Direct Assignment of Macro Variables

The macro command !LET assigns values to macro variables. The syntax is as follows:

!LET !var = expression

• The expression must be either a single token or enclosed in parentheses.

• The macro variable !var cannot be a macro keyword (see the syntax chart on p. 440 for a
list of macro keywords), and it cannot be the name of one of the arguments within the
macro definition. Thus, !LET cannot be used to change the value of an argument.

• The macro variable !var can be a new variable or one previously assigned by a !DO
command or another !LET command.

Example
!LET !a = 1
!LET !b = !CONCAT(ABC,!SUBSTR(!1,3,1),DEF)
!LET !c = (!2 ~= !NULL)

• The first !LET sets !a equal to 1.

• The second !LET sets !b equal to ABC followed by 1 character taken from the third posi-
tion of !1 followed by DEF.

• The last !LET sets !c equal to 0 (false) if !2 is a null string or to 1 (true) if !2 is not a null
string.

DEFINE—!ENDDEFINE 459

460

DELETE VARIABLES

DELETE VARIABLES varlist.

Example
DElETE VARIABLES varX varY thisVar TO thatVar.

Overview

DELETE VARIABLES deletes the specified variables from the working data file.

Basic Specification

• The basic specification is one or more variable names.

Syntax Rules

• The variables must exist in the working data file.

• The keyword TO can be used to specify consecutive variable in the working data file.

• This command cannot be executed when there are pending transformations. For example,
DELETE VARIABLES cannot be immediately preceded by transformation commands such
as COMPUTE or RECODE.

• DELETE VARIABLES cannot be used with TEMPORARY.

• You cannot use this command to delete all variables in the working data file. If the variable
list includes all variables in the working data file, an error results and the command is not
executed. Use NEW FILE to delete all variables.

461

DESCRIPTIVES

DESCRIPTIVES [VARIABLES=] varname[(zname)] [varname...]

 [/MISSING={VARIABLE**} [INCLUDE]]
 {LISTWISE }

 [/SAVE]

 [/STATISTICS=[DEFAULT**] [MEAN**] [MIN**] [SKEWNESS]]
 [STDDEV**] [SEMEAN] [MAX**] [KURTOSIS]
 [VARIANCE] [SUM] [RANGE] [ALL]

 [/SORT=[{MEAN }] [{(A)}]]
 {SMEAN } {(D)}
 {STDDEV }
 {VARIANCE}
 {KURTOSIS}
 {SKEWNESS}
 {RANGE }
 {MIN }
 {MAX }
 {SUM }
 {NAME }

**Default if the subcommand is omitted.

Example
DESCRIPTIVES VARIABLES=FOOD RENT, APPL TO COOK, TELLER, TEACHER

/STATISTICS=VARIANCE DEFAULT
/MISSING=LISTWISE.

Overview

DESCRIPTIVES computes univariate statistics, including the mean, standard deviation,
minimum, and maximum, for numeric variables. Because it does not sort values into a
frequency table, DESCRIPTIVES is an efficient means of computing descriptive statistics for
continuous variables. Other procedures that display descriptive statistics include FREQUEN-
CIES, MEANS, and EXAMINE.

Options

Z Scores. You can create new variables that contain z scores (standardized deviation scores
from the mean) and add them to the working data file by specifying z-score names on the VARI-
ABLES subcommand or by using the SAVE subcommand.

Statistical Display. Optional statistics available with the STATISTICS subcommand include the
standard error of the mean, variance, kurtosis, skewness, range, and sum. DESCRIPTIVES does
not compute the median or mode (see FREQUENCIES or EXAMINE).

Display Order. You can list variables in ascending or descending alphabetical order or by the
numerical value of any of the available statistics using the SORT subcommand.

462 DESCRIPTIVES

Basic Specification

The basic specification is the VARIABLES subcommand with a list of variables. The actual
keyword VARIABLES can be omitted. All cases with valid values for a variable are included in
the calculation of statistics for that variable. Statistics include the mean, standard deviation,
minimum, maximum, and number of cases with valid values.

Subcommand Order

• Subcommands can be used in any order.

Operations

• If a string variable is specified on the variable list, no statistics are displayed for that variable.

• If there is insufficient memory available to calculate statistics for all variables requested,
DESCRIPTIVES truncates the variable list.

Example

DESCRIPTIVES VARIABLES=FOOD RENT, APPL TO COOK, TELLER, TEACHER
/STATISTICS=VARIANCE DEFAULT
/MISSING=LISTWISE.

• DESCRIPTIVES requests statistics for the variables FOOD, RENT, TELLER, TEACHER, and
all of the variables between and including APPL and COOK in the working data file.

• STATISTICS requests the variance and the default statistics: mean, standard deviation,
minimum, and maximum.

• MISSING specifies that cases with missing values for any variable on the variable list will
be omitted from the calculation of statistics for all variables.

Example

DESCRIPTIVES VARS=ALL.

• DESCRIPTIVES requests statistics for all variables in the working file.

• Because no STATISTICS subcommand is included, only the mean, standard deviation,
minimum, and maximum are displayed.

VARIABLES Subcommand

VARIABLES names the variables for which you want to compute statistics. The actual keyword
VARIABLES can be omitted.

• The keyword ALL can be used to refer to all user-defined variables in the working data file.

• Only one variable list can be specified.

DESCRIPTIVES 463

Z Scores

The z-score transformation standardizes variables to the same scale, producing new variables
with a mean of 0 and a standard deviation of 1. These variables are added to the working data
file.

• To obtain z scores for all specified variables, use the SAVE subcommand.
• To obtain z scores for a subset of variables, name the new variable in parentheses following

the source variable on the VARIABLES subcommand and do not use the SAVE subcommand.

• Specify new names individually; a list in parentheses is not recognized.

• The new variable name can be any acceptable variable name that is not already part of the
working data file. For information on variable naming rules, see “Variable Names” on p.
21.

Example
DESCRIPTIVES VARIABLES=NTCSAL NTCPUR (PURCHZ) NTCPRI (PRICEZ).

• DESCRIPTIVES creates z-score variables named PURCHZ and PRICEZ for NTCPUR and
NTCPRI, respectively. No z-score variable is created for NTCSAL.

SAVE Subcommand

SAVE creates a z-score variable for each variable specified on the VARIABLES subcommand.
The new variables are added to the working data file.

• When DESCRIPTIVES creates new z-score variables, it displays the source variable
names, the new variable names, and their labels in the Notes table.

• DESCRIPTIVES automatically supplies variable names for the new variables. The new
variable name is created by prefixing the letter Z to the first seven characters of the source
variable name. For example, ZNTCPRI is the z-score variable for NTCPRI.

• If the default naming convention duplicates variable names in the working data file,
DESCRIPTIVES uses an alternative naming convention: first ZSC001 through ZSC099,
then STDZ01 through STDZ09, then ZZZZ01 through ZZZZ09, and then ZQZQ01 through
ZQZQ09.

• Variable labels are created by prefixing ZSCORE to the first 31 characters of the source
variable label. If the alternative naming convention is used, DESCRIPTIVES prefixes
ZSCORE(varname) to the first 31 characters of the label. If the source variable does not
have a label, DESCRIPTIVES uses ZSCORE(varname) for the label.

• If you specify new names on the VARIABLES subcommand and use the SAVE subcom-
mand, DESCRIPTIVES creates one new variable for each variable on the VARIABLES sub-
command, using default names for variables not assigned names on VARIABLES.

• If at any time you want to change any of the variable names, whether those DESCRIPTIVES
created or those you previously assigned, you can do so with the RENAME VARIABLES
command.

464 DESCRIPTIVES

Example
DESCRIPTIVES VARIABLES=ALL

/SAVE.

• SAVE creates a z-score variable for all variables in the working file. All z-score variables
receive the default name.

Example
DESCRIPTIVES VARIABLES=NTCSAL NTCPUR (PURCHZ) NTCPRI (PRICEZ)

/SAVE.

• DESCRIPTIVES creates three z-score variables named ZNTCSAL (the default name),
PURCHZ, and PRICEZ.

Example
DESCRIPTIVES VARIABLES=SALARY86 SALARY87 SALARY88

/SAVE.

• In this example, the default naming convention would produce duplicate names. Thus, the
names of the three z-score variables are ZSALARY8, ZSC001, and ZSC002.

STATISTICS Subcommand

By default, DESCRIPTIVES displays the mean, standard deviation, minimum, and maximum.
Use the STATISTICS subcommand to request other statistics.
• When you use STATISTICS, DESCRIPTIVES displays only those statistics you request.

• The keyword ALL obtains all statistics.

• You can specify the keyword DEFAULT to obtain the default statistics without having to
name MEAN, STDDEV, MIN, and MAX.

• The median and mode, which are available in FREQUENCIES and EXAMINE, are not avail-
able in DESCRIPTIVES. These statistics require that values be sorted, and DESCRIPTIVES
does not sort values (the SORT subcommand does not sort values, it simply lists variables
in the order you request).

• If you request a statistic that is not available, DESCRIPTIVES issues an error message and
the command is not executed.

MEAN Mean.

SEMEAN Standard error of the mean.

STDDEV Standard deviation.

VARIANCE Variance.

KURTOSIS Kurtosis and standard error of kurtosis.

SKEWNESS Skewness and standard error of skewness.

RANGE Range.

MIN Minimum observed value.

DESCRIPTIVES 465

MAX Maximum observed value.

SUM Sum.

DEFAULT Mean, standard deviation, minimum, and maximum. These are the default
statistics.

ALL All statistics available in DESCRIPTIVES.

SORT Subcommand

By default, DESCRIPTIVES lists variables in the order in which they are specified on VARIABLES.
Use SORT to list variables in ascending or descending alphabetical order of variable name or in
ascending or descending order of numeric value of any of the statistics.

• If you specify SORT without any keywords, variables are sorted in ascending order of the
mean.

• SORT can sort variables by the value of any of the statistics available with DESCRIPTIVES,
but only those statistics specified on STATISTICS (or the default statistics) are displayed.

Only one of the following keywords can be specified on SORT:

MEAN Sort by mean. This is the default when SORT is specified without a keyword.

SEMEAN Sort by standard error of the mean.

STDDEV Sort by standard deviation.

VARIANCE Sort by variance.

KURTOSIS Sort by kurtosis.

SKEWNESS Sort by skewness.

RANGE Sort by range.

MIN Sort by minimum observed value.

MAX Sort by maximum observed value.

SUM Sort by sum.

NAME Sort by variable name.

Sort order can be specified in parentheses following the specified keyword:

A Sort in ascending order. This is the default when SORT is specified without keywords.

D Sort in descending order.

466 DESCRIPTIVES

Example
DESCRIPTIVES VARIABLES=A B C
/STATISTICS=DEFAULT RANGE
/SORT=RANGE (D).

• DESCRIPTIVES sorts variables A, B, and C in descending order of range and displays the
mean, standard deviation, minimum and maximum values, range, and the number of valid
cases.

MISSING Subcommand

MISSING controls missing values.

• By default, DESCRIPTIVES deletes cases with missing values on a variable-by-variable
basis. A case with a missing value for a variable will not be included in the summary sta-
tistics for that variable, but the case will be included for variables where it is not missing.

• The VARIABLE and LISTWISE keywords are alternatives; however, each can be specified
with INCLUDE.

• When either the keyword VARIABLE or the default missing-value treatment is used,
DESCRIPTIVES reports the number of valid cases for each variable. It always displays
the number of cases that would be available if listwise deletion of missing values had
been selected.

VARIABLE Exclude cases with missing values on a variable-by-variable basis. This is
the default.

LISTWISE Exclude cases with missing values listwise. Cases with missing values for
any variable named are excluded from the computation of statistics for all
variables.

INCLUDE Include user-missing values.

467

DISCRIMINANT

DISCRIMINANT GROUPS=varname(min,max) /VARIABLES=varlist

 [/SELECT=varname(value)]

 [/ANALYSIS=varlist[(level)] [varlist...]]

 [/METHOD={DIRECT**}] [/TOLERANCE={0.001}]
 {WILKS } { n }
 {MAHAL }
 {MAXMINF }
 {MINRESID}
 {RAO }

 [/MAXSTEPS={n}]

 [/FIN={3.84**}] [/FOUT={2.71**}] [/PIN={n}]
 { n } { n }

 [/POUT={n}] [/VIN={0**}]
 { n }

 [/FUNCTIONS={g-1,100.0,1.0**}] [/PRIORS={EQUAL** }]
 {n1 , n2 ,n3 } {SIZE }
 {value list}
 [/SAVE=[CLASS[=varname]] [PROBS[=rootname]]

 [SCORES[=rootname]]]

 [/ANALYSIS=...]

 [/MISSING={EXCLUDE**}]
 {INCLUDE }

 [/MATRIX=[OUT({* })] [IN({* })]]
 {file} {file}

 [/HISTORY={STEP**}]
 {NONE }

 [/ROTATE={NONE** }]
 {COEFF }
 {STRUCTURE}

 [/CLASSIFY={NONMISSING } {POOLED } [MEANSUB]]
 {UNSELECTED } {SEPARATE}
 {UNCLASSIFIED}

 [/STATISTICS=[MEAN] [COV] [FPAIR] [RAW] [STDDEV]
 [GCOV] [UNIVF] [COEFF] [CORR] [TCOV]
 [BOXM] [TABLE] [CROSSVALID]
 [ALL]]

 [/PLOT=[MAP] [SEPARATE] [COMBINED] [CASES[(n)]] [ALL]]

 [/OUTFILE MODEL(filename)]

**Default if subcommand or keyword is omitted.

468 DISCRIMINANT

Example
DISCRIMINANT GROUPS=OUTCOME (1,4)

/VARIABLES=V1 TO V7
/SAVE CLASS=PREDOUT.

Overview

DISCRIMINANT performs linear discriminant analysis for two or more groups. The goal of
discriminant analysis is to classify cases into one of several mutually exclusive groups based
on their values for a set of predictor variables. In the analysis phase, a classification rule is
developed using cases for which group membership is known. In the classification phase, the
rule is used to classify cases for which group membership is not known. The grouping
variable must be categorical, and the independent (predictor) variables must be interval or
dichotomous, since they will be used in a regression-type equation.

Options

Variable Selection Method. In addition to the direct-entry method, you can specify any of
several stepwise methods for entering variables into the discriminant analysis using the
METHOD subcommand. You can set the values for the statistical criteria used to enter vari-
ables into the equation using the TOLERANCE, FIN, PIN, FOUT, POUT, and VIN subcommands,
and you can specify inclusion levels on the ANALYSIS subcommand. You can also specify the
maximum number of steps in a stepwise analysis using the MAXSTEPS subcommand.

Case Selection. You can select a subset of cases for the analysis phase using the SELECT
subcommand.

Prior Probabilities. You can specify prior probabilities for membership in a group using the
PRIORS subcommand. Prior probabilities are used in classifying cases.

New Variables. You can add new variables to the working data file containing the predicted
group membership, the probability of membership in each group, and discriminant function
scores using the SAVE subcommand.

Classification Options. With the CLASSIFY subcommand, you can classify only those cases
that were not selected for inclusion in the discriminant analysis, or only those cases whose
value for the grouping variable was missing or fell outside the range analyzed. In addition,
you can classify cases based on the separate-group covariance matrices of the functions
instead of the pooled within-groups covariance matrix.

Statistical Display. You can request any of a variety of statistics on the STATISTICS subcom-
mand. You can rotate the pattern or structure matrices using the ROTATE subcommand. You
can compare actual with predicted group membership using a classification results table
requested with the STATISTICS subcommand or compare any of several types of plots or histo-
grams using the PLOT subcommand.

DISCRIMINANT 469

Basic Specification

The basic specification requires two subcommands:
• GROUPS specifies the variable used to group cases.

• VARIABLES specifies the predictor variables.

By default, DISCRIMINANT enters all variables simultaneously into the discriminant equation
(the DIRECT method), provided that they are not so highly correlated that multicollinearity
problems arise. Default output includes analysis case processing summary, valid numbers of
cases in group statistics, variables failing tolerance test, a summary of canonical discriminant
functions, standardized canonical discriminant function coefficients, a structure matrix
showing pooled within-groups correlations between the discriminant functions and the
predictor variables, and functions at group centroids.

Subcommand Order

• The GROUPS, VARIABLES, and SELECT subcommands must precede all other subcom-
mands and may be entered in any order.

• The analysis block follows, which may include ANALYSIS, METHOD, TOLERANCE,
MAXSTEPS, FIN, FOUT, PIN, POUT, VIN, FUNCTIONS, PRIORS, and SAVE. Each analysis
block performs a single analysis. To do multiple analyses, specify multiple analysis blocks.

• The keyword ANALYSIS is optional for the first analysis block. Each new analysis block
must begin with an ANALYSIS subcommand. Remaining subcommands in the block may
be used in any order and apply only to the analysis defined within the same block.

• No analysis block subcommands can be specified after any of the global subcommands,
which apply to all analysis blocks. The global subcommands are MISSING, MATRIX,
HISTORY, ROTATE, CLASSIFY, STATISTICS, and PLOT. If an analysis block subcommand
appears after a global subcommand, the program displays a warning and ignores it.

Syntax Rules

• Only one GROUPS, one SELECT, and one VARIABLES subcommand can be specified per
DISCRIMINANT command.

Operations

• DISCRIMINANT first estimates one or more discriminant functions that best distinguish
among the groups.

• Using these functions, DISCRIMINANT then classifies cases into groups (if classification
output is requested).

• If more than one analysis block is specified, the above steps are repeated for each block.

470 DISCRIMINANT

Limitations

• Pairwise deletion of missing data is not available.

Example

DISCRIMINANT GROUPS=OUTCOME (1,4)
/VARIABLES=V1 TO V7
/SAVE CLASS=PREDOUT
/STATISTICS=COV GCOV TCOV.

• Only cases with values 1, 2, 3, or 4 for the grouping variable GROUPS will be used in
computing the discriminant functions.

• The variables in the working data file between and including V1 and V7 will be used to
compute the discriminant functions and to classify cases.

• Predicted group membership will be saved in the variable PREDOUT.

• In addition to the default output, the STATISTICS subcommand requests the pooled
within-groups covariance matrix and the group and total covariance matrices.

• Since SAVE is specified, DISCRIMINANT also displays a classification processing summary
table and a priori probabilities for groups table.

GROUPS Subcommand

GROUPS specifies the name of the grouping variable, which defines the categories or groups,
and a range of categories.

• GROUPS is required and can be specified only once.

• The specification consists of a variable name followed by a range of values in parentheses.

• Only one grouping variable may be specified; its values must be integers. To use a string
variable as the grouping variable, first use AUTORECODE to convert the string values to
integers and then specify the recoded variable as the grouping variable.

• Empty groups are ignored and do not affect calculations. For example, if there are no
cases in group 2, the value range (1, 5) will define only four groups.

• Cases with values outside the value range or missing are ignored during the analysis
phase but are classified during the classification phase.

VARIABLES Subcommand

VARIABLES identifies the predictor variables, which are used to classify cases into the groups
defined on the GROUPS subcommand. The list of variables follows the usual conventions for
variable lists.

• VARIABLES is required and can be specified only once. Use the ANALYSIS subcommand
to obtain multiple analyses.

• Only numeric variables can be used.

DISCRIMINANT 471

• Variables should be suitable for use in a regression-type equation, either measured at the
interval level or dichotomous.

SELECT Subcommand

SELECT limits cases used in the analysis phase to those with a specified value for any one
variable.

• Only one SELECT subcommand is allowed. It can follow the GROUPS and VARIABLES
subcommands but must precede all other subcommands.

• The specification is a variable name and a single integer value in parentheses. Multiple
variables or values are not permitted.

• The selection variable does not have to be specified on the VARIABLES subcommand.

• Only cases with the specified value for the selection variable are used in the analysis
phase.

• All cases, whether selected or not, are classified by default. Use CLASSIFY=UNSELECTED
to classify only the unselected cases.

• When SELECT is used, classification statistics are reported separately for selected and
unselected cases, unless CLASSIFY=UNSELECTED is used to restrict classification.

Example
DISCRIMINANT GROUPS=APPROVAL(1,5)

/VARS=Q1 TO Q10
/SELECT=COMPLETE(1)
/CLASSIFY=UNSELECTED.

• Using only cases with the value 1 for the variable COMPLETE, DISCRIMINANT estimates
a function of Q1 to Q10 that discriminates between the categories 1 to 5 of the grouping
variable APPROVAL.

• Because CLASSIFY=UNSELECTED is specified, the discriminant function will be used to
classify only the unselected cases (cases for which COMPLETE does not equal 1).

ANALYSIS Subcommand

ANALYSIS is used to request several different discriminant analyses using the same grouping
variable, or to control the order in which variables are entered into a stepwise analysis.

• ANALYSIS is optional for the first analysis block. By default, all variables specified on the
VARIABLES subcommand are included in the analysis.

• The variables named on ANALYSIS must first be specified on the VARIABLES subcommand.
• The keyword ALL includes all variables on the VARIABLES subcommand.

• If the keyword TO is used to specify a list of variables on an ANALYSIS subcommand, it
refers to the order of variables on the VARIABLES subcommand, which is not necessarily
the order of variables in the working data file.

472 DISCRIMINANT

Example
DISCRIMINANT GROUPS=SUCCESS(0,1)

/VARIABLES=V10 TO V15, AGE, V5
/ANALYSIS=V15 TO V5
/ANALYSIS=ALL.

• The first analysis will use the variables V15, AGE, and V5 to discriminate between cases
where SUCCESS equals 0 and SUCCESS equals 1.

• The second analysis will use all variables named on the VARIABLES subcommand.

Inclusion Levels

When you specify a stepwise method on the METHOD subcommand (any method other than
the default direct-entry method), you can control the order in which variables are considered
for entry or removal by specifying inclusion levels on the ANALYSIS subcommand. By
default, all variables in the analysis are entered according to the criterion requested on the
METHOD subcommand.

• An inclusion level is an integer between 0 and 99, specified in parentheses after a variable
or list of variables on the ANALYSIS subcommand.

• The default inclusion level is 1.

• Variables with higher inclusion levels are considered for entry before variables with lower
inclusion levels.

• Variables with even inclusion levels are entered as a group.

• Variables with odd inclusion levels are entered individually, according to the stepwise
method specified on the METHOD subcommand.

• Only variables with an inclusion level of 1 are considered for removal. To make a variable
with a higher inclusion level eligible for removal, name it twice on the ANALYSIS
subcommand, first specifying the desired inclusion level and then an inclusion level of 1.

• Variables with an inclusion level of 0 are never entered. However, the statistical criterion
for entry is computed and displayed.

• Variables that fail the tolerance criterion are not entered regardless of their inclusion level.

The following are some common methods of entering variables and the inclusion levels that
could be used to achieve them. These examples assume that one of the stepwise methods is
specified on the METHOD subcommand (otherwise, inclusion levels have no effect).

Direct. ANALYSIS=ALL(2) forces all variables into the equation. (This is the default and can be
requested with METHOD=DIRECT or simply by omitting the METHOD subcommand.)

Stepwise. ANALYSIS=ALL(1) yields a stepwise solution in which variables are entered and
removed in stepwise fashion. (This is the default when anything other than DIRECT is spec-
ified on the METHOD subcommand.)

Forward. ANALYSIS=ALL(3) enters variables into the equation stepwise but does not remove
variables.

Backward. ANALYSIS=ALL(2) ALL(1) forces all variables into the equation and then allows
them to be removed stepwise if they satisfy the criterion for removal.

DISCRIMINANT 473

Example
DISCRIMINANT GROUPS=SUCCESS(0,1)
 /VARIABLES=A, B, C, D, E
 /ANALYSIS=A TO C (2) D, E (1)
 /METHOD=WILKS.

• A, B, and C are entered into the analysis first, assuming that they pass the tolerance crite-
rion. Since their inclusion level is even, they are entered together.

• D and E are then entered stepwise. The one that minimizes the overall value of Wilks’
lambda is entered first.

• After entering D and E, the program checks whether the partial F for either one justifies
removal from the equation (see the FOUT and POUT subcommands on p. 474).

Example
DISCRIMINANT GROUPS=SUCCESS(0,1)
 /VARIABLES=A, B, C, D, E
 /ANALYSIS=A TO C (2) D, E (1).

• Since no stepwise method is specified, inclusion levels have no effect and all variables
are entered into the model at once.

METHOD Subcommand

METHOD is used to select a method for entering variables into an analysis.

• A variable will never be entered into the analysis if it does not pass the tolerance criterion
specified on the TOLERANCE subcommand (or the default).

• A METHOD subcommand applies only to the preceding ANALYSIS subcommand, or to an
analysis using all predictor variables if no ANALYSIS subcommand has been specified
before it.

• If more than one METHOD subcommand is specified within one analysis block, the last is
used.

Any one of the following methods can be specified on the METHOD subcommand:

DIRECT All variables passing the tolerance criteria are entered simultaneously. This
is the default method.

WILKS At each step, the variable that minimizes the overall Wilks’ lambda is
entered.

MAHAL At each step, the variable that maximizes the Mahalanobis distance between
the two closest groups is entered.

MAXMINF At each step, the variable that maximizes the smallest F ratio between pairs
of groups is entered.

MINRESID At each step, the variable that minimizes the sum of the unexplained varia-
tion for all pairs of groups is entered.

RAO At each step, the variable that produces the largest increase in Rao’s V is
entered.

474 DISCRIMINANT

OUTFILE Subcommand

OUTFILE writes model information to an XML file. SmartScore and future releases of
WhatIf? will be able to use this file.

• The minimum specification is the keyword MODEL and a file name enclosed in paren-
theses.

• The OUTFILE subcommand cannot be used if split file processing is on (SPLIT FILE
command).

TOLERANCE Subcommand

TOLERANCE specifies the minimum tolerance a variable can have and still be entered into
the analysis. The tolerance of a variable that is a candidate for inclusion in the analysis is the
proportion of its within-groups variance not accounted for by other variables in the analysis.
A variable with very low tolerance is nearly a linear function of the other variables; its inclu-
sion in the analysis would make the calculations unstable.

• The default tolerance is 0.001.
• You can specify any decimal value between 0 and 1 as the minimum tolerance.

PIN and POUT Subcommands

PIN specifies the minimum probability of F that a variable can have to enter the analysis and
POUT specifies the maximum probability of F that a variable can have and not be removed
from the model.

• PIN and POUT take precedence over FIN and FOUT. That is, if all are specified, PIN and
POUT values are used.

• If PIN and POUT are omitted, FIN and FOUT are used by default.
• You can set PIN and POUT to any decimal value between 0 and 1. However, POUT should

be greater than PIN if PIN is also specified.

• PIN and POUT apply only to the stepwise methods and are ignored if the METHOD
subcommand is omitted or if DIRECT is specified on METHOD.

FIN and FOUT Subcommands

FIN specifies the minimum partial F value that a variable must have to enter the analysis. As
additional variables are entered into the analysis, the partial F for variables already in the
equation changes. FOUT specifies the smallest partial F that a variable can have and not be
removed from the model.

• PIN and POUT take precedence over FIN and FOUT. That is, if all are specified, PIN and
POUT values are used.

• If PIN and POUT are omitted, FIN and FOUT are used by default. If FOUT is specified but
FIN is omitted, the default value for FIN is 3.84. If FIN is specified, the default value for
FOUT is 2.71.

DISCRIMINANT 475

• You can set FIN and FOUT to any non-negative number. However, FOUT should be less
than FIN if FIN is also specified.

• FIN and FOUT apply only to the stepwise methods and are ignored if the METHOD
subcommand is omitted or if DIRECT is specified on METHOD.

VIN Subcommand

VIN specifies the minimum Rao’s V that a variable must have to enter the analysis. When you
use METHOD=RAO, variables satisfying one of the other criteria for entering the equation may
actually cause a decrease in Rao’s V for the equation. The default VIN prevents this but does
not prevent the addition of variables that provide no additional separation between groups.

• You can specify any value for VIN. The default is 0.

• VIN should be used only when you have specified METHOD=RAO. Otherwise, it is ignored.

MAXSTEPS Subcommand

MAXSTEPS is used to decrease the maximum number of steps allowed. By default, the
maximum number of steps allowed in a stepwise analysis is the number of variables with
inclusion levels greater than 1 plus twice the number of variables with inclusion levels equal
to 1. This is the maximum number of steps possible without producing a loop in which a vari-
able is repeatedly cycled in and out.

• MAXSTEPS applies only to the stepwise methods (all except DIRECT).

• MAXSTEPS applies only to the preceding METHOD subcommand.

• The format is MAX=n, where n is the maximum number of steps desired.

• If multiple MAXSTEPS subcommands are specified, the last is used.

FUNCTIONS Subcommand

By default, DISCRIMINANT computes all possible functions. This is either the number of
groups minus 1 or the number of predictor variables, whichever is less. Use FUNCTIONS to
set more restrictive criteria for the extraction of functions.

FUNCTIONS has three parameters:

n1 Maximum number of functions. The default is the number of groups minus 1 or the
number of predictor variables, whichever is less.

n2 Cumulative percentage of the sum of the eigenvalues. The default is 100.

n3 Significance level of function. The default is 1.0.

• The parameters must always be specified in sequential order (n1, n2, n3). To specify n2,
you must explicitly specify the default for n1. Similarly, to specify n3, you must specify
the defaults for n1 and n2.

• If more than one restriction is specified, the program stops extracting functions when any
one of the restrictions is met.

476 DISCRIMINANT

• When multiple FUNCTIONS subcommands are specified, the program uses the last;
however, if n2 or n3 are omitted on the last FUNCTIONS subcommand, the corresponding
specifications on the previous FUNCTIONS subcommands will remain in effect.

Example
DISCRIMINANT GROUPS=CLASS(1,5)

/VARIABLES = SCORE1 TO SCORE20
/FUNCTIONS=4,100,.80.

• The first two parameters on the FUNCTIONS subcommand are defaults: the default for n1
is 4 (the number of groups minus 1), and the default for n2 is 100.

• The third parameter tells DISCRIMINANT to use fewer than four discriminant functions if
the significance level of a function is greater than 0.80.

PRIORS Subcommand

By default, DISCRIMINANT assumes equal prior probabilities for groups when classifying
cases. You can provide different prior probabilities with the PRIORS subcommand.

• Prior probabilities are used only during classification.

• If you provide unequal prior probabilities, DISCRIMINANT adjusts the classification
coefficients to reflect this.

• If adjacent groups have the same prior probability, you can use the notation n*c on the
value list to indicate that n adjacent groups have the same prior probability c.

• You can specify a prior probability of 0. No cases are classified into such a group.

• If the sum of the prior probabilities is not 1, the program rescales the probabilities to sum
to 1 and issues a warning.

EQUAL Equal prior probabilities. This is the default.

SIZE Proportion of the cases analyzed that fall into each group. If 50% of the
cases included in the analysis fall into the first group, 25% in the second, and
25% in the third, the prior probabilities are 0.5, 0.25, and 0.25, respectively.
Group size is determined after cases with missing values for the predictor vari-
ables are deleted.

Value list User-specified prior probabilities. The list of probabilities must sum to 1.0.
The number of prior probabilities named or implied must equal the number
of groups.

Example
DISCRIMINANT GROUPS=TYPE(1,5)

/VARIABLES=A TO H
/PRIORS = 4*.15,.4.

• The PRIORS subcommand establishes prior probabilities of 0.15 for the first four groups
and 0.4 for the fifth group.

DISCRIMINANT 477

SAVE Subcommand

SAVE allows you to save casewise information as new variables in the working data file.
• SAVE applies only to the current analysis block. To save casewise results from more than

one analysis, specify a SAVE subcommand in each analysis block.

• You can specify a variable name for CLASS and rootnames for SCORES and PROBS to
obtain descriptive names for the new variables.

• If you do not specify a variable name for CLASS, the program forms variable names using
the formula DSC_m, where m increments to distinguish group membership variables
saved on different SAVE subcommands for different analysis blocks.

• If you do not specify a rootname for SCORES or PROBS, the program forms new variable
names using the formula DSCn_m, where m increments to create unique rootnames and n
increments to create unique variable names. For example, the first set of default names
assigned to discriminant scores or probabilities are DSC1_1, DSC2_1, DSC3_1, and so on.
The next set of default names assigned will be DSC1_2, DSC2_2, DSC3_2, and so on,
regardless of whether discriminant scores or probabilities are being saved or whether they
are saved by the same SAVE subcommand.

• The keywords CLASS, SCORES, and PROBS can be used in any order, but the new variables
are always added to the end of the working data file in the following order: first the predicted
group, then the discriminant scores, and finally probabilities of group membership.

• Appropriate variable labels are automatically generated. The labels describe whether the
variables contain predictor group membership, discriminant scores, or probabilities, and
for which analysis they are generated.

• The CLASS variable will use the value labels (if any) from the grouping variable specified
for the analysis.

• When SAVE is specified with any keyword, DISCRIMINANT displays a classification
processing summary table and a prior probabilities for groups table.

• You cannot use the SAVE subcommand if you are replacing the working data file with
matrix materials (see “Matrix Output” on p. 482).

CLASS [(varname)] Predicted group membership.

SCORES [(rootname)] Discriminant scores. One score is saved for each discriminant func-
tion derived. If a rootname is specified, DISCRIMINANT will append a
sequential number to the name to form new variable names for the dis-
criminant scores.

PROBS [(rootname)] For each case, the probabilities of membership in each group. As
many variables are added to each case as there are groups. If a root-
name is specified, DISCRIMINANT will append a sequential number to
the name to form new variable names.

478 DISCRIMINANT

Example
DISCRIMINANT GROUPS=WORLD(1,3)
/VARIABLES=FOOD TO FSALES
/SAVE CLASS=PRDCLASS SCORES=SCORE PROBS=PRB
 /ANALYSIS=FOOD SERVICE COOK MANAGER FSALES
 /SAVE CLASS SCORES PROBS.

• Two analyses are specified. The first uses all variables named on the VARIABLES
subcommand and the second narrows down to five variables. For each analysis, a SAVE
subcommand is specified.

• For each analysis, DISCRIMINANT displays a classification processing summary table and
a prior probabilities for groups table.

• On the first SAVE subcommand, a variable name and two rootnames are provided. With
three groups, the following variables are added to each case:

• Since no variable name or rootnames are provided on the second SAVE subcommand,
DISCRIMINANT uses default names. Note that m serves only to distinguish variables saved
as a set and does not correspond to the sequential number of an analysis. To find out what
information a new variable holds, read the variable label, as shown in the following table:

Name Variable label Description

PRDCLASS Predicted group for analysis 1 Predicted group membership
SCORE1 Function 1 for analysis 1 Discriminant score for function 1
SCORE2 Function 2 for analysis 1 Discriminant score for function 2
PRB1 Probability 1 for analysis 1 Probability of being in group 1
PRB2 Probability 2 for analysis 1 Probability of being in group 2
PRB3 Probability 3 for analysis 1 Probability of being in group 3

Name Variable label Description

DSC_1 Predicted group for analysis 2 Predicted group membership
DSC1_1 Function 1 for analysis 2 Discriminant score for function 1
DSC2_1 Function 2 for analysis 2 Discriminant score for function 2
DSC1_2 Probability 1 for analysis 2 Probability of being in group 1
DSC2_2 Probability 2 for analysis 2 Probability of being in group 2
DSC3_2 Probability 3 for analysis 2 Probability of being in group 3

DISCRIMINANT 479

STATISTICS Subcommand

By default, DISCRIMINANT produces the following statistics for each analysis: analysis case
processing summary, valid numbers of cases in group statistics, variables failing tolerance
test, a summary of canonical discriminant functions, standardized canonical discriminant
function coefficients, a structure matrix showing pooled within-groups correlations between
the discriminant functions and the predictor variables, and functions at group centroids.

• Group statistics. Only valid number of cases is reported.

• Summary of canonical discriminant functions. Displayed in two tables: an eigenvalues
table with percentage of variance, cumulative percentage of variance, and canonical
correlations and a Wilks’ lambda table with Wilks’ lambda, chi-square, degrees of
freedom, and significance.

• Stepwise statistics. Wilks’ lambda, equivalent F, degrees of freedom, significance of F
and number of variables are reported for each step. Tolerance, F-to-remove, and the value
of the statistic used for variable selection are reported for each variable in the equation.
Tolerance, minimum tolerance, F-to-enter, and the value of the statistic used for variable
selection are reported for each variable not in the equation. (These statistics can be
suppressed with HISTORY=NONE.)

• Final statistics. Standardized canonical discriminant function coefficients, the structure
matrix of discriminant functions and all variables named in the analysis (whether they
were entered into the equation or not), and functions evaluated at group means are
reported following the last step.

In addition, you can request optional statistics on the STATISTICS subcommand. STATISTICS
can be specified by itself or with one or more keywords.

• STATISTICS without keywords displays MEAN, STDDEV, and UNIVF. If you include a
keyword or keywords on STATISTICS, only the statistics you request are displayed.

MEAN Means. Total and group means for all variables named on the ANALYSIS
subcommand are displayed.

STDDEV Standard deviations. Total and group standard deviations for all variables
named on the ANALYSIS subcommand are displayed.

UNIVF Univariate F ratios. The analysis-of-variance F statistic for equality of group
means for each predictor variable is displayed. This is a one-way analysis-of-
variance test for equality of group means on a single discriminating variable.

COV Pooled within-groups covariance matrix.

CORR Pooled within-groups correlation matrix.

FPAIR Matrix of pairwise F ratios. The F ratio for each pair of groups is displayed.
This F is the significance test for the Mahalanobis distance between groups.
This statistic is available only with stepwise methods.

BOXM Box’s M test. This is a test for equality of group covariance matrices.

GCOV Group covariance matrices.

TCOV Total covariance matrix.

480 DISCRIMINANT

RAW Unstandardized canonical discriminant functions.

COEFF Classification function coefficients. Although DISCRIMINANT does not
directly use these coefficients to classify cases, you can use them to classify
other samples (see the CLASSIFY subcommand below).

TABLE Classification results. If both selected and unselected cases are classified, the
results are reported separately. To obtain cross-validated results for selected
cases, specify CROSSVALID.

CROSSVALID Cross-validated classification results. The cross-validation is done by treating
n–1 out of n observations as the training data set to determine the discrimi-
nation rule and using the rule to classify the one observation left out. The
results are displayed only for selected cases.

ALL All optional statistics.

ROTATE Subcommand

The coefficient and correlation matrices can be rotated to facilitate interpretation of results.
To control varimax rotation, use the ROTATE subcommand.

• Neither COEFF nor STRUCTURE affects the classification of cases.

COEFF Rotate pattern matrix. DISCRIMINANT displays a varimax transformation
matrix, a rotated standardized canonical discriminant function coefficients
table, and a correlations between variables and rotated functions table.

STRUCTURE Rotate structure matrix. DISCRIMINANT displays a varimax transformation
matrix, a rotated structure matrix, and a rotated standardized canonical
discriminant function coefficients table.

NONE Do not rotate. This is the default.

HISTORY Subcommand

HISTORY controls the display of stepwise and summary output.

• By default, HISTORY displays both the step-by-step output and the summary table
(keyword STEP, alias END).

STEP Display step-by-step and summary output. Alias END. This is the default. See
Stepwise statistics in “STATISTICS Subcommand” on p. 479.

NONE Suppress the step-by-step and summary table. Alias NOSTEP, NOEND.

CLASSIFY Subcommand

CLASSIFY determines how cases are handled during classification.

• By default, all cases with nonmissing values for all predictors are classified, and the
pooled within-groups covariance matrix is used to classify cases.

DISCRIMINANT 481

• The default keywords for CLASSIFY are NONMISSING and POOLED.

NONMISSING Classify all cases that do not have missing values on any predictor variables.
Two sets of classification results are produced, one for selected cases (those
specified on the SELECT subcommand) and one for unselected cases. This is
the default.

UNSELECTED Classify only unselected cases. The classification phase is suppressed for
cases selected via the SELECT subcommand. If all cases are selected (when
the SELECT subcommand is omitted), the classification phase is suppressed
for all cases and no classification results are produced.

UNCLASSIFIED Classify only unclassified cases. The classification phase is suppressed for
cases that fall within the range specified on the GROUPS subcommand.

POOLED Use the pooled within-groups covariance matrix to classify cases. This is the
default.

SEPARATE Use separate-groups covariance matrices of the discriminant functions for
classification. DISCRIMINANT displays the group covariances of canonical
discriminant functions and Box’s test of equality of covariance matrices of
canonical discriminant functions. Since classification is based on the
discriminant functions and not the original variables, this option is not
necessarily equivalent to quadratic discrimination.

MEANSUB Substitute means for missing predictor values during classification. During
classification, means are substituted for missing values and cases with
missing values are classified. Cases with missing values are not used during
analysis.

PLOT Subcommand

PLOT requests additional output to help you examine the effectiveness of the discriminant
analysis.
• If PLOT is specified without keywords, the default is COMBINED and CASES.

• If any keywords are requested on PLOT, only the requested plots are displayed.

• If PLOT is specified with any keyword except MAP, DISCRIMINANT displays a classifica-
tion processing summary table and a prior probabilities for groups table.

COMBINED All-groups plot. For each case, the first two function values are plotted.

CASES(n) Casewise statistics. For each case, classification information, squared
Mahalanobis distance to centroid for the highest and second highest groups,
and discriminant scores of all functions are plotted. Validated statistics are
displayed for selected cases if CROSSVALID is specified on STATISTICS. If n
is specified, DISCRIMINANT displays the first n cases only.

MAP Territorial map. A plot of group centroids and boundaries used for classi-
fying groups.

482 DISCRIMINANT

SEPARATE Separate-groups plots. These are the same types of plots produced by the
keyword COMBINED, except that a separate plot is produced for each group.
If only one function is used, a histogram is displayed.

ALL All available plots.

MISSING Subcommand

MISSING controls the treatment of cases with missing values in the analysis phase. By
default, cases with missing values for any variable named on the VARIABLES subcommand
are not used in the analysis phase but are used in classification.

• The keyword INCLUDE includes cases with user-missing values in the analysis phase.

• Cases with missing or out-of-range values for the grouping variable are always excluded.

EXCLUDE Exclude all cases with missing values. Cases with user- or system-missing
values are excluded from the analysis. This is the default.

INCLUDE Include cases with user-missing values. User-missing values are treated as
valid values. Only the system-missing value is treated as missing.

MATRIX Subcommand

MATRIX reads and writes SPSS-format matrix data files.

• Either IN or OUT and the matrix file in parentheses are required. When both IN and OUT
are used in the same DISCRIMINANT procedure, they can be specified on separate MATRIX
subcommands or on the same subcommand.

OUT (filename) Write a matrix data file. Specify either a filename or an asterisk in paren-
theses (*). If you specify a filename, the file is stored on disk and can be
retrieved at any time. If you specify an asterisk (*), the matrix data file
replaces the working data file but is not stored on disk unless you use SAVE
or XSAVE.

IN (filename) Read a matrix data file. If the matrix data file is the working data file, specify
an asterisk (*) in parentheses. If the matrix file is another file, specify the
filename in parentheses. A matrix file read from an external file does not
replace the working data file.

Matrix Output

• In addition to Pearson correlation coefficients, the matrix materials written by
DISCRIMINANT include weighted and unweighted numbers of cases, means, and standard
deviations. (See “Format of the Matrix Data File” on p. 483 for a description of the file.)
These materials can be used in subsequent DISCRIMINANT procedures.

• Any documents contained in the working data file are not transferred to the matrix file.

• If BOXM or GCOV is specified on the STATISTICS subcommand or SEPARATE is specified
on the CLASSIFY subcommand when a matrix file is written, the STDDEV and CORR

DISCRIMINANT 483

records in the matrix materials represent within-cell data, and separate covariance
matrices are written to the file. When the matrix file is used as input for a subsequent
DISCRIMINANT procedure, at least one of these specifications must be used on that
DISCRIMINANT command.

Matrix Input

• DISCRIMINANT can read correlation matrices written by a previous DISCRIMINANT
command or by other procedures. Matrix materials read by DISCRIMINANT must contain
records with ROWTYPE_ values MEAN, N or COUNT (or both), STDDEV, and CORR.

• If the data do not include records with ROWTYPE_ value COUNT (unweighted number of
cases), DISCRIMINANT uses information from records with ROWTYPE_ value N (weighted
number of cases). Conversely, if the data do not have N values, DISCRIMINANT uses the
COUNT values. These records can appear in any order in the matrix input file with the
following exceptions: the order of split-file groups cannot be violated and all CORR
vectors must appear consecutively within each split-file group.

• If you want to use a covariance-type matrix as input to DISCRIMINANT, you must first use
the MCONVERT command to change the covariance matrix to a correlation matrix.

• DISCRIMINANT can use a matrix from a previous data set to classify data in the working
data file. The program checks to make sure that the grouping variable (specified on
GROUPS) and the predictor variables (specified on VARIABLES) are the same in the
working data file as in the matrix file. If they are not, the program displays an error
message and the classification will not be executed.

• MATRIX=IN cannot be used unless a working data file has already been defined. To read
an existing matrix data file at the beginning of a session, first use GET to retrieve the
matrix file and then specify IN(*) on MATRIX.

Format of the Matrix Data File

• The matrix data file has two special variables created by the program: ROWTYPE_ and
VARNAME_. Variable ROWTYPE_ is a short string variable having values N, COUNT,
MEAN, STDDEV, and CORR (for Pearson correlation coefficient). The variable
VARNAME_ is a short string variable whose values are the names of the variables used to
form the correlation matrix.

• When ROWTYPE_ is CORR, VARNAME_ gives the variable associated with that row of the
correlation matrix.

• Between ROWTYPE_ and VARNAME_ is the grouping variable, which is specified on the
GROUPS subcommand of DISCRIMINANT.

• The remaining variables are the variables used to form the correlation matrix.

484 DISCRIMINANT

Split Files

• When split-file processing is in effect, the first variables in the matrix data file will be
split variables, followed by ROWTYPE_, the grouping variable, VARNAME_, and then the
variables used to form the correlation matrix.

• A full set of matrix materials is written for each subgroup defined by the split variables.

• A split variable cannot have the same variable name as any other variable written to the
matrix data file.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by another procedure.

STDDEV and CORR Records

Records written with ROWTYPE_ values STDDEV and CORR are influenced by specifica-
tions on the STATISTICS and CLASSIFY subcommands.

• If BOXM or GCOV is specified on STATISTICS or SEPARATE is specified on CLASSIFY, the
STDDEV and CORR records represent within-cell data and receive values for the
grouping variable.

• If none of the above specifications is in effect, the STDDEV and CORR records represent
pooled values. The STDDEV vector contains the square root of the mean square error for
each variable, and STDDEV and CORR records receive the system-missing value for the
grouping variable.

Missing Values

Missing-value treatment affects the values written to a matrix data file. When reading a
matrix data file, be sure to specify a missing-value treatment on DISCRIMINANT that is
compatible with the treatment that was in effect when the matrix materials were generated.

Example

GET FILE=UNIONBK /KEEP WORLD FOOD SERVICE BUS MECHANIC
 CONSTRUC COOK MANAGER FSALES APPL RENT.
DISCRIMINANT GROUPS=WORLD(1,3)
/VARIABLES=FOOD SERVICE BUS MECHANIC CONSTRUC COOK MANAGER FSALES
 /METHOD=WILKS
 /PRIORS=SIZE
 /MATRIX=OUT(DISCMTX).

• DISCRIMINANT reads data from the SPSS-format data file UNIONBK and writes one set of
matrix materials to the file DISCMTX.

• The working data file is still UNIONBK. Subsequent commands are executed on this file.

DISCRIMINANT 485

Example

* Use matrix output to classify data in a different file.

GET FILE=UB2 /KEEP WORLD FOOD SERVICE BUS MECHANIC
 CONSTRUC COOK MANAGER FSALES APPL RENT.
DISCRIMINANT GROUPS=WORLD(1,3)
 /VARIABLES=FOOD SERVICE BUS MECHANIC CONSTRUC COOK MANAGER FSALES
 /METHOD=WILKS
 /PRIORS=SIZE
 /MATRIX=IN(DISCMTX).

• The matrix data file created in the previous example is used to classify data from the file UB2.

Example

GET FILE=UNIONBK /KEEP WORLD FOOD SERVICE BUS MECHANIC
 CONSTRUC COOK MANAGER FSALES APPL RENT.
DISCRIMINANT GROUPS=WORLD(1,3)
 /VARIABLES=FOOD SERVICE BUS MECHANIC CONSTRUC COOK MANAGER FSALES
 /METHOD=WILKS
 /PRIORS=SIZE
 /MATRIX=OUT(*).
LIST.

• DISCRIMINANT writes the same matrix as in the first example. However, the matrix data
file replaces the working data file.

• The LIST command is executed on the matrix file, not on the UNIONBK file.

Example

GET FILE=DISCMTX.
DISCRIMINANT GROUPS=WORLD(1,3)
 /VARIABLES=FOOD SERVICE BUS MECHANIC CONSTRUC COOK MANAGER FSALES
 /METHOD=RAO
 /MATRIX=IN(*).

• This example assumes that you are starting a new session and want to read an existing
matrix data file. GET retrieves the matrix data file DISCMTX.

• MATRIX=IN specifies an asterisk because the matrix data file is the working data file. If
MATRIX=IN(DISCMTX) is specified, the program issues an error message.

• If the GET command is omitted, the program issues an error message.

486 DISCRIMINANT

Example

GET FILE=UNIONBK /KEEP WORLD FOOD SERVICE BUS MECHANIC
 CONSTRUC COOK MANAGER FSALES APPL RENT.
DISCRIMINANT GROUPS=WORLD(1,3)
/VARIABLES=FOOD SERVICE BUS MECHANIC CONSTRUC COOK MANAGER FSALES
 /CLASSIFY=SEPARATE
 /MATRIX=OUT(*).
DISCRIMINANT GROUPS=WORLD(1,3)
/VARIABLES=FOOD SERVICE BUS MECHANIC CONSTRUC COOK MANAGER FSALES
 /STATISTICS=BOXM
 /MATRIX=IN(*).

• The first DISCRIMINANT command creates a matrix with CLASSIFY=SEPARATE in effect.
To read this matrix, the second DISCRIMINANT command must specify either BOXM or
GCOV on STATISTICS or SEPARATE on CLASSIFY. STATISTICS=BOXM is used.

487

DISPLAY

DISPLAY [SORTED] [{NAMES** }] [/VARIABLES=varlist]
 {INDEX }
 {VARIABLES }
 {LABELS }
 {DICTIONARY}

 {[SCRATCH] }
 {[VECTOR] }
 {[MACROS] }
 {[DOCUMENTS]}

**Default if the subcommand is omitted.

Example
DISPLAY SORTED DICTIONARY /VARIABLES=DEPT SALARY SEX TO JOBCAT.

Overview

DISPLAY exhibits information from the dictionary of the working data file. The information
can be sorted, and it can be limited to selected variables.

Basic Specification

The basic specification is simply the command keyword, which displays an unsorted list of
the variables in the working data file.

Syntax Rules

DISPLAY can be specified by itself or with one of the keywords defined below. NAMES is the
default. To specify two or more keywords, use multiple DISPLAY commands.

NAMES Variable names. A list of the variables in the working data file is displayed.
The names are not sorted and display in a compressed format, about eight
names across the page. This is the default.

DOCUMENTS Documentary text. Documentary text is provided on the DOCUMENT and
ADD DOCUMENT commands. No error message is issued if there is no docu-
mentary information in the working data file.

DICTIONARY Complete dictionary information for variables. Information includes vari-
able names, labels, sequential position of each variable in the file, print and
write formats, missing values, and value labels. Up to 60 characters can be
displayed for variable and value labels.

INDEX Variable names and positions.

488 DISPLAY

VARIABLES Variable names, positions, print and write formats, and missing values.

LABELS Variable names, positions, and variable labels.

SCRATCH Scratch variable names.

VECTOR Vector names.

MACROS Currently defined macros. The macro names are always sorted.

Operations

• DISPLAY directs information to the output.

• If SORTED is not specified, information is displayed according to the order of variables
in the working data file.

• DISPLAY is executed as soon as it is encountered in the command sequence, as long as a
dictionary has been defined.

Example

GET FILE=HUB.
DISPLAY DOCUMENTS.
DISPLAY DICTIONARY.

• Each DISPLAY command specifies only one keyword. The first requests documentary text
and the second requests complete dictionary information for the HUB file.

SORTED Keyword

SORTED alphabetizes the display by variable name. SORTED can precede the keywords
NAMES, DICTIONARY, INDEX, VARIABLES, LABELS, SCRATCH, or VECTOR.

Example
DISPLAY SORTED DICTIONARY.

• This command displays complete dictionary information for variables in the working data
file, sorted alphabetically by variable name.

VARIABLES Subcommand

VARIABLES (alias NAMES) limits the displayed information to a set of specified variables.
VARIABLES must be the last specification on DISPLAY and can follow any specification that
requests information about variables (all except VECTOR, SCRATCH, DOCUMENTS, and
MACROS).

• The only specification is a slash followed by a list of variables. The slash is optional.

DISPLAY 489

• If the keyword SORTED is not specified, information is displayed in the order in which
variables are stored in the working data file, regardless of the order in which variables are
named on VARIABLES.

Example
DISPLAY SORTED DICTIONARY
/VARIABLES=DEPT, SALARY, SEX TO JOBCAT.

• DISPLAY exhibits dictionary information only for the variables named and implied by the
keyword TO on the VARIABLES subcommand, sorted alphabetically by variable name.

490

DOCUMENT

DOCUMENT text

Example
DOCUMENT This file contains a subset of variables from the

General Social Survey data. For each case it records
 only the age, sex, education level, marital status,
 number of children, and type of medical insurance

 coverage.

Overview

DOCUMENT saves a block of text of any length in an SPSS-format data file. The documen-
tation can be displayed with the DISPLAY command. (See also ADD DOCUMENT.)

When GET retrieves a data file, or when ADD FILES, MATCH FILES, or UPDATE is used
to combine data files, all documents from each specified file are copied into the working
file. DROP DOCUMENTS can be used to drop those documents from the working file.
Whether or not DROP DOCUMENTS is used, new documents can be added to the working
file with the DOCUMENT command.

Basic Specification

The basic specification is DOCUMENT followed by any length of text. The text is stored in
the file dictionary when the data are saved in an SPSS-format data file.

Syntax Rules

• The text can be entered on as many lines as needed.

• Blank lines can be used to separate paragraphs.

• A period at the end of a line terminates the command, so you should not place a period
at the end of any line but the last.

• Multiple DOCUMENT commands can be used within the command sequence. However,
the DISPLAY command cannot be used to exhibit the text from a particular DOCUMENT
command. DISPLAY shows all existing documentation.

Operations

• The documentation and the date it was entered are saved in the data file’s dictionary. New
documentation is saved along with any documentation already in the working data file.

DOCUMENT 491

• If a DROP DOCUMENTS command follows a DOCUMENT command anywhere in the
command sequence, the documentation added by that DOCUMENT command is dropped
from the working file along with all other documentation.

Example

GET FILE=GENSOC /KEEP=AGE SEX EDUC MARITAL CHILDRN MED_INS.
FILE LABEL General Social Survey subset.

DOCUMENT This file contains a subset of variables from the
General Social Survey data. For each case it records

 only the age, sex, education level, marital status,
 number of children, and type of medical insurance
 coverage.

SAVE OUTFILE=SUBSOC.

• GET keeps only a subset of variables from the file GENSOC. All documentation from the
file GENSOC is copied into the working file.

• FILE LABEL creates a label for the new working file.

• DOCUMENT specifies the new document text. Both existing documents from the file
GENSOC and the new document text are saved in the file SUBSOC.

Example

GET FILE=GENSOC /KEEP=AGE SEX EDUC MARITAL CHILDRN MED_INS.

DROP DOCUMENTS.

FILE LABEL General Social Survey subset.

DOCUMENT This file contains a subset of variables from the
General Social Survey data. For each case it records

 only the age, sex, education level, marital status,
 number of children, and type of medical insurance
 coverage.

SAVE OUTFILE=SUBSOC.

• DROP DOCUMENTS drops the documentation from the file GENSOC as data are copied
into the working file. Only the new documentation specified on DOCUMENT is saved in
the file SUBSOC.

492

DO IF

DO IF [(]logical expression[)]

transformation commands

[ELSE IF [(]logical expression[)]]

transformation commands

[ELSE IF [(]logical expression[)]]
 .
 .
 .
[ELSE]

transformation commands

END IF

The following relational operators can be used in logical expressions:

The following logical operators can be used in logical expressions:

Example
DO IF (YRHIRED GT 87).
COMPUTE BONUS = 0.
ELSE IF (DEPT87 EQ 3).
COMPUTE BONUS = .1*SALARY87.
ELSE IF (DEPT87 EQ 1).
COMPUTE BONUS = .12*SALARY87.
ELSE IF (DEPT87 EQ 4).
COMPUTE BONUS = .08*SALARY87.
ELSE IF (DEPT87 EQ 2).
COMPUTE BONUS = .14*SALARY87.
END IF.

Symbol Definition Symbol Definition

EQ or = Equal to NE or <>*

* On ASCII systems (for example, UNIX, VAX, and all PC’s), you can also use ~=;
on IBM EBCDIC systems (for example, IBM 360 and IBM 370), you can also use ¬=.

Not equal to
LT or < Less than LE or <= Less than or equal to
GT or > Greater than GE or >= Greater than or equal to

Symbol Definition

AND or & Both relations must be true
OR or | Either relation can be true
NOT*

* On ASCII systems, you can also use ~; on IBM EBCDIC systems,
you can also use ¬ (or the symbol above number 6).

Reverses the outcome of an expression

DO IF 493

Overview

The DO IF—END IF structure conditionally executes one or more transformations on subsets
of cases based on one or more logical expressions. The ELSE command can be used within
the structure to execute one or more transformations when the logical expression on DO IF
is not true. The ELSE IF command within the structure provides further control.

The DO IF—END IF structure is best used for conditionally executing multiple transfor-
mation commands, such as COMPUTE, RECODE, and COUNT. IF is more efficient for
executing a single conditional COMPUTE-like transformation. DO IF—END IF transforms
data for subsets of cases defined by logical expressions. To perform repeated transformations
on the same case, use LOOP—END LOOP.

A DO IF—END IF structure can be used within an input program to define complex files
that cannot be handled by standard file definition facilities. See “Complex File Structures”
on p. 499 for an example.

See END FILE for information on using DO IF—END IF to instruct the program to stop
reading data before it encounters the end of the file or to signal the end of the file when
creating data. See p. 422 for an example of using DO IF—END IF with END FILE to concatenate
raw data files.

Basic Specification

The basic specification is DO IF followed by a logical expression, a transformation command,
and the END IF command, which has no specifications.

Syntax Rules

• The ELSE IF command is optional and can be repeated as many times as needed.

• The ELSE command is optional. It can be used only once and must follow any ELSE IF
commands.

• The END IF command must follow any ELSE IF and ELSE commands.

• A logical expression must be specified on the DO IF and ELSE IF commands. Logical
expressions are not used on the ELSE and END IF commands.

• String values used in expressions must be specified in quotation marks and must include
any leading or trailing blanks. Lowercase letters are distinguished from uppercase letters.

• To create a new string variable within a DO IF—END IF structure, you must first declare
the variable on the STRING command.

• DO IF—END IF structures can be nested to any level permitted by available memory. They
can be nested within LOOP—END LOOP structures, and loop structures can be nested
within DO IF structures.

494 DO IF

Logical Expressions

• Logical expressions can be simple logical variables or relations, or they can be complex
logical tests involving variables, constants, functions, relational operators, and logical
operators. Logical expressions can use any of the numeric or string functions allowed in
COMPUTE transformations (see COMPUTE).

• Parentheses can be used to enclose the logical expression itself and to specify the order
of operations within a logical expression. Extra blanks or parentheses can be used to make
the expression easier to read.

• Blanks (not commas) are used to separate relational operators from expressions.
• A relation can include variables, constants, or more complicated arithmetic expressions.

Relations cannot be abbreviated. For example, the first relation below is valid; the second
is not:

Valid: (A EQ 2 OR A EQ 5)
Not valid: (A EQ 2 OR 5)

• A relation cannot compare a string variable to a numeric value or variable, or vice versa.
A relation cannot compare the result of a logical function (SYSMIS, MISSING, ANY, or
RANGE) to a number.

Operations

• DO IF marks the beginning of the control structure and END IF marks the end. Control for
a case is passed out of the structure as soon as a logical condition is met on a DO IF, ELSE
IF, or ELSE command.

• A logical expression is evaluated as true, false, or missing. A transformation specified for
a logical expression is executed only if the expression is true.

• Logical expressions are evaluated in the following order: functions, exponentiation, arith-
metic operations, relations, and finally, logical operators. (For strings, the order is func-
tions, relations, and then logical operators.) When more than one logical operator is used,
NOT is evaluated first, followed by AND and then OR. You can change the order of oper-
ations using parentheses.

• Numeric variables created within a DO IF structure are initially set to the system-missing
value. By default, they are assigned an F8.2 format.

• New string variables created within a DO IF structure are initially set to a blank value and
are assigned the format specified on the STRING command that creates them.

• If the transformed value of a string variable exceeds the variable’s defined format, the
value is truncated. If the value is shorter than the format, the value is right-padded with
blanks.

• If WEIGHT is specified within a DO IF structure, it takes effect unconditionally.

• Commands like SET, DISPLAY, SHOW, and so forth specified within a DO IF structure are
executed when they are encountered in the command file.

• The DO IF—END IF structure (like LOOP—END LOOP) can include commands such as
DATA LIST, END CASE, END FILE, and REREAD, which define complex file structures.

DO IF 495

Flow of Control

• If the logical expression on DO IF is true, the commands immediately following DO IF are
executed up to the next ELSE IF, ELSE, or END IF command. Control then passes to the
first statement following END IF.

• If the expression on DO IF is false, control passes to the following ELSE IF command.
Multiple ELSE IF commands are evaluated in the order in which they are specified until
the logical expression on one of them is true. Commands following that ELSE IF
command are executed up to the ELSE or END IF command, and control passes to the first
statement following END IF.

• If none of the expressions are true on the DO IF or any of the ELSE IF commands, the
commands following ELSE are executed and control passes out of the structure. If there
is no ELSE command, a case goes through the entire structure with no change.

• Missing values returned by the logical expression on DO IF or on any ELSE IF cause
control to pass to the END IF command at that point.

Missing Values and Logical Operators

When two or more relations are joined by logical operators AND and OR, the program
always returns missing if all of the relations in the expression are missing. However, if any
one of the relations can be determined, the program tries to return true or false according
to the logical outcomes shown in Table 1. The asterisk indicates situations where the
program can evaluate the outcome with incomplete information.

Example

DO IF (YRHIRED LT 87).
RECODE RACE(1=5)(2=4)(4=2)(5=1).
END IF.

• The RECODE command recodes RACE for those individuals hired before 1987 (YRHIRED
is less than 87). The RACE variable is not recoded for individuals hired in 1987 or later.

• The RECODE command is skipped for any case with a missing value for YRHIRED.

Table 1 Logical outcome

Expression Outcome Expression Outcome

true AND true = true true OR true = true
true AND false = false true OR false = true
false AND false = false false OR false = false
true AND missing = missing true OR missing = true*
missing AND missing = missing missing OR missing = missing
false AND missing = false* false OR missing = missing

496 DO IF

Example

DATA LIST FREE / X(F1).
NUMERIC #QINIT.
DO IF NOT #QINIT.
+ PRINT EJECT.
+ COMPUTE #QINIT = 1.
END IF.
PRINT / X.

BEGIN DATA
1 2 3 4 5
END DATA.
EXECUTE.

• This example shows how to execute a command only once.

• The NUMERIC command creates scratch variable #QINIT, which is initialized to 0.

• The NOT logical operator on DO IF reverses the outcome of a logical expression. In this
example, the logical expression is a numeric variable that takes only 0 (false) or 1 (true)
as its values. The PRINT EJECT command is executed only once, when the value of
scratch variable #QINIT equals 0. After the COMPUTE command sets #QINIT to 1, the DO
IF structure is skipped for all subsequent cases. A scratch variable is used because it is
initialized to 0 and is not reinitialized after each case.

ELSE Command

ELSE executes one or more transformations when none of the logical expressions on DO IF
or any ELSE IF commands is true.

• Only one ELSE command is allowed within a DO IF—END IF structure.

• ELSE must follow all ELSE IF commands (if any) in the structure.
• If the logical expression on DO IF or any ELSE IF command is true, the program ignores

the commands following ELSE.

Example
DO IF (X EQ 0).
COMPUTE Y=1.
ELSE.
COMPUTE Y=2.
END IF.

• Y is set to 1 for all cases with value 0 for X, and Y is 2 for all cases with any other valid
value for X.

• The value of Y is not changed by this structure if X is missing.

DO IF 497

Example
DO IF (YRHIRED GT 87).
COMPUTE BONUS = 0.
ELSE.
IF (DEPT87 EQ 1) BONUS = .12*SALARY87.
IF (DEPT87 EQ 2) BONUS = .14*SALARY87.
IF (DEPT87 EQ 3) BONUS = .1*SALARY87.
IF (DEPT87 EQ 4) BONUS = .08*SALARY87.
END IF.

• If an individual was hired after 1987 (YRHIRED is greater than 87), BONUS is set to 0 and
control passes out of the structure. Otherwise, control passes to the IF commands
following ELSE.

• Each IF command evaluates every case. The value of BONUS is transformed only when
the case meets the criteria specified on IF. Compare this structure with ELSE IF in the
second example on p. 498, which performs the same task more efficiently.

Example
* Test for listwise deletion of missing values.

DATA LIST / V1 TO V6 1-6.
BEGIN DATA
123456

56
1 3456
123456
123456
END DATA.

DO IF NMISS(V1 TO V6)=0.
+ COMPUTE SELECT=’V’.
ELSE
+ COMPUTE SELECT=’M’.
END IF.

FREQUENCIES VAR=SELECT.

• If there are no missing values for any of the variables V1 to V6, COMPUTE sets the value
of SELECT equal to V (for valid). Otherwise, COMPUTE sets the value of SELECT equal
to M (for missing).

• FREQUENCIES generates a frequency table for SELECT. The table gives a count of how
many cases have missing values for one or more variables, and how many cases have
valid values for all variables. Commands in this example can be used to determine how
many cases are dropped from an analysis that uses listwise deletion of missing values.
See pp. 257 and 740 for alternative ways to check listwise deletion of missing values.

ELSE IF Command

ELSE IF executes one or more transformations when the logical expression on DO IF is not
true.

• Multiple ELSE IF commands are allowed within the DO IF—END IF structure.

498 DO IF

• If the logical expression on DO IF is true, the program executes the commands immedi-
ately following DO IF up to the first ELSE IF. Then control passes to the command
following the END IF command.

• If the result of the logical expression on DO IF is false, control passes to ELSE IF.

Example
STRING STOCK(A9).
DO IF (ITEM EQ 0).
COMPUTE STOCK=’New’.
ELSE IF (ITEM LE 9).
COMPUTE STOCK=’Old’.
ELSE.
COMPUTE STOCK=’Cancelled’.
END IF.

• STRING declares string variable STOCK and assigns it a width of nine characters.
• The first COMPUTE is executed for cases with value 0 for ITEM, and then control passes

out of the structure. Such cases are not reevaluated by ELSE IF, even though 0 is less than 9.

• When the logical expression on DO IF is false, control passes to the ELSE IF command,
where the second COMPUTE is executed only for cases with ITEM less than or equal to 9.
Then control passes out of the structure.

• If the logical expressions on both the DO IF and ELSE IF commands are false, control passes
to ELSE, where the third COMPUTE is executed.

• The DO IF—END IF structure sets STOCK equal to New when ITEM equals 0, to Old when
ITEM is less than or equal to 9 but not equal to 0 (including negative numbers if they are
valid), and to Cancelled for all valid values of ITEM greater than 9. The value of STOCK
remains blank if ITEM is missing.

Example
DO IF (YRHIRED GT 87).
COMPUTE BONUS = 0.
ELSE IF (DEPT87 EQ 3).
COMPUTE BONUS = .1*SALARY87.
ELSE IF (DEPT87 EQ 1).
COMPUTE BONUS = .12*SALARY87.
ELSE IF (DEPT87 EQ 4).
COMPUTE BONUS = .08*SALARY87.
ELSE IF (DEPT87 EQ 2).
COMPUTE BONUS = .14*SALARY87.
END IF.

• For cases hired after 1987, BONUS is set to 0 and control passes out of the structure. For
a case that was hired before 1987 with value 3 for DEPT87, BONUS equals 10% of salary.
Control then passes out of the structure. The other three ELSE IF commands are not eval-
uated for that case. This differs from the example on p. 497, where the IF command is
evaluated for every case. The DO IF—ELSE IF structure shown here is more efficient.

• If Department 3 is the largest, Department 1 the next largest, and so forth, control passes
out of the structure quickly for many cases. For a large number of cases or a command file
that will be executed frequently, these efficiency considerations can be important.

DO IF 499

Nested DO IF Structures

To perform transformations involving logical tests on two variables, you can use nested
DO IF—END IF structures.

• There must be an END IF command for every DO IF command in the structure.

Example
DO IF (RACE EQ 5). /*Do whites
+ DO IF (SEX EQ 2). /*White female
+ COMPUTE SEXRACE=3.
+ ELSE. /*White male
+ COMPUTE SEXRACE=1.
+ END IF. /*Whites done
ELSE IF (SEX EQ 2). /*Nonwhite female
COMPUTE SEXRACE=4.
ELSE. /*Nonwhite male
COMPUTE SEXRACE=2.
END IF. /*Nonwhites done

• This structure creates variable SEXRACE, which indicates both the sex and minority status
of an individual.

• An optional plus sign, minus sign, or period in the first column allows you to indent
commands so you can easily see the nested structures.

Complex File Structures

Some complex file structures may require you to imbed more than one DATA LIST command
inside a DO IF—END IF structure. For example, consider a data file that has been collected
from various sources. The information from each source is basically the same, but it is in
different places on the records:

111295100FORD CHAPMAN AUTO SALES
121199005VW MIDWEST VOLKSWAGEN SALES
11 395025FORD BETTER USED CARS
11 CHEVY 195005 HUFFMAN SALES & SERVICE
11 VW 595020 MIDWEST VOLKSWAGEN SALES
11 CHEVY 295015 SAM’S AUTO REPAIR
12 CHEVY 210 20 LONGFELLOW CHEVROLET
9555032 VW HYDE PARK IMPORTS

In the above file, an automobile part number always appears in columns 1 and 2, and the auto-
mobile manufacturer always appears in columns 10 through 14. The location of other informa-
tion, such as price and quantity, depends on both the part number and the type of automobile.
The DO IF—END IF structure in the following example reads records for part type 11.

500 DO IF

Example
INPUT PROGRAM.
DATA LIST FILE=CARPARTS /PARTNO 1-2 KIND 10-14 (A).

DO IF (PARTNO EQ 11 AND KIND EQ ’FORD’).
+ REREAD.
+ DATA LIST /PRICE 3-6 (2) QUANTITY 7-9 BUYER 20-43 (A).
+ END CASE.

ELSE IF (PARTNO EQ 11 AND (KIND EQ ’CHEVY’ OR KIND EQ ’VW’)).
+ REREAD.
+ DATA LIST /PRICE 15-18 (2) QUANTITY 19-21 BUYER 30-53 (A).
+ END CASE.
END IF.
END INPUT PROGRAM.

PRINT FORMATS PRICE (DOLLAR6.2).
PRINT /PARTNO TO BUYER.
WEIGHT BY QUANTITY.
DESCRIPTIVES PRICE.

• The first DATA LIST extracts the part number and the type of automobile.

• Depending on the information from the first DATA LIST, the records are reread, pulling the
price, quantity, and buyer from different places.

• The two END CASE commands limit the working file to only those cases with Part 11 and
automobile type Ford, Chevrolet, or Volkswagen. Without the END CASE commands,
cases would be created in the working file for other part numbers and automobile types
with missing values for price, quantity, and buyer.

• The results of the PRINT command are shown in Figure 1.

Figure 1 Printed information for part 11
11 FORD $12.95 100 CHAPMAN AUTO SALES
11 FORD $3.95 25 BETTER USED CARS
11 CHEVY $1.95 5 HUFFMAN SALES & SERVICE
11 VW $5.95 20 MIDWEST VOLKSWAGEN SALES
11 CHEVY $2.95 15 SAM’S AUTO REPAIR

501

DO REPEAT—END REPEAT

DO REPEAT stand-in var={varlist } [/stand-in var=...]
 {value list}

transformation commands

END REPEAT [PRINT]

Example
DO REPEAT R=REGION1 TO REGION5.
COMPUTE R=0.
END REPEAT.

Overview

The DO REPEAT—END REPEAT structure repeats the same transformations on a specified
set of variables, reducing the number of commands you must enter to accomplish a task.
This utility does not reduce the number of commands the program executes, just the number
of commands you enter. To display the expanded set of commands the program generates,
specify PRINT on END REPEAT.

DO REPEAT uses a stand-in variable to represent a replacement list of variables or values.
The stand-in variable is specified as a place holder on one or more transformation commands
within the structure. When the program repeats the transformation commands, the stand-in
variable is replaced, in turn, by each variable or value specified on the replacement list.

The following commands can be used within a DO REPEAT—END REPEAT structure:

• Data transformations: COMPUTE, RECODE, IF, COUNT, and SELECT IF
• Data declarations: VECTOR, STRING, NUMERIC, and LEAVE

• Data definition: DATA LIST, MISSING VALUES (but not VARIABLE LABELS or VALUE LABELS)

• Loop structure commands: LOOP, END LOOP, and BREAK

• Do-if structure commands: DO IF, ELSE IF, ELSE, and END IF

• Print and write commands: PRINT, PRINT EJECT, PRINT SPACE, and WRITE

• Format commands: PRINT FORMATS, WRITE FORMATS, and FORMATS

Basic Specification

The basic specification is DO REPEAT, a stand-in variable followed by a required equals sign
and a replacement list of variables or values, and at least one transformation command. The
structure must end with the END REPEAT command. On the transformation commands, a
single stand-in variable represents every variable or value specified on the replacement list.

502 DO REPEAT—END REPEAT

Syntax Rules

• Multiple stand-in variables can be specified on a DO REPEAT command. Each stand-in
variable must have its own equals sign and associated variable or value list and must be
separated from other stand-in variables by a slash. All lists must name or generate the
same number of items.

• Stand-in variables can be assigned any valid variable names: permanent, temporary,
scratch, system, and so forth. A stand-in variable does not exist outside the DO REPEAT—
END REPEAT structure and has no effect on variables with the same name that exist
outside the structure. However, two stand-in variables cannot have the same name within
the same DO REPEAT structure.

• A replacement variable list can include new or existing variables, and they can be string
or numeric. Keyword TO can be used to name consecutive existing variables and to create
a set of new variables. New string variables must be declared on the STRING command
either before DO REPEAT or within the DO REPEAT structure. All replacement variable
and value lists must have the same number of items.

• A replacement value list can be a list of strings or numeric values, or it can be of the form
n1 TO n2, where n1 is less than n2 and both are integers. (Note that the keyword is TO, not
THRU.)

Operations

• DO REPEAT marks the beginning of the control structure and END REPEAT marks the end.
Once control passes out of the structure, all stand-in variables defined within the structure
cease to exist.

• The program repeats the commands between DO REPEAT and END REPEAT once for each
variable or value on the replacement list.

• Numeric variables created within the structure are initially set to the system-missing value.
By default, they are assigned an F8.2 format.

• New string variables declared within the structure are initially set to a blank value and are
assigned the format specified on the STRING command that creates them.

• If DO REPEAT is used to create new variables, the order in which they are created depends
on how the transformation commands are specified. Variables created by specifying the
TO keyword (for example, V1 TO V5) are not necessarily consecutive in the working data
file. See the PRINT subcommand on p. 504 for examples.

Example

DO REPEAT R=REGION1 TO REGION5.
COMPUTE R=0.
END REPEAT.

• DO REPEAT defines the stand-in variable R, which represents five new numeric variables:
REGION1, REGION2, REGION3, REGION4, and REGION5.

DO REPEAT—END REPEAT 503

• The five variables are initialized to 0 by a single COMPUTE specification that is repeated
for each variable on the replacement list. Thus, the program generates five COMPUTE
commands from the one specified.

• Stand-in variable R ceases to exist once control passes out of the DO REPEAT structure.

Example

* This example shows a typical application of INPUT PROGRAM, LOOP,
 and DO REPEAT. A data file containing random numbers is generated.

INPUT PROGRAM.
+ LOOP #I = 1 TO 1000.
+ DO REPEAT RESPONSE = R1 TO R400.
+ COMPUTE RESPONSE = UNIFORM(1) > 0.5.
+ END REPEAT.
+ COMPUTE AVG = MEAN(R1 TO R400).
+ END CASE.
+ END LOOP.
+ END FILE.
END INPUT PROGRAM.

FREQUENCIES VARIABLE=AVG
 /FORMAT=CONDENSE
 /HISTOGRAM
 /STATISTICS=MEAN MEDIAN MODE STDDEV MIN MAX.

• The INPUT PROGRAM—END INPUT PROGRAM structure encloses an input program that
builds cases from transformation commands.

• The indexing variable (#I) on LOOP—END LOOP indicates that the loop should be executed
1000 times.

• The DO REPEAT—END REPEAT structure generates 400 variables, each with a 50%
chance of being 0 and a 50% chance of being 1. This is accomplished by specifying a
logical expression on COMPUTE that compares the values returned by UNIFORM(1) to the
value 0.5. (UNIFORM(1) generates random numbers between 0 and 1.) Logical expres-
sions are evaluated as false (0), true (1), or missing. Thus, each random number returned
by UNIFORM that is 0.5 or less is evaluated as false and assigned the value 0, and each
random number returned by UNIFORM that is greater than 0.5 is evaluated as true and
assigned the value 1.

• The second COMPUTE creates variable AVG, which is the mean of R1 to R400 for each
case.

• END CASE builds a case with the variables created within each loop. Thus, the loop struc-
ture creates 1000 cases, each with 401 variables (R1 to R400, and AVG).

• END FILE signals the end of the data file generated by the input program. If END FILE were
not specified in this example, the input program would go into an infinite loop. No
working file would be built, and the program would display an error message for every
procedure that follows the input program.

• FREQUENCIES produces a condensed frequency table, histogram, and statistics for AVG.
The histogram for AVG shows a normal distribution.

504 DO REPEAT—END REPEAT

PRINT Subcommand

The PRINT subcommand on END REPEAT displays the commands generated by the DO
REPEAT—END REPEAT structure. PRINT can be used to verify the order in which
commands are executed.

Example
DO REPEAT Q=Q1 TO Q5/ R=R1 TO R5.
COMPUTE Q=0.
COMPUTE R=1.
END REPEAT PRINT.

• The DO REPEAT—END REPEAT structure initializes one set of variables to 0 and another
set to 1.

• The output from the PRINT subcommand is shown in Figure 1. The generated commands
are preceded by plus signs.

• The COMPUTE commands are generated in such a way that variables are created in alter-
nating order: Q1, R1, Q2, R2, and so forth. If you plan to use the TO keyword to refer to
Q1 to Q5 later, you should use two separate DO REPEAT utilities; otherwise, Q1 to Q5 will
include four of the five R variables. Alternatively, use the NUMERIC command to prede-
termine the order in which variables are added to the working file, or specify the replace-
ment value lists as shown in the next example.

Example
DO REPEAT Q=Q1 TO Q5,R1 TO R5/ N=0,0,0,0,0,1,1,1,1,1.
COMPUTE Q=N.
END REPEAT PRINT.

• In this example, a series of constants is specified as a stand-in value list for N. All the Q
variables are initialized first, and then all the R variables, as shown in Figure 2.

Figure 1 Output from the PRINT subcommand
 2 0 DO REPEAT Q=Q1 TO Q5/ R=R1 TO R5
 3 0 COMPUTE Q=0
 4 0 COMPUTE R=1
 5 0 END REPEAT PRINT

 6 0 +COMPUTE Q1=0
 7 0 +COMPUTE R1=1
 8 0 +COMPUTE Q2=0
 9 0 +COMPUTE R2=1
 10 0 +COMPUTE Q3=0
 11 0 +COMPUTE R3=1
 12 0 +COMPUTE Q4=0
 13 0 +COMPUTE R4=1
 14 0 +COMPUTE Q5=0
 15 0 +COMPUTE R5=1

DO REPEAT—END REPEAT 505

Example
DO REPEAT R=REGION1 TO REGION5/ X=1 TO 5.
COMPUTE R=REGION EQ X.
END REPEAT PRINT.

• In this example, stand-in variable R represents the variable list REGION1 to REGION5.
Stand-in variable X represents the value list 1 to 5.

• The DO REPEAT—END REPEAT structure creates dummy variables REGION1 to REGION5
that equal 0 or 1 for each of 5 regions, depending on whether variable REGION equals the
current value of stand-in variable X.

• PRINT on END REPEAT causes the program to display the commands generated by the
structure, as shown in Figure 3.

Figure 2 Output from the PRINT subcommand
 2 0 DO REPEAT Q=Q1 TO Q5,R1 TO R5/ N=0,0,0,0,0,1,1,1,1,1
 3 0 COMPUTE Q=N
 4 0 END REPEAT PRINT

 5 0 +COMPUTE Q1=0
 6 0 +COMPUTE Q2=0
 7 0 +COMPUTE Q3=0
 8 0 +COMPUTE Q4=0
 9 0 +COMPUTE Q5=0
 10 0 +COMPUTE R1=1
 11 0 +COMPUTE R2=1
 12 0 +COMPUTE R3=1
 13 0 +COMPUTE R4=1
 14 0 +COMPUTE R5=1

Figure 3 Commands generated by DO REPEAT
 2 0 DO REPEAT R=REGION1 TO REGION5/ X=1 TO 5
 3 0 COMPUTE R=REGION EQ X
 4 0 END REPEAT PRINT

 5 0 +COMPUTE REGION1=REGION EQ 1
 6 0 +COMPUTE REGION2=REGION EQ 2
 7 0 +COMPUTE REGION3=REGION EQ 3
 8 0 +COMPUTE REGION4=REGION EQ 4
 9 0 +COMPUTE REGION5=REGION EQ 5

506

DROP DOCUMENTS

DROP DOCUMENTS

Overview

When GET retrieves an SPSS-format data file, or when ADD FILES, MATCH FILES, or
UPDATE are used to combine SPSS-format data files, all documents from each specified file
are copied into the working file. DROP DOCUMENTS is used to drop these or any documents
added with the DOCUMENT command from the working file. Whether or not DROP
DOCUMENTS is used, new documents can be added to the working file with the DOCUMENT
command.

Basic Specification

The only specification is DROP DOCUMENTS. There are no additional specifications.

Operations

• Documents are dropped from the working data file only. The original data file is
unchanged, unless it is resaved.

• DROP DOCUMENTS drops all documentation, including documentation added by any
DOCUMENT commands specified prior to the DROP DOCUMENTS command.

Example

GET FILE=GENSOC /KEEP=AGE SEX EDUC MARITAL CHILDRN MED_INS.

DROP DOCUMENTS.

FILE LABEL General Social Survey Subset.
DOCUMENT This file contains a subset of variables from the

General Social Survey data. For each case it records
 only the age, sex, education level, marital status,
 number of children, and type of medical insurance

 coverage.

SAVE OUTFILE=SUBSOC.

• DROP DOCUMENTS drops the documentation text from file GENSOC. Only the new
documentation added with the DOCUMENT command is saved in file SUBSOC.

• The original file GENSOC is unchanged.

507

ECHO

ECHO "text".

Example
ECHO "Hey! Look at this!".

Overview

ECHO displays the quoted text string as text output.

Basic Specification

The basic specification is the command name ECHO followed by a quoted text string.

Syntax Rules

• The text string must be enclosed in single or double quotes, following the standard rules
for quoted strings.

• The text string can be continued on multiple lines by enclosing each line in quotes and
using the plus (sign) to combine the strings -- but the string will be displayed on a single
line in output.

508

END CASE

END CASE

Example
* Restructure a data file to make each data item into a single case.

INPUT PROGRAM.
DATA LIST /#X1 TO #X3 (3(F1,1X)).

VECTOR V=#X1 TO #X3.

LOOP #I=1 TO 3.
- COMPUTE X=V(#I).
- END CASE.
END LOOP.
END INPUT PROGRAM.

Overview

END CASE is used in an INPUT PROGRAM—END INPUT PROGRAM structure to signal that
a case is complete. Control then passes to the commands immediately following the input
program. After these commands are executed for the newly created case, the program
returns to the input program and continues building cases by processing the commands
immediately after the last END CASE command that was executed. For more information
about the flow control in an input program, see INPUT PROGRAM—END INPUT PROGRAM.

END CASE is especially useful for restructuring files, either building a single case from
several cases or building several cases from a single case. It can also be used to generate
data without any data input (see p. 503 for an example).

Basic Specification

The basic specification is simply END CASE. There are no additional specifications.

Syntax Rules

• END CASE is available only within an input program and is generally specified within a
loop.

• Multiple END CASE commands can be used within an input program. Each builds a case
from the transformation and data definition commands executed since the last END
CASE command.

• If no END CASE is explicitly specified, an END CASE command is implied immediately
before END INPUT PROGRAM and the input program loops until an end-of-file is encoun-
tered or specified (see END FILE).

END CASE 509

Operations

• When an END CASE command is encountered, the program suspends execution of the rest
of the commands before the END INPUT PROGRAM command and passes control to the
commands after the input program. After these commands are executed for the new case,
control returns to the input program. The program continues building cases by processing
the commands immediately after the most recent END CASE command. Use a loop to
build cases from the same set of transformation and data definition commands.

• When multiple END CASE commands are specified, the program follows the flow of the
input program and builds a case whenever it encounters an END CASE command, using
the set of commands executed since the last END CASE.

• Unless LEAVE is specified, all variables are reinitialized each time the input program is
resumed.

• When transformations such as COMPUTE, definitions such as VARIABLE LABELS, and util-
ities such as PRINT are specified between the last END CASE command and END INPUT
PROGRAM, they are executed while a case is being initialized, not when it is complete. This
may produce undesirable results (see the example beginning on p. 514).

Example

* Restructuring a data file to make each data item a single case.

INPUT PROGRAM.
DATA LIST /#X1 TO #X3 (3(F1,1X)).

VECTOR V=#X1 TO #X3.

LOOP #I=1 TO 3.
- COMPUTE X=V(#I).
- END CASE.
END LOOP.
END INPUT PROGRAM.

BEGIN DATA
2 1 1
3 5 1
END DATA.
FORMAT X(F1.0).
PRINT / X.
EXECUTE.

• The input program encloses the commands that build cases from the input file. An input
program is required because END CASE is used to create multiple cases from single input
records.

• DATA LIST defines three variables. In the format specification, the number 3 is a repetition
factor that repeats the format in parentheses three times, once for each variable. The spec-
ified format is F1 and the 1X specification skips 1 column.

• VECTOR creates the vector V with the original scratch variables as its three elements. The
indexing expression on the LOOP command increments the variable #I three times to con-
trol the number of iterations per input case and to provide the index for the vector V.

510 END CASE

• COMPUTE sets X equal to each of the scratch variables. END CASE tells the program to
build a case. Thus, the first loop (for the first case) sets X equal to the first element of vec-
tor V. Since V(1) references #X1, and #X1 is 2, the value of X is 2. Variable X is then for-
matted and printed before control returns to the command END LOOP. The loop
continues, since indexing is not complete. Thus, the program then sets X to #X2, which is
1, builds the second case, and passes it to the FORMAT and PRINT commands. After the
third iteration, which sets X equal to 1, the program formats and prints the case and ter-
minates the loop. Since the end of the file has not been encountered, END INPUT
PROGRAM passes control to the first command in the input program, DATA LIST, to read
the next input case. After the second loop, however, the program encounters END DATA
and completes building the working data file.

• The six new cases are shown in Figure 1.

Example

*Restructuring a data file to create a separate case for
 each book order.

INPUT PROGRAM.
DATA LIST /ORDER 1-4 #X1 TO #X22 (1X,11(F3.0,F2.0,1X)).

LEAVE ORDER.
VECTOR BOOKS=#X1 TO #X22.

LOOP #I=1 TO 21 BY 2 IF NOT SYSMIS(BOOKS(#I)).
- COMPUTE ISBN=BOOKS(#I).
- COMPUTE QUANTITY=BOOKS(#I+1).
- END CASE.
END LOOP.
END INPUT PROGRAM.
BEGIN DATA
1045 182 2 155 1 134 1 153 5
1046 155 3 153 5 163 1
1047 161 5 182 2 163 4 186 6
1048 186 2
1049 155 2 163 2 153 2 074 1 161 1
END DATA.

SORT CASES ISBN.
DO IF $CASENUM EQ 1.
- PRINT EJECT /’Order ISBN Quantity’.
- PRINT SPACE.
END IF.

FORMATS ISBN (F3)/ QUANTITY (F2).
PRINT /’ ’ ORDER ’ ’ ISBN ’ ’ QUANTITY.

EXECUTE.

Figure 1 Outcome for multiple cases read from a single case
2
1
1
3
5
1

END CASE 511

• Data are extracted from a file whose records store values for an invoice number and a
series of book codes and quantities ordered. For example, invoice 1045 is for four differ-
ent titles and a total of nine books: two copies of book 182, one copy each of 155 and 134,
and five copies of book 153. The task is to break each individual book order into a record,
preserving the order number on each new case.

• The input program encloses the commands that build cases from the input file. They are
required because the END CASE command is used to create multiple cases from single in-
put records.

• DATA LIST specifies ORDER as a permanent variable and defines 22 scratch variables to
hold the book numbers and quantities (this is the maximum number of numbers and quan-
tities that will fit in 72 columns). In the format specification, the first element skips one
space after the value for the variable ORDER. The number 11 repeats the formats that fol-
low it 11 times: once for each book number and quantity pair. The specified format is F3.0
for book numbers and F2.0 for quantities. The 1X specification skips 1 column after each
quantity value.

• LEAVE preserves the value of the variable ORDER across the new cases to be generated.

• VECTOR sets up the vector BOOKS with the 22 scratch variables as its elements. The first
element is #X1, the second is #X2, and so on.

• If the element for the vector BOOKS is not system-missing, LOOP initiates the loop struc-
ture that moves through the vector BOOKS, picking off the book numbers and quantities.
The indexing clause initiates the indexing variable #I at 1, to be increased by 2 to a max-
imum of 21.

• The first COMPUTE command sets the variable ISBN equal to the element in the vector
BOOKS indexed by #I, which is the current book number. The second COMPUTE sets the
variable QUANTITY equal to the next element in the vector BOOKS, #I +1, which is the
quantity associated with the book number in BOOKS(#I).

• END CASE tells the program to write out a case with the current values of the three vari-
ables: ORDER, ISBN, and QUANTITY.

• END LOOP terminates the loop structure and control is returned to the LOOP command,
where #I is increased by 2 and looping continues until the entire input case is read or until
#I exceeds the maximum value of 21.

• SORT CASES sorts the new cases by book number.

• The DO IF structure encloses a PRINT EJECT command and a PRINT SPACE command to
set up titles for the output.

• FORMATS establishes dictionary formats for the new variables ISBN and QUANTITY.
PRINT displays the new cases.

• EXECUTE runs the commands. The output is shown in Figure 2.

512 END CASE

Example

* Create variable that approximates a log-normal distribution.

SET FORMAT=F8.0.

INPUT PROGRAM.
LOOP I=1 TO 1000.
+ COMPUTE SCORE=EXP(NORMAL(1)).
+ END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.

FREQUENCIES VARIABLES=SCORE /FORMAT=NOTABLE /HISTOGRAM
 /PERCENTILES=1 10 20 30 40 50 60 70 80 90 99
 /STATISTICS=ALL.

• The input program creates 1000 cases with a single variable SCORE. Values for SCORE
approximate a log-normal distribution.

Example

* Restructure a data file to create a separate case for each
 individual.
INPUT PROGRAM.
DATA LIST /#RECS 1 HEAD1 HEAD2 3-4(A). /*Read header info
LEAVE HEAD1 HEAD2.

LOOP #I=1 TO #RECS.
DATA LIST /INDIV 1-2(1). /*Read individual info
PRINT /#RECS HEAD1 HEAD2 INDIV.
END CASE. /*Create combined case
END LOOP.
END INPUT PROGRAM.

Figure 2 PRINT output showing new cases
Order ISBN Quantity

 1049 74 1
 1045 134 1
 1045 153 5
 1046 153 5
 1049 153 2
 1045 155 1
 1046 155 3
 1049 155 2
 1047 161 5
 1049 161 1
 1046 163 1
 1047 163 4
 1049 163 2
 1045 182 2
 1047 182 2
 1047 186 6
 1048 186 2

END CASE 513

BEGIN DATA
1 AC
91
2 CC
35
43
0 XX
1 BA
34
3 BB
42
96
37
END DATA.
LIST.

• Data are in a file with header records that indicate the type of record and the number of
individual records that follow. The number of records following each header record varies.
For example, the 1 in the first column of the first header record (AC) says that only one
individual record (91) follows. The 2 in the first column of the second header record (CC)
says that two individual records (35 and 43) follow. The next header record has no individ-
ual records, indicated by the 0 in column 1, and so on.

• The first DATA LIST reads the expected number of individual records for each header
record into temporary variable #RECS. #RECS is then used as the terminal value in the
indexing variable to read the correct number of individual records using the second DATA
LIST.

• The variables HEAD1 and HEAD2 contain the information in columns 3 and 4, respectively,
in the header records. The LEAVE command retains HEAD1 and HEAD2 so that this infor-
mation can be spread to the individual records.

• The variable INDIV is the information from the individual record. INDIV is combined with
#RECS, HEAD1, and HEAD2 to create the new case. Notice in the output from the PRINT
command in Figure 3 that no case is created for the header record with 0 for #RECS.

• END CASE passes each case out of the input program to the LIST command. Without END
CASE, the PRINT command would still display the cases as shown in Figure 3 because it
is inside the loop. However, only one (the last) case per header record would pass out of
the input program. The outcome for LIST will be quite different (compare Figure 4 with
Figure 5).

Figure 3 PRINT output
1 A C 9.1
2 C C 3.5
2 C C 4.3
1 B A 3.4
3 B B 4.2
3 B B 9.6
3 B B 3.7

514 END CASE

Example

* Note: the following is an erroneous program! The COMPUTE and
 PRINT commands that follow END CASE are misplaced. They should
 be specified after the END INPUT PROGRAM command.

INPUT PROGRAM.
DATA LIST /#X1 TO #X3 (3(F1,1X)).

VECTOR V=#X1 TO #X3.

LOOP #I=1 TO 3.
COMPUTE X=V(#I).
END CASE.
END LOOP.

COMPUTE Y=X**2. /* This should be specified after the input program
VARIABLE LABELS X ’TEST VARIABLE’ Y ’SQUARE OF X’.
PRINT FORMATS X Y (F2).
END INPUT PROGRAM.

BEGIN DATA
2 1 1
3 5 1
END DATA.

FREQUENCIES VARIABLES=X Y.

• No error or warning is issued for these commands, but the result is not what was intended.
The computed value for X is passed out of the input program when the END CASE com-
mand is encountered. Thus, Y is computed from the initialized value of X, which is the
system-missing value. As Figure 6 shows, all six cases computed for Y within the input
program have the system-missing value, represented by a period (.).

Figure 4 LIST output when END CASE is specified
HEAD1 HEAD2 INDIV

A C 9.1
C C 3.5
C C 4.3
B A 3.4
B B 4.2
B B 9.6
B B 3.7

Figure 5 LIST output when END CASE is not specified
HEAD1 HEAD2 INDIV

A C 9.1
C C 4.3
X X .
B A 3.4
B B 3.7

END CASE 515

• The frequencies table for X is as expected, because X is computed from inline data and no
computation is done between END CASE and END INPUT PROGARM.

• The VARIABLE LABELS and PRINT FORMATS commands have their desired effects even
though they are executed with the COMPUTE command, because they do not act on any
data read in.

• Moving COMPUTE before END CASE will solve the problem, but the preferred solution is
to specify END INPUT PROGRAM before all commands in the transformation program,
since they operate on the cases created by the input program.

Figure 6 FREQUENCIES output
X TEST VARIABLE

 VALID CUM
 VALUE LABEL VALUE FREQUENCY PERCENT PERCENT PERCENT

 1 3 50.0 50.0 50.0
 2 1 16.7 16.7 66.7
 3 1 16.7 16.7 83.3
 5 1 16.7 16.7 100.0
 ------- ------- -------
 TOTAL 6 100.0 100.0

VALID CASES 6 MISSING CASES 0
- -

Y SQUARE OF X

 VALID CUM
 VALUE LABEL VALUE FREQUENCY PERCENT PERCENT PERCENT

 . 6 100.0 MISSING
 ------- ------- -------
 TOTAL 6 100.0 100.0

516

END FILE

END FILE

Example
INPUT PROGRAM.
DATA LIST FILE=PRICES /YEAR 1-4 QUARTER 6 PRICE 8-12(2).
DO IF (YEAR GE 1881). /*Stop reading before 1881
END FILE.
END IF.
END INPUT PROGRAM.

Overview

END FILE is used in an INPUT PROGRAM—END INPUT PROGRAM structure to tell the
program to stop reading data before it actually encounters the end of the file. END FILE
can be used with END CASE to concatenate raw data files by causing the program to delay
end-of-file processing until it has read multiple data files (see p. 422 for an example). END
FILE can also be used with LOOP and END CASE to generate data without any data input
(see p. 503 for an example).

Basic Specification

The basic specification is simply END FILE. There are no additional specifications. The end
of file is defined according to the conditions specified for END FILE in the input program.

Syntax Rules

• END FILE is available only within an INPUT PROGRAM structure.

• Only one END FILE command can be executed per input program. However, multiple
END FILE commands can be specified within a conditional structure in the input
program.

Operations

• When END FILE is encountered, the program stops reading data and puts an end of file
in the working data file it was building. The case that causes the execution of END FILE
is not read. To include this case, use the END CASE command before END FILE (see the
examples below).

• END FILE has the same effect as the end of the input data file. It terminates the input
program (see INPUT PROGRAM—END INPUT PROGRAM).

END FILE 517

Example

*Select cases.

INPUT PROGRAM.
DATA LIST FILE=PRICES /YEAR 1-4 QUARTER 6 PRICE 8-12(2).

DO IF (YEAR GE 1881). /*Stop reading before 1881
END FILE.
END IF.

END INPUT PROGRAM.

LIST.

• This example assumes that data records are entered chronologically by year. The DO IF—
END IF structure specifies an end of file when the first case with a value of 1881 or later
for YEAR is reached.

• LIST executes the input program and lists cases in the working data file. The case that
causes the end of the file is not included in the working data file.

• As an alternative to an input program with END FILE, you can use N OF CASES to select
cases if you know the exact number of cases. Another alternative is to use SELECT IF to
select cases before 1881, but then the program would unnecessarily read the entire input
file.

Example

Select cases but retain the case that causes end-of-file processing.

INPUT PROGRAM.
DATA LIST FILE=PRICES /YEAR 1-4 QUARTER 6 PRICE 8-12(2).

DO IF (YEAR GE 1881). /*Stop reading before 1881 (or at end of file)
END CASE. /*Create case 1881
END FILE.

ELSE.
END CASE. /*Create all other cases
END IF.
END INPUT PROGRAM.

LIST.

• The first END CASE command forces the program to retain the case that causes end-of-
file processing.

• The second END CASE indicates the end of case for all other cases and passes them out of
the input program one at a time. It is required because the first END CASE command
causes the program to abandon default end-of-case processing (see END CASE).

518

ERASE

ERASE FILE=’file’

Example
ERASE FILE=’PRSNL.DAT’.

Overview

ERASE removes a file from a disk.

Basic Specification

The basic specification is the keyword FILE followed by a file specification. The specified
file is erased from the disk. The file specification may vary from operating system to oper-
ating system, but enclosing the filename in apostrophes generally works.

Syntax Rules

• The keyword FILE is required but the equals sign is optional.

• ERASE allows one file specification only and does not accept wildcard characters. To
erase more than one file, specify multiple ERASE commands.

• The file to be erased must be specified in full. ERASE does not recognize any default file
extension.

Operations

ERASE deletes the specified file regardless of its type. No message is displayed unless the
command cannot be executed. Use ERASE with caution.

Example

ERASE FILE ’PRSNL.DAT’.

• The file PRSNL.SAV is deleted from the current directory. Whether it is an SPSS-format
data file or a file of any other type makes no difference.

519

EXAMINE

EXAMINE VARIABLES=varlist [[BY varlist] [varname BY varname]]

 [/COMPARE={GROUPS** }]
 {VARIABLES}

[/{TOTAL**}]

 {NOTOTAL}

 [/ID={case number**}]
 {varname }

[/PERCENTILES [[({5,10,25,50,75,90,95})=[{HAVERAGE }] [NONE]]

 {value list } {WAVERAGE }
 {ROUND }
 {AEMPIRICAL}
 {EMPIRICAL }

 [/PLOT=[STEMLEAF**] [BOXPLOT**] [NPPLOT] [SPREADLEVEL(n)] [HISTOGRAM]]

 [{ALL }]
 {NONE}

 [/STATISTICS=[DESCRIPTIVES**] [EXTREME({5})]]
 {n}
 [{ALL }]
 {NONE}

 [/CINTERVAL {95**}]

{n }

 [/MESTIMATOR=[{NONE**}]]

{ALL }

 [HUBER({1.339})] [ANDREW({1.34}]

 {c } {c }

 [HAMPEL({1.7,3.4,8.5})]

 {a ,b ,c }

 [TUKEY({4.685})]

 {c }

[/MISSING=[{LISTWISE**}] [{EXCLUDE**}] [{NOREPORT**}]]
 {PAIRWISE } {INCLUDE } {REPORT }

**Default if the subcommand is omitted.

Examples
EXAMINE VARIABLES=ENGSIZE,COST.

EXAMINE VARIABLES=MIPERGAL BY MODEL,MODEL BY CYLINDERS.

Overview

EXAMINE provides stem-and-leaf plots, histograms, boxplots, normal plots, robust esti-
mates of location, tests of normality, and other descriptive statistics. Separate analyses can
be obtained for subgroups of cases.

520 EXAMINE

Options

Cells. You can subdivide cases into cells based on their values for grouping (factor) variables
using the BY keyword on the VARIABLES subcommand.

Output. You can control the display of output using the COMPARE subcommand. You can
specify the computational method and break points for percentiles with the PERCENTILES
subcommand, and you can assign a variable to be used for labeling outliers on the ID
subcommand.

Plots. You can request stem-and-leaf plots, histograms, vertical boxplots, spread-versus-level
plots with Levene tests for homogeneity of variance, and normal and detrended probability
plots with tests for normality. These plots are available through the PLOT subcommand.

Statistics. You can request univariate statistical output with the STATISTICS subcommand
and maximum-likelihood estimators with the MESTIMATORS subcommand.

Basic Specification

• The basic specification is VARIABLES and at least one dependent variable.

• The default output includes a Descriptives table displaying univariate statistics (mean,
median, standard deviation, standard error, variance, kurtosis, kurtosis standard error,
skewness, skewness standard error, sum, interquartile range (IQR), range, minimum,
maximum, and 5% trimmed mean), a vertical boxplot and a stem-and-leaf plot. Outliers
are labeled on the boxplot with the system variable $CASENUM.

Subcommand Order

Subcommands can be named in any order.

Limitations

• When string variables are used as factors, only the first eight characters are used to form
cells. String variables cannot be specified as dependent variables.

• When more than eight crossed factors (for example, A, B, ... in the specification Y
by A by B by ...) are specified, the command is not executed.

Example

EXAMINE VARIABLES=ENGSIZE,COST.

• ENGSIZE and COST are the dependent variables.
• EXAMINE produces univariate statistics for ENGSIZE and COST in the Descriptives table

and a vertical boxplot and a stem-and-leaf plot for each variable.

EXAMINE 521

Example

EXAMINE VARIABLES=MIPERGAL BY MODEL,MODEL BY CYLINDERS.

• MIPERGAL is the dependent variable. The cell specification follows the first BY keyword.
Cases are subdivided based on values of MODEL and also based on the combination of
values of MODEL and CYLINDERS.

• Assuming that there are three values for MODEL and two values for CYLINDERS, this
example produces a Descriptives table, a stem-and-leaf plot, and a boxplot for the total
sample, a Descriptives table and a boxplot for each factor defined by the first BY
(MIPERGAL by MODEL and MIPERGAL by MODEL by CYLINDERS), and a stem-and-leaf
plot for each of the nine cells (three defined by MODEL and six defined by MODEL and
CYLINDERS together).

VARIABLES Subcommand

VARIABLES specifies the dependent variables and the cells. The dependent variables are
specified first, followed by the keyword BY and the variables that define the cells. Repeated
models on the same EXAMINE are discarded.

• To create cells defined by the combination of values of two or more factors, specify the
factor names separated by the keyword BY.

Caution. Large amounts of output can be produced if many cells are specified. If there are
many factors or if the factors have many values, EXAMINE will produce a large number of
separate analyses.

Example
EXAMINE VARIABLES=SALARY,YRSEDUC BY RACE,SEX,DEPT,RACE BY SEX.

• SALARY and YRSEDUC are dependent variables.

• Cells are formed first for the values of SALARY and YRSEDUC individually, and then each
by values for RACE, SEX, DEPT, and the combination of RACE and SEX.

• By default, EXAMINE produces Descriptives tables, stem-and-leaf plots, and boxplots.

COMPARE Subcommand

COMPARE controls how boxplots are displayed. This subcommand is most useful if there is
more than one dependent variable and at least one factor in the design.

GROUPS For each dependent variable, boxplots for all cells are displayed together.
With this display, comparisons across cells for a single dependent variable
are easily made. This is the default.

VARIABLES For each cell, boxplots for all dependent variables are displayed together.
With this display, comparisons of several dependent variables are easily made.
This is useful in situations where the dependent variables are repeated mea-
sures of the same variable (see the following example) or have similar scales,
or when the dependent variable has very different values for different cells, and
plotting all cells on the same scale would cause information to be lost.

522 EXAMINE

Example
EXAMINE VARIABLES=GPA1 GPA2 GPA3 GPA4 BY MAJOR /COMPARE=VARIABLES.

• The four GPA variables are summarized for each value of MAJOR.

• COMPARE=VARIABLES groups the boxplots for the four GPA variables together for each
value of MAJOR.

Example
EXAMINE VARIABLES=GPA1 GPA2 GPA3 GPA4 BY MAJOR /COMPARE=GROUPS.

• COMPARE=GROUPS groups the boxplots for GPA1 for all majors together, followed by
boxplots for GPA2 for all majors, and so on.

TOTAL and NOTOTAL Subcommands

TOTAL and NOTOTAL control the amount of output produced by EXAMINE when factor vari-
ables are specified.

• TOTAL is the default. By default, or when TOTAL is specified, EXAMINE produces statis-
tics and plots for each dependent variable overall and for each cell specified by the
factor variables.

• NOTOTAL suppresses overall statistics and plots.

• TOTAL and NOTOTAL are alternatives.

• NOTOTAL is ignored when the VARIABLES subcommand does not specify factor variables.

ID Subcommand

ID assigns a variable from the working data file to identify the cases in the output. By default
the case number is used for labeling outliers and extreme cases in boxplots.

• The identification variable can be either string or numeric. If it is numeric, value labels
are used to label cases. If no value labels exist, the values are used.

• Only one identification variable can be specified.

Example
EXAMINE VARIABLES=SALARY BY RACE BY SEX /ID=LASTNAME.

• ID displays the value of LASTNAME for outliers and extreme cases in the boxplots.

PERCENTILES Subcommand

PERCENTILES displays the Percentiles table. If PERCENTILES is omitted, no percentiles are
produced. If PERCENTILES is specified without keywords, HAVERAGE is used with default
break points of 5, 10, 25, 50, 75, 90, and 95.

• Values for break points are specified in parentheses following the subcommand. EXAMINE
displays up to six decimal places for user-specified percentile values.

EXAMINE 523

• The method keywords follow the specifications for break points.

For each of the following methods of percentile calculation, w is the sum of the weights for
all nonmissing cases, p is the specified percentile divided by 100, and Xi is the value of the
ith case (cases are assumed to be ranked in ascending order). For details on the specific
formulas used, see the SPSS Statistical Algorithms chapter for EXAMINE.

HAVERAGE Weighted average at . The percentile value is the weighted average
of and , where i is the integer part of . This is the default
if PERCENTILES is specified without a keyword.

WAVERAGE Weighted average at . The percentile value is the weighted average of
and , where i is the integer part of wp.

ROUND Observation closest to wp. The percentile value is or , depending
upon whether i or i+1 is “closer” to .

EMPIRICAL Empirical distribution function. The percentile value is , where i is equal
to wp rounded up to the next integer.

AEMPIRICAL Empirical distribution with averaging. This is equivalent to EMPIRICAL, ex-
cept when i=wp, in which case the percentile value is the average of and

.

NONE Suppress percentile output. This is the default if PERCENTILES is omitted.

Example
EXAMINE VARIABLE=SALARY /PERCENTILES(10,50,90)=EMPIRICAL.

• PERCENTILES produces the 10th, 50th, and 90th percentiles for the dependent variable
SALARY using the EMPIRICAL distribution function.

PLOT Subcommand

PLOT controls plot output. The default is a vertical boxplot and a stem-and-leaf plot for each
dependent variable for each cell in the model.

• Spread-versus-level plots can be produced only if there is at least one factor variable on
the VARIABLES subcommand. If you request a spread-versus-level plot and there are no
factor variables, the program issues a warning and no spread-versus-level plot is produced.

• If you specify the PLOT subcommand, only those plots explicitly requested are produced.

BOXPLOT Vertical boxplot. The boundaries of the box are Tukey’s hinges. The
median is identified by an asterisk. The length of the box is the inter-
quartile range (IQR) computed from Tukey’s hinges. Values more than
three IQR’s from the end of a box are labeled as extreme (E). Values
more than 1.5 IQR’s but less than 3 IQR’s from the end of the box are
labeled as outliers (O).

STEMLEAF Stem-and-leaf plot. In a stem-and-leaf plot, each observed value is di-
vided into two components—leading digits (stem) and trailing digits
(leaf).

X w 1+()p
Xi Xi 1+ w 1+()p

Xwp Xi
X i 1+()

Xi Xi 1+
wp

Xi

Xi

Xi 1+

524 EXAMINE

HISTOGRAM Histogram.

SPREADLEVEL(n) Spread-versus-level plot with the Test of Homogeneity of Variance
table. If the keyword appears alone, the natural logs of the interquar-
tile ranges are plotted against the natural logs of the medians for all
cells. If a power for transforming the data (n) is given, the IQR and
median of the transformed data are plotted. If 0 is specified for n, a nat-
ural log transformation of the data is done. The slope of the regression
line and Levene tests for homogeneity of variance are also displayed.
The Levene tests are based on the original data if no transformation is
specified and on the transformed data if a transformation is requested.

NPPLOT Normal and detrended Q-Q plots with the Tests of Normality table
presenting Shapiro-Wilk’s statistic and a Kolmogorov-Smirnov statis-
tic with a Lilliefors significance level for testing normality. If non-in-
teger weights are specified, the Shapiro-Wilk’s statistic is calculated
when the weighted sample size lies between 3 and 50. For no weights
or integer weights, the statistic is calculated when the weighted sam-
ple size lies between 3 and 5000.

ALL All available plots.

NONE No plots.

Example
EXAMINE VARIABLES=CYCLE BY TREATMNT /PLOT=NPPLOT.

• PLOT produces normal and detrended Q-Q plots for each value of TREATMNT and a Tests
of Normality table.

Example
EXAMINE VARIABLES=CYCLE BY TREATMNT /PLOT=SPREADLEVEL(.5).

• PLOT produces a spread-versus-level plot of the medians and interquartile ranges of the
square root of CYCLE. Each point on the plot represents one of the TREATMNT groups.

• A Test of Homogeneity of Variance table displays Levene statistics.

Example
EXAMINE VARIABLES=CYCLE BY TREATMNT /PLOT=SPREADLEVEL(0).

• PLOT generates a spread-versus-level plot of the medians and interquartile ranges of the
natural logs of CYCLE for each TREATMENT group.

• A Test of Homogeneity of Variance table displays Levene statistics.

Example
EXAMINE VARIABLES=CYCLE BY TREATMNT /PLOT=SPREADLEVEL.

• PLOT generates a spread-versus-level plot of the natural logs of the medians and inter-
quartile ranges of CYCLE for each TREATMNT group.

• A Test of Homogeneity of Variance table displays Levene statistics.

EXAMINE 525

STATISTICS Subcommand

STATISTICS requests univariate statistics and determines how many extreme values are
displayed. DESCRIPTIVES is the default. If you specify keywords on STATISTICS, only the
requested statistics are displayed.

DESCRIPTIVES Display the Descriptives table showing univariate statistics (the mean, me-
dian, 5% trimmed mean, standard error, variance, standard deviation, min-
imum, maximum, range, interquartile range, skewness, skewness standard
error, kurtosis, and kurtosis standard error). This is the default.

EXTREME(n) Display the Extreme Values table presenting cases with the n largest and n
smallest values. If n is omitted, the five largest and five smallest values are
displayed. Extreme cases are labeled with their values for the identification
variable if the ID subcommand is used or with their values for the system
variable $CASENUM if ID is not specified.

ALL Display the Descriptives and Extreme Values tables.

NONE Display neither the Descriptives nor the Extreme Values tables.

Example
EXAMINE VARIABLE=FAILTIME /ID=BRAND

/STATISTICS=EXTREME(10) /PLOT=NONE.

• STATISTICS identifies the cases with the 10 lowest and 10 highest values for FAILTIME.
These cases are labeled with the first characters of their values for the variable BRAND.
The Descriptives table is not displayed.

CINTERVAL Subcommand

CINTERVAL controls the confidence level when the default DESCRIPTIVES statistics is
displayed. CINTERVAL has a default value of 95.

• You can specify a CINTERVAL value (n) between 50 and 99.99 inclusive. If the value you
specify is out of range, the program issues a warning and uses the default 95% intervals.

• If you specify a keyword on STATISTICS subcommand that turns off the default
DESCRIPTIVES, the CINTERVAL subcommand is ignored.

• The confidence interval appears in the output with the label n% CI for Mean, followed by
the confidence interval in parentheses. For example,
95% CI for Mean (.0001,.00013)

The n in the label shows up to six decimal places. That is, input /CINTERVAL 95 dis-
plays as 95% CI while input /CINTERVAL 95.975 displays as 95.975% CI.

MESTIMATORS Subcommand

M-estimators are robust maximum-likelihood estimators of location. Four M-estimators are
available for display in the M-Estimators table. They differ in the weights they apply to the

526 EXAMINE

cases. MESTIMATORS with no keywords produces Huber’s M-estimator with c=1.339;
Andrews’ wave with c=1.34π; Hampel’s M-estimator with a=1.7, b=3.4, and c=8.5; and
Tukey’s biweight with c=4.685.

HUBER(c) Huber’s M-estimator. The value of weighting constant c can be specified in
parentheses following the keyword. The default is c=1.339.

ANDREW(c) Andrews’ wave estimator. The value of weighting constant c can be specified
in parentheses following the keyword. Constants are multiplied by π. The de-
fault is 1.34π.

HAMPEL(a,b,c) Hampel’s M-estimator. The values of weighting constants a, b, and c can be
specified in order in parentheses following the keyword. The default values
are a=1.7, b=3.4, and c=8.5.

TUKEY(c) Tukey’s biweight estimator. The value of weighting constant c can be speci-
fied in parentheses following the keyword. The default is c=4.685.

ALL All four above M-estimators. This is the default when MESTIMATORS is
specified with no keyword. The default values for weighting constants are
used.

NONE No M-estimators. This is the default if MESTIMATORS is omitted.

Example
EXAMINE VARIABLE=CASTTEST /MESTIMATORS.

• MESTIMATORS generates all four M-estimators computed with the default constants.

Example
EXAMINE VARIABLE=CASTTEST /MESTIMATORS=HAMPELS(2,4,8).

• MESTIMATOR produces Hampel’s M-estimator with weighting constants a=2, b=4, and c=8.

MISSING Subcommand

MISSING controls the processing of missing values in the analysis. The default is LISTWISE,
EXCLUDE, and NOREPORT.
• LISTWISE and PAIRWISE are alternatives and apply to all variables. They are modified for

dependent variables by INCLUDE/EXCLUDE and for factor variables by REPORT/NOREPORT.

• INCLUDE and EXCLUDE are alternatives; they apply only to dependent variables.

• REPORT and NOREPORT are alternatives; they determine if missing values for factor
variables are treated as valid categories.

LISTWISE Delete cases with missing values listwise. A case with missing values for any
dependent variable or any factor in the model specification is excluded from
statistics and plots unless modified by INCLUDE or REPORT. This is the default.

EXAMINE 527

PAIRWISE Delete cases with missing values pairwise. A case is deleted from the analy-
sis only if it has a missing value for the dependent variable or factor being
analyzed.

EXCLUDE Exclude user-missing values. User-missing values and system-missing values
for dependent variables are excluded. This is the default.

INCLUDE Include user-missing values. Only system-missing values for dependent
variables are excluded from the analysis.

NOREPORT Exclude user- and system-missing values for factor variables. This is the
default.

REPORT Include user- and system-missing values for factor variables. User- and sys-
tem-missing values for factors are treated as valid categories and are labeled
as missing.

Example
EXAMINE VARIABLES=RAINFALL MEANTEMP BY REGION.

• MISSING is not specified and the default is used. Any case with a user- or system-missing
value for RAINFALL, MEANTEMP, or REGION is excluded from the analysis and display.

Example
EXAMINE VARIABLES=RAINFALL MEANTEMP BY REGION

/MISSING=PAIRWISE.

• Only cases with missing values for RAINFALL are excluded from the analysis of RAINFALL,
and only cases with missing values for MEANTEMP are excluded from the analysis of
MEANTEMP. Missing values for REGION are not used.

Example
EXAMINE VARIABLES=RAINFALL MEANTEMP BY REGION

/MISSING=REPORT.

• Missing values for REGION are considered valid categories and are labeled as missing.

References

Frigge, M., D. C. Hoaglin, and B. Iglewicz. 1987. Some implementations of the boxplot. In:
Computer Science and Statistics Proceedings of the 19th Symposium on the Interface, R. M.
Heiberger and M. Martin, eds. Alexandria, Virginia: American Statistical Association.

Hoaglin, D. C., F. Mosteller, and J. W. Tukey. 1983. Understanding robust and exploratory data
analysis. New York: John Wiley and Sons.

_____. 1985. Exploring data tables, trends, and shapes. New York: John Wiley and Sons.
Tukey, J. W. 1977. Exploratory data analysis. Reading, Mass.: Addison-Wesley.
Velleman, P. F., and D. C. Hoaglin. 1981. Applications, basics, and computing of exploratory data

analysis. Boston: Duxbury Press.

528

EXECUTE

EXECUTE

Overview

EXECUTE forces the data to be read and executes the transformations that precede it in the
command sequence.

Basic Specification

The basic specification is simply the command keyword. EXECUTE has no additional
specifications.

Operations

• EXECUTE causes the data to be read but has no other influence on the session.

• EXECUTE is designed for use with transformation commands and facilities such as ADD
FILES, MATCH FILES, UPDATE, PRINT, and WRITE, which do not read data and are not
executed unless followed by a data-reading procedure.

Example

DATA LIST FILE=RAWDATA / 1 LNAME 1-13 (A) FNAME 15-24 (A)
MMAIDENL 40-55.

VAR LABELS MMAIDENL ’MOTHER’’S MAIDEN NAME’.
DO IF (MMAIDENL EQ ’Smith’).
WRITE OUTFILE=SMITHS/LNAME FNAME.
END IF.
EXECUTE.

• This example writes the last and first names of all people whose mother’s maiden name
was Smith to the data file SMITHS.

• DO IF—END IF and WRITE do not read data and are executed only when data are read for
a procedure. Because there is no procedure in this session, EXECUTE is used to read the
data and execute all of the preceding transformation commands. Otherwise, the com-
mands would not be executed.

529

EXPORT

EXPORT OUTFILE=file

 [/TYPE={COMM**}]
 {TAPE }

 [/UNSELECTED=[{RETAIN}]
 {DELETE}

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/RENAME=(old varnames=new varnames)...]

 [/MAP]

 [/DIGITS=n]

**Default if the subcommand is omitted.

Example
EXPORT OUTFILE=NEWDATA /RENAME=(V1 TO V3=ID, SEX, AGE) /MAP.

Overview

EXPORT produces a portable data file. A portable data file is a data file created used to trans-
port data between different types of computers and operating systems (such as between IBM
CMS and Digital VAX/VMS) or between SPSS, SPSS/PC+, or other software using the same
portable file format. Like an SPSS-format data file, a portable file contains all of the data and
dictionary information stored in the working data file from which it was created. (To send
data to a computer and operating system the same as your own, send an SPSS-format data
file, which is easier and faster to process than a portable file.)

EXPORT is similar to the SAVE command. It can occur in the same position in the
command sequence as the SAVE command and saves the working data file. The file includes
the results of all permanent transformations and any temporary transformations made just
prior to the EXPORT command. The working data file is unchanged after the EXPORT
command.

Options

Format. You can control the format of the portable file using the TYPE subcommand.

Variables. You can save a subset of variables from the working file and rename the variables
using the DROP, KEEP, and RENAME subcommands. You can also produce a record of all
variables and their names on the exported file with the MAP subcommand.

Precision. You can specify the number of decimal digits of precision for the values of all
numeric variables on the DIGITS subcommand.

530 EXPORT

Basic Specification

The basic specification is the OUTFILE subcommand with a file specification. All variables
from the working data file are written to the portable file, with variable names, variable and
value labels, missing-value flags, and print and write formats.

Subcommand Order

Subcommands can be named in any order.

Operations

• Portable files are written with 80-character record lengths.

• Portable files may contain some unprintable characters.

• The working data file is still available for transformations and procedures after the
portable file is created.

• The system variables $CASENUM and $DATE are assigned when the file is read by IMPORT.

• If the WEIGHT command is used before EXPORT, the weighting variable is included in the
portable file.

• Variable names that exceed eight bytes are converted to unique eight byte names. For
example, mylongrootname1, mylongrootname2, and mylongrootname3 would be converted
to mylongro, mylong_2, and mylong_3 respectively.

Example

EXPORT OUTFILE=NEWDATA /RENAME=(V1 TO V3=ID,SEX,AGE) /MAP.

• The portable file is written to NEWDATA.

• The variables V1, V2, and V3 are renamed ID, SEX, and AGE in the portable file. Their
names remain V1, V2, and V3 in the working file. None of the other variables written to
the portable file are renamed.

• MAP requests a display of the variables in the portable file.

Methods of Transporting Portable Files

Portable files can be transported on magnetic tape or by a communications program.

Magnetic Tape

Before transporting files on a magnetic tape, make sure the receiving computer can read the
tape being sent. The following tape specifications must be known before you write the
portable file on the tape:

• Number of tracks—either 7 or 9.

EXPORT 531

• Tape density—200, 556, 800, 1600, or 6250 bits per inch (BPI).

• Parity—even or odd. This must be known only when writing a 7-track tape.

• Tape labeling—labeled or unlabeled. Check whether the site can use tape labels. Also
make sure that the site has the ability to read multivolume tape files if the file being
written uses more than one tape.

• Blocksize—the maximum blocksize the receiving computer can accept.

A tape written with the following characteristics can be read by most computers: 9 track,
1600 BPI, unlabeled, and a blocksize of 3200 characters. However, there is no guarantee that
a tape written with these characteristics can be read successfully. The best policy is to know
the requirements of the receiving computer ahead of time.

The following advice may help ensure successful file transfers by magnetic tape:

• Unless you are certain that the receiving computer can read labels, prepare an unlabeled
tape.

• Make sure the record length of 80 is not changed.

• Do not use a separate character translation program, especially ASCII/EBCDIC transla-
tions. EXPORT/IMPORT takes care of this for you.

• Make sure the same blocking factor is used when writing and reading the tape. A block-
size of 3200 is frequently a good choice.

• If possible, write the portable file directly to tape to avoid possible interference from copy
programs. Read the file directly from the tape for the same reason.

• Use the INFO LOCAL command to find out about using the program on your particular
computer and operating system. INFO LOCAL generally includes additional information
about reading and writing portable files.

Communications Programs

Transmission of a portable file by a communications program may not be possible if the
program misinterprets any characters in the file as control characters (for example, as a line feed,
carriage return, or end of transmission). This can be prevented by specifying TYPE=COMM on
EXPORT. This specification replaces each control character with the character 0. The affected
control characters are in positions 0–60 of the IMPORT/EXPORT character set (see Appendix B).

The line length that the communications program uses must be set to 80 to match the
80-character record length of portable files. A transmitted file must be checked for blank
lines or special characters inserted by the communications program. These must be edited
out prior to reading the file with the IMPORT command.

Character Translation

Portable files are character files, not binary files, and they have 80-character records so they
can be transmitted over data links. A receiving computer may not use the same character set
as the computer where the portable file was written. When it imports a portable file, the
program translates characters in the file to the character set used by the receiving computer.
Depending on the character set in use, some characters in labels and in string data may be

532 EXPORT

lost in the translation. For example, if a file is transported from a computer using a seven-bit
ASCII character set to a computer using a six-bit ASCII character set, some characters in the
file may have no matching characters in six-bit ASCII. For a character that has no match, the
program generates an appropriate nonprintable character (the null character in most cases).

For a table of the character-set translations available with IMPORT and EXPORT, refer to
Appendix B. A blank in a column of the table means that there is no matching character for
that character set and an appropriate nonprintable character will be generated when you
import a file.

OUTFILE Subcommand

OUTFILE specifies the portable file. OUTFILE is the only required subcommand on EXPORT.

TYPE Subcommand

TYPE indicates whether the portable file should be formatted for magnetic tape or for a commu-
nications program. You can specify either COMM or TAPE. See “Methods of Transporting
Portable Files” on p. 530 for more information on magnetic tapes and communications
programs.

COMM Transport portable files by a communications program. When COMM is specified
on TYPE, the program removes all control characters and replaces them with the
character 0. This is the default.

TAPE Transport portable files on magnetic tape.

Example
EXPORT TYPE=TAPE /OUTFILE=HUBOUT.

• File HUBOUT is saved as a tape-formatted portable file.

UNSELECTED Subcommand

UNSELECTED determines whether cases excluded on a previous FILTER or USE command
are to be retained or deleted in the SPSS-format data file. The default is RETAIN. The
UNSELECTED subcommand has no effect when the working data file does not contain
unselected cases.

RETAIN Retain the unselected cases. All cases in the working data file are saved. This
is the default when UNSELECTED is specified by itself.

DELETE Delete the unselected cases. Only cases that meet the FILTER or USE criteria
are saved in the SPSS-format data file.

EXPORT 533

DROP and KEEP Subcommands

DROP and KEEP save a subset of variables in the portable file.
• DROP excludes a variable or list of variables from the portable file. All variables not

named are included in the portable file.

• KEEP includes a variable or list of variables in the portable file. All variables not named
are excluded.

• Variables can be specified on DROP and KEEP in any order. With the DROP subcommand,
the order of variables in the portable file is the same as their order in the working file.
With the KEEP subcommand, the order of variables in the portable file is the order in
which they are named on KEEP. Thus, KEEP can be used to reorder variables in the
portable file.

• Both DROP and KEEP can be used on the same EXPORT command; the effect is cumula-
tive. If you specify a variable already named on a previous DROP or one not named on a
previous KEEP, the variable is considered nonexistent and the program displays an error
message. The command is aborted and no portable file is saved.

Example
EXPORT OUTFILE=NEWSUM /DROP=DEPT TO DIVISION.

• The portable file is written to file NEWSUM. Variables between and including DEPT and
DIVISION in the working file are excluded from the portable file.

• All other variables are saved in the portable file.

RENAME Subcommand

RENAME renames variables being written to the portable file. The renamed variables retain
their original variable and value labels, missing-value flags, and print formats. The names of
the variables are not changed in the working data file.

• To rename a variable, specify the name of the variable in the working data file, an equals
sign, and the new name.

• A variable list can be specified on both sides of the equals sign. The number of variables on
both sides must be the same, and the entire specification must be enclosed in parentheses.

• The keyword TO can be used for both variable lists (see “Keyword TO” on p. 23).

• If you specify a renamed variable on a subsequent DROP or KEEP subcommand, the new
variable name must be used.

Example
EXPORT OUTFILE=NEWSUM /DROP=DEPT TO DIVISION

/RENAME=(NAME,WAGE=LNAME,SALARY).

• RENAME renames NAME and WAGE to LNAME and SALARY.

• LNAME and SALARY retain the variable and value labels, missing-value flags, and print
formats assigned to NAME and WAGE.

534 EXPORT

MAP Subcommand

MAP displays any changes that have been specified by the RENAME, DROP, or KEEP
subcommands.

• MAP can be specified as often as desired.

• Each MAP subcommand maps the results of subcommands that precede it; results of
subcommands that follow it are not mapped.When MAP is specified last, it also produces
a description of the portable file.

Example
EXPORT OUTFILE=NEWSUM /DROP=DEPT TO DIVISION /MAP

/RENAME NAME=LNAME WAGE=SALARY /MAP.

• The first MAP subcommand produces a listing of the variables in the file after DROP has
dropped the specified variables.

• RENAME renames NAME and WAGE.

• The second MAP subcommand shows the variables in the file after renaming. Since this
is the last subcommand, the listing will show the variables as they are written in the
portable file.

DIGITS Subcommand

DIGITS specifies the degree of precision for all noninteger numeric values written to the
portable file.

• DIGITS has the general form DIGITS=n, where n is the number of digits of precision.

• DIGITS applies to all numbers for which rounding is required.

• Different degrees of precision cannot be specified for different variables. Thus, DIGITS
should be set according to the requirements of the variable that needs the most precision.

• Default precision methods used by EXPORT work perfectly for integers that are not too
large and for fractions whose denominators are products of 2, 3, and 5 (all decimals, quar-
ters, eighths, sixteenths, thirds, thirtieths, sixtieths, and so forth.) For other fractions and
for integers too large to be represented exactly in the working data file (usually more than
9 digits, often 15 or more), the representation used in the working file contains some error
already, so no exact way of sending these numbers is possible. The program sends enough
digits to get very close. The number of digits sent in these cases depends on the origi-
nating computer: on mainframe IBM versions of the program, it is the equivalent of 13
decimal digits (integer and fractional parts combined). If many numbers on a file require
this level of precision, the file can grow quite large. If you do not need the full default
precision, you can save some space in the portable file by using the DIGITS subcommand.

Example
EXPORT OUTFILE=NEWSUM /DROP=DEPT TO DIVISION /MAP /DIGITS=4.

• DIGITS guarantees the accuracy of values to four significant digits. For example,
12.34567890876 will be rounded to 12.35.

EXSMOOTH 535

EXSMOOTH

EXSMOOTH is available in the Trends option.

EXSMOOTH [VARIABLES=] series names

 [/MODEL={NN** or SINGLE }]
 {NA }
 {NM }

 {LN or HOLT }
 {LA }
 {LM or WINTERS }

 {EN }
 {EA }
 {EM }

 {DN }
 {DA }
 {DM }

 [/PERIOD=n]

 [/SEASFACT={(value list)}]
 {varname }

 [/ALPHA={0.1** }]
 {value }
 {GRID ({0,1,0.1 })}
 {start, end, increment}

 [/GAMMA={0.1** }]
 {value }
 {GRID ({0,1,0.2 })}
 {start, end, increment}

 [/DELTA={0.1** }]
 {value }
 {GRID ({0,1,0.2 })}
 {start, end, increment}

 [/PHI={0.1** }]
 {value }
 {GRID ({0.1,0.9,0.2 })}
 {start, end, increment}

 [/INITIAL={CALCULATE** }]
 {(start value, trend value)}

 [/APPLY[=’model name’]]

**Default if the subcommand is omitted.

Example:
EXSMOOTH VAR2
 /MODEL=LN
 /ALPHA=0.2.

536 Syntax Reference

Overview

EXSMOOTH produces fit/forecast values and residuals for one or more time series. A variety
of models differing in trend (none, linear, or exponential) and seasonality (none, additive, or
multiplicative) are available (see Gardner, 1985).

Options

Model Specification. You can specify a model with any combination of trend and seasonality
components using the MODEL subcommand. For seasonal models, you can specify the peri-
odicity using the PERIOD subcommand.

Parameter Specification. You can specify values for the smoothing parameters using the
ALPHA, GAMMA, DELTA, and PHI subcommands. You can also specify initial values using the
subcommand INITIAL and seasonal factor estimates using the subcommand SEASFACT.

Statistical Output. To get a list of all the SSE’s and parameters instead of just the 10 smallest,
specify TSET PRINT=DETAILED prior to EXSMOOTH.

New Variables. Because of the number of parameter and value combinations available,
EXSMOOTH can create many new variables (up to the maximum specified on the TSET
MXNEWVARS command). To evaluate the sum of squared errors without creating and saving
new variables in the working data file, use TSET NEWVAR=NONE prior to EXSMOOTH. To
add new variables without erasing the values of previous Trends-generated variables, specify
TSET NEWVAR=ALL. This saves all new variables generated during the current session in the
working data file.

Forecasting. When used with the PREDICT command, EXSMOOTH can produce forecasts be-
yond the end of the series (see PREDICT in the SPSS Syntax Reference Guide).

Basic Specification

The basic specification is one or more series names.

• If a model is not specified, the NN (no trend and nonseasonal) model is used. The default
value for each of the smoothing parameters is 0.1.

• Unless the default on the TSET NEWVAR is changed prior to the EXSMOOTH procedure,
for each combination of smoothing parameters and series specified, EXSMOOTH creates
two variables: FIT#n to contain the predicted values and ERR#n to contain residuals.
These variables are automatically labeled and added to the working data file. (For vari-
able naming and labeling conventions, see “New Variables” on p. 1734.)

• The output displays the initial values used in the analysis (see Ledolter & Abraham,
1984), the error degrees of freedom (DFE), and an ascending list of the smallest sum of
squared errors (SSE) next to the associated set of smoothing parameters, up to a maxi-
mum of 10. For seasonal series, initial seasonal factor estimates are also displayed.

EXSMOOTH 537

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.

• Other subcommands can be specified more than once, but only the last specification of
each one is executed.

• The value list for subcommand SEASFACT and the grid values for the smoothing param-
eters must be enclosed within parentheses.

Operations

• If a smoothing parameter is specified for an inappropriate model, it is ignored (see
“Smoothing Parameter Subcommands” on p. 541).

• EXSMOOTH cannot process series with missing observations. (You can use the RMV com-
mand to replace missing values, and USE to ignore missing observations at the beginning
or end of a series. See RMV and USE in the SPSS Syntax Reference Guide for more infor-
mation.)

• When EXSMOOTH is used with PREDICT, error series are assigned the system-missing
value in the entire PREDICT range. The original series is system-missing beyond the last
original case if the series is extended. (See the SPSS Syntax Reference Guide for more in-
formation on PREDICT.)

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of series named
on the list.

• Maximum 1 model keyword on the MODEL subcommand.

Example

EXSMOOTH VAR2
 /MODEL=LN
 /ALPHA=0.2.

• This example specifies a linear trend, nonseasonal model for the series VAR2.

• The ALPHA subcommand specifies a value of 0.2 for the general smoothing parameter.

• The default value of 0.1 is used for gamma.

538 Syntax Reference

VARIABLES Subcommand

VARIABLES specifies the series names and is the only required subcommand. The actual key-
word VARIABLES can be omitted.

• For seasonal models, the series must contain at least four full seasons of data.

MODEL Subcommand

MODEL specifies the type of model to be used.
• The only specification on MODEL is a model keyword.

• Only one model keyword can be specified. If more than one is specified, only the first is
used.

The following models are available. Table 1 summarizes the models by trend and seasonal
component.

No trend models:

NN No trend and no seasonality. This is the default model. The keyword SINGLE is an
alias for NN.

NA No trend and an additive seasonal component.

NM No trend and a multiplicative seasonal component.

Linear trend models:

LN Linear trend component and no seasonality. The keyword HOLT is an alias for LN.

LA Linear trend component and an additive seasonal component.

LM Linear trend component and a multiplicative seasonal component. The keyword
WINTERS is an alias for LM.

Exponential trend models:

EN Exponential trend component and no seasonality.

EA Exponential trend component and an additive seasonal component.

EM Exponential trend component and a multiplicative seasonal component.

Damped trend models:

DN Damped trend component and no seasonality.

DA Damped trend component and an additive seasonal component.

DM Damped trend component and a multiplicative seasonal component.

EXSMOOTH 539

Table 1 Models for different types of Trends and seasons

Seasonal component

None Additive Multiplicative

Trend
component

 None NN NA NM

 Linear LN LA LM

 Exponential EN EA EM

 Damped DN DA DM

540 Syntax Reference

Example
EXSMOOTH VAR1.

• This example uses the default model NN for series VAR1.

Example
EXSMOOTH VAR2
 /MODEL=LN.

• This example uses model LN (linear trend with no seasonality) for series VAR2.

PERIOD Subcommand

PERIOD indicates the periodicity of the seasonal component for seasonal models.

• The specification on PERIOD indicates how many observations are in one period or sea-
son and can be any positive integer.

• PERIOD is ignored if it is specified with a nonseasonal model.
• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If

TSET PERIOD is not specified, the periodicity established on the DATE command is used.
If periodicity was not established anywhere and a seasonal model is specified,
EXSMOOTH will terminate.

Example
EXSMOOTH VAR1
 /MODEL=LA
 /PERIOD=12.

• This example specifies a periodicity of 12 for the seasonal VAR1 series.

SEASFACT Subcommand

SEASFACT specifies initial seasonal factor estimates for seasonal models.

• The specification on SEASFACT is either a value list enclosed in parentheses or a variable
name.

• If a value list is specified, the number of values in the list must equal the periodicity. For
example, if the periodicity is 12, then 12 initial values must be specified.

• For multiplicative models, the sum of the values in the list should equal the periodicity.
For additive models, the sum of the values should equal 0.

• A variable specification on SEASFACT indicates the name of a variable in the working
data file containing the seasonal factor estimates (see SEASON).

• If the model is seasonal and SEASFACT is not specified, EXSMOOTH calculates the initial
seasonal factors.

• The seasonal factor estimates of a SEASFACT subcommand are not used when the model
is respecified using the APPLY subcommand (see the APPLY subcommand on p. 544).

EXSMOOTH 541

Example
EXSMOOTH VAR2
 /MODEL=LA
 /PERIOD=8
 /SEASFACT=(-25.30 -3 -14.70 17 4 3 13 6).

• This command uses the list of values specified on the SEASFACT subcommand as the ini-
tial seasonal factor estimates.

• Eight values are specified, since the periodicity is 8.

• The eight values sum to 0, since this is an additive seasonal model.

Example
EXSMOOTH VAR3
 /MODEL=LA
 /SEASFACT=SAF#1.

• This command uses the initial seasonal factors contained in variable SAF#1, which was
saved in the working data file by a previous SEASON command.

Smoothing Parameter Subcommands

ALPHA, GAMMA, DELTA, and PHI specify the values that are used for the smoothing parameters.

• The specification on each subcommand is either a value within the valid range, or the key-
word GRID followed by optional range values.

• If GAMMA, DELTA, or PHI are not specified but are required for the model, the default val-
ues are used.

• ALPHA is applied to all models. If it is not specified, the default value is used.

ALPHA General smoothing parameter. This parameter is applied to all models. Alpha can
be any value between and including 0 and 1. (For EM models, alpha must be greater
than 0 and less than or equal to 1.) The default value is 0.1.

GAMMA Trend smoothing parameter. Gamma is used only with models that have a trend
component, excluding damped seasonal (DA, DM) models. It is ignored if it is spec-
ified with a damped seasonal or no-trend model. Gamma can be any value between
and including 0 and 1. The default value is 0.1.

DELTA Seasonal smoothing parameter. Delta is used only with models that have a seasonal
component. It is ignored if it is specified with any of the nonseasonal models. Delta
can be any value between and including 0 and 1. The default value is 0.1.

PHI Trend modification parameter. Phi is used only with models that have a damped
trend component. It is ignored if it is specified with models that do not have a
damped trend. Phi can be any value greater than 0 and less than 1. The default value
is 0.1.

Table 2 summarizes the parameters that are used with each EXSMOOTH model. An X indi-
cates that the parameter is used for the model.

542 Syntax Reference

Keyword GRID

The keyword GRID specifies a range of values to use for the associated smoothing parameter.
When GRID is specified, new variables are saved only for the optimal set of parameters on
the grid.

• The first value on GRID specifies the start value, the second value is the end value, and
the last value is the increment.

• The start, end, and increment values on GRID are separated by commas or spaces and en-
closed in parentheses.

• If you specify any grid values, you must specify all three.

• If no values are specified on GRID, the default values are used.

• Grid start and end values for alpha, gamma, and delta can range from 0 to 1. The defaults
are 0 for the start value and 1 for the end value.

• Grid start and end values for phi can range from 0 to 1, exclusive. The defaults are 0.1 for
the start value and 0.9 for the end value.

• Grid increment values must be within the range specified by start and end values. The de-
fault is 0.1 for alpha, and 0.2 for gamma, delta, and phi.

Example
EXSMOOTH VAR1
 /MODEL=LA
 /PERIOD=12
 /GAMMA=0.20
 /DELTA=0.20.

• This example uses a model with a linear trend and additive seasonality.

Table 2 Parameters that can be specified with EXSMOOTH models

Smoothing parameter

ALPHA DELTA GAMMA PHI

Model

NN x

NA x x

NM x x

LN x x

LA x x x

LM x x x

EN x x

EA x x x

EM x x x

DN x x x

DA x x x

DM x x x

EXSMOOTH 543

• The parameters and values are alpha = 0.10, gamma = 0.20, and delta = 0.20. Alpha is not
specified but is always used by default.

• This command generates one FIT variable and one ERR variable to contain the forecasts
and residuals generated by this one set of parameters.

Example
EXSMOOTH VAR2
 /MODEL=EA
 /ALPHA=GRID
 /DELTA=GRID(0.2,0.6,0.2).

• This example specifies a model with an exponential trend component and an additive sea-
sonal component.

• The default start, end, and increment values (0, 1, and 0.1) are used for the grid search of
alpha. Thus, the values used for alpha are 0, 0.1, 0.2, 0.3, ..., 0.9, and 1.

• The grid specification for delta indicates a start value of 0.2, an end value of 0.6, and an
increment of 0.2. Thus, the values used for delta are 0.2, 0.4, and 0.6.

• Since this is an exponential trend model, the parameter gamma will be supplied by
EXSMOOTH with the default value of 0.1, even though it is not specified on the command.

• Two variables (FIT and ERR) will be generated for the parameters resulting in the best-
fitting model.

INITIAL Subcommand

INITIAL specifies the initial start and trend values used in the models.

• The specification on INITIAL is the start and trend values enclosed in parentheses. You
must specify both values.

• The values specified on INITIAL are saved as part of the model and can be reapplied with
the APPLY subcommand (see the APPLY subcommand on p. 544).

• If INITIAL is not specified, the initial start and trend values are calculated by EXSMOOTH.
These calculated initial values are not saved as part of the model.

• To turn off the values specified on INITIAL when the model is used on an APPLY subcom-
mand, specify INITIAL=CALCULATE. New initial values will then be calculated by
EXSMOOTH (see the APPLY subcommand on p. 544).

Example
EXSMOOTH VAR2
 /MODEL=LA
 /PERIOD=4
 /SEASFACT=(23 -14.4 7 -15.6)
 /ALPHA=0.20
 /GAMMA=0.20
 /DELTA=0.30
 /INITIAL=(112,17).

• In this example, an initial start value of 112 and trend value of 17 is specified for series
VAR2.

544 Syntax Reference

APPLY Subcommand

APPLY allows you to use a previously defined EXSMOOTH model without having to repeat
the specifications. For general rules on APPLY, see the APPLY subcommand on p. 1737.

• The only specification on APPLY is the name of a previous model in quotes. If a model
name is not specified, the model specified on the previous EXSMOOTH command is used.

• To change one or more model specifications, specify the subcommands of only those por-
tions you want to change after the APPLY subcommand.

• If no series are specified on the command, the series that were originally specified with
the model being reapplied are used.

• To change the series used with the model, enter new series names before or after the
APPLY subcommand. If a series name is specified before APPLY, the slash before the sub-
command is required.

• Initial values from the previous model’s INITIAL subcommand are applied unless you
specify INITIAL = CALCULATE or a new set of initial values. Initial values from the original
model are not applied if they were calculated by EXSMOOTH.

• Seasonal factor estimates from the original model’s SEASFACT subcommand are not ap-
plied. To use seasonal factor estimates, you must respecify SEASFACT.

Example
EXSMOOTH VAR1
 /MODEL=NA
 /PERIOD=12
 /ALPHA=0.2
 /DELTA=0.2.
EXSMOOTH APPLY
 /DELTA=0.3.
EXSMOOTH VAR2
 /APPLY.

• The first command uses a model with no trend but additive seasonality for series VAR1.
The length of the season (PERIOD) is 12. A general smoothing parameter (ALPHA) and a
seasonal smoothing parameter (DELTA) are used, both with values set equal to 0.2.

• The second command applies the same model to the same series but changes the delta
value to 0.3. Everything else stays the same.

• The last command applies the model and parameter values used in the second EXSMOOTH
command to series VAR2.

Example
EXSMOOTH VAR3
 /MOD=NA
 /ALPHA=0.20
 /DELTA=0.4
 /INITIAL=(114,20).
EXSMOOTH VAR4
 /APPLY
 /INITIAL=CALCULATE.

EXSMOOTH 545

• The first command uses a model with no trend and additive seasonality model with alpha
set to 0.2 and delta set to 0.4. Initial start and trend values of 114 and 20 are specified.

• The second command applies the previous model and parameter values to a new variable,
VAR4, but without the initial starting values. The initial starting values will be calculated
by EXSMOOTH.

References

Abraham, B., and J. Ledolter. 1983. Statistical methods of forecasting. New York: John Wiley &
Sons.

Gardner, E. S. 1985. Exponential smoothing: The state of the art. Journal of Forecasting 4: 1–28.
Ledolter, J., and B. Abraham. 1984. Some comments on the initialization of exponential smooth-

ing. Journal of Forecasting 3: 79–84.
Makridakis, S., S. C. Wheelwright, and V. E. McGee. 1983. Forecasting: Methods and applica-

tions. New York: John Wiley & Sons.

546

FACTOR

FACTOR VARIABLES=varlist† [/MISSING=[{LISTWISE**}] [INCLUDE]]
 {PAIRWISE }
 {MEANSUB }
 {DEFAULT** }

 [/MATRIX=[IN({COR=file})] [OUT({COR=file})]]
 {COR=* } {COR=* }
 {COV=file} {COV=file}
 {COV=* } {COV=* }
 {FAC=file} {FAC=file}
 {FAC=* } {FAC=* }

{FSC=file}
{FSC=* }

 [/METHOD = {CORRELATION**}]
 {COVARIANCE }

 [/SELECT=varname(value)]

 [/ANALYSIS=varlist...]

 [/PRINT=[DEFAULT**] [INITIAL**] [EXTRACTION**] [ROTATION**]
 [UNIVARIATE] [CORRELATION] [COVARIANCE] [DET] [INV]
 [REPR] [AIC] [KMO] [FSCORE] [SIG] [ALL]]

 [/PLOT=[EIGEN] [ROTATION [(n1,n2)]]]

 [/DIAGONAL={value list}]
 {DEFAULT** }

 [/FORMAT=[SORT] [BLANK(n)] [DEFAULT**]]

 [/CRITERIA=[FACTORS(n)] [MINEIGEN({1.0**})] [ITERATE({25**})]
 {n } {n }

 [RCONVERGE({0.0001**})] [{KAISER**}]
 {n } {NOKAISER}

 [ECONVERGE({0.001**})] [DEFAULT**]]
 {n }

 [/EXTRACTION={PC** }] [/ROTATION={VARIMAX** }]
 {PA1** } {EQUAMAX }
 {PAF } {QUARTIMAX }
 {ALPHA } {OBLIMIN({0})}
 {IMAGE } {n}
 {ULS } {PROMAX({4} }
 {GLS } {n}
 {ML } {NOROTATE }
 {DEFAULT**} {DEFAULT** }

 [/SAVE=[{REG } ({ALL}[rootname])]]
 {BART } {n }
 {AR }
 {DEFAULT}

† Omit VARIABLES with matrix input.
**Default if subcommand or keyword is omitted.

FACTOR 547

Example
FACTOR VARIABLES=V1 TO V12.

Overview

FACTOR performs factor analysis based either on correlations or covariances and using one of
the seven extraction methods. FACTOR also accepts matrix input in the form of correlation
matrices, covariance matrices, or factor loading matrices and can write the matrix materials to
a matrix data file.

Options

Analysis Phase Options. You can choose to analyze a correlation or covariance matrix using
the METHOD subcommand. You can select a subset of cases for the analysis phase using
the SELECT subcommand. You can tailor the statistical display for an analysis using the
PRINT subcommand. You can sort the output in the factor pattern and structure matrices
with the FORMAT subcommand. You can also request scree plots and plots of the variables
in factor space on the PLOT subcommand.

Extraction Phase Options. With the EXTRACTION subcommand you can specify one of six
extraction methods in addition to the default principal components extraction: principal axis
factoring, alpha factoring, image factoring, unweighted least squares, generalized least
squares, and maximum likelihood. You can supply initial diagonal values for principal axis
factoring on the DIAGONAL subcommand. On the CRITERIA subcommand, you can alter the
default statistical criteria used in the extraction.

Rotation Phase Options. You can control the criteria for factor rotation with the CRITERIA
subcommand. On the ROTATION subcommand you can choose among four rotation methods
(equamax, quartimax, promax, and oblimin) in addition to the default varimax rotation, or you
can specify no rotation.

Factor Scores. You can save factor scores as new variables in the working data file using any
of the three methods available on the SAVE subcommand.

Matrix Input and Output. With the MATRIX subcommand, you can write a correlation matrix, a
covariance matrix, or a factor loading matrix. You can also read matrix materials written either
by a previous FACTOR procedure or by a procedure that writes correlation or covariance
matrices.

Basic Specification

The basic specification is the VARIABLES subcommand with a variable list. FACTOR performs
principal components analysis with a varimax rotation on all variables in the analysis using
default criteria.

• When matrix materials are used as input, do not specify VARIABLES. Use the ANALYSIS
subcommand to specify a subset of the variables in the matrix.

548 FACTOR

Subcommand Order

• METHOD and SELECT can be specified anywhere. VARIABLES must be specified before
any other subcommands, unless an input matrix is specified. MISSING must be specified
before ANALYSIS.

• The ANALYSIS, EXTRACTION, ROTATION, and SAVE subcommands must be specified in
the order they are listed here. If you specify these subcommands out of order, you may get
unpracticed results. For example, if you specify EXTRACTION before ANALYSIS and SAVE
before ROTATION, EXTRACTION and SAVE are ignored. If no EXTRACTION and SAVE
subcommands are specified in proper order, the default will be used, that is, PC for
EXTRACTION and no SAVE.

• The FORMAT subcommand can be specified anywhere after the VARIABLES subcommand.

• If an ANALYSIS subcommand is present, the statistical display options on PRINT, PLOT, or
DIAGONAL must be specified after it. PRINT, PLOT, and DIAGONAL subcommands speci-
fied before the ANALYSIS subcommand are ignored. If no such commands are specified
after the ANALYSIS subcommand, the default is used.

• The CRITERIA subcommand can be specified anywhere, but applies only to the subcom-
mands that follow. If no CRITERIA subcommand is specified before EXTRACTION or
ROTATION, the default criteria for the respective subcommand are used.

Example
FACTOR VAR=V1 TO V12

/ANALYSIS=V1 TO V8
/CRITERIA=FACTORS(3)
/EXTRACTION=PAF
/ROTATION=QUARTIMAX.

• The default CORRELATION method is used. FACTOR performs a factor analysis of the
correlation matrix based on the first eight variables in the working data file (V1 to V8).

• The procedure extracts three factors using the principal axis method and quartimax
rotation.

• LISTWISE (the default for MISSING) is in effect. Cases with missing values for any one of
the variables from V1 to V12 are omitted from the analysis. As a result, if you ask for the
factor analysis using VAR=V1 TO V8 and ANALYSIS=ALL, the results may be different even
though the variables used in the analysis are the same.

Syntax Rules

• Each FACTOR procedure performs only one analysis with one extraction and one rotation.
Use multiple FACTOR commands to perform multiple analyses.

• VARIABLES or MATRIX=IN can be specified only once. Any other subcommands can be
specified multiple times but only the last in proper order takes effect.

FACTOR 549

Operations

• VARIABLES calculates a correlation and a covariance matrix. If SELECT is specified, only
the selected cases are used.

• The correlation or covariance matrix (either calculated from the data or read in) is the basis
for the factor analysis.

• Factor scores are calculated for all cases (selected and unselected).

Example

FACTOR VARIABLES=V1 TO V12.

• This example uses the default CORRELATION method.

• It produces the default principal components analysis of 12 variables. Those with eigen-
values greater than 1 (the default criterion for extraction) are rotated using varimax rotation
(the default).

VARIABLES Subcommand

VARIABLES names all the variables to be used in the FACTOR procedure.

• VARIABLES is required except when matrix input is used. When FACTOR reads a matrix
data file, the VARIABLES subcommand cannot be used.

• The specification on VARIABLES is a list of numeric variables.

• Keyword ALL on VARIABLES refers to all variables in the working data file.
• Only one VARIABLES subcommand can be specified, and it must be specified first.

MISSING Subcommand

MISSING controls the treatment of cases with missing values.

• If MISSING is omitted or included without specifications, listwise deletion is in effect.

• MISSING must precede the ANALYSIS subcommand.

• The LISTWISE, PAIRWISE, and MEANSUB keywords are alternatives, but any one of them
can be used with INCLUDE.

LISTWISE Delete cases with missing values listwise. Only cases with nonmissing
values for all variables named on the VARIABLES subcommand are used.
Cases are deleted even if they have missing values only for variables listed
on VARIABLES and have valid values for all variables listed on ANALYSIS.
Alias DEFAULT.

PAIRWISE Delete cases with missing values pairwise. All cases with nonmissing values
for each pair of variables correlated are used to compute that correlation,
regardless of whether the cases have missing values for any other variable.

550 FACTOR

MEANSUB Replace missing values with the variable mean. All cases are used after the
substitution is made. If INCLUDE is also specified, user-missing values are
included in the computation of the means, and means are substituted only
for the system-missing value. If SELECT is in effect, only the values of
selected cases are used in calculating the means used to replace missing
values for selected cases in analysis and for all cases in computing factor
scores.

INCLUDE Include user-missing values. Cases with user-missing values are treated as valid.

METHOD Subcommand

METHOD specifies whether the factor analysis is performed on a correlation matrix or a cova-
riance matrix.

• Only one METHOD subcommand is allowed. If more than one is specified, the last is in
effect.

CORRELATION Perform a correlation matrix analysis. This is the default.

COVARIANCE Perform a covariance matrix analysis. Valid only with principal compo-
nents, principal axis factoring, or image factoring methods of extraction.
The program issues an error if this keyword is specified when the input is a
factor loading matrix or a correlation matrix that does not contain standard
deviations (STDDEV or SD).

SELECT Subcommand

SELECT limits cases used in the analysis phase to those with a specified value for any one
variable.

• Only one SELECT subcommand is allowed. If more than one is specified, the last is in
effect.

• The specification is a variable name and a valid value in parentheses. A string value must
be specified within quotes. Multiple variables or values are not permitted.

• The selection variable does not have to be specified on the VARIABLES subcommand.

• Only cases with the specified value for the selection variable are used in computing the
correlation or covariance matrix. You can compute and save factor scores for the unselected
cases as well as the selected cases.

• SELECT is not valid if MATRIX = IN is specified.

Example
FACTOR VARIABLES = V1 TO V10

/SELECT=COMPLETE(1)
 /SAVE (4).

• FACTOR analyzes all ten variables named on VARIABLES, using only cases with a value of
1 for the variable COMPLETE.

FACTOR 551

• By default, FACTOR uses the CORRELATION method and performs the principal compo-
nents analysis of the selected cases. Those with eigenvalues greater than 1 are rotated using
varimax rotation.

• Four factor scores, for both selected and unselected cases, are computed using the default
regression method and four new variables are saved in the working data file.

ANALYSIS Subcommand

The ANALYSIS subcommand specifies a subset of the variables named on VARIABLES for use
in an analysis.
• The specification on ANALYSIS is a list of variables, all of which must have been named on

the VARIABLES subcommand. For matrix input, ANALYSIS can specify a subset of the vari-
ables in a correlation or covariance matrix.

• Only one ANALYSIS subcommand is allowed. When multiple ANALYSIS subcommands are
specified, the last is in effect.

• If no ANALYSIS is specified, all variables named on the VARIABLES subcommand (or
included in the matrix input file) are used.

• Keyword TO in a variable list on ANALYSIS refers to the order in which variables are named
on the VARIABLES subcommand, not to their order in the working data file.

• Keyword ALL refers to all variables named on the VARIABLES subcommand.

Example
FACTOR VARIABLES=V1 V2 V3 V4 V5 V6

/ANALYSIS=V4 TO V6.

• This example requests a factor analysis of V4, V5, and V6. Keyword TO on ANALYSIS refers
to the order of variables on VARIABLES, not the order in the working data file.

• Cases with missing values for all variables specified on VARIABLES are omitted from the
analysis. (The default setting for MISSING.)

• By default, the CORRELATION method is used and a principal components analysis with a
varimax rotation is performed.

FORMAT Subcommand

FORMAT modifies the format of factor pattern and structure matrices.

• FORMAT can be specified anywhere after VARIABLES and MISSING. If more than one
FORMAT is specified, the last is in effect.

• If FORMAT is omitted or included without specifications, variables appear in the order in
which they are named on ANALYSIS and all matrix entries are displayed.

SORT Order the factor loadings in descending order.

BLANK(n) Suppress coefficients lower than n in absolute value.

DEFAULT Turn off keywords SORT and BLANK.

552 FACTOR

Example
FACTOR VARIABLES=V1 TO V12

/MISSING=MEANSUB
/FORMAT=SORT BLANK(.3)
/EXTRACTION=ULS
/ROTATION=NOROTATE.

• This example specifies an analysis of all variables between and including V1 and V12 in the
working data file.

• The default CORRELATION method is used.

• The MISSING subcommand substitutes variable means for missing values.

• The FORMAT subcommand orders variables in factor pattern matrices by descending
value of loadings. Factor loadings with an absolute value less than 0.3 are omitted.

• Factors are extracted using unweighted least squares and are not rotated.

PRINT Subcommand

PRINT controls the statistical display in the output.

• Keywords INITIAL, EXTRACTION, and ROTATION are the defaults if PRINT is omitted or
specified without keywords.

• If any keywords are specified, only the output specifically requested is produced.

• The requested statistics are displayed only for variables specified on the last ANALYSIS
subcommand.

• If more than one PRINT subcommand is specified, the last is in effect.

• If any ANALYSIS subcommand is explicitly specified, all PRINT subcommands specified
before the last ANALYSIS subcommand are ignored. If no PRINT subcommand is specified
after the last ANALYSIS subcommand, the default takes effect.

INITIAL Initial communalities for each variable, eigenvalues of the unreduced
correlation matrix, and percentage of variance for each factor.

EXTRACTION Factor pattern matrix, revised communalities, the eigenvalue of each factor
retained, and the percentage of variance each eigenvalue represents.

ROTATION Rotated factor pattern matrix, factor transformation matrix, factor corre-
lation matrix, and the post-rotation sums of squared loadings.

UNIVARIATE Valid number of cases, means, and standard deviations. (Not available with
matrix input.) If MISSING=MEANSUB or PAIRWISE, the output also includes
the number of missing cases.

CORRELATION Correlation matrix. Ignored if the input is a factor loading matrix.

COVARIANCE Covariance matrix. Ignored if the input is a factor loading matrix or a corre-
lation matrix that does not contain standard deviations (STDDEV or SD).

SIG Matrix of significance levels of correlations.

FACTOR 553

DET Determinant of the correlation or covariance matrix, depending on the spec-
ification on METHOD.

INV Inverse of the correlation or covariance matrix, depending on the specifica-
tion on METHOD.

AIC Anti-image covariance and correlation matrices (Kaiser, 1970). The measure
of sampling adequacy for the individual variable is displayed on the diagonal
of the anti-image correlation matrix.

KMO Kaiser-Meyer-Olkin measure of sampling adequacy and Bartlett’s test of
sphericity. Always based on the correlation matrix. Not computed for an
input matrix when it does not contain N values.

REPR Reproduced correlations and residuals or reproduced covariance and resid-
uals, depending on the specification on METHOD.

FSCORE Factor score coefficient matrix. Factor score coefficients are calculated
using the method requested on the SAVE subcommand. The default is the
regression method.

ALL All available statistics.

DEFAULT INITIAL, EXTRACTION, and ROTATION.

Example
FACTOR VARS=V1 TO V12
 /SELECT=COMPLETE (‘yes’)

/MISS=MEANSUB
/PRINT=DEF AIC KMO REPR
/EXTRACT=ULS
/ROTATE=VARIMAX.

• This example specifies a factor analysis that includes all variables between and including
V1 and V12 in the working data file.

• Only cases with the value “yes” on COMPLETE are used.

• Variable means are substituted for missing values. Only values for the selected cases are
used in computing the mean. This mean is used to substitute missing values in analyzing
the selected cases and in computing factor scores for all cases.

• The output includes the anti-image correlation and covariance matrices, the Kaiser-Meyer-
Olkin measure of sampling adequacy, the reproduced correlation and residual matrix, as
well as the default statistics.

• Factors are extracted using unweighted least squares.
• The factor pattern matrix is rotated using the varimax rotation.

PLOT Subcommand

Use PLOT to request scree plots or plots of variables in rotated factor space.
• If PLOT is omitted, no plots are produced. If PLOT is used without specifications, it is

ignored.

554 FACTOR

• If more than one PLOT subcommand is specified, only the last one is in effect.

• If any ANALYSIS subcommand is explicitly specified, all PLOT subcommands specified
before the last ANALYSIS subcommand are ignored. If no PLOT subcommand is specified
after the last ANALYSIS subcommand, no plot is produced.

EIGEN Scree plot (Cattell, 1966). The eigenvalues from each extraction are plotted
in descending order.

ROTATION Plots of variables in factor space. When used without any additional spec-
ifications, ROTATION can produce only high-resolution graphics. If three
or more factors are extracted, a 3-D plot is produced with the factor space
defined by the first three factors. You can request two-dimensional plots
by specifying pairs of factor numbers in parentheses; for example, PLOT
ROTATION(1,2)(1,3)(2,3) requests three plots, each defined by two factors.
The ROTATION subcommand must be explicitly specified when you enter
the keyword ROTATION on the PLOT subcommand.

DIAGONAL Subcommand

DIAGONAL specifies values for the diagonal in conjunction with principal axis factoring.

• If DIAGONAL is omitted or included without specifications, FACTOR uses the default
method for specifying the diagonal.

• DIAGONAL is ignored with extraction methods other than PAF. The values are automatically
adjusted by corresponding variances if METHOD=COVARIANCE.

• If more than one DIAGONAL subcommand is specified, only the last one is in effect.

• If any ANALYSIS subcommand is explicitly specified, DIAGONAL subcommands specified
before the last ANALYSIS subcommand are ignored. If no DIAGONAL is specified after the
last ANALYSIS subcommand, the default is used.

• Default communality estimates for PAF are squared multiple correlations. If these cannot
be computed, the maximum absolute correlation between the variable and any other vari-
able in the analysis is used.

valuelist Diagonal values. The number of values supplied must equal the number of
variables in the analysis block. Use the notation n* before a value to indicate
that the value is repeated n times.

DEFAULT Initial communality estimates.

Example
FACTOR VARIABLES=V1 TO V12

/DIAGONAL=.56 .55 .74 2*.56 .70 3*.65 .76 .64 .63
/EXTRACTION=PAF
/ROTATION=VARIMAX.

• The factor analysis includes all variables between and including V1 and V12 in the working
data file.

• DIAGONAL specifies 12 values to use as initial estimates of communalities in principal axis
factoring.

FACTOR 555

• The factor pattern matrix is rotated using varimax rotation.

CRITERIA Subcommand

CRITERIA controls extraction and rotation criteria.

• CRITERIA can be specified anywhere after VARIABLES and MISSING.

• Only explicitly specified criteria are changed. Unspecified criteria keep their defaults.

• Multiple CRITERIA subcommands are allowed. Changes made by a previous CRITERIA
subcommand are overwritten by a later CRITERIA subcommand.

• Any CRITERIA subcommands specified after the last EXTRACTION subcommand have no
effect on extraction.

• Any CRITERIA subcommands specified after the last ROTATION subcommand have no
effect on rotation.

The following keywords on CRITERIA apply to extractions:

FACTORS(n) Number of factors extracted. The default is the number of eigenvalues greater
than MINEIGEN. When specified, FACTORS overrides MINEIGEN.

MINEIGEN(n) Minimum eigenvalue used to control the number of factors extracted. If
METHOD=CORRELATION, the default is 1. If METHOD=COVARIANCE, the
default is computed as (Total Variance/Number of Variables)*n, where
Total Variance is the total weighted variance principal components or prin-
cipal axis factoring extraction and the total image variance for image
factoring extraction.

ECONVERGE(n) Convergence criterion for extraction. The default is 0.001.

The following keywords on CRITERIA apply to rotations:

RCONVERGE(n) Convergence criterion for rotation. The default is 0.0001.

KAISER Kaiser normalization in the rotation phase. This is the default. The alternative
is NOKAISER.

NOKAISER No Kaiser normalization.

The following keywords on CRITERIA apply to both extractions and rotations:

ITERATE(n) Maximum number of iterations for solutions in the extraction or rotation
phases. The default is 25.

DEFAULT Reestablish default values for all criteria.

Example
FACTOR VARIABLES=V1 TO V12

/CRITERIA=FACTORS(6)
/EXTRACTION=PC
/ROTATION=NOROTATE
/PLOT=ROTATION.

556 FACTOR

• This example analyzes all variables between and including V1 and V12 in the working
data file.

• Six factors are extracted using the default principal components method, and the factor
pattern matrix is not rotated.

• PLOT sends all extracted factors to the graphics editor and shows a 3-D plot of the first three
factors.

EXTRACTION Subcommand

EXTRACTION specifies the factor extraction technique.

• Only one EXTRACTION subcommand is allowed. If multiple EXTRACTION subcommands
are specified, only the last is performed.

• If any ANALYSIS subcommand is explicitly specified, all EXTRACTION subcommands
before the last ANALYSIS subcommand are ignored. If no EXTRACTION subcommand is
specified after the last ANALYSIS subcommand, the default extraction is performed.

• If EXTRACTION is not specified or is included without specifications, principal components
extraction is used.

• If you specify criteria for EXTRACTION, the CRITERIA subcommand must precede the
EXTRACTION subcommand.

• When you specify EXTRACTION, you should always explicitly specify the ROTATION
subcommand. If ROTATION is not specified, the factors are not rotated.

PC Principal components analysis (Harman, 1967). This is the default. PC can also be
requested with keyword PA1 or DEFAULT.

PAF Principal axis factoring. PAF can also be requested with keyword PA2.

ALPHA Alpha factoring (Kaiser & Caffry, 1965). Invalid if METHOD=COVARIANCE.

IMAGE Image factoring (Kaiser, 1963).

ULS Unweighted least squares (Jöreskog, 1977). Invalid if METHOD=COVARIANCE.

GLS Generalized least squares. Invalid if METHOD=COVARIANCE.

ML Maximum likelihood (Jöreskog & Lawley, 1968). Invalid if METHOD=VARIANCE.

Example
FACTOR VARIABLES=V1 TO V12

/ANALYSIS=V1 TO V6
/EXTRACTION=ULS
/ROTATE=NOROTATE.

• This example analyzes variables V1 through V6 with an unweighted least-squares extrac-
tion. No rotation is performed.

FACTOR 557

ROTATION Subcommand

ROTATION specifies the factor rotation method. It can also be used to suppress the rotation
phase entirely.

• Only one ROTATION subcommand is allowed. If multiple ROTATION subcommands are
specified, only the last is performed.

• If any ANALYSIS subcommand is explicitly specified, all ROTATION subcommands before
the last ANALYSIS subcommand are ignored. If any EXTRACTION subcommand is explic-
itly specified, all ROTATION subcommands before the last EXTRACTION subcommand are
ignored.

• If ROTATION is omitted together with EXTRACTION, varimax rotation is used.

• If ROTATION is omitted but EXTRACTION is not, factors are not rotated.

• Keyword NOROTATE on the ROTATION subcommand produces a plot of variables in
unrotated factor space if the PLOT subcommand is also included for the analysis.

VARIMAX Varimax rotation. This is the default if ROTATION is entered without specifi-
cations or if EXTRACTION and ROTATION are both omitted. Varimax rotation
can also be requested with keyword DEFAULT.

EQUAMAX Equamax rotation.

QUARTIMAX Quartimax rotation.

OBLIMIN(n) Direct oblimin rotation. This is a nonorthogonal rotation; thus, a factor
correlation matrix will also be displayed. You can specify a delta
in parentheses. The value must be less than or equal to 0.8. The default is 0.

PROMAX(n) Promax rotation. This is a nonorthogonal rotation; thus, a factor correlation
matrix will also be displayed. For this method, you can specify a real-
number value greater than 1. The default is 4.

NOROTATE No rotation.

Example
FACTOR VARIABLES=V1 TO V12

/EXTRACTION=ULS
/ROTATION
/ROTATION=OBLIMIN.

• The first ROTATION subcommand specifies the default varimax rotation.

• The second ROTATION subcommand specifies an oblimin rotation based on the same
extraction of factors.

SAVE Subcommand

SAVE allows you to save factor scores from any rotated or unrotated extraction as new vari-
ables in the working data file. You can use any of the three methods for computing the factor
scores.

n 0.8≤()

558 FACTOR

• Only one SAVE subcommand is executed. If you specify multiple SAVE subcommands,
only the last is executed.

• SAVE must follow the last ROTATION subcommand.

• If no ROTATION subcommand is specified after the last EXTRACTION subcommand, SAVE
must follow the last EXTRACTION subcommand and no rotation is used.

• If neither ROTATION nor EXTRACTION is specified, SAVE must follow the last ANALYSIS
subcommand and the default extraction and rotation are used to compute the factor scores.

• SAVE subcommands before any explicitly specified ANALYSIS, EXTRACTION, or ROTATION
subcommands are ignored.

• You cannot use the SAVE subcommand if you are replacing the working data file with
matrix materials (see “Matrix Output” on p. 559).

• The new variables are added to the end of the working data file.

Keywords to specify the method of computing factor scores are:

REG Regression method. This is the default.

BART Bartlett method.

AR Anderson-Rubin method.

DEFAULT The same as REG.

• After one of the above keywords, specify in parentheses the number of scores to save and
a rootname to use in naming the variables.

• You can specify either an integer or the keyword ALL. The maximum number of scores you
can specify is the number of factors in the solution.

• FACTOR forms variable names by appending sequential numbers to the rootname you specify.
The rootname must begin with a letter and conform to the rules for variable names. For infor-
mation on variable naming rules, see “Variable Names” on p. 21.

• If you do not specify a rootname, FACTOR forms unique variable names using the formula
FACn_m, where m increments to create a new rootname and n increments to create a unique
variable name. For example, FAC1_1, FAC2_1, FAC3_1, and so on will be generated for the
first set of saved scores and FAC1_2, FAC2_2, FAC3_2, and so on for the second set.

• FACTOR automatically generates variable labels for the new variables. Each label contains
information about the method of computing the factor score, its sequential number, and the
sequential number of the analysis.

Example
FACTOR VARIABLES=V1 TO V12

/CRITERIA FACTORS(4)
/ROTATION
/SAVE REG (4,PCOMP).

• Since there is no EXTRACTION subcommand before the ROTATION subcommand, the
default principal components extraction is performed.

• The CRITERIA subcommand specifies that four principal components should be extracted.

FACTOR 559

• The ROTATION subcommand requests the default varimax rotation for the principal
components.

• The SAVE subcommand calculates scores using the regression method. Four scores will be
added to the file: PCOMP1, PCOMP2, PCOMP3, and PCOMP4.

MATRIX Subcommand

MATRIX reads and writes SPSS-format matrix data files.

• MATRIX must always be specified first.

• Only one IN and one OUT keyword can be specified on the MATRIX subcommand. If either
IN or OUT is specified more than once, the FACTOR procedure is not executed.

• The matrix type must be indicated on IN or OUT. The types are COR for a correlation matrix,
COV for a covariance matrix, and FAC for a factor loading matrix. Indicate the matrix type
within parentheses immediately before you identify the matrix file.

• If you use both IN and OUT on MATRIX, you can specify them in either order. You cannot
write a covariance matrix if the input matrix is a factor loading matrix or a correlation
matrix that does not contain standard deviations (STDDEV or SD).

• If you read in a covariance matrix and write out a factor loading matrix, the output factor
loadings are rescaled.

OUT (filename) Write a matrix data file. Specify the matrix type (COR, COV, FAC, or FSC)
and the matrix file in parentheses. For the matrix data file, specify a filename
to store the matrix materials on disk or an asterisk to replace the working data
file. If you specify an asterisk, the matrix data file is not stored on disk unless
you use SAVE or XSAVE.

IN (filename) Read a matrix data file. Specify the matrix type (COR, COV, or FAC) and the
matrix file in parentheses. For the matrix data file, specify an asterisk if the
matrix data file is the working data file. If the matrix file is another file,
specify the filename in parentheses. A matrix file read from an external file
does not replace the working data file.

Matrix Output

FACTOR can write matrix materials in the form of a correlation matrix, a covariance matrix, a
factor loading matrix, or a factor score coefficients matrix.

• The correlation and covariance matrix materials include counts, means, and standard devi-
ations in addition to correlations or covariances.

• The factor loading matrix materials contain only factor values and no additional statistics.

• The factor score coefficients materials include means and standard deviations, in addition
to factor score coefficients.

• See “Format of the Matrix Data File” below for a description of the file.

• FACTOR generates one matrix per split file.

• Any documents contained in the working data file are not transferred to the matrix file.

560 FACTOR

Matrix Input

• FACTOR can read matrix materials written either by a previous FACTOR procedure or by
a procedure that writes correlation or covariance matrices. For more information, see
Universals on p. 3.

• MATRIX=IN cannot be used unless a working data file has already been defined. To read an
existing matrix data file at the beginning of a session, first use GET to retrieve the matrix
file and then specify IN(COR=*), IN(COV=*) or IN(FAC=*) on MATRIX.

• The VARIABLES subcommand cannot be used with matrix input.

• For correlation and covariance matrix input, the ANALYSIS subcommand can specify a
subset of the variables in the matrix. You cannot specify a subset of variables for factor
loading matrix input. By default, the ANALYSIS subcommand uses all variables in the
matrix.

Format of the Matrix Data File

• For correlation or covariance matrices, the matrix data file has two special variables created
by the program: ROWTYPE_ and VARNAME_. Variable ROWTYPE_ is a short string vari-
able with the value CORR (for Pearson correlation coefficient) or COV (for covariance) for
each matrix row. Variable VARNAME_ is a short string variable whose values are the names
of the variables used to form the correlation matrix.

• For factor loading matrices, the program generates two special variables named
ROWTYPE_ and FACTOR_. The value for ROWTYPE_ is always FACTOR. The values for
FACTOR_ are the ordinal numbers of the factors.

• For factor score coefficient matrices, the matrix data file has two special variables created:
ROWTYPE_ and VARNAME_. If split-file processing is in effect, the split variables appear
first in the matrix output file, followed by ROWTYPE_, VARNAME_, and the variables in the
analysis. ROWTYPE_ is a short string with three possible values: MEAN, STDDEV, and
FSCOEF. There is always one occurrence of the value MEAN. If /METHOD = CORRELA-
TION then there is one occurrence of the value STDDEV. Otherwise, this value does not
appear. There are as many occurrences of FSCOEF as the number of extracted factors.
VARNAME_ is a short string who values are FACn where n is the sequence of the saved
factor when ROWTYPE_ equals FSCOEF. Otherwise the value is empty.

• The remaining variables are the variables used to form the matrix.

Split Files

• FACTOR can read or write split-file matrices.

• When split-file processing is in effect, the first variables in the matrix data file are the split
variables, followed by ROWTYPE_, VARNAME_ (or FACTOR_), and then the variables used
to form the matrix.

• A full set of matrix materials is written for each split-file group defined by the split variables.
• A split variable cannot have the same variable name as any other variable written to the

matrix data file.

FACTOR 561

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by any other procedure.

Example

GET FILE=GSS80 /KEEP ABDEFECT TO ABSINGLE.
FACTOR VARIABLES=ABDEFECT TO ABSINGLE

/MATRIX OUT(COR=CORMTX).

• FACTOR retrieves the GSS80 file and writes a factor correlation matrix to the file CORMTX.

• The working data file is still GSS80. Subsequent commands will be executed on this file.

Example

GET FILE=GSS80 /KEEP ABDEFECT TO ABSINGLE.
FACTOR VARIABLES=ABDEFECT TO ABSINGLE

/MATRIX OUT(COR=*).
LIST.

• FACTOR writes the same matrix as in the previous example.

• The working data file is replaced with the correlation matrix. The LIST command is
executed on the matrix file, not on GSS80.

Example

GET FILE=GSS80 /KEEP ABDEFECT TO ABSINGLE.
FACTOR VARIABLES=ABDEFECT TO ABSINGLE

/MATRIX OUT(FAC=*).

• FACTOR generates a factor loading matrix that replaces the working data file.

Example

GET FILE=COUNTRY /KEEP SAVINGS POP15 POP75 INCOME GROWTH.
REGRESSION MATRIX OUT(*)

/VARS=SAVINGS TO GROWTH
/MISS=PAIRWISE
/DEP=SAVINGS /ENTER.

FACTOR MATRIX IN(COR=*) /MISSING=PAIRWISE.

• The GET command retrieves the COUNTRY file and selects the variables needed for the
analysis.

• The REGRESSION command computes correlations among five variables with pairwise
deletion. MATRIX=OUT writes a matrix data file, which replaces the working data file.

• MATRIX IN(COR=*) on FACTOR reads the matrix materials REGRESSION has written to the
working data file. An asterisk is specified because the matrix materials are in the working
data file. FACTOR uses pairwise deletion, since this is what was in effect when the matrix
was built.

562 FACTOR

Example

GET FILE=COUNTRY /KEEP SAVINGS POP15 POP75 INCOME GROWTH.
REGRESSION

/VARS=SAVINGS TO GROWTH
/MISS=PAIRWISE
/DEP=SAVINGS /ENTER.

FACTOR MATRIX IN(COR=CORMTX).

• This example performs a regression analysis on file COUNTRY and then uses a different file
for FACTOR. The file is an existing matrix data file.

• MATRIX=IN specifies the matrix data file CORMTX.

• CORMTX does not replace COUNTRY as the working data file.

Example

GET FILE=CORMTX.
FACTOR MATRIX IN(COR=*).

• This example starts a new session and reads an existing matrix data file. GET retrieves the
matrix data file CORMTX.

• MATRIX=IN specifies an asterisk because the matrix data file is the working data file. If
MATRIX=IN(CORMTX) is specified, the program issues an error message.

• If the GET command is omitted, the program issues an error message.

Example

MATRIX.
GET A /FILE="fsc.sav".
GET B /FILE="ext_data.sav" /VAR=varlist.
COMPUTE SCORES=A*B.
SAVE SCORES /OUTFILE="scored.sav".
END MATRIX.

• This example scores an external file using the factor score coefficients from a previous
analysis.

• Factor score coefficients are read from fsc.sav into A.

• The data are read from ext_data.sav into B. The variable values in the external file should
be standardized. If there are missing values, add /MISSING=OMIT or /MISSING=0 to the
second GET statement to remove cases with missing values or impute the mean (0, since
the variables are standardized).

• The scores are saved to scored.sav.

References

Cattell, R. B. 1966. The scree test for the number of factors. Journal of Multivariate Behav-
ioral. Research. 1: 245–276.

Harman, H. H. 1967. Modern factor analysis. 2nd ed. Chicago: University of Chicago Press.

FACTOR 563

Jöreskog, K. G. 1977. Factor analysis by least-square and maximum-likelihood method. In:
Statistical Methods for Digital Computers, volume 3, K. Enslein, A. Ralston, and R. S.
Wilf, eds. New York: John Wiley & Sons, Inc.

Jöreskog, K. G., and D. N. Lawley. 1968. New methods in maximum likelihood factor anal-
ysis. British Journal of Mathematical and Statistical Psychology, 21: 85–96.

Kaiser, H. F. 1963. Image analysis. In: Problems in Measuring Change, C. W. Harris, ed.
Madison: University of Wisconsin Press.

_____. 1970. A second-generation Little Jiffy. Psychometrika, 35: 401–415.
Kaiser, H. F., and J. Caffry. 1965. Alpha factor analysis. Psychometrika, 30: 1–14.

564

FILE HANDLE

FILE HANDLE handle /NAME=file specifications
 [/MODE={CHARACTER }] [/RECFORM \={FIXED } [/LRECL=n]
 {BINARY } {VARIABLE}
 {MULTIPUNCH} {SPANNED }
 {IMAGE }
 {360 }

Overview

FILE HANDLE assigns a unique file handle to a file and supplies operating system specifica-
tions for the file. A defined file handle can be specified on any subsequent FILE, OUTFILE,
MATRIX, or WRITE subcommands of various procedures.

Syntax Rules

• File handles must conform to SPSS variable naming rules. See “Variables” on p. 21

• FILE HANDLE is required for reading IBM VSAM data sets, EBCDIC data files, binary
data files, and character data files that are not delimited by ASCII line feeds.

• If you specify 360 on the MODE subcommand, you must specify RECFORM.

• If you specify IMAGE on the MODE subcommand, you must specify LRECL.

Operations

A file handle is used only during the current work session. The handle is never saved as part
of an SPSS-format data file.

NAME Subcommand

NAME specifies the file you want to refer to by the file handle. The file specifications must
conform to the file naming convention for the type of computer and operating system on
which the program is run. See the documentation for your system for specific information
about the file naming convention.

MODE Subcommand

MODE specifies the type of file you want to refer to by the file handle.

CHARACTER Character file whose logical records are delimited by ASCII line feeds.

BINARY Unformatted binary file generated by Microsoft FORTRAN.

FILE HANDLE 565

MULTIPUNCH Column binary file.

IMAGE Binary file consisting of fixed-length records.

360 EBCDIC data file.

Example
FILE HANDLE ELE48 /NAME=’OSPS:[SPSSUSER]ELE48.DAT’ /MODE=MULTIPUNCH.
DATA LIST FILE=ELE48.

• FILE HANDLE defines ELE48 as the handle for the file.

• The MODE subcommand indicates that the file contains multipunch data.

• The file specification on NAME conforms to VMS convention: the file ELE48.DAT is
located in the directory OSPS:[SPSSUSER].

• The FILE subcommand on DATA LIST refers to the handle defined on the FILE HANDLE
command.

RECFORM Subcommand

RECFORM specifies the record format and is necessary when you specify 360 on MODE.
RECFORM has no effect with other specifications on MODE.

FIXED Fixed-length record. All records have the same length. Alias F. When FIXED
is specified, the record length must be specified on the LRECL subcommand.

VARIABLE Variable-length record. No logical record is larger than one physical block.
Alias V.

SPANNED Spanned record. Records may be larger than fixed-length physical blocks.
Alias VS.

LRECL Subcommand

LRECL specifies the length of each record in the file. When you specify IMAGE under UNIX,
OS/2, or Microsoft Windows, or 360 for IBM360 EBCDIC data files, you must specify
LRECL. You can specify a record length greater than the default (8192) for an image file, a
character file, or a binary file. Do not use LRECL with MULTIPUNCH.

Example
FILE HANDLE TRGT1 /NAME=’OSPS:RGT.DAT’
 /MODE=IMAGE LRECL=16.
DATA LIST FILE=TRGT1.

• IMAGE is specified on the MODE subcommand. Subcommand LRECL must be specified.
• The file handle is used on the DATA LIST command.

566

FILE LABEL

FILE LABEL label

Overview

FILE LABEL provides a descriptive label for a data file.

Syntax Rules

The only specification is a label up to 60 characters long.

Operations

• The file label is displayed in the Notes tables generated by procedures.

• If the specified label is longer than 60 characters, the program truncates the label to 60
characters without warning.

• If the file is saved, the label is included in the dictionary of the SPSS-format data file.

Example

FILE LABEL Hubbard Industrial Consultants Inc. employee data.
SAVE OUTFILE=HUBEMPL

/RENAME=(AGE JOBCAT=AGE80 JOBCAT82) /MAP.

• FILE LABEL assigns a file label to the Hubbard Consultants Inc. employee data.
• The SAVE command saves the file as an SPSS-format data file, renaming two variables

and mapping the results to check the renamed variables.

567

FILE TYPE—END FILE TYPE

For mixed file types:

FILE TYPE MIXED [FILE=file] RECORD=[varname] column location [(format)]

 [WILD={NOWARN}]
 {WARN }

For grouped file types:

FILE TYPE GROUPED [FILE=file] RECORD=[varname] column location [(format)]

 CASE=[varname] column location [(format)]

 [WILD={WARN }] [DUPLICATE={WARN }]
 {NOWARN} {NOWARN}

 [MISSING={WARN }] [ORDERED={YES}]
 {NOWARN} {NO }

For nested file types:

FILE TYPE NESTED [FILE=file] RECORD=[varname] column location [(format)]

 [CASE=[varname] column location [(format)]]

 [WILD={NOWARN}] [DUPLICATE={NOWARN}]
 {WARN } {WARN }
 {CASE }

 [MISSING={NOWARN}]
 {WARN }

END FILE TYPE

Example
FILE TYPE MIXED RECORD=RECID 1-2.
RECORD TYPE 23.
DATA LIST /SEX 5 AGE 6-7 DOSAGE 8-10 RESULT 12.
END FILE TYPE.

BEGIN DATA
21 145010 1
22 257200 2
25 235 250 2
35 167 300 3
24 125150 1
23 272075 1
21 149050 2
25 134 035 3
30 138 300 3
32 229 500 3
END DATA.

568 FILE TYPE—END FILE TYPE

Overview

The FILE TYPE—END FILE TYPE structure defines data for any one of the three types of
complex raw data files: mixed files, which contain several types of records that define
different types of cases; hierarchical or nested files, which contain several types of records
with a defined relationship among the record types; or grouped files, which contain several
records for each case with some records missing or duplicated. A fourth type of complex file,
files with repeating groups of information, can be defined with the REPEATING DATA
command.

FILE TYPE must be followed by at least one RECORD TYPE command and one DATA LIST
command. Each pair of RECORD TYPE and DATA LIST commands defines one type of record
in the data. END FILE TYPE signals the end of file definition.

Within the FILE TYPE structure, the lowest-level record in a nested file can be read with
a REPEATING DATA command rather than a DATA LIST command. In addition, any record in
a mixed file can be read with REPEATING DATA.

Basic Specification

The basic specification on FILE TYPE is one of the three file type keywords (MIXED,
GROUPED, or NESTED) and the RECORD subcommand. RECORD names the record identi-
fication variable and specifies its column location. If keyword GROUPED is specified, the
CASE subcommand is also required. CASE names the case identification variable and speci-
fies its column location.

The FILE TYPE—END FILE TYPE structure must enclose at least one RECORD TYPE and
one DATA LIST command. END FILE TYPE is required to signal the end of file definition.

• RECORD TYPE specifies the values of the record type identifier (see RECORD TYPE).

• DATA LIST defines variables for the record type specified on the preceding RECORD TYPE
command (see DATA LIST).

• Separate pairs of RECORD TYPE and DATA LIST commands must be used to define each
different record type.

The resulting working data file is always a rectangular file, regardless of the structure of the
original data file.

Specification Order

• FILE TYPE must be the first command in the FILE TYPE—END FILE TYPE structure. FILE
TYPE subcommands can be named in any order.

• Each RECORD TYPE command must precede its corresponding DATA LIST command.

• END FILE TYPE must be the last command in the structure.

FILE TYPE—END FILE TYPE 569

Syntax Rules

• For mixed files, if the record types have different variables or if they have the same vari-
ables recorded in different locations, separate RECORD TYPE and DATA LIST commands
are required for each record type.

• For mixed files, the same variable name can be used on different DATA LIST commands,
since each record type defines a separate case.

• For mixed files, if the same variable is defined for more than one record type, the format
type and length of the variable should be the same on all DATA LIST commands. The
program refers to the first DATA LIST command that defines a variable for the print and
write formats to include in the dictionary of the working data file.

• For grouped and nested files, the variable names on each DATA LIST must be unique, since
a case is built by combining all record types together into a single record.

• For nested files, the order of the RECORD TYPE commands defines the hierarchical struc-
ture of the file. The first RECORD TYPE defines the highest-level record type, the next
RECORD TYPE defines the next highest-level record, and so forth. The last RECORD
TYPE command defines a case in the working data file. By default, variables from higher-
level records are spread to the lowest-level record.

• For nested files, the SPREAD subcommand on RECORD TYPE can be used to spread the
values in a record type only to the first case built from each record of that type. All other
cases associated with that record are assigned the system-missing value for the variables
defined on that type. See RECORD TYPE for more information.

• String values specified on the RECORD TYPE command must be enclosed in apostrophes
or quotation marks.

Operations

• For mixed file types, the program skips all records that are not specified on one of the
RECORD TYPE commands.

• If different variables are defined for different record types in mixed files, the variables are
assigned the system-missing value for those record types on which they are not defined.

• For nested files, the first record in the file should be the type specified on the first
RECORD TYPE command—the highest level of the hierarchy. If the first record in the file
is not the highest-level type, the program skips all records until it encounters a record of
the highest-level type. If MISSING or DUPLICATE has been specified, these records may
produce warning messages but will not be used to build a case in the working file.

• When defining complex files, you are effectively building an input program and can use
only commands that are allowed in the input state. See Appendix A for information on
program states.

570 FILE TYPE—END FILE TYPE

Example

* Reading multiple record types from a mixed file.

FILE TYPE MIXED FILE=TREATMNT RECORD=RECID 1-2.
+ RECORD TYPE 21,22,23,24.
+ DATA LIST /SEX 5 AGE 6-7 DOSAGE 8-10 RESULT 12.
+ RECORD TYPE 25.
+ DATA LIST /SEX 5 AGE 6-7 DOSAGE 10-12 RESULT 15.
END FILE TYPE.

• Variable DOSAGE is read from columns 8–10 for record types 21, 22, 23, and 24 and from
columns 10–12 for record type 25. RESULT is read from column 12 for record types 21,
22, 23, and 24, and from column 15 for record type 25.

• The working data file contains values for all variables defined on the DATA LIST
commands for record types 21 through 25. All other record types are skipped.

Example

* Reading only one record type from a mixed file.

FILE TYPE MIXED RECORD=RECID 1-2.
RECORD TYPE 23.
DATA LIST /SEX 5 AGE 6-7 DOSAGE 8-10 RESULT 12.
END FILE TYPE.

BEGIN DATA
21 145010 1
22 257200 2
25 235 250 2
35 167 300 3
24 125150 1
23 272075 1
21 149050 2
25 134 035 3
30 138 300 3
32 229 500 3
END DATA.

• FILE TYPE begins the file definition and END FILE TYPE indicates the end of file defini-
tion. FILE TYPE specifies a mixed file type. Since the data are included between BEGIN
DATA—END DATA, the FILE subcommand is omitted. The record identification variable
RECID is located in columns 1 and 2.

• RECORD TYPE indicates that records with value 23 for variable RECID will be copied into
the working data file. All other records are skipped. the program does not issue a warning
when it skips records in mixed files.

• DATA LIST defines variables on records with the value 23 for variable RECID.

FILE TYPE—END FILE TYPE 571

Example

* A grouped file of student test scores.

FILE TYPE GROUPED RECORD=#TEST 6 CASE=STUDENT 1-4.
RECORD TYPE 1.
DATA LIST /ENGLISH 8-9 (A).
RECORD TYPE 2.
DATA LIST /READING 8-10.
RECORD TYPE 3.
DATA LIST /MATH 8-10.
END FILE TYPE.

BEGIN DATA
0001 1 B+
0001 2 74
0001 3 83
0002 1 A
0002 2 100
0002 3 71
0003 1 B-
0003 2 88
0003 3 81
0004 1 C
0004 2 94
0004 3 91
END DATA.

• FILE TYPE identifies the file as a grouped file. As required for grouped files, all records
for a single case are together in the data. The record identification variable #TEST is
located in column 6. A scratch variable is specified so it won’t be saved in the working
data file. The case identification variable STUDENT is located in columns 1–4.

• Because there are three record types, there are three RECORD TYPE commands. For each
RECORD TYPE, there is a DATA LIST to define variables on that record type.

• END FILE TYPE signals the end of file definition.

• The program builds four cases—one for each student. Each case includes the case identi-
fication variable plus the variables defined for each record type (the test scores). The
values for #TEST are not saved in the working data file. Thus, each case in the working
file has four variables: STUDENT, ENGLISH, READING, and MATH.

572 FILE TYPE—END FILE TYPE

Example

* A nested file of accident records.

FILE TYPE NESTED RECORD=6 CASE=ACCID 1-4.
RECORD TYPE 1.
DATA LIST /ACC_ID 9-11 WEATHER 12-13 STATE 15-16 (A) DATE 18-24 (A).
RECORD TYPE 2.
DATA LIST /STYLE 11 MAKE 13 OLD 14 LICENSE 15-16(A) INSURNCE 18-21 (A).
RECORD TYPE 3.
DATA LIST /PSNGR_NO 11 AGE 13-14 SEX 16 (A) INJURY 18 SEAT 20-21 (A)

COST 23-24.
END FILE TYPE.

BEGIN DATA
0001 1 322 1 IL 3/13/88 /* Type 1: accident record
0001 2 1 44MI 134M /* Type 2: vehicle record
0001 3 1 34 M 1 FR 3 /* Type 3: person record
0001 2 2 16IL 322F /* vehicle record
0001 3 1 22 F 1 FR 11 /* person record
0001 3 2 35 M 1 FR 5 /* person record
0001 3 3 59 M 1 BK 7 /* person record
0001 2 3 21IN 146M /* vehicle record
0001 3 1 46 M 0 FR 0 /* person record
END DATA.

• FILE TYPE specifies a nested file type. The record identifier, located in column 6, is not
assigned a variable name, so the default scratch variable name ####RECD is used. The
case identification variable ACCID is located in columns 1–4.

• Because there are three record types, there are three RECORD TYPE commands. For each
RECORD TYPE, there is a DATA LIST command to define variables on that record type. The
order of the RECORD TYPE commands defines the hierarchical structure of the file.

• END FILE TYPE signals the end of file definition.

• The program builds a case for each lowest-level (type 3) record, representing each person
in the file. There can be only one type 1 record for each type 2 record, and one type 2
record for each type 3 record. Each vehicle can be in only one accident, and each person
can be in only one vehicle. The variables from the type 1 and type 2 records are spread to
their corresponding type 3 records.

Types of Files

The first specification on FILE TYPE is a file type keyword, which defines the structure of the
data file. There are three file type keywords: MIXED, GROUPED, and NESTED. Only one of
the three types can be specified on FILE TYPE.

MIXED Mixed file type. MIXED specifies a file in which each record type named on a
RECORD TYPE command defines a case. You do not need to define all types
of records in the file. In fact, FILE TYPE MIXED is useful for reading only one
type of record because the program can decide whether to execute the DATA
LIST for a record by simply reading the variable that identifies the record type.

FILE TYPE—END FILE TYPE 573

GROUPED Grouped file type. GROUPED defines a file in which cases are defined by
grouping together record types with the same identification number. Each
case usually has one record of each type. All records for a single case must
be together in the file. By default, the program assumes that the records are
in the same sequence within each case.

NESTED Nested file type. NESTED defines a file in which the record types are related
to each other hierarchically. The record types are grouped together by a case
identification number that identifies the highest level—the first record
type—of the hierarchy. Usually, the last record type specified—the lowest
level of the hierarchy—defines a case. For example, in a file containing
household records and records for each person living in the household, each
person record defines a case. Information from higher record types may be
spread to each case. For example, the value for a variable on the household
record, such as CITY, can be spread to the records for each person in the
household.

Subcommands and Their Defaults for Each File Type

The specifications on the FILE TYPE differ for each type of file. Table 1 shows whether each
subcommand is required or optional and, where applicable, what the default specification is
for each file type. N/A indicates that the subcommand is not applicable to that type of file.

• FILE is required unless data are inline (included between BEGIN DATA—END DATA).

• RECORD is always required.
• CASE is required for grouped files.

• The subcommands CASE, DUPLICATE, and MISSING can also be specified on the associated
RECORD TYPE commands for grouped files. However, DUPLICATE=CASE is invalid.

• For nested files, CASE and MISSING can be specified on the associated RECORD TYPE
commands.

• If the subcommands CASE, DUPLICATE, or MISSING are specified on a RECORD TYPE
command, the specification on the FILE TYPE command (or the default) is overridden
only for the record types listed on that RECORD TYPE command. The FILE TYPE specifi-
cation or default applies to all other record types.

Table 1 Summary of FILE TYPE subcommands for different file types

Subcommand Mixed Grouped Nested

FILE Conditional Conditional Conditional
RECORD Required Required Required
CASE Not Applicable Required Optional
WILD NOWARN WARN NOWARN
DUPLICATE N/A WARN NOWARN
MISSING N/A WARN NOWARN
ORDERED N/A YES N/A

574 FILE TYPE—END FILE TYPE

FILE Subcommand

FILE specifies a text file containing the data. FILE is not used when the data are inline.

Example
FILE TYPE MIXED FILE=TREATMNT RECORD=RECID 1-2.

• Data are in file TREATMNT. The file type is mixed. The record identification variable
RECID is located in columns 1 and 2 of each record.

RECORD Subcommand

RECORD specifies the name and column location of the record identification variable.

• The column location of the record identifier is required. The variable name is optional.

• If you do not want to save the record type variable, you can assign a scratch variable name
by using the # character as the first character of the name. If a variable name is not spec-
ified on RECORD, the record identifier is defined as the scratch variable ####RECD.

• The value of the identifier for each record type must be unique and must be in the same
location on all records. However, records do not have to be sorted according to type.

• A column-style format can be specified for the record identifier. For example, the
following two specifications are valid:

RECORD=V1 1-2(N)
RECORD=V1 1-2(F,1)

FORTRAN-like formats cannot be used because the column location must be specified
explicitly.

• Specify A in parentheses after the column location to define the record type variable as a
string variable.

Example
FILE TYPE MIXED FILE=TREATMNT RECORD=RECID 1-2.

• The record identifier is variable RECID, located in columns 1 and 2 of the hospital treat-
ment data file.

CASE Subcommand

CASE specifies a name and column location for the case identification variable. CASE is
required for grouped files and optional for nested files. It cannot be used with mixed files.

• For grouped files, each unique value for the case identification variable defines a case in
the working data file.

• For nested files, the case identification variable identifies the highest-level record of the
hierarchy. The program issues a warning message for each record with a case identifica-
tion number not equal to the case identification number on the last highest-level record.
However, the record with the invalid case number is used to build the case.

FILE TYPE—END FILE TYPE 575

• The column location of the case identifier is required. The variable name is optional.

• If you do not want to save the case identification variable, you can assign a scratch vari-
able name by using the # character as the first character of the name. If a variable name
is not specified on CASE, the case identifier is defined as the scratch variable ####CASE.

• A column-style format can be specified for the case identifier. For example, the following
two specifications are valid:

CASE=V1 1-2(N)
CASE=V1 1-2(F,1)

FORTRAN-like formats cannot be used because the column location must be specified
explicitly.

• Specify A in parentheses after the column location to define the case identification vari-
able as a string variable.

• If the case identification number is not in the same columns on all record types, use the
CASE subcommand on the RECORD TYPE commands as well as on the FILE TYPE
command (see RECORD TYPE).

Example
* A grouped file of student test scores.

FILE TYPE GROUPED RECORD=#TEST 6 CASE=STUDENT 1-4.
RECORD TYPE 1.
DATA LIST /ENGLISH 8-9 (A).
RECORD TYPE 2.
DATA LIST /READING 8-10.
RECORD TYPE 3.
DATA LIST /MATH 8-10.
END FILE TYPE.

BEGIN DATA
0001 1 B+
0001 2 74
0001 3 83
0002 1 A
0002 2 100
0002 3 71
0003 1 B-
0003 2 88
0003 3 81
0004 1 C
0004 2 94
0004 3 91
END DATA.

• CASE is required for grouped files. CASE specifies variable STUDENT, located in columns
1–4, as the case identification variable.

• The data contain four different values for STUDENT. The working data file therefore has
four cases, one for each value of STUDENT. In a grouped file, each unique value for the
case identification variable defines a case in the working file.

• Each case includes the case identification variable plus the variables defined for each
record type. The values for #TEST are not saved in the working data file. Thus, each case
in the working file has four variables: STUDENT, ENGLISH, READING, and MATH.

576 FILE TYPE—END FILE TYPE

Example
* A nested file of accident records.

FILE TYPE NESTED RECORD=6 CASE=ACCID 1-4.
RECORD TYPE 1.
DATA LIST /ACC_ID 9-11 WEATHER 12-13 STATE 15-16 (A) DATE 18-24 (A).
RECORD TYPE 2.
DATA LIST /STYLE 11 MAKE 13 OLD 14 LICENSE 15-16 (A) INSURNCE 18-21 (A).
RECORD TYPE 3.
DATA LIST /PSNGR_NO 11 AGE 13-14 SEX 16 (A) INJURY 18 SEAT 20-21 (A)

COST 23-24.
END FILE TYPE.

BEGIN DATA
0001 1 322 1 IL 3/13/88 /* Type 1: accident record
0001 2 1 44MI 134M /* Type 2: vehicle record
0001 3 1 34 M 1 FR 3 /* Type 3: person record
0001 2 2 16IL 322F /* vehicle record
0001 3 1 22 F 1 FR 11 /* person record
0001 3 2 35 M 1 FR 5 /* person record
0001 3 3 59 M 1 BK 7 /* person record
0001 2 3 21IN 146M /* vehicle record
0001 3 1 46 M 0 FR 0 /* person record
END DATA.

• CASE specifies variable ACCID, located in columns 1–4, as the case identification vari-
able. ACCID identifies the highest level of the hierarchy: the level for the accident records.

• As each case is built, the value of the variable ACCID is checked against the value of ACCID
on the last highest-level record (record type 1). If the values do not match, a warning
message is issued. However, the record is used to build the case.

• The data in this example contain only one value for ACCID, which is spread across all
cases. In a nested file, the lowest-level record type determines the number of cases in the
working data file. In this example, the working file has five cases because there are five
person records.

Example
* Specifying case on the RECORD TYPE command.

FILE TYPE GROUPED FILE=HUBDATA RECORD=#RECID 80 CASE=ID 1-5.
RECORD TYPE 1.
DATA LIST /MOHIRED YRHIRED 12-15 DEPT79 TO DEPT82 SEX 16-20.
RECORD TYPE 2.
DATA LIST /SALARY79 TO SALARY82 6-25 HOURLY81 HOURLY82 40-53 (2)

PROMO81 72 AGE 54-55 RAISE82 66-70.
RECORD TYPE 3 CASE=75-79.
DATA LIST /JOBCAT 6 NAME 25-48 (A).
END FILE TYPE.

• The CASE subcommand on FILE TYPE indicates that the case identification number is
located in columns 1–5. However, for type 3 records, the case identification number is
located in columns 75–79. The CASE subcommand is therefore specified on the third
RECORD TYPE command to override the case setting for type 3 records.

FILE TYPE—END FILE TYPE 577

• The format of the case identification variable must be the same on all records. If the case
identification variable is defined as a string on the FILE TYPE command, it cannot be
defined as a numeric variable on the RECORD TYPE command, and vice versa.

WILD Subcommand

WILD determines whether the program issues a warning when it encounters undefined record
types in the data file. Regardless of whether the warning is issued, undefined records are not
included in the working data file.

• The only specification on WILD is keyword WARN or NOWARN.

• WARN cannot be specified if keyword OTHER is specified on the last RECORD TYPE
command to indicate all other record types (see RECORD TYPE).

WARN Issue warning messages. The program displays a warning message and the
first 80 characters of the record for each record type that is not mentioned on
a RECORD TYPE command. This is the default for grouped file types.

NOWARN Suppress warning messages. The program simply skips all record types not
mentioned on a RECORD TYPE command and does not display warning mes-
sages. This is the default for mixed and nested file types.

Example
FILE TYPE MIXED FILE=TREATMNT RECORD=RECID 1-2 WILD=WARN.

• WARN is specified on the WILD subcommand. The program displays a warning message
and the first 80 characters of the record for each record type that is not mentioned on a
RECORD TYPE command.

DUPLICATE Subcommand

DUPLICATE determines how the program responds when it encounters more than one record
of each type for a single case. DUPLICATE is optional for grouped and nested files. DUPLICATE
cannot be used with mixed files.

• The only specification on DUPLICATE is keyword WARN, NOWARN, or CASE.

WARN Issue warning messages. The program displays a warning message and the
first 80 characters of the last record of the duplicate set of record types. Only
the last record from a set of duplicates is included in the working data file.
This is the default for grouped files.

NOWARN Suppress warning messages. The program does not display warning messages
when it encounters duplicate record types. Only the last record from a set of
duplicates is included in the working data file. This is the default for nested
files.

CASE Build a case in the working data file for each duplicate record. The program
builds one case in the working file for each duplicate record, spreading
information from any higher-level records and assigning system-missing
values to the variables defined on lower-level records. This option is avail-
able only for nested files.

578 FILE TYPE—END FILE TYPE

Example
* A nested file of accident records.
* Issue a warning for duplicate record types.

FILE TYPE NESTED RECORD=6 CASE=ACCID 1-4 DUPLICATE=WARN.
RECORD TYPE 1.
DATA LIST /ACC_ID 9-11 WEATHER 12-13 STATE 15-16 (A) DATE 18-24 (A).
RECORD TYPE 2.
DATA LIST /STYLE 11 MAKE 13 OLD 14 LICENSE 15-16 (A) INSURNCE 18-21 (A).
RECORD TYPE 3.
DATA LIST /PSNGR_NO 11 AGE 13-14 SEX 16 (A) INJURY 18 SEAT 20-21 (A)

COST 23-24.
END FILE TYPE.

BEGIN DATA
0001 1 322 1 IL 3/13/88 /* accident record
0001 2 1 44MI 134M /* vehicle record
0001 3 1 34 M 1 FR 3 /* person record
0001 2 1 31IL 134M /* duplicate vehicle record
0001 2 2 16IL 322F /* vehicle record
0001 3 1 22 F 1 FR 11 /* person record
0001 3 2 35 M 1 FR 5 /* person record
0001 3 3 59 M 1 BK 7 /* person record
0001 2 3 21IN 146M /* vehicle record
0001 3 1 46 M 0 FR 0 /* person record
END DATA.

• In the data, there are two vehicle (type 2) records above the second set of person (type 3)
records. This implies that an empty (for example, parked) vehicle was involved, or that
each of the three persons was in two vehicles, which is impossible.

• DUPLICATE specifies keyword WARN. The program displays a warning message and the
first 80 characters of the second of the duplicate set of type 2 records. The first duplicate
record is skipped, and only the second is included in the working data file. This assumes
that no empty vehicles were involved in the accident.

• If the duplicate record represents an empty vehicle, it can be included in the working data
file by specifying keyword CASE on DUPLICATE. The program builds one case in the
working data file for the first duplicate record, spreading information to that case from
the previous type 1 record and assigning system-missing values to the variables defined
for type 3 records. The second record from the duplicate set is used to build the three cases
for the associated type 3 records.

MISSING Subcommand

MISSING determines whether the program issues a warning when it encounters a missing
record type for a case. Regardless of whether the program issues the warning, it builds the
case in the working file with system-missing values for the variables defined on the missing
record. MISSING is optional for grouped and nested files.

• MISSING cannot be used with mixed files and is optional for grouped and nested files.

• For grouped and nested files, the program verifies that each defined case includes one
record of each type.

• The only specification is keyword WARN or NOWARN.

FILE TYPE—END FILE TYPE 579

WARN Issue a warning message when a record type is missing for a case. This is
the default for grouped files.

NOWARN Suppress the warning message when a record type is missing for a case. This
is the default for nested files.

Example
* A grouped file with missing records.

FILE TYPE GROUPED RECORD=#TEST 6 CASE=STUDENT 1-4 MISSING=NOWARN.
RECORD TYPE 1.
DATA LIST /ENGLISH 8-9 (A).
RECORD TYPE 2.
DATA LIST /READING 8-10.
RECORD TYPE 3.
DATA LIST /MATH 8-10.
END FILE TYPE.

BEGIN DATA
0001 1 B+
0001 2 74
0002 1 A
0002 2 100
0002 3 71
0003 3 81
0004 1 C
0004 2 94
0004 3 91
END DATA.

• The data contain records for three tests administered to four students. However, not all
students took all tests. The first student took only the English and reading tests. The third
student took only the math test.

• One case in the working data file is built for each of the four students. If a student did not
take a test, the system-missing value is assigned in the working file to the variable for the
missing test. Thus, the first student has the system-missing value for the math test, and
the third student has missing values for the English and reading tests.

• Keyword NOWARN is specified on MISSING. Therefore, no warning messages are issued
for the missing records.

Example
* A nested file with missing records.

FILE TYPE NESTED RECORD=6 CASE=ACCID 1-4 MISSING=WARN.
RECORD TYPE 1.
DATA LIST /ACC_ID 9-11 WEATHER 12-13 STATE 15-16 (A) DATE 18-24 (A).
RECORD TYPE 2.
DATA LIST /STYLE 11 MAKE 13 OLD 14 LICENSE 15-16 (A) INSURNCE 18-21 (A).
RECORD TYPE 3.
DATA LIST /PSNGR_NO 11 AGE 13-14 SEX 16 (A) INJURY 18 SEAT 20-21 (A)

COST 23-24.
END FILE TYPE.

580 FILE TYPE—END FILE TYPE

BEGIN DATA
0001 1 322 1 IL 3/13/88 /* accident record
0001 3 1 34 M 1 FR 3 /* person record
0001 2 2 16IL 322F /* vehicle record
0001 3 1 22 F 1 FR 11 /* person record
0001 3 2 35 M 1 FR 5 /* person record
0001 3 3 59 M 1 BK 7 /* person record
0001 2 3 21IN 146M /* vehicle record
0001 3 1 46 M 0 FR 0 /* person record
END DATA.

• The data contain records for one accident. The first record is a type 1 (accident) record,
and the second record is a type 3 (person) record. However, there is no type 2 record, and
therefore no vehicle associated with the first person. The person may have been a pedes-
trian, but it is also possible that the vehicle record is missing.

• One case is built for each person record. The first case has missing values for the variables
specified on the vehicle record.

• Keyword WARN is specified on MISSING. A warning message is issued for the missing
record.

ORDERED Subcommand

ORDERED indicates whether the records are in the same order as they are defined on the
RECORD TYPE commands. Regardless of the order of the records in the data file and the
specification on ORDERED, the program builds cases in the working data file with records in
the order defined on the RECORD TYPE commands.

• ORDERED can be used only for grouped files.

• The only specification is keyword YES or NO.

• If YES is in effect but the records are not in the order defined on the RECORD TYPE
commands, the program issues a warning for each record that is out of order. The program
still uses these records to build cases.

YES Records for each case are in the same order as they are defined on the RECORD
TYPE commands. This is the default.

NO Records are not in the same order within each case.

Example
* A grouped file with records out of order.

FILE TYPE GROUPED RECORD=#TEST 6 CASE=STUDENT 1-4 MISSING=NOWARN
ORDERED=NO.

RECORD TYPE 1.
DATA LIST /ENGLISH 8-9 (A).
RECORD TYPE 2.
DATA LIST /READING 8-10.
RECORD TYPE 3.
DATA LIST /MATH 8-10.
END FILE TYPE.

FILE TYPE—END FILE TYPE 581

BEGIN DATA
0001 2 74
0001 1 B+
0002 3 71
0002 2 100
0002 1 A
0003 2 81
0004 2 94
0004 1 C
0004 3 91
END DATA.

• The first RECORD TYPE command specifies record type 1, the second specifies record
type 2, and the third specifies record type 3. However, records for each case are not
always ordered type 1, type 2, and type 3.

• NO is specified on ORDERED. The program builds cases without issuing a warning that
they are out of order in the data.

• Regardless of whether YES or NO is in effect for ORDERED, the program builds cases in
the working data file in the same order specified on the RECORD TYPE commands.

582

FILTER

FILTER {BY var}
 {OFF }

Example
FILTER BY SEX.
FREQUENCIES BONUS.

Overview

FILTER is used to exclude cases from program procedures without deleting them from the
working data file. When FILTER is in effect, cases with a zero or missing value for the spec-
ified variable are not used in program procedures. Those cases are not actually deleted and
are available again if the filter is turned off. To see the current filter status, use the SHOW
command.

Basic Specification

The basic specification is keyword BY followed by a variable name. Cases that have a zero
or missing value for the filter variable are excluded from subsequent procedures.

Syntax Rules

• Only one numeric variable can be specified. The variable can be one of the original vari-
ables in the data file or a variable computed with transformation commands.

• Keyword OFF turns off the filter. All cases in the working data file become available to
subsequent procedures.

• If FILTER is specified without a keyword, FILTER OFF is assumed but the program dis-
plays a warning message.

• FILTER can be specified anywhere in the command sequence. Unlike SELECT IF, FILTER
has the same effect within an input program as it does outside an input program. Attention
must be paid to the placement of any transformation command used to compute values for
the filter variable (see INPUT PROGRAM).

Operations

• FILTER performs case selection without changing the working data file. Cases that have
a zero or missing value are excluded from subsequent procedures but are not deleted
from the file.

FILTER 583

• Both system-missing and user-missing values are treated as missing. The FILTER com-
mand does not offer options for changing selection criteria. To set up different criteria for
exclusion, create a numeric variable and conditionally compute its values before specify-
ing it on FILTER.

• If FILTER is specified after TEMPORARY, FILTER affects the next procedure only. After that
procedure, the filter status reverts to whatever it was before the TEMPORARY command.

• The filter status does not change until another FILTER command is specified, a USE com-
mand is specified, or the working data file is replaced.

• FILTER and USE are mutually exclusive. USE automatically turns off any previous FILTER
command, and FILTER automatically turns off any previous USE command.

• If the specified filter variable is renamed, it is still in effect. The SHOW command will dis-
play the new name of the filter variable. However, the filter is turned off if the filter vari-
able is recoded into a string variable or is deleted from the file.

• If the working data file is replaced after a MATCH FILES, ADD FILES, or UPDATE command
and the working file is one of the input files, the filter remains in effect if the new working
file has a numeric variable with the name of the filter variable. If the working data file
does not have a numeric variable with that name (for example, if the filter variable was
dropped or renamed), the filter is turned off.

• If the working data file is replaced by an entirely new data file (for example, by a DATA
LIST, GET, and IMPORT command), the filter is turned off.

• The FILTER command changes the filter status and takes effect when a procedure is exe-
cuted or an EXECUTE command is encountered.

Example

FILTER BY SEX.
FREQUENCIES BONUS.

• This example assumes that SEX is a numeric variable, with male and female coded as 0
and 1, respectively. The FILTER command excludes males and cases with missing values
for SEX from the subsequent procedures. The FREQUENCIES command generates a fre-
quency table of BONUS for females only.

Example

RECODE SEX (1=0)(0=1).
FILTER BY SEX.
FREQUENCIES BONUS.

• This example assumes the same coding scheme for SEX as the previous example. Before
FILTER is specified, variable SEX is recoded. The FILTER command then excludes females
and cases with missing values for SEX. The FREQUENCIES command generates a fre-
quency table of BONUS for males only.

584

FINISH

FINISH

Overview

FINISH causes the program to stop reading commands.

Basic Specification

The basic specification is keyword FINISH. There are no additional specifications.

Command Files

• FINISH is optional in a command file and is used to mark the end of a session.

• FINISH causes the program to stop reading commands. Anything following FINISH in the
command file is ignored. Any commands following FINISH in an INCLUDE file are
ignored.

• FINISH cannot be used within a DO IF structure to end a session conditionally. FINISH
within a DO IF structure will end the session unconditionally.

Prompted Sessions

• FINISH is required in a prompted session to terminate the session.

• Because FINISH is a program command, it can be used only after the command line
prompt for the program, which expects a procedure name. FINISH cannot be used to end
a prompted session from a DATA>, CONTINUE>, HELP>, or DEFINE> prompt.

Operations

• FINISH immediately causes the program to stop reading commands.

• The appearance of FINISH on the printback of commands in the display file indicates that
the session has been completed.

• When issued within the SPSS Manager (not available on all systems), FINISH terminates
command processing and causes the program to query whether you want to continue
working. If you answer yes, you can continue creating and editing files in both the input
window and the output window; however, you can no longer run commands.

FINISH 585

Example

* A command file.

DATA LIST FILE=RAWDATA /NAME 1-15(A) V1 TO V15 16-30.
LIST.
FINISH.
REPORT FORMAT=AUTO LIST /VARS=NAME V1 TO V10.

• FINISH causes the program to stop reading commands after LIST is executed. The REPORT
command is not executed.

Example

SPSS> * A prompted session.

SPSS> DATA LIST FILE=RAWDATA /NAME 1-15(A) V1 TO V15 16-30.
SPSS> LIST.
SPSS> FINISH.

• FINISH terminates the prompted session.

586

FIT

FIT [[ERRORS=] residual series names]

 [/OBS=observed series names]

 [/{DFE=error degrees of freedom }]
 {DFH=hypothesis degrees of freedom}

Example
FIT ERR_4 ERR_8.

Overview

FIT displays a variety of descriptive statistics computed from the residual series as an aid in
evaluating the goodness of fit of one or more models.

Options

Statistical Output. You can produce statistics for a particular residual series by specifying the
names of the series after FIT. You can also obtain percent error statistics for specified resid-
ual series by specifying observed series on the OBS subcommand.

Degrees of Freedom. You can specify the degrees of freedom for the residual series using the
DFE or DFH subcommands.

Basic Specification

The basic specification is simply the command keyword FIT. All other specifications are
optional.

• By default, FIT calculates the mean error, mean percent error, mean absolute error, mean
absolute percent error, sum of squared errors, mean square error, root mean square error,
and the Durbin-Watson statistic for the last ERR_n (residual) series generated and the
corresponding observed series in the working data file.

• If neither residual nor observed series are specified, percent error statistics for the default
residual and observed series are included.

FIT 587

Syntax Rules

• If OBS is specified, the ERRORS subcommand naming the residual series is required.

Operations

• Observed series and degrees of freedom are matched with residual series according to the
order in which they are specified.

• If residual series are explicitly specified but observed series are not, percent error statis-
tics are not included in the output. If neither residual nor observed series are specified,
percent error statistics for the default residual and observed series are included.

• If subcommand DFH is specified, FIT calculates the DFE (error degrees of freedom) by
subtracting the DFH (hypothesis degrees of freedom) from the number of valid cases in
the series.

• If a PREDICT period (validation period) starts before the end of the observed series, sta-
tistics are reported separately for the USE period (historical period) and the PREDICT
period.

Limitations

• There is no limit on the number of residual series specified. However, the number of ob-
served series must equal the number of residual series.

Example

FIT ERR_4 ERR_5 ERR_6.

• This command requests goodness-of-fit statistics for the residual series ERR_4, ERR_5,
and ERR_6, which were generated by previous procedures. Percent error statistics are not
included in the output, since only residual series are named.

ERRORS Subcommand

ERRORS specifies the residual (error) series.

• The actual keyword ERRORS can be omitted. VARIABLES is an alias for ERRORS.

• The minimum specification on ERRORS is a residual series name.
• The ERRORS subcommand is required if the OBS subcommand is specified.

OBS Subcommand

OBS specifies the observed series to use for calculating the mean percentage error and mean
absolute percentage error.

• OBS can be used only when the residual series are explicitly specified.

• The number and order of observed series must be the same as that of the residual series.

588 FIT

• If more than one residual series was calculated from a single observed series, the observed
series is specified once for each residual series that is based on it.

Example
FIT ERRORS=ERR#1 ERR#2
 /OBS=VAR1 VAR1.

• This command requests FIT statistics for two residual series, ERR#1 and ERR#2, which
were computed from the same observed series, VAR1.

DFE and DFH Subcommands

DFE and DFH specify the degrees of freedom for each residual series. With DFE, error degrees
of freedom are entered directly. DFH specifies hypothesis degrees of freedom so FIT can com-
pute the DFE.

• Only one DFE or DFH subcommand should be specified. If both are specified, only the
last one is in effect.

• The specification on DFE or DFH is a list of numeric values. The order of these values
should correspond to the order of the residual series list.

• The error degrees of freedom specified on DFE are used to compute the mean square error
(MSE) and root mean square (RMS).

• The value specified for DFH should equal the number of parameters in the model (includ-
ing the constant if it is present). Differencing is not considered in calculating DFH, since
any observations lost due to differencing are system-missing.

• If neither DFE or DFH are specified, FIT sets DFE equal to the number of observations.

Example
FIT ERR#1 ERR#2
 /OBS=VAR1 VAR2
 /DFE=47 46.

• In this example, the error degrees of freedom for the first residual series, ERR#1, is 47.
The error degrees of freedom for the second residual series, ERR#2, is 46.

Output Considerations for SSE

The sum of squared errors (SSE) reported by FIT may not be the same as the SSE reported
by the estimation procedure. The SSE from the procedure is an estimate of sigma squared for
that model. The SSE from FIT is simply the sum of the squared residuals.

References

Makridakis, S., S. C. Wheelwright, and V. E. McGee. 1983. Forecasting: Methods and applica-
tions. New York: John Wiley and Sons.

McLaughlin, R. L. 1984. Forecasting techniques for decision making. Rockville, Md.: Control
Data Management Institute.

589

FLIP

FLIP [[VARIABLES=] {ALL }]
 {varlist}

 [/NEWNAMES=variable]

Example
FLIP VARIABLES=WEEK1 TO WEEK52 /NEWNAMES=DEPT.

Overview

The program requires a file structure in which the variables are the columns and observations
(cases) are the rows. If a file is organized such that variables are in rows and observations are
in columns, you need to use FLIP to reorganize it. FLIP transposes the rows and columns of the
data in the working data file so that, for example, row 1, column 2 becomes row 2, column 1,
and so forth.

Options

Variable Subsets. You can transpose specific variables (columns) from the original file using
the VARIABLES subcommand.

Variable Names. You can use the values of one of the variables from the original file as the
variable names in the new file, using the NEWNAMES subcommand.

Basic Specification

The basic specification is the command keyword FLIP, which transposes all rows and columns.

• By default, FLIP assigns variable names VAR001 to VARn to the variables in the new file.
It also creates the new variable CASE_LBL, whose values are the variable names that
existed before transposition.

Subcommand Order

VARIABLES must precede NEWNAMES.

Operations

• FLIP replaces the working data file with the transposed file and displays a list of variable
names in the transposed file.

590 FLIP

• FLIP discards any previous VARIABLE LABELS, VALUE LABELS, and WEIGHT settings.
Values defined as user-missing in the original file are translated to system-missing in the
transposed file.

• FLIP obeys any SELECT IF, N, and SAMPLE commands in effect.
• FLIP does not obey the TEMPORARY command. Any transformations become permanent

when followed by FLIP.

• String variables in the original file are assigned system-missing values after transposition.

• Numeric variables are assigned a default format of F8.2 after transposition (with the ex-
ceptions of CASE_LBL and the variable specified on NEWNAMES).

• The variable CASE_LBL is created and added to the working data file each time FLIP is
executed.

• If CASE_LBL already exists as the result of a previous FLIP, its current values are used as
the names of variables in the new file (if NEWNAMES is not specified).

Example

The following is the LIST output for a data file arranged in a typical spreadsheet format, with
variables in rows and observations in columns:
A B C D

Income 22.00 31.00 43.00
Price 34.00 29.00 50.00
Year 1970.00 1971.00 1972.00

The command

FLIP.

transposes all variables in the file. The LIST output for the transposed file is as follows:
CASE_LBL VAR001 VAR002 VAR003

A . . .
B 22.00 34.00 1970.00
C 31.00 29.00 1971.00
D 43.00 50.00 1972.00

• The values for the new variable CASE_LBL are the variable names from the original file.

• Case A has system-missing values, since variable A had the string values Income, Price,
and Year.

• The names of the variables in the new file are CASE_LBL, VAR001, VAR002, and VAR003.

VARIABLES Subcommand

VARIABLES names one or more variables (columns) to be transposed. The specified variables
become observations (rows) in the new working file.

• The VARIABLES subcommand is optional. If it is not used, all variables are transposed.

• The actual keyword VARIABLES can be omitted.

• If the VARIABLES subcommand is specified, variables that are not named are discarded.

FLIP 591

Example

Using the untransposed file from the previous example, the command

FLIP VARIABLES=A TO C.

transposes only variables A through C. Variable D is not transposed and is discarded from the
working data file. The LIST output for the transposed file is as follows:
CASE_LBL VAR001 VAR002 VAR003

A . . .
B 22.00 34.00 1970.00
C 31.00 29.00 1971.00

NEWNAMES Subcommand

NEWNAMES specifies a variable whose values are used as the new variable names.
• The NEWNAMES subcommand is optional. If it is not used, the new variable names are

either VAR001 to VARn, or the values of CASE_LBL if it exists.

• Only one variable can be specified on NEWNAMES.

• The variable specified on NEWNAMES does not become an observation (case) in the new
working data file, regardless of whether it is specified on the VARIABLES subcommand.

• If the variable specified is numeric, its values become a character string beginning with
the letter V.

• If the variable specified is a long string, only the first eight characters are used.

• Lowercase character values of a string variable are converted to upper case, and any bad
character values, such as blank spaces, are replaced with underscore (_) characters.

• If the variable’s values are not unique, a numeric extension n is added to the end of a value
after its first occurrence, with n increasing by 1 at each subsequent occurrence.

Example

Using the untransposed file from the first example, the command

FLIP NEWNAMES=A.

uses the values for variable A as variable names in the new file. The LIST output for the trans-
posed file is as follows:
CASE_LBL INCOME PRICE YEAR

B 22.00 34.00 1970.00
C 31.00 29.00 1971.00
D 43.00 50.00 1972.00

• Variable A does not become an observation in the new file. The string values for A are
converted to upper case.

The following command transposes this file back to a form resembling its original structure:

FLIP.

592 FLIP

The LIST output for the transposed file is as follows:
CASE_LBL B C D

INCOME 22.00 31.00 43.00
PRICE 34.00 29.00 50.00
YEAR 1970.00 1971.00 1972.00

• Since the NEWNAMES subcommand is not used, the values of CASE_LBL from the previous
FLIP (B, C, and D) are used as variable names in the new file.

• The values of CASE_LBL are now INCOME, PRICE, and YEAR.

593

FORMATS

FORMATS varlist(format) [varlist...]

Example
FORMATS SALARY (DOLLAR8) / HOURLY (DOLLAR7.2) / RAISE BONUS (PCT2).

Overview

FORMATS changes variable print and write formats. In this program, print and write formats
are output formats. Print formats, also called display formats, control the form in which val-
ues are displayed by a procedure or by the PRINT command; write formats control the form
in which values are written by the WRITE command.

FORMATS changes both print and write formats. To change only print formats, use
PRINT FORMATS. To change only write formats, use WRITE FORMATS. For information on
assigning input formats during data definition, see DATA LIST.

Table 1 shows the output formats that can be assigned with the FORMATS, PRINT
FORMATS, and WRITE FORMATS commands. For additional information on formats, see
“Variable Formats” on p. 25.

Basic Specification

The basic specification is a variable list followed by a format specification in parentheses.
All variables on the list receive the new format.

Syntax Rules

• You can specify more than one variable or variable list, followed by a format in paren-
theses. Only one format can be specified after each variable list. For clarity, each set of
specifications can be separated by a slash.

• You can use keyword TO to refer to consecutive variables in the working data file.

• The specified width of a format must include enough positions to accommodate any punc-
tuation characters such as decimal points, commas, dollar signs, or date and time delim-
iters. (This differs from assigning an input format on DATA LIST, where the program
automatically expands the input format to accommodate punctuation characters in output.)

• Custom currency formats (CCw, CCw.d) must first be defined on the SET command before
they can be used on FORMATS.

• FORMATS cannot be used with string variables. To change the length of a string variable,
declare a new variable of the desired length with the STRING command and then use
COMPUTE to copy values from the existing string into the new variable.

• To save the new print and write formats, you must save the working data file as an SPSS-
format data file with the SAVE or XSAVE command.

594 FORMATS

Table 1 shows the formats that can be assigned by FORMATS, PRINT FORMATS, or WRITE
FORMATS. The first column of the table lists the FORTRAN-like specification. The column
labeled PRINT indicates whether the format can be used to display values. The columns
labeled Min w and Max w refer to the minimum and maximum widths allowed for the format
type. The column labeled Max d refers to the maximum decimal places.

Table 1 Output data formats

Type PRINT Min w Max w Max d

Numeric
Fw, Fw.d yes 1* 40 16
COMMAw, COMMAw.d yes 1* 40 16
DOTw, DOTw.d yes 1* 40 16
DOLLARw, DOLLARw.d yes 2* 40 16
CCw, CCw.d yes 2* 40 16
PCTw, PCTw.d yes 1* 40 16
PIBHEXw yes 2† 16†
RBHEXw yes 4† 16†
Zw, Zw.d yes 1 40 16
IBw, IBw.d no 1 8 16
PIBw, PIBw.d no 1 8 16
Nw.d yes 1 40 16
Pw, Pw.d no 1 16 16
Ew, Ew.d yes 6 40
PKw, PKw.d no 1 16 16
RBw no 2 8

String
Aw yes 1 254
AHEXw yes 2† 510

Date and time Resulting form
DATEw yes 9 40 dd-mmm-yy
 11 dd-mmm-yyyy
ADATEw yes 8 40 mm/dd/yy
 10 mm/dd/yyyy
EDATEw yes 8 40 dd/mm/yy

10 dd/mm/yyyy
JDATEw yes 5 40 yyddd
 7 yyyyddd
SDATEw yes 8 40 yy/mm/dd

10 yyyy/mm/dd
QYRw yes 6 40 q Q yy

FORMATS 595

*Add number of decimals plus 1 if number of decimals is more than 0. Total width cannot exceed 40
characters.
†Must be a multiple of 2.
**As the field width is expanded, the output string is expanded until the entire name of the day or month
is produced.
††Add 3 to display seconds.

Operations

• Unlike most transformations, FORMATS takes effect as soon as it is encountered in the
command sequence. Special attention should be paid to its position among commands. For
more information, see “Command Order” on p. 8.

• Variables not specified on FORMATS retain their current print and write formats in the
working file. To see the current formats, use the DISPLAY command.

• The new formats are changed only in the working file and are in effect for the duration of
the current session or until changed again with a FORMATS, PRINT FORMATS, or WRITE
FORMATS command. Formats in the original data file (if one exists) are not changed unless
the file is resaved with the SAVE or XSAVE command.

• New numeric variables created with transformation commands are assigned default print
and write formats of F8.2 (or the format specified on the FORMAT subcommand of SET).
The FORMATS command can be used to change the new variable’s print and write formats.

• New string variables created with transformation commands are assigned the format spec-
ified on the STRING command that declares the variable. FORMATS cannot be used to
change the format of a new string variable.

• If a numeric data value exceeds its width specification, the program attempts to display
some value nevertheless. The program first rounds decimal values, then removes punctu-
ation characters, then tries scientific notation, and finally, if there is still not enough space,
produces asterisks indicating that a value is present but cannot be displayed in the assigned
width.

 8 q Q yyyy
MOYRw yes 6 40 mmm yy
 8 mmm yyyy
WKYRw yes 8 40 ww WK yy
 10 ww WK yyyy
WKDAYw yes 2** 40
MONTHw yes 3** 40
TIMEw yes 5†† 40 hh:mm
TIMEw.d yes 10 40 16 hh:mm:ss.s
DTIMEw yes 8†† 40 dd hh:mm
DTIMEw.d yes 13 40 16 dd hh:mm:ss.s
DATETIMEw yes 17†† 40 dd-mmm-yyyy hh:mm
DATETIMEw.d yes 22 40 16 dd-mmm-yyyy hh:mm:ss.s

Table 1 Output data formats (Continued)

Type PRINT Min w Max w Max d

596 FORMATS

Example

FORMATS SALARY (DOLLAR8) /HOURLY (DOLLAR7.2)
/RAISE BONUS (PCT2).

• The print and write formats for SALARY are changed to DOLLAR format with eight posi-
tions, including the dollar sign and comma when appropriate. The value 11550 is
displayed as $11,550. An eight-digit number would require a DOLLAR11 format: eight
characters for the digits, two characters for commas, and one character for the dollar sign.

• The print and write formats for HOURLY are changed to DOLLAR format with seven posi-
tions, including the dollar sign, decimal point, and two decimal places. The value 115 is
displayed as $115.00. If DOLLAR6.2 had been specified, the value 115 would be displayed
as $115.0. The program would truncate the last 0 because a width of 6 is not enough to
display the full value.

• The print and write formats for both RAISE and BONUS are changed to PCT with two posi-
tions: one position for the percentage and one position for the percent sign. The value 9 is
displayed as 9%. Since the width allows for only two positions, the value 10 is displayed
as 10, since the percent sign is truncated.

Example

COMPUTE V3=V1 + V2.
FORMATS V3 (F3.1).

• COMPUTE creates the new numeric variable V3. By default, V3 is assigned an F8.2 format
(or the default format specified on SET).

• FORMATS changes both the print and write formats for V3 to F3.1.

Example

SET CCA=’-/-.Dfl ..-’.
FORMATS COST (CCA14.2).

• SET defines a European currency format for the custom currency format type CCA.

• FORMATS assigns format CCA to variable COST. With the format defined for CCA on
SET, the value 37419 is displayed as Dfl 37.419,00. See the SET command for more
information on custom currency formats.

597

FREQUENCIES

FREQUENCIES [VARIABLES=]varlist [varlist...]

 [/FORMAT= [{NOTABLE }] [{AVALUE**}]
{LIMIT(n)} {DVALUE }

{AFREQ }
 {DFREQ }

[/MISSING=INCLUDE]

 [/BARCHART=[MINIMUM(n)] [MAXIMUM(n)] [{FREQ(n) }]]
 {PERCENT(n)}

 [/PIECHART=[MINIMUM(n)] [MAXIMUM(n)] [{FREQ }] [{MISSING }]]
 {PERCENT} {NOMISSING}

 [/HISTOGRAM=[MINIMUM(n)] [MAXIMUM(n)] [{FREQ(n) }] [{NONORMAL}]]
 {NORMAL }

[/GROUPED=varlist [{(width) }]]
 {(boundary list)}

 [/NTILES=n]

 [/PERCENTILES=value list]

 [/STATISTICS=[DEFAULT] [MEAN] [STDDEV] [MINIMUM] [MAXIMUM]
 [SEMEAN] [VARIANCE] [SKEWNESS] [SESKEW] [RANGE]
 [MODE] [KURTOSIS] [SEKURT] [MEDIAN] [SUM] [ALL]
 [NONE]]

 [/ORDER=[{ANALYSIS}] [{VARIABLE}]

** Default if subcommand is omitted or specified without keyword.

Example
FREQUENCIES VAR=RACE /STATISTICS=ALL.

Overview

FREQUENCIES produces Frequency tables showing frequency counts and percentages of the
values of individual variables. You can also use FREQUENCIES to obtain Statistics tables for
categorical variables and to obtain Statistics tables and graphical displays for continuous
variables.

Options

Display Format. You can suppress tables and alter the order of values within tables using the
FORMAT subcommand.

Statistical Display. Percentiles and ntiles are available for numeric variables with the
PERCENTILES and NTILES subcommands. The following statistics are available with the

598 FREQUENCIES

STATISTICS subcommand: mean, median, mode, standard deviation, variance, skewness,
kurtosis, and sum.

Plots. Histograms can be specified for numeric variables on the HISTOGRAM subcommand.
Bar charts can be specified for numeric or string variables on the BARCHART subcommand.

Input Data. On the GROUPED subcommand, you can indicate whether the input data are
grouped (or collapsed) so that a better estimate can be made of percentiles.

Basic Specification

The basic specification is the VARIABLES subcommand and the name of at least one variable.
By default, FREQUENCIES produces a Frequency table.

Subcommand Order

Subcommands can be named in any order.

Syntax Rules

• You can specify multiple NTILES subcommands.

• BARCHART and HISTOGRAM are mutually exclusive.

• You can specify numeric variables (with or without decimal values) or string variables.
Only the short-string portion of long string variables are tabulated.

• Keyword ALL can be used on VARIABLES to refer to all user-defined variables in the
working data file.

Operations

• Variables are tabulated in the order they are mentioned on the VARIABLES subcommand.

• If a requested ntile or percentile cannot be calculated, a period (.) is displayed.

• FREQUENCIES dynamically builds the table, setting up one cell for each unique value
encountered in the data.

Limitations

• Maximum 500 variables total per FREQUENCIES command.

• Maximum of 32,767 observed values over all variables.

Example

FREQUENCIES VAR=RACE /STATISTICS=ALL.

FREQUENCIES 599

• FREQUENCIES requests a Frequency table and a Statistics table showing all statistics for
the categorical variable RACE.

Example

FREQUENCIES STATISTICS=ALL /HISTOGRAM
/VARIABLES=SEX TVHOURS SCALE1 TO SCALE5
/FORMAT=NOTABLE.

• FREQUENCIES requests statistics and histograms for SEX, TVHOURS, and all variables
between and including SCALE1 and SCALE5 in the working data file.

• FORMAT suppresses the Frequency tables, which are not useful for continuous variables.

VARIABLES Subcommand

VARIABLES names the variables to be tabulated and is the only required subcommand. The
actual keyword VARIABLES can be omitted.

FORMAT Subcommand

FORMAT controls various features of the output, including order of categories and suppression
of tables.

• The minimum specification is a single keyword.

• By default, FREQUENCIES displays the Frequency table and sort categories in ascending
order of values for numeric variables and in alphabetical order for string variables.

Table Order

AVALUE Sort categories in ascending order of values (numeric variables) or in alpha-
betical order (string variables). This is the default.

DVALUE Sort categories in descending order of values (numeric variables) or in reverse
alphabetical order (string variables). This is ignored when HISTOGRAM,
NTILES, or PERCENTILES is requested.

AFREQ Sort categories in ascending order of frequency. This is ignored when
HISTOGRAM, NTILES, or PERCENTILES is requested.

DFREQ Sort categories in descending order of frequency. This is ignored when
HISTOGRAM, NTILES, or PERCENTILES is requested.

Table Suppression

LIMIT(n) Suppress frequency tables with more than n categories. The number of miss-
ing and valid cases and requested statistics are displayed for suppressed tables.

600 FREQUENCIES

NOTABLE Suppress all frequency tables. The number of missing and valid cases are
displayed for suppressed tables. NOTABLE overrides LIMIT.

BARCHART Subcommand

BARCHART produces a bar chart for each variable named on the VARIABLES subcommand.
By default, the horizontal axis for each bar chart is scaled in frequencies, and the interval
width is determined by the largest frequency count for the variable being plotted. Bar charts
are labeled with value labels or with the value if no label is defined.

• The minimum specification is the BARCHART keyword, which generates default bar charts.

• BARCHART cannot be used with HISTOGRAM.

MIN(n) Lower bound below which values are not plotted.

MAX(n) Upper bound above which values are not plotted.

FREQ(n) Vertical axis scaled in frequencies, where optional n is the maximum. If n is
not specified or if it is too small, FREQUENCIES chooses 5, 10, 20, 50, 100,
200, 500, 1000, 2000, and so forth, depending on the largest category. This
is the default.

PERCENT(n) Vertical axis scaled in percentages, where optional n is the maximum. If n is
not specified or if it is too small, FREQUENCIES chooses 5, 10, 25, 50, or
100, depending on the frequency count for the largest category.

Example
FREQUENCIES VAR=RACE /BARCHART.

• FREQUENCIES produces a frequency table and the default bar chart for variable RACE.

Example
FREQUENCIES VAR=V1 V2 /BAR=MAX(10).

• FREQUENCIES produces a frequency table and bar chart with values through 10 for each
of variables V1 and V2.

PIECHART Subcommand

PIECHART produces a pie chart for each variable named on the VARIABLES subcommand. By
default, one slice corresponds to each category defined by the variable with one slice repre-
senting all missing values. Pie charts are labeled with value labels or with the value if no label
is defined.

• The minimum specification is the PIECHART keyword, which generates default pie charts.

• PIECHART can be requested together with either BARCHART or HISTOGRAM.

• FREQ and PERCENT are mutually exclusive. If both are specified, only the first specifi-
cation is in effect.

FREQUENCIES 601

• MISSING and NOMISSING are mutually exclusive. If both are specified, only the first
specification is in effect.

MIN(n) Lower bound below which values are not plotted.

MAX(n) Upper bound above which values are not plotted.

FREQ The pie charts are based on frequencies. Frequencies are displayed when
you request values in the Chart Editor. This is the default.

PERCENT The pie charts are based on percentage. Percentage is displayed when you
request values in the Chart Editor.

MISSING User-missing and system-missing values are treated as one category. This is
the default. Specify INCLUDE on the MISSING subcommand to display sys-
tem-missing and user-missing values as separate slices.

NOMISSING Missing values are excluded from the chart. If you specify INCLUDE on the
MISSING subcommand, each user-missing value is represented by one slice.

Example
FREQUENCIES VAR=RACE /PIECHART.

• FREQUENCIES produces a frequency table and the default pie chart for variable RACE.

Example
FREQUENCIES VAR=V1 V2 /PIE=MAX(10).

• For each variable V1 and V2, FREQUENCIES produces a frequency table and a pie chart
with values through 10.

HISTOGRAM Subcommand

HISTOGRAM displays a plot for each numeric variable named on the VARIABLES subcommand.
By default, the horizontal axis of each histogram is scaled in frequencies and the interval width
is determined by the largest frequency count of the variable being plotted.

• The minimum specification is the HISTOGRAM keyword, which generates default
histograms.

• HISTOGRAM cannot be used with BARCHART.

MIN(n) Lower bound below which values are not plotted.

MAX(n) Upper bound above which values are not plotted.

FREQ(n) Vertical axis scaled in frequencies, where optional n is the scale. If n is not
specified or if it is too small, FREQUENCIES chooses 5, 10, 20, 50, 100, 200,
500, 1000, 2000, and so forth, depending on the largest category. This is the
default.

NORMAL Superimpose a normal curve. The curve is based on all valid values for the
variable, including values excluded by MIN and MAX.

602 FREQUENCIES

NONORMAL Suppress the normal curve. This is the default.

Example
FREQUENCIES VAR=V1 /HIST=NORMAL.

• FREQUENCIES requests a histogram with a superimposed normal curve.

GROUPED Subcommand

When the values of a variable represent grouped or collapsed data, it is possible to estimate
percentiles for the original, ungrouped data from the grouped data. The GROUPED sub-
command specifies which variables have been grouped. It affects only the output from the
PERCENTILES and NTILES subcommands and the MEDIAN statistic from the STATISTICS
subcommand.
• Multiple GROUPED subcommands can be used on a single FREQUENCIES command.

Multiple variable lists, separated by slashes, can appear on a single GROUPED subcommand.

• The variables named on GROUPED must have been named on the VARIABLES subcommand.

• The value or value list in the parentheses is optional. When it is omitted, the program
treats the values of the variables listed on GROUPED as midpoints. If the values are not
midpoints, they must first be recoded with the RECODE command.

• A single value in parentheses specifies the width of each grouped interval. The data
values must be group midpoints, but there can be empty categories. For example, if you
have data values of 10, 20, and 30 and specify an interval width of 5, the categories are

 and The categories and are empty.

• A value list in the parentheses specifies interval boundaries. The data values do not have
to represent midpoints, but the lowest boundary must be lower than any value in the data.
If any data values exceed the highest boundary specified (the last value within the paren-
theses), they will be assigned to an open-ended interval. In this case, some percentiles
cannot be calculated.

Example
RECODE AGE (1=15) (2=25) (3=35) (4=45) (5=55)

(6=65) (7=75) (8=85) (9=95)
/INCOME (1=5) (2=15) (3=25) (4=35) (5=45)

(6=55) (7=65) (8=75) (9=100).

FREQUENCIES VARIABLES=AGE, SEX, RACE, INCOME
/GROUPED=AGE, INCOME
/PERCENTILES=5,25,50,75,95.

• The AGE and INCOME categories of 1, 2, 3, and so forth are recoded to category
midpoints. Note that data can be recoded to category midpoints on any scale; here AGE
is recoded in years, but INCOME is recoded in thousands of dollars.

• The GROUPED subcommand on FREQUENCIES allows more accurate estimates of the
requested percentiles.

10 2.5,± 20 2.5,± 30 2.5.± 15 2.5± 25 2.5±

FREQUENCIES 603

Example
FREQUENCIES VARIABLES=TEMP

/GROUPED=TEMP (0.5)
/NTILES=10.

• The values of TEMP (temperature) in this example were recorded using an inexpensive
thermometer whose readings are precise only to the nearest half degree.

• The observed values of 97.5, 98, 98.5, 99, and so on, are treated as group midpoints,
smoothing out the discrete distribution. This yields more accurate estimates of the deciles.

Example
FREQUENCIES VARIABLES=AGE

/GROUPED=AGE (17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5
52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5)

/PERCENTILES=5, 10, 25, 50, 75, 90, 95.

• The values of AGE in this example have been estimated to the nearest five years. The first
category is 17.5 to 22.5, the second is 22.5 to 27.5, and so forth. The artificial clustering
of age estimates at multiples of five years is smoothed out by treating AGE as grouped
data.

• It is not necessary to recode the ages to category midpoints, since the interval boundaries
are explicitly given.

PERCENTILES Subcommand

PERCENTILES displays the value below which the specified percentage of cases falls. The
desired percentiles must be explicitly requested. There are no defaults.

Example
FREQUENCIES VAR=V1 /PERCENTILES=10 25 33.3 66.7 75.

• FREQUENCIES requests the values for percentiles 10, 25, 33.3, 66.7, and 75 for V1.

NTILES Subcommand

NTILES calculates the percentages that divide the distribution into the specified number of
categories and displays the values below which the requested percentages of cases fall. There
are no default ntiles.

• Multiple NTILES subcommands are allowed. Each NTILES subcommand generates sepa-
rate percentiles. Any duplicate percentiles generated by different NTILES subcommands
are consolidated in the output.

Example
FREQUENCIES VARIABLE=V1 /NTILES=4.

• FREQUENCIES requests quartiles (percentiles 25, 50, and 75) for V1.

604 FREQUENCIES

Example
FREQUENCIES VARIABLE=V1 /NTILES=4 /NTILES=10.

• The first NTILES subcommand requests percentiles 25, 50, and 75.

• The second NTILES subcommand requests percentiles 10 through 90 in increments of 10.

• The 50th percentile is produced by both specifications but is displayed only once in the
output.

STATISTICS Subcommand

STATISTICS controls the display of statistics. By default, cases with missing values are
excluded from the calculation of statistics.

• The minimum specification is the keyword STATISTICS, which generates the mean, stan-
dard deviation, minimum, and maximum (these statistics are also produced by keyword
DEFAULT).

MEAN Mean.

SEMEAN Standard error of the mean.

MEDIAN Median. Ignored when AFREQ or DFREQ are specified on the FORMAT sub-
command.

MODE Mode. If there is more than one mode, only the first mode is displayed.

STDDEV Standard deviation.

VARIANCE Variance.

SKEWNESS Skewness.

SESKEW Standard error of the skewness statistic.

KURTOSIS Kurtosis.

SEKURT Standard error of the kurtosis statistic.

RANGE Range.

MINIMUM Minimum.

MAXIMUM Maximum.

SUM Sum.

DEFAULT Mean, standard deviation, minimum, and maximum.

ALL All available statistics.

NONE No statistics.

FREQUENCIES 605

Example
FREQUENCIES VAR=AGE /STATS=MODE.

• STATISTICS requests the mode of AGE.

Example
FREQUENCIES VAR=AGE /STATS=DEF MODE.

• STATISTICS requests the default statistics (mean, standard deviation, minimum, and
maximum) plus the mode of AGE.

MISSING Subcommand

By default, both user-missing and system-missing values are labeled as missing in the table
but are not included in the valid and cumulative percentages, in the calculation of descriptive
statistics, or in charts and histograms.

INCLUDE Include cases with user-missing values. Cases with user-missing values are
included in statistics and plots.

ORDER Subcommand

You can organize your output by variable or by analysis. Frequencies output that is organized
by analysis has a single statistics table for all variables. Output organized by variable has a
statistics table and a frequency table for each variable.

ANALYSIS Organize output by analysis. Displays a single statistics table for all vari-
ables. This is the default.

VARIABLE Organize output by variable. Displays a statistics table and a frequency table
for each variable.

606

GENLOG

GENLOG is available in the Advanced Models option.

GENLOG varlist[BY] varlist [WITH covariate varlist]

[/CSTRUCTURE=varname]

[/GRESID=varlist]

 [/GLOR=varlist]

 [/MODEL={POISSON** }]
 {MULTINOMIAL}

[/CRITERIA=[CONVERGE({0.001**})][ITERATE({20**})][DELTA({0.5**})]
{n } {n } {n }

[CIN({95**})] [EPS({1E-8**})]
 {n } {n }

 [DEFAULT]

[/PRINT=[FREQ**][RESID**][ADJRESID**][DEV**]
 [ZRESID][ITERATE][COV][DESIGN][ESTIM][COR]
 [ALL] [NONE]
 [DEFAULT]]

[/PLOT={DEFAULT** }]
{RESID([ADJRESID][DEV]) }
{NORMPROB([ADJRESID][DEV]) }

 {NONE }

 [/SAVE=tempvar (newvar)[tempvar (newvar)...]]

[/MISSING=[{EXCLUDE**}]]
 {INCLUDE }

[/DESIGN=effect[(n)] effect[(n)]... effect {BY} effect...]
 {* }

**Default if subcommand or keyword is omitted.

Overview

GENLOG is a general procedure for model fitting, hypothesis testing, and parameter estima-
tion for any model that has categorical variables as its major components. As such, GENLOG
subsumes a variety of related techniques, including general models of multiway contin-
gency tables, logit models, logistic regression on categorical variables, and quasi-indepen-
dence models.

GENLOG, following the regression approach, uses dummy coding to construct a design
matrix for estimation and produces maximum likelihood estimates of parameters by means
of the Newton-Raphson algorithm. Since the regression approach uses the original parameter
spaces, the parameter estimates correspond to the original levels of the categories and are
therefore easier to interpret.

 HILOGLINEAR, which uses an iterative proportional-fitting algorithm, is more efficient
for hierarchical models and useful in model building, but it cannot produce parameter esti-

GENLOG 607

mates for unsaturated models, does not permit specification of contrasts for parameters, and
does not display a correlation matrix of the parameter estimates.

The General Loglinear Analysis and Logit Loglinear Analysis dialog boxes are both
associated with the GENLOG command. In previous releases of SPSS, these dialog boxes
were associated with the LOGLINEAR command. The LOGLINEAR command is now available
only as a syntax command. The differences are described in the discussion of the LOGLINEAR
command.

Options

Cell Weights. You can specify cell weights (such as structural zero indicators) for the model
with the CSTRUCTURE subcommand.

Linear Combinations. You can compute linear combinations of observed cell frequencies,
expected cell frequencies, and adjusted residuals using the GRESID subcommand.

Generalized Log-Odds Ratios. You can specify contrast variables on the GLOR subcommand
and test whether the generalized log-odds ratio equals 0.

Model Assumption. You can specify POISSON or MULTINOMIAL on the MODEL subcommand
to request the Poisson loglinear model or the product multinomial loglinear model.

Tuning the Algorithm. You can control the values of algorithm-tuning parameters with the
CRITERIA subcommand.

Output Display. You can control the output display with the PRINT subcommand.

Optional Plots. You can request plots of adjusted or deviance residuals against observed and
expected counts, or normal plots and detrended normal plots of adjusted or deviance residuals
using the PLOT subcommand.

Basic Specification

The basic specification is one or more factor variables that define the tabulation. By default,
GENLOG assumes a Poisson distribution and estimates the saturated model. Default output
includes the factors or effects, their levels, and any labels; observed and expected frequencies
and percentages for each factor and code; and residuals, adjusted residuals, and deviance
residuals.

Limitations

• Maximum 10 factor variables (dependent and independent).

• Maximum 200 covariates.

608 GENLOG

Subcommand Order

• The variable specification must come first.

• Subcommands can be specified in any order.

• When multiple subcommands are specified, only the last specification takes effect.

Example

GENLOG DPREF RACE CAMP.

• DPREF, RACE, and CAMP are categorical variables.

• This is a general loglinear model because no BY keyword appears.
• The design defaults to a saturated model that includes all main effects and two-way and

three-way interaction effects.

Example

GENLOG GSLEVEL EDUC SEX
/DESIGN=GSLEVEL EDUC SEX.

• GSLEVEL, EDUC, and SEX are categorical variables.

• DESIGN specifies a model with main effects only.

Variable List

The variable list specifies the variables to be included in the model. GENLOG analyzes two
classes of variables—categorical and continuous. Categorical variables are used to define the
cells of the table. Continuous variables are used as cell covariates.

• The list of categorical variables must be specified first. Categorical variables must be
numeric.

• Continuous variables can be specified only after the WITH keyword following the list of
categorical variables.

• To specify a logit model, use the keyword BY (see “Logit Model” below). A variable list
without the keyword BY generates a general loglinear model.

• A variable can be specified only once in the variable list—as a dependent variable imme-
diately following GENLOG, as an independent variable following the keyword BY, or as
a covariate following the keyword WITH.

• No range needs to be specified for categorical variables.

Logit Model

The logit model examines the relationships between dependent and independent factor
variables.

GENLOG 609

• To separate the independent variables from the dependent variables in a logit model, use
the keyword BY. The categorical variables preceding BY are the dependent variables; the
categorical variables following BY are the independent variables.

• Up to 10 variables can be specified, including both dependent and independent variables.

• For the logit model, you must specify MULTINOMIAL on the MODEL subcommand.

• GENLOG displays an analysis of dispersion and two measures of association—entropy
and concentration. These measures are discussed in Haberman (1982) and can be used to
quantify the magnitude of association among the variables. Both are proportional-
reduction-in-error measures. The entropy statistic is analogous to Theil’s entropy
measure, while the concentration statistic is analogous to Goodman and Kruskal’s tau-b.
Both statistics measure the strength of association between the dependent variable and the
independent variable set.

Example
GENLOG GSLEVEL BY EDUC SEX
 /MODEL=MULTINOMIAL

/DESIGN=GSLEVEL, GSLEVEL BY EDUC, GSLEVEL BY SEX.

• The keyword BY on the variable list specifies a logit model in which GSLEVEL is the
dependent variable and EDUC and SEX are the independent variables.

• A logit model is multinomial.

• DESIGN specifies a model that can test for the absence of the joint effect of SEX and EDUC
on GSLEVEL.

Cell Covariates

• Continuous variables can be used as covariates. When used, the covariates must be spec-
ified after the WITH keyword following the list of categorical variables.

• A variable cannot be named as both a categorical variable and a cell covariate.

• To enter cell covariates into a model, the covariates must be specified on the DESIGN
subcommand.

• Cell covariates are not applied on a case-by-case basis. The weighted covariate mean for
a cell is applied to that cell.

Example
GENLOG DPREF RACE CAMP WITH X

/DESIGN=DPREF RACE CAMP X.

• The variable X is a continuous variable specified as a cell covariate. Cell covariates must
be specified after the keyword WITH following the variable list. No range is defined for
cell covariates.

• To include the cell covariate in the model, the variable X is specified on DESIGN.

610 GENLOG

CSTRUCTURE Subcommand

CSTRUCTURE specifies the variable that contains values for computing cell weights, such as
structural zero indicators. By default, cell weights are equal to 1.

• The specification must be a numeric variable.

• Variables specified as dependent or independent variables in the variable list cannot be
specified on CSTRUCTURE.

• Cell weights are not applied on a case-by-case basis. The weighted mean for a cell is
applied to that cell.

• CSTRUCTURE can be used to impose structural, or a priori, zeros on the model. This
feature is useful in specifying a quasi-symmetry model and in excluding cells from
entering into estimation.

• If multiple CSTRUCTURE subcommands are specified, the last specification takes effect.

Example
COMPUTE CWT=(HUSED NE WIFED).
GENLOG HUSED WIFED WITH DISTANCE

/CSTRUCTURE=CWT
/DESIGN=HUSED WIFED DISTANCE.

• The Boolean expression assigns CWT the value of 1 when HUSED is not equal to WIFED,
and the value of 0 otherwise.

• CSTRUCTURE imposes structural zeros on the diagonal of the symmetric crosstabulation.

GRESID Subcommand

GRESID (Generalized Residual) calculates linear combinations of observed and expected
cell frequencies as well as simple, standardized, and adjusted residuals.

• The variables specified must be numeric, and they must contain coefficients of the desired
linear combinations.

• Variables specified as dependent or independent variables in the variable list cannot be
specified on GRESID.

• The generalized residual coefficient is not applied on a case-by-case basis. The weighted
coefficient mean of the value for all cases in a cell is applied to that cell.

• Each variable specified on the GRESID subcommand contains a single linear combination.
• If multiple GRESID subcommands are specified, the last specification takes effect.

Example
COMPUTE GR_1=(MONTH LE 6).
COMPUTE GR_2=(MONTH GE 7).
GENLOG MONTH WITH Z
/GRESID=GR_1 GR_2
/DESIGN=Z.

• The first variable, GR_1, combines the first six months into a single effect; the second
variable, GR_2, combines the rest of the months.

GENLOG 611

• For each effect, GENLOG displays the observed and expected counts as well as the simple,
standardized, and adjusted residuals.

GLOR Subcommand

GLOR (Generalized Log-Odds Ratio) specifies the population contrast variable(s). For each
variable specified, GENLOG tests the null hypothesis that the generalized log-odds ratio
equals 0 and displays the Wald statistic and the confidence interval. You can specify the level
of the confidence interval using the CIN significance level keyword on CRITERIA. By default,
the confidence level is 95%.
• The variable sum is 0 for the loglinear model and for each combined level of independent

variables for the logit model.

• Variables specified as dependent or independent variables in the variable list cannot be
specified on GLOR.

• The coefficient is not applied on a case-by-case basis. The weighted mean for a cell is
applied to that cell.

• If multiple GLOR subcommands are specified, the last specification takes effect.

Example
GENLOG A B
 /GLOR=COEFF
 /DESIGN=A B.

• Variable COEFF contains the coefficients of two dichotomous factors A and B.

• If the weighted cell mean for COEFF is 1 when A equals B and –1 otherwise, this example
tests whether the log-odds ratio equals 0, or in this case, whether variables A and B are
independent.

MODEL Subcommand

MODEL specifies the assumed distribution of your data.

• You can specify only one keyword on MODEL. The default is POISSON.
• If more than one MODEL subcommand is specified, the last specification takes effect.

POISSON The Poisson distribution. This is the default.

MULTINOMIAL The multinomial distribution. For the logit model, you must specify
MULTINOMIAL.

CRITERIA Subcommand

CRITERIA specifies the values used in tuning the parameters for the Newton-Raphson
algorithm.

• If multiple CRITERIA subcommands are specified, the last specification takes effect.

612 GENLOG

CONVERGE(n) Convergence criterion. Specify a positive value for the convergence
criterion. The default is 0.001.

ITERATE(n) Maximum number of iterations. Specify an integer. The default number is 20.

DELTA(n) Cell delta value. Specify a non-negative value to add to each cell frequency
for the first iteration. (For the saturated model, the delta value is added for all
iterations.) The default is 0.5. The delta value is used to solve mathematical
problems created by 0 observations; if all of your observations are greater
than 0, we recommend that you set DELTA to 0.

CIN(n) Level of confidence interval. Specify the percentage interval used in the test
of generalized log-odds ratios and parameter estimates. The value must be
between 50 and 99.99, inclusive. The default is 95.

EPS(n) Epsilon value used for redundancy checking in design matrix. Specify a pos-
itive value. The default is 0.00000001.

DEFAULT Default values are used. DEFAULT can be used to reset all criteria to default
values.

Example
GENLOG DPREF BY RACE ORIGIN CAMP
 /MODEL=MULTINOMIAL
/CRITERIA=ITERATION(50) CONVERGE(.0001).

• ITERATION increases the maximum number of iterations to 50.
• CONVERGE lowers the convergence criterion to 0.0001.

PRINT Subcommand

PRINT controls the display of statistics.

• By default, GENLOG displays the frequency table and simple, adjusted, and deviance
residuals.

• When PRINT is specified with one or more keywords, only the statistics requested by
these keywords are displayed.

• When multiple PRINT subcommands are specified, the last specification takes effect.

The following keywords can be used on PRINT:

FREQ Observed and expected cell frequencies and percentages. This is displayed
by default.

RESID Simple residuals. This is displayed by default.

ZRESID Standardized residuals.

ADJRESID Adjusted residuals. This is displayed by default.

DEV Deviance residuals. This is displayed by default.

GENLOG 613

DESIGN The design matrix of the model. The design matrix corresponding to the spec-
ified model is displayed.

ESTIM The parameter estimates of the model. The parameter estimates refer to the
original categories.

COR The correlation matrix of the parameter estimates.

COV The covariance matrix of the parameter estimates.

ALL All available output.

DEFAULT FREQ, RESID, ADJRESID, and DEV. This keyword can be used to reset
PRINT to its default setting.

NONE The design and model information with goodness-of-fit statistics only. This
option overrides all other specifications on the PRINT subcommand.

Example
GENLOG A B
/PRINT=ALL
 /DESIGN=A B.

• The DESIGN subcommand specifies a main-effects model, which tests the hypothesis of
no interaction. The PRINT subcommand displays all available output for this model.

PLOT Subcommand

PLOT specifies what plots you want displayed. Plots of adjusted residuals against observed
and expected counts, and normal and detrended normal plots of the adjusted residuals are
displayed if PLOT is not specified or is specified without a keyword. When multiple PLOT
subcommands are specified, only the last specification is executed.

DEFAULT RESID (ADJRESID) and NORMPROB (ADJRESID). This is the de-
fault if PLOT is not specified or is specified with no keyword.

RESID (type) Plots of residuals against observed and expected counts. You can
specify the type of residuals to plot. ADJRESID plots adjusted residu-
als; DEV plots deviance residuals. ADJRESID is the default if you do
not specify a type.

NORMPROB (type) Normal and detrended normal plots of the residuals. You can specify
the type of residuals to plot. ADJRESID plots adjusted residuals; DEV
plots deviance residuals. ADJRESID is the default if you do not specify
a type.

NONE No plots.

614 GENLOG

Example
GENLOG RESPONSE BY SEASON
 /MODEL=MULTINOMIAL

/PLOT=RESID(ADJRESID,DEV)
/DESIGN=RESPONSE SEASON(1) BY RESPONSE.

• This example requests plots of adjusted and deviance residuals against observed and
expected counts.

• Note that if you specify /PLOT=RESID(ADJRESID) RESID(DEV), only the deviance
residuals are plotted. The first keyword specification, RESID(ADJRESID), is ignored.

MISSING Subcommand

MISSING controls missing values. By default, GENLOG excludes all cases with system- or user-
missing values for any variable. You can specify INCLUDE to include user-missing values.

EXCLUDE Delete cases with user-missing values. This is the default if the subcommand
is omitted. You can also specify the keyword DEFAULT.

INCLUDE Include cases with user-missing values. Only cases with system-missing
values are deleted.

Example
MISSING VALUES A(0).
GENLOG A B
 /MISSING=INCLUDE
/DESIGN=B.

• Even though 0 was specified as missing, it is treated as a nonmissing category of A in this
analysis.

SAVE Subcommand

SAVE saves specified temporary variables into the working data file. You can assign a new
name to each temporary variable saved.

• The temporary variables you can save include RESID (raw residual), ZRESID (standardized
residual), ADJRESID (adjusted residual), DEV (deviance residual), and PRED (predicted
cell frequency). An explanatory label is assigned to each saved variable.

• A temporary variable can be saved only once on a SAVE subcommand.

• To assign a name to a saved temporary variable, specify the new name in parentheses
following that temporary variable. The new name must conform to SPSS naming conven-
tions and must be unique in the working data file. The names cannot begin with # or $.

• If you do not specify a variable name in parentheses, GENLOG assigns default names to
the saved temporary variables. A default name starts with the first three characters of the
name of the saved temporary variable, followed by an underscore and a unique number.
For example, RESID will be saved as RES_n, where n is a number incremented each time
a default name is assigned to a saved RESID.

GENLOG 615

• The saved variables are pertinent to cells in the contingency table, not to individual
observations. In the Data Editor, all cases that define one cell receive the same value. To
make sense of these values, you need to aggregate the data to obtain cell counts.

Example
GENLOG A B
 /SAVE PRED (PREDA_B)
 /DESIGN = A, B.

• SAVE saves the predicted values for two independent variables A and B.

• The saved variable is renamed PREDA_B and added to the working data file.

DESIGN Subcommand

DESIGN specifies the model to be fit. If DESIGN is omitted or used with no specifications, the
saturated model is produced. The saturated model fits all main effects and all interaction effects.
• Only one design can be specified on the subcommand.

• To obtain main-effects models, name all of the variables listed on the variables
specification.

• To obtain interactions, use the keyword BY or an asterisk (*) to specify each interaction, for
example, A BY B or C*D. To obtain the single-degree-of-freedom partition of a specified
factor, specify the partition in parentheses following the factor (see the example below).

• To include cell covariates in the model, first identify them on the variable list by naming
them after the keyword WITH, and then specify the variable names on DESIGN.

• Effects that involve only independent variables result in redundancy. GENLOG removes
these effects from the model.

• If your variable list includes a cell covariate (identified by the keyword WITH), you cannot
imply the saturated model by omitting DESIGN or specifying it alone. You need to request
the model explicitly by specifying all main effects and interactions on DESIGN.

Example
COMPUTE X=MONTH.
GENLOG MONTH WITH X

/DESIGN X.

• This example tests the linear effect of the dependent variable.

• The variable specification identifies MONTH as a categorical variable. The keyword WITH
identifies X as a covariate.

• DESIGN tests the linear effect of MONTH.

Example
GENLOG A B

/DESIGN=A.

GENLOG A B
/DESIGN=A,B.

616 GENLOG

• Both designs specify main-effects models.

• The first design tests the homogeneity of category probabilities for B; it fits the marginal
frequencies on A but assumes that membership in any of the categories of B is equiprobable.

• The second design tests the independence of A and B. It fits the marginals on both A and B.

Example
GENLOG A B C

/DESIGN=A,B,C, A BY B.

• This design consists of the A main effect, the B main effect, the C main effect, and the
interaction of A and B.

Example
GENLOG A BY B
 /MODEL=MULTINOMIAL
/DESIGN=A,A BY B(1).

• This example specifies single-degree-of-freedom partitions.

• The value 1 following B refers to the first category of B.

Example
GENLOG HUSED WIFED WITH DISTANCE

/DESIGN=HUSED WIFED DISTANCE.

• The continuous variable DISTANCE is identified as a cell covariate by the keyword WITH.
The cell covariate is then included in the model by naming it on DESIGN.

Example
COMPUTE X=1.
GENLOG MONTH WITH X

/DESIGN=X.

• This example specifies an equiprobability model.

• The design tests whether the frequencies in the table are equal by using a constant of 1 as
a cell covariate.

References

Haberman, S.J. 1982. Analysis of despersion of multinomial responses. Journal of the American
Statistical Association, 77: 568-580.

617

GET

GET FILE=file

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/RENAME=(old varnames=new varnames)...]

 [/MAP]

**Default if the subcommand is omitted.

Example
GET FILE=EMPL.

Overview

GET reads an SPSS-format data file that was created by the SAVE or XSAVE command. An
SPSS-format data file contains data plus a dictionary. The dictionary contains a name for
each variable in the data file, plus any assigned variable and value labels, missing-value
flags, and variable print and write formats. The dictionary also contains document text
created with the DOCUMENTS command.

GET is used only for reading SPSS-format data files. See DATA LIST for information on
reading and defining data in a text data file. See MATRIX DATA for information on defining
matrix materials in a text data file. For information on defining complex data files that can-
not be defined with DATA LIST alone, see FILE TYPE and REPEATING DATA.

The program can also read data files created for other software applications. See IMPORT
for information on reading portable files created with EXPORT. See commands such as GET
TRANSLATE and GET SAS for information on reading files created by other software
programs.

Options

Variable Subsets and Order. You can read a subset of variables and reorder the variables that
are copied into the working data file using the DROP and KEEP subcommands.

Variable Names. You can rename variables as they are copied into the working data file with
the RENAME subcommand.

Variable Map. To confirm the names and order of variables in the working data file, use the
MAP subcommand. MAP displays the variables in the working file next to their corre-
sponding names in the SPSS-format data file.

618 GET

Basic Specification

• The basic specification is the FILE subcommand, which specifies the SPSS-format data
file to be read.

• By default, GET copies all variables from the SPSS-format data file into the working data
file. Variables in the working file are in the same order and have the same names as vari-
ables in the SPSS-format data file. Documentary text from the SPSS-format data file is
copied into the dictionary of the working file.

Subcommand Order

• FILE must be specified first.

• The remaining subcommands can be specified in any order.

Syntax Rules

• FILE is required and can be specified only once.

• KEEP, DROP, RENAME, and MAP can be used as many times as needed.

• Documentary text copied from the SPSS-format data file can be dropped from the work-
ing data file with the DROP DOCUMENTS command.

• GET cannot be used inside a DO IF—END IF or LOOP—END LOOP structure.

Operations

• GET reads the dictionary of the SPSS-format data file.
• If KEEP is not specified, variables in the working data file are in the same order as vari-

ables in the SPSS-format data file.

• A file saved with weighting in effect maintains weighting the next time the file is accesed.
For a discussion of turning off weights, see WEIGHT.

FILE Subcommand

FILE specifies the SPSS-format data file to be read. FILE is required and can be specified only
once. It must be the first specification on GET.

DROP and KEEP Subcommands

DROP and KEEP are used to copy a subset of variables into the working data file. DROP
specifies variables that should not be copied into the working file. KEEP specifies variables
that should be copied. Variables not specified on KEEP are dropped.

GET 619

• Variables can be specified in any order. The order of variables on KEEP determines the
order of variables in the working file. The order of variables on DROP does not affect the
order of variables in the working file.

• The keyword ALL on KEEP refers to all remaining variables not previously specified on
KEEP. ALL must be the last specification on KEEP.

• If a variable is specified twice on the same subcommand, only the first mention is recognized.
• Multiple DROP and KEEP subcommands are allowed. However, specifying a variable

named on a previous DROP or not named on a previous KEEP results in an error, and the
GET command is not executed.

• The keyword TO can be used to specify a group of consecutive variables in the SPSS-
format data file.

Example
GET FILE=HUBTEMP /DROP=DEPT79 TO DEPT84 SALARY79.

• The working data file is copied from SPSS-format data file HUBTEMP. All variables be-
tween and including DEPT79 and DEPT84, as well as SALARY79, are excluded from the
working file. All other variables are copied into the working file.

• Variables in the working data file are in the same order as the variables in the HUBTEMP
file.

Example
GET FILE=PRSNL /DROP=GRADE STORE
 /KEEP=LNAME NAME TENURE JTENURE ALL.

• The variables GRADE and STORE are dropped when the file PRSNL is copied into the
working data file.

• KEEP specifies that LNAME, NAME, TENURE, and JTENURE are the first four variables in
the working file, followed by all remaining variables (except those dropped by the
previous DROP). These remaining variables are copied into the working file in the same
sequence in which they appear in the PRSNL file.

RENAME Subcommand

RENAME changes the names of variables as they are copied into the working data file.

• The specification on RENAME is a list of old variable names followed by an equals sign
and a list of new variable names. The same number of variables must be specified on both
lists. The keyword TO can be used on the first list to refer to consecutive variables in the
SPSS-format data file and on the second list to generate new variable names (see “Key-
word TO” on p. 23). The entire specification must be enclosed in parentheses.

• Alternatively, you can specify each old variable name individually, followed by an equals
sign and the new variable name. Multiple sets of variable specifications are allowed. The
parentheses around each set of specifications are optional.

• Old variable names do not need to be specified according to their order in the SPSS-
format data file.

620 GET

• Name changes take place in one operation. Therefore, variable names can be exchanged
between two variables.

• Variables cannot be renamed to scratch variables.

• Multiple RENAME subcommands are allowed.
• On a subsequent DROP or KEEP subcommand, variables are referred to by their new

names.

Example
GET FILE=EMPL88 /RENAME AGE=AGE88 JOBCAT=JOBCAT88.

• RENAME specifies two name changes for the working data file. AGE is renamed to AGE88
and JOBCAT is renamed to JOBCAT88.

Example
GET FILE=EMPL88 /RENAME (AGE JOBCAT=AGE88 JOBCAT88).

• The name changes are identical to those in the previous example. AGE is renamed to
AGE88 and JOBCAT is renamed to JOBCAT88. The parentheses are required with this
method.

MAP Subcommand

MAP displays a list of the variables in the working data file and their corresponding names
in the SPSS-format data file.

• The only specification is the keyword MAP. There are no additional specifications.

• Multiple MAP subcommands are allowed. Each MAP subcommand maps the results of
subcommands that precede it; results of subcommands that follow it are not mapped.

Example
GET FILE=EMPL88 /RENAME=(AGE=AGE88) (JOBCAT=JOBCAT88)
/KEEP=LNAME NAME JOBCAT88 ALL /MAP.

• MAP is specified to confirm the new names for the variables AGE and JOBCAT and the
order of variables in the working data file (LNAME, NAME, and JOBCAT88, followed by
all remaining variables in the SPSS-format data file).

621

GET CAPTURE

GET CAPTURE {ODBC }*

 [/CONNECT=’connection string’]
 [/LOGIN=login] [/PASSWORD=password]
 [/SERVER=host] [/DATABASE=database name]†

 /SQL ’select statement’
 [’continuation of select statement’]

* You can import data from any database for which you have an ODBC driver installed.
† Optional subcommands are database-specific. See “Syntax Rules” below for the subcommand(s) required
by a database type.

Example
GET CAPTURE ODBC
 /CONNECT=’DSN=sales.mdb;DBQ=C:\spss10\saledata.mdb;DriverId=281;FIL=MS’+
 ’ Access;MaxBufferSize=2048;PageTimeout=5;’
 /SQL = ’SELECT T0.ID AS ID‘, T0.JOBCAT AS JOBCAT, ’
 ’‘T0‘.‘REGION‘ AS ‘REGION‘, ‘T0‘.‘DIVISION‘ AS ‘DIVISION‘,‘T0‘.‘TRAVEL‘’
 ’ AS ‘TRAVEL‘, ‘T0‘.‘SALES‘ AS ‘SALES‘, ‘T0‘.‘VOLUME96‘ AS ‘VOLUME96‘, ’
 ’‘T1‘.‘REGION‘ AS ‘REGION1‘, ‘T1‘.‘AVGINC‘ AS ‘AVGINC‘,‘T1‘.‘AVGAGE‘ AS’
 ’ ‘AVGAGE‘, ‘T1‘.‘POPULAT‘ AS ‘POPULAT‘ FROM { oj ‘Regions‘ ‘T1‘ LEFT ’
 ’OUTER JOIN ‘EmployeeSales‘ ‘T0‘ ON ‘T1‘.‘REGION‘ = ‘T0‘.‘REGION‘ } ’.

Overview

GET CAPTURE retrieves data from a database and converts them to a format that can be used
by program procedures. GET CAPTURE retrieves data and data information and builds a
working data file for the current session.

Basic Specification

The basic specification is one of the subcommands specifying the database type followed
by the SQL subcommand and any select statement in quotation marks or apostrophes. Each
line of the select statement should be enclosed in quotation marks or apostrophes, and no
quoted string should exceed 255 characters.

Subcommand Order

The subcommand specifying the type of database must be the first specification. The SQL sub-
command must be the last.

Syntax Rules

• Only one subcommand specifying the database type can be used.

622 GET CAPTURE

• The CONNECT�subcommand must be specified if you use the Microsoft ODBC (Open
Database Connectivity) driver.

Operations

• GET CAPTURE retrieves the data specified on SQL.

• The variables are in the same order in which they are specified on the SQL subcommand.

• The data definition information captured from the database is stored in the working data
file dictionary.

Limitations

• Maximum 3800 characters (approximately) can be specified on the SQL subcommand.
This translates to 76 lines of 50 characters. Characters beyond the limit are ignored.

CONNECT Subcommand

CONNECT is required to access any database that has an installed Microsoft ODBC driver.
• You cannot specify the connection string directly in the syntax window, but you can paste

it with the rest of the command from the Results dialog box, which is the last of the series
of dialog boxes opened with the Database Wizard.

 SQL Subcommand

SQL specifies any SQL select statement accepted by the database you access. With ODBC,
you can now select columns from more than one related table in an ODBC data source using
either the inner join or the outer join.

Data Conversion

GET CAPTURE converts variable names, labels, missing values, and data types, wherever
necessary, to a format that conforms to SPSS-format conventions.

Variable Names and Labels

Database columns are read as variables.

• A column name is converted to a variable name if it conforms to SPSS-format naming
conventions and is different from all other names created for the working data file. If not,
GET CAPTURE gives the column a name formed from the first few letters of the column
and its column number. If this is not possible, the letters COL followed by the column
number are used. For example, the seventh column specified in the select statement could
be COL7.

• GET CAPTURE labels each variable with its full column name specified in the original
database.

GET CAPTURE 623

• You can display a table of variable names with their original database column names using
the DISPLAY LABELS command.

Missing Values

Null values in the database are transformed into the system-missing value in numeric variables
or into blanks in string variables.

624

GET DATA

GET DATA
 /TYPE = {ODBC}
 {XLS }
 {TXT }

 /FILE = ’filename’

Subcommands for TYPE = ODBC
 /CONNECT=’connection string’
 /UNENCRYPTED
 /SQL ’select statement’
 [’select statement continued’]

Subcommands for TYPE = XLS*
 [/SHEET = {INDEX**} {sheet number}]
 {NAME } {’sheet name’}
 [/CELLRANGE = {RANGE } {’start point:end point’ }]
 {FULL**}
 [/READNAMES = {on** }]
 {off }

Subcommands for TYPE = TXT
 [/ARRANGEMENT = {FIXED }]
 {DELIMITED**}
 [/FIRSTCASE = {n}]
 [/DELCASE = {LINE** }]1

 {VARIABLES n}

 [/FIXCASE = n]2

 [/IMPORTCASE = {ALL** }]
 {FIRST n }
 {PERCENT n}
 [/DELIMITERS = {"delimiters"}]
 [/QUALIFIER = "qualifier"]

VARIABLES subcommand for ARRANGEMENT = DELIMITED
 /VARIABLES = varname {format}

VARIABLES subcommand for ARRANGEMENT = FIXED
 /VARIABLES varname {startcol - endcol} {format}
 {/rec#} varname {startcol - endcol} {format}

*Valid only for Excel 5 or later. For earlier Excel files, use GET TRANSLATE.

**Default if subcommand is omitted.
1Valid only with ARRANGEMENT = DELIMTED.

2 Valid only with ARRANGEMENT = FIXED.

Example
GET DATA
 /TYPE=XLS
 /FILE=’c:\PlanningDocs\files10.xls’
 /SHEET=name ’First Quarter’
 /CELLRANGE=full
 /READNAMES=on.

GET DATA 625

Overview

GET DATA reads data from ODBC data sources (databases), Excel files (release 5 or later),
and text data files. It contains functionality and syntax similar to GET CAPTURE, GET
TRANSLATE, and DATA LIST.

• GET DATA /TYPE=ODBC is almost identical to GET CAPTURE ODBC in both syntax and
functionality.

• GET DATA /TYPE=XLS reads Excel 5 or later files, whereas GET TRANSLATE reads Excel
4 or earlier, Lotus, and dBASE files.

• GET DATA /TYPE=TXT is similar to DATA LIST but does not create a temporary copy of the
data file, significantly reducing temporary file space requirements for large data files.

TYPE Subcommand

The TYPE subcommand is required and must be the first subcommand specified.

ODBC Data sources accessed with ODBC drivers.

XLS Excel 5 or later files. For earlier versions of Excel files, Lotus 1-2-3 files, and
dBASE files, see the GET TRANSLATE command.

TXT Simple (ASCII) text data files.

FILE Subcommand

The FILE subcommand is required for TYPE=XLS and TYPE=TXT and must immediately
follow the TYPE subcommand. It specifies the file to read.

• File specifications should be enclosed in quotes or apostrophes.

• UNC file specifications are recommended for distributed analysis mode (available with
the server version of SPSS).

Subcommands for TYPE=ODBC

The CONNECT and SQL subcommands are both required, and SQL must be the last
subcommand.

CONNECT Subcommand

The recommended method for generating a valid CONNECT specification is to initially use
the Database Wizard and paste the resulting syntax to a syntax window in the last step of the
wizard.

626 GET DATA

UNENCRYPTED Subcommand

Allows unencrypted passwords to be used in the CONNECT subcommand. This subcommand
has no keywords or arguments

SQL Subcommand

SQL specifies any SQL select statement accepted by the database you access. You can select
columns from more than one related table in an ODBC data source using either the inner join
or the outer join. Each line of the SQL select statement should be enclosed in quotation marks
or apostrophes, and no quoted string should exceed 255 characters.

Example
GET DATA /TYPE=ODBC
 /CONNECT=’DSN=saledata.mdb;DBQ=saledata.mdb;DriverId=281;FIL=MS’+
 ’ Access;MaxBufferSize=2048;PageTimeout=5;’
 /SQL=’SELECT ‘T0‘.‘DIV‘ AS ‘DIV‘, ‘T0‘.‘REGION‘ AS ‘REGION‘, ’
 ’‘T1‘.‘AVGAGE‘ AS ‘AVGAGE‘, ‘T1‘.‘REGION‘ AS ‘REGION1‘ FROM ’
 ’‘saledata‘.‘EmployeeSales‘ ‘T0‘, ‘‘.‘Regions‘’
 ’ ‘T1‘ WHERE ‘T1‘.‘REGION‘ = ‘T0‘.‘REGION‘ ’.

Subcommands for TYPE=XLS

For Excel files, you can specify a spreadsheet within the workbook, a range of cells to read,
and the contents of the first row of the spreadsheet (variable names or data).

SHEET Subcommand

The SHEET subcommand indicates the worksheet in the Excel file that will be read. Only one
sheet can be specified. If no sheet is specified, the first sheet will be read.

INDEX n Read the specified sheet number. The number represents the sequential order
of the sheet within the workbook.

NAME ’name’ Read the specified sheet name. If the name contains spaces, it must be
enclosed in quotes or apostrophes.

CELLRANGE Subcommand

The CELLRANGE subcommand specifies a range of cells to read within the specified work-
sheet. By default, the entire worksheet is read.

FULL Read the entire worksheet. This is the default.

RANGE ’start:end’ Read the specified range of cells. Specify the beginning column letter
and row number, a colon, and the ending column letter and row
number, as in A1:K14. The cell range must be enclosed in quotes or
apostrophes.

GET DATA 627

READNAMES Subcommand

ON Read the first row of the sheet or specified range as variable names. This is the
default. Values that contain invalid characters or do not meet other criteria for
variable names are converted to valid variable names. For information on variable
naming rules, see “Variable Names” on p. 21.

OFF Read the first row of the sheet or specified range as data. SPSS assigns default
variable names and reads all rows as data.

Example
GET DATA /TYPE=XLS
 /FILE=’\\hqdev01\public\sales.xls’
 /SHEET=name ’June Sales’
 /CELLRANGE=range ’A1:C3’
 /READNAMES=on.

Subcommands for TYPE=TXT

The VARIABLES subcommand is required and must be the last GET DATA subcommand.

ARRANGEMENT Subcommand

The ARRANGEMENT subcommand specifies the data format.

DELIMITED Spaces, commas, tabs, or other characters are used to separate variables.
The variables are recorded in the same order for each case but not necessarily
in the same column locations. This is the default.

FIXED Each variable is recorded in the same column location for every case.

FIRSTCASE Subcommand

FIRSTCASE specifies the first line (row) to read for the first case of data. This allows you to
bypass information in the first n lines of the file that either don’t contain data or contain data
you don’t want to read. This subcommand applies to both fixed and delimited file formats.

The only specification for this subcommand is an integer greater than zero that indicates
the number of lines to skip. The default is 1.

DELCASE Subcommand

The DELCASE subcommand applies to delimited data (ARRANGEMENT=DELIMITED) only.

LINE Each case is contained on a single line (row). This is the default.

VARIABLES n Each case contains n variables. Multiple cases can be contained on the same
line, and data for one case can span more than one line. A case is defined by
the number of variables.

628 GET DATA

FIXCASE Subcommand

The FIXCASE subcommand applies to fixed data (ARRANGEMENT=FIXED) only. It specifies
the number of lines (records) to read for each case.

The only specification for this subcommand is an integer greater than zero that indicates
the number of lines (records) per case. The default is 1.

IMPORTCASES Subcommand

The IMPORTCASES subcommand allows you to specify the number of cases to read.

ALL Read all cases in the file. This is the default.

FIRST n Read the first n cases. The value of n must be a positive integer.

PERCENT n Read approximately the first n percent of cases. The value of n must be a
positive integer less than 100. The percentage of cases actually selected only
approximates the specified percentage. The more cases there are in the data
file, the closer the percentage of cases selected is to the specified percentage.

DELIMITERS Subcommand

The DELIMITERS subcommand applies to delimited data (ARRANGEMENT=DELIMITED)
only. It specifies the characters to read as delimiters between data values.
• Each delimiter can only be a single character, except for the specification of a tab or a

backslash as a delimiter (see below).

• The list of delimiters must be enclosed in quotes or apostrophes.

• There should be no spaces or other delimiters between delimiter specifications, except for
a space that indicates a space as a delimiter.

• To specify a tab as a delimiter use "\t". This must be the first delimiter specified.
• To specify a backslash as a delimiter, use two backslashes ("\\"). This must be the first

delimiter specified unless you also specify a tab as a delimiter, in which case the back-
slash specification should come second—immediately after the tab specification.

Missing data with delimited data. Multiple consecutive spaces in a data file are treated as a
single space and cannot be used to indicate missing data. For any other delimiter, multiple
delimiters without any intervening data indicate missing data.

Example
DELIMITERS "\t\\ ,;"

In this example, tabs, backslashes, spaces, commas, and semicolons will be read as delim-
iters between data values.

GET DATA 629

QUALIFIER Subcommand

The QUALIFIERS subcommand applies to delimited data (ARRANGEMENT=DELIMITED) only.
It specifies the character used to enclose values that contain delimiter characters. For
example, if a comma is the delimiter, values that contain commas will be read incorrectly
unless there is a text qualifier enclosing the value, preventing the commas in the value from
being interpreted as delimiters between values. CSV-format data files exported from Excel
use a double quote (")as a text qualifier.

• The text qualifier appears at both the beginning and end of the value, enclosing the entire
value.

• The qualifier value must be enclosed in single or double quotes. If the qualifier is a single
quote, the value should be enclosed in double quotes. If the qualifier value is a double
quote, the value should be enclosed in single quotes.

Example
/QUALIFIER = ‘”’

VARIABLES Subcommand for ARRANGEMENT = DELIMITED

For delimited files, the VARIABLES subcommand specifies the variable names and variable
formats.

• Variable names must conform to SPSS variable naming rules (see “Variables” on p. 21).

• Each variable name must be followed by a format specification (see “Variable Format
Specifications for TYPE = TXT” below).

VARIABLES Subcommand for ARRANGEMENT = FIXED

For fixed-format files, the VARIABLES subcommand specifies variable names, start and end
column locations, and variable formats.

• Variable names must conform to SPSS variable naming rules (see “Variables” on p. 21).

• Each variable name must be followed by column specifications. Start and end columns
must be separated by a dash, as in: 0-10.

• Each column specification must be followed by a format specification.

• Column numbering starts with 0, not 1 (in contrast to DATA LIST).

Multiple records. If each case spans more than one record (as specified with the FIXCASE
subcommand), delimit variable specifications for each record with a slash (/) followed by the
record number, as in:

 VARIABLES = /1 var1 0-10 F var2 11-20 DATE
 /2 var3 0-5 A var4 6-10 F
 /3 var5 0-20 A var6 21-30 DOLLAR

630 GET DATA

Variable Format Specifications for TYPE = TXT

For both fixed and delimited files, available formats include:

Fn.d Numeric. Specification of the total number of characters (n) and decimals (d)
are optional.

An String (alphanumeric). Specification of the maximum string length (n) is
optional.

DATEn Dates of the general format dd-mmm-yyyy. Specification of the maximum
length (n) is optional but must be eight or greater if specified.

ADATEn Dates of the general format mm/dd/yyyy. Specification of the maximum
length (n) is optional but must be eight or greater if specified.

DOLLARn.d Currency with or without a leading dollar sign ($). Input values can include
a leading dollar sign, but it is not required. Specification of the total number
of characters (n) and decimals (d) are optional.

For comprehensive lists of available formats, see “Variables” on p. 21 and “Date and Time”
on p. 55.

Example
GET DATA /TYPE = TXT
 /FILE = ’D:\Program Files\SPSS\textdata.dat’
 /DELCASE = LINE
 /DELIMITERS = "\t ,"
 /ARRANGEMENT = DELIMITED
 /FIRSTCASE = 2
 /IMPORTCASE = FIRST 200
 /VARIABLES = id F3.2 gender A1 bdate DATE10 educ F2.2
 jobcat F1.2 salary DOLLAR8 salbegin DOLLAR8
 jobtime F2.2 prevexp F3.2 minority F1.2.

631

GET SAS

GET SAS DATA=file [DSET(data set)]

 [/FORMATS=file]

Example
GET SAS DATA=’ELECT’.

Overview

GET SAS builds an SPSS-format working data file from a SAS data set or a SAS transport
file. A SAS transport file is a sequential file written in SAS transport format and can be
created by the SAS export engine available in SAS Release 6.06 or higher or by the EXPORT
option on the COPY or XCOPY procedure in earlier versions. GET SAS reads SAS files up
to version 6.12.

Options

Retrieving User-defined value labels. For native SAS data sets, you can specify a file on the
FORMATS subcommand to retrieve user-defined value labels associated with the data being
read. This file must be created by the SAS PROC FORMAT statement, and can only be used
for native SAS data sets. For SAS transport files, the FORMATS subcommand is ignored.

Specifying the Data Set. You can name a data set contained in a specified SAS file, using
DSET on the DATA subcommand. GET SAS reads the specified data set from the SAS file.

Basic Specification

The basic specification is the DATA subcommand followed by the name of the SAS file to
read. By default, the first SAS data set is copied into the working data file and any necessary
data conversions are made.

Syntax Rules

• The subcommand DATA and the SAS file name are required and must be specified first.

• The subcommand FORMATS is optional. This subcommand is ignored for SAS transport
files.

• GET SAS does not allow KEEP, DROP, RENAME, and MAP subcommands. To use a sub-
set of the variables, rename them, or display the file content, you can specify the appro-
priate commands after the SPSS working data file is created.

632 GET SAS

Operations

• GET SAS reads data from the specified or default data set contained in the SAS file named
on the DATA subcommand.

• Value labels retrieved from a SAS user-defined format are used for variables associated
with that format, becoming part of the SPSS dictionary.

• All variables from the SAS data set are included in the working data file, and they are in
the same order as in the SAS data set.

DATA Subcommand

DATA specifies the file that contains the SAS data set to be read.

• DATA is required and must be the first specification on GET SAS.

• The file specification varies from operating system to operating system. Enclosing the
filename within apostrophes always works.

• The optional DSET keyword on DATA determines which data set within the specified SAS
file is to be read. The default is the first data set.

DSET (data set) Data set to be read. Specify the name of the data set in parentheses. If the
specified data set does not exist in the SAS file, GET SAS displays a message
informing you that the data set was not found.

Example
GET SAS DATA=’ELECT’ DSET(Y1948).

• The SAS file ELECT is opened and the data set named Y1948 is used to build the working
file for the SPSS session.

FORMATS Subcommand

FORMATS specifies the file containing user-defined value labels to be applied to the retrieved
data.

• The file specification varies from operating system to operating system. Enclosing the
filename within apostrophes always works.

• If FORMATS is omitted, no value labels are available.

• Value labels are only applied to numeric integer values. They are not applied to non-
integer numeric values or string variables.

• The file specified on the FORMATS subcommand must be created with the SAS PROC
FORMAT statement.

• For SAS transport files, the FORMATS subcommand is ignored.

Example
GET SAS /DATA=’ELECT’ DSET(Y1948)
 /FORMATS=’ELECTFM’.

GET SAS 633

• Value labels read from the SAS file ELECTFM are converted to conform to SPSS conventions.

Creating a Formats File with PROC FORMAT

To create a file containing SAS value labels, run the following program in SAS:

libname mylib ’path’;
proc format library = mylib
cntlout = mylib.sas_fmts;
run;

where ‘path’ is the directory that contains your input data file.

This procedure creates a SAS file in the directory ‘path’ that has the format information for
each SAS data file. In this case, the file will have the name SAS_FMTS.SD2 and be found in
the same directory as the input SAS data file.

SAS to SPSS Data Conversion

Although SAS and SPSS data files have similar attributes, they are not identical. SPSS makes
the following conversions to force SAS data sets to comply with SPSS conventions.

Variable Names

SAS variable names that do not conform to SPSS variable name rules are converted to valid
SPSS variable names.

Variable Labels

SAS variable labels specified on the LABEL statement in the DATA step are used as variable
labels in SPSS.

Value Labels

SAS value formats that assign value labels are read from the data set specified on the FORMATS
subcommand. The SAS value labels are then converted to SPSS value labels in the following
manner:
• Labels assigned to single values are retained.

• Labels assigned to a range of values are ignored.

• Labels assigned to SAS keywords LOW, HIGH, and OTHER are ignored.

• Labels assigned to string variables and non-integer numeric values are ignored.

• Labels over 60 characters long are truncated.

634 GET SAS

Missing Values

Since SAS has no user-defined missing values, all SAS missing codes are converted to SPSS
system-missing values.

Variable Types

• Both SAS and SPSS allow two basic types of variables: numeric and character string.
During conversion, SAS numeric variables become SPSS numeric variables, and SAS
string variables become SPSS string variables of the same length.

• Date, time, and datetime SAS variables are converted to equivalent SPSS date, time, and
datetime variables. All other numeric formats are converted to the default SPSS numeric
format.

635

GET TRANSLATE

GET TRANSLATE FILE=file

 [/TYPE={WK }]
 {WK1}
 {WKS}
 {SYM}
 {SLK}
 {XLS}
 {DBF}
 {TAB}
 {SYS}

 [/FIELDNAMES]*

 [/RANGE={range name }]*
 {start..stop}
 {start:stop }

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

[/MAP]

*Available only for spreadsheet and tab-delimited ASCII files.
**Default if the subcommand is omitted.

Example
GET TRANSLATE FILE=’PROJECT.WKS’
/FIELDNAMES
/RANGE=D3..J279.

Keyword Type of file

WK Any Lotus 1-2-3 or Symphony file
WK1 1-2-3 Release 2.0
WKS 1-2-3 Release 1A
WR1 Symphony Release 2.0
WRK Symphony Release 1.0
SLK Microsoft Excel and Multiplan in

SYLK (symbolic link) format
XLS Microsoft Excel
DBF All dBASE files
TAB Tab-delimited ASCII file
SYS Systat data file

636 GET TRANSLATE

Overview

GET TRANSLATE creates a working data file from files produced by other software applica-
tions. Supported formats are 1-2-3, Symphony, Multiplan, Excel, dBASE II, dBASE III,
dBASE IV, and tab-delimited ASCII files.

Options

Variable Subsets. You can use the DROP and KEEP subcommands to specify variables to omit
or retain in the resulting working data file.

Variable Names. You can rename variables as they are translated using the RENAME sub-
command.

Variable Map. To confirm the names and order of the variables in the working data file, use
the MAP subcommand. MAP displays the variables in the working data file and their corre-
sponding names in the other application.

Spreadsheet Files. You can use the RANGE subcommand to translate a subset of cells from a
spreadsheet file. You can use the FIELDNAMES subcommand to translate field names in the
spreadsheet file to variable names.

Basic Specification

• The basic specification is FILE with a file specification enclosed in apostrophes.

• If the file’s extension is not the default for the type of file you are reading, TYPE must also
be specified.

Subcommand Order

Subcommands can be named in any order.

Operations

GET TRANSLATE replaces an existing working data file.

Spreadsheets

A spreadsheet file suitable for this program should be arranged so that each row represents a
case and each column a variable.

• By default, the new working data file contains all rows and up to 256 columns from Lotus
1-2-3, Symphony, or Excel, or up to 255 columns from Multiplan.

• By default, GET TRANSLATE uses the column letters as variable names in the working
data file.

GET TRANSLATE 637

• The first row of a spreadsheet or specified range may contain field labels immediately
followed by rows of data. These names can be transferred as SPSS variable names (see
the FIELDNAMES subcommand on p. 640).

• The current value of a formula is translated to the working data file.

• Blank, ERR, and NA values in 1-2-3 and Symphony and error values such as #N/A in
Excel are translated as system-missing values in the working data file.

• Hidden columns and cells in 1-2-3 Release 2 and Symphony files are translated and copied
into the working data file.

• Column width and format type are transferred to the dictionary of the working data file.

• The format type is assigned from values in the first data row. By default, the first data row is
row 1. If RANGE is specified, the first data row is the first row in the range. If FIELDNAMES
is specified, the first data row follows immediately after the single row containing field
names.

• If a cell in the first data row is empty, the variable is assigned the global default format
from the spreadsheet.

The formats from 1-2-3, Symphony, Excel, and Multiplan are translated as follows:

• If a string is encountered in a column with numeric format, it is converted to the system-
missing value in the working data file.

• If a numeric value is encountered in a column with string format, it is converted to a blank
in the working data file.

• Blank lines are translated as cases containing the system-missing value for numeric variables
and blanks for string variables.

• 1-2-3 and Symphony date and time indicators (shown at the bottom of the screen) are not
transferred from WKS, WK1, or SYM files.

1-2-3/Symphony Excel SYLK SPSS

Fixed 0.00; #,##0.00 Fixed F
 0; #,##0 Integer F
Scientific 0.00E+00 Exponent E
Currency $#,##0_);... $ (dollar) DOLLAR
, (comma) COMMA
General General General F
+/ - * (bargraph) F
Percent 0%; 0.00% Percent PCT
Date m/d/yy;d-mmm-yy... DATE
Time h:mm; h:mm:ss... TIME
Text/Literal F
Label Alpha String

638 GET TRANSLATE

Databases

Database files are logically very similar to SPSS-format data files.

• By default, all fields and records from dBASE II, dBASE III, or dBASE IV files are
included in the working data file.

• Field names are automatically translated into variable names. If the FIELDNAMES
subcommand is used with database files, it is ignored.

• Field names are converted to valid SPSS variable names. For information on variable
naming rules, see “Variable Names” on p. 21

• Colons used in dBASE II field names are translated to underscores.
• Records in dBASE II, dBASE III, or dBASE IV that have been marked for deletion but

that have not actually been purged are included in the working data file. To differentiate
these cases, GET TRANSLATE creates a new string variable D_R, which contains an asterisk
for cases marked for deletion. Other cases contain a blank for D_R.

• Character, floating, and numeric fields are transferred directly to variables. Logical fields
are converted into string variables. Memo fields are ignored.

dBASE formats are translated as follows:

Tab-delimited ASCII Files

Tab-delimited ASCII files are simple spreadsheets produced by a text editor, with the
columns delimited by tabs and rows by carriage returns. The first row is usually occupied by
column headings.
• By default all columns of all rows are treated as data. Default variable names VAR1, VAR2,

and so on are assigned to each column. The data type (numeric or string) for each variable
is determined by the first data value in the column.

• If FIELDNAMES is specified, the program reads in the first row as variable names and
determines data type by the values in from the second row.

• Any value that contains non-numeric characters is considered a string value. Dollar and date
formats are not recognized and are treated as strings. When string values are encountered
for a numeric variable, they are converted to the system-missing value.

• For numeric variables, the assigned format is F8.2 or the format of the first data value in
the column, whichever is wider. Values that exceed the defined width are rounded for
display, but the entire value is stored internally.

dBASE SPSS

Character String
Logical String
Date Date
Numeric Number
Floating Number
Memo Ignored

GET TRANSLATE 639

• For string variables, the assigned format is A8 or the format of the first data value in the
column, whichever is wider. Values that exceed the defined width are truncated.

• ASCII data files delimited by space (instead of tabs) or in fixed format should be read by
DATA LIST.

Limitations

The maximum number of variables that can be translated into the working data file depends
on the maximum number of variables the other software application can handle:

FILE Subcommand

FILE names the file to read. The only specification is the name of the file.

• On some systems, file specifications should be enclosed in quotation marks or apostrophes.

Example
GET TRANSLATE FILE=’PROJECT.WKS’.

• GET TRANSLATE creates a working data file from the 1-2-3 Release 1.0 spreadsheet with
the name PROJECT.WKS.

• The working file contains all rows and columns and uses the column letters as variable
names.

• The format for each variable is determined by the format of the value in the first row of
each column.

TYPE Subcommand

TYPE indicates the format of the file.

• TYPE can be omitted if the file extension named on FILE is the default for the type of file
you are reading.

• The TYPE subcommand takes precedence over the file extension.

• You can create a Lotus format file in Multiplan and translate it to a working data file by
specifying WKS on TYPE.

Application Maximum
 variables

1-2-3 256
Symphony 256
Multiplan 255
Excel 256
dBASE IV 255
dBASE III 128
dBASE II 32

640 GET TRANSLATE

WK Any Lotus 1-2-3 or Symphony file.

WK1 1-2-3 Release 2.0.

WKS 1-2-3 Release 1A.

SYM Symphony Release 2.0 or Symphony Release 1.0.

SLK Microsoft Excel and Multiplan saved in SYLK (symbolic link) format.

XLS Microsoft Excel.

DBF All dBASE files.

TAB Tab-delimited ASCII data file.

Example
GET TRANSLATE FILE=’PROJECT.OCT’ /TYPE=SLK.

• GET TRANSLATE creates a working data file from the Multiplan file PROJECT.OCT.

FIELDNAMES Subcommand

FIELDNAMES translates spreadsheet field names into variable names.

• FIELDNAMES can be used with spreadsheet and tab-delimited ASCII files only. FIELDNAMES
is ignored when used with database files.

• Each cell in the first row of the spreadsheet file (or the specified range) must contain a
field name. If a column does not contain a name, the column is dropped.

• Field names are converted to valid SPSS variable names. For information on variable
naming rules, see “Variable Names” on p. 21.

• If two or more columns in the spreadsheet have the same field name, digits are appended
to all field names after the first, making them unique.

• Illegal characters in field names are changed to underscores in this program.
• If the spreadsheet file uses reserved words (ALL, AND, BY, EQ, GE, GT, LE, LT, NE, NOT,

OR, TO, or WITH) as field names, GET TRANSLATE appends a dollar sign ($) to the variable
name. For example, columns named GE, GT, EQ, and BY will be renamed GE$, GT$, EQ$,
and BY$ in the working data file.

Example
GET TRANSLATE FILE=’MONTHLY.SYM’ /FIELDNAMES.

• GET TRANSLATE creates a working data file from a Symphony 1.0 spreadsheet. The first
row in the spreadsheet contains field names that are used as variable names in the working
file.

RANGE Subcommand

RANGE translates a specified set of cells from a spreadsheet file.

GET TRANSLATE 641

• RANGE cannot be used for translating database files.

• For 1-2-3 or Symphony, specify the beginning of the range with a column letter and row
number followed by two periods and the end of the range with a column letter and row
number, as in A1..K14.

• For Multiplan spreadsheets, specify the beginning and ending cells of the range separated
by a colon, as in R1C1:R14C11.

• For Excel files, specify the beginning column letter and row number, a colon, and the end-
ing column letter and row number, as in A1:K14.

• You can also specify the range using range names supplied in Symphony, 1-2-3, or
Multiplan.

• If you specify FIELDNAMES with RANGE, the first row of the range must contain field names.

Example
GET TRANSLATE FILE=’PROJECT.WKS’ /FIELDNAMES /RANGE=D3..J279.

• GET TRANSLATE creates an SPSS working data file from the 1-2-3 Release 1A file
PROJECT.WKS.

• The field names in the first row of the range (row 3) are used as variable names.

• Data from cells D4 through J279 are transferred to the working data file.

DROP and KEEP Subcommands

DROP and KEEP are used to copy a subset of variables into the working data file. DROP specifies
the variables not to copy into the working file. KEEP specifies variables to copy. Variables not
specified on KEEP are dropped.

• DROP and KEEP cannot precede the FILE or TYPE subcommands.
• DROP and KEEP specifications use variable names. By default, this program uses the

column letters from spreadsheets and the field names from databases as variable names.

• If FIELDNAMES is specified when translating from a spreadsheet, the DROP and KEEP
subcommands must refer to the field names, not the default column letters.

• Variables can be specified in any order. Neither DROP nor KEEP affects the order of variables
in the resulting file. Variables are kept in their original order.

• If a variable is referred to twice on the same subcommand, only the first mention of the
variable is recognized.

• Multiple DROP and KEEP subcommands are allowed; the effect is cumulative. Specifying
a variable named on a previous DROP or not named on a previous KEEP results in an error
and the command is not executed.

• If you specify both RANGE and KEEP, the resulting file contains only variables that are
both within the range and specified on KEEP.

• If you specify both RANGE and DROP, the resulting file contains only variables within the
range and excludes those mentioned on DROP, even if they are within the range.

Example
GET TRANSLATE FILE=’ADDRESS.DBF’ /DROP=PHONENO, ENTRY.

642 GET TRANSLATE

• GET TRANSLATE creates an SPSS working data file from the dBASE file ADDRESS.DBF,
omitting the fields named PHONENO and ENTRY.

Example
GET TRANSLATE FILE=’PROJECT.OCT’ /TYPE=WK1 /FIELDNAMES
/KEEP=NETINC, REP, QUANTITY, REGION, MONTH, DAY, YEAR.

• GET TRANSLATE creates a working data file from the 1-2-3 Release 2.0 file called
PROJECT.OCT.

• The subcommand FIELDNAMES indicates that the first row of the spreadsheet contains
field names, which will be translated into variable names in the working file.

• The subcommand KEEP translates columns with the field names NETINC, REP, QUANTITY,
REGION, MONTH, DAY, and YEAR to the working file.

MAP Subcommand

MAP displays a list of the variables in the working data file and their corresponding names in
the other application.

• The only specification is the keyword MAP. There are no additional specifications.

• Multiple MAP subcommands are allowed. Each MAP subcommand maps the results of
subcommands that precede it; results of subcommands that follow it are not mapped.

Example
GET TRANSLATE FILE=’ADDRESS.DBF’ /DROP=PHONENO, ENTRY /MAP.

• MAP is specified to confirm that variables PHONENO and ENTRY have been dropped.

643

GLM: Overview

GLM is available in the Advanced Models option.

GLM dependent varlist [BY factor list [WITH covariate list]]

[/WSFACTOR=name levels [{DEVIATION [(refcat)] }] name...
 {SIMPLE [(refcat)] }
 {DIFFERENCE }
 {HELMERT }
 {REPEATED }
 {POLYNOMIAL [({1,2,3...})]**}
 { {metric } }
 {SPECIAL (matrix) }

[/MEASURE=newname newname...]

[/WSDESIGN=effect effect...]†

[/RANDOM=factor factor...]

[/REGWGT=varname]

[/METHOD=SSTYPE({1 })]
 {2 }
 {3**}
 {4 }

[/INTERCEPT=[INCLUDE**] [EXCLUDE]]

[/MISSING=[INCLUDE] [EXCLUDE**]]

[/CRITERIA=[EPS({1E-8**})][ALPHA({0.05**})]
 {a } {a }

[/PRINT = [DESCRIPTIVE] [HOMOGENEITY] [PARAMETER][ETASQ] [RSSCP]
 [GEF] [LOF] [OPOWER] [TEST [([SSCP] [LMATRIX] [MMATRIX])]]

[/PLOT=[SPREADLEVEL] [RESIDUALS]
 [PROFILE (factor factor*factor factor*factor*factor ...)]

[/TEST=effect VS {linear combination [DF(df)]}]
 {value DF (df) }

[/LMATRIX={["label"] effect list effect list ...;...}]
 {["label"] effect list effect list ... }
 {["label"] ALL list; ALL... }
 {["label"] ALL list }

[/CONTRAST (factor name)={DEVIATION[(refcat)]** ‡ }]
 {SIMPLE [(refcat)] }
 {DIFFERENCE }
 {HELMERT }
 {REPEATED }
 {POLYNOMIAL [({1,2,3...})]}

 { {metric } }
 {SPECIAL (matrix) }

[/MMATRIX= {["label"] depvar value depvar value ...;["label"]...}]
 {["label"] depvar value depvar value ... }
 {["label"] ALL list; ["label"] ... }
 {["label"] ALL list }

644 GLM: Overview

[/KMATRIX= {list of numbers }]
 {list of numbers;...}

[/POSTHOC = effect [effect...]
 ([SNK] [TUKEY] [BTUKEY][DUNCAN]
 [SCHEFFE] [DUNNETT(refcat)] [DUNNETTL(refcat)]
 [DUNNETTR(refcat)] [BONFERRONI] [LSD] [SIDAK]
 [GT2] [GABRIEL] [FREGW] [QREGW] [T2] [T3] [GH][C]
 [WALLER ({100** })]]
 {kratio}
 [VS effect]

[/EMMEANS=TABLES({OVERALL })] [COMPARE ADJ(LSD(none)) (BONFERRONI) (SIDAK)]
 {factor }
 {factor*factor... }
 {wsfactor }
 {wsfactor*wsfactor ... }
 {factor*...wsfactor*...}

[/SAVE=[tempvar [(list of names)]] [tempvar [(list of names)]]...]
 [DESIGN]

[/OUTFILE= [{COVB (filename)}] [EFFECT(filename)] [DESIGN(filename)]
 {CORB (filename)}

[/DESIGN={[INTERCEPT...] }]
 {[effect effect...]}

† WSDESIGN uses the same specification as DESIGN, with only within-subjects factors.

‡ DEVIATION is the default for between-subjects factors, while POLYNOMIAL is the default for within-
subjects factors.

** Default if subcommand or keyword is omitted.

Temporary variables (tempvar) are:

PRED, WPRED, RESID, WRESID, DRESID, ZRESID, SRESID, SEPRED, COOK, LEVER

Overview

GLM (general linear model) is a general procedure for analysis of variance and covariance,
as well as regression. GLM is the most versatile of the analysis-of-variance procedures in
SPSS and can be used for both univariate and multivariate designs. GLM allows you to:

• Include interaction and nested effects in your design model. Multiple nesting is allowed;
for example, A within B within C is specified as A(B(C)).

• Include covariates in your design model. GLM also allows covariate-by-covariate and
covariate-by-factor interactions such as X by X (or X*X), X by A (or X*A), and X by A with-
in B (or X*A(B)). Thus, polynomial regression or a test of the homogeneity of regressions
can be performed.

• Select appropriate sums-of-squares hypothesis tests for effects in balanced design models,
unbalanced all-cells-filled design models, and some-cells-empty design models. The
estimable functions corresponding to the hypothesis test for each effect in the model can
also be displayed.

• Display the general form of estimable functions.

GLM: Overview 645

• Display expected mean squares, automatically detecting and using the appropriate error
term for testing each effect in mixed- and random-effects models.

• Select commonly used contrasts or specify custom contrasts to perform hypothesis tests.

• Customize hypothesis testing, based on the null hypothesis LBM = K, where B is the
parameter vector or matrix.

• Display a variety of post hoc tests for multiple comparisons.

• Display estimates of population marginal cell means for both between-subjects factors
and within-subjects factors, adjusted for covariates.

• Perform multivariate analysis of variance and covariance.

• Estimate parameters using the method of weighted least squares and a generalized inverse
technique.

• Compare graphically the levels in a model by displaying plots of estimated marginal cell
means for each level of a factor, with separate lines for each level of another factor in the
model.

• Display a variety of estimates and measures useful for diagnostic checking. All of these
estimates and measures can be saved in a data file for use by another SPSS procedure.

• Perform repeated measures analysis of variance.

• Display homogeneity tests for testing underlying assumptions in multivariate and univariate
analyses.

General Linear Model (GLM) and MANOVA

MANOVA, the other generalized procedure for analysis of variance and covariance in SPSS,
is available only in syntax. The major distinction between GLM and MANOVA in terms of
statistical design and functionality is that GLM uses a non-full-rank, or overparameterized,
indicator variable approach to parameterization of linear models, instead of the full-rank
reparameterization approach used in MANOVA. The generalized inverse approach and the
aliasing of redundant parameters to zero employed by GLM allow greater flexibility in han-
dling a variety of messy data situations, particularly those involving empty cells. GLM offers
a variety of features unavailable in MANOVA:

• Identification of the general forms of estimable functions.

• Identification of forms of estimable functions specific to four types of sums of squares
(Types I–IV).

• Tests using the four types of sums of squares, including Type IV, specifically designed
for situations involving empty cells.

• Flexible specification of general comparisons among parameters, using the syntax
subcommands LMATRIX, MMATRIX and KMATRIX; sets of contrasts can be specified that
involve any number of orthogonal or nonorthogonal linear combinations.

• Nonorthogonal contrasts for within-subjects factors (using the syntax subcommand
WSFACTORS).

• Tests against nonzero null hypotheses can be specified using the syntax subcommand
KMATRIX.

646 GLM: Overview

• Estimated marginal means (EMMEANS) and standard errors adjusted for other factors and
covariates are available for all between- and within-subjects factor combinations in the
original variable metrics.

• Uncorrected pairwise comparisons among estimated marginal means for any main effect
in the model, for both between- and within-subjects factors.

• Post hoc or multiple comparison tests for unadjusted one-way factor means are available
for between-subjects factors in ANOVA designs; 20 different types of comparisons are
offered.

• Weighted least squares (WLS) estimation, including saving of weighted predicted values
and residuals.

• Automatic handling of random effects in random-effects models and mixed models, includ-
ing generation of expected mean squares and automatic assignment of proper error terms.

• Specification of several types of nested models via dialog boxes with proper use of the
interaction operator (*), due to the nonreparameterized approach.

• Univariate homogeneity-of-variance assumption tested using the Levene test.

• Between-subjects factors do not require specification of levels.

• Profile (interaction) plots of estimated marginal means for visual exploration of interac-
tions involving combinations of between- and/or within-subjects factors.

• Saving of casewise temporary variables for model diagnosis:

• Predicted values—unstandardized (raw), weighted unstandardized.

• Residuals—unstandardized, weighted unstandardized, standardized, Studentized, deleted.

• Standard error of prediction.

• Cook’s distance.

• Leverage.

• Saving of an SPSS file with parameter estimates and their degrees of freedom, signifi-
cance level.

To simplify the presentation, reference material on GLM is divided into three sections:
univariate designs with one dependent variable, multivariate designs with several
interrelated dependent variables, and repeated measures designs, in which the dependent
variables represent the same types of measurements taken at more than one time.

The full syntax diagram for GLM is presented here. The GLM sections that follow include
partial syntax diagrams showing the subcommands and specifications discussed in that
section. Individually, those diagrams are incomplete. Subcommands listed for univariate de-
signs are available for any analysis, and subcommands listed for multivariate designs can be
used in any multivariate analysis, including repeated measures.

Models

The following are examples of models that can be specified using GLM:

Model 1: Univariate or multivariate simple and multiple regression
GLM Y WITH X1 X2.

GLM Y1 Y2 WITH X1 X2 X3.

GLM: Overview 647

Model 2: Fixed-effects ANOVA and MANOVA
GLM Y1 Y2 by B.

Model 3: ANCOVA and multivariate ANCOVA (MANCOVA)
GLM Y1 Y2 BY B WITH X1 X2 X3.

Model 4: Random-effects ANOVA and ANCOVA
GLM Y1 BY C WITH X1 X2
 /RANDOM = C.

Model 5: Mixed-model ANOVA and ANCOVA
GLM Y1 BY B, C WITH X1 X2
 /RANDOM = C.

Model 6: Repeated measures analysis using a split-plot design
(Univariate mixed models approach with subject as a random effect)

If drug is a between-subjects factor and time is a within-subjects factor,

GLM Y BY DRUG SUBJECT TIME
 /RANDOM = SUBJECT
 /DESIGN = DRUG SUBJECT*DRUG TIME DRUG*TIME.

Model 7: Repeated measures using the WSFACTOR subcommand

Use this model only when there is no random between-subjects effect in the model. For ex-
ample, if Y1, Y2, Y3, and Y4 are the dependent variables measured at times 1 to 4,

GLM Y1 Y2 Y3 Y4 BY DRUG
 /WSFACTOR = TIME 4
 /DESIGN.

Model 8: Repeated measures doubly multivariate model

Repeated measures fixed-effects MANOVA is also called a doubly multivariate model. Vary-
ing or time-dependent covariates are not available. This model can be used only when there
is no random between-subjects effect in the model.

GLM X11 X12 X13 X21 X22 X23
 Y11 Y12 Y13 Y21 Y22 Y23 BY C D

/MEASURE = X Y
/WSFACTOR = A 2 B 3
/WSDESIGN = A B A*B
/DESIGN = C D.

Model 9: Means model for ANOVA and MANOVA

This model takes only fixed-effect factors (no random effects and covariates) and always
assumes the highest order of the interactions among the factors. For example, B, D, and E are
fixed factors, and Y1 and Y2 are two dependent variables. You can specify a means model by

648 GLM: Overview

suppressing the intercept effect and specifying the highest order of interaction on the DESIGN
subcommand.

GLM Y1 Y2 BY B, D, E
/INTERCEPT = EXCLUDE
/DESIGN = B*D*E.

Custom Hypothesis Specifications

GLM provides a flexible way for you to customize hypothesis testing based on the general
linear hypothesis LBM = K, where B is the parameter vector or matrix. You can specify a
customized linear hypothesis by using one or a combination of the subcommands LMATRIX,
MMATRIX, KMATRIX, and CONTRAST.

LMATRIX, MMATRIX, and KMATRIX Subcommands

• The L matrix is called the contrast coefficients matrix. This matrix specifies coeffi-
cients of contrasts, which can be used for studying the between-subjects effects in the
model. One way to define the L matrix is by specifying the CONTRAST subcommand, on
which you select a type of contrast. Another way is to specify your own L matrix directly
by using the LMATRIX subcommand. For details, see the syntax rules for these two sub-
commands in GLM: Univariate.

• The M matrix is called the transformation coefficients matrix. This matrix provides a
transformation for the dependent variables. This transformation can be used to construct
contrasts among the dependent variables in the model. The M matrix can be specified
on the MMATRIX subcommand. For details, see the syntax rule for this subcommand in
GLM: Multivariate.

• The K matrix is called the contrast results matrix. This matrix specifies the results
matrix in the general linear hypothesis. To define your own K matrix, the KMATRIX
subcommand can be used. For details, see the syntax rules for this subcommand in
GLM: Univariate.

GLM: Overview 649

For univariate and multivariate models, you can specify one, two, or all three of the L, M, and
K matrices. If only one or two types are specified, the unspecified matrices use the defaults
shown in Table 1 (read across the rows).

Example
GLM Y1 Y2 BY A B
/LMATRIX = A 1 -1
/DESIGN A B.

Assume that factor A has two levels.

• Since there are two dependent variables, this is a multivariate model with two main factor
effects, A and B.

• A custom hypothesis test is requested by the LMATRIX subcommand.

• Since no MMATRIX or KMATRIX is specified. The M matrix is the default two-dimensional
identity matrix, and the K matrix is a zero-row vector (0, 0).

Table 1 Default matrices for univariate and multivariate models if one matrix is specified

L matrix M matrix K matrix

If LMATRIX is used to specify
the L matrix

Default = identity matrix*

* The dimension of the identity matrix is the same as the number of dependent variables being studied.

Default = zero matrix

Default = intercept matrix†

† The intercept matrix is the matrix corresponding to the estimable function for the intercept term in
the model, provided that the intercept term is included in the model. If the intercept term is not included
in the model, the L matrix is not defined and this custom hypothesis test cannot be performed.

If MMATRIX is used to specify
the M matrix

Default = zero matrix

Default = intercept matrix† Default = identity matrix* If KMATRIX is used to
specify the K matrix

650 GLM: Overview

For a repeated measures model, you can specify one, two, or all three of the L, M, and K
matrices. If only one or two types are specified, the unspecified matrices use the defaults
shown in Table 2 (read across the rows).

Example
GLM Y1 Y2 BY A B
 /WSFACTOR TIME (2)
 /MMATRIX Y1 1 Y2 1; Y1 1 Y2 -1
 /DESIGN A B.

• Since WSFACTOR is specified, this is a repeated measures model with two between-
subjects factors A and B, and a within-subjects factor, TIME.

• A custom hypothesis is requested by the MMATRIX subcommand. The M matrix is a
matrix:

• Since the L matrix and the K matrix are not specified, their defaults are used. The default
for the L matrix is the matrix corresponding to the estimable function for the intercept
term in the between-subjects model, and the default for the K matrix is a zero-row vector
(0, 0).

CONTRAST Subcommand

When the CONTRAST subcommand is used, an L matrix, which is used in custom hypothesis
testing, is generated according to the contrast chosen. The K matrix is always taken to be the
zero matrix. If the model is univariate or multivariate, the M matrix is always the identity ma-
trix and its dimension is equal to the number of dependent variables. For a repeated measures
model, the M matrix is always the average matrix that corresponds to the average transfor-
mation for the dependent variable.

Table 2 Default matrices for repeated measures models if only one matrix is specified

L matrix M matrix K matrix

If LMATRIX is used to specify
the L matrix

Default = average matrix*

* The average matrix is the transformation matrix that corresponds to the transformation for the
between-subjects test. The dimension is the number of measures.

Default = zero matrix

Default = intercept matrix†

† The intercept matrix is the matrix corresponding to the estimable function for the intercept term in the
model, provided that the intercept term is included in the model. If the intercept term is not included in
the model, the L matrix is not defined and this custom hypothesis test cannot be performed.

If MMATRIX is used to specify
the M matrix

Default = zero matrix

Default = intercept matrix† Default = average matrix* If KMATRIX is used to
specify the K matrix

1 1
1 –1

2 2×

651

GLM: Univariate

GLM is available in the Advanced Models option.
GLM dependent var [BY factor list [WITH covariate list]]

[/RANDOM=factor factor...]

[/REGWGT=varname]

[/METHOD=SSTYPE({1 })]
 {2 }
 {3**}
 {4 }

[/INTERCEPT=[INCLUDE**] [EXCLUDE]]

[/MISSING=[INCLUDE] [EXCLUDE**]]

[/CRITERIA=[EPS({1E-8**})][ALPHA({0.05**})]
 {a } {a }

[/PRINT = [DESCRIPTIVE] [HOMOGENEITY] [PARAMETER][ETASQ]
 [GEF] [LOF] [OPOWER] [TEST(LMATRIX)]]

[/PLOT=[SPREADLEVEL] [RESIDUALS]
 [PROFILE (factor factor*factor factor*factor*factor ...)]

[/TEST=effect VS {linear combination [DF(df)]}]
 {value DF (df) }

[/LMATRIX={["label"] effect list effect list ...;...}]
 {["label"] effect list effect list ... }
 {["label"] ALL list; ALL... }
 {["label"] ALL list }

[/KMATRIX= {number }]
 {number;...}

[/CONTRAST (factor name)={DEVIATION[(refcat)]** }]
 {SIMPLE [(refcat)] }
 {DIFFERENCE }
 {HELMERT }
 {REPEATED }
 {POLYNOMIAL [({1,2,3...})]}

 {metric }
 {SPECIAL (matrix) }

[/POSTHOC =effect [effect...]
 ([SNK] [TUKEY] [BTUKEY][DUNCAN]
 [SCHEFFE] [DUNNETT(refcat)] [DUNNETTL(refcat)]
 [DUNNETTR(refcat)] [BONFERRONI] [LSD] [SIDAK]
 [GT2] [GABRIEL] [FREGW] [QREGW] [T2] [T3] [GH] [C]
 [WALLER ({100** })])]
 {kratio}
 [VS effect]

[/EMMEANS=TABLES({OVERALL })] [COMPARE ADJ(LSD(none)) (BONFERRONI) (SIDAK)]
 {factor }
 {factor*factor...}

[/SAVE=[tempvar [(name)]] [tempvar [(name)]]...]

 [/OUTFILE= [{COVB (filename)}] [EFFECT(filename)] [DESIGN(filename)]
 {CORB (filename)}

[/DESIGN={[INTERCEPT...] }]

 {[effect effect...]}

** Default if subcommand or keyword is omitted.

652 GLM: Univariate

Temporary variables (tempvar) are:

PRED, WPRED, RESID, WRESID, DRESID, ZRESID, SRESID, SEPRED, COOK, LEVER

Example
GLM YIELD BY SEED FERT
 /DESIGN.

Overview

This section describes the use of GLM for univariate analyses. However, most of the subcom-
mands described here can be used in any type of analysis with GLM. For additional subcom-
mands used in those types of analysis, see GLM: Multivariate and GLM: Repeated
Measures. For basic specification, syntax rules, and limitations of the GLM procedures, see
GLM: Overview.

Options

Design Specification. You can specify which terms to include in the design on the DESIGN
subcommand. This allows you to estimate a model other than the default full factorial model,
incorporate factor-by-covariate interactions or covariate-by-covariate interactions, and indi-
cate nesting of effects.

Contrast Types. You can specify contrasts other than the default deviation contrasts on the
CONTRAST subcommand.

Optional Output. You can choose from a wide variety of optional output on the PRINT subcom-
mand. Output appropriate to univariate designs includes descriptive statistics for each cell,
parameter estimates, Levene’s test for equality of variance across cells, partial eta-squared
for each effect and each parameter estimate, the general estimable function matrix, and a
contrast coefficients table (L’ matrix). The OUTFILE subcommand allows you to write out the
covariance or correlation matrix, the design matrix, or the statistics from the between-
subjects ANOVA table into a separate SPSS data file.

Using the EMMEANS subcommand, you can request tables of estimated marginal means
of the dependent variable and their standard deviations. The SAVE subcommand allows you
to save predicted values and residuals in weighted or unweighted and standardized or
unstandardized forms. You can specify different means comparison tests for comparing all
possible pairs of cell means using the POSTHOC subcommand. In addition, you can specify
your own hypothesis tests by specifying an L matrix and a K matrix to test the univariate
hypothesis LB = K.

GLM: Univariate 653

Basic Specification

• The basic specification is a variable list identifying the dependent variable, the factors (if
any), and the covariates (if any).

• By default, GLM uses a model that includes the intercept term, the covariate (if any), and
the full factorial model, which includes all main effects and all possible interactions among
factors. The intercept term is excluded if it is excluded in the model by specifying the
keyword EXCLUDE on the INTERCEPT subcommand. Sums of squares are calculated and
hypothesis tests are performed using type-specific estimable functions. Parameters are
estimated using the normal equation and a generalized inverse of the SSCP matrix.

Subcommand Order

• The variable list must be specified first.

• Subcommands can be used in any order.

Syntax Rules

• For many analyses, the GLM variable list and the DESIGN subcommand are the only spec-
ifications needed.

• If you do not enter a DESIGN subcommand, GLM will use a full factorial model, with main
effects of covariates, if any.

• Minimum syntax—at least one dependent variable must be specified, and at least one of
the following must be specified: INTERCEPT, a between-subjects factor, or a covariate.
The design contains the intercept by default.

• If more than one DESIGN subcommand is specified, only the last one is in effect.

• Dependent variables and covariates must be numeric, but factors can be numeric or string
variables.

• If a string variable is specified as a factor, only the first eight characters of each value are
used in distinguishing among values.

• If more than one MISSING subcommand is specified, only the last one is in effect.

• The following words are reserved as keywords or internal commands in the GLM procedure:

INTERCEPT, BY, WITH, ALL, OVERALL, WITHIN

Variable names that duplicate these words should be changed before you run GLM.

Limitations

• Any number of factors can be specified, but if the number of between-subjects factors
plus the number of split variables exceeds 18, the Descriptive Statistics table is not printed
even when you request it.

654 GLM: Univariate

• Memory requirements depend primarily on the number of cells in the design. For the
default full factorial model, this equals the product of the number of levels or categories
in each factor.

Example

GLM YIELD BY SEED FERT WITH RAINFALL
 /PRINT=DESCRIPTIVE PARAMETER
 /DESIGN.

• YIELD is the dependent variable; SEED and FERT are factors; RAINFALL is a covariate.

• The PRINT subcommand requests the descriptive statistics for the dependent variable for
each cell and the parameter estimates, in addition to the default tables Between-Subjects
Factors and Univariate Tests.

• The DESIGN subcommand requests the default design, a full factorial model with a cova-
riate. This subcommand could have been omitted or could have been specified in full as

/DESIGN = INTERCEPT RAINFALL, SEED, FERT, SEED BY FERT.

GLM Variable List

The variable list specifies the dependent variable, the factors, and the covariates in the model.

• The dependent variable must be the first specification on GLM.

• The names of the factors follow the dependent variable. Use the keyword BY to separate
the factors from the dependent variable.

• Enter the covariates, if any, following the factors. Use the keyword WITH to separate
covariates from factors (if any) and the dependent variable.

Example
GLM DEPENDNT BY FACTOR1 FACTOR2, FACTOR3.

• In this example, three factors are specified.
• A default full factorial model is used for the analysis.

Example
GLM Y BY A WITH X
 /DESIGN.

• In this example, the DESIGN subcommand requests the default design, which includes the
intercept term, the covariate X and the factor A.

RANDOM Subcommand

RANDOM allows you to specify which effects in your design are random. When the RANDOM
subcommand is used, a table of expected mean squares for all effects in the design is displayed,
and an appropriate error term for testing each effect is calculated and used automatically.
• Random always implies a univariate mixed-model analysis.

GLM: Univariate 655

• If you specify an effect on RANDOM, higher-order effects containing the specified effect
(excluding any effects containing covariates) are automatically treated as random effects.

• The keyword INTERCEPT and effects containing covariates are not allowed on this sub-
command.

• The RANDOM subcommand cannot be used if there is any within-subjects factor in the
model (that is, RANDOM cannot be specified if WSFACTOR is specified).

• When the RANDOM subcommand is used, the appropriate error terms for the hypothesis
testing of all effects in the model are automatically computed and used.

• More than one RANDOM subcommand is allowed. The specifications are accumulated.

Example
GLM DEP BY A B
 /RANDOM = B
 /DESIGN = A,B, A*B.

• In the example, effects B and A*B are considered as random effects. Notice that if only
effect B is specified in the RANDOM subcommand, A*B is automatically considered as a
random effect.

• The hypothesis testing for each effect (A, B, and A*B) in the design will be carried out
using the appropriate error term, which is calculated automatically.

REGWGT Subcommand

The only specification on REGWGT is the name of the variable containing the weights to be
used in estimating a weighted least-squares model.

• Specify a numeric weight variable name following the REGWGT subcommand. Only
observations with positive values in the weight variable will be used in the analysis.

• If more than one REGWGT subcommand is specified, only the last one is in effect.

Example
GLM OUTCOME BY TREATMNT
 /REGWGT WT.

• The procedure performs a weighted least-squares analysis. The variable WT is used as the
weight variable.

METHOD Subcommand

METHOD controls the computational aspects of the GLM analysis. You can specify one of four
different methods for partitioning the sums of squares. If more than one METHOD subcom-
mand is specified, only the last one is in effect.

SSTYPE(1) Type I sum-of-squares method. The Type I sum-of-squares method is also
known as the hierarchical decomposition of the sum-of-squares method.
Each term is adjusted only for the terms that precede it on the DESIGN sub-
command. Under a balanced design, it is an orthogonal decomposition, and
the sums of squares in the model add up to the total sum of squares.

656 GLM: Univariate

SSTYPE(2) Type II sum-of-squares method. This method calculates the sum of squares
of an effect in the model adjusted for all other “appropriate” effects. An
appropriate effect is one that corresponds to all effects that do not contain the
effect being examined.

For any two effects F1 and F2 in the model, F1 is said to be contained in F2
under the following three conditions:
• Both effects F1 and F2 have the same covariate, if any.
• F2 consists of more factors than F1.
• All factors in F1 also appear in F2.
The intercept effect is treated as contained in all the pure factor effects.
However, it is not contained in any effect involving a covariate. No effect is
contained in the intercept effect. Thus, for any one effect F of interest, all
other effects in the model can be classified as in one of the following two
groups: the effects that do not contain F or the effects that contain F.

If the model is a main-effects design (that is, only main effects are in the
model), the Type II sum-of-squares method is equivalent to the regression
approach sums of squares. This means that each main effect is adjusted for
every other term in the model.

SSTYPE(3) Type III sum-of-squares method. This is the default. This method calculates
the sum of squares of an effect F in the design as the sum of squares adjusted
for any other effects that do not contain it, and orthogonal to any effects (if
any) that contain it. The Type III sums of squares have one major advan-
tage—they are invariant with respect to the cell frequencies as long as the
general form of estimability remains constant. Hence, this type of sums of
squares is often used for an unbalanced model with no missing cells. In a
factorial design with no missing cells, this method is equivalent to the
Yates’ weighted squares of means technique, and it also coincides with the
overparameterized -restricted model.

SSTYPE(4) Type IV sum-of-squares method. This method is designed for a situation in
which there are missing cells. For any effect F in the design, if F is not
contained in any other effect, then Type IV = Type III = Type II. When F is
contained in other effects, then Type IV distributes the contrasts being made
among the parameters in F to all higher-level effects equitably.

Example
GLM DEP BY A B C
 /METHOD=SSTYPE(3)
 /DESIGN=A, B, C.

• The design is a main-effects model.
• The METHOD subcommand requests that the model be fitted with Type III sums of

squares.

Σ

GLM: Univariate 657

INTERCEPT Subcommand

INTERCEPT controls whether an intercept term is included in the model. If more than one
INTERCEPT subcommand is specified, only the last one is in effect.

INCLUDE Include the intercept term. The intercept (constant) term is included in the
model. This is the default.

EXCLUDE Exclude the intercept term. The intercept term is excluded from the model.
Specification of the keyword INTERCEPT on the DESIGN subcommand
overrides INTERCEPT = EXCLUDE.

MISSING Subcommand

By default, cases with missing values for any of the variables on the GLM variable list are
excluded from the analysis. The MISSING subcommand allows you to include cases with
user-missing values.

• If MISSING is not specified, the default is EXCLUDE.

• Pairwise deletion of missing data is not available in GLM.

• Keywords INCLUDE and EXCLUDE are mutually exclusive.

• If more than one MISSING subcommand is specified, only the last one is in effect.

EXCLUDE Exclude both user-missing and system-missing values. This is the default
when MISSING is not specified.

INCLUDE User-missing values are treated as valid. System-missing values cannot be
included in the analysis.

CRITERIA Subcommand

CRITERIA controls the statistical criteria used to build the models.

• More than one CRITERIA subcommand is allowed. The specifications are accumulated.
Conflicts across CRITERIA subcommands are resolved using the conflicting specification
given on the last CRITERIA subcommand.

• The keyword must be followed by a positive number in parentheses.

EPS(n) The tolerance level in redundancy detection. This value is used for redun-
dancy checking in the design matrix. The default value is 1E-8.

ALPHA(n) The alpha level. This keyword has two functions. First, it gives the alpha level
at which the power is calculated for the F test. Once the noncentrality param-
eter for the alternative hypothesis is estimated from the data, then the power is
the probability that the test statistic is greater than the critical value under the
alternative hypothesis. (The observed power is displayed by default for GLM.)
The second function of alpha is to specify the level of the confidence interval.
If the alpha level specified is n, the value indicates the level of
confidence for all individual and simultaneous confidence intervals generated

1 n–() 100×

658 GLM: Univariate

for the specified model. The value of n must be between 0 and 1, exclusive.
The default value of alpha is 0.05. This means that the default power calcula-
tion is at the 0.05 level, and the default level of the confidence intervals is 95%,
since .

PRINT Subcommand

PRINT controls the display of optional output.
• Some PRINT output applies to the entire GLM procedure and is displayed only once.

• Additional output can be obtained on the EMMEANS, PLOT, and SAVE subcommands.

• Some optional output may greatly increase the processing time. Request only the output
you want to see.

• If no PRINT command is specified, default output for a univariate analysis includes a factor
information table and a Univariate Tests table (ANOVA) for all effects in the model.

• If more than one PRINT subcommand is specified, only the last one is in effect.

The following keywords are available for GLM univariate analyses. For information on PRINT
specifications appropriate for other GLM models, see GLM: Multivariate and GLM: Repeated
Measures.

DESCRIPTIVES Basic information about each cell in the design. Observed means,
standard deviations, and counts for the dependent variable in all cells.
The cells are constructed from the highest-order crossing of the
between-subjects factors. For a multivariate model, statistics are given
for each dependent variable. If the number of between-subjects factors
plus the number of split variables exceeds 18, the Descriptive Statis-
tics table is not printed.

HOMOGENEITY Tests of homogeneity of variance. Levene’s test for equality of vari-
ances for the dependent variable across all level combinations of the
between-subjects factors. If there are no between-subjects factors, this
keyword is not valid. For a multivariate model, tests are displayed for
each dependent variable.

PARAMETER Parameter estimates. Parameter estimates, standard errors, t tests, and
confidence intervals.

ETASQ Partial eta-squared (). This value is an overestimate of the actual
effect size in an F test. It is defined as

where F is the test statistic and dfh and dfe are its degrees of freedom
and degrees of freedom for error. The keyword EFSIZE can be used in
place of ETASQ.

GEF General estimable function table. This table shows the general form
of the estimable functions.

1 0.05–() 100× 95=

η2

partial eta-squared dfh F×
dfh F× dfe+
--------------------------------=

GLM: Univariate 659

LOF Perform a lack-of-fit test (which requires at least one cell to have mul-
tiple observations). If the test is rejected, it implies that the current
model cannot adequately account for the relationship between the re-
sponse variable and the predictors. Either a variable is omitted or extra
terms are needed in the model.

OPOWER Observed power for each test. The observed power gives the proba-
bility that the F test would detect a population difference between
groups equal to that implied by the sample difference.

TEST(LMATRIX) Set of contrast coefficients (L) matrices. The transpose of the L matrix
(L’) is displayed. This set always includes one matrix displaying the
estimable function for each between-subjects effect appearing or
implied in the DESIGN subcommand. Also, any L matrices generated
by the LMATRIX or CONTRAST subcommands are displayed.
TEST(ESTIMABLE) can be used in place of TEST(LMATRIX).

Example
GLM DEP BY A B WITH COV
 /PRINT=DESCRIPTIVE, TEST(LMATRIX), PARAMETER
 /DESIGN.

• Since the design in the DESIGN subcommand is not specified, the default design is used.
In this case, the design includes the intercept term, the covariate COV, and the full
factorial terms of A and B, which are A, B, and A*B.

• For each combination of levels of A and B, SPSS displays the descriptive statistics of DEP.

• The set of L matrices that generates the sums of squares for testing each effect in the
design is displayed.

• The parameter estimates, their standard errors, t tests, confidence intervals, and the
observed power for each test are displayed.

PLOT Subcommand

PLOT provides a variety of plots useful in checking the assumptions needed in the analysis.
The PLOT subcommand can be specified more than once. All of the plots requested on each
PLOT subcommand are produced.

Use the following keywords on the PLOT subcommand to request plots:

SPREADLEVEL Spread-versus-level plots. Plots of observed cell means versus standard
deviations, and versus variances.

RESIDUALS Observed by predicted by standardized residuals plot. A plot is produced for
each dependent variable. In a univariate analysis, a plot is produced for the
single dependent variable.

PROFILE Line plots of dependent variable means for one-way, two-way, or three-way
crossed factors. The PROFILE keyword must be followed by parentheses
containing a list of one or more factor combinations. All factors specified
(either individual or crossed) must be made up of only valid factors on the
factor list. Factor combinations on the PROFILE keyword may use an asterisk

660 GLM: Univariate

(*) or the keyword BY to specify crossed factors. A factor cannot occur in a
single factor combination more than once.

The order of factors in a factor combination is important, and there is no
restriction on the order of factors. If a single factor is specified after the
PROFILE keyword, a line plot of estimated means at each level of the factor
is produced. If a two-way crossed factor combination is specified, the output
includes a multiple-line plot of estimated means at each level of the first spec-
ified factor, with a separate line drawn for each level of the second specified
factor. If a three-way crossed factor combination is specified, the output
includes multiple-line plots of estimated means at each level of the first
specified factor, with separate lines for each level of the second factor, and
separate plots for each level of the third factor.

Example
GLM DEP BY A B
 /PLOT = SPREADLEVEL PROFILE(A A*B A*B*C)
 /DESIGN.

Assume each of the factors A, B, and C has three levels.

• Spread-versus-level plots are produced showing observed cell means versus standard
deviations and observed cell means versus variances.

• Five profile plots are produced. For factor A, a line plot of estimated means at each level
of A is produced (one plot). For the two-way crossed factor combination A*B, a multiple-
line plot of estimated means at each level of A, with a separate line for each level of B, is
produced (one plot). For the three-way crossed factor combination A*B*C, a multiple-line
plot of estimated means at each level of A, with a separate line for each level of B, is
produced for each of the three levels of C (three plots).

TEST Subcommand

The TEST subcommand allows you to test a hypothesis term against a specified error term.

• TEST is valid only for univariate analyses. Multiple TEST subcommands are allowed,
each executed independently.

• You must specify both the hypothesis term and the error term. There is no default.

• The hypothesis term is specified before the keyword VS. It must be a valid effect specified
or implied on the DESIGN subcommand.

• The error term is specified after the keyword VS. You can specify either a linear combi-
nation or a value. The linear combination of effects takes the general form:
coefficient*effect +/– coefficient*effect ...

• All effects in the linear combination must be specified or implied on the DESIGN subcom-
mand. Effects specified or implied on DESIGN but not listed after VS are assumed to have
a coefficient of 0.

• Duplicate effects are allowed. GLM adds coefficients associated with the same effect
before performing the test. For example, the linear combination 5*A–0.9*B–A will be
combined to 4*A–0.9B.

GLM: Univariate 661

• A coefficient can be specified as a fraction with a positive denominator—for example,
1/3 or –1/3, but 1/–3 is invalid.

• If you specify a value for the error term, you must specify the degrees of freedom after
the keyword DF. The degrees of freedom must be a positive real number. DF and the
degrees of freedom are optional for a linear combination.

Example
GLM DEP BY A B
 /TEST = A VS B + A*B
 /DESIGN = A, B, A*B.

• A is tested against the pooled effect of B + A*B.

LMATRIX Subcommand

The LMATRIX subcommand allows you to customize your hypotheses tests by specifying the L
matrix (contrast coefficients matrix) in the general form of the linear hypothesis LB = K, where
K = 0 if it is not specified on the KMATRIX subcommand. The vector B is the parameter vector in
the linear model.

• The basic format for the LMATRIX subcommand is an optional label in quotes, an effect
name or the keyword ALL, and a list of real numbers. There can be multiple effect names
(or the keyword ALL) and number lists.

• The optional label is a string with a maximum length of 255 characters. Only one label can be
specified.

• Only valid effects appearing or implied on the DESIGN subcommand can be specified on
the LMATRIX subcommand.

• The length of the list of real numbers must be equal to the number of parameters (including
the redundant ones) corresponding to that effect. For example, if the effect A*B takes up six
columns in the design matrix, then the list after A*B must contain exactly six numbers.

• A number can be specified as a fraction with a positive denominator—for example, 1/3
or –1/3, but 1/–3 is invalid.

• A semicolon (;) indicates the end of a row in the L matrix.

• When ALL is specified, the length of the list that follows ALL is equal to the total number of
parameters (including the redundant ones) in the model.

• Effects appearing or implied on the DESIGN subcommand but not specified here are
assumed to have entries of 0 in the corresponding columns of the L matrix.

• Multiple LMATRIX subcommands are allowed. Each is treated independently.

Example
GLM DEP BY A B
 /LMATRIX = “B1 vs B2 at A1”
 B 1 -1 0 A*B 1 -1
 /LMATRIX = “Effect A”
 A 1 0 -1
 A*B 1/3 1/3 1/3
 0 0 0
 -1/3 -1/3 -1/3;
 A 0 1 -1

662 GLM: Univariate

 A*B 0 0 0
 1/3 1/3 1/3
 -1/3 -1/3 -1/3
 /LMATRIX = “B1 vs B2 at A2”
 ALL 0
 0 0 0
 1 -1 0
 0 0 0 1 -1 0 0 0 0
 /DESIGN = A, B, A*B.

Assume that factors A and B each have three levels. There are three LMATRIX subcommands;
each is treated independently.
• B1 versus B2 at A1. In the first LMATRIX subcommand, the difference is tested between levels

1 and 2 of effect B when effect A is fixed at level 1. Since there are three levels each in effects
A and B, the interaction effect A*B should take up nine columns in the design matrix. Notice
that only the first two columns of A*B are specified with values 1 and –1; the rest are all
assumed to be 0. Columns corresponding to effect B are all assumed to be 0.

• Effect A. In the second LMATRIX subcommand, effect A is tested. Since there are three levels
in effect A, at most two independent contrasts can be formed; thus, there are two rows in
the L matrix, which are separated by a semicolon (;). The first row tests the difference
between levels 1 and 3 of effect A, while the second row tests the difference between levels
2 and 3 of effect A.

• B1 versus B2 at A2. In the last LMATRIX subcommand, the keyword ALL is used. The first 0
corresponds to the intercept effect; the next three zeros correspond to effect A.

KMATRIX Subcommand

The KMATRIX subcommand allows you to customize your hypothesis tests by specifying the
K matrix (contrast results matrix) in the general form of the linear hypothesis LB = K. The
vector B is the parameter vector in the linear model.
• The default K matrix is a zero matrix; that is, LB = 0 is assumed.

• For the KMATRIX subcommand to be valid, at least one of the following subcommands must
be specified: the LMATRIX subcommand or the INTERCEPT = INCLUDE subcommand.

• If KMATRIX is specified but LMATRIX is not specified, the LMATRIX is assumed to take the row
vector corresponding to the intercept in the estimable function, provided the subcommand
INTERCEPT = INCLUDE is specified. In this case, the K matrix can be only a scalar matrix.

• If KMATRIX and LMATRIX are specified, then the number of rows in the requested K and
L matrices must be equal. If there are multiple LMATRIX subcommands, then all requested
L matrices must have the same number of rows, and K must have the same number of
rows as these L matrices.

• A semicolon (;) can be used to indicate the end of a row in the K matrix.

• If more than one KMATRIX subcommand is specified, only the last one is in effect.

GLM: Univariate 663

Example
GLM DEP BY A B
 /LMATRIX = “Effect A”
 A 1 0 -1; A 1 -1 0
 /LMATRIX = “Effect B”
 B 1 0 -1; B 1 -1 0
 /KMATRIX = 0; 0
 /DESIGN = A B.

In this example, assume that factors A and B each have three levels.

• There are two LMATRIX subcommands; both have two rows.
• The first LMATRIX subcommand tests whether the effect of A is 0, while the second

LMATRIX subcommand tests whether the effect of B is 0.

• The KMATRIX subcommand specifies that the K matrix also has two rows, each with value 0.

CONTRAST Subcommand

CONTRAST specifies the type of contrast desired among the levels of a factor. For a factor with
k levels or values, the contrast type determines the meaning of its degrees of freedom.
• Specify the factor name in parentheses following the subcommand CONTRAST.

• You can specify only one factor per CONTRAST subcommand, but you can enter multiple
CONTRAST subcommands.

• After closing the parentheses, enter an equals sign followed by one of the contrast keywords.

• This subcommand creates an L matrix such that the columns corresponding to the factor
match the contrast given. The other columns are adjusted so that the L matrix is estimable.

The following contrast types are available:

DEVIATION Deviations from the grand mean. This is the default for between-subjects
factors. Each level of the factor except one is compared to the grand mean.
One category (by default, the last) must be omitted so that the effects will be
independent of one another. To omit a category other than the last, specify
the number of the omitted category (which is not necessarily the same as its
value) in parentheses after the keyword DEVIATION. For example,

GLM Y BY B
 /CONTRAST(B)=DEVIATION(1).

Suppose factor B has three levels, with values 2, 4, and 6. The specified con-
trast omits the first category, in which B has the value 2. Deviation contrasts
are not orthogonal.

POLYNOMIAL Polynomial contrasts. This is the default for within-subjects factors. The
first degree of freedom contains the linear effect across the levels of the fac-
tor, the second contains the quadratic effect, and so on. In a balanced
design, polynomial contrasts are orthogonal. By default, the levels are
assumed to be equally spaced; you can specify unequal spacing by entering
a metric consisting of one integer for each level of the factor in parentheses

k 1–

664 GLM: Univariate

after the keyword POLYNOMIAL. (All metrics specified cannot be equal;
thus, (1, 1, . . . 1) is not valid.) For example,

GLM RESPONSE BY STIMULUS
 /CONTRAST(STIMULUS) = POLYNOMIAL(1,2,4).

Suppose that factor STIMULUS has three levels. The specified contrast indi-
cates that the three levels of STIMULUS are actually in the proportion 1:2:4.
The default metric is always (1, 2, . . . k), where k levels are involved. Only
the relative differences between the terms of the metric matter (1, 2, 4) is the
same metric as (2, 3, 5) or (20, 30, 50) because, in each instance, the differ-
ence between the second and third numbers is twice the difference between
the first and second.

DIFFERENCE Difference or reverse Helmert contrasts. Each level of the factor except the
first is compared to the mean of the previous levels. In a balanced design, dif-
ference contrasts are orthogonal.

HELMERT Helmert contrasts. Each level of the factor except the last is compared to the
mean of subsequent levels. In a balanced design, Helmert contrasts are
orthogonal.

SIMPLE Each level of the factor except the last is compared to the last level. To use
a category other than the last as the omitted reference category, specify its
number (which is not necessarily the same as its value) in parentheses
following the keyword SIMPLE. For example,

GLM Y BY B
 /CONTRAST(B)=SIMPLE(1).

Suppose that factor B has three levels with values 2, 4, and 6. The specified
contrast compares the other levels to the first level of B, in which B has the
value 2. Simple contrasts are not orthogonal.

REPEATED Comparison of adjacent levels. Each level of the factor except the first is
compared to the previous level. Repeated contrasts are not orthogonal.

SPECIAL A user-defined contrast. Values specified after this keyword are stored in a
matrix in column major order. For example, if factor A has three levels, then
CONTRAST(A)= SPECIAL(1 1 1 1 -1 0 0 1 -1) produces the following contrast
matrix:

1 1 0
1 –1 1
1 0 –1

Orthogonal contrasts are particularly useful. In a balanced design, contrasts are orthog-
onal if the sum of the coefficients in each contrast row is 0 and if, for any pair of contrast
rows, the products of corresponding coefficients sum to 0. DIFFERENCE, HELMERT, and
POLYNOMIAL contrasts always meet these criteria in balanced designs.

GLM: Univariate 665

Example
GLM DEP BY FAC
 /CONTRAST(FAC)=DIFFERENCE
 /DESIGN.

• Suppose that the factor FAC has five categories and therefore four degrees of freedom.

• CONTRAST requests DIFFERENCE contrasts, which compare each level (except the first)
with the mean of the previous levels.

POSTHOC Subcommand

POSTHOC allows you to produce multiple comparisons between means of a factor. These
comparisons are usually not planned at the beginning of the study but are suggested by the
data in the course of study.

• Post hoc tests are computed for the dependent variable. The alpha value used in the tests
can be specified by using the keyword ALPHA on the CRITERIA subcommand. The default
alpha value is 0.05. The confidence level for any confidence interval constructed is

. The default confidence level is 95. For a multivariate model, tests are
computed for all dependent variables specified.

• Only between-subjects factors appearing in the factor list are valid in this subcommand.
Individual factors can be specified.

• You can specify one or more effects to be tested. Only fixed main effects appearing or
implied on the DESIGN subcommand are valid test effects.

• Optionally, you can specify an effect defining the error term following the keyword VS
after the test specification. The error effect can be any single effect in the design that is
not the intercept or a main effect named on a POSTHOC subcommand.

• A variety of multiple comparison tests are available. Some tests are designed for detecting
homogeneity subsets among the groups of means, some are designed for pairwise
comparisons among all means, and some can be used for both purposes.

• For tests that are used for detecting homogeneity subsets of means, non-empty group
means are sorted in ascending order. Means that are not significantly different are included
together to form a homogeneity subset. The significance for each homogeneity subset of
means is displayed. In a case where the numbers of valid cases are not equal in all groups,
for most post hoc tests, the harmonic mean of the group sizes is used as the sample size in
the calculation. For QREGW or FREGW, individual sample sizes are used.

• For tests that are used for pairwise comparisons, the display includes the difference between
each pair of compared means, the confidence interval for the difference, and the signifi-
cance. The sample sizes of the two groups being compared are used in the calculation.

• Output for tests specified on the POSTHOC subcommand are available according to their
statistical purposes. The following table illustrates the statistical purpose of the post hoc
tests:

1 α–() 100×

666 GLM: Univariate

• Tests that are designed for homogeneity subset detection display the detected homogeneity
subsets and their corresponding significances.

• Tests that are designed for both homogeneity subset detection and pairwise comparisons
display both kinds of output.

• For the DUNNETT, DUNNETTL, and DUNNETTR keywords, only individual factors can be
specified.

• The default reference category for DUNNETT, DUNNETTL, and DUNNETTR is the last
category. An integer greater than 0 within parentheses can be used to specify a different
reference category. For example, POSTHOC = A (DUNNETT(2)) requests a DUNNETT test for
factor A, using the second level of A as the reference category.

• The keywords DUNCAN, DUNNETT, DUNNETTL, and DUNNETTR must be spelled out in full;
using the first three characters alone is not sufficient.

• If the REGWGT subcommand is specified, weighted means are used in performing post
hoc tests.

Post Hoc Tests Statistical Purpose

Keyword Homogeneity Subsets
Detection

Pairwise Comparison and
Confidence Interval

LSD Yes
SIDAK Yes
BONFERRONI Yes
GH Yes
T2 Yes
T3 Yes
C Yes
DUNNETT Yes*

DUNNETTL Yes*
DUNNETTR Yes*
SNK Yes
BTUKEY Yes
DUNCAN Yes
QREGW Yes
FREGW Yes
WALLER Yes†

TUKEY Yes Yes
SCHEFFE Yes Yes
GT2 Yes Yes
GABRIEL Yes Yes

* Only CIs for differences between test group means and control group means
are given.

† No significance for Waller test is given.

GLM: Univariate 667

• Multiple POSTHOC subcommands are allowed. Each specification is executed indepen-
dently so that you can test different effects against different error terms.

SNK Student-Newman-Keuls procedure based on the Studentized range
test.

TUKEY Tukey’s honestly significant difference. This test uses the Studentized
range statistic to make all pairwise comparisons between groups.

BTUKEY Tukey’s b. Multiple comparison procedure based on the average of
Studentized range tests.

DUNCAN Duncan’s multiple comparison procedure based on the Studentized
range test.

SCHEFFE Scheffé’s multiple comparison t test.

DUNNETT(refcat) Dunnett’s two-tailed t test. Each level of the factor is compared to a ref-
erence category. A reference category can be specified in parentheses.
The default reference category is the last category. This keyword must
be spelled out in full.

DUNNETTL(refcat) Dunnett’s one-tailed t test. This test indicates whether the mean at any
level (except the reference category) of the factor is smaller than that
of the reference category. A reference category can be specified in
parentheses. The default reference category is the last category. This
keyword must be spelled out in full.

DUNNETTR(refcat) Dunnett’s one-tailed t test. This test indicates whether the mean at any
level (except the reference category) of the factor is larger than that of
the reference category. A reference category can be specified in paren-
theses. The default reference category is the last category. This key-
word must be spelled out in full.

BONFERRONI Bonferroni t test. This test is based on Student’s t statistic and adjusts
the observed significance level for the fact that multiple comparisons
are made.

LSD Least significant difference t test. Equivalent to multiple t tests between
all pairs of groups. This test does not control the overall probability of
rejecting the hypotheses that some pairs of means are different, while
in fact they are equal.

SIDAK Sidak t test. This test provides tighter bounds than the Bonferroni test.

GT2 Hochberg’s GT2. Pairwise comparisons test based on the Studentized
maximum modulus test. Unless the cell sizes are extremely unbal-
anced, this test is fairly robust even for unequal variances.

GABRIEL Gabriel’s pairwise comparisons test based on the Studentized maxi-
mum modulus test.

FREGW Ryan-Einot-Gabriel-Welsch’s multiple stepdown procedure based on an
F test.

668 GLM: Univariate

QREGW Ryan-Einot-Gabriel-Welsch’s multiple stepdown procedure based on
the Studentized range test.

T2 Tamhane’s T2. Tamhane’s pairwise comparisons test based on a t test.
This test can be applied in situations where the variances are unequal.

T3 Dunnett’s T3. Pairwise comparisons test based on the Studentized
maximum modulus. This test is appropriate when the variances are
unequal.

GH Games and Howell’s pairwise comparisons test based on the Studen-
tized range test. This test can be applied in situations where the vari-
ances are unequal.

C Dunnett’s C. Pairwise comparisons based on the weighted average of
Studentized ranges. This test can be applied in situations where the
variances are unequal.

WALLER(kratio) Waller-Duncan t test. This test uses a Bayesian approach. It is
restricted to cases with equal sample sizes. For cases with unequal
sample sizes, the harmonic mean of the sample size is used. The
kratio is the Type 1/Type 2 error seriousness ratio. The default value
is 100. You can specify an integer greater than 1 within parentheses.

EMMEANS Subcommand

EMMEANS displays estimated marginal means of the dependent variable in the cells (with
covariates held at their overall mean value) and their standard errors for the specified factors.
Note that these are predicted, not observed, means. The estimated marginal means are calcu-
lated using a modified definition by Searle, Speed, and Milliken (1980).

• TABLES, followed by an option in parentheses, is required. COMPARE is optional; if spec-
ified, it must follow TABLES.

• Multiple EMMEANS subcommands are allowed. Each is treated independently.

• If identical EMMEANS subcommands are specified, only the last identical subcommand is
in effect. EMMEANS subcommands that are redundant but not identical (for example,
crossed factor combinations such as A*B and B*A) are all processed.

TABLES(option) Table specification. Valid options are the keyword OVERALL, factors
appearing on the factor list, and crossed factors constructed of factors
on the factor list. Crossed factors can be specified using an asterisk (*)
or the keyword BY. All factors in a crossed factor specification must
be unique.

If OVERALL is specified, the estimated marginal means of the depen-
dent variable are displayed, collapsing over between-subjects factors.

If a between-subjects factor, or a crossing of between-subjects factors,
is specified on the TABLES keyword, GLM collapses over any other
between-subjects factors before computing the estimated marginal

GLM: Univariate 669

means for the dependent variable. For a multivariate model, GLM
collapses over any other between- or within-subjects factors.

COMPARE(factor) ADJ(method)

Main- or simple-main-effects omnibus tests and pairwise comparisons
of the dependent variable. This option gives the mean difference, stan-
dard error, significance, and confidence interval for each pair of levels
for the effect specified in the TABLES command, as well as an omnibus
test for that effect. If only one factor is specified on TABLES, COMPARE
can be specified by itself; otherwise, the factor specification is required.
In this case, levels of the specified factor are compared with each other
for each level of the other factors in the interaction.

The optional ADJ keyword allows you to apply an adjustment to the con-
fidence intervals and significance values to account for multiple com-
parisons. Methods available are LSD (no adjustment), BONFERRONI, or
SIDAK.

Example
GLM DEP BY A B
 /EMMEANS = TABLES(A*B)COMPARE(A)
 /DESIGN.

• The output of this analysis includes a pairwise comparisons table for the dependent
variable DEP.

• Assume that A has three levels and B has two levels. The first level of A is compared with
the second and third levels, the second level with the first and third levels, and the third
level with the first and second levels. The pairwise comparison is repeated for the two
levels of B.

SAVE Subcommand

Use SAVE to add one or more residual or fit values to the working data file.

• Specify one or more temporary variables, each followed by an optional new name in
parentheses. For a multivariate model, you can optionally specify a new name for the
temporary variable related to each dependent variable.

• WPRED and WRESID can be saved only if REGWGT has been specified.

• Specifying a temporary variable on this subcommand results in a variable being added to
the active data file for each dependent variable.

• You can specify variable names for the temporary variables. These names must be
unique, valid variable names. For a multivariate model, there should be as many variable
names specified as there are dependent variables, listed in the order of the dependent vari-
ables as specified on the GLM command. If you do not specify enough variable names,
default variable names are used for any remaining variables.

• If new names are not specified, GLM generates a rootname using a shortened form of the
temporary variable name with a suffix. For a multivariate model, the suffix _n is added to

670 GLM: Univariate

the temporary variable name, where n is the ordinal number of the dependent variable as
specified on the GLM command.

• If more than one SAVE subcommand is specified, only the last one is in effect.

PRED Unstandardized predicted values.

WPRED Weighted unstandardized predicted values. Available only if REGWGT has
been specified.

RESID Unstandardized residuals.

WRESID Weighted unstandardized residuals. Available only if REGWGT has been
specified.

DRESID Deleted residuals.

ZRESID Standardized residuals.

SRESID Studentized residuals.

SEPRED Standard errors of predicted value.

COOK Cook’s distances.

LEVER Uncentered leverage values.

OUTFILE Subcommand

The OUTFILE subcommand writes an SPSS data file that can be used in other procedures.

• You must specify a keyword on OUTFILE. There is no default.
• You must specify a filename in parentheses after a keyword. A filename with a path must

be enclosed within quotation marks. The asterisk (*) is not allowed.

• If you specify more than one keyword, a different filename is required for each.

• If more than one OUTFILE subcommand is specified, only the last one is in effect.

• For COVB or CORB, the output will contain, in addition to the covariance or correlation
matrix, three rows for each dependent variable: a row of parameter estimates, a row of
residual degrees of freedom, and a row of significance values for the t statistics corre-
sponding to the parameter estimates. All statistics are displayed separately by split.

COVB (filename) Writes the parameter covariance matrix.

CORB (filename) Writes the parameter correlation matrix.

EFFECT (filename) Writes the statistics from the between-subjects ANOVA table. Invalid
for repeated measures analyses.

DESIGN (filename) Writes the design matrix. The number of rows equals the number of
cases, and the number of columns equals the number of parameters.
The variable names are DES_1, DES_2, ..., DES_p, where p is the num-
ber of the parameters.

GLM: Univariate 671

DESIGN Subcommand

DESIGN specifies the effects included in a specific model. The cells in a design are defined
by all of the possible combinations of levels of the factors in that design. The number of cells
equals the product of the number of levels of all the factors. A design is balanced if each cell
contains the same number of cases. GLM can analyze both balanced and unbalanced designs.

• Specify a list of terms to be included in the model, separated by spaces or commas.
• The default design, if the DESIGN subcommand is omitted or is specified by itself, is a de-

sign consisting of the following terms in order: the intercept term (if INTERCEPT=INCLUDE
is specified), next the covariates given in the covariate list, and then the full factorial model
defined by all factors on the factor list and excluding the intercept.

• To include a term for the main effect of a factor, enter the name of the factor on the
DESIGN subcommand.

• To include the intercept term in the design, use the keyword INTERCEPT on the DESIGN
subcommand. If INTERCEPT is specified on the DESIGN subcommand, the subcommand
INTERCEPT=EXCLUDE is overridden.

• To include a term for an interaction between factors, use the keyword BY or the asterisk
(*) to join the factors involved in the interaction. For example, A*B means a two-way interac-
tion effect of A and B, where A and B are factors. A*A is not allowed because factors inside an
interaction effect must be distinct.

• To include a term for nesting one effect within another, use the keyword WITHIN or a pair
of parentheses on the DESIGN subcommand. For example, A(B) means that A is nested
within B. The expression A(B) is equivalent to the expression A WITHIN B. When more than
one pair of parentheses is present, each pair of parentheses must be enclosed or nested
within another pair of parentheses. Thus, A(B)(C) is not valid.

• Multiple nesting is allowed. For example, A(B(C)) means that B is nested within C, and A
is nested within B(C).

• Interactions between nested effects are not valid. For example, neither A(C)*B(C) nor
A(C)*B(D) is valid.

• To include a covariate term in the design, enter the name of the covariate on the DESIGN
subcommand.

• Covariates can be connected, but not nested, through the * operator to form another covariate
effect. Therefore, interactions among covariates such as X1*X1 and X1*X2 are valid, but not
X1(X2). Using covariate effects such as X1*X1, X1*X1*X1, X1*X2, and X1*X1*X2*X2 makes
fitting a polynomial regression model easy in GLM.

• Factor and covariate effects can be connected only by the * operator. Suppose A and B are
factors, and X1 and X2 are covariates. Examples of valid factor-by-covariate interaction effects
are A*X1, A*B*X1, X1*A(B), A*X1*X1, and B*X1*X2.

• If more than one DESIGN subcommand is specified, only the last one is in effect.

Example
GLM Y BY A B C WITH X
 /DESIGN A B(A) X*A.

• In this example, the design consists of a main effect A, a nested effect B within A, and an
interaction effect of a covariate X with a factor A.

672

GLM: Multivariate

GLM is available in the Advanced Models option.

GLM dependent varlist [BY factor list [WITH covariate list]]

[/REGWGT=varname]

[/METHOD=SSTYPE({1 })]
 {2 }
 {3**}
 {4 }

[/INTERCEPT=[INCLUDE**] [EXCLUDE]]

[/MISSING=[INCLUDE] [EXCLUDE**]]

[/CRITERIA=[EPS({1E-8**})] [ALPHA({0.05**})]
 {a } {a }

[/PRINT = [DESCRIPTIVE] [HOMOGENEITY] [PARAMETER][ETASQ] [RSSCP]
 [GEF] [LOF] [OPOWER] [TEST [([SSCP] [LMATRIX] [MMATRIX])]]

[/PLOT=[SPREADLEVEL] [RESIDUALS]
 [PROFILE (factor factor*factor factor*factor*factor ...)]

[/LMATRIX={["label"] effect list effect list ...;...}]
 {["label"] effect list effect list ... }
 {["label"] ALL list; ALL... }
 {["label"] ALL list }

[/MMATRIX= {["label"] depvar value depvar value ...;["label"]...}]
 {["label"] depvar value depvar value ... }
 {["label"] ALL list; ["label"] ... }
 {["label"] ALL list }

[/KMATRIX= {list of numbers }]
 {list of numbers;...}

[/SAVE=[tempvar [(list of names)]] [tempvar [(list of names)]]...]
 [DESIGN]

[/OUTFILE= [{COVB (filename)}] [EFFECT(filename)] [DESIGN(filename)]
 {CORB (filename)}

[/DESIGN={[INTERCEPT...] }]
 {[effect effect...]}

** Default if subcommand or keyword is omitted.

Temporary variables (tempvar) are:

PRED, WPRED, RESID, WRESID, DRESID, ZRESID, SRESID, SEPRED, COOK, LEVER

Example
GLM SCORE1 TO SCORE4 BY METHOD(1,3).

GLM: Multivariate 673

Overview

This section discusses the subcommands that are used in multivariate general linear models and
covariance designs with several interrelated dependent variables. The discussion focuses on
subcommands and keywords that do not apply, or apply in different manners, to univariate
analyses. It does not contain information on all of the subcommands you will need to specify
the design. For subcommands not covered here, see GLM: Univariate.

Options

Optional Output. In addition to the output described in GLM: Univariate, you can have both
multivariate and univariate F tests. Using the PRINT subcommand, you can request the
hypothesis and error sums-of-squares and cross-product matrices for each effect in the
design, the transformation coefficient table (M matrix), Box’s M test for equality of covari-
ance matrices, and Bartlett’s test of sphericity.

Basic Specification

• The basic specification is a variable list identifying the dependent variables, with the
factors (if any) named after BY and the covariates (if any) named after WITH.

• By default, GLM uses a model that includes the intercept term, the covariates (if any), and
the full factorial model, which includes all main effects and all possible interactions
among factors. The intercept term is excluded if it is excluded in the model by specifying
EXCLUDE on the INTERCEPT subcommand. GLM produces multivariate and univariate
F tests for each effect in the model. It also calculates the power for each test based on the
default alpha value.

Subcommand Order

• The variable list must be specified first.
• Subcommands can be used in any order.

Syntax Rules

• The syntax rules applicable to univariate analysis, in “Syntax Rules” on p. 653 in GLM:
Univariate, also apply to multivariate analysis.

• If you enter one of the multivariate specifications in a univariate analysis, GLM ignores it.

Limitations

• Any number of factors can be specified, but if the number of between-subjects factors
plus the number of split variables exceeds 18, the Descriptive Statistics table is not printed
even when you request it.

674 GLM: Multivariate

• Memory requirements depend primarily on the number of cells in the design. For the
default full factorial model, this equals the product of the number of levels or categories
in each factor.

GLM Variable List

• Multivariate GLM calculates statistical tests that are valid for analyses of dependent vari-
ables that are correlated with one another. The dependent variables must be specified
first.

• The factor and covariate lists follow the same rules as in univariate analyses.

• If the dependent variables are uncorrelated, the univariate significance tests have greater
statistical power.

PRINT Subcommand

By default, if no PRINT subcommand is specified, multivariate GLM produces multivariate
tests (MANOVA) and univariate tests (ANOVA) for all effects in the model. All of the PRINT
specifications described in GLM: Univariate are available in multivariate analyses. The fol-
lowing additional output can be requested:

TEST(SSCP) Sums-of-squares and cross-product matrices. Hypothesis (HSSCP)
and error (ESSCP) sums-of-squares and cross-product matrices for
each effect in the design are displayed. Each between-subjects effect
has a different HSSCP matrix, but there is a single ESSCP matrix for
all between-subjects effects. For a repeated measures design, each
within-subjects effect has an HSSCP matrix and an ESSCP matrix. If
there are no within-subjects effects, the ESSCP matrix for the
between-subjects effects is the same as the RSSCP matrix.

TEST(MMATRIX) Set of transformation coefficients (M) matrices. Any M matrices gen-
erated by the MMATRIX subcommand are displayed. If no M matrix is
specified on the MMATRIX subcommand, this specification will be
skipped, unless you are using a repeated measures design. In a repeated
measures design, this set always includes the M matrix determined by
the WSFACTOR subcommand. The specification TEST(TRANSFORM)
is equivalent to TEST(MMATRIX).

HOMOGENEITY Tests of homogeneity of variance. In addition to Levene’s test for
equality of variances for each dependent variable, the display includes
Box’s M test of homogeneity of the covariance matrices of the depen-
dent variables across all level combinations of the between-subjects
factors.

RSSCP Sums-of-squares and cross-products of residuals. Three matrices are
displayed:

Residual SSCP matrix. A square matrix of sums of squares and cross-
products of residuals. The dimension of this matrix is the same as the
number of dependent variables in the model.

GLM: Multivariate 675

Residual covariance matrix. The residual SSCP matrix divided by the
degrees of freedom of the residual.

Residual correlation matrix. The standardized form of the residual
covariance matrix.

Example
GLM Y1 Y2 Y3 BY A B
 /PRINT = HOMOGENEITY RSSCP
 /DESIGN.

• Since there are three dependent variables, this is a multivariate model.

• The keyword RSSCP produces three matrices of sums of squares and cross-products of
residuals. The output also contains the result of Bartlett’s test of the sphericity of the
residual covariance matrix.

• In addition to the Levene test for each dependent variable, the keyword HOMOGENEITY
produces the result of Box’s M test of homogeneity in the multivariate model.

MMATRIX Subcommand

The MMATRIX subcommand allows you to customize your hypothesis tests by specifying the
M matrix (transformation coefficients matrix) in the general form of the linear hypothesis
LBM = K, where K = 0 if it is not specified on the KMATRIX subcommand. The vector B is
the parameter vector in the linear model.

• Specify an optional label in quotes. Then either list dependent variable names, each fol-
lowed by a real number, or specify the keyword ALL followed by a list of real numbers.
Only variable names that appear on the dependent variable list can be specified on the
MMATRIX subcommand.

• You can specify one label for each column in the M matrix.
• If you specify ALL, the length of the list that follows ALL should be equal to the number

of dependent variables.

• There is no limit on the length of the label.

• For the MMATRIX subcommand to be valid, at least one of the following must be specified:
the LMATRIX subcommand or INTERCEPT=INCLUDE. (Either of these specifications
defines an L matrix.)

• If both LMATRIX and MMATRIX are specified, the L matrix is defined by the LMATRIX sub-
command.

• If MMATRIX or KMATRIX is specified but LMATRIX is not specified, the L matrix is defined
by the estimable function for the intercept effect, provided that the intercept effect is
included in the model.

• If LMATRIX is specified, but MMATRIX is not specified, the M matrix is assumed to be an
 identity matrix, where r is the number of dependent variables.

• A semicolon (;) indicates the end of a column in the M matrix.

• Dependent variables not appearing on a list of dependent variable names and real num-
bers are assigned a value of 0.

r r×

676 GLM: Multivariate

• Dependent variables not appearing in the MMATRIX subcommand will have a row of zeros
in the M matrix.

• A number can be specified as a fraction with a positive denominator—for example, 1/3
or –1/3, but 1/–3 is invalid.

• The number of columns must be greater than 0. You can specify as many columns as you
need.

• If more than one MMATRIX subcommand is specified, only the last one is in effect.

Example
GLM Y1 Y2 Y3 BY A B
 /MMATRIX = “Y1–Y2” Y1 1 Y2 –1; “Y1–Y3” Y1 1 Y3 –1
 “Y2–Y3” Y2 1 Y3 –1
 /DESIGN.

• In the above example, Y1, Y2, and Y3 are the dependent variables.

• The MMATRIX subcommand requests all pairwise comparisons among the dependent
variables.

• Since LMATRIX was not specified, the L matrix is defined by the estimable function for
the intercept effect.

677

GLM: Repeated Measures

GLM is available in the Advanced Models option.

GLM dependent varlist [BY factor list [WITH covariate list]]

/WSFACTOR=name levels [{DEVIATION [(refcat)] }] name...
 {SIMPLE [(refcat)] }
 {DIFFERENCE }
 {HELMERT }
 {REPEATED }
 {POLYNOMIAL [({1,2,3...})]**}
 { {metric } }
 {SPECIAL (matrix) }

[/MEASURE=newname newname...]

[/WSDESIGN=effect effect...]

[/REGWGT=varname]

[/METHOD=SSTYPE({1 })]
 {2 }
 {3**}
 {4 }

[/INTERCEPT=[INCLUDE**] [EXCLUDE]]

[/MISSING=[INCLUDE] [EXCLUDE**]]

[/PRINT = [DESCRIPTIVE] [HOMOGENEITY] [PARAMETER][ETASQ] [RSSCP]
 [GEF] [LOF] [OPOWER] [TEST [([SSCP] [LMATRIX] [MMATRIX])]]

[/SAVE=[tempvar [(list of names)]] [tempvar [(list of names)]]...]
 [DESIGN]

[/EMMEANS=TABLES({OVERALL })] [COMPARE ADJ(LSD(none)(BONFERRONI)(SIDAK))]
 {factor }
 {factor*factor... }
 {wsfactor }
 {wsfactor*wsfactor... }
 {factor*...wsfactor*...]
 {factor*factor... }

[/DESIGN={[INTERCEPT...] }]*
 {[effect effect...]}

* The DESIGN subcommand has the same syntax as is described in GLM: Univariate.

** Default if subcommand or keyword is omitted.

Example
GLM Y1 TO Y4 BY GROUP
 /WSFACTOR=YEAR 4.

678 GLM: Repeated Measures

Overview

This section discusses the subcommands that are used in repeated measures designs, in
which the dependent variables represent measurements of the same variable (or variables)
taken repeatedly. This section does not contain information on all of the subcommands that
you will need to specify the design. For some subcommands or keywords not covered here,
such as DESIGN, see GLM: Univariate. For information on optional output and the multivari-
ate significance tests available, see GLM: Multivariate.

• In a simple repeated measures analysis, all dependent variables represent different
measurements of the same variable for different values (or levels) of a within-subjects
factor. Between-subjects factors and covariates can also be included in the model, just as
in analyses not involving repeated measures.

• A within-subjects factor is simply a factor that distinguishes measurements made on the
same subject or case, rather than distinguishing different subjects or cases.

• GLM permits more complex analyses, in which the dependent variables represent levels
of two or more within-subjects factors.

• GLM also permits analyses in which the dependent variables represent measurements of
several variables for the different levels of the within-subjects factors. These are known
as doubly multivariate designs.

• A repeated measures analysis includes a within-subjects design describing the model to
be tested with the within-subjects factors, as well as the usual between-subjects design
describing the effects to be tested with between-subjects factors. The default for the
within-subjects factors design is a full factorial model which includes the main within-
subjects factor effects and all their interaction effects.

• If a custom hypothesis test is required (defined by the CONTRAST, LMATRIX, or KMATRIX
subcommands), the default transformation matrix (M matrix) is taken to be the average
transformation matrix, which can be displayed by using the keyword TEST(MMATRIX) on
the PRINT subcommand. The default contrast result matrix (K matrix) is the zero matrix.

• If the contrast coefficient matrix (L matrix) is not specified, but a custom hypothesis test
is required by the MMATRIX or the KMATRIX subcommand, the contrast coefficient matrix
(L matrix) is taken to be the L matrix which corresponds to the estimable function for the
intercept in the between-subjects model. This matrix can be displayed by using the
keyword TEST(LMATRIX) on the PRINT subcommand.

Basic Specification

• The basic specification is a variable list followed by the WSFACTOR subcommand.

• Whenever WSFACTOR is specified, GLM performs special repeated measures processing.
The multivariate and univariate tests are provided. In addition, for any within-subjects
effect involving more than one transformed variable, the Mauchly test of sphericity is
displayed to test the assumption that the covariance matrix of the transformed variables
is constant on the diagonal and zero off the diagonal. The Greenhouse-Geisser epsilon
and the Huynh-Feldt epsilon are also displayed for use in correcting the significance tests
in the event that the assumption of sphericity is violated.

GLM: Repeated Measures 679

Subcommand Order

• The list of dependent variables, factors, and covariates must be first.

Syntax Rules

• The WSFACTOR (within-subjects factors), WSDESIGN (within-subjects design), and
MEASURE subcommands are used only in repeated measures analysis.

• WSFACTOR is required for any repeated measures analysis.

• If WSDESIGN is not specified, a full factorial within-subjects design consisting of all main
effects and all interactions among within-subjects factors is used by default.

• The MEASURE subcommand is used for doubly multivariate designs, in which the depen-
dent variables represent repeated measurements of more than one variable.

Limitations

• Any number of factors can be specified, but if the number of between-subjects factors
plus the number of split variables exceeds 18, the Descriptive Statistics table is not printed
even when you request it.

• Maximum 18 within-subjects factors.

• Memory requirements depend primarily on the number of cells in the design. For the
default full factorial model, this equals the product of the number of levels or categories
in each factor.

Example

GLM Y1 TO Y4 BY GROUP
 /WSFACTOR=YEAR 4 POLYNOMIAL
 /WSDESIGN=YEAR
 /PRINT=PARAMETER
 /DESIGN=GROUP.

• WSFACTOR specifies a repeated measures analysis in which the four dependent variables
represent a single variable measured at four levels of the within-subjects factor. The within-
subjects factor is called YEAR for the duration of the GLM procedure.

• POLYNOMIAL requests polynomial contrasts for the levels of YEAR. Because the four vari-
ables, Y1, Y2, Y3, and Y4, in the working data file represent the four levels of YEAR, the
effect is to perform an orthonormal polynomial transformation of these variables.

• PRINT requests that the parameter estimates be displayed.

• WSDESIGN specifies a within-subjects design that includes only the effect of the YEAR
within-subjects factor. Because YEAR is the only within-subjects factor specified, this is
the default design, and WSDESIGN could have been omitted.

• DESIGN specifies a between-subjects design that includes only the effect of the GROUP
between-subjects factor. This subcommand could have been omitted.

680 GLM: Repeated Measures

GLM Variable List

The list of dependent variables, factors, and covariates must be specified first.

• WSFACTOR determines how the dependent variables on the GLM variable list will be
interpreted.

• The number of dependent variables on the GLM variable list must be a multiple of the
number of cells in the within-subjects design. If there are six cells in the within-subjects
design, each group of six dependent variables represents a single within-subjects variable
that has been measured in each of the six cells.

• Normally, the number of dependent variables should equal the number of cells in the
within-subjects design multiplied by the number of variables named on the MEASURE
subcommand (if one is used). If you have more groups of dependent variables than are
accounted for by the MEASURE subcommand, GLM will choose variable names to label
the output, which may be difficult to interpret.

• Covariates are specified after keyword WITH. You can specify constant covariates. Constant
covariates represent variables whose values remain the same at each within-subjects level.

Example
GLM MATH1 TO MATH4 BY METHOD WITH SES
 /WSFACTOR=SEMESTER 4.

• The four dependent variables represent a score measured four times (corresponding to the
four levels of SEMESTER).

• SES is a constant covariate. Its value does not change over the time covered by the four
levels of SEMESTER.

• Default contrast (POLYNOMIAL) is used.

WSFACTOR Subcommand

WSFACTOR names the within-subjects factors, specifies the number of levels for each, and
specifies the contrast for each.

• Presence of the WSFACTOR subcommand implies that the repeated measures model is
being used.

• Mauchly’s test of sphericity is automatically performed when WSFACTOR is specified.

• Names and number levels for the within-subjects factors are specified on the WSFACTOR
subcommand. Factor names must not duplicate any of the dependent variables, factors, or
covariates named on the GLM variable list. A type of contrast can also be specified for
each within-subjects factor in order to perform comparisons among its levels. This
contrast amounts to a transformation on the dependent variables.

• If there are more than one within-subjects factors, they must be named in the order corre-
sponding to the order of the dependent variables on the GLM variable list. GLM varies the
levels of the last-named within-subjects factor most rapidly when assigning dependent
variables to within-subjects cells (see the example below).

• The number of cells in the within-subjects design is the product of the number of levels
for all within-subjects factors.

GLM: Repeated Measures 681

• Levels of the factors must be represented in the data by the dependent variables named on
the GLM variable list.

• The number of levels of each factor must be at least two. Enter an integer equal to or greater
than 2 after each factor to indicate how many levels the factor has. Optionally, you can
enclose the number of levels in parentheses.

• Enter only the number of levels for within-subjects factors, not a range of values.
• If more than one WSFACTOR subcommand is specified, only the last one is in effect.

Contrasts for WSFACTOR

The levels of a within-subjects factor are represented by different dependent variables.
Therefore, contrasts between levels of such a factor compare these dependent variables.
Specifying the type of contrast amounts to specifying a transformation to be performed on
the dependent variables.

• In testing the within-subjects effects, an orthonormal transformation is automatically
performed on the dependent variables in a repeated measures analysis.

• The contrast for each within-subjects factor is entered after the number of levels. If no
contrast keyword is specified, POLYNOMIAL(1,2,3...) is the default. This contrast is used in
comparing the levels of the within-subjects factors. Intrinsically orthogonal contrast types
are recommended for within-subjects factors if you wish to examine each degree-of-
freedom test, provided compound symmetry is assumed within each within-subjects
factor. Other orthogonal contrast types are DIFFERENCE and HELMERT.

• If there are more than one within-subjects factors, the transformation matrix (M matrix)
is computed as the Kronecker product of the matrices generated by the contrasts specified.

• The transformation matrix (M matrix) generated by the specified contrasts can be
displayed by using the keyword TEST(MMATRIX) on the subcommand PRINT.

• The contrast types available for within-subjects factors are the same as those on the
CONTRAST subcommand for between-subjects factors, described in “CONTRAST
Subcommand” on p. 663 in GLM: Univariate.

The following contrast types are available:

DEVIATION Deviations from the grand mean. This is the default for between-subjects
factors. Each level of the factor except one is compared to the grand mean.
One category (by default the last) must be omitted so that the effects will
be independent of one another. To omit a category other than the last, spec-
ify the number of the omitted category in parentheses after the keyword
DEVIATION. For example,

GLM Y1 Y2 Y3 BY GROUP
 /WSFACTOR = Y 3 DEVIATION (1)

Deviation contrasts are not orthogonal.

682 GLM: Repeated Measures

POLYNOMIAL Polynomial contrasts. This is the default for within-subjects factors. The
first degree of freedom contains the linear effect across the levels of the
factor, the second contains the quadratic effect, and so on. In a balanced
design, polynomial contrasts are orthogonal. By default, the levels are
assumed to be equally spaced; you can specify unequal spacing by entering
a metric consisting of one integer for each level of the factor in parentheses
after the keyword POLYNOMIAL. (All metrics specified cannot be equal; thus
(1, 1, ..., 1) is not valid.) For example,

/WSFACTOR=D 3 POLYNOMIAL(1,2,4).

Suppose that factor D has three levels. The specified contrast indicates that
the three levels of D are actually in the proportion 1:2:4. The default metric
is always (1,2,...,k), where k levels are involved. Only the relative differences
between the terms of the metric matter (1,2,4) is the same metric as (2,3,5)
or (20,30,50) because, in each instance, the difference between the second
and third numbers is twice the difference between the first and second.

DIFFERENCE Difference or reverse Helmert contrasts. Each level of the factor except the
first is compared to the mean of the previous levels. In a balanced design,
difference contrasts are orthogonal.

HELMERT Helmert contrasts. Each level of the factor except the last is compared to
the mean of subsequent levels. In a balanced design, Helmert contrasts are
orthogonal.

SIMPLE Each level of the factor except the last is compared to the last level. To use
a category other than the last as the omitted reference category, specify its
number in parentheses following keyword SIMPLE. For example,

/WSFACTOR=B 3 SIMPLE (1).

Simple contrasts are not orthogonal.

REPEATED Comparison of adjacent levels. Each level of the factor except the first is
compared to the previous level. Repeated contrasts are not orthogonal.

SPECIAL A user-defined contrast. Values specified after this keyword are stored in a
matrix in column major order. For example, if factor A has three levels, then
WSFACTOR(A)= SPECIAL(1 1 1 1 -1 0 0 1 -1) produces the following contrast
matrix:

1 1 0
1 –1 1
1 0 –1

Example
GLM X1Y1 X1Y2 X2Y1 X2Y2 X3Y1 X3Y2 BY TREATMNT GROUP
 /WSFACTOR=X 3 Y 2
 /DESIGN.

• The GLM variable list names six dependent variables and two between-subjects factors,
TREATMNT and GROUP.

GLM: Repeated Measures 683

• WSFACTOR identifies two within-subjects factors whose levels distinguish the six depen-
dent variables. X has three levels and Y has two. Thus, there are cells in the
within-subjects design, corresponding to the six dependent variables.

• Variable X1Y1 corresponds to levels 1,1 of the two within-subjects factors; variable X1Y2
corresponds to levels 1,2; X2Y1 to levels 2,1; and so on up to X3Y2, which corresponds to
levels 3,2. The first within-subjects factor named, X, varies most slowly, and the last within-
subjects factor named, Y, varies most rapidly on the list of dependent variables.

• Because there is no WSDESIGN subcommand, the within-subjects design will include all
main effects and interactions: X, Y, and X by Y.

• Likewise, the between-subjects design includes all main effects and interactions
(TREATMNT, GROUP, and TREATMNT by GROUP) plus the intercept.

• In addition, a repeated measures analysis always includes interactions between the within-
subjects factors and the between-subjects factors. There are three such interactions for
each of the three within-subjects effects.

Example
GLM SCORE1 SCORE2 SCORE3 BY GROUP
 /WSFACTOR=ROUND 3 DIFFERENCE
 /CONTRAST(GROUP)=DEVIATION
 /PRINT=PARAMETER TEST(LMATRIX).

• This analysis has one between-subjects factor, GROUP, and one within-subjects factor,
ROUND, with three levels that are represented by the three dependent variables.

• The WSFACTOR subcommand also specifies difference contrasts for ROUND, the within-
subjects factor.

• There is no WSDESIGN subcommand, so a default full factorial within-subjects design is
assumed. This could also have been specified as WSDESIGN=ROUND, or simply
WSDESIGN.

• The CONTRAST subcommand specifies deviation contrasts for GROUP, the between-
subjects factor. This subcommand could have been omitted because deviation contrasts
are the default.

• PRINT requests the display of the parameter estimates for the model and the L matrix.
• There is no DESIGN subcommand, so a default full factorial between-subjects design is

assumed. This could also have been specified as DESIGN=GROUP, or simply DESIGN.

WSDESIGN Subcommand

WSDESIGN specifies the design for within-subjects factors. Its specifications are like those
of the DESIGN subcommand, but it uses the within-subjects factors rather than the between-
subjects factors.

• The default WSDESIGN is a full factorial design, which includes all main effects and all
interactions for within-subjects factors. The default is in effect whenever a design is
processed without a preceding WSDESIGN or when the preceding WSDESIGN subcom-
mand has no specifications.

• A WSDESIGN specification cannot include between-subjects factors or terms based on
them, nor does it accept interval-level variables.

• The keyword INTERCEPT is not allowed on WSDESIGN.

3 2× 6=

684 GLM: Repeated Measures

• Nested effects are not allowed. Therefore, the symbols () are not allowed here.

• If more than one WSDESIGN subcommand is specified, only the last one is in effect.

Example
GLM JANLO,JANHI,FEBLO,FEBHI,MARLO,MARHI BY SEX
 /WSFACTOR MONTH 3 STIMULUS 2
 /WSDESIGN MONTH, STIMULUS
 /DESIGN SEX.

• There are six dependent variables, corresponding to three months and two different levels
of stimulus.

• The dependent variables are named on the GLM variable list in an order such that the
level of stimulus varies more rapidly than the month. Thus, STIMULUS is named last on
the WSFACTOR subcommand.

• The WSDESIGN subcommand specifies only the main effects for within-subjects factors.
There is no MONTH by STIMULUS interaction term.

MEASURE Subcommand

In a doubly multivariate analysis, the dependent variables represent multiple variables mea-
sured under the different levels of the within-subjects factors. Use MEASURE to assign names
to the variables that you have measured for the different levels of within-subjects factors.

• Specify a list of one or more variable names to be used in labeling the averaged results.
If no within-subjects factor has more than two levels, MEASURE has no effect. You can
use up to 255 characters for each name.

• The number of dependent variables in the dependent variables list should equal the
product of the number of cells in the within-subjects design and the number of names on
MEASURE.

• If you do not enter a MEASURE subcommand and there are more dependent variables than
cells in the within-subjects design, GLM assigns names (normally MEASURE_1,
MEASURE_2, etc.) to the different measures.

• All of the dependent variables corresponding to each measure should be listed together
and ordered so that the within-subjects factor named last on the WSFACTORS subcom-
mand varies most rapidly.

Example
GLM TEMP11 TEMP12 TEMP21 TEMP22 TEMP31 TEMP32,

WEIGHT11 WEIGHT12 WEIGHT21 WEIGHT22 WEIGHT31 WEIGHT32 BY GROUP
 /WSFACTOR=DAY 3 AMPM 2
 /MEASURE=TEMP WEIGHT
 /WSDESIGN=DAY, AMPM, DAY BY AMPM
 /DESIGN.

• There are 12 dependent variables: 6 temperatures and 6 weights, corresponding to
morning and afternoon measurements on three days.

• WSFACTOR identifies the two factors (DAY and AMPM) that distinguish the temperature
and weight measurements for each subject. These factors define six within-subjects cells.

• MEASURE indicates that the first group of six dependent variables correspond to TEMP
and the second group of six dependent variables correspond to WEIGHT.

GLM: Repeated Measures 685

• These labels, TEMP and WEIGHT, are used on the output as the measure labels.

• WSDESIGN requests a full factorial within-subjects model. Because this is the default,
WSDESIGN could have been omitted.

EMMEANS Subcommand

EMMEANS displays estimated marginal means of the dependent variables in the cells, adjusted
for the effects of covariates at their overall means, for the specified factors. Note that these are
predicted, not observed, means. The standard errors are also displayed. For a detailed descrip-
tion of the EMMEANS subcommand, see “EMMEANS Subcommand” on p. 668 in GLM:
Univariate.

• For the TABLES and COMPARE keywords, valid options include the within-subjects factors
specified in the WSFACTOR subcommand, crossings among them, and crossings among
factors specified in the factor list and factors specified on the WSFACTOR subcommand.

• All factors in a crossed-factors specification must be unique.

• If a between- or within-subjects factor, or a crossing of between- or within-subjects factors,
is specified on the TABLES keyword, then GLM will collapse over any other between- or
within-subjects factors before computing the estimated marginal means for the dependent
variables.

686

GRAPH

 This command is available only on systems with high-resolution graphics capabilities.

GRAPH

 [/TITLE=’line 1’ [’line 2’]]
 [/SUBTITLE=’line 1’]
 [/FOOTNOTE=’line 1’ [’line 2’]]

 {/BAR [{(SIMPLE) }]=function/variable specification† }
 {(GROUPED) }
 {(STACKED) }
 {(RANGE) }

 {/LINE [{(SIMPLE) }]=function/variable specification† }
 {(MULTIPLE) }
 {(DROP) }
 {(AREA) }
 {(DIFFERENCE)}

 {/PIE }

 {/PARETO[{(CUM) }][{(SIMPLE) }]=function/variable specification†}
 {(NOCUM)} {(STACKED)}

 {/HILO[{(SIMPLE) }]=function/variable specification†† }
 {(GROUPED)}

 {/HISTOGRAM [(NORMAL)]=var }

 {/SCATTERPLOT[{(BIVARIATE)}]=variable specification††† }
 {(OVERLAY) }
 {(MATRIX) }
 {(XYZ) }

 {/ERRORBAR[{(CI[{95}]) }]={var [var var ...][BY var]} }
 {n } {var BY var BY var }
 {(STERRIR[{12}])}
 {n }
 {(STDDEV[{2}]) }
 {n}

 [/TEMPLATE=file]

 [/MISSING=[{LISTWISE**}][{NOREPORT**}][{EXCLUDE**}]]
 {VARIABLE }] {REPORT } {INCLUDE }

** Default if the subcommand is omitted.

GRAPH 687

The following table shows all possible function/variable specifications for BAR, LINE, PIE,
BLOCK, and PARETO subcommands. For special restrictions, see individual subcommands.
In the table, valuef refers to the value function, countf refers to the count functions, and sumf
refers to the summary functions.

The following table shows all possible function/variable specifications for the HILO
subcommand. Categorical variables for simple high-low-close charts must be dichoto-
mous or trichotomous.

Variable specification is required on all types of scatterplots. The following table shows all
possible specifications:

Value function:

The VALUE function yields the value of the specified variable for each case. It always
produces one bar, point, or slice for each case. The VALUE(X) specification implies the value
of X by n, where n is the number of each case. You can specify multiple variables, as in:

GRAPH /BAR = VALUE(SALARY BONUS BENEFIT).

This command draws a bar chart with the values of SALARY, BONUS, and BENEFIT for each
employee (case). A BY variable can be used to supply case labels, but it does not affect the
layout of the chart, even if values of the BY variable are the same for multiple cases.

Simple Bar, Simple or Area
Line, Pie, Simple High-Low,
and Simple Pareto Charts

Grouped or Stacked Bar, Multiple,
Drop or Difference Line, and Stacked
Pareto Charts

Categorical Charts

[countf BY] var [countf BY] var BY var
sumf(var) BY var sumf(var) BY var BY var
sumf(varlist) sumf(varlist) BY var
sumf(var) sumf(var)... sumf(var) sumf(var)... BY var

Noncategorical
Charts

valuef(var) [BY var] valuef(varlist) [BY var]

Simple Range Bar and Simple High-
Low-Close Charts

Clustered Range Bar and Clustered High-
Low-Close Charts

[countf BY] var (sumf(var) sumf(var) [sumf(var)]) (...) ...BY var
sumf(var) sumf(var) sumf(var) BY var sumf(var) sumf(var) [sumf(var)] BY var BY var
sumf(var) BY var BY var
valuef(varlist) [BY var] valuef(varlist) (...) ... [BY var]

BIVARIATE var WITH var [BY var] [BY var ({NAME })]
 {IDENTIFY}

OVERLAY varlist WITH varlist [(PAIR)] [BY var ({NAME })]
 {IDENTIFY}

MATRIX varlist [BY var] [BY var ({NAME })]
 {IDENTIFY}

XYZ var WITH var WITH var [BY var] [BY var ({NAME })]
 {IDENTIFY}

688 GRAPH

Aggregation functions:

Two groups of aggregation functions are available: count functions and summary functions.

Count functions:

COUNT Frequency of cases in each category.

PCT Frequency of cases in each category expressed as a percentage of the whole.

CUPCT Cumulative percentage sorted by category value.

CUFREQ Cumulative frequency sorted by category value.

• Count functions yield the count or percentage of valid cases within categories determined
by one or more BY variables, as in

GRAPH /BAR (SIMPLE) = PCT BY REGION.

• Count functions do not have any arguments.

• You can omit the keyword COUNT and subsequent keyword BY and specify just a vari-
able, as in

GRAPH /BAR = DEPT.

This command is interpreted as

GRAPH /BAR = COUNT BY DEPT.

Summary functions:

MINIMUM Minimum value of the variable.

MAXIMUM Maximum value of the variable.

N Number of cases for which the variable has a nonmissing value.

SUM Sum of the values of the variable.

CUSUM Sum of the summary variable accumulated across values of the category
variable.

MEAN Mean.

STDDEV Standard deviation.

VARIANCE Variance.

MEDIAN Median.

GMEDIAN Group median.

MODE Mode.

PTILE(x) Xth percentile value of the variable. X must be greater than 0 and less than 100.

PLT(x) Percentage of cases for which the value of the variable is less than x.

PGT(x) Percentage of cases for which the value of the variable is greater than x.

NLT(x) Number of cases for which the value of the variable is less than x.

GRAPH 689

NGT(x) Number of cases for which the value of the variable is greater than x.

PIN(x1,x2) Percentage of cases for which the value of the variable is greater than or
equal to x1 and less than or equal to x2. x1 cannot exceed x2.

NIN(x1,x2) Number of cases for which the value of the variable is greater than or equal
to x1 and less than or equal to x2. x1 cannot exceed x2.

• Summary functions are usually used with summary variables (variables that record con-
tinuous values, like age or expenses). To use a summary function, specify the name of one
or more variables in parentheses after the name of the function, as in

GRAPH /BAR = SUM(SALARY) BY DEPT.

• You can specify multiple summary functions for more chart types. For example, the same
function can be applied to a list of variables, as in

GRAPH /BAR = SUM(SALARY BONUS BENEFIT) BY DEPT.

This syntax is equivalent to

GRAPH /BAR = SUM(SALARY) SUM(BONUS) SUM(BENEFIT) BY DEPT.

Different functions can be applied to the same variable, as in

GRAPH /BAR = MEAN(SALARY) MEDIAN(SALARY) BY DEPT.

Different functions and variables can be combined, as in

GRAPH /BAR = MIN(SALARY81) MAX(SALARY81)
 MIN(SALARY82) MAX(SALARY82) BY JOBCAT.

The effect of multiple summary functions on the structure of the charts is illustrated under
the discussion of specific chart types.

Overview

GRAPH generates a high-resolution chart by computing statistics from variables in the
working data file and constructing the chart according to your specification. The chart can be
a bar chart, pie chart, line chart, error bar chart, high-low-close histogram, scatterplot, or
Pareto chart. The chart is displayed where high-resolution display is available and can be
edited with a chart editor and saved as a chart file.

Options

Titles and Footnotes. You can specify a title, subtitle, and footnote for the chart using the
TITLE, SUBTITLE, and FOOTNOTE subcommands.

Chart Type. You can request a specific type of chart using the BAR, LINE, PIE, ERRORBAR,
HILO, HISTOGRAM, SCATTERPLOT, or PARETO subcommand.

Chart Content. You can specify an aggregated categorical chart using various aggregation
functions or a nonaggregated categorical chart using the VALUE function (see pp. 687–689
for a list of available functions).

Templates. You can specify a template, using the TEMPLATE subcommand, to override the
default chart attribute settings on your system.

690 GRAPH

Basic Specification

The basic specification is a chart type subcommand. By default, the generated chart will have
no title, subtitle, or footnote.

Subcommand Order

Subcommands can be specified in any order.

Syntax Rules

• Only one chart type subcommand can be specified.

• The function/variable specification is required for all subtypes of bar, line, error bar, hilo,
and Pareto charts; the variable specification is required for histograms and all subtypes of
scatterplots.

• The function/variable or variable specifications should match the subtype keywords. If
there is a discrepancy, GRAPH produces the default chart for the function/variable or vari-
able specification regardless of the specified keyword.

Operations

• GRAPH computes aggregated functions to obtain the values needed for the requested chart
and calculates an optimal scale for charting.

• The chart title, subtitle, and footnote are assigned as they are specified on TITLE, SUBTITLE,
and FOOTNOTE subcommands. If you do not use these subcommands, the chart title, sub-
title, and footnote are null. The split-file information is displayed as a subtitle if split-file is
in effect.

• GRAPH creates labels that provide information on the source of the values being plotted.
Labeling conventions vary for different subtypes. Where variable or value labels are
defined in the working data file, GRAPH uses the labels; otherwise, variable names or
values are used.

Limitations

Categorical charts cannot display fewer than 2 or more than 3000 categories.

Example

GRAPH /BAR=SUM (MURDER) BY CITY.

• This command generates a simple (default) bar chart showing the number of murders in
each city.

• The category axis (x axis) labels are defined by the value labels (or values if no value
labels exit) of the variable CITY.

GRAPH 691

• The default span (2) and sigma value (3) are used.

• Since no BY variable is specified, the x axis is labeled by sequence numbers.

TITLE, SUBTITLE, and FOOTNOTE Subcommands

TITLE, SUBTITLE, and FOOTNOTE specify lines of text placed at the top or bottom of the
chart.

• One or two lines of text can be specified for TITLE or FOOTNOTE, and one line of text can
be specified for SUBTITLE.

• Each line of text must be enclosed in apostrophes or quotation marks. The maximum
length of any line is 72 characters.

• The default font sizes and types are used for the title, subtitle, and footnote.

• By default, the title, subtitle, and footnote are left-aligned with the y axis.

• If you do not specify TITLE, the default title, subtitle, and footnote are null, which leaves
more space for the chart. If split-file processing is in effect, the split-file information is
provided as a default subtitle.

Example
GRAPH TITLE = ’Murder in Major U.S. Cities’
 /SUBTITLE=’per 100,000 people’
 /FOOTNOTE=’The above data was reported on August 26, 1987’
 /BAR=SUM(MURDER) BY CITY.

BAR Subcommand

BAR creates one of five types of bar charts using keywords SIMPLE, COMPOSITIONAL,
GROUPED, STACKED, or RANGE.

• Only one keyword can be specified, and it must be specified in the parentheses.

• When no keyword is specified, the default is either SIMPLE or GROUPED, depending on
the type of function/variable specification.

SIMPLE Simple bar chart. This is the default if no keyword is specified on the
BAR subcommand and the variables define a simple bar chart. A
simple bar chart can be defined by a single summary or count function
and a single BY variable, or by multiple summary functions and no BY
variable (see Figure 1 to Figure 4).

GROUPED Clustered bar chart. A clustered bar chart is defined by a single func-
tion and two BY variables, or by multiple functions and a single BY
variable. This is the default if no keyword is specified on the BAR
subcommand and the variables define a clustered bar chart (see Figure
5 to Figure 8).

STACKED Stacked bar chart. A stacked bar chart displays a series of bars, each
divided into segments stacked one on top of the other. The height of
each segment represents the value of the category. Like a clustered bar

692 GRAPH

chart, it is defined by a single function and two BY variables or by
multiple functions and a single BY variable (see Figure 9 to Figure 11).

RANGE Range bar chart. A range bar chart displays a series of floating bars.
The height of each bar represents the range of the category and its
position in the chart indicates the minimum and maximum values. A
range bar chart can be defined by a single function and two BY vari-
ables or by multiple functions and a single BY variable. If a variable
list is used as the argument for a function, the list must be of an even
number. If a second BY variable is used to define the range, the vari-
able must be dichotomous (see Figure 12 to Figure 14).

Figure 1 /BAR=COUNT BY JOBCAT

Specification: count_function BY var
 or: sum_function(var) BY var

y-axis title: fn name [+fn var label]

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each bar shows the number of cases in the indicated job categories.

Figure 2 /BAR=MEAN(SALBEG, SALNOW)

Specification: sum_function (varlist)

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: none

x-axis labels: fn var labels

One bar is produced for each variable, representing the summary function of that variable
across all cases.

GRAPH 693

Figure 3 /BAR=MEAN(SALBEG) MEDIAN(SALBEG) MEAN(SALNOW) MEDIAN(SALNOW)

Specification: sum_function list

y-axis title: Summary

y-axis labels: fn value scale

x-axis title: none

x-axis labels: fn names +var names

One bar is produced for each summary function. The arguments can be the same or different.

Figure 4 /BAR=VALUE(SALNOW) BY ID

Specification: value_function(var) [BY var]

y-axis title: value + var label

y-axis labels: fn value scale

x-axis title: BY var value labels

x-axis labels: BY var label

Each bar shows the value of a single case. If no BY variable is specified, the x-axis title will
be Case Number and the x-axis labels will be case numbers.

Figure 5 /BAR=COUNT BY JOBCAT BY SEX
Specification: count_function BY var1 BY var2
 or: sum_function(var) BY var1 BY var2

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name [+var label]

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY value labels

Cases are broken down into categories by VAR1 and then by VAR2. Each bar shows the valid
number of cases or the summary function value within each subcategory.

694 GRAPH

Figure 6 /BAR=MEAN(SALBEG SALNOW) BY JOBCAT

Specification: sum_function (varlist) BY var

Legend title: none

Legend labels: fn var labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: var label

x-axis labels: BY value labels

The variables are broken down into categories. Within a category, each bar shows the value
of the function for each variable.

Figure 7 /BAR=MEDIAN(SALNOW) MEAN(SALNOW) BY SEX

Specification: sum_function list BY var

Legend title: fn var label (if only one fn var)

Legend labels: fn name

y-axis title: none

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value label

The variable is broken down into categories. Within a category, each bar shows a different
function of the same variable.

Figure 8 /BAR=VALUE(SALBEG SALNOW) BY ID

Specification: value_function(varlist) [BY var]

Legend title: none

Legend labels: fn var name

y-axis title: value

y-axis labels: values

x-axis title: BY var label

x-axis labels: BY var value label

Each group shows one case identified by the category variable following BY. Each bar within
the case shows the value of one variable for that case.

GRAPH 695

Specification: count_function BY var1 BY var2
 or: sum_function(var) BY var1 BY var2

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name [+fn var label]

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

Each bar represents one subcategory defined by the two category variables. The bars are
stacked within each category defined by the first category variable.

Figure 9 /BAR(STACKED)=COUNT BY JOBCAT BY SEX

Figure 10 /BAR(STACKED)=SUM(THEFT AUTO BURGLARY) BY YEAR

Specification: sum_function (varlist) BY var

Legend title: none

Legend labels: fn var labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each bar represents the function value of one variable broken down into categories. Bars
within each category are stacked.

Figure 11 /BAR(STACKED)=VALUE(SALNOW FRINGE) BY ID

Specification: value_function(varlist)[BY var]

Legend title: none

Legend labels: var labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each bar shows the value of each variable for the indicated case. If no BY variable is speci-
fied, the x axis is labeled by case numbers and its title is Case Number.

696 GRAPH

Figure 12 /BAR(RANGE)=COUNT BY JOBCAT BY RACE

Specification: count_function BY var1 BY var2

Legend title: var2 label

Legend labels: var2 value labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: var1 label

x-axis labels: var1 value labels

The height of each bar represents the difference between the two categories defined by var2,
which must be dichotomous. The direction of difference, that is, whether nonwhite employees
in each category defined by var1 are more or less, is not shown.

Figure 13 /BAR(RANGE)=VALUE(SWI_HI SWI_LO) BY DAY

Specification: value_function(var1 var2)[BY var]

Legend title: none

Legend labels: var1 label–var2 label

y-axis title: none

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

The height of each bar represents the difference between the high and the low values of the
day. The position of each bar shows the fluctuation over the two-week period.

Specification: sum_function (varlist) BY var

Legend title: fn name

Legend labels: pairs of var labels

y-axis title: none

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Figure 14 /BAR(RANGE)=MEAN(SWI_HI SWI_LO GER_HI GER_LO CAN_HI CAN_LO) BY WEEK

The variable list must contain an even number of variables. Each pair of variables is plotted
as a separate series.

GRAPH 697

LINE Subcommand

LINE creates one of five types of line charts using keywords SIMPLE, MULTIPLE, DROP,
AREA, or DIFFERENCE.

• Only one keyword can be specified, and it must be specified in the parentheses.

• When no keyword is specified, the default is either SIMPLE or MULTIPLE, depending on
the type of function/variable specification.

SIMPLE Simple line chart. A simple line chart is defined by a single function and a
single BY variable or by multiple functions and no BY keyword. This is the
default if no keyword is specified on LINE and the data define a simple line
(see Figure 15 to Figure 17).

MULTIPLE Multiple line chart. A multiple line chart is defined by a single function and
two BY variables or by multiple functions and a single BY variable. This is the
default if no keyword is specified on LINE and the data define a multiple line
(see Figure 18 to Figure 20).

DROP Drop-line chart. A drop-line chart shows the difference between two or more
fluctuating variables. It is defined by a single function and two BY variables or
by multiple functions and a single BY variable (see Figure 21 to Figure 24).

AREA Area line chart. An area line chart fills the area beneath each line with a color
or pattern. When multiple lines are specified, the second line is the sum of the
first and second variables, the third line is the sum of the first, second, and
third variables, and so on. The specification is the same as that for a simple or
multiple line chart. Figure 25 to Figure 27 show area line charts with multiple
lines.

DIFFERENCE Difference line chart. A difference line chart fills the area between a pair of
lines. It highlights the difference between two variables or two groups. A
difference line chart is defined by a single function and two BY variables or
by two summary functions and a single BY variable. If a second BY variable
is used to define the two groups, the variable must be dichotomous (see Figure
28 to Figure 31).

Figure 15 /LINE=COUNT BY TIME

Specification: count_function BY var
 or: sum_function(var) BY var

y-axis title: fn name [+fn var label]

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each point on the line represents the number of valid cases for one category.

698 GRAPH

Figure 16 /LINE=MEAN(SPRING SUMMER FALL WINTER)

Specification: sum_function (varlist)

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: none

x-axis labels: fn var labels

Each point on the line shows the function value for one variable across all valid cases.

Figure 17 /LINE=VALUE(POUND) BY DAY

Specification: value_function (var) [BY var]

y-axis title: value + var name

y-axis labels: value labels

x-axis title: BY var label

x-axis label: BY var value labels

Each point on the line shows the value of a single case. If a BY variable is not specified, the
x-axis title will be Case Number and the x-axis labels will be the number of each case.

Figure 18 /LINE=COUNT BY TIME BY SEX

Specification: count_function BY var1 BY var2
 or: sum_function(var) BY var1 BY var2

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name [+fn var label]

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

Each line represents one category defined by the second BY variable. Each point on the line
shows the number of valid cases for one category defined by the first BY variable. Missing
values are indicated by unconnected lines.

GRAPH 699

Figure 19 /LINE=MEAN(THEFT AUTO BURGLARY) BY YEAR

Specification: sum_function (varlist) BY var

Legend title: none

Legend labels: fn var labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each line represents one variable. Each point on the line shows the value for one category.

Figure 20 /LINE=VALUE(SALBEG SALNOW) BY ID

Specification: value_function (varlist) [BY var]

Legend title: none

Legend labels: var labels

y-axis title: value

y-axis labels: values

x-axis title: BY var label

x-axis labels: BY var value labels

Each line represents one variable. Each point shows the value of each case for the variable.
If no BY variable is specified, the x-axis title will be Case Number and the x-axis labels will
be the number of each individual case.

Figure 21 LINE(DROP)=NEAN (SALBEG SALNOW) BY SEXRACE

Specification: sum_function (varlist) BY var

Legend title: none

Legend labels: var labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each line represents the difference in each sex and race category between summary function
values computed from the two variables. If more variables are specified, each will be repre-
sented by a symbol on the lines.

700 GRAPH

Figure 22 LINE(DROP)=MEAN(SALNOW) BY SEXRACE BY JOBCAT

Specification: sum_function BY var BY var

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name[+var label]

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

Each line represents the difference in each sex and race category between job categories.

Figure 23 LINE(DROP)=COUNT BY JOBCAT BY SEX

Specification: count_function BY var1 BY var2

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

Each line represents the difference in number of valid cases in each job category between
male and female.

Figure 24 LINE(DROP)=VALUE(SALBEG SALNOW) BY ID

Specification: value_function (varlist) [BY var]

Legend title: none

Legend labels: var labels

y-axis title: fn name

y-axis labels: value scale

x-axis title: BY var label

x-axis labels: BY var value labels

If no BY variable is specified, the x-axis title is Case Number and the x-axis labels are the
numbers of cases.

GRAPH 701

Figure 25 /LINE(AREA)=COUNT BY TIME

Specification: count_function BY var
 or: sum_function(var) BY var

y-axis title: fn name [+fn var label]

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

The area shows the number of valid cases for categories defined by the BY variable.

Figure 26 /LINE(AREA)=COUNT BY TIME BY SEX
Specification: count_function BY var1 BY var2
 or: sum_function(var) BY var1 BY var2

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name [+fn var label]

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

The two areas respectively represent the categories defined by the second BY variable.

Figure 27 /LINE(AREA)=SUM(VIOLENT PROPERTY) BY YEAR

Specification: sum_function (varlist) BY var

Legend title: none

Legend labels: fn var labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each area represents one function variable.

702 GRAPH

Figure 28 LINE(DIFFERENCE)=MEAN(SALBEG SALNOW) BY TIME

Specification: sum_function (varlist) BY var

Legend title: fn name

Legend labels: fn var labels

y-axis title: none

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Figure 29 LINE(DIFFERENCE)=MEAN(SALNOW) BY TIME BY SEX

Specification: sum_function(var) BY var BY var

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name [+var label]

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

The second BY variable must be dichotomous.

Figure 30 LINE(DIFFERENCE)=COUNT BY TIME BY SEX

Specification: count_function BY var BY var

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

The second BY variable must be dichotomous.

GRAPH 703

PIE Subcommand

PIE creates pie charts. A pie chart can be defined by a single function and a single BY variable
or by multiple summary functions and no BY variable. A pie chart divides a circle into slices.
The size of each slice indicates the value of the category relative to the whole (see Figure 32
to Figure 34). Cumulative functions (CUPCT, CUFREQ, and CUSUM) are inappropriate for pie
charts but are not prohibited. When specified, all cases except those in the last category are
counted more than once in the resulting pie.

Figure 31 LINE(DIFFERENCE)=VALUE(SALBEG SALNOW) BY TIME

Specification: value_function(var1 var2 [BY var]

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

If no BY variable is specified, the x-axis title is Case Number and x-axis labels are the case
numbers.

Figure 32 /PIE=COUNT BY JOBCAT

Specification: count_function BY var

Labels: BY var value labels

Each pie slice shows proportionally the number of cases in each category defined by the BY
variable.

704 GRAPH

HILO Subcommand

HILO creates one of two types of high-low-close charts using keywords SIMPLE or GROUPED.
High-low-close charts show the range and the closing (or average) value of a series.
• Only one keyword can be specified.

• When a keyword is specified, it must be specified in the parentheses.

• When no keyword is specified, the default is either SIMPLE or GROUPED, depending on
the type of function/variable specification.

SIMPLE Simple high-low-close chart. A simple high-low-close chart can be defined
by a single summary or count function and two BY variables, by three
summary functions and one BY variable, or by three values with one or no BY
variable. When a second BY variable is used to define a high-low-close chart,

Figure 33 /PIE=SUM(THEFT AUTO BURGLARY)

Specification: summary_function(varlist)

 Labels: fn var labels

Each pie slice proportionally shows the function value for one variable.

Figure 34 /PIE=VALUE(SALNOW) BY ID

Specification: value_function (var) [BY var]

Labels: BY variable value labels

Each pie slice shows the value of one case. If no BY variable is specified, the number of each
case is used as the label.

GRAPH 705

the variable must be dichotomous or trichotomous. If dichotomous, the first
value defines low and the second value defines high; if trichotomous, the first
value defines high, the second defines low and the third defines close (see
Figure 35 to Figure 37).

GROUPED Grouped high-low-close chart. A grouped high-low-close chart is defined by
a single function and two BY variables or by multiple functions and a single
BY variable. When a variable list is used for a single function, the list must
contain two or three variables. If it contains two variables, the first defines the
high value, and the second defines the low value. If it contains three variables,
the first defines the high value, the second defines the low value, and the third
defines the close value. Likewise, if multiple functions are specified, they
must be either in groups of two or in groups of three. The first function defines
the high value, the second defines the low value, and the third, if specified,
defines the close value (see Figure 38 and Figure 39).

Figure 35 HILO=MEAN(HIGH LOW CLOSE) BY DATE

Specification: sum_function(varlist) BY var

Legend title: fn name

Legend labels: fn var labels

y-axis title: none

y-axis labels: fn value scale

x-axis title: BY var label

x-axis labels: BY var value labels

You can specify three variables with one summary function or three summary functions
each with one variable. The line represents the close or average series defined by the func-
tion. If you specify only two, they are used as high and low values.

Figure 36 HILO=MEAN(VALUE) BY DATE BY HILO

Specification: sum_function(var) BY var BY var

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels

y-axis title: fn name+fn var label

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

The second BY variable must be dichotomous or trichotomous. If dichotomous, the first value
defines the high and the second value defines the low value. If trichotomous, the first value
defines the high value, the second value defines the low, and the last value defines the close.

706 GRAPH

Figure 37 HILO=VALUE(HIGH LOW CLOSE) BY TIME

Specification: value_function(varlist) BY var

Legend title: none

Legend labels: var labels

y-axis title: none

y-axis labels: value scale

x-axis title: BY var label

x-axis labels: BY var value labels

The first variable represents the high value, the second, the low value, and the third, the
close value.

Specification: sum_function list BY var BY var

Legend title: 2nd BY var label

Legend labels: 2nd BY var value labels
3rd fn name + var label

y-axis title: 1st 2 fn names+var labels

y-axis labels: fn value scale

x-axis title: 1st BY var label

x-axis labels: 1st BY var value labels

Figure 38 HILO=MEAN(HIGH) MEAN(LOW) MEAN(CLOSE) BY DATE BY COMPANY

The function-variable specification automatically produces a clustered high-low-close
chart. The function list must consist of two or three functions. If two functions are specified,
they represent the high and the low; if three functions are specified, they represent the high,
the low, and the close.

Specification: value_function list BY var

Legend title: none

Legend labels: var labels

y-axis title: none

y-axis labels: value scale

x-axis title: BY var label

x-axis labels: BY var value labels

Each function must have two or three variables to represent high and low values or high, low,
and close values. If no BY variable is specified, case numbers are used as x-axis labels.

Figure 39 HILO=VALUE(RH RL RA) VALUE(FH HL HA) VALUE(GH GL HA) BY WEEK

GRAPH 707

ERRORBAR Subcommand

ERRORBAR creates either a simple or a clustered error bar chart, depending on the variable
specification on the subcommand. A simple error bar chart is defined by one numeric vari-
able with or without a BY variable or a variable list. A clustered error bar chart is defined by
one numeric variable with two BY variables or a variable list with a BY variable (see Figure
40 to Figure 43).

Error bar charts can display confidence intervals, standard deviations, or standard errors of
the mean. To specify the statistics to be displayed, one of the following keywords is required:

CI value Display confidence intervals for mean. You can specify a confidence level
between 50 and 99.9. The default is 95.

STERROR n Display standard errors of mean. You can specify any positive number for n.
The default is 2.

STDDEV n Display standard deviations. You can specify any positive number for n. The
default is 2.

Figure 40 ERRORBAR=SALNOW BY SEXRACE

Specification: var by var

Legend title: none

Legend labels: none

y-axis title: display + var label

y-axis labels: value scale

x-axis title: BY var label

x-axis labels: BY var value labels

CI(95) is the default. Error bars can also display standard errors of the mean or standard devi-
ations if you specify the appropriate keyword in the parentheses.

Figure 41 ERRORBAR=FRINGE SALBEG SALNOW

Specification: varlist

Legend title: none

Legend labels: none

y-axis title: displayed statistics

y-axis labels: value scale

x-axis title: none

x-axis labels: var labels

CI(95) is the default. Error bars can also display standard errors of the mean or standard
deviations if you specify the appropriate keyword in the parentheses. Numbers of valid cases
for each variable are displayed.

708 GRAPH

SCATTERPLOT Subcommand

SCATTERPLOT produces two- or three-dimensional scatterplots. Multiple two-dimensional
plots can be plotted within the same frame or as a scatterplot matrix. Only variables can be
specified; aggregated functions cannot be plotted. When SCATTERPLOT is specified without
keywords, the default is BIVARIATE.

BIVARIATE One two-dimensional scatterplot. A basic scatterplot is defined by two vari-
ables separated by the keyword WITH (see Figure 44 to Figure 46). This is the
default when SCATTERPLOT is specified without keywords.

OVERLAY Multiple plots drawn within the same frame. Specify a variable list on both
sides of WITH. By default, one scatterplot is drawn for each combination of
variables on the left of WITH with variables on the right (see Figure 47). You
can specify PAIR in parentheses to indicate that the first variable on the left is
paired with the first variable on the right, the second variable on the left with
the second variable on the right, and so on. All plots are drawn within the
same frame and are differentiated by color or pattern. The axes are scaled to
accommodate the minimum and maximum values across all variables.

Specification: var1 BY var2 BY var3

Legend title: var3 label

Legend labels: var3 value labels+Mean
+var1 label

y-axis title: display+var1 label

y-axis labels: value scale

x-axis title: var2 label

x-axis labels: var2 value labels

Figure 42 ERRORBAR=SALNOW BY JOBCAT BY SEXRACE

Figure 43 ERRORBAR=FRINGE SALBEG SALNOW BY SEX

Specification: varlist BY var

Legend title: none

Legend labels: Mean+var labels

y-axis title: displayed statistics

y-axis labels: values

x-axis title: BY var label

x-axis labels: BY var value labels

GRAPH 709

MATRIX Scatterplot matrix. Specify at least two variables. One scatterplot is drawn for
each combination of the specified variables above the diagonal and a second
below the diagonal in a square matrix (see Figure 48).

XYZ One three-dimensional plot. Specify three variables, each separated from the
next with the keyword WITH (see Figure 49).

• If you specify a control variable using BY, GRAPH produces a control scatterplot where
values of the BY variable are indicated by different colors or patterns. A control variable
cannot be specified for overlay plots.

• You can display the value label of an identification variable at the plotting position for
each case by adding BY var (NAME) or BY var (IDENTIFY) to the end of any valid scatter-
plot specification. When the chart is created, NAME turns the labels on while IDENTIFY
turns the labels off. You can use the Point Selection tool to turn individual labels off or
on in the scatterplot. Figure 46 shows a simple scatterplot with labels turned on.

Figure 44 /SCATTERPLOT=PROFITS WITH COMPS

Specification: var1 WITH var2
 [BY var] [BY var (NAME)]

y-axis title: var2 var label

y-axis labels: scaled values

x-axis title: var1 var label

x-axis labels: scaled values

Figure 45 /SCATTERPLOT=SALBEG WITH SALNOW BY SEX

Specification: var1 WITH var2 BY var3*

Legend title marker var (var3) label

Legend labels: marker var value [label]

y-axis title: var2 var label

y-axis labels: scaled values

x-axis title: var1 var label

x-axis labels: scaled values

*VAR3 is a marker variable. For specification of a label variable, see Figure 46.

710 GRAPH

Figure 46 /SCATTERPLOT=JOBCAT WITH SALNOW BY ID (NAME)

Specification: var1 WITH var2 BY var3(NAME)*

Point labels: Label var (VAR3) value labels

y-axis title: var2 var label

y-axis labels: scaled values

x-axis title: var1 var label

x-axis labels: scaled values

*When keyword NAME is specified, VAR3 serves as a label variable. For the specification of
a marker variable, see Figure 45. You can specify both a marker variable and a label variable
for a simple scatterplot.

Figure 47 /SCATTERPLOT(OVERLAY)=VERBAL MATH WITH AARATIO)

Specification: varlist WITH varlist [BY var(NAME)]*

Legend title: none

Legend labels: pairs of var names

y-axis title: none

y-axis labels: scaled values**

x-axis title: none

x-axis labels: scaled values**

*You can specify only a label variable after BY for an overlay scatterplot. The keyword NAME
is required if a BY variable is specified.
**Values are scaled to accommodate the maximum and minimum values of each pair.

Figure 48 /SCATTERPLOT(MATRIX)=SCORE COST SFRATIO

Specification: varlist [BY var] [BY var(NAME)]*

Legend title: marker var name

Legend labels: marker var value labels

Point labels: label value labels

Diagonal titles: var labels

*Matrix scatterplots can have both marker variable and label variable specifications.

GRAPH 711

HISTOGRAM Subcommand

HISTOGRAM creates a histogram (see Figure 50 and Figure 51).
• Only one variable can be specified on this subcommand.

• GRAPH divides the values of the variable into several evenly spaced intervals and produces
a bar chart showing the number of times the values for the variable fall within each interval.

• You can request a normal distribution line by specifying the keyword NORMAL in paren-
theses (see Figure 51).

Specification:
 xvar WITH yvar WITH zvar [BY var] [BY var(NAME)]

Legend title: 1st BY var label

Legend labels: 1st BY var value labels

Point labels: 2nd BY var value labels

x-axis title: xvar label

y-axis title: yvar label

z-axis title: zvar label

Figure 49 /SCATTERPLOT(XYZ)=JOBCAT WITH SALARY WITH EDLEVEL BY SEX BY ID (NAME)

*3-D scatterplots allow both marker variable and label variable specifications.

Figure 50 /HISTOGRAM=RATIO

Specification: var

y-axis title: none

y-axis label: number of valid cases

x-axis title: var label

x-axis label: scaled values

The standard deviation, mean, and number of valid cases are displayed.

712 GRAPH

PARETO Subcommand

PARETO creates one of two types of Pareto charts. A Pareto chart is used in quality control
to identify the few problems that create the majority of nonconformities. Only SUM, VALUE,
and COUNT can be used with the PARETO subcommand.

Before plotting, PARETO sorts the plotted values in descending order by category. The right
axis is always labeled by the cumulative percentage from 0 to 100. By default, a cumulative
line is displayed. You can eliminate the cumulative line or explicitly request it by specifying
one of the following keywords:

CUM Display the cumulative line. This is the default.

NOCUM Do not display the cumulative line.

You can request a simple or a stacked Pareto chart by specifying one of the following
keywords and define it with appropriate function/variable specifications:

SIMPLE Simple Pareto chart. Each bar represents one type of nonconformity. A
simple Pareto chart can be defined by a single variable, a single VALUE func-
tion, a single SUM function with a BY variable, or a SUM function with a vari-
able list as an argument with no BY variable (see Figure 52 and Figure 53).

STACKED Stacked Pareto chart. Each bar represents one or more types of nonconformity
within the category. A stacked Pareto chart can be defined by a single SUM
function with two BY variables, a single variable with a BY variable, a VALUE
function with a variable list as an argument, or a SUM function with a variable
list as an argument and a BY variable (see Figure 54 and Figure 55).

Figure 51 /HISTOGRAM(NORMAL)=VERBAL

Specification: var

y-axis title: none

y-axis labels: number of valid cases

x-axis title: var label

x-axis labels: scaled values

The normal distribution line as well as the standard deviation, mean, and number of valid cases
are displayed.

GRAPH 713

Figure 52 PARETO(CUM SIMPLE)=SUM(DEF1 TO DEF7)

Specification: sum_fun (varlist)

Right axis title: Percent

Right axis labels: Cumulative percentage

y-axis title: Count

y-axis labels: defect count

x-axis title: none

x-axis labels: var labels

The data are sorted in descending order. The cumulative line is displayed. The first two
defects account for over 75% of the returned products.

Figure 53 PARETO(CUM SIMPLE)=SUM(DEFECTS) BY SHIFT

The data are sorted in descending order. The cumulative line is displayed. The work shifts
7, 3, and 9 account for 60% of the defective products.

Specification: sum_fun (var) BY var

Right axis title: Percent

Right axis labels: Cumulative percentage

y-axis title: fn var label

y-axis labels: defect count

x-axis title: BY var label

x-axis labels: var labels

Figure 54 PARETO(CUM STACKED)=SUM(DEF1 TO DEF5) BY SHIFT

Specification: sum_fn(varlist) BY var

Legend title: none

Legend labels: fn variable labels

y-axis title: Count

y-axis labels: defect count

x-axis title: BY var label

x-axis labels: BY var value labels

The Pareto chart shows the work shifts that are responsible for most of the defects. It also
shows the type of defects each work shift produces.

714 GRAPH

TEMPLATE Subcommand

TEMPLATE uses an existing chart as a template and applies it to the chart requested by the
current GRAPH command.

• The specification on TEMPLATE is a chart file saved during a previous session.

• The general rule of application is that the template overrides the default setting, but the
specifications on the current GRAPH command override the template. Nonapplicable ele-
ments and attributes are ignored.

• Three types of elements and attributes can be applied from a chart template: those depen-
dent on data, those dependent on the chart type, and those dependent on neither.

Elements and Attributes Independent of Chart Types or Data

Elements and attributes common to all chart types are always applied unless overridden by
the specifications on the current GRAPH command.

• The title, subtitle, and footnote, including text, color, font type and size, and line align-
ment are always applied. To give your chart a new title, subtitle, or footnote, specify
the text on the TITLE, SUBTITLE, or FOOTNOTE subcommand. You cannot change other
attributes.

• The outer frame of the chart, including line style, color, and fill pattern, is always applied.
The inner frame is applied except for those charts that do not have an inner frame. The
template overrides the system default.

• Label formats are applied wherever applicable. The template overrides the system default.
Label text, however, is not applied. GRAPH automatically provides axis labels according
to the function/variable specification.

• Legends and the legend title attributes, including color, font type and size, and align-
ment, are applied provided the current chart requires legends. The legend title text,
however, is not applied. GRAPH provides the legend title according to the function/vari-
able specification.

Figure 55 PARETO(CUM STACKED)=SUM(DEFECTS) BY SHIFT BY TYPE

Specification: sum_fn(var1) BY var2 BY var3

Legend title: var3 label

Legend labels: var3 value labels

y-axis title: var1 label

y-axis labels: defect count

x-axis title: var2 label

x-axis labels: var2 value labels

The stacks are defined by the second BY variable (TYPE); the categories are defined by the
first BY variable (SHIFT).

GRAPH 715

Elements and Attributes Dependent on Chart Type

Elements and attributes dependent on the chart type are those that exist only in a specific
chart type. They include bars (in bar charts), lines and areas (in line charts), markers (in scat-
terplots), boxes (in boxplots), and pie sectors (in pie charts). These elements and their
attributes are usually applied only when the template chart and the requested chart are of the
same type. Some elements or their attributes may override the default settings across chart
type.

• Color and pattern are always applied except for pie charts. The template overrides the
system default.

• Scale axis lines are applied across chart types. Scale axis range is never applied.

• Interval axis lines are applied from interval axis to interval axis. Interval axis bins are
never applied.

• If the template is a 3-D bar chart and you request a chart with one category axis, attributes
of the first axis are applied from the template. If you request a 3-D bar chart and the tem-
plate is not a 3-D chart, no category axis attributes are applied.

Elements and Attributes Dependent on Data

Data-dependent elements and attributes are applied only when the template and the requested
chart are of the same type and the template has at least as many series assigned to the same
types of chart elements as the requested chart.

• Category attributes and elements, including fill, border, color, pattern, line style, weight
of pie sectors, pie sector explosion, reference lines, projection lines, and annotations, are
applied only when category values in the requested chart match those in the template.

• The attributes of data-related elements with on/off states are always applied. For example,
the line style, weight, and color of a quadratic fit in a simple bivariate scatterplot are
applied if the requested chart is also a simple bivariate scatterplot. The specification on
the GRAPH command, for example, HISTOGRAM(NORMAL), overrides the applied on/off
status; in this case, a normal curve is displayed regardless of whether the template dis-
plays a normal curve.

• In bar, line, and area charts, the assignment of series to bars, lines, and areas is not applied.

• Case weighting status for histograms and scatterplots is not applied. You must turn
weighting on or off before specifying the GRAPH command.

MISSING Subcommand

MISSING controls the treatment of missing values in the chart drawn by GRAPH.

• The default is LISTWISE.

• The MISSING subcommand has no effect on variables used with the VALUE function to
create nonaggregated charts. User-missing and system-missing values create empty cells.

• LISTWISE and VARIABLE are alternatives and apply to variables used in summary functions
for a chart or to variables being plotted in a scatterplot.

716 GRAPH

• REPORT and NOREPORT are alternatives and apply only to category variables. They
control whether categories and series with missing values are created. NOREPORT is the
default.

• INCLUDE and EXCLUDE are alternatives and apply to both summary and category vari-
ables. EXCLUDE is the default.

• When a case has a missing value for the name variable but contains valid values for the
dependent variable in a scatterplot, the case is always included. User-missing values are
displayed as point labels; system-missing values are not displayed.

• For an aggregated categorical chart, if every aggregated series is empty in a category, the
empty category is excluded.

• A nonaggregated categorical chart created with the VALUE function can contain com-
pletely empty categories. There are always as many categories as rows of data. However,
at least one nonempty cell must be present; otherwise the chart is not created.

LISTWISE Listwise deletion of cases with missing values. A case with a missing value
for any dependent variable is excluded from computations and graphs.

VARIABLE Variable-wise deletion. A case is deleted from the analysis only if it has a
missing value for the dependent variable being analyzed.

NOREPORT Suppress missing-value categories. This is the default.

REPORT Report and graph missing-value categories.

EXCLUDE Exclude user-missing values. Both user- and system-missing values for
dependent variables are excluded from computations and graphs. This is
the default.

INCLUDE Include user-missing values. Only system-missing values for dependent vari-
ables are excluded from computations and graphs.

717

HILOGLINEAR

HILOGLINEAR is available in the Advanced Models option.

HILOGLINEAR {varlist} (min,max) [varlist ...]
{ALL }

[/METHOD [= BACKWARD]]

[/MAXORDER = k]

[/CRITERIA = [CONVERGE({0.25**})] [ITERATE({20**})] [P({0.05**})]
{n } {n } {prob }

[DELTA({0.5**})] [MAXSTEPS({10**})]
{d } {n }

 [DEFAULT]]

[/CWEIGHT = {varname }]
{(matrix)}

[/PRINT = {[FREQ**] [RESID**] [ESTIM**][ASSOCIATION**]}]
 {DEFAULT** }

{ALL }
 {NONE }

[/PLOT = [{NONE** }]
 {DEFAULT }

 {[RESID] [NORMPROB]}
 {ALL }

[/MISSING = [{EXCLUDE**}]]
 {INCLUDE }

[/DESIGN = effectname effectname*effectname ...]

** Default if subcommand or keyword is omitted.

Example
HILOGLINEAR V1(1,2) V2(1,2)

/DESIGN=V1*V2.

Overview

HILOGLINEAR fits hierarchical loglinear models to multidimensional contingency tables
using an iterative proportional-fitting algorithm. HILOGLINEAR also estimates parameters
for saturated models. These techniques are described in Everitt (1977), Bishop et al.
(1975), and Goodman (1978). HILOGLINEAR is much more efficient for these models than
the LOGLINEAR procedure because HILOGLINEAR uses an iterative proportional-fitting
algorithm rather than the Newton-Raphson method used in LOGLINEAR.

718 HILOGLINEAR

Options

Design Specification. You can request automatic model selection using backward elimination
with the METHOD subcommand. You can also specify any hierarchical design and request
multiple designs using the DESIGN subcommand.

Design Control. You can control the criteria used in the iterative proportional-fitting and model-
selection routines with the CRITERIA subcommand. You can also limit the order of effects in
the model with the MAXORDER subcommand and specify structural zeros for cells in the
tables you analyze with the CWEIGHT subcommand.

Display and Plots. You can select the display for each design with the PRINT subcommand.
For saturated models, you can request tests for different orders of effects as well. With the
PLOT subcommand, you can request residuals plots or normal probability plots of residuals.

Basic Specification

• The basic specification is a variable list with at least two variables followed by their min-
imum and maximum values.

• HILOGLINEAR estimates a saturated model for all variables in the analysis.

• By default, HILOGLINEAR displays parameter estimates, measures of partial association,
goodness of fit, and frequencies for the saturated model.

Subcommand Order

• The variable list must be specified first.
• Subcommands affecting a given DESIGN must appear before the DESIGN subcommand.

Otherwise, subcommands can appear in any order.

• MISSING can be placed anywhere after the variable list.

Syntax Rules

• DESIGN is optional. If DESIGN is omitted or the last specification is not a DESIGN sub-
command, a default saturated model is estimated.

• You can specify multiple PRINT, PLOT, CRITERIA, MAXORDER, and CWEIGHT subcom-
mands. The last of each type specified is in effect for subsequent designs.

• PRINT, PLOT, CRITERIA, MAXORDER, and CWEIGHT specifications remain in effect until
they are overridden by new specifications on these subcommands.

• You can specify multiple METHOD subcommands, but each one affects only the next
design.

• MISSING can be specified only once.

HILOGLINEAR 719

Operations

• HILOGLINEAR builds a contingency table using all variables on the variable list. The table
contains a cell for each possible combination of values within the range specified for each
variable.

• HILOGLINEAR assumes that there is a category for every integer value in the range of each
variable. Empty categories waste space and can cause computational problems. If there
are empty categories, use the RECODE command to create consecutive integer values for
categories.

• Cases with values outside the range specified for a variable are excluded.

• If the last subcommand is not a DESIGN subcommand, HILOGLINEAR displays a warning
and generates the default model. This is the saturated model unless MAXORDER is speci-
fied. This model is in addition to any that are explicitly requested.

• If the model is not saturated (for example, when MAXORDER is less than the number of
factors), only the goodness of fit and the observed and expected frequencies are given.

• The display uses the WIDTH subcommand defined on the SET command. If the defined
width is less than 132, some portions of the display may be deleted.

Limitations

The HILOGLINEAR procedure cannot estimate all possible frequency models, and it produces
limited output for unsaturated models.

• It can estimate only hierarchical loglinear models.

• It treats all table variables as nominal. (You can use LOGLINEAR to fit nonhierarchical
models to tables involving variables that are ordinal.)

• It can produce parameter estimates for saturated models only (those with all possible
main-effect and interaction terms).

• It can estimate partial associations for saturated models only.

• It can handle tables with no more than 10 factors.

Example

HILOGLINEAR V1(1,2) V2(1,2) V3(1,3) V4(1,3)
/DESIGN=V1*V2*V3, V4.

• HILOGLINEAR builds a 2 × 2 × 3 × 3 contingency table for analysis.

• DESIGN specifies the generating class for a hierarchical model. This model consists of
main effects for all four variables, two-way interactions among V1, V2, and V3, and the
three-way interaction term V1 by V2 by V3.

720 HILOGLINEAR

Variable List

The required variable list specifies the variables in the analysis. The variable list must precede
all other subcommands.

• Variables must be numeric and have integer values. If a variable has a fractional value,
the fractional portion is truncated.

• Keyword ALL can be used to refer to all user-defined variables in the working data file.
• A range must be specified for each variable, with the minimum and maximum values

separated by a comma and enclosed in parentheses.

• If the same range applies to several variables, the range can be specified once after the
last variable to which it applies.

• If ALL is specified, all variables must have the same range.

METHOD Subcommand

By default, HILOGLINEAR tests the model specified on the DESIGN subcommand (or the
default model) and does not perform any model selection. All variables are entered and none
are removed. Use METHOD to specify automatic model selection using backward elimination
for the next design specified.

• You can specify METHOD alone or with the keyword BACKWARD for an explicit
specification.

• When the backward-elimination method is requested, a step-by-step output is displayed
regardless of the specification on the PRINT subcommand.

• METHOD affects only the next design.

BACKWARD Backward elimination. Perform backward elimination of terms in the model.
All terms are entered. Those that do not meet the P criterion specified on the
CRITERIA subcommand (or the default P) are removed one at a time.

MAXORDER Subcommand

MAXORDER controls the maximum order of terms in the model estimated for subsequent
designs. If MAXORDER is specified, HILOGLINEAR tests a model only with terms of that order
or less.
• MAXORDER specifies the highest-order term that will be considered for the next design.

MAXORDER can thus be used to abbreviate computations for the BACKWARD method.

• If the integer on MAXORDER is less than the number of factors, parameter estimates and
measures of partial association are not available. Only the goodness of fit and the
observed and expected frequencies are displayed.

• You can use MAXORDER with backward elimination to find the best model with terms of
a certain order or less. This is computationally much more efficient than eliminating
terms from the saturated model.

HILOGLINEAR 721

Example
HILOGLINEAR V1 V2 V3(1,2)

/MAXORDER=2
/DESIGN=V1 V2 V3
/DESIGN=V1*V2*V3.

• HILOGLINEAR builds a 2 × 2 × 2 contingency table for V1, V2, and V3.

• MAXORDER has no effect on the first DESIGN subcommand because the design requested
considers only main effects.

• MAXORDER restricts the terms in the model specified on the second DESIGN subcom-
mand to two-way interactions and main effects.

CRITERIA Subcommand

Use the CRITERIA subcommand to change the values of constants in the iterative proportional-
fitting and model-selection routines for subsequent designs.

• The default criteria are in effect if the CRITERIA subcommand is omitted (see below).
• You cannot specify the CRITERIA subcommand without any keywords.

• Specify each CRITERIA keyword followed by a criterion value in parentheses. Only those
criteria specifically altered are changed.

• You can specify more than one keyword on CRITERIA, and they can be in any order.

DEFAULT Reset parameters to their default values. If you have specified criteria other
than the defaults for a design, use this keyword to restore the defaults for
subsequent designs.

CONVERGE(n) Convergence criterion. The default is times the largest cell size, or
0.25, whichever is larger.

ITERATE(n) Maximum number of iterations. The default is 20.

P(n) Probability for change in chi-square if term is removed. Specify a value
between (but not including) 0 and 1 for the significance level. The default
is 0.05. P is in effect only when you request BACKWARD on the METHOD
subcommand.

MAXSTEPS(n) Maximum number of steps for model selection. Specify an integer between
1 and 99, inclusive. The default is 10.

DELTA(d) Cell delta value. The value of delta is added to each cell frequency for the first
iteration when estimating saturated models; it is ignored for unsaturated
models. The default value is 0.5. You can specify any decimal value between
0 and 1 for d. HILOGLINEAR does not display parameter estimates or the cova-
riance matrix of parameter estimates if any zero cells (either structural or
sampling) exist in the expected table after delta is added.

CWEIGHT Subcommand

CWEIGHT specifies cell weights for a model. CWEIGHT is typically used to specify structural
zeros in the table. You can also use CWEIGHT to adjust tables to fit new margins.

10 3–

722 HILOGLINEAR

• You can specify the name of a variable whose values are cell weights, or provide a matrix
of cell weights enclosed in parentheses.

• If you use a variable to specify cell weights, you are allowed only one CWEIGHT sub-
command.

• If you specify a matrix, you must provide a weight for every cell in the contingency table,
where the number of cells equals the product of the number of values of all variables.

• Cell weights are indexed by the values of the variables in the order in which they are spec-
ified on the variable list. The index values of the rightmost variable change the most
quickly.

• You can use the notation to indicate that cell weight cw is repeated n times in the
matrix.

Example
HILOGLINEAR V1(1,2) V2(1,2) V3(1,3)

/CWEIGHT=CELLWGT
/DESIGN=V1*V2, V2*V3, V1*V3.

• This example uses the variable CELLWGT to assign cell weights for the table. Only one
CWEIGHT subcommand is allowed.

Example
HILOGLINEAR V4(1,3) V5(1,3)

/CWEIGHT=(0 1 1 1 0 1 1 1 0)
/DESIGN=V4, V5.

• The HILOGLINEAR command sets the diagonal cells in the model to structural zeros. This
type of model is known as a quasi-independence model.

• Because both V4 and V5 have three values, weights must be specified for nine cells.
• The first cell weight is applied to the cell in which V4 is 1 and V5 is 1; the second weight

is applied to the cell in which V4 is 1 and V5 is 2; and so on.

Example
HILOGLINEAR V4(1,3) V5(1,3)

/CWEIGHT=(0 3*1 0 3*1 0)
/DESIGN=V4,V5.

• This example is the same as the previous example except that the n*cw notation is used.

n*cw

HILOGLINEAR 723

Example
* An Incomplete Rectangular Table

DATA LIST FREE / LOCULAR RADIAL FREQ.
WEIGHT BY FREQ.
BEGIN DATA
1 1 462
1 2 130
1 3 2
1 4 1
2 1 103
2 2 35
2 3 1
2 4 0
3 5 614
3 6 138
3 7 21
3 8 14
3 9 1
4 5 443
4 6 95
4 7 22
4 8 8
4 9 5
END DATA.
HILOGLINEAR LOCULAR (1,4) RADIAL (1,9)
 /CWEIGHT=(4*1 5*0 4*1 5*0 4*0 5*1 4*0 5*1)
 /DESIGN LOCULAR RADIAL.

• This example uses aggregated table data as input.

• The DATA LIST command defines three variables. The values of LOCULAR and RADIAL
index the levels of those variables, so that each case defines a cell in the table. The values
of FREQ are the cell frequencies.

• The WEIGHT command weights each case by the value of the variable FREQ. Because
each case represents a cell in this example, the WEIGHT command assigns the frequencies
for each cell.

• The BEGIN DATA and END DATA commands enclose the inline data.

• The HILOGLINEAR variable list specifies two variables. LOCULAR has values 1, 2, 3, and
4. RADIAL has integer values 1 through 9.

• The CWEIGHT subcommand identifies a block rectangular pattern of cells that are logi-
cally empty. There is one weight specified for each cell of the 36-cell table.

• In this example, the matrix form needs to be used in CWEIGHT because the structural
zeros do not appear in the actual data. (For example, there is no case corresponding to
LOCULAR=1, RADIAL=5.)

• The DESIGN subcommand specifies main effects only for LOCULAR and RADIAL. Lack of
fit for this model indicates an interaction of the two variables.

• Because there is no PRINT or PLOT subcommand, HILOGLINEAR produces the default
output for an unsaturated model.

724 HILOGLINEAR

PRINT Subcommand

PRINT controls the display produced for the subsequent designs.

• If PRINT is omitted or included with no specifications, the default display is produced.

• If any keywords are specified on PRINT, only output specifically requested is displayed.

• HILOGLINEAR displays Pearson and likelihood-ratio chi-square goodness-of-fit tests for
models. For saturated models, it also provides tests that the k-way effects and the k-way
and higher-order effects are 0.

• Both adjusted and unadjusted degrees of freedom are displayed for tables with sampling
or structural zeros. K-way and higher-order tests use the unadjusted degrees of freedom.

• The unadjusted degrees of freedom are not adjusted for zero cells, and they estimate the
upper bound of the true degrees of freedom. These are the same degrees of freedom you
would get if all cells were filled.

• The adjusted degrees of freedom are calculated from the number of non-zero-fitted cells
minus the number of parameters that would be estimated if all cells were filled (that is,
unadjusted degrees of freedom minus the number of zero-fitted cells). This estimate of
degrees of freedom may be too low if some parameters do not exist because of zeros.

DEFAULT Default displays. This option includes FREQ and RESID output for nonsat-
urated models, and FREQ, RESID, ESTIM, and ASSOCIATION output for satu-
rated models. For saturated models, the observed and expected frequencies
are equal, and the residuals are zeros.

FREQ Observed and expected cell frequencies.

RESID Raw and standardized residuals.

ESTIM Parameter estimates for a saturated model.

ASSOCIATION Partial associations. You can request partial associations of effects only
when you specify a saturated model. This option is computationally expen-
sive for tables with many factors.

ALL All available output.

NONE Design information and goodness-of-fit statistics only. Use of this option
overrides all other specifications on PRINT.

PLOT Subcommand

Use PLOT to request residuals plots.

• If PLOT is included without specifications, standardized residuals and normal probability
plots are produced.

• No plots are displayed for saturated models.

• If PLOT is omitted, no plots are produced.

RESID Standardized residuals by observed and expected counts.

NORMPLOT Normal probability plots of adjusted residuals.

HILOGLINEAR 725

NONE No plots. Specify NONE to suppress plots requested on a previous PLOT
subcommand. This is the default if PLOT is omitted.

DEFAULT Default plots. Includes RESID and NORMPLOT. This is the default when
PLOT is specified without keywords.

ALL All available plots.

MISSING Subcommand

By default, a case with either system-missing or user-missing values for any variable named
on the HILOGLINEAR variable list is omitted from the analysis. Use MISSING to change the
treatment of cases with user-missing values.

• MISSING can be named only once and can be placed anywhere following the variable list.

• MISSING cannot be used without specifications.

• A case with a system-missing value for any variable named on the variable list is always
excluded from the analysis.

EXCLUDE Delete cases with missing values. This is the default if the subcommand is
omitted. You can also specify keyword DEFAULT.

INCLUDE Include user-missing values as valid. Only cases with system-missing
values are deleted.

DESIGN Subcommand

By default, HILOGLINEAR uses a saturated model that includes all variables on the variable
list. The model contains all main effects and interactions for those variables. Use DESIGN to
specify a different generating class for the model.

• If DESIGN is omitted or included without specifications, the default model is estimated.
When DESIGN is omitted, SPSS issues a warning message.

• To specify a design, list the highest-order terms, using variable names and asterisks (*) to
indicate interaction effects.

• In a hierarchical model, higher-order interaction effects imply lower-order interaction and
main effects. V1*V2*V3 implies the three-way interaction V1 by V2 by V3, two-way
interactions V1 by V2, V1 by V3, and V2 by V3, and main effects for V1, V2, and V3. The
highest-order effects to be estimated are the generating class.

• Any PRINT, PLOT, CRITERIA, METHOD, and MAXORDER subcommands that apply to a
DESIGN subcommand must appear before it.

• All variables named on DESIGN must be named or implied on the variable list.
• You can specify more than one DESIGN subcommand. One model is estimated for each

DESIGN subcommand.

• If the last subcommand on HILOGLINEAR is not DESIGN, the default model will be esti-
mated in addition to models explicitly requested. SPSS issues a warning message for a
missing DESIGN subcommand.

726 HILOGLINEAR

References

Bishop, Y. M. M., S. E. Fienberg, and P. W. Holland. 1975. Discrete multivariate analysis: The-
ory and practice. Cambridge, Mass.: MIT Press.

Everitt, B. S. 1977. The Analysis of contingency tables. Chapman and Hall.
Goodman, L. A. 1978. Analyzing qualitative/categorical data. New York: University Press of

America.

727

HOMALS

HOMALS is available in the Categories option.

HOMALS VARIABLES=varlist(max)

[/ANALYSIS=varlist]

[/NOBSERVATIONS=value]

[/DIMENSION={2** }]
{value}

[/MAXITER={100**}]
{value}

[/CONVERGENCE={.00001**}]
{value }

[/PRINT=[DEFAULT**] [FREQ**] [EIGEN**] [DISCRIM**]
[QUANT**] [OBJECT] [HISTORY] [ALL] [NONE]]

[/PLOT=[NDIM=({1, 2 }**)]
{value, value}
{ALL, MAX }

[QUANT**[(varlist)][(n)]] [OBJECT**[(varlist)][(n)]]
[DEFAULT**[(n)]] [DISCRIM[(n)]] [ALL[(n)]] [NONE]]

[/SAVE=[rootname] [(value)]]

[/MATRIX=OUT({* })]
{file}

**Default if subcommand or keyword is omitted.

Overview

HOMALS (homogeneity analysis by means of alternating least squares) estimates category
quantifications, object scores, and other associated statistics that separate categories (levels)
of nominal variables as much as possible and divide cases into homogeneous subgroups.

Options

Data and variable selection. You can use a subset of the variables in the analysis and restrict
the analysis to the first n observations.

Number of dimensions. You can specify how many dimensions HOMALS should compute.

Iterations and convergence. You can specify the maximum number of iterations and the value
of a convergence criterion.

Display output. The output can include all available statistics, just the default frequencies,
eigenvalues, discrimination measures and category quantifications, or just the specific sta-
tistics you request. You can also control which statistics are plotted and specify the number
of characters used in plot labels.

728 Syntax Reference

Saving scores. You can save object scores in the working data file.

Writing matrices. You can write a matrix data file containing category quantifications for use
in further analyses.

Basic Specification

• The basic specification is HOMALS and the VARIABLES subcommand. By default,
HOMALS analyzes all of the variables listed for all cases and computes two solutions.
Frequencies, eigenvalues, discrimination measures, and category quantifications are
displayed and category quantifications and object scores are plotted.

Subcommand Order

• Subcommands can appear in any order.

Syntax Rules

• If ANALYSIS is specified more than once, HOMALS is not executed. For all other subcom-
mands, if a subcommand is specified more than once, only the last occurrence is executed.

Operations

• HOMALS treats every value in the range 1 to the maximum value specified on VARIABLES
as a valid category. If the data are not sequential, the empty categories (categories with
no valid data) are assigned zeros for all statistics. You may want to use RECODE or
AUTORECODE before HOMALS to get rid of these empty categories and avoid the
unnecessary output (see the SPSS Syntax Reference Guide for more information on
AUTORECODE and RECODE).

Limitations

• String variables are not allowed; use AUTORECODE to recode string variables into numeric
variables.

• The data (category values) must be positive integers. Zeros and negative values are treated
as system-missing, which means that they are excluded from the analysis. Fractional
values are truncated after the decimal and are included in the analysis. If one of the levels
of a variable has been coded 0 or a negative value and you want to treat it as a valid cate-
gory, use the AUTORECODE or RECODE command to recode the values of that variable.

• HOMALS ignores user-missing value specifications. Positive user-missing values less
than the maximum value specified on the VARIABLES subcommand are treated as valid
category values and are included in the analysis. If you do not want the category included,
use COMPUTE or RECODE to change the value to something outside of the valid range.

HOMALS 729

Values outside of the range (less than 1 or greater than the maximum value) are treated as
system-missing and are excluded from the analysis.

Example

HOMALS VARIABLES=ACOLA(2) BCOLA(2) CCOLA(2) DCOLA(2)
 /PRINT=FREQ EIGEN QUANT OBJECT.

• The four variables are analyzed using all available observations. Each variable has two
categories, 1 and 2.

• The PRINT subcommand lists the frequencies, eigenvalues, category quantifications, and
object scores.

• By default, plots of the category quantifications and the object scores are produced.

VARIABLES Subcommand

VARIABLES specifies the variables that will be used in the analysis.
• The VARIABLES subcommand is required. The actual word VARIABLES can be omitted.

• After each variable or variable list, specify in parentheses the maximum number of cate-
gories (levels) of the variables.

• The number specified in parentheses indicates the number of categories and the maximum
category value. For example, VAR1(3) indicates that VAR1 has three categories coded 1, 2,
and 3. However, if a variable is not coded with consecutive integers, the number of cate-
gories used in the analysis will differ from the number of observed categories. For
example, if a three-category variable is coded {2, 4, 6}, the maximum category value is 6.
The analysis treats the variable as having six categories, three of which (categories 1, 3,
and 5) are not observed and receive quantifications of 0.

• To avoid unnecessary output, use the AUTORECODE or RECODE command before
HOMALS to recode a variable that does not have sequential values (see the SPSS Syntax
Reference Guide for more information on AUTORECODE and RECODE).

Example
DATA LIST FREE/V1 V2 V3.
BEGIN DATA
3 1 1
6 1 1
3 1 3
3 2 2
3 2 2
6 2 2
6 1 3
6 2 2
3 2 2
6 2 1
END DATA.
AUTORECODE V1 /INTO NEWVAR1.
HOMALS VARIABLES=NEWVAR1 V2(2) V3(3).

• DATA LIST defines three variables, V1, V2, and V3.

730 Syntax Reference

• V1 has two levels, coded 3 and 6, V2 has two levels, coded 1 and 2, and V3 has three levels,
coded 1, 2, and 3.

• The AUTORECODE command creates NEWVAR1 containing recoded values of V1. Values
of 3 are recoded to 1; values of 6 are recoded to 2.

• The maximum category value for both NEWVAR1 and V2 is 2. A maximum value of 3 is
specified for V3.

ANALYSIS Subcommand

ANALYSIS limits the analysis to a specific subset of the variables named on the VARIABLES
subcommand.

• If ANALYSIS is not specified, all variables listed on the VARIABLES subcommand are used.
• ANALYSIS is followed by a variable list. The variables on the list must be specified on the

VARIABLES subcommand.

• Variables listed on the VARIABLES subcommand but not on the ANALYSIS subcommand
can still be used to label object scores on the PLOT subcommand.

Example
HOMALS VARIABLES=ACOLA(2) BCOLA(2) CCOLA(2) DCOLA(2)
 /ANALYSIS=ACOLA BCOLA
 /PRINT=OBJECT QUANT
 /PLOT=OBJECT(CCOLA).

• The VARIABLES subcommand specifies four variables.
• The ANALYSIS subcommand limits analysis to the first two variables. The PRINT subcom-

mand lists the object scores and category quantifications from this analysis.

• The plot of the object scores is labeled with variable CCOLA, even though this variable is
not included in the computations.

NOBSERVATIONS Subcommand

NOBSERVATIONS specifies how many cases are used in the analysis.

• If NOBSERVATIONS is not specified, all available observations in the working data file
are used.

• NOBSERVATIONS is followed by an integer indicating that the first n cases are to be used.

DIMENSION Subcommand

DIMENSION specifies the number of dimensions you want HOMALS to compute.
• If you do not specify the DIMENSION subcommand, HOMALS computes two dimensions.

• The specification on DIMENSION is a positive integer indicating the number of dimensions.

• The minimum number of dimensions is 1.

• The maximum number of dimensions is equal to the smaller of the two values below:

HOMALS 731

The total number of valid variable categories (levels) minus the number of variables with-
out missing values.

The number of observations minus 1.

MAXITER Subcommand

MAXITER specifies the maximum number of iterations HOMALS can go through in its
computations.

• If MAXITER is not specified, HOMALS will iterate up to 100 times.

• The specification on MAXITER is a positive integer indicating the maximum number of
iterations.

CONVERGENCE Subcommand

CONVERGENCE specifies a convergence criterion value. HOMALS stops iterating if the
difference in total fit between the last two iterations is less than the CONVERGENCE value.
• If CONVERGENCE is not specified, the default value is 0.00001.

• The specification on CONVERGENCE is a positive value.

PRINT Subcommand

PRINT controls which statistics are included in your display output. The default display
includes the frequencies, eigenvalues, discrimination measures, and category
quantifications.

The following keywords are available:

FREQ Marginal frequencies for the variables in the analysis.

HISTORY History of the iterations.

EIGEN Eigenvalues.

DISCRIM Discrimination measures for the variables in the analysis.

OBJECT Object scores.

QUANT Category quantifications for the variables in the analysis.

DEFAULT FREQ, EIGEN, DISCRIM, and QUANT. These statistics are also displayed
when you omit the PRINT subcommand.

ALL All available statistics.

NONE No statistics.

732 Syntax Reference

PLOT Subcommand

PLOT can be used to produce plots of category quantifications, object scores, and discrimi-
nation measures.

• If PLOT is not specified, plots of the object scores and of the quantifications are produced.
• No plots are produced for a one-dimensional solution.

The following keywords can be specified on PLOT:

DISCRIM Plots of the discrimination measures.

OBJECT Plots of the object scores.

QUANT Plots of the category quantifications.

DEFAULT QUANT and OBJECT.

ALL All available plots.

NONE No plots.

• Keywords OBJECT and QUANT can each be followed by a variable list in parentheses to
indicate that plots should be labeled with those variables. For QUANT, the labeling
variables must be specified on both the VARIABLES and ANALYSIS subcommands. For
OBJECT, the variables must be specified on the VARIABLES subcommand but need not
appear on the ANALYSIS subcommand. This means that variables not used in the
computations can be used to label OBJECT plots. If the variable list is omitted, the default
object and quantification plots are produced.

• Object score plots labeled with variables that appear on the ANALYSIS subcommand use
category labels corresponding to all categories within the defined range. Objects in a
category that is outside the defined range are labeled with the label corresponding to the
category immediately following the defined maximum category value.

• Object score plots labeled with variables not included on the ANALYSIS subcommand use
all category labels, regardless of whether or not the category value is inside the defined
range.

• All keywords except NONE can be followed by an integer value in parentheses to indicate
how many characters of the variable or value label are to be used on the plot. (If you specify
a variable list after OBJECT or QUANT, specify the value in parentheses after the list.) The
value can range from 1 to 20; the default is to use 12 characters. Spaces between words
count as characters.

• DISCRIM plots use variable labels; all other plots use value labels.

• If a variable label is not supplied, the variable name is used for that variable. If a value
label is not supplied, the actual value is used.

• Variable and value labels should be unique.

• When points overlap, the points involved are described in a summary following the plot.

HOMALS 733

Example
HOMALS VARIABLES COLA1 (4) COLA2 (4) COLA3 (4) COLA4 (2)
/ANALYSIS COLA1 COLA2 COLA3 COLA4
/PLOT OBJECT(COLA4).

• Four variables are included in the analysis.

• OBJECT requests a plot of the object scores labeled with the values of COLA4. Any object
whose COLA4 value is not 1 or 2, is labeled 3 (or the value label for category 3, if supplied).

Example
HOMALS VARIABLES COLA1 (4) COLA2 (4) COLA3 (4) COLA4 (2)
/ANALYSIS COLA1 COLA2 COLA3
/PLOT OBJECT(COLA4).

• Three variables are included in the analysis.

• OBJECT requests a plot of the object scores labeled with the values of COLA4, a variable
not included in the analysis. Objects are labeled using all values of COLA4.

In addition to the plot keywords, the following can be specified:

NDIM Dimension pairs to be plotted. NDIM is followed by a pair of values in parentheses.
If NDIM is not specified, plots are produced for dimension 1 versus dimension 2.

• The first value indicates the dimension that is plotted against all higher dimensions. This
value can be any integer from 1 to the number of dimensions minus 1.

• The second value indicates the highest dimension to be used in plotting the dimension
pairs. This value can be any integer from 2 to the number of dimensions.

• Keyword ALL can be used instead of the first value to indicate that all dimensions are
paired with higher dimensions.

• Keyword MAX can be used instead of the second value to indicate that plots should be pro-
duced up to and including the highest dimension fit by the procedure.

Example
HOMALS COLA1 COLA2 COLA3 COLA4 (4)
 /PLOT NDIM(1,3) QUANT(5).

• The NDIM(1,3) specification indicates that plots should be produced for two dimension
pairs—dimension 1 versus dimension 2 and dimension 1 versus dimension 3.

• QUANT requests plots of the category quantifications. The (5) specification indicates that
the first five characters of the value labels are to be used on the plots.

Example
HOMALS COLA1 COLA2 COLA3 COLA4 (4)
 /PLOT NDIM(ALL,3) QUANT(5).

• This plot is the same as above except for the ALL specification following NDIM. This
indicates that all possible pairs up to the second value should be plotted, so QUANT plots

734 Syntax Reference

will be produced for dimension 1 versus dimension 2, dimension 2 versus dimension 3,
and dimension 1 versus dimension 3.

SAVE Subcommand

SAVE lets you add variables containing the object scores computed by HOMALS to the work-
ing data file.

• If SAVE is not specified, object scores are not added to the working data file.

• A variable rootname can be specified on the SAVE subcommand to which HOMALS adds
the number of the dimension. Only one rootname can be specified and it can contain up
to six characters.

• If a rootname is not specified, unique variable names are automatically generated. The
variable names are HOMn_m, where n is a dimension number and m is a set number. If
three dimensions are saved, the first set of names is HOM1_1, HOM2_1, and HOM3_1. If
another HOMALS is then run, the variable names for the second set are HOM1_2, HOM2_2,
HOM3_2, and so on.

• Following the rootname, the number of dimensions for which you want to save object
scores can be specified in parentheses. The number cannot exceed the value on the
DIMENSION subcommand.

• If the number of dimensions is not specified, the SAVE subcommand saves object scores
for all dimensions.

• If you replace the working data file by specifying an asterisk (*) on a MATRIX subcom-
mand, the SAVE subcommand is not executed.

Example
HOMALS CAR1 CAR2 CAR3 CAR4(5)
 /DIMENSION=3
 /SAVE=DIM(2).

• Four variables, each with five categories, are analyzed.
• The DIMENSION subcommand specifies that results for three dimensions will be computed.

• SAVE adds the object scores from the first two dimensions to the working data file. The
names of these new variables will be DIM00001 and DIM00002, respectively.

MATRIX Subcommand

The MATRIX subcommand is used to write category quantifications to a matrix data file.

• The specification on MATRIX is keyword OUT and a file enclosed in parentheses.

• You can specify the file with either an asterisk (*) to indicate that the working data file is
to be replaced or with the name of an external file.

• The matrix data file has one case for each value of each original variable.

The variables of the matrix data file and their values are:

ROWTYPE_ String variable containing value QUANT for all cases.

HOMALS 735

LEVEL String variable LEVEL containing the values (or value labels if present) of
each original variable.

VARNAME_ String variable containing the original variable names.

DIM1...DIMn Numeric variable containing the category quantifications for each dimen-
sion. Each variable is labeled DIMn, where n represents the dimension number.

See the SPSS Syntax Reference Guide for more information on matrix data files.

736

IF

IF [(]logical expression[)] target variable=expression

The following relational operators can be used in logical expressions:

The following logical operators can be used in logical expressions:

Example
IF (AGE > 20 AND SEX = 1) GROUP=2.

Overview

IF conditionally executes a single transformation command based upon logical conditions
found in the data. The transformation can create a new variable or modify the values of an
existing variable for each case in the working data file. You can create or modify the values
of both numeric and string variables. If you create a new string variable, you must first de-
clare it on the STRING command.

IF has three components: a logical expression (see “Logical Expressions” on p. 48) that
sets up the logical criteria, a target variable (the one to be modified or created), and an
assignment expression. The target variable’s values are modified according to the assign-
ment expression.

IF is most efficient when used to execute a single, conditional, COMPUTE-like transfor-
mation. If you need multiple IF statements to define the condition, it is usually more efficient
to use the RECODE command or a DO IF—END IF structure.

Symbol Definition Symbol Definition

EQ or = Equal to NE or <>*

* On ASCII systems (for example, UNIX, VAX, and all PC’s) you can also use ~=;
on IBM EBCDIC systems (for example, IBM 360 and IBM 370) you can also use ¬=.

Not equal to
LT or < Less than LE or <= Less than or equal to
GT or > Greater than GE or >= Greater than or equal to

Symbol Definition

AND or & Both relations must be true
Or or | Either relation can be true
Not* Reverses the outcome of an expression*

* On ASCII systems you can also use ~; on IBM EBCDIC systems
you can also use ¬ (or the symbol above number 6).

IF 737

Basic Specification

The basic specification is a logical expression followed by a target variable, a required
equals sign, and the assignment expression. The assignment is executed only if the logical
expression is true.

Syntax Rules

• Logical expressions can be simple logical variables or relations, or complex logical tests
involving variables, constants, functions, relational operators, and logical operators. Both
the logical expression and the assignment expression can use any of the numeric or string
functions allowed in COMPUTE transformations (see COMPUTE and “Transformation
Expressions” on p. 37).

• Parentheses can be used to enclose the logical expression. Parentheses can also be used
within the logical expression to specify the order of operations. Extra blanks or parentheses
can be used to make the expression easier to read.

• A relation can compare variables, constants, or more complicated arithmetic expressions.
Relations cannot be abbreviated. For example, (A EQ 2 OR A EQ 5) is valid, while
(A EQ 2 OR 5) is not. Blanks (not commas) must be used to separate relational operators
from the expressions being compared.

• A relation cannot compare a string variable to a numeric value or variable, or vice versa.
A relation cannot compare the result of the logical functions SYSMIS, MISSING, ANY, or
RANGE to a number.

• String values used in expressions must be specified in quotes and must include any leading
or trailing blanks. Lowercase letters are considered distinct from uppercase letters.

• String variables that are used as target variables must already exist. To declare a new
string variable, first create the variable with the STRING command and then specify the
new variable as the target variable on IF.

Operations

• Each IF command evaluates every case in the data. Compare IF with DO IF, which passes
control for a case out of the DO IF—END IF structure as soon as a logical condition is met.

• The logical expression is evaluated as true, false, or missing. The assignment is executed
only if the logical expression is true. If the logical expression is false or missing, the
assignment is not made. Existing target variables remain unchanged; new numeric vari-
ables retain their initial (system-missing) values.

• In general, a logical expression is evaluated as missing if any one of the variables used
in the logical expression is system- or user-missing. However, when relations are joined
by the logical operators AND or OR, the expression can sometimes be evaluated as true
or false even when variables have missing values (see “Missing Values and Logical
Operators” on p. 738).

738 IF

Numeric Variables

• Numeric variables created with IF are initially set to the system-missing value. By default,
they are assigned an F8.2 format.

• Logical expressions are evaluated in the following order: functions, followed by expo-
nentiation, arithmetic operations, relations, and logical operators. When more than one
logical operator is used, NOT is evaluated first, followed by AND and then OR. You can
change the order of operations using parentheses.

• Assignment expressions are evaluated in the following order: functions, then exponentia-
tion, and then arithmetic operators.

String Variables

• New string variables declared on IF are initially set to a blank value and are assigned the
format specified on the STRING command that creates them.

• Logical expressions are evaluated in the following order: string functions, then rela-
tions, and then logical operators. When more than one logical operator is used, NOT is
evaluated first, followed by AND and then OR. You can change the order of operations
using parentheses.

• If the transformed value of a string variable exceeds the variable’s defined width, the
transformed value is truncated. If the transformed value is shorter than the defined width,
the string is right-padded with blanks.

Missing Values and Logical Operators

When two or more relations are joined by logical operators AND or OR, the program always
returns a missing value if all of the relations in the expression are missing. However, if any
one of the relations can be determined, the program interprets the expression as true or false
according to the logical outcomes shown in Table 1. The asterisk flags expressions where the
program can evaluate the outcome with incomplete information.

Table 1 Logical outcome

Expression Outcome Expression Outcome

true AND true = true true OR true = true
true AND false = false true OR false = true
false AND false = false false OR false = false
true AND missing = missing true OR missing = true*
missing AND missing = missing missing OR missing = missing
false AND missing = false* false OR missing = missing

IF 739

Example

IF (AGE > 20 AND SEX = 1) GROUP=2.

• The numeric variable GROUP is set to 2 for cases where AGE is greater than 20 and SEX
is equal to 1.

• When the expression is false or missing, the value of GROUP remains unchanged. If
GROUP has not been previously defined, it contains the system-missing value.

Example

IF (SEX EQ ’F’) EEO=QUOTA+GAIN.

• The logical expression tests the string variable SEX for the value F.

• When the expression is true (when SEX equals F), the value of the numeric variable EEO
is assigned the value of QUOTA plus GAIN. Both QUOTA and GAIN must be previously
defined numeric variables.

• When the expression is false or missing (for example, if SEX equals F), the value of EEO
remains unchanged. If EEO has not been previously defined, it contains the system-missing
value.

Example

COMPUTE V3=0.
IF ((V1-V2) LE 7) V3=V1**2.

• COMPUTE assigns V3 the value 0.

• The logical expression tests whether V1 minus V2 is less than or equal to 7. If it is, the
value of V3 is assigned the value of V1 squared. Otherwise, the value of V3 remains at 0.

Example

IF (ABS(A-C) LT 100) INT=100.

• IF tests whether the absolute value of the variable A minus the variable C is less than 100.
If it is, INT is assigned the value 100. Otherwise, the value is unchanged. If INT has not
been previously defined, it is system-missing.

Example

IF (MEAN(V1 TO V5) LE 7) INDEX=1.

• If the mean of variables V1 through V5 is less than or equal to 7, INDEX equals 1.

740 IF

Example

* Test for listwise deletion of missing values.

DATA LIST /V1 TO V6 1-6.
STRING SELECT(A1).
COMPUTE SELECT=’V’.
VECTOR V=V1 TO V6.

LOOP #I=1 TO 6.
IF MISSING(V(#I)) SELECT=’M’.
END LOOP.

BEGIN DATA
123456
 56
1 3456
123456
123456
END DATA.

FREQUENCIES VAR=SELECT.

• STRING creates the string variable SELECT with an A1 format and COMPUTE sets the
value of SELECT to V.

• VECTOR defines the vector V as the original variables V1 to V6. Variables on a single
vector must be all numeric or all string variables. In this example, because the vector V is
used as an argument on the MISSING function of IF, the variables must be numeric
(MISSING is not available for string variables).

• The loop structure executes six times: once for each VECTOR element. If a value is
missing for any element, SELECT is set equal to M. In effect, if any case has a missing
value for any of the variables V1 to V6, SELECT is set to M.

• FREQUENCIES generates a frequency table for SELECT. The table gives a count of how
many cases have missing values for at least one variable and how many cases have valid
values for all variables. This table can be used to determine how many cases would be
dropped from an analysis that uses listwise deletion of missing values. See pp. 257 and
497 for alternative ways to test for listwise deletion of missing values.

Example

IF YRHIRED LT 1980 RATE=0.02.
IF DEPT=’SALES’ DIVISION=’TRANSFERRED’.

• The logical expression on the first IF command tests whether YRHIRED is less than 1980
(hired before 1980). If so, the variable RATE is set to 0.02.

• The logical expression on the second IF command tests whether DEPT equals SALES.
When the condition is true, the value for the string variable DIVISION is changed to
TRANSFERRED but is truncated if the format for DIVISION is not at least 11 characters
wide. For any other value of DEPT, the value of DIVISION remains unchanged.

• Although there are two IF statements, each defines a separate and independent condition.
The IF command is used rather than the DO IF—END IF structure in order to test both condi-

IF 741

tions on every case. If DO IF—END IF is used, control passes out of the structure as soon as
the first logical condition is met.

Example

IF (STATE EQ ’IL’ AND CITY EQ 13) COST=1.07 * COST.

• The logical expression tests whether STATE equals IL and CITY equals 13.

• If the logical expression is true, the numeric variable COST is increased by 7%.

• For any other value of STATE or CITY, the value of COST remains unchanged.

Example

STRING GROUP (A18).
IF (HIRED GE 1988) GROUP=’Hired after merger’.

• STRING declares the string variable GROUP and assigns it a width of 18 characters.

• When HIRED is greater than or equal to 1988, GROUP is assigned the value Hired after
merger. When HIRED is less than 1988, GROUP remains blank.

Example

IF (RECV GT DUE OR (REVNUES GE EXPNS AND BALNCE GT 0))STATUS=’SOLVENT.

• First, the program tests whether REVNUES is greater than or equal to EXPNS and whether
BALNCE is greater than 0.

• Second, the program evaluates if RECV is greater than DUE.
• If either of these expressions is true, STATUS is assigned the value SOLVENT.

• If both expressions are false, STATUS remains unchanged.

• STATUS is an existing string variable in the working data file. Otherwise, it would have
to be declared on a preceding STRING command.

742

IGRAPH

IGRAPH

[/Y=[VAR(varname1)]
[TYPE={SCALE ([MIN=value] [MAX=value])}]

{CATEGORICAL }
[TITLE=’string’]]

[/X1=[VAR(varname2)]]
[TYPE={SCALE([MIN=value] [MAX=value])}]

{CATEGORICAL }
[TITLE=’string’]]

[/X2=[VAR(varname3)]]
[TYPE={SCALE([MIN=value] [MAX=value])}]

{CATEGORICAL }
[TITLE=’string’]]

[/YLENGTH=value]

[/X1LENGTH=value]

[/X2LENGTH=value]

 [/CATORDER VAR(varname)
 ({COUNT } [{ASCENDING }] [{SHOWEMPTY])]
 {OCCURRENCE} {DESCENDING} {OMITEMPTY}
 {LABEL}
 {VALUE}

[/COLOR=varname
[TYPE={SCALE([MIN=value] [MAX=value])}]

{CATEGORICAL }
[LEGEND={ON|OFF}]
[TITLE=’string’]]

 [{CLUSTER}]]
 {STACK }

 [/REFLINE varname value [LABEL={ON|OFF}]
 [SPIKE = {ON|OFF}]]
 [COLOR={ON|OFF}]
 [STYLE={ON|OFF}]

[/STYLE=varname
[LEGEND={ON|OFF}]
[TITLE=’string’]]

 [{CLUSTER}]
 {STACK }

 [/NORMALIZE]

[/SIZE=varname
[TYPE={SCALE([MIN=value] [MAX=value])}]

{CATEGORICAL }
[LEGEND={ON|OFF}]
[TITLE=’string’]]

[/CLUSTER=varname]

[/SUMMARYVAR=varname]

[/PANEL varlist]

[/POINTLABEL=varname]

[/COORDINATE={HORIZONTAL}]

IGRAPH 743

{VERTICAL }
{THREE }

[/EFFECT={NONE }]
{THREE}

[/TITLE=’string’]

[/SUBTITLE=’string’]

[/CAPTION=’string’]

[/VIEWNAME=’line 1’]

[/CHARTLOOK=’filename’]

[/SCATTER
[COINCIDENT={NONE }]

{JITTER[(amount)]}]

[/BAR [(summary function)]
[LABEL {INSIDE }[VAL][N]]

{OUTSIDE}
[SHAPE={RECTANGLE}]

{PYRAMID }
{OBELISK }

[BARBASE={SQUARE}]
{ROUND }

[BASELINE (value)]]

[/PIE [(summary function)]
[START value]
[{CW|CCW}]
[SLICE={INSIDE } [LABEL] [PCT] [VAL] [N]]

{OUTSIDE}
{TEXTIN }
{NUMIN }

[CLUSTER={URIGHT} [LABEL] [PCT] [VAL] [N]]]
{LRIGHT}
{ULEFT }
{LLEFT }

[/BOX [OUTLIERS={ON|OFF}] [EXTREME={ON|OFF}]
[MEDIAN={ON|OFF}]
[LABEL=[N]]
[BOXBASE={SQUARE}]

{ROUND }
[WHISKER={T }]

{FANCY}
{LINE }

[CAPWIDTH (pct)]]

[/LINE [(summary function)]
STYLE={DOTLINE}

{LINE }
{DOT }
{NONE }

[DROPLINE={ON|OFF}]
[LABEL=[VAL] [N] [PCT]]
[LINELABEL=[CAT] [N] [PCT]]
[INTERPOLATE={STRAIGHT}]

{LSTEP }
{CSTEP }
{RSTEP }
{LJUMP }
{RJUMP }
{CJUMP }
{SPLINE }
{LAGRANGE3}
{LAGRANGE5}

744 IGRAPH

[BREAK={MISSING}]]
{NONE }

[/ERRORBAR [{CI(pctvalue)}]
{SD(sdval) }
{SE(seval) }

[LABEL [VAL][N]]
[DIRECTION={BOTH|UP|DOWN|SIGN}
[CAPWIDTH (pct)]
[CAPSTYLE {NONE }]

{T }
{FANCY}

[SYMBOL={ON|OFF}]
[BASELINE value]]

[/HISTOGRAM [CUM]
[SHAPE={HISTOGRAM}]
[X1INTERVAL={AUTO }]

{NUM=n }
{WIDTH=n}

[X2INTERVAL={AUTO }]
{NUM=n }
{WIDTH=n}

[X1START=n]
[X2START=n]
[CURVE={OFF|ON}]
[SURFACE={OFF|ON}]

[/FITLINE [METHOD={NONE }]
{REGRESSION LINEAR}
{ORIGIN LINEAR }
{MEAN }
{LLR [(NORMAL|EPANECHNIKOV|UNIFORM)]

[BANDWIDTH={FAST|CONSTRAINED}]
[X1MULTIPLIER=multiplier]
[X2MULTIPLIER=multiplier]}

[INTERVAL[(cval)]=[MEAN] [INDIVIDUAL]]
[LINE=[TOTAL] [MEFFECT]]]

 [/SPIKE {X1 }]
 {X2 }
 {Y }
 {CORNER }
 {ORIGIN }
 {FLOOR }
 {CENTROID [TOTAL] [MEFFECT]}

 [/FORMAT [SPIKE [COLOR={ON|OFF}] [STYLE={ON|OFF}]]

Summary function names are found beginning on p. 764.

 Example

IGRAPH
/VIEWNAME=’Scatterplot’
/X1=VAR(trial1) TYPE=SCALE
/Y=VAR(trial3) TYPE=SCALE
/X2=VAR(trial2) TYPE=SCALE
/COORDINATE=THREE
/X1LENGTH=3.0
/YLENGTH=3.0
/X2LENGTH=3.0
/SCATTER COINCIDENT=NONE
/FITLINE METHOD=REGRESSION LINEAR INTERVAL(90.0)=MEAN LINE=TOTAL.

IGRAPH 745

Overview

The interactive Chart Editor is designed to emulate the experience of drawing a statistical
chart with a pencil and paper. The Chart Editor is a highly interactive, direct manipulation
environment that automates the data manipulation and drawing tasks required to draw a chart
by hand, such as determining data ranges for axes; drawing ticks and labels; aggregating and
summarizing data; drawing data representations such as bars, boxes, or clouds; and incorpo-
rating data dimensions as legends when the supply of dependent axes is exhausted.

The IGRAPH command creates a chart in an interactive environment. The interactive
Chart Editor allows you to make extensive and fundamental changes to this chart instead of
creating a new chart. The Chart Editor allows you to replace data, add new data, change
dimensionality, create separate chart panels for different groups, or change the way data are
represented in a chart (that is, change a bar chart into a boxplot). The Chart Editor is not a
“typed” chart system. You can use chart elements in any combination, and you are not
limited by “types” that the application recognizes.

To create a chart, you assign data dimensions to the domain (independent) and range
(dependent) axes to create a “data region.” You also add data representations such as bars or
clouds to the data region. Data representations automatically position themselves according
to the data dimensions assigned to the data region.

There is no required order for assigning data dimensions or adding data representations;
you can add the data dimensions first or add the data representations first. When defining the
data region, you can define the range axis first or the domain axis first.

Options

Titles and Captions. You can specify a title, subtitle, and caption for the chart.

Chart Type. You can request a specific type of chart using the BAR, PIE, BOX, LINE,
ERRORBAR, HISTOGRAM, and SCATTERPLOT subcommands.

Chart Content. You can combine elements in a single chart. For example, you can add error
bars to a bar chart.

Chart Legends. You can specify either scale legends or categorical legends. Moreover, you
can define which properties of the chart reflect the legend variables.

Chart Appearance. You can specify a template, using the CHARTLOOK subcommand, to
override the default chart attribute settings.

Basic Specification

The minimum syntax to create a graph is simply the IGRAPH command, without any variable
assignment. This will create an empty graph. To create an element in a chart, a dependent
variable must be assigned and a chart element specified.

Subcommand Order

• Subcommands can be used in any order.

746 IGRAPH

Syntax Rules

• EFFECT=THREE and COORDINATE=THREE cannot be specified together. If they are, the
EFFECT keyword will be ignored.

Operations

• The chart title, subtitle, and caption are assigned as they are specified on the TITLE,
SUBTITLE, and CAPTION subcommands. In the absence of any of these subcommands, the
missing title, subtitle, or caption are null.

General Syntax

Following are the most general-purpose subcommands. Even so, not all plots will use all sub-
commands. For example, if the only element in a chart is a bar, the SIZE subcommand will
not be shown in the graph.

Each general subcommand may be specified only once. If one of these subcommands
appears more than once, the last one is used.

X1, Y, and X2 Subcommands

X1, Y, and X2 assign variables to the X1, Y, and X2 dimensions of the chart.

• The variable must be enclosed in parentheses after the VAR keyword.

• Each of these subcommands can include the TITLE keyword, specifying a string with
which to title the corresponding axis.

• Each variable must be either a scale variable, a categorical variable, or a built-in data
dimension. If a type is not specified, a default type is used from the variable’s definition.

SCALE A scale dimension is interpreted as a measurement on some contin-
uous scale for each case. Optionally, the minimum (MIN) and
maximum (MAX) scale values can be specified. In the absence of MIN
and MAX, the entire data range is used.

CATEGORICAL A categorical dimension partitions cases into exclusive groups (each
case is a member of exactly one group). The categories are represented
by evenly spaced ticks.

A built-in dimension is a user interface object used to create a chart of counts or percentages
and to make a casewise chart of elements that usually aggregate data like bars or lines. The
built-in dimensions are count ($COUNT), percentage ($PCT), and case ($CASE).
• To create a chart that displays counts or percentages, one of the built-in data dimensions

is assigned to the range (Y) axis. The VAR keyword is not used for built-in dimensions.

• Built in count and percentage data dimensions cannot be assigned to a domain axis (X1
or X2) or to a legend subcommand.

• The count and percentage data dimensions are all scales and cannot be changed into
categorizations.

IGRAPH 747

CATORDER Subcommand

The CATORDER subcommand defines the order in which categories are displayed in a chart
and controls the display of empty categories, based on the characteristics of a variable spec-
ified in parenthesis after the subcommand name.

• You can display categories in ascending or descending order based on category values,
category value labels, counts, or values of a summary variable.

• You can either show or hide empty categories (categories with no cases).

Keywords for the CATORDER subcommand include:

ASCENDING Display categories in ascending order of the specified order keyword.

DESCENDING Display categories in descending order of the specified order
keyword.

SHOWEMPTY Include empty categories in the chart.

OMITEMPTY Do not include empty categories in the chart.

ASCENDING and DESCENDING are mutually exclusive. SHOWEMPTY and OMITEMPTY are
mutually exclusive.

Order keywords include:

COUNT Sort categories based on the number of observations in each category.

OCCURRENCE Sort categories based on the first occurrence of each unique value in
the data file.

LABEL Sort categories based on defined value labels for each category. For
categories without defined value labels, the category value is used.

VALUE Sort categories based on the values of the categories or the values of
a specified summary function for the specified variable. Summary
functions are defined on p. 764.

Order keywords are mutually exclusive. You can specify only one order keyword on each
CATORDER subcommand.

X1LENGTH, YLENGTH, and X2LENGTH Subcommands

X1LENGTH, YLENGTH, and X2LENGTH define the length in inches of the corresponding axis.

Example

IGRAPH
/VIEWNAME=’Scatterplot’
/Y=VAR(sales96) TYPE=SCALE
/X1=VAR(sales95) TYPE=SCALE
/X2=VAR(region) TYPE=CATEGORICAL
/X1LENGTH=2.39
/YLENGTH=2.42
/X2LENGTH=2.47
/SCATTER.

748 IGRAPH

• Y assigns sales96 to the dependent axis, defining it to be continuous.

• X1 assigns sales95 to the X1 axis, defining it to be a scale variable (continuous).

• X2 assigns region to the X2 axis, defining it to be categorical.

• X1LENGTH, YLENGTH, and X2LENGTH define the length of each axis in inches.

COLOR, STYLE, and SIZE Subcommands

COLOR, STYLE, and SIZE specify variables used to create a legend. Each value of these vari-
ables corresponds to a unique property of the chart. The effect of these variables depends on
the type of chart.

• Most charts use color in a similar fashion; casewise elements draw each case representa-
tion using the color value for the case, and summary elements draw each group represen-
tation in the color that represents a summarized value in the color data dimension.

• For dot-line charts, dot charts, and scatterplots, symbol shape is used for style variables
and symbol size is used for size variables.

• For line charts and lines in a scatterplot, dash patterns encode style variables and line
thickness encodes size variables.

• For bar charts, pie charts, boxplots, histograms, and error bars, fill pattern encodes style
variables. Typically, these charts are not sensitive to size variables.

CATEGORICAL legend variables split the elements in the chart into categories. A categorical
legend shows the reader which color, style, or size is associated with which category of the
variable. The colors, styles, or sizes are assigned according to the discrete categories of the
variable.

SCALE legend variables apply color or size to the elements by the value or a summary
value of the legend variable, creating a continuum across the values. COLOR and SIZE can
create either scale legends or categorical legends. STYLE can create categorical legends only.

Scale variables have the following keywords:

MIN Defines the minimum value of the scale.

MAX Defines the maximum value of the scale.

• The keywords MIN and MAX and their assigned values must be enclosed in parentheses.

In addition, the following keywords are available for COLOR, STYLE, and SIZE:

LEGEND Determines if the legend is displayed or not. The legend explains how to
decode color, size, or style in a chart.

TITLE Specifies a string used to title the legend.

The following keywords are available for COLOR and STYLE:

CLUSTER Creates clustered charts based on color or size variables.

STACK Creates stacked charts based on color or size variables.

CLUSTER and STACK are mutually exclusive. Only one can be specified.

IGRAPH 749

Example

IGRAPH
/VIEWNAME=’Scatterplot’
/Y=VAR(sales96) TYPE=SCALE
/X1=VAR(sales95) TYPE=SCALE
/X2=VAR(region) TYPE=CATEGORICAL
/COLOR=VAR(tenure) TYPE=SCALE
/STYLE=VAR(vol94)
/SCATTER.

• The chart contains a three-dimensional scatterplot.
• COLOR defines a scale legend corresponding to the variable TENURE. Points appear in a

continuum of colors, with the point color reflecting the value of TENURE.

• STYLE defines a categorical legend. Points appear with different shapes, with the point
shape reflecting the value of VOL94.

CLUSTER Subcommand

CLUSTER defines the variable used to create clustered pie charts. The variable specified
must be categorical. The cluster will contain as many pies as there are categories in the
cluster variable.

SUMMARYVAR Subcommand

SUMMARYVAR specifies the variable or function for summarizing a pie element. It can only
have the built-in variables $COUNT or $PCT or a user-defined variable name.

Specifying a user-defined variable on SUMMARYVAR requires specifying a summary
function on the PIE subcommand. Valid summary functions include SUM, SUMAV, SUMSQ,
NLT(x), NLE(x), NEQ(x), NGT(x), and NGE(x). The slices of the pie represent categories defined
by the values of the summary function applied to SUMMARYVAR.

PANEL Subcommand

PANEL specifies a categorical variable or variables for which separate charts will be created.

• Specifying a single panel variable results in a separate chart for each level of the panel
variable.

• Specifying multiple panel variables results in a separate chart for each combination of
levels of the panel variables.

POINTLABEL Subcommand

POINTLABEL specifies a variable used to label points in a boxplot or scatterplot.

• If a label variable is specified without ALL or NONE, no labels are turned on (NONE).

• The keyword NONE turns all labels off.

750 IGRAPH

COORDINATE Subcommand

COORDINATE specifies the orientation of the chart. Three-dimensional charts (THREE) have
a default orientation that cannot be altered. Keywords available for two-dimensional charts
include:

HORIZONTAL The Y variable appears along the horizontal axis and the X1 variable
appears along the vertical axis.

VERTICAL The Y variable appears along the vertical axis and the X1 variable
appears along the horizontal axis.

Example

IGRAPH
/VIEWNAME=’Scatterplot’
/Y=VAR(sales96) TYPE=SCALE
/X1=VAR(region) TYPE=CATEGORICAL
/COORDINATE=HORIZONTAL
/BAR (mean).

• The COORDINATE subcommand defines the bar chart as horizontal with region on the
vertical dimension and means of sales96 on the horizontal dimension.

EFFECT Subcommand

EFFECT displays a two-dimensional chart with additional depth along a third dimension.
Two-dimensional objects are displayed as three-dimensional solids.

• EFFECT is unavailable for three-dimensional charts.

TITLE, SUBTITLE, and CAPTION Subcommands

TITLE, SUBTITLE, and CAPTION specify lines of text placed at the top or bottom of a chart.
• Multiple lines of text can be entered using the carriage control character (\n).

• Each title, subtitle, or caption must be enclosed in apostrophes or quotation marks.

• The maximum length of a title, subtitle, or caption is 255 characters.

• The font, point size, color, alignment, and orientation of the title, subtitle, and caption text
is determined by the ChartLook.

VIEWNAME Subcommand

VIEWNAME assigns a name to the chart, which will appear in the outline pane of the Viewer.
The name can have a maximum of 255 characters.

IGRAPH 751

CHARTLOOK Subcommand

CHARTLOOK identifies a file containing specifications concerning the initial visual proper-
ties of a chart, such as fill, color, font, style, and symbol. By specifying a ChartLook, you can
control cosmetic properties that are not explicitly available as syntax keywords.

Valid ChartLook files have a .clo extension. Files designated on CHARTLOOK must either
be included with the software or created using the Chart Properties and ChartLooks options
on the Format menu.

A ChartLook contains values for the following properties:

• Color sequence for categorical color legends

• Color range for scale color legends

• Line style sequence for categorical style legends
• Symbol style sequence for categorical style legends

• Categorical legend fill styles

• Categorical symbol size sequence for categorical size legends

• Symbol size sequence for scale size sequences

• Categorical line weight sequence for categorical size legends

• Font, size, alignment, bold, and italic properties for text objects
• Fill and border for filled objects

• Style, weight, and color for line objects

• Font, shape, size, and color for symbol objects

• Style, weight, and color for visual connectors

• Axis properties: axis line style, color, weight; major tick shape, location, color, size.

Example

IGRAPH
/VIEWNAME=’Slide 1’
/X1=VAR(sales95) TYPE=SCALE
/Y=VAR(sales96) TYPE=SCALE
/X2=VAR(region) TYPE=CATEGORICAL
/COORDINATE=THREE
/POINTLABEL=VAR(division) NONE
/TITLE=’Scatterplot Comparing Regions’
/SUBTITLE=’Predicting 1996 Sales\nfrom 1995 Sales’
/CHARTLOOK=’Classic.clo’
/SCATTER.

• VIEWNAME assigns the name Slide 1 to the chart. The outline pane of the Viewer uses this
name for the chart.

• Points in the chart are labeled with the values of division. Initially, all labels are off. Labels
for individual points can be turned on interactively after creating the chart.

• TITLE and SUBTITLE define text to appear of the plot. The subtitle contains a carriage
return between Sales and from.

• The appearance of the chart is defined in the Classic ChartLook.

752 IGRAPH

REFLINE Subcommand

The REFLINE subcommand inserts a reference line for the specified variable at the specified
value. Optional keywords are:

LABEL={ON|OFF} Display a label for the reference line. For variables with defined value
labels, the value label for the specified value is displayed. If there is no
defined value label for the specified value, the specified value is
displayed.

SPIKE={ON|OFF} Display spikes from the reference line to individual data points.

Example

IGRAPH
 /X1 = VAR(gender) TYPE = CATEGORICAL
 /Y = VAR(salary) TYPE = SCALE
 /BAR(MEAN)
 /REFLINE salary 30000 LABEL=ON.

SPIKE Subcommand

The SPIKE subcommand inserts spikes from individual data points to the specified location.
Keywords for location include:

X1 Display spikes to the X1 axis.

X2 Display spikes to the X2 axis.

Y Display spikes to the Y axis.

CORNER Display spikes to the corner defined by the lowest displayed values of
the X1, X2, and Y axes.

ORIGIN Display spikes to the origin. The origin is the point defined by the 0
values for the X1, X2, and Y axes.

FLOOR Display spikes to the “floor” defined by the X1 and X2 axes.

CENTROID Display spikes to the point defined by the mean values of the X1, X2,
and Y variables. CENTROID=TOTAL displays spikes to the overall mean.
CENTROID=MEFFECT displays spikes to subgroup means defined by
color and/or style variables.

Example:

IGRAPH
 /X1 = VAR(salbegin) TYPE = SCALE
 /Y = VAR(salary) TYPE = SCALE
 /COLOR = VAR(gender) TYPE = CATEGORICAL
 /SPIKE CENTROID=MEFFECT.

IGRAPH 753

FORMAT Subcommand

For charts with color or style variables, the FORMAT subcommand controls the color and
style attributes of spikes. The keywords are:

SPIKE Applies color and style specifications to spikes. This keyword is
required.

COLOR{ON|OFF} Controls use of color in spikes as defined by color variable. The
default is ON.

STYLE {ON|OFF} Controls use of line style in spikes as defined by style variable. The
default is ON.

Example

IGRAPH
 /X1 = VAR(salbegin) TYPE = SCALE
 /Y = VAR(salary) TYPE = SCALE
 /COLOR = VAR(gender) TYPE = CATEGORICAL
 /SPIKE CENTROID=MEFFECT
 /FORMAT COLOR=OFF.

KEY Keyword

All interactive chart types except histograms include a key element that identifies the
summary measures displayed in the chart (for example, counts, means, medians). The KEY
keyword controls the display of the key in the chart. The default is ON, which displays the
key. The OFF specification hides the key. The KEY specification is part of the subcommand
that defines the chart type.

Example

IGRAPH
 /X1 = VAR(jobcat) TYPE = CATEGORICAL
 /Y = $count
 /BAR KEY=OFF.

Element Syntax

The following subcommands add elements to a chart. The same subcommand can be speci-
fied more than once. Each subcommand adds another element to the chart.

SCATTER Subcommand

SCATTER produces two- or three-dimensional scatterplots. Scatterplots can use either cate-
gorical or scale dimensions to create color or size legends. Categorical dimensions are
required to create style legends.

754 IGRAPH

The keyword COINCIDENT controls the placement of markers that have identical values on
all axes. COINCIDENT can have one of the following two values:

NONE Places coincident markers on top of one another. This is the default
value.

JITTER(amount) Adds a small amount of random noise to all scale axis dimensions.
Amount indicates the percentage of noise added and ranges from 0 to 10.

Example

IGRAPH
/Y=VAR(sales96) TYPE=SCALE
/X1=VAR(sales95) TYPE=SCALE
/COORDINATE=VERTICAL
/SCATTER COINCIDENT=JITTER(5).

• COORDINATE defines the chart as two-dimensional with sales96 on the vertical
dimension.

• SCATTER creates a scatterplot of sales96 and sales95.

• The scale axes have 5% random noise added by the JITTER keyword allowing separation
of coincident points.

AREA Subcommand

AREA creates area charts. These charts summarize categories of one or more variables. The
following keywords are available:

summary function Defines a function used to summarize the variable defined on the Y
subcommand. If the Y axis assignment is $COUNT or $PCT, the AREA
subcommand cannot have a summary function. If the Y subcommand
specifies TYPE=CATEGORICAL, then AREA can only specify MODE as
the summary function. Otherwise, all summary functions described on
p. 764 are available.

POINTLABEL Labels points with the actual values corresponding to the dependent
axis (VAL), the percentage of cases (PCT), and the number of cases
included in each data point (N). The default is no labels.

AREALABEL Labels area with category labels (CAT), the percentage of cases
(PCT), and the number of cases included in each line (N). The default
is no labels.

BREAK Indicates whether the lines break at missing values (MISSING) or not
(NONE).

BASELINE The baseline value determines the location from which the areas will
hang (vertical) or extend (horizontal). The default value is 0.

IGRAPH 755

The INTERPOLATE keyword determines how the lines connecting the points are drawn.
Options include:

STRAIGHT Straight lines.

LSTEP A horizontal line extends from each data point. A vertical riser con-
nects the line to the next data point.

CSTEP Each data point is centered on a horizontal line that extends half of the
distance between consecutive points. Vertical risers connect the line to
the next horizontal line.

RSTEP A horizontal line terminates at each data point. A vertical riser
extends from each data point, connecting to the next horizontal line.

BAR Subcommand

BAR creates a bar element in a chart, corresponding to the X1, X2, and Y axis assignments.
Bars can by clustered by assigning variables to COLOR or STYLE. Horizontal or vertical ori-
entation is specified by the COORDINATE subcommand.

summary function Defines a function used to summarize the variable defined on the Y
subcommand. If the Y axis assignment is $COUNT or $PCT, the BAR
subcommand cannot have a summary function. If the Y subcommand
specifies TYPE=CATEGORICAL, then BAR can specify only MODE as
the summary function. Otherwise, all summary functions described on
p. 764 are available.

LABEL Bars can be labeled with the actual values corresponding to the
dependent axis (VAL) or with the number of cases included in each bar
(N). The default is no labels. The placement of the labels is inside the
bars (INSIDE) or outside the bars (OUTSIDE).

SHAPE Determines whether the bars are drawn as rectangles (RECTANGLE),
pyramids (PYRAMID), or obelisks (OBELISK). The default is rectan-
gular bars.

BARBASE For three-dimensional bars, the base can be round (ROUND) or
square (SQUARE). The default is square.

BASELINE The baseline value determines the location from which the bars will
hang (vertical) or extend (horizontal). The default value is 0.

Example

IGRAPH
/X1=VAR(volume96) TYPE=CATEGORICAL
/Y=$count
/COORDINATE=VERTICAL
/EFFECT=THREE
/BAR LABEL INSIDE N SHAPE=RECTANGLE.

• X1 assigns the categorical variable volume96 to the X1 axis.

756 IGRAPH

• Y assigns the built-in dimension $count to the range axis.

• VERTICAL defines the counts to appear along the vertical dimension.

• BAR adds a bar element to the chart.

• LABEL labels the bars in the chart with the number of cases included in the bars. These
labels appear inside the bars.

• SHAPE indicates that the bars are rectangles. However, EFFECT adds a third dimension
to the chart, yielding three-dimensional solids.

Example

IGRAPH
/X1=VAR(volume94) TYPE=CATEGORICAL
/Y=VAR(sales96) TYPE=SCALE
/COORDINATE=HORIZONTAL
/EFFECT=NONE
/BAR (MEAN) LABEL OUTSIDE VAL SHAPE=PYRAMID BASELINE=370.00.

• X1 assigns the categorical variable volume94 to the X1 axis.

• Y assigns the scale variable sales96 to the range axis.

• HORIZONTAL defines sales96 to appear along the horizontal dimension.

• EFFECT defines the chart as two-dimensional.

• BAR adds a bar element to the chart.

• MEAN defines the summary function to apply to sales96. Each bar represents the mean
sales96 value for the corresponding category of volume94.

• LABEL labels the bars in the chart with the mean sales96 value. These labels appear
outside the bars.

• SHAPE indicates that the bars are pyramids.

• BASELINE indicates that bars should extend from 370. Any bar with a mean value above
370 extends to the right. Any bar with a mean value below 370 extends to the left.

PIE Subcommand

A simple pie chart summarizes categories defined by a single variable or by a group of related
variables. A clustered pie chart contains a cluster of simple pies, all of which are stacked into
categories by the same variable. The pies are of different sizes and appear to be stacked on top
of one another. The cluster contains as many pies as there are categories in the cluster variable.
For both simple and clustered pie charts, the size of each slice represents the count, the per-
centage, or a summary function of a variable.

The following keywords are available:

summary function Defines a function used to summarize the variable defined on the
SUMMARYVAR subcommand. If the SUMMARYVAR assignment is
$COUNT or $PCT, the PIE subcommand cannot have a summary func-
tion. Otherwise, of the summary functions described on p. 764, SUM,
SUMAV, SUMSQ, NGT(x), NLE(x), NEQ(x), NGE(x), NGT(x), and
NIN(x1,x2) are available.

IGRAPH 757

START num Indicates the starting position of the smallest slice of the pie chart.
Any integer can be specified for num. The value is converted to a
number between 0 and 360, which represents the degree of rotation of
the smallest slice.

CW | CCW Sets the positive rotation of the pie to either clockwise (CW) or
counterclockwise (CCW). The default rotation is clockwise.

SLICE Sets the labeling characteristics for the slices of the pie. The pie slices
can be labeled with the category labels (LABEL), the category percent-
ages (PCT), the number of cases (N), and the category values (VAL).
Label position is either all labels inside the pie (INSIDE), all labels
outside the pie (OUTSIDE), text labels inside the pie with numeric
labels outside (TEXTIN), or numeric labels inside the pie with text
labels outside (NUMIN).

CLUSTER Sets the labeling characteristics for the pies from clusters. The pies
can be labeled with the category labels (LABEL), the category percent-
ages (PCT), the number of cases (N), and the category values (VAL).
Label position is either upper left (ULEFT), upper right (URIGHT),
lower left (LLEFT), or lower right (LRIGHT) of the figure.

Example

IGRAPH
/SUMMARYVAR=$count
/COLOR=VAR(volume96) TYPE=CATEGORICAL
/EFFECT=THREE
/PIE START 180 CW SLICE=TEXTIN LABEL PCT N.

• The pie slices represent the number of cases (SUMMARYVAR=$count) in each category of
volume96 (specified on the COLOR subcommand).

• EFFECT yields a pie chart with an additional third dimension.

• PIE creates a pie chart.

• The first slice begins at 180 degrees and the rotation of the pie is clockwise.

• SLICE labels the slices with category labels, the percentage in each category, and the
number of cases in each category. TEXTIN places the text labels (category labels) inside
the pie slices and the numeric labels outside.

Example

IGRAPH
/SUMMARYVAR=VAR(sales96)
/COLOR=VAR(volume95) TYPE=CATEGORICAL
/X1=VAR(region) TYPE=CATEGORICAL
/Y=VAR(division) TYPE=CATEGORICAL
/COORDINATE=VERTICAL
/PIE (SUM) START 0 CW SLICE=INSIDE VAL.

• The pie slices represent the sums of sales96 values for each category of volume95 (specified
on the COLOR subcommand).

• X1 and Y define two axes representing region and division. A pie chart is created for each
combination of these variables.

758 IGRAPH

• The first slice in each pie begins at 0 degrees and the rotation of the pie is clockwise.

• SUM indicates the summary function applied to the summary variable, sales96. The pie
slices represent the sum of the sales96 values.

• SLICE labels the slices with the value of the summary function. INSIDE places the labels
inside the pie slices.

BOX Subcommand

BOX creates a boxplot, sometimes called a box-and-whiskers plot, showing the median, quar-
tiles, and outlier and extreme values for a scale variable. The interquartile range (IQR) is the
difference between the 75th and 25th percentiles and corresponds to the length of the box.

The following keywords are available:

OUTLIERS Indicates whether outliers should be displayed. Outliers are values
between 1.5 IQR’s and 3 IQR’s from the end of a box. By default, the
boxplot displays outliers (ON).

EXTREME Indicates whether extreme values should be displayed. Values more
than 3 IQR’s from the end of a box are defined as extreme. By default,
the boxplot displays extreme values (ON).

MEDIAN Indicates whether a line representing the median should be included
in the box. By default, the boxplot displays the median line (ON).

LABEL Displays the number of cases (N) represented by each box.

BOXBASE Controls the shape of the box for three dimensional plots. SQUARE
results in rectangular solids. ROUND yields cylinders.

WHISKER Controls the appearance of the whiskers. Whiskers can be straight
lines (LINE), end in a T-shape (T), or end in a fancy T-shape (FANCY).
Fancy whiskers are unavailable for three-dimensional boxplots.

CAPWIDTH(pct) Controls the width of the whisker cap relative to the corresponding
box. Pct equals the percentage of the box width. The default value for
pct is 45.

Example

IGRAPH
/X1=VAR(region) TYPE=CATEGORICAL
/Y=VAR(sales96) TYPE=SCALE
/COORDINATE=HORIZONTAL
/BOX OUTLIERS=ON EXTREME=ON MEDIAN=ON WHISKER=FANCY.

• X1 assigns the variable region to the X1 axis.

• Y assigns the variable sales96 to the range axis.

• COORDINATE positions the range axis along the horizontal dimension.

• BOX creates a boxplot. The outliers and extreme vales are shown. In addition, a line repre-
senting the median is added to the box.

• WHISKER yields whiskers ending in a fancy T.

IGRAPH 759

Example

IGRAPH
/X1=VAR(region) TYPE=CATEGORICAL
/Y=VAR(sales96) TYPE=SCALE
/X2=VAR(division) TYPE=CATEGORICAL
/COORDINATE=THREE
/BOX OUTLIERS=OFF EXTREME=ON MEDIAN=OFF LABEL=N BOXBASE=ROUND WHISKER=T.

• X2 adds a third dimension, corresponding to division, to the boxplot in the previous
example.

• COORDINATE indicates that the chart displays the third dimension.
• BOX creates a boxplot without outliers or a median line. Extreme values are shown.

• LABEL labels each box with the number of cases represented by each box.

• BOXBASE defines the three-dimensional representation of the boxes to be cylindrical.

LINE Subcommand

LINE creates line charts, dot charts, and ribbon charts. These charts summarize categories of
one or more variables. Line charts tend to emphasize flow or movement instead of individual
values. They are commonly used to display data over time and therefore can be used to give
a good sense of trends. A ribbon chart is similar to a line chart, with the lines displayed as
ribbons in a third dimension. Ribbon charts can either have two dimensions displayed with
a 3-D effect, or they can have three dimensions.

The following keywords are available:

summary function Defines a function used to summarize the variable defined on the Y
subcommand. If the Y axis assignment is $COUNT or $PCT, the LINE
subcommand cannot have a summary function. If the Y subcommand
specifies TYPE=CATEGORICAL, then LINE can specify only MODE as
the summary function. Otherwise, all summary functions described on
p. 764 are available.

STYLE Chart can include dots and lines (DOTLINE), lines only (LINE), or dots
only (DOT). The keyword NONE creates an empty chart.

DROPLINE Indicates whether drop lines between points having the same value of
a variable are included in the chart (ON) or not (OFF). To include drop
lines, specify a categorical variable on the STYLE, COLOR, or SIZE
subcommands.

LABEL Labels points with the actual values corresponding to the dependent
axis (VAL), the percentage of cases (PCT), and the number of cases
included in each data point (N). The default is no labels.

LINELABEL Labels lines with category labels (CAT), the percentage of cases
(PCT), and the number of cases included in each line (N). The default
is no labels.

BREAK Indicates whether the lines break at missing values (MISSING) or not
(NONE).

760 IGRAPH

The INTERPOLATE keyword determines how the lines connecting the points are drawn.
Options include:

STRAIGHT Straight lines.

LSTEP A horizontal line extends from each data point. A vertical riser con-
nects the line to the next data point.

CSTEP Each data point is centered on a horizontal line that extends half of
the distance between consecutive points. Vertical risers connect the
line to the next horizontal line.

RSTEP A horizontal line terminates at each data point. A vertical riser
extends from each data point, connecting to the next horizontal line.

LJUMP A horizontal line extends from each data point. No vertical risers
connect the lines to the points.

RJUMP A horizontal line terminates at each data point. No vertical risers
connect the points to the next horizontal line.

CJUMP A horizontal line is centered at each data point, extending half of the
distance between consecutive points. No vertical risers connect the
lines.

SPLINE Connects data points with a cubic spline.

LAGRANGE3 Connects data points with third-order Lagrange interpolations, in
which a third-order polynomial is fit to the nearest four points.

LAGRANGE5 Connects data points with fifth-order Lagrange interpolations, in
which a fifth-order polynomial is fit to the nearest six points.

Example

IGRAPH
/X1=VAR(volume95) TYPE=CATEGORICAL
/Y=VAR(sales96) TYPE=SCALE
/COLOR=VAR(volume94) TYPE=CATEGORICAL
/COORDINATE=VERTICAL
/LINE (MEAN) STYLE=LINE DROPLINE=ON LABEL VAL

INTERPOLATE=STRAIGHT BREAK=MISSING.

• LINE creates a line chart. The lines represent the mean value of sales96 for each category
of volume95.

• The chart contains a line for each category of volume94, with droplines connecting the
lines at each category of volume95.

• LABEL labels the lines with the mean sales96 value for each category of volume95.
• INTERPOLATE specifies that straight lines connect the mean sales96 values across the

volume95 categories.

• BREAK indicates that the lines will break at any missing values.

IGRAPH 761

ERRORBAR Subcommand

Error bars help you to visualize distributions and dispersion by indicating the variability of
the measure being displayed. The mean of a scale variable is plotted for a set of categories,
and the length of an error bar on either side of the mean value indicates a confidence interval
or a specified number of standard errors or standard deviations. Error bars can extend in one
direction or in both directions from the mean. Error bars are sometimes displayed in the same
chart with other chart elements, such as bars.

One of the following three keywords indicating the statistic and percentage/multiplier
applied to the error bars must be specified:

CI(Pct) Error bars represent confidence intervals. Pct indicates the level of con-
fidence and varies from 0 to 100.

SD(sdval) Error bars represent standard deviations. Sdval indicates how many stan-
dard deviations above and below the mean the error bars extend. Sdval must
between 0 and 6.

SE(seval) Error bars represent standard errors. Seval indicates how many standard er-
rors above and below the mean the error bars extend. Seval must between 0
and 6.

In addition, the following keywords can be specified:

LABEL Labels error bars with means (VAL) and the number of cases (N).

DIRECTION Error bars can extend both above and below the mean values (BOTH),
only above the mean values (UP), only below the mean values
(DOWN), or above for error bars above the baseline and below for
error bars below the baseline (SIGN).

CAPSTYLE For error bars, the style can be T-shaped (T), no cap (NONE), or a cap
with end pieces (FANCY). The default style is T-shaped.

SYMBOL Displays the mean marker (ON). For no symbol, specify OFF.

BASELINE val Defines the value (val) above which the error bars extend above the
bars and below which the error bars extend below the bars.

CAPWIDTH(pct) Controls the width of the cap relative to the distance between
categories. Pct equals the percent of the distance. The default value for
pct is 45.

Example

IGRAPH
/X1=VAR(volume94) TYPE=CATEGORICAL
/Y=VAR(sales96) TYPE=SCALE
/BAR (MEAN) LABEL INSIDE VAL SHAPE=RECTANGLE BASELINE=0.00
/ERRORBAR SE(2.0) DIRECTION=BOTH CAPWIDTH (45) CAPSTYLE=FANCY.

• BAR creates a bar chart with rectangular bars. The bars represent the mean sales96 values
for the volume94 categories.

• ERRORBAR adds error bars to the bar chart. The error bars extend two standard errors
above and below the mean.

762 IGRAPH

HISTOGRAM Subcommand

HISTOGRAM creates a histogram element in a chart, corresponding to the X1, X2, and Y axis
assignments. Horizontal or vertical orientation is specified by the COORDINATE subcom-
mand. A histogram groups the values of a variable into evenly spaced groups (intervals or
bins) and plots a count of the number of cases in each group. The count can be expressed as
a percentage. Percentages are useful for comparing data sets of different sizes. The count or
percentage can also be accumulated across the groups.

• $COUNT or $PCT must be specified on the Y subcommand.

The following keywords are available:

SHAPE Defines the shape of the histogram. Currently, the only value for
SHAPE is HISTOGRAM.

CUM Specifies a cumulative histogram. Counts or percentages are aggregated
across the values of the domain variables.

X1INTERVAL Intervals on the X1 axis can be set automatically, or you can specify
the number of intervals (1 to 250) along the axis (NUM) or the width
of an interval (WIDTH).

X2INTERVAL Intervals on the X2 axis can be set automatically, or you can specify
the number of intervals (1 to 250) along the axis (NUM) or the width
of an interval (WIDTH).

CURVE Superimposes a normal curve on a 2-D histogram. The normal curve
has the same mean and variance as the data.

X1START The starting point along the X1 axis. Indicates the percentage of an
interval width above the minimum value along the X1 axis at which to
begin the histogram. The value can range from 0 to 99.

X2START The starting point along the X2 axis. Indicates the percentage of an
interval width above the minimum value along the X2 axis at which to
begin the histogram. The value can range from 0 to 99.

Example

IGRAPH
/X1=VAR(sales96) TYPE=SCALE
/Y=$count
/Histogram SHAPE=HISTOGRAM CURVE=ON X1INTERVAL WIDTH=100.

• Histogram creates a histogram of sales96. The sales96 intervals are 100 units wide.

• CURVE superimposes a normal curve on the histogram.

FITLINE Subcommand

FITLINE adds a line or surface to a scatterplot to help you discern the relationship shown in
the plot. The following general methods are available:

NONE No line is fit.

IGRAPH 763

REGRESSION Fits a straight line (or surface) using ordinary least squares. Must be fol-
lowed by the keyword LINEAR.

ORIGIN Fits a straight line (or surface) through the origin. Must be followed by the
keyword LINEAR.

MEAN For a 2-D chart, fits a line at the mean of the dependent (Y) variable. For a
3-D chart, the Y mean is shown as a plane.

LLR Fits a local linear regression curve or surface. A normal (NORMAL) kernel
is the default. With EPANECHNIKOV, the curve is not as smooth as with a nor-
mal kernel and is smoother than with a uniform (UNIFORM) kernel. (For
more information, see Simonoff, J. S. 1966. Smoothing methods in statistics.
New York: Springer-Verlag.)

The keyword LINE indicates the number of fit lines. TOTAL fits the line to all of the cases.
MEFFECT fits a separate line to the data for each value of a legend variable.

The REGRESSION, ORIGIN, and MEAN methods offer the option of including prediction
intervals with the following keyword:

INTERVAL[(cval)] The intervals are based on the mean (MEAN) or on the individual cases
(INDIVIDUAL). Cval indicates the size of the interval and ranges from
50 to 100.

The local linear regression (LLR) smoother offers the following controls for the smoothing
process:

BANDWIDTH Constrains the bandwidth to be constant across subgroups or panels
(CONSTRAINED). The default is unconstrained (FAST).

X1MULTIPLIER Specifies the bandwidth multiplier for the X1 axis. The bandwidth
multiplier changes the amount of data that is included in each calcula-
tion of a small part of the smoother. The multiplier can be adjusted to
emphasize specific features of the plot that are of interest. Any posi-
tive multiplier (including fractions) is allowed. The larger the multi-
plier, the smoother the curve. The range between 0 and 10 should
suffice in most applications.

X2MULTIPLIER Specifies the bandwidth multiplier for the X2 axis. The bandwidth
multiplier changes the amount of data that is included in each calcula-
tion of a small part of the smoother. The multiplier can be adjusted to
emphasize specific features of the plot that are of interest. Any posi-
tive multiplier (including fractions) is allowed. The larger the multi-
plier, the smoother the curve. The range between 0 and 10 should
suffice in most applications.

764 IGRAPH

Example

IGRAPH
/X1=VAR(sales95) TYPE=SCALE
/Y=VAR(sales96) TYPE=SCALE
/COLOR=VAR(region) TYPE=CATEGORICAL
/SCATTER
/FITLINE METHOD=LLR EPANECHNIKOV BANDWIDTH=CONSTRAINED

X1MULTIPLIER=2.00 LINE=MEFFECT.

• SCATTER creates a scatterplot of sales95 and sales96.

• FITLINE adds a local linear regression smoother to the scatterplot. The Epanechnikov
smoother is used with an X1 multiplier of 2. A separate line is fit for each category of
region and the bandwidth is constrained to be equal across region categories.

Summary Functions

Summary functions apply to scale variables selected for a dependent axis or a slice summary.
Percentages are based on the specified percent base. For a slice summary, only summary
functions appropriate for the type of chart are available.

The following summary functions are available:

First Values (FIRST). The value found in the first case for each category in the data file at the
time the summary was defined.

Kurtosis (KURTOSIS). A measure of the extent to which observations cluster around a
central point. For a normal distribution, the value of the kurtosis statistic is 0. Positive
kurtosis indicates that the observations cluster more and have longer tails than those in the
normal distribution, and negative kurtosis indicates the observations cluster less and have
shorter tails.

Last Values (LAST). The value found in the last case for each category in the data file at the
time the summary was defined.

Maximum Values (MAXIMUM). The largest value for each category.

Minimum Values (MINIMUM). The smallest value within the category.

Means (MEAN). The arithmetic average for each category.

Medians (MEDIAN). The values below which half of the cases fall in each category.

Modes (MODE). The most frequently occurring value within each category.

Number of Cases Above (NGT(x)). The number of cases having values above the specified
value.

Number of Cases Between (NIN(x1,x2)). The number of cases between two specified values.

Number of Cases Equal to (NEQ(x)). The number of cases equal to the specified value.

Number of Cases Greater Than or Equal to (NGE(x)). The number of cases having values above
or equal to the specified value.

Number of Cases Less Than (NLT(x)). The number of cases below the specified value.

IGRAPH 765

Number of Cases Less Than or Equal to (NLE(x)). The number of cases below or equal to the
specified value.

Percentage of Cases Above (PGT(x)). The percentage of cases having values above the spec-
ified value.

Percentage of Cases Between (PIN(x1,x2)). The percentage of cases between two specified
values.

Percentage of Cases Equal to (PEQ(x)). The percentage of cases equal to the specified value.

Percentage of Cases Greater Than or Equal to (PGE(x)). The percentage of cases having values
above or equal to the specified value.

Percentage of Cases Less Than (PLT(x)). The percentage of cases having values below the
specified value.

Percentage of Cases Less Than or Equal to (PLE(x)). The percentage of cases having values
below or equal to the specified value.

Percentiles (PTILE(x)). The data value below which the specified percentage of values fall
within each category.

Skewness (SKEW). A measure of the asymmetry of a distribution. The normal distribution
is symmetric and has a skewness value of 0. A distribution with a significant positive
skewness has a long right tail. A distribution with a significant negative skewness has a
long left tail.

Standard Deviations (STDDEV). A measure of dispersion around the mean, expressed in the
same units of measurement as the observations, equal to the square root of the variance. In
a normal distribution, 68% of cases fall within one SD of the mean and 95% of cases fall
within two SD’s.

Standard Errors of Kurtosis (SEKURT). The ratio of kurtosis to its standard error can be used
as a test of normality (that is, you can reject normality if the ratio is less than –2 or greater
than +2). A large positive value for kurtosis indicates that the tails of the distribution are
longer than those of a normal distribution; a negative value for kurtosis indicates shorter
tails (becoming like those of a box-shaped uniform distribution).

Standard Errors of the Mean (SEMEAN). A measure of how much the value of the mean may
vary from sample to sample taken from the same distribution. It can be used to roughly
compare the observed mean to a hypothesized value (that is, you can conclude the two
values are different if the ratio of the difference to the standard error is less than –2 or greater
than +2).

Standard Errors of Skewness (SESKEW). The ratio of skewness to its standard error can be
used as a test of normality (that is, you can reject normality if the ratio is less than –2 or
greater than +2). A large positive value for skewness indicates a long right tail; an extreme
negative value, a long left tail.

Sums (SUM). The sums of the values within each category.

Sums of Absolute Values (SUMAV). The sums of the absolute values within each category.

Sums of Squares (SUMSQ). The sums of the squares of the values within each category.

766 IGRAPH

Variances (VARIANCE). A measure of how much observations vary from the mean,
expressed in squared units.

767

IMPORT

IMPORT FILE=file

 [/TYPE={COMM}]
 {TAPE}

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/RENAME=(old varnames=new varnames)...]

 [/MAP]

**Default if the subcommand is omitted.

Example
IMPORT FILE=NEWDATA /RENAME=(V1 TO V3=ID, SEX, AGE) /MAP.

Overview

IMPORT reads SPSS-format portable data files created with the EXPORT command. A por-
table data file is a data file created by the program and used to transport data between dif-
ferent types of computers and operating systems (such as between IBM CMS and Digital
VAX/VMS) or between SPSS, SPSS/PC+, or other software using the same portable file
format. Like an SPSS-format data file, a portable file contains all of the data and dictionary
information stored in the working data file from which it was created.

The program can also read data files created by other software programs. See GET
TRANSLATE for information on reading files created by spreadsheet and database programs
such as dBASE, Lotus, and Excel.

Options

Format. You can specify the format of the portable file (magnetic tape or communications
program) on the TYPE subcommand. For more information on magnetic tapes and commu-
nications programs, see “Methods of Transporting Portable Files” on p. 530.

Variables. You can read a subset of variables from the working data file with the DROP and
KEEP subcommands. You can rename variables using RENAME. You can also produce a
record of all variables and their names in the working file with the MAP subcommand.

Basic Specification

The basic specification is the FILE subcommand with a file specification. All variables from
the portable file are copied into the working data file with their original names, variable and
value labels, missing-value flags, and print and write formats.

768 IMPORT

Subcommand Order

• FILE and TYPE must precede all other subcommands.

• No specific order is required between FILE and TYPE or among other subcommands.

Operations

• The portable data file and dictionary become the working data file and dictionary.

• A file saved with weighting in effect (using the WEIGHT command) automatically uses
the case weights when the file is read.

Example

IMPORT FILE=NEWDATA /RENAME=(V1 TO V3=ID,SEX,AGE) /MAP.

• The working data file is generated from the portable file NEWDATA.
• Variables V1, V2, and V3 are renamed ID, SEX, and AGE in the working file. Their names

remain V1, V2, and V3 in the portable file. None of the other variables copied into the
working file are renamed.

• MAP requests a display of the variables in the working data file.

FILE Subcommand

FILE specifies the portable file. FILE is the only required subcommand on IMPORT.

TYPE Subcommand

TYPE indicates whether the portable file is formatted for magnetic tape or for a communica-
tions program. TYPE can specify either COMM or TAPE. For more information on magnetic
tapes and communications programs, see EXPORT.

COMM Communications-formatted file. This is the default.

TAPE Tape-formatted file.

Example
IMPORT TYPE=TAPE /FILE=HUBOUT.

• The file HUBOUT is read as a tape-formatted portable file.

DROP and KEEP Subcommands

DROP and KEEP are used to read a subset of variables from the portable file.

IMPORT 769

• DROP excludes a variable or list of variables from the working data file. All variables not
named are included in the file.

• KEEP includes a variable or list of variables in the working file. All variables not specified
on KEEP are excluded.

• DROP and KEEP cannot precede the FILE or TYPE subcommands.

• Variables can be specified in any order. The order of variables on KEEP determines the
order of variables in the working file. The order on DROP does not affect the order of vari-
ables in the working file.

• If a variable is referred to twice on the same subcommand, only the first mention is
recognized.

• Multiple DROP and KEEP subcommands are allowed; the effect is cumulative. Specifying
a variable named on a previous DROP or not named on a previous KEEP results in an error
and the command is not executed.

• The keyword TO can be used to specify a group of consecutive variables in the portable
file.

• The portable file is not affected by DROP or KEEP.

Example
IMPORT FILE=NEWSUM /DROP=DEPT TO DIVISION.

• The working data file is generated from the portable file NEWSUM. Variables between and
including DEPT and DIVISION in the portable file are excluded from the working file.

• All other variables are copied into the working file.

RENAME Subcommand

RENAME renames variables being read from the portable file. The renamed variables retain
the variable and value labels, missing-value flags, and print formats contained in the portable
file.

• To rename a variable, specify the name of the variable in the portable file, a required
equals sign, and the new name.

• A variable list can be specified on both sides of the equals sign. The number of variables on
both sides must be the same, and the entire specification must be enclosed in parentheses.

• The keyword TO can be used for both variable lists (see “Keyword TO” on p. 23).
• Any DROP or KEEP subcommand after RENAME must use the new variable names.

Example
IMPORT FILE=NEWSUM /DROP=DEPT TO DIVISION

/RENAME=(NAME,WAGE=LNAME,SALARY).

• RENAME renames NAME and WAGE to LNAME and SALARY.
• LNAME and SALARY retain the variable and value labels, missing-value flags, and print

formats assigned to NAME and WAGE.

770 IMPORT

MAP Subcommand

MAP displays a list of variables in the working data file, showing all changes that have been
specified on the RENAME, DROP, or KEEP subcommands.

• MAP can be specified as often as desired.

• MAP confirms only the changes specified on the subcommands that precede the MAP
request.

• Results of subcommands that follow MAP are not mapped. When MAP is specified last, it
also produces a description of the file.

Example
IMPORT FILE=NEWSUM /DROP=DEPT TO DIVISION /MAP

/RENAME NAME=LNAME WAGE=SALARY /MAP.

• The first MAP subcommand produces a listing of the variables in the file after DROP has
dropped the specified variables.

• RENAME renames NAME and WAGE.

• The second MAP subcommand shows the variables in the file after renaming.

771

INCLUDE

INCLUDE FILE=file

Example
INCLUDE FILE=GSSLABS.

Overview

INCLUDE includes a file of commands in a session. INCLUDE is especially useful for
including a long series of data definition statements or transformations. Another use for
INCLUDE is to set up a library of commonly used commands and include them in the
command sequence as they are needed.

INCLUDE allows you to run multiple commands together during a session and can save
time. Complex or repetitive commands can be stored in a command file and included in the
session, while simpler commands or commands unique to the current analysis can be
entered during the session, before and after the included file.

Basic Specification

The only specification is the FILE subcommand, which specifies the file to include. When
INCLUDE is executed, the commands in the specified file are processed.

Syntax Rules

• Commands in an included file must begin in column 1, and continuation lines for each
command must be indented at least one column.

• A raw data file can be used as an include file if the first line of the included file contains
the BEGIN DATA command and the last line contains the END DATA command. However,
because the data are specified between BEGIN DATA and END DATA, they are limited to a
maximum of 80 columns (the maximum may be fewer than 80 columns on some systems).

• As many INCLUDE commands as needed can be used in a session.
• INCLUDE commands can be nested so that one set of included commands includes

another set of commands. This nesting can go to five levels. However, a file cannot be
included that is still open from a previous step.

Operations

• If an included file contains a FINISH command, the session ends and no further
commands are processed.

772 INCLUDE

• If a journal file is created for the session, INCLUDE is copied to the journal file.
Commands from the included file are also copied to the journal file but are treated like
printed messages. Thus, INCLUDE can be executed from the journal file if the journal file
is later used as a command file. Commands from the included file are executed only
once.

FILE Subcommand

FILE identifies the file containing commands. FILE is the only specification on INCLUDE and
is required.

Example

INCLUDE FILE=GSSLABS.

• INCLUDE includes the file GSSLABS in the prompted session. When INCLUDE is
executed, the commands in GSSLABS are processed.

• Assume that the include file GSSLABS contains the following:

DATA LIST FILE=DATA52
/RELIGION 5 OCCUPAT 7 SES 12 ETHNIC 15
PARTY 19 VOTE48 33 VOTE52 41.

The working data file will be defined and ready for analysis after INCLUDE is executed.

773

INFO

This command is not available on all operating systems.

INFO [OUTFILE = file]
 [OVERVIEW]
 [LOCAL]
 [ERRORS]
 [FACILITIES]
 [PROCEDURES]
 [ALL]
 [procedure name] [/procedure name...]
 [SINCE release number]

Example
INFO LOCAL.

Overview

INFO makes available two kinds of online documentation: local and update.

Local Documentation

Local documentation concerns the environment in which the program is run. It includes
some or all of the following, depending on the operating system:

• Commands or job control language for running the program.
• Conventions for referring to files. These include instructions on how your computer’s

operating system accesses or creates a particular file.

• Conventions for handling tapes and other input/output devices.

• Data formats. The formats the program reads and writes may differ from one computer
and operating system to another.

• Default values for parameters controlled by the SET command. Many defaults for these
parameters are set at the individual installation. The SHOW command displays the values
that are currently in effect. Local documentation may contain information on why one
setting is preferred over another.

• Information about your computer and operating system or your individual installation.

Update Documentation

Update documentation includes changes to existing procedures and facilities made after
publication of this manual, new procedures and facilities, and corrections to this manual.
Update documentation can be requested for all available releases, or for releases after a par-
ticular release.

774 INFO

Basic Specification

• The minimum specification is the command name. When specified by itself, the program
displays an overview of available documents.

Syntax Rules

• Multiple keywords and/or procedure names can be specified on a single INFO command.

• Multiple procedure names must be separated by slashes.

• The order of specifications is unimportant and does not affect the order in which the
documentation is printed.

• Three- or four-character truncation does not apply to INFO command specifications. Spell
all keywords in full. For procedure names, spell the first word in full and subsequent
words through at least the first three characters.

Operations

• By default, the INFO command produces update information only for the current release.
Documentation for earlier releases may also be available; read the INFO overview to find
out whether it is available on your system.

• If overlapping sets of information are requested, only one copy is printed.
• If there is no available documentation for the requested information, only a copyright

page is printed.

• If information is requested for an unrecognized topic, the program prints an error message.

• The characteristics of the output produced by the INFO command may vary by computer
type. As implemented at SPSS Inc., the output includes carriage control, with the maximum
length of a page determined by the LENGTH subcommand on SET. A printer width of 132
characters is assumed for some examples, although the text is generally much narrower.

• The program requires more computer resources than most printing utilities. Your instal-
lation may therefore provide an alternative method for printing INFO documentation. In
this case, the INFO command may simply provide instructions for using the alternative
method.

Example

INFO OVERVIEW FACILITIES FREQUENCIES / CROSSTABS.

• INFO produces an overview and documentation for any changes made to system facilities
and to the FREQUENCIES and CROSSTABS procedures.

• Because the keyword SINCE is not specified, INFO prints only documentation for the
current release.

INFO 775

Types of Information

The following types of information can be requested on INFO:

OVERVIEW Overview of available documentation. This includes a table of contents for
the documentation available with INFO, along with information about SPSS
manuals.

LOCAL Local documentation. See “Local Documentation” on p. 773.

ERRORS List of known unfixed errors. This lists the known unfixed errors in the
current release of the program. Since ERRORS applies only to the current
release, the SINCE keyword (described below) has no effect with ERRORS.

FACILITIES Update information for system facilities. This covers all differences, except
in procedures, between the system as documented in this manual and the
system as installed on your computer—whether those differences result from
updates to the system, revisions required for conversions to particular
operating systems, or errors in this manual. Only updates for the most current
release are printed unless keyword SINCE is specified.

PROCEDURES Update information for procedures. This includes full documentation for
procedures new in the current release and update information for procedures
that existed prior to the current release.

PROCEDURE Documentation for the procedure named. This is the same information as
that printed by the PROCEDURES keyword, but limited to the procedure
named. You can specify multiple procedures, separating each from the other
with a slash.

ALL All available documentation. ALL includes OVERVIEW, LOCAL, ERRORS,
FACILITIES, and PROCEDURES.

SINCE Keyword

Releases of SPSS are numbered by integers, with decimal digits indicating maintenance
releases between major releases. The release number appears in the default heading for
SPSS output. Each SPSS manual is identified in the preface by the number of the release
it documents.

The keyword SINCE obtains information for earlier releases or limits the information to
maintenance releases since the last major release.

• The minimum specification is the keyword SINCE followed by a release number.

• SINCE is not inclusive. Specifying 3.0 does not include changes made to the system in
release 3.0.

• To identify a maintenance release, enter the exact number, with decimal, as in 3.1.
• Information for some earlier releases may not be available. For example, information for

release 2.2 and earlier is not available if INFO is run with SPSS release 5.0 or later.

776 INFO

Example
INFO OVERVIEW FACILITIES FREQUENCIES / CROSSTABS SINCE 3.

• INFO prints documentation for all changes to system facilities and to procedures FREQUENCIES
and CROSSTABS since release 3.0.

OUTFILE Subcommand

By default, the information generated by INFO is part of the output. OUTFILE sends INFO out-
put to a separate file.

Example
INFO OUTFILE=SPSSDOC ALL SINCE 3.

• INFO creates a text file that includes an overview, local documentation, error, and update
information for facilities and procedures since release 3.0.

• The OUTFILE subcommand sends the documentation to the file SPSSDOC.

777

INPUT PROGRAM—END INPUT PROGRAM

INPUT PROGRAM

commands to create or define cases

END INPUT PROGRAM

Example
INPUT PROGRAM.
DATA LIST FILE=PRICES /YEAR 1-4 QUARTER 6 PRICE 8-12(2).

DO IF (YEAR GE 1881). /*Stop reading before 1881
END FILE.
END IF.
END INPUT PROGRAM.

Overview

The INPUT PROGRAM and END INPUT PROGRAM commands enclose data definition and
transformation commands that build cases from input records. The input program often
encloses one or more DO IF—END IF or LOOP—END LOOP structures, and it must include at
least one file definition command, such as DATA LIST. One of the following utility commands
is also usually used:

END CASE Build cases from the commands within the input program and pass
the cases to the commands immediately following the input program.

END FILE Terminate processing of a data file before the actual end of the file
or define the end of the file when the input program is used to read
raw data.

REREAD Reread the current record using a different DATA LIST.

REPEATING DATA Read repeating groups of data from the same input record.

For more information on the commands used in an input program, see the discussion of each
command.

Input programs create a dictionary and data for a working file from raw data files; they
cannot be used to read SPSS-format data files. They can be used to process direct-access
and keyed data files. For details, see KEYED DATA LIST.

Input Programs

The program builds the working data file dictionary when it encounters commands that
create and define variables. At the same time, the program builds an input program that con-
structs cases and an optional transformation program that modifies cases prior to analysis or
display. By the time the program encounters a procedure command that tells it to read the

778 INPUT PROGRAM—END INPUT PROGRAM

data, the working file dictionary is ready, and the programs that construct and modify the cases
in the working file are built.

The internal input program is usually built from either a single DATA LIST command or
from any of the commands that read or combine SPSS-format data files (for example, GET,
ADD FILES, MATCH FILES, UPDATE, and so on). The input program can also be built from the
FILE TYPE—END FILE TYPE structure used to define nested, mixed, or grouped files. The
third type of input program is specified with the INPUT PROGRAM—END INPUT PROGRAM
commands.

With INPUT PROGRAM—END INPUT PROGRAM, you can create your own input program
to perform many different operations on raw data. You can use transformation commands to
build cases. You can read nonrectangular files, concatenate raw data files, and build cases
selectively. You can also create a working data file without reading any data at all.

Input State

There are four program states in the program: the initial state, in which there is no working
file dictionary; the input state, in which cases are created from the input file; the transforma-
tion state, in which cases are transformed; and the procedure state, in which procedures are
executed. When you specify INPUT PROGRAM—END INPUT PROGRAM, you must pay atten-
tion to which commands are allowed within the input state, which commands can appear only
within the input state, and which are not allowed within the input state. See Appendix A for a
discussion of program states, command order, and a table that describes what happens to each
command when it is encountered in each of the four states.

Basic Specification

The basic specification is INPUT PROGRAM, the commands used to create cases and define
the working data file, and END INPUT PROGRAM.

• INPUT PROGRAM and END INPUT PROGRAM each must be specified on a separate line
and have no additional specifications.

• To define a working data file, the input program must include at least one DATA LIST or
END FILE command.

Operations

• The INPUT PROGRAM—END INPUT PROGRAM structure defines a working data file and
is not executed until the program encounters a procedure or the EXECUTE command.

• INPUT PROGRAM clears the current working data file.

INPUT PROGRAM—END INPUT PROGRAM 779

Example

* Select cases with an input program.

INPUT PROGRAM.
DATA LIST FILE=PRICES /YEAR 1-4 QUARTER 6 PRICE 8-12(2).

DO IF (YEAR GE 1881). /*Stop reading when reaching 1881
END FILE.
END IF.
END INPUT PROGRAM.

LIST.

• The input program is defined between the INPUT PROGRAM and END INPUT PROGRAM
commands.

• This example assumes that data records are entered chronologically by year. The DO IF—
END IF structure specifies an end of file when the first case with a value of 1881 or later
for YEAR is reached.

• LIST executes the input program and lists cases in the working data file. The case that causes
the end of the file is not included in the working file generated by the input program.

• As an alternative to this input program, you can use N OF CASES to select cases if you
know the exact number of cases. Another alternative is to use SELECT IF to select cases
before 1881, but then the program would unnecessarily read the entire input file.

Example

* Skip the first n records in a file.

INPUT PROGRAM.
NUMERIC #INIT.
DO IF NOT (#INIT).
+ LOOP #I = 1 TO 5.
+ DATA LIST NOTABLE/. /* No data - just skip record
+ END LOOP.
+ COMPUTE #INIT = 1.
END IF.
DATA LIST NOTABLE/ X 1.
END INPUT PROGRAM.

BEGIN DATA
A /* The first 5 records are skipped
B
C
D
E
1
2
3
4
5
END DATA.
LIST.

780 INPUT PROGRAM—END INPUT PROGRAM

• NUMERIC declares the scratch variable #INIT, which is initialized to system-missing.

• The DO IF structure is executed as long as #INIT does not equal 1.

• LOOP is executed five times. Within the loop, DATA LIST is specified without variable
names, causing the program to read records in the data file without copying them into
the working file. LOOP is executed five times, so the program reads five records in this
manner. END LOOP terminates this loop.

• COMPUTE creates the scratch variable #INIT and sets it equal to 1. The DO IF structure is
therefore not executed again.

• END IF terminates the DO IF structure.

• The second DATA LIST specifies numeric variable X, which is located in column 1 of each
record. Because the program has already read five records, the first value for X that is copied
into the working file is read from record 6.

More Examples

For additional examples of input programs, refer to DATA LIST (p. 422), DO IF (p. 500), DO
REPEAT (p. 503), END CASE, END FILE, LOOP, NUMERIC (p. 1103), POINT (p. 1221),
REPEATING DATA, REREAD, and VECTOR (p. 1658).

781

KEYED DATA LIST

KEYED DATA LIST KEY=varname IN=varname

 FILE=file [{TABLE }]
 {NOTABLE}

 /varname {col location [(format)]} [varname ..]
 {(FORTRAN-like format) }

Example
FILE HANDLE EMPL/ file specifications.
KEYED DATA LIST FILE=EMPL KEY=#NXTCASE IN=#FOUND

/YRHIRED 1-2 SEX 3 JOBCLASS 4.

Overview

KEYED DATA LIST reads raw data from two types of nonsequential files: direct-access files,
which provide direct access by a record number, and keyed files, which provide access by
a record key. An example of a direct-access file is a file of 50 records, each corresponding
to one of the United States. If you know the relationship between the states and the record
numbers, you can retrieve the data for any specific state. An example of a keyed file is a file
containing social security numbers and other information about a firm’s employees. The
social security number can be used to identify the records in the file.

Direct-Access Files

There are various types of direct-access files. This program’s concept of a direct-access file,
however, is very specific. The file must be one from which individual records can be selected
according to their number. The records in a 100-record direct-access file, for example, are
numbered from 1 to 100.

Although the concept of record number applies to almost any file, not all files can be
treated by this program as direct-access files. In fact, some operating systems provide no
direct-access capabilities at all, and others permit only a narrowly defined subset of all files
to be treated as direct access.

Very few files turn out to be good candidates for direct-access organization. In the case
of an inventory file, for example, the usual large gaps in the part numbering sequence would
result in large amounts of wasted file space. Gaps are not a problem, however, if they are
predictable. For example, if you recognize that telephone area codes have first digits of 2
through 9, second digits of 0 or 1, and third digits of 0 through 9, you can transform an area
code into a record number by using the following COMPUTE statement:

COMPUTE RECNUM = 20*(DIGIT1-2) + 10*DIGIT2 + DIGIT3 + 1.

where DIGIT1, DIGIT2, and DIGIT3 are variables corresponding to the respective digits in the
area code, and RECNUM is the resulting record number. The record numbers would range

782 KEYED DATA LIST

from 1, for the nonexistent area code 200, through 160, for area code 919. The file would
then have a manageable number of unused records.

Keyed Files

Of the many kinds of keyed files, the ones to which the program can provide access are
generally known as indexed sequential files. A file of this kind is basically a sequential file
in which an index is maintained so that the file can be processed either sequentially or selec-
tively. In effect, there is an underlying data file that is accessed through a file of index entries.
The file of index entries may, for example, contain the fact that data record 797 is associated
with social security number 476-77-1359. Depending on the implementation, the underlying
data may or may not be maintained in sequential order.

The key for each record in the file generally comprises one or more pieces of information
found within the record. An example of a complex key is a customer’s last name and house
number, plus the consonants in the street name, plus the zip code, plus a unique digit in case
there are duplicates. Regardless of the information contained in the key, the program treats
it as a character string.

On some systems, more than one key is associated with each record. That is, the records
in a file can be identified according to different types of information. Although the primary
key for a file normally must be unique, sometimes the secondary keys need not be. For
example, the records in an employee file might be identified by social security number and
job classification.

Options

Data Source. You can specify the name of the keyed file on the FILE subcommand. By default,
the last file that was specified on an input command, such as DATA LIST or REPEATING DATA,
is read.

Summary Table. You can display a table that summarizes the variable definitions.

Basic Specification

• The basic specification requires FILE, KEY, and IN, each of which specifies one variable,
followed by a slash and variable definitions.

• FILE specifies the direct-access or keyed file. The file must have a file handle already defined.

• KEY specifies the variable whose value will be used to read a record. For direct-access
files, the variable must be numeric; for keyed files, it must be string.

• IN creates a logical variable that flags whether a record was successfully read.

• Variable definitions follow all subcommands; the slash preceding them is required.
Variable definitions are similar to those specified on DATA LIST.

Subcommand Order

• Subcommands can be named in any order.
• Variable definitions must follow all specified subcommands.

KEYED DATA LIST 783

Syntax Rules

• Specifications for the variable definitions are the same as those described for DATA LIST.
The only difference is that only one record can be defined per case.

• The FILE HANDLE command must be used if the FILE subcommand is specified on KEYED
DATA LIST.

• KEYED DATA LIST can be specified in an input program, or it can be used as a transforma-
tion language to change an existing working data file. This differs from all other input
commands, such as GET and DATA LIST, which create new working files.

Operations

• Variable names are stored in the working file dictionary.
• Formats are stored in the working file dictionary and are used to display and write the

values. To change output formats of numeric variables, use the FORMATS command.

Example

FILE HANDLE EMPL/ file specifications.
KEYED DATA LIST FILE=EMPL KEY=#NXTCASE IN=#FOUND

/YRHIRED 1-2 SEX 3 JOBCLASS 4.

• FILE HANDLE defines the handle for the data file to be read by KEYED DATA LIST. The
handle is specified on the FILE subcommand of KEYED DATA LIST.

• KEY on KEYED DATA LIST specifies the variable to be used as the access key. For a direct-
access file, the value of the variable must be between 1 and the number of records in the
file. For a keyed file, the value must be a string.

• IN creates the logical scratch variable #FOUND, whose value will be 1 if the record is
successfully read, or 0 if the record is not found.

• The variable definitions are the same as those used for DATA LIST.

784 KEYED DATA LIST

Example

* Reading a direct-access file: sampling 1 out of every 25 records.

FILE HANDLE EMPL/ file specifications.
INPUT PROGRAM.
COMPUTE #INTRVL = TRUNC(UNIF(48))+1. /* Mean interval = 25
COMPUTE #NXTCASE = #NXTCASE+#INTRVL. /* Next record number
COMPUTE #EOF = #NXTCASE > 1000. /* End of file check
DO IF #EOF.
+ END FILE.
ELSE.
+ KEYED DATA LIST FILE=EMPL, KEY=#NXTCASE, IN=#FOUND, NOTABLE
 /YRHIRED 1-2 SEX 3 JOBCLASS 4.
+ DO IF #FOUND.
+ END CASE. /* Return a case
+ ELSE.
+ PRINT / ’Oops. #NXTCASE=’ #NXTCASE.
+ END IF.
END IF.
END INPUT PROGRAM.
EXECUTE.

• FILE HANDLE defines the handle for the data file to be read by the KEYED DATA LIST
command. The record numbers for this example are generated by the transformation
language; they are not based on data taken from another file.

• The INPUT PROGRAM and END INPUT PROGRAM commands begin and end the block of
commands that build cases from the input file. Since the session generates cases, an input
program is required.

• The first two COMPUTE statements determine the number of the next record to be selected.
This is done in two steps. First, the integer portion is taken from the sum of 1 and a uniform
pseudo-random number between 1 and 49. The result is a mean interval of 25. Second, the
variable #NXTCASE is added to this number to generate the next record number. This
record number, #NXTCASE, will be used for the key variable on the KEYED DATA LIST
command. The third COMPUTE creates a logical scratch variable, #EOF, that has a value
of 0 if the record number is less than or equal to 1000, or 1 if the value of the record number
is greater than 1000.

• The DO IF—END IF structure controls the building of cases. If the record number is greater
than 1000, #EOF equals 1, and the END FILE command tells the program to stop reading
data and end the file.

• If the record number is less than or equal to 1000, the record is read via KEYED DATA LIST
using the value of #NXTCASE. A case is generated if the record exists (#FOUND equals 1).
If not, the program displays the record number and continues to the next case. The sample
will have about 40 records.

• EXECUTE causes the transformations to be executed.

• This example illustrates the difference between DATA LIST, which always reads the next
record in a file, and KEYED DATA LIST, which reads only specified records. The record
numbers must be generated by another command or be contained in the working data file.

KEYED DATA LIST 785

Example

* Reading a keyed file: reading selected records.

GET FILE=STUDENTS/KEEP=AGE,SEX,COURSE.
FILE HANDLE COURSES/ file specifications.
STRING #KEY(A4).
COMPUTE #KEY = STRING(COURSE,N4). /* Create a string key
KEYED DATA LIST FILE=COURSES KEY=#KEY IN=#FOUND NOTABLE

/PERIOD 13 CREDITS 16.
SELECT IF #FOUND.
LIST.

• GET reads the STUDENTS file, which contains information on students, including a course
identification for each student. The course identification will be used as the key for
selecting one record from a file of courses.

• The FILE HANDLE command defines a file handle for the file of courses.

• The STRING and COMPUTE commands transform the course identification from numeric
to string for use as a key. For keyed files, the key variable must be a string.

• KEYED DATA LIST uses the value of the newly created string variable #KEY as the key to
search the course file. If a record that matches the value of #KEY is found, #FOUND is set
to 1; otherwise, it is set to 0. Note that KEYED DATA LIST appears outside an input program
in this example.

• If the course file contains the requested record, #FOUND equals 1. The variables PERIOD
and CREDITS are added to the case and the case is selected via the SELECT IF command;
otherwise, the case is dropped.

• LIST lists the values of the selected cases.

• This example shows how existing cases can be updated on the basis of information read
from a keyed file.

• This task could also be accomplished by reading the entire course file with DATA LIST
and combining it with the student file via the MATCH FILES command. The technique
you should use depends on the percentage of the records in the course file that need to
be accessed. If fewer than 10% of the course file records are read, KEYED DATA LIST is
probably more efficient. As the percentage of the records that are read increases,
reading the entire course file and using MATCH makes more sense.

FILE Subcommand

FILE specifies the handle for the direct-access or keyed data file. The file handle must have
been defined on a previous FILE HANDLE command (or, in the case of the IBM OS environ-
ment, on a DD statement in the JCL).

KEY Subcommand

KEY specifies the variable whose value will be used as the key. This variable must already
exist as the result of a prior DATA LIST, KEYED DATA LIST, GET, or transformation command.

786 KEYED DATA LIST

• KEY is required. Its only specification is a single variable. The variable can be a permanent
variable or a scratch variable.

• For direct-access files, the key variable must be numeric, and its value must be between
1 and the number of records in the file.

• For keyed files, the key variable must be string. If the keys are numbers, such as social
security numbers, the STRING function can be used to convert the numbers to strings. For
example, the following might be required to get the value of a numeric key into exactly
the same format as used on the keyed file:

COMPUTE #KEY=STRING(123,IB4).

IN Subcommand

IN creates a numeric variable whose value indicates whether or not the specified record is
found.

• IN is required. Its only specification is a single numeric variable. The variable can be a
permanent variable or a scratch variable.

• The value of the variable is 1 if the record is successfully read or 0 if the record is not
found. The IN variable can be used to select all cases that have been updated by KEYED
DATA LIST.

Example
FILE HANDLE EMPL/ file specifications.
KEYED DATA LIST FILE=EMPL KEY=#NXTCASE IN=#FOUND

/YRHIRED 1-2 SEX 3 JOBCLASS 4.

• IN creates the logical scratch variable #FOUND. The values of #FOUND will be 1 if the
record indicated by the key value in #NXTCASE is found or 0 if the record does not exist.

TABLE and NOTABLE Subcommands

TABLE and NOTABLE determine whether the program displays a table that summarizes the
variable definitions. TABLE, the default, displays the table. NOTABLE suppresses the table.
• TABLE and NOTABLE are optional and mutually exclusive.

• The only specification for TABLE or NOTABLE is the subcommand keyword. Neither sub-
command has additional specifications.

787

KM

KM is available in the Advanced Models option.

KM varname [BY factor varname]

 /STATUS = varname [EVENT](vallist) [LOST(vallist)]

 [/STRATA = varname]

 [/PLOT = {[SURVIVAL][LOGSURV][HAZARD][OMS] }]

 [/ID = varname]

 [/PRINT = [TABLE**][MEAN**][NONE]]

 [/PERCENTILE = [(]{25, 50, 75 }[)]]
 {value list }

 [/TEST = [LOGRANK**][BRESLOW][TARONE]]

 [/COMPARE = [{OVERALL**}][{POOLED**}]]
 {PAIRWISE } {STRATA }

 [/TREND = [(METRIC)]]

 [/SAVE = tempvar[(newvar)],...]

**Default if subcommand or keyword is omitted.

Temporary variables created by Kaplan-Meier are:

SURVIVAL
HAZARD
SE
CUMEVENT

Example
KM LENGTH BY SEXRACE
 /STATUS=EMPLOY EVENT (1) LOST (2)
 /STRATA=LOCATION.

Overview

KM (alias K-M) uses the Kaplan-Meier (product-limit) technique to describe and analyze the
length of time to the occurrence of an event, often known as survival time. KM is similar to
SURVIVAL in that it produces nonparametric estimates of the survival functions. However,
instead of dividing the period of time under examination into arbitrary intervals, KM
evaluates the survival function at the observed event times. For analysis of survival times
with covariates, including time-dependent covariates, see the COXREG command.

788 KM

Options

KM Tables. You can include one factor variable on the KM command. A KM table is produced
for each level of the factor variable. You can also suppress the KM tables in the output with
the PRINT subcommand.

Survival Status. You can specify the code(s) indicating that an event has occurred as well as
code(s) for cases lost to follow-up using the STATUS subcommand.

Plots. You can plot the survival functions on a linear or log scale or plot the hazard function
for each combination of factor and stratum with the PLOT subcommand.

Test Statistics. When a factor variable is specified, you can specify one or more tests of equality
of survival distributions for the different levels of the factor using the TEST subcommand. You
can also specify a trend metric for the requested tests with the TREND subcommand.

Display ID and Percentiles. You can specify an ID variable on the ID subcommand to identify
each case. You can also request display of percentiles in the output with the PERCENTILES
subcommand.

Comparisons. When a factor variable is specified, you can use the COMPARE subcommand to
compare the different levels of the factor, either pairwise or across all levels, and either
pooled across all strata or within a stratum.

Add New Variables to Working Data File. You can save new variables appended to the end of the
working data file with the SAVE subcommand.

Basic Specification

• The basic specification requires a survival variable and the STATUS subcommand naming
a variable that indicates whether the event occurred.

• The basic specification prints one survival table followed by the mean and median
survival time with standard errors and 95% confidence intervals.

Subcommand Order

• The survival variable and the factor variable (if there is one) must be specified first.

• Remaining subcommands can be specified in any order.

Syntax Rules

• Only one survival variable can be specified. To analyze multiple survival variables, use
multiple KM commands.

• Only one factor variable can be specified following the BY keyword. If you have mul-
tiple factors, use the transformation language to create a single factor variable before
invoking KM.

KM 789

• Only one status variable can be listed on the STATUS subcommand. You must specify the
value(s) indicating that the event occurred.

• Only one variable can be specified on the STRATA subcommand. If you have more than
one stratum, use the transformation language to create a single variable to specify on the
STRATA subcommand.

Operations

• KM deletes all cases that have negative values for the survival variable.

• KM estimates the survival function and associated statistics for each combination of factor
and stratum.

• Three statistics can be computed to test the equality of survival functions across factor
levels within a stratum or across all factor levels while controlling for strata. The statistics
are the log rank (Mantel-Cox), the generalized Wilcoxon (Breslow), and the Tarone-
Ware tests.

• When the PLOTS subcommand is specified, KM produces one plot of survival functions
for each stratum, with all factor levels represented by different symbols or colors.

Limitations

• Maximum 35 factor levels (symbols) can appear in a plot.

Example

KM LENGTH BY SEXRACE
 /STATUS=EMPLOY EVENT (1) LOST (2)
 /STRATA=LOCATION.

• Survival analysis is used to examine the length of unemployment. The survival variable
LENGTH contains the number of months a subject is unemployed. The factor variable
SEXRACE combines sex and race factors.

• A value of 1 on the variable EMPLOY indicates the occurrence of the event (employment).
All other observed cases are censored. A value of 2 on EMPLOY indicates cases lost to
follow-up. Cases with other values for EMPLOY are known to have remained unemployed
during the course of the study. KM separates the two types of censored cases in the KM
table if LOST is specified.

• For each combination of SEXRACE and LOCATION, one KM table is produced, followed
by the mean and median survival time with standard errors and confidence intervals.

Survival and Factor Variables

You must identify the survival and factor variables for the analysis.

• The minimum specification is one, and only one, survival variable.

• Only one factor variable can be specified using the BY keyword. If you have more than one
factor, create a new variable combining all factors. There is no limit to the factor levels.

790 KM

Example
DO IF SEX = 1.
+ COMPUTE SEXRACE = RACE.
ELSE.
+ COMPUTE SEXRACE = RACE + SEX.
END IF.
KM LENGTH BY SEXRACE
 /STATUS=EMPLOY EVENT (1) LOST (2).

• The two control variables, SEX and RACE, each with two values, 1 and 2, are combined
into one factor variable, SEXRACE, with four values, 1 to 4.

• KM specifies LENGTH as the survival variable and SEXRACE as the factor variable.

• One KM table is produced for each factor level.

STATUS Subcommand

To determine whether the terminal event has occurred for a particular observation, KM checks
the value of a status variable. STATUS lists the status variable and the code(s) for the occur-
rence of the event. The code(s) for cases lost to follow-up can also be specified.

• Only one status variable can be specified. If multiple STATUS subcommands are specified,
KM uses the last specification and displays a warning.

• The keyword EVENT is optional, but the value list in parentheses must be specified. Use
EVENT for clarity’s sake, especially when LOST is specified.

• The value list must be enclosed in parentheses. All cases with non-negative times that do
not have a code within the range specified after EVENT are classified as censored cases—
that is, cases for which the event has not yet occurred.

• The keyword LOST and the following value list are optional. LOST cannot be omitted if
the value list for lost cases is specified.

• When LOST is specified, all cases with non-negative times that have a code within the
specified value range are classified as lost to follow-up. Cases lost to follow-up are treated
as censored in the analysis, and the statistics do not change, but the two types of censored
cases are listed separately in the KM table.

• The value lists on EVENT or LOST can be one value, a list of values separated by blanks
or commas, a range of values using the keyword THRU, or a combination.

• The status variable can be either numeric or string. If a string variable is specified, the
EVENT or LOST values must be enclosed in apostrophes, and the keyword THRU cannot
be used.

Example
KM LENGTH BY SEXRACE
 /STATUS=EMPLOY EVENT (1) LOST (3,5 THRU 8).

• STATUS specifies that EMPLOY is the status variable.

• A value of 1 for EMPLOY means that the event (employment) occurred for the case.

• Values of 3 and 5 through 8 for EMPLOY mean that contact was lost with the case. The
different values code different causes for the loss of contact.

• The summary table in the output includes columns for number lost and percentage lost,
as well as for number censored and percentage censored.

KM 791

STRATA Subcommand

STRATA identifies a stratification variable—that is, a variable whose values are used to
form subgroups (strata) within the categories of the factor variable. Analysis is done within
each level of the strata variable for each factor level, and estimates are pooled over strata for
an overall comparison of factor levels.

• The minimum specification is the subcommand keyword with one, and only one, variable
name.

• If you have more than one strata variable, create a new variable to combine the levels on
separate variables before invoking the KM command.

• There is no limit to the number of levels for the strata variable.

Example
KM LENGTH BY SEXRACE
 /STATUS=EMPLOY EVENT (1) LOST (3,5 THRU 8)
 /STRATA=LOCATION.

• STRATA specifies LOCATION as the stratification variable. Analysis of the length of
unemployment is done for each location within each sex and race subgroup.

PLOT Subcommand

PLOT plots the cumulative survival distribution on a linear or logarithmic scale or plots the
cumulative hazard function. A separate plot with all factor levels is produced for each stratum.
Each factor level is represented by a different symbol or color. Censored cases are indicated
by markers.

• When PLOT is omitted, no plots are produced. The default is NONE.
• When PLOT is specified without a keyword, the default is SURVIVAL. A plot of survival

functions for each stratum is produced.

• To request specific plots, specify, following the PLOT subcommand, any combination of
the keywords defined below.

• Multiple keywords can be used on the PLOT subcommand, each requesting a different
plot. The effect is cumulative.

SURVIVAL Plot the cumulative survival distribution on a linear scale. SURVIVAL is the
default when PLOT is specified without a keyword.

LOGSURV Plot the cumulative survival distribution on a logarithmic scale.

HAZARD Plot the cumulative hazard function.

OMS Plot the one-minus-survival function.

Example
KM LENGTH BY SEXRACE
 /STATUS=EMPLOY EVENT (1) LOST (3,5 THRU 8)
 /STRATA=LOCATION
/PLOT = SURVIVAL HAZARD.

• PLOT produces one plot of the cumulative survival distribution on a linear scale and one
plot of the cumulative hazard rate for each value of LOCATION.

792 KM

ID Subcommand

ID specifies a variable used for labeling cases. If the ID variable is a string, KM uses the string
values as case identifiers in the KM table. If the ID variable is numeric, KM uses value labels
or numeric values if value labels are not defined.

• ID is the first column of the KM table displayed for each combination of factor and stratum.

• If a string value or a value label exceeds 20 characters in width, KM truncates the case
identifier and displays a warning.

PRINT Subcommand

By default, KM prints survival tables and the mean and median survival time with standard
errors and confidence intervals if PRINT is omitted. If PRINT is specified, only the specified
keyword is in effect. Use PRINT to suppress tables or the mean statistics.

TABLE Print the KM tables. If PRINT is not specified, TABLE, together with MEAN,
is the default. Specify TABLE on PRINT to suppress the mean statistics.

MEAN Print the mean statistics. KM prints the mean and median survival time with
standard errors and confidence intervals. If PRINT is not specified, MEAN,
together with TABLE, is the default. Specify MEAN on PRINT to suppress the
KM tables.

NONE Suppress both the KM tables and the mean statistics. Only plots and compar-
isons are printed.

Example
KM LENGTH BY SEXRACE
 /STATUS=EMPLOY EVENT (1) LOST (3,5 THRU 8)
 /STRATA=LOCATION
/PLOT=SURVIVAL HAZARD
/PRINT=NONE.

• PRINT=NONE suppresses both the KM tables and the mean statistics.

PERCENTILES Subcommand

PERCENTILES displays percentiles for each combination of factor and stratum. Percentiles
are not displayed without the PERCENTILES subcommand. If the subcommand is specified
without a value list, the default is 25, 50, and 75 for quartile display. You can specify any
values between 0 and 100.

KM 793

TEST Subcommand

TEST specifies the test statistic to use for testing the equality of survival distributions for the
different levels of the factor.

• TEST is valid only when a factor variable is specified. If no factor variable is specified,
KM issues a warning and TEST is not executed.

• If TEST is specified without a keyword, the default is LOGRANK. If a keyword is specified
on TEST, only the specified test is performed.

• Each of the test statistics has a chi-square distribution with one degree of freedom.

LOGRANK Perform the log rank (Mantel-Cox) test.

BRESLOW Perform the Breslow (generalized Wilcoxon) test.

TARONE Perform the Tarone-Ware test.

COMPARE Subcommand

COMPARE compares the survival distributions for the different levels of the factor. Each of
the keywords specifies a different method of comparison.

• COMPARE is valid only when a factor variable is specified. If no factor variable is specified,
KM issues a warning and COMPARE is not executed.

• COMPARE uses whatever tests are specified on the TEST subcommand. If no TEST sub-
command is specified, the log rank test is used.

• If COMPARE is not specified, the default is OVERALL and POOLED. All factor levels are
compared across strata in a single test. The test statistics are displayed after the summary
table at the end of output.

• Multiple COMPARE subcommands can be specified to request different comparisons.

OVERALL Compare all factor levels in a single test. OVERALL, together with POOLED,
is the default when COMPARE is not specified.

PAIRWISE Compare each pair of factor levels. KM compares all distinct pairs of factor
levels.

POOLED Pool the test statistics across all strata. The test statistics are displayed after
the summary table for all strata. POOLED, together with OVERALL, is the
default when COMPARE is not specified.

STRATA Compare the factor levels for each stratum. The test statistics are displayed
for each stratum separately.

• If a factor variable has different levels across strata, you cannot request a pooled comparison.
If you specify POOLED on COMPARE, KM displays a warning and ignores the request.

794 KM

Example
KM LENGTH BY SEXRACE
 /STATUS=EMPLOY EVENT (1) LOST (3,5 THRU 8)
 /STRATA=LOCATION
 /TEST = BRESLOW
 /COMPARE = PAIRWISE.

• TEST specifies the Breslow test.

• COMPARE uses the Breslow test statistic to compare all distinct pairs of SEXRACE values
and pools the test results over all strata defined by LOCATION.

• Test statistics are displayed at the end of output for all strata.

TREND Subcommand

TREND specifies that there is a trend across factor levels. This information is used when com-
puting the tests for equality of survival functions specified on the TEST subcommand.

• The minimum specification is the subcommand keyword by itself. The default metric is
chosen as follows:

if g is even,

otherwise,

where g is the number of levels for the factor variable.

• If TREND is specified but COMPARE is not, KM performs the default log rank test with the
trend metric for an OVERALL POOLED comparison.

• If the metric specified on TREND is longer than required by the factor levels, KM displays
a warning and ignores extra values.

Example
KM LENGTH BY SEXRACE
 /STATUS=EMPLOY EVENT (1) LOST (3,5 THRU 8)
 /STRATA=LOCATION
 /TREND.

• TREND is specified by itself. KM uses the default metric. Since SEXRACE has four levels,
the default is (–3,–1, 1, 3).

• Even though no TEST or COMPARE subcommand is specified, KM performs the default
log rank test with the trend metric and does a default OVERALL POOLED comparison.

g 1–()– … 3– 1– 1 3 … g 1–(), , , , , , ,()

g 1–()
2

----------------– … 1– 0 1 … g 1–()
2

----------------, , , , , ,

KM 795

SAVE Subcommand

SAVE saves the temporary variables created by KM. The following temporary variables can
be saved:

SURVIVAL Survival function evaluated at current case.

SE Standard error of the survival function.

HAZARD Cumulative hazard function evaluated at current case.

CUMEVENT Cumulative number of events.

• To specify variable names for the new variables, assign the new names in parentheses
following each temporary variable name.

• Assigned variable names must be unique in the working data file. Scratch or system vari-
able names cannot be used (that is, variable names cannot begin with # or $).

• If new variable names are not specified, KM generates default names. The default name is
composed of the first three characters of the name of the temporary variable (two for SE),
followed by an underscore and a number to make it unique.

• A temporary variable can be saved only once on the same SAVE subcommand.

Example
KM LENGTH BY SEXRACE
 /STATUS=EMPLOY EVENT (1) LOST (3,5 THRU 8)
 /STRATA=LOCATION
 /SAVE SURVIVAL HAZARD.

• KM saves cumulative survival and cumulative hazard rates in two new variables, SUR_1
and HAZ_1, provided that neither name exists in the working data file. If one does, the
numeric suffixes will be incremented to make a distinction.

796

LEAVE

LEAVE varlist

Example
COMPUTE TSALARY=TSALARY+SALARY.
LEAVE TSALARY.
FORMAT TSALARY (DOLLAR8)/ SALARY (DOLLAR7).
EXECUTE.

Overview

Normally, the program reinitializes variables each time it prepares to read a new case.
LEAVE suppresses reinitialization and retains the current value of the specified variable or
variables when the program reads the next case. It also sets the initial value received by a
numeric variable to 0 instead of system-missing. LEAVE is frequently used with COMPUTE
to create a variable to store an accumulating sum. LEAVE is also used to spread a variable’s
values across multiple cases when VECTOR is used within an input program to restructure
a data file (see p. 510 for an example).

LEAVE cannot be used with scratch variables. For information on using scratch variables,
see “Scratch Variables” on p. 24.

Basic Specification

The basic specification is the variable(s) whose values are not to be reinitialized as each new
case is read.

Syntax Rules

• Variables named on LEAVE must already exist and cannot be scratch variables.

• Multiple variables can be named. The keyword TO can be used to refer to a list of consec-
utive variables.

• String and numeric variables can be specified on the same LEAVE command.

Operations

• Unlike most transformations, which do not take effect until the data are read, LEAVE takes
effect as soon as it is encountered in the command sequence. Thus, special attention
should be paid to its position among commands. For more information, see “Command
Order” on p. 8.

LEAVE 797

• Numeric variables named on LEAVE are initialized to 0 for the first case, and string vari-
ables are initialized to blanks. These variables are not reinitialized when new cases are
read.

Example

COMPUTE TSALARY=TSALARY+SALARY.
LEAVE TSALARY.
FORMAT TSALARY (DOLLAR8)/ SALARY (DOLLAR7).

• These commands keep a running total of salaries across all cases. SALARY is the variable
containing the employee’s salary, and TSALARY is the new variable containing the
cumulative salaries for all previous cases.

• For the first case, TSALARY is initialized to 0, and TSALARY equals SALARY. For the rest
of the cases, TSALARY stores the cumulative totals for SALARY.

• LEAVE follows COMPUTE because TSALARY must first be defined before it can be speci-
fied on LEAVE.

• If LEAVE were not specified for this computation, TSALARY would be initialized to system-
missing for all cases. TSALARY would remain system-missing because its value would be
missing for every computation.

Example

SORT CASES DEPT.
IF DEPT NE LAG(DEPT,1) TSALARY=0. /*Initialize for new dept
COMPUTE TSALARY=TSALARY+SALARY. /*Sum salaries
LEAVE TSALARY. /*Prevent initialization
each case
FORMAT TSALARY (DOLLAR8)/ SALARY (DOLLAR7).

• These commands accumulate a sum across cases for each department.

• SORT first sorts cases by the values of variable DEPT.

• IF specifies that if the value of DEPT for the current case is not equal to the value of DEPT
for the previous case, TSALARY equals 0. Thus, TSALARY is reset to 0 each time the value
of DEPT changes. (For the first case in the file, the logical expression on IF is missing.
However, the desired effect is obtained because LEAVE initializes TSALARY to 0 for the
first case, independent of the IF statement.)

• LEAVE prevents TSALARY from being initialized for cases within the same department.

798

LIST

LIST [[VARIABLES=]{ALL** }] [/FORMAT=[{WRAP**}] [{UNNUMBERED**}]]
 {varlist} {SINGLE} {NUMBERED }

 [/CASES=[FROM {1**}] [TO {eof**}] [BY {1**}]]
 {n } {n } {n }

**Default if the subcommand is omitted.

Example
LIST VARIABLES=V1 V2 /CASES=FROM 10 TO 100 BY 2.

Overview

LIST displays case values for variables in the working data file. The output is similar to the
output produced by the PRINT command. However, LIST is a procedure and reads data,
whereas PRINT is a transformation and requires a procedure (or the EXECUTE command) to
execute it.

Options

Selecting and Ordering Variables. You can specify a list of variables to be listed using the
VARIABLES subcommand.

Format. You can limit each case listing to a single line, and you can display the case number
for each listed case with the FORMAT subcommand.

Selecting Cases. You can limit the listing to a particular sequence of cases using the CASES
subcommand.

Basic Specification

• The basic specification is simply LIST, which displays the values for all variables in the
working data file.

• By default, cases wrap to multiple lines if all the values do not fit within the page width
(the page width is determined by the SET WIDTH command). Case numbers are not
displayed for the listed cases.

Subcommand Order

All subcommands are optional and can be named in any order.

LIST 799

Operations

• If VARIABLES is not specified, variables are listed in the order in which they appear in the
working file.

• LIST does not display values for scratch or system variables.

• LIST uses print formats contained in the dictionary of the working data file. Alternative
formats cannot be specified on LIST. See FORMATS or PRINT FORMATS for information
on changing print formats.

• LIST output uses the width specified on SET.
• If a numeric value is longer than its defined width, the program first attempts to list the

value by removing punctuation characters, then uses scientific notation, and finally prints
asterisks.

• If a long string variable cannot be listed within the output width, it is truncated.

• Values of the variables listed for a case are always separated by at least one blank.

• System-missing values are displayed as a period for numeric variables and a blank for
string variables.

• If cases fit on one line, the column width for each variable is determined by the length of
the variable name or the format, whichever is greater. If the variable names do not fit on
one line, they are printed vertically.

• If cases do not fit on one line within the output width specified on SET, they are wrapped.
LIST displays a table illustrating the location of the variables in the output and prints the
name of the first variable in each line at the beginning of the line.

• Each execution of LIST begins at the top of a new page. If SPLIT FILE is in effect, each
split also begins at the top of a new page.

Example

LIST.

• LIST by itself requests a display of the values for all variables in the working file.

Example

LIST VARIABLES=V1 V2 /CASES=FROM 10 TO 100 BY 2.

• LIST produces a list of every second case for variables V1 and V2, starting with case 10
and stopping at case 100.

VARIABLES Subcommand

VARIABLES specifies the variables to be listed. The actual keyword VARIABLES can be omitted.

• The variables must already exist, and they cannot be scratch or system variables.
• If VARIABLES is used, only the specified variables are listed.

800 LIST

• Variables are listed in the order in which they are named on VARIABLES.

• If a variable is named more than once, it is listed more than once.

• The keyword ALL (the default) can be used to request all variables. ALL can also be used
with a variable list (see example below).

ALL List all user-defined variables. Variables are listed in the order in which they
appear in the working data file. This is the default if VARIABLES is omitted.

Example
LIST VARIABLES=V15 V31 ALL.

• VARIABLES is used to list values for V15 and V31 before all other variables. The keyword
ALL then lists all variables, including V15 and V31, in the order in which they appear in
the working data file. Values for V15 and V31 are therefore listed twice.

FORMAT Subcommand

FORMAT controls whether cases wrap if they cannot fit on a single line and whether the case
number is displayed for each listed case. The default display uses more than one line per case
(if necessary) and does not number cases.

• The minimum specification is a single keyword.

• WRAP and SINGLE are alternatives, as are NUMBERED and UNNUMBERED. Only one of
each pair can be specified.

• If SPLIT FILE is in effect for NUMBERED, case numbering restarts at each split. To get
sequential numbering regardless of splits, create a variable and set it equal to the system
variable $CASENUM and then name this variable as the first variable on the VARIABLES
subcommand. An appropriate format should be specified for the new variable before it is
used on LIST.

WRAP Wrap cases if they do not fit on a single line. Page width is determined by the
SET WIDTH command. This is the default.

SINGLE Limit each case to one line. Only variables that fit on a single line are
displayed.

UNNUMBERED Do not include the sequence number of each case. This is the default.

NUMBERED Include the sequence number of each case. The sequence number is dis-
played to the left of the listed values.

CASES Subcommand

CASES limits the number of cases listed. By default, all cases in the working data file are
listed.
• Any or all of the keywords below can be used. Defaults that are not changed remain in

effect.

• If LIST is preceded by a SAMPLE or SELECT IF command, case selections specified by
CASES are taken from those cases that were selected by SAMPLE or SELECT IF.

LIST 801

• If SPLIT FILE is in effect, case selections specified by CASES are restarted for each split.

FROM n Number of the first case to be listed. The default is 1.

TO n Number of the last case to be listed. The default is the end of the working file.
CASES 100 is interpreted as CASES TO 100.

BY n Increment used to choose cases for listing. The default is 1.

Example
LIST CASES BY 3 /FORMAT=NUMBERED.

• Every third case is listed for all variables in the working data file. The listing begins with
the first case and includes every third case up to the end of the file.

• FORMAT displays the case number of each listed case.

Example
LIST CASES FROM 10 TO 20.

• Cases from case 10 through case 20 are listed for all variables in the working file.

802

LOGISTIC REGRESSION

LOGISTIC REGRESSION is available in the Regression Models option.

LOGISTIC REGRESSION [VARIABLES =] dependent var
 [WITH independent varlist [BY var [BY var] ...]]

[/CATEGORICAL = var1, var2, ...]

[/CONTRAST (categorical var) = [{INDICATOR [(refcat)] }]]
 {DEVIATION [(refcat)] }

 {SIMPLE [(refcat)] }
 {DIFFERENCE }

 {HELMERT }
 {REPEATED }

 {POLYNOMIAL[({1,2,3...})]}
 {metric }

 {SPECIAL (matrix) }

 [/METHOD = {ENTER** } [{ALL }]]
 {BSTEP [{COND}]} {varlist}
 {LR }
 {WALD}
 {FSTEP [{COND}]}
 {LR }
 {WALD}

[/SELECT = {ALL** }]
 {varname relation value}

[/{NOORIGIN**}]
{ORIGIN }

[/ID = [variable]]

[/PRINT = [DEFAULT**] [SUMMARY] [CORR] [ALL] [ITER [({1})]] [GOODFIT]]
 {n}

 [CI(level)]

[/CRITERIA = [BCON ({0.001**})] [ITERATE({20**})] [LCON({0** })]
 {value } {n } {value }

 [PIN({0.05**})] [POUT({0.10**})] [EPS({.00000001**})]]
 {value } {value } {value }

 [CUT[{O.5** }]]
 [value }

[/CLASSPLOT]

[/MISSING = {EXCLUDE **}]
 {INCLUDE }

[/CASEWISE = [tempvarlist] [OUTLIER({2 })]]
 {value}

[/SAVE = tempvar[(newname)] tempvar[(newname)]...]

[/EXTERNAL]

** Default if the subcommand or keyword is omitted.

LOGISTIC REGRESSION 803

Temporary variables created by LOGISTIC REGRESSION are:

Example
LOGISTIC REGRESSION PROMOTED WITH AGE, JOBTIME, JOBRATE.

Overview

LOGISTIC REGRESSION regresses a dichotomous dependent variable on a set of independent
variables (Aldrich and Nelson, 1984; Fox, 1984; Hosmer and Lemeshow, 1989; McCullagh
and Nelder, 1989; Agresti, 1990). Categorical independent variables are replaced by sets of
contrast variables, each set entering and leaving the model in a single step.

Options

Processing of Independent Variables. You can specify which independent variables are categor-
ical in nature on the CATEGORICAL subcommand. You can control treatment of categorical
independent variables by the CONTRAST subcommand. Seven methods are available for en-
tering independent variables into the model. You can specify any one of them on the
METHOD subcommand. You can also use the keyword BY between variable names to enter
interaction terms.

Selecting Cases. You can use the SELECT subcommand to define subsets of cases to be used
in estimating a model.

Regression through the Origin. You can use the ORIGIN subcommand to exclude a constant
term from a model.

Specifying Termination and Model-Building Criteria. You can further control computations when
building the model by specifying criteria on the CRITERIA subcommand.

Adding New Variables to the Working Data File. You can save the residuals, predicted values, and
diagnostics generated by LOGISTIC REGRESSION in the working data file.

Output. You can use the PRINT subcommand to print optional output, use the CASEWISE sub-
command to request analysis of residuals, and use the ID subcommand to specify a variable
whose values or value labels identify cases in output. You can request plots of the actual and
predicted values for each case with the CLASSPLOT subcommand.

Basic Specification

• The minimum specification is the VARIABLES subcommand with one dichotomous
dependent variable. You must specify a list of independent variables either following the
keyword WITH on the VARIABLES subcommand or on a METHOD subcommand.

PRED
PGROUP
RESID
DEV

LEVER
LRESID
SRESID
ZRESID

COOK
DFBETA

804 LOGISTIC REGRESSION

• The default output includes goodness-of-fit tests for the model (–2 log-likelihood, good-
ness-of-fit statistic, Cox and Snell R2, and Nagelkerke R2) and a classification table for
the predicted and observed group memberships. The regression coefficient, standard error
of the regression coefficient, Wald statistic and its significance level, and a multiple
correlation coefficient adjusted for the number of parameters (Atkinson, 1980) are
displayed for each variable in the equation.

Subcommand Order

• Subcommands can be named in any order. If the VARIABLES subcommand is not specified
first, a slash (/) must precede it.

• The ordering of METHOD subcommands determines the order in which models are esti-
mated. Different sequences may result in different models.

Syntax Rules

• Only one dependent variable can be specified for each LOGISTIC REGRESSION.

• Any number of independent variables may be listed. The dependent variable may not
appear on this list.

• The independent variable list is required if any of the METHOD subcommands are used
without a variable list or if the METHOD subcommand is not used. The keyword TO cannot
be used on any variable list.

• If you specify the keyword WITH on the VARIABLES subcommand, all independent vari-
ables must be listed.

• If the keyword WITH is used on the VARIABLES subcommand, interaction terms do not
have to be specified on the variable list, but the individual variables that make up the
interactions must be listed.

• Multiple METHOD subcommands are allowed.

• The minimum truncation for this command is LOGI REG.

Operations

• Independent variables specified on the CATEGORICAL subcommand are replaced by sets
of contrast variables. In stepwise analyses, the set of contrast variables associated with a
categorical variable is entered or removed from the model as a single step.

• Independent variables are screened to detect and eliminate redundancies.

• If the linearly dependent variable is one of a set of contrast variables, the set will be
reduced by the redundant variable or variables. A warning will be issued, and the reduced
set will be used.

• For the forward stepwise method, redundancy checking is done when a variable is to be
entered into the model.

• When backward stepwise or direct-entry methods are requested, all variables for each
METHOD subcommand are checked for redundancy before that analysis begins.

LOGISTIC REGRESSION 805

Limitations

• The dependent variable must be dichotomous for each split-file group. Specifying a
dependent variable with more or less than two nonmissing values per split-file group will
result in an error.

Example

LOGISTIC REGRESSION PASS WITH GPA, MAT, GRE.

• PASS is specified as the dependent variable.

• GPA, MAT, and GRE are specified as independent variables.

• LOGISTIC REGRESSION produces the default output for the logistic regression of PASS
on GPA, MAT, and GRE.

VARIABLES Subcommand

VARIABLES specifies the dependent variable and, optionally, all independent variables in the
model. The dependent variable appears first on the list and is separated from the independent
variables by the keyword WITH.

• One VARIABLES subcommand is allowed for each Logistic Regression procedure.

• The dependent variable must be dichotomous—that is, it must have exactly two values
other than system-missing and user-missing values for each split-file group.

• The dependent variable may be a string variable if its two values can be differentiated by
their first eight characters.

• You can indicate an interaction term on the variable list by using the keyword BY to sepa-
rate the individual variables.

• If all METHOD subcommands are accompanied by independent variable lists, the keyword
WITH and the list of independent variables may be omitted.

• If the keyword WITH is used, all independent variables must be specified. For interaction
terms, only the individual variable names that make up the interaction (for example, X1,
X2) need to be specified. Specifying the actual interaction term (for example, X1 BY X2)
on the VARIABLES subcommand is optional if you specify it on a METHOD subcommand.

Example
LOGISTIC REGRESSION PROMOTED WITH AGE,JOBTIME,JOBRATE,

AGE BY JOBTIME.

• PROMOTED is specified as the dependent variable.

• AGE, JOBTIME, JOBRATE, and the interaction AGE by JOBTIME are specified as the inde-
pendent variables.

• Because no METHOD is specified, all three single independent variables and the interac-
tion term are entered into the model.

• LOGISTIC REGRESSION produces the default output.

806 LOGISTIC REGRESSION

CATEGORICAL Subcommand

CATEGORICAL identifies independent variables that are nominal or ordinal. Variables that
are declared to be categorical are automatically transformed to a set of contrast variables
as specified on the CONTRAST subcommand. If a variable coded as is declared as
categorical, its coding scheme is given indicator contrasts by default.

• Independent variables not specified on CATEGORICAL are assumed to be at least interval
level, except for string variables.

• Any variable specified on CATEGORICAL is ignored if it does not appear either after WITH
on the VARIABLES subcommand or on any METHOD subcommand.

• Variables specified on CATEGORICAL are replaced by sets of contrast variables. If the
categorical variable has n distinct values, there will be contrast variables generated.
The set of contrast variables associated with a categorical variable is entered or removed
from the model as a step.

• If any one of the variables in an interaction term is specified on CATEGORICAL, the inter-
action term is replaced by contrast variables.

• All string variables are categorical. Only the first eight characters of each value of a string
variable are used in distinguishing between values. Thus, if two values of a string variable
are identical for the first eight characters, the values are treated as though they were the same.

Example
LOGISTIC REGRESSION PASS WITH GPA, GRE, MAT, CLASS, TEACHER
/CATEGORICAL = CLASS,TEACHER.

• The dichotomous dependent variable PASS is regressed on the interval-level independent
variables GPA, GRE, and MAT and the categorical variables CLASS and TEACHER.

CONTRAST Subcommand

CONTRAST specifies the type of contrast used for categorical independent variables. The in-
terpretation of the regression coefficients for categorical variables depends on the contrasts
used. The default is INDICATOR. The categorical independent variable is specified in paren-
theses following CONTRAST. The closing parenthesis is followed by one of the contrast-type
keywords.

• If the categorical variable has n values, there will be rows in the contrast matrix.
Each contrast matrix is treated as a set of independent variables in the analysis.

• Only one categorical independent variable can be specified per CONTRAST subcommand,
but multiple CONTRAST subcommands can be specified.

The following contrast types are available. See Finn (1974) and Kirk (1982) for further
information on a specific type.

INDICATOR(refcat) Indicator variables. Contrasts indicate the presence or absence of
category membership. By default, refcat is the last category (repre-
sented in the contrast matrix as a row of zeros). To omit a category
other than the last, specify the sequence number of the omitted cate-
gory (which is not necessarily the same as its value) in parentheses
after the keyword INDICATOR.

0 1–

n 1–

n 1–

LOGISTIC REGRESSION 807

DEVIATION(refcat) Deviations from the overall effect. The effect for each category of the
independent variable except one is compared to the overall effect.
Refcat is the category for which parameter estimates are not displayed
(they must be calculated from the others). By default, refcat is the last
category. To omit a category other than the last, specify the sequence
number of the omitted category (which is not necessarily the same as
its value) in parentheses after the keyword DEVIATION.

SIMPLE(refcat) Each category of the independent variable except the last is compared
to the last category. To use a category other than the last as the omitted
reference category, specify its sequence number (which is not neces-
sarily the same as its value) in parentheses following the keyword
SIMPLE.

DIFFERENCE Difference or reverse Helmert contrasts. The effects for each category
of the independent variable except the first are compared to the mean
effects of the previous categories.

HELMERT Helmert contrasts. The effects for each category of the independent
variable except the last are compared to the mean effects of subse-
quent categories.

POLYNOMIAL(metric) Polynomial contrasts. The first degree of freedom contains the linear
effect across the categories of the independent variable, the second
contains the quadratic effect, and so on. By default, the categories are
assumed to be equally spaced; unequal spacing can be specified by
entering a metric consisting of one integer for each category of the
independent variable in parentheses after the keyword POLYNOMIAL.
For example, CONTRAST(STIMULUS)=POLYNOMIAL(1,2,4)
indicates that the three levels of STIMULUS are actually in the propor-
tion 1:2:4. The default metric is always (1,2, ..., k), where k categories
are involved. Only the relative differences between the terms of the
metric matter: (1,2,4) is the same metric as (2,3,5) or (20,30,50)
because the difference between the second and third numbers is twice
the difference between the first and second in each instance.

REPEATED Comparison of adjacent categories. Each category of the independent
variable except the first is compared to the previous category.

SPECIAL(matrix) A user-defined contrast. After this keyword, a matrix is entered in
parentheses with rows and k columns (where k is the number of
categories of the independent variable). The rows of the contrast
matrix contain the special contrasts indicating the desired compari-
sons between categories. If the special contrasts are linear combina-
tions of each other, LOGISTIC REGRESSION reports the linear
dependency and stops processing. If k rows are entered, the first row
is discarded and only the last rows are used as the contrast
matrix in the analysis.

k 1–

k 1–

808 LOGISTIC REGRESSION

Example
LOGISTIC REGRESSION PASS WITH GRE, CLASS
/CATEGORICAL = CLASS
/CONTRAST(CLASS)=HELMERT.

• A logistic regression analysis of the dependent variable PASS is performed on the interval
independent variable GRE and the categorical independent variable CLASS.

• PASS is a dichotomous variable representing course pass/fail status and CLASS identifies
whether a student is in one of three classrooms. A HELMERT contrast is requested.

Example
LOGISTIC REGRESSION PASS WITH GRE, CLASS
/CATEGORICAL = CLASS
/CONTRAST(CLASS)=SPECIAL(2 -1 -1

0 1 -1).

• In this example, the contrasts are specified with the keyword SPECIAL.

METHOD Subcommand

METHOD indicates how the independent variables enter the model. The specification is the
METHOD subcommand followed by a single method keyword. The keyword METHOD can be
omitted. Optionally, specify the independent variables and interactions for which the method
is to be used. Use the keyword BY between variable names of an interaction term.
• If no variable list is specified or if the keyword ALL is used, all of the independent vari-

ables following the keyword WITH on the VARIABLES subcommand are eligible for inclu-
sion in the model.

• If no METHOD subcommand is specified, the default method is ENTER.

• Variables specified on CATEGORICAL are replaced by sets of contrast variables. The set
of contrast variables associated with a categorical variable is entered or removed from the
model as a single step.

• Any number of METHOD subcommands can appear in a Logistic Regression procedure.
METHOD subcommands are processed in the order in which they are specified. Each
method starts with the results from the previous method. If BSTEP is used, all remaining
eligible variables are entered at the first step. All variables are then eligible for entry and
removal unless they have been excluded from the METHOD variable list.

• The beginning model for the first METHOD subcommand is either the constant variable
(by default or if NOORIGIN is specified) or an empty model (if ORIGIN is specified).

The available METHOD keywords are:

ENTER Forced entry. All variables are entered in a single step. This is the default if the
METHOD subcommand is omitted.

FSTEP Forward stepwise. The variables (or interaction terms) specified on FSTEP are
tested for entry into the model one by one, based on the significance level of the
score statistic. The variable with the smallest significance less than PIN is entered
into the model. After each entry, variables that are already in the model are tested
for possible removal, based on the significance of the conditional statistic, the

LOGISTIC REGRESSION 809

Wald statistic, or the likelihood-ratio criterion. The variable with the largest prob-
ability greater than the specified POUT value is removed and the model is reesti-
mated. Variables in the model are then evaluated again for removal. Once no more
variables satisfy the removal criterion, covariates not in the model are evaluated
for entry. Model building stops when no more variables meet entry or removal
criteria, or when the current model is the same as a previous one.

BSTEP Backward stepwise. As a first step, the variables (or interaction terms) specified
on BSTEP are entered into the model together and are tested for removal one by
one. Stepwise removal and entry then follow the same process as described for
FSTEP until no more variables meet entry or removal criteria, or when the current
model is the same as a previous one.

The statistic used in the test for removal can be specified by an additional keyword in paren-
theses following FSTEP or BSTEP. If FSTEP or BSTEP is specified by itself, the default is
COND.

COND Conditional statistic. This is the default if FSTEP or BSTEP is specified by itself.

WALD Wald statistic. The removal of a variable from the model is based on the signifi-
cance of the Wald statistic.

LR Likelihood ratio. The removal of a variable from the model is based on the signif-
icance of the change in the log-likelihood. If LR is specified, the model must be
reestimated without each of the variables in the model. This can substantially
increase computational time. However, the likelihood-ratio statistic is the best
criterion for deciding which variables are to be removed.

Example
LOGISTIC REGRESSION PROMOTED WITH AGE JOBTIME JOBRATE RACE SEX AGENCY
/CATEGORICAL RACE SEX AGENCY
/METHOD ENTER AGE JOBTIME
/METHOD BSTEP (LR) RACE SEX JOBRATE AGENCY.

• AGE, JOBTIME, JOBRATE, RACE, SEX, and AGENCY are specified as independent vari-
ables. RACE, SEX, and AGENCY are specified as categorical independent variables.

• The first METHOD subcommand enters AGE and JOBTIME into the model.

• Variables in the model at the termination of the first METHOD subcommand are included
in the model at the beginning of the second METHOD subcommand.

• The second METHOD subcommand adds the variables RACE, SEX, JOBRATE, and AGENCY
to the previous model.

• Backward stepwise logistic regression analysis is then done with only the variables on the
BSTEP variable list tested for removal using the LR statistic.

• The procedure continues until all variables from the BSTEP variable list have been
removed or the removal of a variable will not result in a decrease in the log-likelihood
with a probability larger than POUT.

810 LOGISTIC REGRESSION

SELECT Subcommand

By default, all cases in the working data file are considered for inclusion in LOGISTIC
REGRESSION. Use the optional SELECT subcommand to include a subset of cases in the
analysis.

• The specification is either a logical expression or keyword ALL. ALL is the default. Vari-
ables named on VARIABLES, CATEGORICAL, or METHOD subcommands cannot appear on
SELECT.

• In the logical expression on SELECT, the relation can be EQ, NE, LT, LE, GT, or GE. The
variable must be numeric and the value can be any number.

• Only cases for which the logical expression on SELECT is true are included in calcula-
tions. All other cases, including those with missing values for the variable named on
SELECT, are unselected.

• Diagnostic statistics and classification statistics are reported for both selected and
unselected cases.

• Cases deleted from the working data file with the SELECT IF or SAMPLE command are
not included among either the selected or unselected cases.

Example
LOGISTIC REGRESSION VARIABLES=GRADE WITH GPA,TUCE,PSI
/SELECT SEX EQ 1 /CASEWISE=RESID.

• Only cases with the value 1 for SEX are included in the logistic regression analysis.

• Residual values generated by CASEWISE are displayed for both selected and unselected
cases.

ORIGIN and NOORIGIN Subcommands

ORIGIN and NOORIGIN control whether or not the constant is included. NOORIGIN (the default)
includes a constant term (intercept) in all equations. ORIGIN suppresses the constant term and
requests regression through the origin. (NOCONST can be used as an alias for ORIGIN.)

• The only specification is either ORIGIN or NOORIGIN.

• ORIGIN or NOORIGIN can be specified only once per Logistic Regression procedure, and
it affects all METHOD subcommands.

Example
LOGISTIC REGRESSION VARIABLES=PASS WITH GPA,GRE,MAT /ORIGIN.

• ORIGIN suppresses the automatic generation of a constant term.

LOGISTIC REGRESSION 811

ID Subcommand

ID specifies a variable whose values or value labels identify the casewise listing. By default,
cases are labeled by their case number.

• The only specification is the name of a single variable that exists in the working data file.

• Only the first eight characters of the variable’s value labels are used to label cases. If the
variable has no value labels, the values are used.

• Only the first eight characters of a string variable are used to label cases.

PRINT Subcommand

PRINT controls the display of optional output. If PRINT is omitted, DEFAULT output (defined
below) is displayed.
• The minimum specification is PRINT followed by a single keyword.

• If PRINT is used, only the requested output is displayed.

DEFAULT Goodness-of-fit tests for the model, classification tables, and statistics for
the variables in and not in the equation at each step. Tables and statistics are
displayed for each split file and METHOD subcommand.

SUMMARY Summary information. Same output as DEFAULT, except that the output for
each step is not displayed.

CORR Correlation matrix of parameter estimates for the variables in the model.

ITER(value) Iterations at which parameter estimates are to be displayed. The value in
parentheses controls the spacing of iteration reports. If the value is n, the
parameter estimates are displayed for every nth iteration starting at 0. If a
value is not supplied, intermediate estimates are displayed at each iteration.

GOODFIT Hosmer-Lemeshow goodness-of-fit statistic (Hosmer and Lemeshow, 1989).

CI(level) Confidence interval for exp(B). The value in parentheses must be an integer
between 1 and 99.

ALL All available output.

Example
LOGISTIC REGRESSION VARIABLES=PASS WITH GPA,GRE,MAT
/METHOD FSTEP
/PRINT CORR SUMMARY ITER(2).

• A forward stepwise logistic regression analysis of PASS on GPA, GRE, and MAT is
specified.

• The PRINT subcommand requests the display of the correlation matrix of parameter esti-
mates for the variables in the model (CORR), classification tables and statistics for the
variables in and not in the equation for the final model (SUMMARY), and parameter esti-
mates at every second iteration (ITER(2)).

812 LOGISTIC REGRESSION

CRITERIA Subcommand

CRITERIA controls the statistical criteria used in building the logistic regression models. The
way in which these criteria are used depends on the method specified on the METHOD sub-
command. The default criteria are noted in the description of each keyword below. Iterations
will stop if the criterion for BCON, LCON, or ITERATE is satisfied.

BCON(value) Change in parameter estimates to terminate iteration. Iteration terminates
when the parameters change by less than the specified value. The default is
0.001. To eliminate this criterion, specify a value of 0.

ITERATE Maximum number of iterations. The default is 20.

LCON(value) Percentage change in the log-likelihood ratio for termination of iterations.
If the log-likelihood decreases by less than the specified value, iteration ter-
minates. The default is 0, which is equivalent to not using this criterion.

PIN(value) Probability of score statistic for variable entry. The default is 0.05. The larger
the specified probability, the easier it is for a variable to enter the model.

POUT(value) Probability of conditional, Wald, or LR statistic to remove a variable. The
default is 0.1. The larger the specified probability, the easier it is for a vari-
able to remain in the model.

EPS(value) Epsilon value used for redundancy checking. The specified value must be
less than or equal to 0.05 and greater than or equal to . The default is

. Larger values make it harder for variables to pass the redundancy
check—that is, they are more likely to be removed from the analysis.

CUT(value) Cutoff value for classification. A case is assigned to a group when the pre-
dicted event probability is greater than or equal to the cutoff value. The
cutoff value affects the value of the dichotomous derived variable in the
classification table, the predicted group (PGROUP on CASEWISE), and the
classification plot (CLASSPLOT). The default cutoff value is 0.5. You can
specify a value between 0 and 1 (0 < value < 1).

Example
LOGISTIC REGRESSION PROMOTED WITH AGE JOBTIME RACE
/CATEGORICAL RACE
/METHOD BSTEP
/CRITERIA BCON(0.01) PIN(0.01) POUT(0.05).

• A backward stepwise logistic regression analysis is performed for the dependent variable
PROMOTED and the independent variables AGE, JOBTIME, and RACE.

• CRITERIA alters four of the statistical criteria that control the building of a model.

• BCON specifies that if the change in the absolute value of all of the parameter estimates
is less than 0.01, the iterative estimation process should stop. Larger values lower the
number of iterations required. Notice that the ITER and LCON criteria remain unchanged
and that if either of them is met before BCON, iterations will terminate. (LCON can be set
to 0 if only BCON and ITER are to be used.)

10 12–

10 8–

LOGISTIC REGRESSION 813

• POUT requires that the probability of the statistic used to test whether a variable should
remain in the model be smaller than 0.05. This is more stringent than the default value of
0.1.

• PIN requires that the probability of the score statistic used to test whether a variable should
be included be smaller than 0.01. This makes it more difficult for variables to be included
in the model than the default value of 0.05.

CLASSPLOT Subcommand

CLASSPLOT generates a classification plot of the actual and predicted values of the dichoto-
mous dependent variable at each step.

• Keyword CLASSPLOT is the only specification.

• If CLASSPLOT is not specified, plots are not generated.

Example
LOGISTIC REGRESSION PROMOTED WITH JOBTIME RACE
/CATEGORICAL RACE
/CLASSPLOT.

• A logistic regression model is constructed for the dichotomous dependent variable
PROMOTED and the independent variables JOBTIME and RACE.

• CLASSPLOT produces a classification plot for the dependent variable PROMOTED. The
vertical axis of the plot is the frequency of the variable PROMOTED. The horizontal axis
is the predicted probability of membership in the second of the two levels of PROMOTED.

CASEWISE Subcommand

CASEWISE produces a casewise listing of the values of the temporary variables created by
LOGISTIC REGRESSION.

The following keywords are available for specifying temporary variables (see Fox, 1984).
When CASEWISE is specified by itself, the default lists PRED, PGROUP, RESID, and ZRESID.
If a list of variable names is given, only those named temporary variables are displayed.

PRED Predicted probability. For each case, the predicted probability of having the
second of the two values of the dichotomous dependent variable.

PGROUP Predicted group. The group to which a case is assigned based on the predicted
probability.

RESID Difference between observed and predicted probabilities.

DEV Deviance values. For each case, a log-likelihood-ratio statistic, which mea-
sures how well the model fits the case, is computed.

LRESID Logit residual. Residual divided by the product of PRED and 1–PRED.

SRESID Studentized residual.

814 LOGISTIC REGRESSION

ZRESID Normalized residual. Residual divided by the square root of the product of
PRED and 1–PRED.

LEVER Leverage value. A measure of the relative influence of each observation on
the model’s fit.

COOK Analog of Cook’s influence statistic.

DFBETA Difference in beta. The difference in the estimated coefficients for each
independent variable if the case is omitted.

The following keyword is available for restricting the cases to be displayed, based on the
absolute value of SRESID:

OUTLIER (value) Cases with absolute values of SRESID greater than or equal to the
specified value are displayed. If OUTLIER is specified with no value,
the default is 2.

Example
LOGISTIC REGRESSION PROMOTED WITH JOBTIME SEX RACE
/CATEGORICAL SEX RACE
/METHOD ENTER
/CASEWISE SRESID LEVER DFBETA.

• CASEWISE produces a casewise listing of the temporary variables SRESID, LEVER, and
DFBETA.

• There will be one DFBETA value for each parameter in the model. The continuous variable
JOBTIME, the two-level categorical variable SEX, and the constant each require one
parameter while the four-level categorical variable RACE requires three parameters. Thus,
six values of DFBETA will be produced for each case.

MISSING Subcommand

LOGISTIC REGRESSION excludes all cases with missing values on any of the independent
variables. For a case with a missing value on the dependent variable, predicted values are
calculated if it has nonmissing values on all independent variables. The MISSING subcom-
mand controls the processing of user-missing values. If the subcommand is not specified, the
default is EXCLUDE.

EXCLUDE Delete cases with user-missing values as well as system-missing values. This
is the default.

INCLUDE Include user-missing values in the analysis.

SAVE Subcommand

SAVE saves the temporary variables created by LOGISTIC REGRESSION. To specify variable
names for the new variables, assign the new names in parentheses following each temporary
variable name. If new variable names are not specified, LOGISTIC REGRESSION generates
default names.

LOGISTIC REGRESSION 815

• Assigned variable names must be unique in the working data file. Scratch or system vari-
able names (that is, names that begin with # or $) cannot be used.

• A temporary variable can be saved only once on the same SAVE subcommand.

Example
LOGISTIC REGRESSION PROMOTED WITH JOBTIME AGE
/SAVE PRED (PREDPRO) DFBETA (DF).

• A logistic regression analysis of PROMOTED on the independent variables JOBTIME and
AGE is performed.

• SAVE adds four variables to the working data file: one variable named PREDPRO,
containing the predicted value from the specified model for each case, and three variables
named DF0, DF1, and DF2, containing, respectively, the DFBETA values for each case of
the constant, the independent variable JOBTIME, and the independent variable AGE.

EXTERNAL Subcommand

EXTERNAL indicates that the data for each split-file group should be held in an external
scratch file during processing. This can help conserve memory resources when running com-
plex analyses or analyses with large data sets.

• The keyword EXTERNAL is the only specification.

• Specifying EXTERNAL may result in slightly longer processing time.
• If EXTERNAL is not specified, all data are held internally and no scratch file is written.

References

Agresti, A. 1990. Categorical data analysis. New York: John Wiley and Sons.
Aldrich, J. H., and F. D. Nelson. 1984. Linear probability, logit, and probit models. Beverly

Hills, Calif.: Sage Publications.
Finn, J. D. 1974. A general model for multivariate analysis. New York: Holt, Rinehart and

Winston.
Fox, J. 1984. Linear statistical models and related methods: With applications to social

research. New York: John Wiley and Sons.
Hosmer, D. W., and S. Lemeshow. 1989. Applied logistic regression. New York: John Wiley

and Sons.
Kirk, R. E. 1982. Experimental design. 2nd ed. Monterey, Calif.: Brooks/Cole.
McCullagh, P., and J. A. Nelder. 1989. Generalized linear models. 2nd ed. London:

Chapman and Hall.

816

LOGLINEAR

LOGLINEAR is available in the Advanced Models option.

The syntax for LOGLINEAR is available only in a syntax window, not from the dialog box
interface. See GENLOG for information on the LOGLINEAR command available from the
dialog box interface.

LOGLINEAR varlist(min,max)...[BY] varlist(min,max)

[WITH covariate varlist]

[/CWEIGHT={varname }] [/CWEIGHT=(matrix)...]
{(matrix)}

[/GRESID={varlist }] [/GRESID=(matrix)...]
{(matrix)}

[/CONTRAST (varname)={DEVIATION [(refcat)] } [/CONTRAST...]]
{DIFFERENCE }
{HELMERT }

 {SIMPLE [(refcat)] }
{REPEATED }
{POLYNOMIAL [({1,2,3,...})]}
{ {metric } }
{[BASIS] SPECIAL(matrix) }

[/CRITERIA=[CONVERGE({0.001**})] [ITERATE({20**})] [DELTA({0.5**})]
{n } {n } {n }

[DEFAULT]]

[/PRINT={[FREQ**][RESID**][DESIGN][ESTIM][COR]}]
 {DEFAULT }

 {ALL }
{NONE }

[/PLOT={NONE** }]
 {DEFAULT }

{RESID }
{NORMPROB}

[/MISSING=[{EXCLUDE**}]]
 {INCLUDE }

[/DESIGN=effect[(n)] effect[(n)]... effect BY effect...] [/DESIGN...]

**Default if subcommand or keyword is omitted.

Example
LOGLINEAR JOBSAT (1,2) ZODIAC (1,12) /DESIGN=JOBSAT.

Overview

LOGLINEAR is a general procedure for model fitting, hypothesis testing, and parameter
estimation for any model that has categorical variables as its major components. As such,
LOGLINEAR subsumes a variety of related techniques, including general models of

LOGLINEAR 817

multiway contingency tables, logit models, logistic regression on categorical variables,
and quasi-independence models.

LOGLINEAR models cell frequencies using the multinomial response model and produces
maximum likelihood estimates of parameters by means of the Newton-Raphson algorithm
(Haberman, 1978). HILOGLINEAR, which uses an iterative proportional-fitting algorithm, is
more efficient for hierarchical models, but it cannot produce parameter estimates for unsatur-
ated models, does not permit specification of contrasts for parameters, and does not display a
correlation matrix of the parameter estimates.

Comparison of the GENLOG and LOGLINEAR Commands

The General Loglinear Analysis and Logit Loglinear Analysis dialog boxes are both associ-
ated with the GENLOG command. In previous releases of SPSS, these dialog boxes were
associated with the LOGLINEAR command. The LOGLINEAR command is now available only
as a syntax command. The differences are described below.

Distribution assumptions
• GENLOG can handle both Poisson and multinomial distribution assumptions for observed

cell counts.

• LOGLINEAR assumes only multinomial distribution.

Approach

• GENLOG uses a regression approach to parameterize a categorical variable in a design
matrix.

• LOGLINEAR uses contrasts to reparameterize a categorical variable. The major disadvan-
tage of the reparameterization approach is in the interpretation of the results when there
is a redundancy in the corresponding design matrix. Also, the reparameterization
approach may result in incorrect degrees of freedom for an incomplete table, leading to
incorrect analysis results.

Contrasts and generalized log-odds ratios (GLOR)
• GENLOG doesn’t provide contrasts to reparameterize the categories of a factor. However,

it offers generalized log-odds ratios (GLOR) for cell combinations. Often, comparisons
among categories of factors can be derived from GLOR.

• LOGLINEAR offers contrasts to reparameterize the categories of a factor.

Deviance residual
• GENLOG calculates and displays the deviance residual and its normal probability plot, in

addition to the other residuals.

• LOGLINEAR does not calculate the deviance residual.

Factor-by-covariate design
• When there is a factor-by-covariate term in the design, GENLOG generates one regression

coefficient of the covariate for each combination of factor values. The estimates of these
regression coefficients are calculated and displayed.

• LOGLINEAR estimates and displays the contrasts of these regression coefficients.

818 LOGLINEAR

Partition effect
• In GENLOG, the term partition effect refers to the category of a factor.

• In LOGLINEAR, the term partition effect refers to a particular contrast.

Options

Model Specification. You can specify the model or models to be fit using the DESIGN subcommand.

Cell Weights. You can specify cell weights, such as structural zeros, for the model with the
CWEIGHT subcommand.

Output Display. You can control the output display with the PRINT subcommand.

Optional Plots. You can produce plots of adjusted residuals against observed and expected
counts, normal plots, and detrended normal plots with the PLOT subcommand.

Linear Combinations. You can calculate linear combinations of observed cell frequencies,
expected cell frequencies, and adjusted residuals using the GRESID subcommand.

Contrasts. You can indicate the type of contrast desired for a factor using the CONTRAST
subcommand.

Criteria for Algorithm. You can control the values of algorithm-tuning parameters with the
CRITERIA subcommand.

Basic Specification

The basic specification is two or more variables that define the crosstabulation. The min-
imum and maximum values for each variable must be specified in parentheses after the
variable name.

By default, LOGLINEAR estimates the saturated model for a multidimensional table.
Output includes the factors or effects, their levels, and any labels; observed and expected
frequencies and percentages for each factor and code; residuals, standardized residuals,
and adjusted residuals; two goodness-of-fit statistics (the likelihood-ratio chi-square and
Pearson’s chi-square); and estimates of the parameters with accompanying z values and
95% confidence intervals.

Limitations

• Maximum 10 independent (factor) variables.

• Maximum 200 covariates.

Subcommand Order

• The variables specification must come first.

• The subcommands that affect a specific model must be placed before the DESIGN sub-
command specifying the model.

LOGLINEAR 819

• All subcommands can be used more than once and, with the exception of the DESIGN

subcommand, are carried from model to model unless explicitly overridden.

• If the last subcommand is not DESIGN, LOGLINEAR generates a saturated model in addi-
tion to the explicitly requested model(s).

Example

LOGLINEAR JOBSAT (1,2) ZODIAC (1,12) /DESIGN=JOBSAT, ZODIAC.

• The variable list specifies two categorical variables, JOBSAT and ZODIAC. JOBSAT has
values 1 and 2. ZODIAC has values 1 through 12.

• DESIGN specifies a model with main effects only.

Example

LOGLINEAR DPREF (2,3) RACE CAMP (1,2).

• DPREF is a categorical variable with values 2 and 3. RACE and CAMP are categorical vari-
ables with values 1 and 2.

• This is a general loglinear model because no BY keyword appears. The design defaults to
a saturated model that includes all main effects and interaction effects.

Example

LOGLINEAR GSLEVEL (4,8) EDUC (1,4) SEX (1,2)
/DESIGN=GSLEVEL EDUC SEX.

• GSLEVEL is a categorical variable with values 4 through 8. EDUC is a categorical variable
with values 1 through 4. SEX has values 1 and 2.

• DESIGN specifies a model with main effects only.

Example

LOGLINEAR GSLEVEL (4,8) BY EDUC (1,4) SEX (1,2)
/DESIGN=GSLEVEL, GSLEVEL BY EDUC, GSLEVEL BY SEX.

• The keyword BY on the variable list specifies a logit model in which GSLEVEL is the de-
pendent variable and EDUC and SEX are the independent variables.

• DESIGN specifies a model that can test for the absence of joint effect of SEX and EDUC
on GSLEVEL.

820 LOGLINEAR

Variable List

The variable list specifies the variables to be included in the model. LOGLINEAR analyzes
two classes of variables: categorical and continuous. Categorical variables are used to define
the cells of the table. Continuous variables are used as cell covariates. Continuous variables
can be specified only after the keyword WITH following the list of categorical variables.

• The list of categorical variables must be specified first. Categorical variables must be
numeric and integer.

• A range must be defined for each categorical variable by specifying, in parentheses after
each variable name, the minimum and maximum values for that variable. Separate the
two values with at least one space or a comma.

• To specify the same range for a list of variables, specify the list of variables followed by
a single range. The range applies to all variables on the list.

• To specify a logit model, use the keyword BY (see “Logit Model” below). A variable list
without the keyword BY generates a general loglinear model.

• Cases with values outside the specified range are excluded from the analysis. Non-integer
values within the range are truncated for the purpose of building the table.

Logit Model

• To segregate the independent (factor) variables from the dependent variables in a logit
model, use the keyword BY. The categorical variables preceding BY are the dependent
variables; the categorical variables following BY are the independent variables.

• A total of 10 categorical variables can be specified. In most cases, one of them is
dependent.

• A DESIGN subcommand should be used to request the desired logit model.

• LOGLINEAR displays an analysis of dispersion and two measures of association: entropy
and concentration. These measures are discussed in Haberman (1982) and can be used to
quantify the magnitude of association among the variables. Both are proportional reduc-
tion in error measures. The entropy statistic is analogous to Theil’s entropy measure,
while the concentration statistic is analogous to Goodman and Kruskal’s tau-b. Both
statistics measure the strength of association between the dependent variable and the
predictor variable set.

Cell Covariates

• Continuous variables can be used as covariates. When used, the covariates must be spec-
ified after the keyword WITH following the list of categorical variables. Ranges are not
specified for the continuous variables.

• A variable cannot be named as both a categorical variable and a cell covariate.

LOGLINEAR 821

• To enter cell covariates into a model, the covariates must be specified on the DESIGN sub-
command.

• Cell covariates are not applied on a case-by-case basis. The mean covariate value for a
cell in the contingency table is applied to that cell.

Example
LOGLINEAR DPREF(2,3) RACE CAMP (1,2) WITH CONSTANT

/DESIGN=DPREF RACE CAMP CONSTANT.

• Variable CONSTANT is a continuous variable specified as a cell covariate. Cell covariates
must be specified after the keyword WITH following the variable list. No range is defined
for cell covariates.

• To include the cell covariate in the model, variable CONSTANT is specified on DESIGN.

CWEIGHT Subcommand

CWEIGHT specifies cell weights, such as structural zeros, for a model. By default, cell
weights are equal to 1.

• The specification is either one numeric variable or a matrix of weights enclosed in
parentheses.

• If a matrix of weights is specified, the matrix must contain the same number of elements
as the product of the levels of the categorical variables. An asterisk can be used to signify
repetitions of the same value.

• If weights are specified for a multiple-factor model, the index value of the rightmost
factor increments the most rapidly.

• If a numeric variable is specified, only one CWEIGHT subcommand can be used on
LOGLINEAR.

• To use multiple cell weights on the same LOGLINEAR command, specify all weights in
matrix format. Each matrix must be specified on a separate CWEIGHT subcommand, and
each CWEIGHT specification remains in effect until explicitly overridden by another
CWEIGHT subcommand.

• CWEIGHT can be used to impose structural, or a priori, zeros on the model. This feature
is useful in the analysis of symmetric tables.

Example
COMPUTE CWT=1.
IF (HUSED EQ WIFED) CWT=0.
LOGLINEAR HUSED WIFED(1,4) WITH DISTANCE

/CWEIGHT=CWT
/DESIGN=HUSED WIFED DISTANCE.

• COMPUTE initially assigns CWT the value 1 for all cases.

• IF assigns CWT the value 0 when HUSED equals WIFED.

822 LOGLINEAR

• CWEIGHT imposes structural zeros on the diagonal of the symmetric crosstabulation.
Because a variable name is specified, only one CWEIGHT can be used.

Example
LOGLINEAR HUSED WIFED(1,4) WITH DISTANCE

/CWEIGHT=(0, 4*1, 0, 4*1, 0, 4*1, 0)
/DESIGN=HUSED WIFED DISTANCE
/CWEIGHT=(16*1)
/DESIGN=HUSED WIFED DISTANCE.

• The first CWEIGHT matrix specifies the same values as variable CWT provided in the first
example. The specified matrix is as follows:

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

• The same matrix can be specified in full as (0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0).

• By using the matrix format on CWEIGHT rather than a variable name, a different
CWEIGHT subcommand can be used for the second model.

GRESID Subcommand

GRESID (Generalized Residual) calculates linear combinations of observed cell frequencies,
expected cell frequencies, and adjusted residuals.

• The specification is either a numeric variable or a matrix whose contents are coefficients
of the desired linear combinations.

• If a matrix of coefficients is specified, the matrix must contain the same number of ele-
ments as the number of cells implied by the variables specification. An asterisk can be
used to signify repetitions of the same value.

• Each GRESID subcommand specifies a single linear combination. Each matrix or variable
must be specified on a separate GRESID subcommand. All GRESID subcommands speci-
fied are displayed for each design.

Example
LOGLINEAR MONTH(1,18) WITH Z
/GRESID=(6*1,12*0)
/GRESID=(6*0,6*1,6*0)
/GRESID=(12*0,6*1)
/DESIGN=Z.

• The first GRESID subcommand combines the first six months into a single effect. The
second GRESID subcommand combines the second six months, and the third GRESID sub-
command combines the last six months.

• For each effect, LOGLINEAR displays the observed and expected counts, the residual, and
the adjusted residual.

LOGLINEAR 823

CONTRAST Subcommand

CONTRAST indicates the type of contrast desired for a factor, where a factor is any categor-
ical dependent or independent variable. The default contrast is DEVIATION for each factor.

• The specification is CONTRAST, which is followed by a variable name in parentheses and
the contrast-type keyword.

• To specify a contrast for more than one factor, use a separate CONTRAST subcommand
for each specified factor. Only one contrast can be in effect for each factor on each
DESIGN.

• A contrast specification remains in effect for subsequent designs until explicitly overrid-
den by another CONTRAST subcommand.

• The design matrix used for the contrasts can be displayed by specifying keyword DESIGN

on the PRINT subcommand. However, this matrix is the basis matrix that is used to deter-
mine contrasts; it is not the contrast matrix itself.

• CONTRAST can be used for a multinomial logit model, in which the dependent variable
has more than two categories.

• CONTRAST can be used for fitting linear logit models. The keyword BASIS is not appro-
priate for such models.

• In a logit model, CONTRAST is used to transform the independent variable into a metric
variable. Again, the keyword BASIS is not appropriate.

The following contrast types are available:

DEVIATION(refcat) Deviations from the overall effect. DEVIATION is the default contrast
if the CONTRAST subcommand is not used. Refcat is the category for
which parameter estimates are not displayed (they are the negative
of the sum of the others). By default, refcat is the last category of the
variable.

DIFFERENCE Levels of a factor with the average effect of previous levels of a
factor. Also known as reverse Helmert contrasts.

HELMERT Levels of a factor with the average effect of subsequent levels of a
factor.

SIMPLE(refcat) Each level of a factor to the reference level. By default, LOGLINEAR
uses the last category of the factor variable as the reference category.
Optionally, any level can be specified as the reference category
enclosed in parentheses after the keyword SIMPLE. The sequence of
the level, not the actual value, must be specified.

REPEATED Adjacent comparisons across levels of a factor.

POLYNOMIAL(metric) Orthogonal polynomial contrasts. The default is equal spacing.
Optionally, the coefficients of the linear polynomial can be specified
in parentheses, indicating the spacing between levels of the treat-
ment measured by the given factor.

824 LOGLINEAR

[BASIS]SPECIAL(matrix) User-defined contrast. As many elements as the number of catego-
ries squared must be specified. If BASIS is specified before SPECIAL,
a basis matrix is generated for the special contrast, which makes the
coefficients of the contrast equal to the special matrix. Otherwise,
the matrix specified is transposed and then used as the basis matrix
to determine coefficients for the contrast matrix.

Example
LOGLINEAR A(1,4) BY B(1,4)
/CONTRAST(B)=POLYNOMIAL
/DESIGN=A A BY B(1)
/CONTRAST(B)=SIMPLE
/DESIGN=A A BY B(1).

• The first CONTRAST subcommand requests polynomial contrasts of B for the first design.

• The second CONTRAST subcommand requests the simple contrast of B, with the last cat-
egory (value 4) used as the reference category for the second DESIGN subcommand.

Example
* Multinomial logit model

LOGLINEAR PREF(1,5) BY RACE ORIGIN CAMP(1,2)
/CONTRAST(PREF)=SPECIAL(5*1, 1 1 1 1 -4, 3 -1 -1 -1 0,

0 1 1 -2 0, 0 1 -1 0 0).

• LOGLINEAR builds special contrasts among the five categories of the dependent variable
PREF, which measures preference for training camps among Army recruits. For PREF,
1=stay, 2=move to north, 3=move to south, 4=move to unnamed camp, and 5=undecided.

• The four contrasts are: (1) move or stay versus undecided, (2) stay versus move, (3)
named camp versus unnamed, and (4) northern camp versus southern. Because these con-
trasts are orthogonal, SPECIAL and BASIS SPECIAL produce equivalent results.

Example
* Contrasts for a linear logit model

LOGLINEAR RESPONSE(1,2) BY YEAR(0,20)
/PRINT=DEFAULT ESTIM
/CONTRAST(YEAR)=SPECIAL(21*1, -10, -9, -8, -7, -6, -5, -4,

-3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 399*1)

/DESIGN=RESPONSE RESPONSE BY YEAR(1).

• YEAR measures years of education and ranges from 0 through 20. Therefore, allowing for
the constant effect, YEAR has 20 estimable parameters associated with it.

• The SPECIAL contrast specifies the constant—that is, 21*1—and the linear effect of
YEAR—that is, –10 to 10. The other 399 1’s fill out the 21*21 matrix.

LOGLINEAR 825

Example
* Contrasts for a logistic regression model

LOGLINEAR RESPONSE(1,2) BY TIME(1,4)
/CONTRAST(TIME) = SPECIAL(4*1, 7 14 27 51, 8*1)
/PRINT=ALL /PLOT=DEFAULT
/DESIGN=RESPONSE, TIME(1) BY RESPONSE.

• CONTRAST is used to transform the independent variable into a metric variable.

• TIME represents elapsed time in days. Therefore, the weights in the contrast represent the
metric of the passage of time.

CRITERIA Subcommand

CRITERIA specifies the values of some constants in the Newton-Raphson algorithm. Defaults
or specifications remain in effect until overridden with another CRITERIA subcommand.

CONVERGE(n) Convergence criterion. Specify a value for the convergence criterion. The
default is 0.001.

ITERATE(n) Maximum number of iterations. Specify the maximum number of iterations
for the algorithm. The default number is 20.

DELTA(n) Cell delta value. The value of delta is added to each cell frequency for the
first iteration. For saturated models, it remains in the cell. The default value
is 0.5. LOGLINEAR does not display parameter estimates or correlation ma-
trices of parameter estimates if any sampling zero cells exist in the expected
table after delta is added. Parameter estimates and correlation matrices can
be displayed in the presence of structural zeros.

DEFAULT Default values are used. DEFAULT can be used to reset the parameters to the
default.

Example
LOGLINEAR DPREF(2,3) BY RACE ORIGIN CAMP(1,2)
/CRITERIA=ITERATION(50) CONVERGE(.0001).

• ITERATION increases the maximum number of iterations to 50.

• CONVERGE lowers the convergence criterion to 0.0001.

PRINT Subcommand

PRINT requests statistics that are not produced by default.

• By default, LOGLINEAR displays the frequency table and residuals. The parameter esti-
mates of the model are also displayed if DESIGN is not used.

• Multiple PRINT subcommands are permitted. The specifications are cumulative.

826 LOGLINEAR

The following keywords can be used on PRINT:

FREQ Observed and expected cell frequencies and percentages. This is displayed
by default.

RESID Raw, standardized, and adjusted residuals. This is displayed by default.

DESIGN The design matrix of the model, showing the basis matrix corresponding to
the contrasts used.

ESTIM The parameter estimates of the model. If you do not specify a design on the
DESIGN subcommand, LOGLINEAR generates a saturated model and dis-
plays the parameter estimates for the saturated model. LOGLINEAR does
not display parameter estimates or correlation matrices of parameter esti-
mates if any sampling zero cells exist in the expected table after delta is
added. Parameter estimates and a correlation matrix are displayed when
structural zeros are present.

COR The correlation matrix of the parameter estimates. Alias COV.

ALL All available output.

DEFAULT FREQ and RESID. ESTIM is also displayed by default if the DESIGN sub-
command is not used.

NONE The design information and goodness-of-fit statistics only. This option over-
rides all other specifications on the PRINT subcommand. The NONE option
applies only to the PRINT subcommand.

Example
LOGLINEAR A(1,2) B(1,2)
/PRINT=ESTIM
/DESIGN=A,B,A BY B
/PRINT=ALL
/DESIGN=A,B.

• The first design is the saturated model. The parameter estimates are displayed with ESTIM

specified on PRINT.

• The second design is the main-effects model, which tests the hypothesis of no interaction.
The second PRINT subcommand displays all available display output for this model.

PLOT Subcommand

PLOT produces optional plots. No plots are displayed if PLOT is not specified or is specified
without any keyword. Multiple PLOT subcommands can be used. The specifications are
cumulative.

RESID Plots of adjusted residuals against observed and expected counts.

NORMPROB Normal and detrended normal plots of the adjusted residuals.

NONE No plots.

DEFAULT RESID and NORMPROB. Alias ALL.

LOGLINEAR 827

Example
LOGLINEAR RESPONSE(1,2) BY TIME(1,4)

/CONTRAST(TIME)=SPECIAL(4*1, 7 14 27 51, 8*1)
/PLOT=DEFAULT
/DESIGN=RESPONSE TIME(1) BY RESPONSE
/PLOT=NONE
/DESIGN.

• RESID and NORMPROB plots are displayed for the first design.

• No plots are displayed for the second design.

MISSING Subcommand

MISSING controls missing values. By default, LOGLINEAR excludes all cases with system- or
user-missing values on any variable. You can specify INCLUDE to include user-missing
values. If INCLUDE is specified, user-missing values must also be included in the value range
specification.

EXCLUDE Delete cases with user-missing values. This is the default if the subcommand
is omitted. You can also specify the keyword DEFAULT.

INCLUDE Include user-missing values. Only cases with system-missing values are deleted.

Example
MISSING VALUES A(0).
LOGLINEAR A(0,2) B(1,2) /MISSING=INCLUDE
/DESIGN=B.

• Even though 0 was specified as missing, it is treated as a nonmissing category of A in this
analysis.

DESIGN Subcommand

DESIGN specifies the model or models to be fit. If DESIGN is omitted or used with no speci-
fications, the saturated model is produced. The saturated model fits all main effects and all
interaction effects.

• To specify more than one model, use more than one DESIGN subcommand. Each DESIGN

specifies one model.

• To obtain main-effects models, name all the variables listed on the variables specification.

• To obtain interactions, use the keyword BY to specify each interaction, as in A BY B and
C BY D. To obtain the single-degree-of-freedom partition of a specified contrast, specify
the partition in parentheses following the factor (see the example below).

• To include cell covariates in the model, first identify them on the variable list by naming
them after the keyword WITH, and then specify the variable names on DESIGN.

• To specify an equiprobability model, name a cell covariate that is actually a constant of 1.

828 LOGLINEAR

Example
* Testing the linear effect of the dependent variable

COMPUTE X=MONTH.
LOGLINEAR MONTH (1,12) WITH X

/DESIGN X.

• The variable specification identifies MONTH as a categorical variable with values 1
through 12. The keyword WITH identifies X as a covariate.

• DESIGN tests the linear effect of MONTH.

Example
* Specifying main effects models

LOGLINEAR A(1,4) B(1,5)
/DESIGN=A
/DESIGN=A,B.

• The first design tests the homogeneity of category probabilities for B; it fits the marginal
frequencies on A, but assumes that membership in any of the categories of B is equiprobable.

• The second design tests the independence of A and B. It fits the marginals on both A and B.

Example
* Specifying interactions

LOGLINEAR A(1,4) B(1,5) C(1,3)
/DESIGN=A,B,C, A BY B.

• This design consists of the A main effect, the B main effect, the C main effect, and the
interaction of A and B.

Example
* Single-degree-of-freedom partitions

LOGLINEAR A(1,4) BY B(1,5)
/CONTRAST(B)=POLYNOMIAL
/DESIGN=A,A BY B(1).

• The value 1 following B refers to the first partition of B, which is the linear effect of B;
this follows from the contrast specified on the CONTRAST subcommand.

Example
* Specifying cell covariates

LOGLINEAR HUSED WIFED(1,4) WITH DISTANCE
/DESIGN=HUSED WIFED DISTANCE.

• The continuous variable DISTANCE is identified as a cell covariate by specifying it after
WITH on the variable list. The cell covariate is then included in the model by naming it on
DESIGN.

LOGLINEAR 829

Example
* Equiprobability model

COMPUTE X=1.
LOGLINEAR MONTH(1,18) WITH X

/DESIGN=X.

• This model tests whether the frequencies in the 18-cell table are equal by using a cell
covariate that is a constant of 1.

830

LOOP—END LOOP

LOOP [varname=n TO m [BY {1**}]] [IF [(]logical expression[)]]
 {n }

transformation commands

END LOOP [IF [(]logical expression[)]]

**Default if the subcommand is omitted.

Examples
SET MXLOOPS=10. /*Maximum number of loops allowed
LOOP. /*Loop with no limit other than MXLOOPS
COMPUTE X=X+1.
END LOOP.

LOOP #I=1 TO 5. /*Loop five times
COMPUTE X=X+1.
END LOOP.

Overview

The LOOP—END LOOP structure performs repeated transformations specified by the com-
mands within the loop until they reach a specified cutoff. The cutoff can be specified by an
indexing clause on the LOOP command, an IF clause on the END LOOP command, or a
BREAK command within the loop structure (see BREAK). In addition, the maximum num-
ber of iterations within a loop can be specified on the MXLOOPS subcommand on SET. The
default MXLOOPS is 40.

The IF clause on the LOOP command can be used to perform repeated transformations
on a subset of cases. The effect is similar to nesting the LOOP—END LOOP structure within
a DO IF—END IF structure, but using IF on LOOP is simpler and more efficient. You have to
use the DO IF—END IF structure, however, if you want to perform different transformations
on different subsets of cases. You can also use IF on LOOP to specify the cutoff, especially
when the cutoff may be reached before the first iteration.

LOOP and END LOOP are usually used within an input program or with the VECTOR com-
mand. Since the loop structure repeats transformations on a single case or on a single input
record containing information on multiple cases, it allows you to read complex data files or
to generate data for a working data file. For more information, see INPUT PROGRAM—END
INPUT PROGRAM and VECTOR.

The loop structure repeats transformations on single cases across variables. It is differ-
ent from the DO REPEAT—END REPEAT structure, which replicates transformations on a
specified set of variables. When both can be used to accomplish a task, such as selectively
transforming data for some cases on some variables, LOOP and END LOOP are generally
more efficient and more flexible, but DO REPEAT allows selection of nonadjacent variables
and use of replacement values with different intervals.

LOOP—END LOOP 831

Options

Missing Values. You can prevent cases with missing values for any of the variables used in
the loop structure from entering the loop (see “Missing Values” on p. 837).

Creating Data. A loop structure within an input program can be used to generate data (see
“Creating Data” on p. 838).

Defining Complex File Structures. A loop structure within an input program can be used to de-
fine complex files that cannot be handled by standard file definition facilities (see pp. 509,
510, and 512 for examples).

Basic Specification

The basic specification is LOOP followed by at least one transformation command. The struc-
ture must end with the END LOOP command. Commands within the loop are executed until
the cutoff is reached.

Syntax Rules

• If LOOP and END LOOP are specified before a working data file exists, they must be spec-
ified within an input program.

• If both an indexing and an IF clause are used on LOOP, the indexing clause must be first.

• Loop structures can be nested within other loop structures or within DO IF structures, and
vice versa.

Operations

• The LOOP command defines the beginning of a loop structure and the END LOOP com-
mand defines its end. The END LOOP command returns control to LOOP unless the cutoff
has been reached. When the cutoff has been reached, control passes to the command im-
mediately following END LOOP.

• When specified within a loop structure, definition commands (such as MISSING VALUES
and VARIABLE LABELS) and utility commands (such as SET and SHOW) are invoked only
once, when they are encountered for the first time within the loop.

Example

SET MXLOOPS=10.
LOOP. /*Loop with no limit other than MXLOOPS
COMPUTE X=X+1.
END LOOP.

• This and the following examples assume that a working data file and all of the variables
mentioned in the loop exist.

832 LOOP—END LOOP

• The SET MXLOOPS command limits the number of times the loop is executed to 10. The
function of MXLOOPS is to prevent infinite loops when there is no iteration clause.

• Within the loop structure, each iteration increments X by 1. After 10 iterations, the value
of X for all cases is increased by 10, and, as specified on the SET command, the loop is
terminated.

IF Keyword

The keyword IF and a logical expression can be specified on LOOP or on END LOOP to con-
trol iterations through the loop.

• The specification on IF is a logical expression enclosed in parentheses. For more informa-
tion, see “Logical Expressions” on p. 48.

 Example
LOOP.
COMPUTE X=X+1.
END LOOP IF (X EQ 5). /*Loop until X is 5

• Iterations continue until the logical expression on END LOOP is true, which for every case
is when X equals 5. Each case does not go through the same number of iterations.

• This corresponds to the programming notion of DO UNTIL. The loop is always executed
at least once.

Example
LOOP IF (X LT 5). /*Loop while X is less than 5
COMPUTE X=X+1.
END LOOP.

• The IF clause is evaluated each trip through the structure, so looping stops once X equals 5.

• This corresponds to the programming notion of DO WHILE. The loop may not be exe-
cuted at all.

Example
LOOP IF (Y GT 10). /*Loop only for cases with Y GT 10
COMPUTE X=X+1.
END LOOP IF (X EQ 5). /*Loop until X IS 5

• The IF clause on LOOP allows transformations to be performed on a subset of cases. X is
increased by 5 only for cases with values greater than 10 for Y. X is not changed for all
other cases.

Indexing Clause

The indexing clause limits the number of iterations for a loop by specifying the number of
times the program should execute commands within the loop structure.The indexing clause
is specified on the LOOP command and includes an indexing variable followed by initial
and terminal values.

LOOP—END LOOP 833

• The program sets the indexing variable to the initial value and increases it by the specified
increment each time the loop is executed for a case. When the indexing variable reaches
the specified terminal value, the loop is terminated for that case.

• By default, the program increases the indexing variable by 1 for each iteration. The key-
word BY overrides this increment.

• The indexing variable can have any valid variable name. Unless you specify a scratch
variable, the indexing variable is treated as a permanent variable and is saved on the work-
ing data file. If the indexing variable is assigned the same name as an existing variable,
the values of the existing variable are altered by the LOOP structure as it is executed, and
the original values are lost.

• The indexing clause overrides the maximum number of loops specified by SET MXLOOPS.

• The initial and terminal values of the indexing clause can be numeric expressions. Non-
integer and negative expressions are allowed.

• If the expression for the initial value is greater than the terminal value, the loop is not ex-
ecuted. For example, #J=X TO Y is a zero-trip loop if X is 0 and Y is −1.

• If the expressions for the initial and terminal values are equal, the loop is executed once.
#J=0 TO Y is a one-trip loop when Y is 0.

• If the loop is exited via BREAK or a conditional clause on the END LOOP statement, the
iteration variable is not updated. If the LOOP statement contains both an indexing clause
and a conditional clause, the indexing clause is executed first, and the iteration variable is
updated regardless of which clause causes the loop to terminate.

Example
LOOP #I=1 TO 5. /*LOOP FIVE TIMES
COMPUTE X=X+1.
END LOOP.

• The scratch variable #I (the indexing variable) is set to the initial value of 1 and increased
by 1 each time the loop is executed for a case. When #I increases beyond the terminal
value 5, no further loops are executed. Thus, the value of X will be increased by 5 for
every case.

Example
LOOP #I=1 TO 5 IF (Y GT 10). /*Loop to X=5 only if Y GT 10
COMPUTE X=X+1.
END LOOP.

• Both an indexing clause and an IF clause are specified on LOOP. X is increased by 5 for
all cases where Y is greater than 10.

Example
LOOP #I=1 TO Y. /*Loop to the value of Y
COMPUTE X=X+1.
END LOOP.

• The number of iterations for a case depends on the value of the variable Y for that case. For
a case with value 0 for the variable Y, the loop is not executed and X is unchanged. For a
case with value 1 for the variable Y, the loop is executed once and X is increased by 1.

834 LOOP—END LOOP

Example
* Factorial routine.

DATA LIST FREE / X.
BEGIN DATA
1 2 3 4 5 6 7
END DATA.

COMPUTE FACTOR=1.
LOOP #I=1 TO X.
COMPUTE FACTOR=FACTOR * #I.
END LOOP.
LIST.

• The loop structure computes FACTOR as the factorial value of X.

Example
* Example of nested loops: compute every possible combination of values
 for each variable.

INPUT PROGRAM.
-LOOP #I=1 TO 4. /* LOOP TO NUMBER OF VALUES FOR I
+ LOOP #J=1 TO 3. /* LOOP TO NUMBER OF VALUES FOR J
@ LOOP #K=1 TO 4. /* LOOP TO NUMBER OF VALUES FOR K

@ COMPUTE I=#I.
@ COMPUTE J=#J.
@ COMPUTE K=#K.
@ END CASE.

@ END LOOP.
+ END LOOP.
-END LOOP.
END FILE.
END INPUT PROGRAM.
LIST.

• The first loop iterates four times. The first iteration sets the indexing variable #I equal to
1 and then passes control to the second loop. #I remains 1 until the second loop has com-
pleted all of its iterations.

• The second loop is executed 12 times, three times for each value of #I. The first iteration
sets the indexing variable #J equal to 1 and then passes control to the third loop. #J re-
mains 1 until the third loop has completed all of its iterations.

• The third loop results in 48 iterations (4 × 3 × 4). The first iteration sets #K equal to 1. The
COMPUTE statements set the variables I, J, and K each to 1, and END CASE creates a case.
The third loop iterates a second time, setting #K equal to 2. Variables I, J, and K are then
computed with values 1, 1, 2, respectively, and a second case is created. The third and
fourth iterations of the third loop produce cases with I, J, and K, equal to 1, 1, 3 and 1, 1,
4, respectively. After the fourth iteration within the third loop, control passes back to the
second loop.

• The second loop is executed again. #I remains 1, while #J increases to 2, and control re-
turns to the third loop. The third loop completes its iterations, resulting in four more cases
with I equal to 1, J to 2, and K increasing from 1 to 4. The second loop is executed a third

LOOP—END LOOP 835

time, resulting in cases with I=1, J=3, and K increasing from 1 to 4. Once the second loop
has completed three iterations, control passes back to the first loop, and the entire cycle
is repeated for the next increment of #I.

• Once the first loop completes four iterations, control passes out of the looping structures
to END FILE. END FILE defines the resulting cases as a data file, the input program termi-
nates, and the LIST command is executed.

• This example does not require a LEAVE command because the iteration variables are
scratch variables. If the iteration variables were I, J, and K, LEAVE would be required be-
cause the variables would be reinitialized after each END CASE command.

Example
* Modifying the loop iteration variable.

INPUT PROGRAM.
PRINT SPACE 2.
LOOP A = 1 TO 3. /*Simple iteration
+ PRINT /’A WITHIN LOOP: ’ A(F1).
+ COMPUTE A = 0.
END LOOP
PRINT /’A AFTER LOOP: ’ A(F1).

NUMERIC #B.
LOOP B = 1 TO 3. /*Iteration + UNTIL
+ PRINT /’B WITHIN LOOP: ’ B(F1).
+ COMPUTE B = 0.
+ COMPUTE #B = #B+1.
END LOOP IF #B = 3.
PRINT /’B AFTER LOOP: ’ B(F1).

NUMERIC #C.
LOOP C = 1 TO 3 IF #C NE 3. /*Iteration + WHILE
+ PRINT /’C WITHIN LOOP: ’ C(F1).
+ COMPUTE C = 0.
+ COMPUTE #C = #C+1.
END LOOP.
PRINT /’C AFTER LOOP: ’ C(F1).

NUMERIC #D.
LOOP D = 1 TO 3. /*Iteration + BREAK
+ PRINT /’D WITHIN LOOP: ’ D(F1).
+ COMPUTE D = 0.
+ COMPUTE #D = #D+1.
+ DO IF #D = 3.
+ BREAK.
+ END IF.
END LOOP.
PRINT /’D AFTER LOOP: ’ D(F1).

LOOP E = 3 TO 1. /*Zero-trip iteration
+ PRINT /’E WITHIN LOOP: ’ E(F1).
+ COMPUTE E = 0.
END LOOP.
PRINT /’E AFTER LOOP: ’ E(F1).
END FILE.
END INPUT PROGRAM.
EXECUTE.

836 LOOP—END LOOP

• If a loop is exited via BREAK or a conditional clause on the END LOOP statement, the
iteration variable is not updated.

• If the LOOP statement contains both an iteration clause and a conditional clause, the iter-
ation clause is executed first, and the actual iteration variable will be updated regardless
of which clause causes termination of the loop.

Figure 1 shows the output from this example.

BY Keyword

By default, the program increases the indexing variable by 1 for each iteration. The keyword
BY overrides this increment.

• The increment value can be a numeric expression and can therefore be non-integer or
negative. Zero causes a warning and results in a zero-trip loop.

• If the initial value is greater than the terminal value and the increment is positive, the loop
is never entered. #I=1 TO 0 BY 2 results in a zero-trip loop.

• If the initial value is less than the terminal value and the increment is negative, the loop
is never entered. #I=1 TO 2 BY –1 also results in a zero-trip loop.

• Order is unimportant: 2 BY 2 TO 10 is equivalent to 2 TO 10 BY 2.

Example
LOOP #I=2 TO 10 BY 2. /*Loop five times by 2’S
COMPUTE X=X+1.
END LOOP.

• The scratch variable #I starts at 2 and increases by 2 for each of five iterations until it
equals 10 for the last iteration.

Example
LOOP #I=1 TO Y BY Z. /*Loop to Y incrementing by Z
COMPUTE X=X+1.
END LOOP.

Figure 1 Modify the loop iteration variable
 A WITHIN LOOP: 1
 A WITHIN LOOP: 2
 A WITHIN LOOP: 3
 A AFTER LOOP: 4
 B WITHIN LOOP: 1
 B WITHIN LOOP: 2
 B WITHIN LOOP: 3
 B AFTER LOOP: 0
 C WITHIN LOOP: 1
 C WITHIN LOOP: 2
 C WITHIN LOOP: 3
 C AFTER LOOP: 4
 D WITHIN LOOP: 1
 D WITHIN LOOP: 2
 D WITHIN LOOP: 3
 D AFTER LOOP: 0
 E AFTER LOOP: 3

LOOP—END LOOP 837

• The loop is executed once for a case with Y equal to 2 and Z equal to 2 but twice for a case
with Y equal to 3 and Z equal to 2.

Example
* Repeating data using LOOP.

INPUT PROGRAM.
DATA LIST NOTABLE/ ORDER 1-4(N) #BKINFO 6-71(A).
LEAVE ORDER.
LOOP #I = 1 TO 66 BY 6 IF SUBSTR(#BKINFO,#I,6) <> ’ ’.
+ REREAD COLUMN = #I+5.
+ DATA LIST NOTABLE/ ISBN 1-3(N) QUANTITY 4-5.
+ END CASE.
END LOOP.
END INPUT PROGRAM.
SORT CASES BY ISBN ORDER.
BEGIN DATA
1045 182 2 155 1 134 1 153 5
1046 155 3 153 5 163 1
1047 161 5 182 2 163 4 186 6
1048 186 2
1049 155 2 163 2 153 2 074 1 161 1
END DATA.

DO IF $CASENUM = 1.
+ PRINT EJECT /’Order’ 1 ’ISBN’ 7 ’Quantity’ 13.
END IF.
PRINT /ORDER 2-5(N) ISBN 8-10(N) QUANTITY 13-17.
EXECUTE.

• This example uses LOOP to simulate a REPEATING DATA command.

• DATA LIST specifies the scratch variable #BKINFO as a string variable (format A) to allow
blanks in the data.

• LOOP is executed if the SUBSTR function returns anything other than a blank or null
value. SUBSTR returns a six-character substring of #BKINFO, beginning with the charac-
ter in the position specified by the value of the indexing variable #I. As specified on the
indexing clause, #I begins with a value of 1 and is increased by 6 for each iteration of
LOOP, up to a maximum #I value of 61 (1 + 10 × 6 = 61). The next iteration would exceed
the maximum #I value (1 + 11 × 6 = 67).

Missing Values

• If the program encounters a case with a missing value for the initial, terminal, or incre-
ment value or expression, or if the conditional expression on the LOOP command returns
missing, a zero-trip loop results and control is passed to the first command after the END
LOOP command.

• If a case has a missing value for the conditional expression on an END LOOP command,
the loop is terminated after the first iteration.

• To prevent cases with missing values for any variable used in the loop structure from
entering the loop, use the IF clause on the LOOP command (see third example below).

838 LOOP—END LOOP

Example
LOOP #I=1 TO Z IF (Y GT 10). /*Loop to X=Z for cases with Y GT 10
COMPUTE X=X+1.
END LOOP.

• The value of X remains unchanged for cases with a missing value for Y or a missing value
for Z (or if Z is less than 1).

Example
MISSING VALUES X(5).
LOOP.
COMPUTE X=X+1.
END LOOP IF (X GE 10). /*Loop until X is at least 10 or missing

• Looping is terminated when the value of X is 5 because 5 is defined as missing for X.

Example
LOOP IF NOT MISSING(Y). /*Loop only when Y isn’t missing
COMPUTE X=X+Y.
END LOOP IF (X GE 10). /*Loop until X is at least 10

• The variable X is unchanged for cases with a missing value for Y, since the loop is never
entered.

Creating Data

A loop structure and an END CASE command within an input program can be used to create
data without any data input. The END FILE command must be used outside the loop (but
within the input program) to terminate processing.

Example
INPUT PROGRAM.
LOOP #I=1 TO 20.
COMPUTE AMOUNT=RND(UNIFORM(5000))/100.
END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.

PRINT FORMATS AMOUNT (DOLLAR6.2).
PRINT /AMOUNT.
EXECUTE.

• This example creates 20 cases with a single variable, AMOUNT. AMOUNT is a uniformly
distributed number between 0 and 5000, rounded to an integer and divided by 100 to
provide a variable in dollars and cents.

• The END FILE command is required to terminate processing once the loop structure is
complete.

See pp. 503 and 512 for other examples of creating data without any data input.

839

MANOVA: Overview

MANOVA is available in the Advanced Models option.

MANOVA dependent varlist [BY factor list (min,max)[factor list...]
 [WITH covariate list]]

[/WSFACTORS=varname (levels) [varname...]]

[/WSDESIGN]*

 [/TRANSFORM [(dependent varlist [/dependent varlist])]=
 [ORTHONORM] [{CONTRAST}] {DEVIATION (refcat) }]
 {BASIS } {DIFFERENCE }
 {HELMERT }
 {SIMPLE (refcat) }
 {REPEATED }
 {POLYNOMIAL [({1,2,3...})]}
 { {metric } }
 {SPECIAL (matrix) }

[/MEASURE=newname newname...]

[/RENAME={newname} {newname}...]
{* } {* }

 [/ERROR={WITHIN }]
 {RESIDUAL }
 {WITHIN + RESIDUAL}
 {n }

 [/CONTRAST (factorname)={DEVIATION** [(refcat)] }] †
 {POLYNOMIAL**[({1,2,3...})]}

 { {metric } }
 {SIMPLE [(refcat)] }
 {DIFFERENCE }
 {HELMERT }
 {REPEATED }
 {SPECIAL (matrix) }

[/PARTITION (factorname)[=({1,1... })]]
 {n1,n2...}

[/METHOD=[{UNIQUE** }] [{CONSTANT**}] [{QR** }]]

 {SEQUENTIAL} {NOCONSTANT} {CHOLESKY}

 [/{PRINT }= [CELLINFO [([MEANS] [SSCP] [COV] [COR] [ALL])]]
 {NOPRINT} [HOMOGENEITY [([ALL] [BARTLETT] [COCHRAN] [BOXM])]]
 [DESIGN [([OVERALL] [ONEWAY] [DECOMP] [BIAS] [SOLUTION]
 [REDUNDANCY] [COLLINEARITY] [ALL])]]
 [PARAMETERS [([ESTIM] [ORTHO][COR][NEGSUM][EFSIZE][OPTIMAL][ALL])]]
 [SIGNIF [[(SINGLEDF)]
 [(MULTIV**)] [(EIGEN)] [(DIMENR)]
 [(UNIV**)] [(HYPOTH)][(STEPDOWN)] [(BRIEF)]
 [{(AVERF**)}] [(HF)] [(GG)] [(EFSIZE)]]
 {(AVONLY) }
 [ERROR[(STDDEV)][(COR)][(COV)][(SSCP)]]

 [/OMEANS =[VARIABLES(varlist)] [TABLES ({factor name }]]
 {factor BY factor}
 {CONSTANT }

 [/PMEANS =[VARIABLES(varlist)] [TABLES ({factor name })] [PLOT]]]
 {factor BY factor}
 {CONSTANT }

840 MANOVA: Overview

 [/RESIDUALS=[CASEWISE] [PLOT]]

[/POWER=[T({.05**})] [F({.05**})] [{APPROXIMATE}]]

 {a } {a } {EXACT }

[/CINTERVAL=[{INDIVIDUAL}][({.95})]

 {JOINT } {a }
 [UNIVARIATE ({SCHEFFE})]
 {BONFER }
 [MULTIVARIATE ({ROY })]]
 {PILLAI }
 {BONFER }
 {HOTELLING}
 {WILKS }
[/PCOMPS [COR] [COV] [ROTATE(rottype)]

 [NCOMP(n)] [MINEIGEN(eigencut)] [ALL]]

[/PLOT=[BOXPLOTS] [CELLPLOTS] [NORMAL] [ALL]]

[/DISCRIM [RAW] [STAN] [ESTIM] [COR] [ALL]
[ROTATE(rottype)] [ALPHA({.25**})]]

{a }

[/MISSING=[LISTWISE**] [{EXCLUDE**}]]
 {INCLUDE }

 [/MATRIX=[IN({file})] [OUT({file})]]
 {[*] } {[*] }

[/ANALYSIS [({UNCONDITIONAL**})]=[(]dependent varlist
{CONDITIONAL } [WITH covariate varlist]

 [/dependent varlist...][)][WITH varlist]]

 [/DESIGN={factor [(n)] }[BY factor[(n)]] [WITHIN factor[(n)]][WITHIN...]
 {[POOL(varlist)}

 [+ {factor [(n)] }...]
 {POOL(varlist)}

 [[= n] {AGAINST} {WITHIN }
 {VS } {RESIDUAL}
 {WR }
 {n }

 [{factor [(n)] } ...]
 {POOL(varlist)}

 [MWITHIN factor(n)]
 [MUPLUS]
 [CONSTANT [=n]]

* WSDESIGN uses the same specification as DESIGN, with only within-subjects factors.

† DEVIATION is the default for between-subjects factors, while POLYNOMIAL is the default for within-
subjects factors.

** Default if subcommand or keyword is omitted.

Example 1
* Analysis of Variance

MANOVA RESULT BY TREATMNT(1,4) GROUP(1,2).

MANOVA: Overview 841

Example 2
* Analysis of Covariance

MANOVA RESULT BY TREATMNT(1,4) GROUP(1,2) WITH RAINFALL.

Example 3
* Repeated Measures Analysis

MANOVA SCORE1 TO SCORE4 BY CLASS(1,2)
/WSFACTORS=MONTH(4).

Example 4
* Parallelism Test with Crossed Factors

MANOVA YIELD BY PLOT(1,4) TYPEFERT(1,3) WITH FERT
/ANALYSIS YIELD
/DESIGN FERT, PLOT, TYPEFERT, PLOT BY TYPEFERT,
FERT BY PLOT + FERT BY TYPEFERT
+ FERT BY PLOT BY TYPEFERT.

Overview

MANOVA (multivariate analysis of variance) is a generalized procedure for analysis of vari-
ance and covariance. MANOVA is a powerful analysis-of-variance procedure and can be used
for both univariate and multivariate designs. MANOVA allows you to perform the following
tasks:

• Specify nesting of effects.

• Specify individual error terms for effects in mixed-model analyses.

• Estimate covariate-by-factor interactions to test the assumption of homogeneity of
regressions.

• Obtain parameter estimates for a variety of contrast types, including irregularly spaced
polynomial contrasts with multiple factors.

• Test user-specified special contrasts with multiple factors.

• Partition effects in models.

• Pool effects in models.

MANOVA and General Linear Model (GLM)

MANOVA is available only in syntax. GLM (general linear model), the other generalized proce-
dure for analysis of variance and covariance in SPSS, is available both in syntax and via the
dialog boxes. The major distinction between GLM and MANOVA in terms of statistical design
and functionality is that GLM uses a non-full-rank, or overparameterized, indicator variable
approach to parameterization of linear models instead of the full-rank reparameterization
approach used in MANOVA. The generalized inverse approach and the aliasing of redundant
parameters to zero used by GLM allow greater flexibility in handling a variety of data situa-

842 MANOVA: Overview

tions, particularly those involving empty cells. For features provided by GLM but unavailable
in MANOVA, refer to “General Linear Model (GLM) and MANOVA” on p. 645 in Volume I.

To simplify the presentation, reference material on MANOVA is divided into three sections:
univariate designs with one dependent variable; multivariate designs with several interrelated
dependent variables; and repeated measures designs in which the dependent variables repre-
sent the same types of measurements taken at more than one time.

The full syntax diagram for MANOVA is presented here. The MANOVA sections that fol-
low include partial syntax diagrams showing the subcommands and specifications discussed
in that section. Individually, those diagrams are incomplete. Subcommands listed for
univariate designs are available for any analysis, and subcommands listed for multivariate
designs can be used in any multivariate analysis, including repeated measures.

MANOVA was designed and programmed by Philip Burns of Northwestern University.

843

MANOVA: Univariate

MANOVA is available in the Advanced Models option.

MANOVA dependent var [BY factor list (min,max)][factor list...]
 [WITH covariate list]
 [/ERROR={WITHIN }]
 {RESIDUAL }
 {WITHIN + RESIDUAL}
 {n }
 [/CONTRAST (factor name)={DEVIATION** [(refcat)] }]
 {POLYNOMIAL [({1,2,3...})]}

 { {metric } }
 {SIMPLE [(refcat)] }
 {DIFFERENCE }
 {HELMERT }
 {REPEATED }
 {SPECIAL (matrix) }
[/PARTITION (factor name)[=({1,1... })]]

 {n1,n2...}
[/METHOD=[{UNIQUE** }] [{CONSTANT**}] [{QR** }]]

 {SEQUENTIAL} {NOCONSTANT} {CHOLESKY}
 [/{PRINT }= [CELLINFO [([MEANS] [SSCP] [COV] [COR] [ALL])]]
 {NOPRINT} [HOMOGENEITY [([ALL] [BARTLETT] [COCHRAN])]]
 [DESIGN [([OVERALL] [ONEWAY] [DECOMP] [BIAS] [SOLUTION]
 [REDUNDANCY] [COLLINEARITY])]]
 [PARAMETERS [([ESTIM][ORTHO][COR][NEGSUM][EFSIZE][OPTIMAL][ALL])]]
 [SIGNIF[(SINGLEDF)]]
 [ERROR[(STDDEV)]]]
 [/OMEANS =[VARIABLES(varlist)] [TABLES ({factor name }]]
 {factor BY factor}
 {CONSTANT }
 [/PMEANS =[TABLES ({factor name })] [PLOT]]]
 {factor BY factor}
 {CONSTANT }
 [/RESIDUALS=[CASEWISE] [PLOT]]
[/POWER=[T({.05**})] [F({.05**})] [{APPROXIMATE}]]

 {a } {a } {EXACT }
[/CINTERVAL=[{INDIVIDUAL}][({.95})]] [UNIVARIATE ({SCHEFFE})]

 {JOINT } { a} {BONFER }
[/PLOT=[BOXPLOTS] [CELLPLOTS] [NORMAL] [ALL]]
[/MISSING=[LISTWISE**] [{EXCLUDE**}]]

 {INCLUDE }
 [/MATRIX=[IN({file})] [OUT({file})]]
 {[*] } {[*] }
 [/ANALYSIS=dependent var [WITH covariate list]]
 [/DESIGN={factor [(n)] }[BY factor[(n)]] [WITHIN factor[(n)]][WITHIN...]
 {[POOL(varlist)}
 [+ {factor [(n)] }...]
 {POOL(varlist)}
 [[= n] {AGAINST} {WITHIN }
 {VS } {RESIDUAL}
 {WR }
 {n }
 [{factor [(n)] } ...]
 {POOL(varlist)}
 [MUPLUS]
 [MWITHIN factor(n)]
 [CONSTANT [=n]]

** Default if subcommand or keyword is omitted.

844 MANOVA: Univariate

Example
MANOVA YIELD BY SEED(1,4) FERT(1,3)
 /DESIGN.

Overview

This section describes the use of MANOVA for univariate analyses. However, the subcom-
mands described here can be used in any type of analysis with MANOVA. For additional sub-
commands used in those types of analysis, see MANOVA: Multivariate and MANOVA:
Repeated Measures. For basic specification, syntax rules, and limitations of the MANOVA
procedures, see MANOVA: Overview.

Options

Design Specification. You can specify which terms to include in the design on the DESIGN sub-
command. This allows you to estimate a model other than the default full factorial model,
incorporate factor-by-covariate interactions, indicate nesting of effects, and indicate specific
error terms for each effect in mixed models. You can specify a different continuous variable
as a dependent variable or work with a subset of the continuous variables with the ANALYSIS
subcommand.

Contrast Types. You can specify contrasts other than the default deviation contrasts on the
CONTRAST subcommand. You can also subdivide the degrees of freedom associated with a
factor using the PARTITION subcommand and test the significance of a specific contrast or
group of contrasts.

Optional Output. You can choose from a wide variety of optional output on the PRINT subcom-
mand or suppress output using the NOPRINT subcommand. Output appropriate to univariate
designs includes cell means, design or other matrices, parameter estimates, and tests for
homogeneity of variance across cells. Using the OMEANS, PMEANS, RESIDUAL, and PLOT
subcommands, you can also request tables of observed and/or predicted means, casewise
values and residuals for your model, and various plots useful in checking assumptions. In
addition, you can request observed power values based on fixed-effect assumptions using the
POWER subcommand and request simultaneous confidence intervals for each parameter
estimate and regression coefficient using the CINTERVAL subcommand.

Matrix Materials. You can write matrices of intermediate results to a matrix data file, and you
can read such matrices in performing further analyses using the MATRIX subcommand.

Basic Specification

• The basic specification is a variable list identifying the dependent variable, the factors (if
any), and the covariates (if any).

• By default, MANOVA uses a full factorial model, which includes all main effects and all
possible interactions among factors. Estimation is performed using the cell-means model
and UNIQUE (regression-type) sums of squares, adjusting each effect for all other effects

MANOVA: Univariate 845

in the model. Parameters are estimated using DEVIATION contrasts to determine if their
categories differ significantly from the mean.

Subcommand Order

• The variable list must be specified first.

• Subcommands applicable to a specific design must be specified before that DESIGN sub-
command. Otherwise, subcommands can be used in any order.

Syntax Rules

• For many analyses, the MANOVA variable list and the DESIGN subcommand are the only
specifications needed. If a full factorial design is desired, DESIGN can be omitted.

• All other subcommands apply only to designs that follow. If you do not enter a DESIGN sub-
command or if the last subcommand is not DESIGN, MANOVA will use a full factorial model.

• Unless replaced, MANOVA subcommands other than DESIGN remain in effect for all
subsequent models.

• MISSING can be specified only once.

• The following words are reserved as keywords or internal commands in the MANOVA
procedure: AGAINST, CONSPLUS, CONSTANT, CONTIN, MUPLUS, MWITHIN, POOL, R,
RESIDUAL, RW, VERSUS, VS, W, WITHIN, and WR. Variable names that duplicate these
words should be changed before you invoke MANOVA.

• If you enter one of the multivariate specifications in a univariate analysis, MANOVA will
ignore it.

Limitations

• Maximum 20 factors.

• Maximum 200 dependent variables.

• Memory requirements depend primarily on the number of cells in the design. For the
default full factorial model, this equals the product of the number of levels or categories
in each factor.

Example

MANOVA YIELD BY SEED(1,4) FERT(1,3) WITH RAINFALL
 /PRINT=CELLINFO(MEANS) PARAMETERS(ESTIM)
 /DESIGN.

• YIELD is the dependent variable; SEED (with values 1, 2, 3, and 4) and FERT (with values
1, 2, and 3) are factors; RAINFALL is a covariate.

• The PRINT subcommand requests the means of the dependent variable for each cell and
the default deviation parameter estimates.

846 MANOVA: Univariate

• The DESIGN subcommand requests the default design, a full factorial model. This sub-
command could have been omitted or could have been specified in full as:

/DESIGN = SEED, FERT, SEED BY FERT.

MANOVA Variable List

The variable list specifies all variables that will be used in any subsequent analyses.

• The dependent variable must be the first specification on MANOVA.
• By default, MANOVA treats a list of dependent variables as jointly dependent, implying a

multivariate design. However, you can change the role of a variable or its inclusion status
in the analysis on the ANALYSIS subcommand.

• The names of the factors follow the dependent variable. Use the keyword BY to separate
the factors from the dependent variable.

• Factors must have adjacent integer values, and you must supply the minimum and maxi-
mum values in parentheses after the factor name(s).

• If several factors have the same value range, you can specify a list of factors followed by
a single value range in parentheses.

• Certain one-cell designs, such as univariate and multivariate regression analysis, canoni-
cal correlation, and one-sample Hotelling’s , do not require a factor specification. To
perform these analyses, omit the keyword BY and the factor list.

• Enter the covariates, if any, following the factors and their ranges. Use the keyword WITH
to separate covariates from factors (if any) and the dependent variable.

Example
MANOVA DEPENDNT BY FACTOR1 (1,3) FACTOR2, FACTOR3 (1,2).

• In this example, three factors are specified.

• FACTOR1 has values 1, 2, and 3, while FACTOR2 and FACTOR3 have values 1 and 2.

• A default full factorial model is used for the analysis.

Example
MANOVA Y BY A(1,3) WITH X
 /DESIGN.

• In this example, the A effect is tested after adjusting for the effect of the covariate X. It is
a test of equality of adjusted A means.

• The test of the covariate X is adjusted for A. It is a test of the pooled within-groups regression
of Y on X.

ERROR Subcommand

ERROR allows you to specify or change the error term used to test all effects for which you
do not explicitly specify an error term on the DESIGN subcommand. ERROR affects all terms
in all subsequent designs, except terms for which you explicitly provide an error term.

T2

MANOVA: Univariate 847

WITHIN Terms in the model are tested against the within-cell sum of squares.
This specification can be abbreviated to W. This is the default unless
there is no variance within cells or unless a continuous variable is
named on the DESIGN subcommand.

RESIDUAL Terms in the model are tested against the residual sum of squares.
This specification can be abbreviated to R. This includes all terms not
named on the DESIGN subcommand.

WITHIN+RESIDUAL Terms are tested against the pooled within-cells and residual sum of
squares. This specification can be abbreviated to WR or RW. This is
the default for designs in which a continuous variable appears on the
DESIGN subcommand.

error number Terms are tested against a numbered error term. The error term must
be defined on each DESIGN subcommand (for a discussion of error
terms, see the DESIGN subcommand on p. 863).

• If you specify ERROR=WITHIN+RESIDUAL and one of the components does not exist,
MANOVA uses the other component alone.

• If you specify your own error term by number and a design does not have an error term
with the specified number, MANOVA does not carry out significance tests. It will, however,
display hypothesis sums of squares and, if requested, parameter estimates.

Example
MANOVA DEP BY A(1,2) B(1,4)
 /ERROR = 1
 /DESIGN = A, B, A BY B = 1 VS WITHIN
 /DESIGN = A, B.

• ERROR defines error term 1 as the default error term.

• In the first design, A by B is defined as error term 1 and is therefore used to test the A and
B effects. The A by B effect itself is explicitly tested against the within-cells error.

• In the second design, no term is defined as error term 1, so no significance tests are carried
out. Hypothesis sums of squares are displayed for A and B.

CONTRAST Subcommand

CONTRAST specifies the type of contrast desired among the levels of a factor. For a factor
with k levels or values, the contrast type determines the meaning of its degrees of free-
dom. If the subcommand is omitted or is specified with no keyword, the default is DEVIATION
for between-subjects factors.

• Specify the factor name in parentheses following the subcommand CONTRAST.

• You can specify only one factor per CONTRAST subcommand, but you can enter multiple
CONTRAST subcommands.

• After closing the parentheses, enter an equals sign followed by one of the contrast
keywords.

k 1–

848 MANOVA: Univariate

• To obtain F tests for individual degrees of freedom for the specified contrast, enter the fac-
tor name followed by a number in parentheses on the DESIGN subcommand. The number
refers to a partition of the factor’s degrees of freedom. If you do not use the PARTITION
subcommand, each degree of freedom is a distinct partition.

The following contrast types are available:

DEVIATION Deviations from the grand mean. This is the default for between-subjects
factors. Each level of the factor except one is compared to the grand mean.
One category (by default the last) must be omitted so that the effects will be
independent of one another. To omit a category other than the last, specify
the number of the omitted category (which is not necessarily the same as its
value) in parentheses after the keyword DEVIATION. For example,

MANOVA A BY B(2,4)
 /CONTRAST(B)=DEVIATION(1).

The specified contrast omits the first category, in which B has the value 2.
Deviation contrasts are not orthogonal.

POLYNOMIAL Polynomial contrasts. This is the default for within-subjects factors. The
first degree of freedom contains the linear effect across the levels of the
factor, the second contains the quadratic effect, and so on. In a balanced
design, polynomial contrasts are orthogonal. By default, the levels are
assumed to be equally spaced; you can specify unequal spacing by entering
a metric consisting of one integer for each level of the factor in parentheses
after the keyword POLYNOMIAL. For example,

MANOVA RESPONSE BY STIMULUS (4,6)
 /CONTRAST(STIMULUS) = POLYNOMIAL(1,2,4).

The specified contrast indicates that the three levels of STIMULUS are actu-
ally in the proportion 1:2:4. The default metric is always (1,2,...,k), where k
levels are involved. Only the relative differences between the terms of the
metric matter (1,2,4) is the same metric as (2,3,5) or (20,30,50) because, in
each instance, the difference between the second and third numbers is twice
the difference between the first and second.

DIFFERENCE Difference or reverse Helmert contrasts. Each level of the factor except the
first is compared to the mean of the previous levels. In a balanced design,
difference contrasts are orthogonal.

HELMERT Helmert contrasts. Each level of the factor except the last is compared to
the mean of subsequent levels. In a balanced design, Helmert contrasts are
orthogonal.

SIMPLE Each level of the factor except the last is compared to the last level. To use
a category other than the last as the omitted reference category, specify its
number (which is not necessarily the same as its value) in parentheses
following the keyword SIMPLE. For example,

MANOVA A BY B(2,4)
 /CONTRAST(B)=SIMPLE(1).

MANOVA: Univariate 849

The specified contrast compares the other levels to the first level of B, in
which B has the value 2. Simple contrasts are not orthogonal.

REPEATED Comparison of adjacent levels. Each level of the factor except the first is
compared to the previous level. Repeated contrasts are not orthogonal.

SPECIAL A user-defined contrast. After this keyword, enter a square matrix in paren-
theses with as many rows and columns as there are levels in the factor. The
first row represents the mean effect of the factor and is generally a vector of
1’s. It represents a set of weights indicating how to collapse over the catego-
ries of this factor in estimating parameters for other factors. The other rows
of the contrast matrix contain the special contrasts indicating the desired
comparisons between levels of the factor. If the special contrasts are linear
combinations of each other, MANOVA reports the linear dependency and
stops processing.

Orthogonal contrasts are particularly useful. In a balanced design, contrasts are orthogonal if
the sum of the coefficients in each contrast row is 0 and if, for any pair of contrast rows, the
products of corresponding coefficients sum to 0. DIFFERENCE, HELMERT, and POLYNOMIAL
contrasts always meet these criteria in balanced designs.

Example
MANOVA DEP BY FAC(1,5)
 /CONTRAST(FAC)=DIFFERENCE
 /DESIGN=FAC(1) FAC(2) FAC(3) FAC(4).

• The factor FAC has five categories and therefore four degrees of freedom.
• CONTRAST requests DIFFERENCE contrasts, which compare each level (except the first)

with the mean of the previous levels.

• Each of the four degrees of freedom is tested individually on the DESIGN subcommand.

PARTITION Subcommand

PARTITION subdivides the degrees of freedom associated with a factor. This permits you to
test the significance of the effect of a specific contrast or group of contrasts of the factor
instead of the overall effect of all contrasts of the factor. The default is a single degree of
freedom for each partition.
• Specify the factor name in parentheses following the PARTITION subcommand.

• Specify an integer list in parentheses after the optional equals sign to indicate the degrees
of freedom for each partition.

• Each value in the partition list must be a positive integer, and the sum of the values cannot
exceed the degrees of freedom for the factor.

• The degrees of freedom available for a factor are one less than the number of levels of the
factor.

• The meaning of each degree of freedom depends upon the contrast type for the factor. For
example, with deviation contrasts (the default for between-subjects factors), each degree
of freedom represents the deviation of the dependent variable in one level of the factor

850 MANOVA: Univariate

from its grand mean over all levels. With polynomial contrasts, the degrees of freedom
represent the linear effect, the quadratic effect, and so on.

• If your list does not account for all the degrees of freedom, MANOVA adds one final
partition containing the remaining degrees of freedom.

• You can use a repetition factor of the form n* to specify a series of partitions with the
same number of degrees of freedom.

• To specify a model that tests only the effect of a specific partition of a factor in your
design, include the number of the partition in parentheses on the DESIGN subcommand
(see the example below).

• If you want the default single degree-of-freedom partition, you can omit the PARTITION
subcommand and simply enter the appropriate term on the DESIGN subcommand.

Example
MANOVA OUTCOME BY TREATMNT(1,12)
 /PARTITION(TREATMNT) = (3*2,4)
 /DESIGN TREATMNT(2).

• The factor TREATMNT has 12 categories, hence 11 degrees of freedom.

• PARTITION divides the effect of TREATMNT into four partitions, containing, respectively,
2, 2, 2, and 4 degrees of freedom. A fifth partition is formed to contain the remaining 1
degree of freedom.

• DESIGN specifies a model in which only the second partition of TREATMNT is tested. This
partition contains the third and fourth degrees of freedom.

• Since the default contrast type for between-subjects factors is DEVIATION, this second
partition represents the deviation of the third and fourth levels of TREATMNT from the
grand mean.

METHOD Subcommand

METHOD controls the computational aspects of the MANOVA analysis. You can specify one
of two different methods for partitioning the sums of squares. The default is UNIQUE.

UNIQUE Regression approach. Each term is corrected for every other term in the
model. With this approach, sums of squares for various components of the
model do not add up to the total sum of squares unless the design is balanced.
This is the default if the METHOD subcommand is omitted or if neither of the
two keywords is specified.

SEQUENTIAL Hierarchical decomposition of the sums of squares. Each term is adjusted
only for the terms that precede it on the DESIGN subcommand. This is an
orthogonal decomposition, and the sums of squares in the model add up to
the total sum of squares.

You can control how parameters are to be estimated by specifying one of the following two
keywords available on MANOVA. The default is QR.

QR Use modified Givens rotations. QR bypasses the normal equations and the
inaccuracies that can result from creating the cross-products matrix, and

MANOVA: Univariate 851

it generally results in extremely accurate parameter estimates. This is the
default if the METHOD subcommand is omitted or if neither of the two
keywords is specified.

CHOLESKY Use Cholesky decomposition of the cross-products matrix. Useful for large
data sets with covariates entered on the DESIGN subcommand.

You can also control whether a constant term is included in all models. Two keywords are
available on METHOD. The default is CONSTANT.

CONSTANT All models include a constant (grand mean) term, even if none is explicitly
specified on the DESIGN subcommand. This is the default if neither of the
two keywords is specified.

NOCONSTANT Exclude constant terms from models that do not include the keyword
CONSTANT on the DESIGN subcommand.

Example
MANOVA DEP BY A B C (1,4)
 /METHOD=NOCONSTANT
 /DESIGN=A, B, C
 /METHOD=CONSTANT SEQUENTIAL
 /DESIGN.

• For the first design, a main-effects model, the METHOD subcommand requests the model
to be fitted with no constant.

• The second design requests a full factorial model to be fitted with a constant and with a
sequential decomposition of sums of squares.

PRINT and NOPRINT Subcommands

PRINT and NOPRINT control the display of optional output.
• Specifications on PRINT remain in effect for all subsequent designs.

• Some PRINT output, such as CELLINFO, applies to the entire MANOVA procedure and is
displayed only once.

• You can turn off optional output that you have requested on PRINT by entering a NOPRINT
subcommand with the specifications originally used on the PRINT subcommand.

• Additional output can be obtained on the PCOMPS, DISCRIM, OMEANS, PMEANS, PLOT,
and RESIDUALS subcommands.

• Some optional output greatly increases the processing time. Request only the output you
want to see.

The following specifications are appropriate for univariate MANOVA analyses. For infor-
mation on PRINT specifications appropriate for other MANOVA models, see MANOVA:
Multivariate and MANOVA: Repeated Measures.

CELLINFO Basic information about each cell in the design.

PARAMETERS Parameter estimates.

852 MANOVA: Univariate

HOMOGENEITY Tests of homogeneity of variance.

DESIGN Design information.

ERROR Error standard deviations.

CELLINFO Keyword

You can request any of the following cell information by specifying the appropriate key-
word(s) in parentheses after CELLINFO. The default is MEANS.

MEANS Cell means, standard deviations, and counts for the dependent variable and cova-
riates. Confidence intervals for the cell means are displayed if you have set a wide
width. This is the default when CELLINFO is requested with no further specification.

SSCP Within-cell sum-of-squares and cross-products matrices for the dependent
variable and covariates.

COV Within-cell variance-covariance matrices for the dependent variable and covariates.

COR Within-cell correlation matrices, with standard deviations on the diagonal, for the
dependent variable and covariates.

ALL MEANS, SSCP, COV, and COR.

• Output from CELLINFO is displayed once before the analysis of any particular design.
Specify CELLINFO only once.

• When you specify SSCP, COV, or COR, the cells are numbered for identification, beginning
with cell 1.

• The levels vary most rapidly for the factor named last on the MANOVA variables specification.

• Empty cells are neither displayed nor numbered.
• A table showing the levels of each factor corresponding to each cell number is displayed

at the beginning of MANOVA output.

Example
MANOVA DEP BY A(1,4) B(1,2) WITH COV
 /PRINT=CELLINFO(MEANS COV)
 /DESIGN.

• For each combination of levels of A and B, MANOVA displays separately the means and
standard deviations of DEP and COV. Beginning with cell 1, it will then display the vari-
ance-covariance matrix of DEP and COV within each non-empty cell.

• A table of cell numbers will be displayed to show the factor levels corresponding to
each cell.

• The keyword COV, as a parameter of CELLINFO, is not confused with the variable COV.

MANOVA: Univariate 853

PARAMETERS Keyword

The keyword PARAMETERS displays information relating to the estimated size of the effects
in the model. You can specify any of the following keywords in parentheses on PARAMETERS.
The default is ESTIM.

ESTIM The estimated parameters themselves, along with their standard errors, t tests,
and confidence intervals. Only nonredundant parameters are displayed. This is
the default if PARAMETERS is requested without further specification.

NEGSUM The negative of the sum of parameters for each effect. For DEVIATION main
effects, this equals the parameter for the omitted (redundant) contrast.
NEGSUM is displayed along with the parameter estimates.

ORTHO The orthogonal estimates of parameters used to produce the sums of squares.

COR Covariance factors and correlations among the parameter estimates.

EFSIZE The effect size values.

OPTIMAL Optimal Scheffé contrast coefficients.

ALL ESTIM, NEGSUM, ORTHO, COR, EFSIZE, and OPTIMAL.

SIGNIF Keyword

SIGNIF requests special significance tests, most of which apply to multivariate designs (see
MANOVA: Multivariate). The following specification is useful in univariate applications of
MANOVA:

SINGLEDF Significance tests for each single degree of freedom making up each effect
for analysis-of-variance tables.

• When non-orthogonal contrasts are requested or when the design is unbalanced, the
SINGLEDF effects will differ from single degree-of-freedom partitions. SINGLEDEF
effects are orthogonal within an effect; single degree-of-freedom partitions are not.

Example
MANOVA DEP BY FAC(1,5)
 /CONTRAST(FAC)=POLY
 /PRINT=SIGNIF(SINGLEDF)
 /DESIGN.

• POLYNOMIAL contrasts are applied to FAC, testing the linear, quadratic, cubic, and quartic
components of its five levels. POLYNOMIAL contrasts are orthogonal in balanced designs.

• The SINGLEDF specification on SIGNIF requests significance tests for each of these four
components.

854 MANOVA: Univariate

HOMOGENEITY Keyword

HOMOGENEITY requests tests for the homogeneity of variance of the dependent variable
across the cells of the design. You can specify one or more of the following specifications in
parentheses. If HOMOGENEITY is requested without further specification, the default is ALL.

BARTLETT Bartlett-Box F test.

COCHRAN Cochran’s C.

ALL Both BARTLETT and COCHRAN. This is the default.

DESIGN Keyword

You can request the following by entering one or more of the specifications in parentheses
following the keyword DESIGN. If DESIGN is requested without further specification, the
default is OVERALL.

 The DECOMP and BIAS matrices can provide valuable information on the confounding
of the effects and the estimability of the chosen contrasts. If two effects are confounded, the
entry corresponding to them in the BIAS matrix will be nonzero; if they are orthogonal, the
entry will be zero. This is particularly useful in designs with unpatterned empty cells. For
further discussion of the matrices, see Bock (1985).

OVERALL The overall reduced-model design matrix (not the contrast matrix). This is
the default.

ONEWAY The one-way basis matrix (not the contrast matrix) for each factor.

DECOMP The upper triangular QR/CHOLESKY decomposition of the design.

BIAS Contamination coefficients displaying the bias present in the design.

SOLUTION Coefficients of the linear combinations of the cell means used in significance
testing.

REDUNDANCY Exact linear combinations of parameters that form a redundancy. This
keyword displays a table only if QR (the default) is the estimation method.

COLLINEARITY Collinearity diagnostics for design matrices. These diagnostics include the
singular values of the normalized design matrix (which are the same as
those of the normalized decomposition matrix), condition indexes corre-
sponding to each singular value, and the proportion of variance of the corre-
sponding parameter accounted for by each principal component. For
greatest accuracy, use the QR method of estimation whenever you request
collinearity diagnostics.

ALL All available options.

MANOVA: Univariate 855

ERROR Keyword

Generally, the keyword ERROR on PRINT produces error matrices. In univariate analyses, the
only valid specification for ERROR is STDDEV, which is the default if ERROR is specified by
itself.

STDDEV The error standard deviation. Normally, this is the within-cells standard deviation
of the dependent variable. If you specify multiple error terms on DESIGN, this spec-
ification will display the standard deviation for each.

OMEANS Subcommand

OMEANS (observed means) displays tables of the means of continuous variables for levels or
combinations of levels of the factors.

• Use the keywords VARIABLES and TABLES to indicate which observed means you want
to display.

• With no specifications, the OMEANS subcommand is equivalent to requesting CELLINFO
(MEANS)on PRINT.

• OMEANS displays confidence intervals for the cell means if you have set the width to 132.

• Output from OMEANS is displayed once before the analysis of any particular design. This
subcommand should be specified only once.

VARIABLES Continuous variables for which you want means. Specify the variables in
parentheses after the keyword VARIABLES. You can request means for the
dependent variable or any covariates. If you omit the VARIABLES keyword,
observed means are displayed for the dependent variable and all covari-
ates. If you enter the keyword VARIABLES, you must also enter the
keyword TABLES, discussed below.

TABLES Factors for which you want the observed means displayed. List in
parentheses the factors, or combinations of factors, separated with BY.
Observed means are displayed for each level, or combination of levels, of the
factors named (see the example below). Both weighted means and unweighted
means (where all cells are weighted equally, regardless of the number of cases
they contain) are displayed. If you enter the keyword CONSTANT, the grand
mean is displayed.

Example
MANOVA DEP BY A(1,3) B(1,2)
 /OMEANS=TABLES(A,B)
 /DESIGN.

• Because there is no VARIABLES specification on the OMEANS subcommand, observed
means are displayed for all continuous variables. DEP is the only dependent variable here,
and there are no covariates.

• The TABLES specification on the OMEANS subcommand requests tables of observed
means for each of the three categories of A (collapsing over B) and for both categories of
B (collapsing over A).

856 MANOVA: Univariate

• MANOVA displays both weighted means, in which all cases count equally, and unweighted
means, in which all cells count equally.

PMEANS Subcommand

PMEANS (predicted means) displays a table of the predicted cell means of the dependent
variable, both adjusted for the effect of covariates in the cell and unadjusted for covariates.
For comparison, it also displays the observed cell means.
• Output from PMEANS can be computationally expensive.

• PMEANS without any additional specifications displays a table showing for each cell the
observed mean of the dependent variable, the predicted mean adjusted for the effect of
covariates in that cell (ADJ. MEAN), the predicted mean unadjusted for covariates (EST.
MEAN), and the raw and standardized residuals from the estimated means.

• Cells are numbered in output from PMEANS so that the levels vary most rapidly on the
factor named last in the MANOVA variables specification. A table showing the levels of
each factor corresponding to each cell number is displayed at the beginning of the
MANOVA output.

• Predicted means are suppressed for any design in which the MUPLUS keyword appears.

• Covariates are not predicted.

• In designs with covariates and multiple error terms, use the ERROR subcommand to
designate which error term’s regression coefficients are to be used in calculating the
standardized residuals.

For univariate analysis, the following keywords are available on the PMEANS subcommand:

TABLES Additional tables showing adjusted predicted means for specified factors or
combinations of factors. Enter the names of factors or combinations of
factors in parentheses after this keyword. For each factor or combination,
MANOVA displays the predicted means (adjusted for covariates) collapsed
over all other factors.

PLOT A plot of the predicted means for each cell.

Example
MANOVA DEP BY A(1,4) B(1,3)
 /PMEANS TABLES(A, B, A BY B)
 /DESIGN = A, B.

• PMEANS displays the default table of observed and predicted means for DEP and raw and
standardized residuals in each of the 12 cells in the model.

• The TABLES specification on PMEANS displays tables of predicted means for A (collapsing
over B), for B (collapsing over A), and all combinations of A and B.

• Because A and B are the only factors in the model, the means for A by B in the TABLES
specification come from every cell in the model. They are identical to the adjusted pre-
dicted means in the default PMEANS table, which always includes all non-empty cells.

• Predicted means for A by B can be requested in the TABLES specification, even though the
A by B effect is not in the design.

MANOVA: Univariate 857

RESIDUALS Subcommand

Use RESIDUALS to display and plot casewise values and residuals for your models.
• Use the ERROR subcommand to specify an error term other than the default to be used to

standardize the residuals.

• If a designated error term does not exist for a given design, no predicted values or residuals
are calculated.

• If you specify RESIDUALS without any keyword, CASEWISE output is displayed.

The following keywords are available:

CASEWISE A case-by-case listing of the observed, predicted, residual, and standardized
residual values for each dependent variable.

PLOT A plot of observed values, predicted values, and case numbers versus the
standardized residuals, plus normal and detrended normal probability plots
for the standardized residuals (five plots in all).

POWER Subcommand

POWER requests observed power values based on fixed-effect assumptions for all univariate
and multivariate F tests and t tests. Both approximate and exact power values can be
computed, although exact multivariate power is displayed only when there is one hypothesis
degree of freedom. If POWER is specified by itself, with no keywords, MANOVA calculates
the approximate observed power values of all F tests at 0.05 significance level.

The following keywords are available on the POWER subcommand:

APPROXIMATE Approximate power values. This is the default if POWER is specified without
any keyword. Approximate power values for univariate tests are derived
from an Edgeworth-type normal approximation to the noncentral beta distri-
bution. Approximate values are normally accurate to three decimal places
and are much cheaper to compute than exact values.

EXACT Exact power values. Exact power values for univariate tests are computed
from the noncentral incomplete beta distribution.

F(a) Alpha level at which the power is to be calculated for F tests. The default is
0.05. To change the default, specify a decimal number between 0 and 1 in
parentheses after F. The numbers 0 and 1 themselves are not allowed. F test
at 0.05 significance level is the default when POWER is omitted or specified
without any keyword.

T(a) Alpha level at which the power is to be calculated for t tests. The default is
0.05. To change the default, specify a decimal number between 0 and 1 in
parentheses after t. The numbers 0 and 1 themselves are not allowed.

• For univariate F tests and t tests, MANOVA computes a measure of the effect size based on
partial :η2

858 MANOVA: Univariate

where ssh is the hypothesis sum of squares and sse is the error sum of squares. The mea-
sure is an overestimate of the actual effect size. However, it is consistent and is applicable
to all F tests and t tests. For a discussion of effect size measures, see Cohen (1977) or
Hays (1981).

CINTERVAL Subcommand

CINTERVAL requests simultaneous confidence intervals for each parameter estimate and
regression coefficient. MANOVA provides either individual or joint confidence intervals at
any desired confidence level. You can compute joint confidence intervals using either
Scheffé or Bonferroni intervals. Scheffé intervals are based on all possible contrasts, while
Bonferroni intervals are based on the number of contrasts actually made. For a large number
of contrasts, Bonferroni intervals will be larger than Scheffé intervals. Timm (1975) provides
a good discussion of which intervals are best for certain situations. Both Scheffé and Bon-
ferroni intervals are computed separately for each term in the design. You can request only
one type of confidence interval per design.

The following keywords are available on the CINTERVAL subcommand. If the subcom-
mand is specified without any keyword, CINTERVAL automatically displays individual
univariate confidence intervals at the 0.95 level.

INDIVIDUAL(a) Individual confidence intervals. Specify the desired confidence level
in parentheses following the keyword. The desired confidence level
can be any decimal number between 0 and 1. When individual inter-
vals are requested, BONFER and SCHEFFE have no effect.

JOINT(a) Joint confidence intervals. Specify the desired confidence level in
parentheses after the keyword. The default is 0.95. The desired confi-
dence level can be any decimal number between 0 and 1.

UNIVARIATE(type) Univariate confidence interval. Specify either SCHEFFE for Scheffé
intervals or BONFER for Bonferroni intervals in parentheses after the
keyword. The default specification is SCHEFFE.

PLOT Subcommand

MANOVA can display a variety of plots useful in checking the assumptions needed in the
analysis. Plots are produced only once in the MANOVA procedure, regardless of how many
DESIGN subcommands you enter. Use the following keywords on the PLOT subcommand
to request plots. If the PLOT subcommand is specified by itself, the default is BOXPLOT.

BOXPLOTS Boxplots. Plots are displayed for each continuous variable (dependent or
covariate) named on the MANOVA variable list. Boxplots provide a simple
graphical means of comparing the cells in terms of mean location and spread.
The data must be stored in memory for these plots; if there is not enough
memory, boxplots are not produced and a warning message is issued. This is
the default if the PLOT subcommand is specified without a keyword.

partial η2 ssh() ssh sse+()⁄=

MANOVA: Univariate 859

CELLPLOTS Cell statistics, including a plot of cell means versus cell variances, a plot of
cell means versus cell standard deviations, and a histogram of cell means.
Plots are produced for each continuous variable (dependent or covariate)
named on the MANOVA variable list. The first two plots aid in detecting
heteroscedasticity (nonhomogeneous variances) and in determining an
appropriate data transformation if one is needed. The third plot gives distri-
butional information for the cell means.

NORMAL Normal and detrended normal plots. Plots are produced for each contin-
uous variable (dependent or covariate) named on the MANOVA variable list.
MANOVA ranks the scores and then plots the ranks against the expected
normal deviate, or detrended expected normal deviate, for that rank. These
plots aid in detecting non-normality and outlying observations. All data
must be held in memory to compute ranks. If not enough memory is avail-
able, MANOVA displays a warning and skips the plots.

• ZCORR, an additional plot available on the PLOT subcommand, is described in
MANOVA: Multivariate.

• You can request other plots on PMEANS and RESIDUALS (see respective subcommands).

MISSING Subcommand

By default, cases with missing values for any of the variables on the MANOVA variable list
are excluded from the analysis. The MISSING subcommand allows you to include cases with
user-missing values. If MISSING is not specified, the defaults are LISTWISE and EXCLUDE.

• The same missing-value treatment is used to process all designs in a single execution of
MANOVA.

• If you enter more than one MISSING subcommand, the last one entered will be in effect for
the entire procedure, including designs specified before the last MISSING subcommand.

• Pairwise deletion of missing data is not available in MANOVA.
• Keywords INCLUDE and EXCLUDE are mutually exclusive; either can be specified with

LISTWISE.

LISTWISE Cases with missing values for any variable named on the MANOVA variable list
are excluded from the analysis. This is always true in the MANOVA procedure.

EXCLUDE Exclude both user-missing and system-missing values. This is the default
when MISSING is not specified.

INCLUDE User-missing values are treated as valid. For factors, you must include the
missing-value codes within the range specified on the MANOVA variable list.
It may be necessary to recode these values so that they will be adjacent to the
other factor values. System-missing values cannot be included in the analysis.

MATRIX Subcommand

MATRIX reads and writes SPSS matrix data files. It writes correlation matrices that can be
read by subsequent MANOVA procedures.

860 MANOVA: Univariate

• Either IN or OUT is required to specify the matrix file in parentheses. When both IN and OUT
are used on the same MANOVA procedure, they can be specified on separate MATRIX sub-
commands or on the same subcommand.

• The matrix materials include the N, mean, and standard deviation. Documents from the
file that form the matrix are not included in the matrix data file.

• MATRIX=IN cannot be used in place of GET or DATA LIST to begin a new SPSS command
file. MATRIX is a subcommand on MANOVA, and MANOVA cannot run before a working
data file is defined. To begin a new command file and immediately read a matrix, first
GET the matrix file, and then specify IN(*) on MATRIX.

• Records in the matrix data file read by MANOVA can be in any order, with the following
exceptions: the order of split-file groups cannot be violated, and all CORR vectors must
appear contiguously within each split-file group.

• When MANOVA reads matrix materials, it ignores the record containing the total number
of cases. In addition, it skips unrecognized records. MANOVA does not issue a warning
when it skips records.

The following two keywords are available on the MATRIX subcommand:

OUT Write an SPSS matrix data file. Specify either a file or an asterisk, and enclose the
specification in parentheses. If you specify a file, the file is stored on disk and can
be retrieved at any time. If you specify an asterisk (*) or leave the parentheses emp-
ty, the matrix file replaces the working data file but is not stored on disk unless you
use SAVE or XSAVE.

IN Read an SPSS matrix data file. If the matrix file is not the current working data file,
specify a file in parentheses. If the matrix file is the current working data file, spec-
ify an asterisk (*) or leave the parentheses empty.

Format of the SPSS Matrix Data File

The SPSS matrix data file includes two special variables created by SPSS: ROWTYPE_ and
VARNAME_.
• Variable ROWTYPE_ is a short string variable having values N, MEAN, CORR (for Pearson

correlation coefficients), and STDDEV.

• Variable VARNAME_ is a short string variable whose values are the names of the vari-
ables and covariates used to form the correlation matrix. When ROWTYPE_ is CORR,
VARNAME_ gives the variable associated with that row of the correlation matrix.

• Between ROWTYPE_ and VARNAME_ are the factor variables (if any) defined in the BY
portion of the MANOVA variable list. (Factor variables receive the system-missing value
on vectors that represent pooled values.)

• Remaining variables are the variables used to form the correlation matrix.

MANOVA: Univariate 861

Split Files and Variable Order

• When split-file processing is in effect, the first variables in the matrix system file will be
the split variables, followed by ROWTYPE_, the factor variable(s), VARNAME_, and then
the variables used to form the correlation matrix.

• A full set of matrix materials is written for each subgroup defined by the split variable(s).
• A split variable cannot have the same variable name as any other variable written to the

matrix data file.

• If a split file is in effect when a matrix is written, the same split file must be in effect when
that matrix is read into another procedure.

Additional Statistics

In addition to the CORR values, MANOVA always includes the following with the matrix materials:

• The total weighted number of cases used to compute each correlation coefficient.

• A vector of N’s for each cell in the data.

• A vector of MEAN’s for each cell in the data.

• A vector of pooled standard deviations, STDDEV. This is the square root of the within-
cells mean square error for each variable.

Example
GET FILE IRIS.
MANOVA SEPALLEN SEPALWID PETALLEN PETALWID BY TYPE(1,3)
 /MATRIX=OUT(MANMTX).

• MANOVA reads data from the SPSS data file IRIS and writes one set of matrix materials to
the file MANMTX.

• The working data file is still IRIS. Subsequent commands are executed on the file IRIS.

Example
GET FILE IRIS.
MANOVA SEPALLEN SEPALWID PETALLEN PETALWID BY TYPE(1,3)
 /MATRIX=OUT(*).
LIST.

• MANOVA writes the same matrix as in the example above. However, the matrix file replaces
the working data file. The LIST command is executed on the matrix file, not on the file IRIS.

Example
GET FILE=PRSNNL.
FREQUENCIES VARIABLE=AGE.

MANOVA SEPALLEN SEPALWID PETALLEN PETALWID BY TYPE(1,3)
 /MATRIX=IN(MANMTX).

• This example assumes that you want to perform a frequencies analysis on the file PRSNNL
and then use MANOVA to read a different file. The file you want to read is an existing SPSS

862 MANOVA: Univariate

matrix data file. The external matrix file MANMTX is specified in parentheses after IN on
the MATRIX subcommand.

• MANMTX does not replace PRSNNL as the working file.

Example
GET FILE=MANMTX.
MANOVA SEPALLEN SEPALWID PETALLEN PETALWID BY TYPE(1,3)
 /MATRIX=IN(*).

• This example assumes that you are starting a new session and want to read an existing
SPSS matrix data file. GET retrieves the matrix file MANMTX.

• An asterisk is specified in parentheses after IN on the MATRIX subcommand to read the
working data file. You can also leave the parentheses empty to indicate the default.

• If the GET command is omitted, SPSS issues an error message.

• If you specify MANMTX in parentheses after IN, SPSS issues an error message.

ANALYSIS Subcommand

ANALYSIS allows you to work with a subset of the continuous variables (dependent variable
and covariates) you have named on the MANOVA variable list. In univariate analysis of vari-
ance, you can use ANALYSIS to allow factor-by-covariate interaction terms in your model
(see the DESIGN subcommand below). You can also use it to switch the roles of the depen-
dent variable and a covariate.

• In general, ANALYSIS gives you complete control over which continuous variables are to
be dependent variables, which are to be covariates, and which are to be neither.

• ANALYSIS specifications are like the MANOVA variables specification, except that factors
are not named. Enter the dependent variable and, if there are covariates, the keyword
WITH and the covariates.

• Only variables listed as dependent variables or covariates on the MANOVA variable list can
be entered on the ANALYSIS subcommand.

• In a univariate analysis of variance, the most important use of ANALYSIS is to omit cova-
riates altogether from the analysis list, thereby making them available for inclusion on
DESIGN (see the example below and the DESIGN subcommand examples).

• For more information on ANALYSIS, refer to MANOVA: Multivariate.

Example
MANOVA DEP BY FACTOR(1,3) WITH COV
 /ANALYSIS DEP
 /DESIGN FACTOR, COV, FACTOR BY COV.

• COV, a continuous variable, is included on the MANOVA variable list as a covariate.

• COV is not mentioned on ANALYSIS, so it will not be included in the model as a dependent
variable or covariate. It can, therefore, be explicitly included on the DESIGN subcommand.

• DESIGN includes the main effects of FACTOR and COV and the FACTOR by COV interaction.

MANOVA: Univariate 863

DESIGN Subcommand

DESIGN specifies the effects included in a specific model. It must be the last subcommand
entered for any model.

The cells in a design are defined by all of the possible combinations of levels of the fac-
tors in that design. The number of cells equals the product of the number of levels of all the
factors. A design is balanced if each cell contains the same number of cases. MANOVA can
analyze both balanced and unbalanced designs.

• Specify a list of terms to be included in the model, separated by spaces or commas.
• The default design, if the DESIGN subcommand is omitted or is specified by itself, is a full

factorial model containing all main effects and all orders of factor-by-factor interaction.

• If the last subcommand specified is not DESIGN, a default full factorial design is estimated.

• To include a term for the main effect of a factor, enter the name of the factor on the
DESIGN subcommand.

• To include a term for an interaction between factors, use the keyword BY to join the factors
involved in the interaction.

• Terms are entered into the model in the order in which you list them on DESIGN. If you
have specified SEQUENTIAL on the METHOD subcommand to partition the sums of
squares in a hierarchical fashion, this order may affect the significance tests.

• You can specify other types of terms in the model, as described in the following sections.

• Multiple DESIGN subcommands are accepted. An analysis of one model is produced for
each DESIGN subcommand.

Example
MANOVA Y BY A(1,2) B(1,2) C(1,3)
 /DESIGN
 /DESIGN A, B, C
 /DESIGN A, B, C, A BY B, A BY C.

• The first DESIGN produces the default full factorial design, with all main effects and
interactions for factors A, B, and C.

• The second DESIGN produces an analysis with main effects only for A, B, and C.

• The third DESIGN produces an analysis with main effects and the interactions between A
and the other two factors. The interaction between B and C is not in the design, nor is the
interaction between all three factors.

Partitioned Effects: Number in Parentheses

You can specify a number in parentheses following a factor name on the DESIGN subcom-
mand to identify individual degrees of freedom or partitions of the degrees of freedom asso-
ciated with an effect.
• If you specify PARTITION, the number refers to a partition. Partitions can include more

than one degree of freedom (see the PARTITION subcommand on p. 849). For example,
if the first partition of SEED includes two degrees of freedom, the term SEED(1) on a
DESIGN subcommand tests the two degrees of freedom.

864 MANOVA: Univariate

• If you do not use PARTITION, the number refers to a single degree of freedom associated
with the effect.

• The number refers to an individual level for a factor if that factor follows the keyword
WITHIN or MWITHIN (see the sections on nested effects and pooled effects below).

• A factor has one less degree of freedom than it has levels or values.

Example
MANOVA YIELD BY SEED(1,4) WITH RAINFALL
 /PARTITION(SEED)=(2,1)
 /DESIGN=SEED(1) SEED(2).

• Factor SEED is subdivided into two partitions, one containing the first two degrees of
freedom and the other the last degree of freedom.

• The two partitions of SEED are treated as independent effects.

Nested Effects: WITHIN Keyword

Use the WITHIN keyword (alias W) to nest the effects of one factor within those of another
factor or an interaction term.

Example
MANOVA YIELD BY SEED(1,4) FERT(1,3) PLOT (1,4)
 /DESIGN = FERT WITHIN SEED BY PLOT.

• The three factors in this example are type of seed (SEED), type of fertilizer (FERT), and
location of plots (PLOT).

• The DESIGN subcommand nests the effects of FERT within the interaction term of SEED
by PLOT. The levels of FERT are considered distinct for each combination of levels of
SEED and PLOT.

Simple Effects: WITHIN and MWITHIN Keywords

A factor can be nested within one specific level of another factor by indicating the level in
parentheses. This allows you to estimate simple effects or the effect of one factor within only
one level of another. Simple effects can be obtained for higher-order interactions as well.

Use WITHIN to request simple effects of between-subjects factors.

Example
MANOVA YIELD BY SEED(2,4) FERT(1,3) PLOT (1,4)
 /DESIGN = FERT WITHIN SEED (1).

• This example requests the simple effect of FERT within the first level of SEED.
• The number (n) specified after a WITHIN factor refers to the level of that factor. It is the

ordinal position, which is not necessarily the value of that level. In this example, the first
level is associated with value 2.

MANOVA: Univariate 865

• The number does not refer to the number of partitioned effects (see “Partitioned Effects:
Number in Parentheses” on p. 863).

Example
MANOVA YIELD BY SEED(2,4) FERT(1,3) PLOT (3,5)
 /DESIGN = FERT WITHIN PLOT(1) WITHIN SEED(2)

• This example requests the effect of FERT within the second SEED level of the first PLOT
level.

• The second SEED level is associated with value 3 and the first PLOT level is associated
with value 3.

Use MWITHIN to request simple effects of within-subjects factors in repeated measures
analysis (see MANOVA: Repeated Measures).

Pooled Effects: Plus Sign

To pool different effects for the purpose of significance testing, join the effects with a plus
sign (+). A single test is made for the combined effect of the pooled terms.

• The keyword BY is evaluated before effects are pooled together.
• Parentheses are not allowed to change the order of evaluation. For example, it is illegal to

specify (A + B) BY C. You must specify /DESIGN=A BY C + B BY C.

Example
MANOVA Y BY A(1,3) B(1,4) WITH X
 /ANALYSIS=Y
 /DESIGN=A, B, A BY B, A BY X + B BY X + A BY B BY X.

• This example shows how to test homogeneity of regressions in a two-way analysis of
variance.

• The + signs are used to produce a pooled test of all interactions involving the covariate X.
If this test is significant, the assumption of homogeneity of variance is questionable.

MUPLUS Keyword

MUPLUS combines the constant term (µ) in the model with the term specified after it. The nor-
mal use of this specification is to obtain parameter estimates that represent weighted means
for the levels of some factor. For example, MUPLUS SEED represents the constant, or overall,
mean plus the effect for each level of SEED. The significance of such effects is usually unin-
teresting, but the parameter estimates represent the weighted means for each level of SEED,
adjusted for any covariates in the model.

• MUPLUS cannot appear more than once on a given DESIGN subcommand.

• MUPLUS is the only way to get standard errors for the predicted mean for each level of the
factor specified.

• Parameter estimates are not displayed by default; you must explicitly request them on the
PRINT subcommand or via a CONTRAST subcommand.

866 MANOVA: Univariate

• You can obtain the unweighted mean by specifying the full factorial model, excluding
those terms contained by an effect, and prefixing the effect whose mean is to be found by
MUPLUS.

Effects of Continuous Variables

Usually you name factors but not covariates on the DESIGN subcommand. The linear effects
of covariates are removed from the dependent variable before the design is tested. However,
the design can include variables measured at the interval level and originally named as co-
variates or as additional dependent variables.

• Continuous variables on a DESIGN subcommand must be named as dependents or cova-
riates on the MANOVA variable list.

• Before you can name a continuous variable on a DESIGN subcommand, you must supply an
ANALYSIS subcommand that does not name the variable. This excludes it from the analysis
as a dependent variable or covariate and makes it eligible for inclusion on DESIGN.

• More than one continuous variable can be pooled into a single effect (provided that they
are all excluded on an ANALYSIS subcommand) with the keyword POOL(varlist). For a sin-
gle continuous variable, POOL(VAR) is equivalent to VAR.

• The TO convention in the variable list for POOL refers to the order of continuous variables
(dependent variables and covariates) on the original MANOVA variable list, which is not
necessarily their order on the working data file. This is the only allowable use of the key-
word TO on a DESIGN subcommand.

• You can specify interaction terms between factors and continuous variables. If FAC is a
factor and COV is a covariate that has been omitted from an ANALYSIS subcommand, FAC
BY COV is a valid specification on a DESIGN statement.

• You cannot specify an interaction between two continuous variables. Use the COMPUTE
command to create a variable representing the interaction prior to MANOVA.

Example
* This example tests whether the regression of the dependent
 variable Y on the two variables X1 and X2 is the same across
 all the categories of the factors AGE and TREATMNT.

MANOVA Y BY AGE(1,5) TREATMNT(1,3) WITH X1, X2
 /ANALYSIS = Y
 /DESIGN = POOL(X1,X2),
 AGE, TREATMNT, AGE BY TREATMNT,
 POOL(X1,X2) BY AGE + POOL(X1,X2) BY TREATMNT
 + POOL(X1,X2) BY AGE BY TREATMNT.

• ANALYSIS excludes X1 and X2 from the standard treatment of covariates, so that they can
be used in the design.

• DESIGN includes five terms. POOL(X1,X2), the overall regression of the dependent
variable on X1 and X2, is entered first, followed by the two factors and their interaction.

• The last term is the test for equal regressions. It consists of three factor-by-continuous-
variable interactions pooled together. POOL(X1,X2) BY AGE is the interaction be-
tween AGE and the combined effect of the continuous variables X1 and X2. It is combined

MANOVA: Univariate 867

with similar interactions between TREATMNT and the continuous variables and between
the AGE by TREATMNT interaction and the continuous variables.

• If the last term is not statistically significant, there is no evidence that the regression of Y on
X1 and X2 is different across any combination of the categories of AGE and TREATMNT.

Error Terms for Individual Effects

The “error” sum of squares against which terms in the design are tested is specified on the
ERROR subcommand. For any particular term on a DESIGN subcommand, you can specify a
different error term to be used in the analysis of variance. To do so, name the term followed
by the keyword VS (or AGAINST) and the error term keyword.

• To test a term against only the within-cells sum of squares, specify the term followed by
VS WITHIN on the DESIGN subcommand. For example, GROUP VS WITHIN tests the
effect of the factor GROUP against only the within-cells sum of squares. For most analyses,
this is the default error term.

• To test a term against only the residual sum of squares (the sum of squares for all terms
not included in your DESIGN), specify the term followed by VS RESIDUAL.

• To test against the combined within-cells and residual sums of squares, specify the term
followed by VS WITHIN+RESIDUAL.

• To test against any other sum of squares in the analysis of variance, include a term corre-
sponding to the desired sum of squares in the design and assign it to an integer between
1 and 10. You can then test against the number of the error term. It is often convenient to
test against the term before you define it. This is perfectly acceptable as long as you define
the error term on the same DESIGN subcommand.

Example
MANOVA DEP BY A, B, C (1,3)
 /DESIGN=A VS 1,
 B WITHIN A = 1 VS 2,
 C WITHIN B WITHIN A = 2 VS WITHIN.

• In this example, the factors A, B, and C are completely nested; levels of C occur within lev-
els of B, which occur within levels of A. Each factor is tested against everything within it.

• A, the outermost factor, is tested against the B within A sum of squares, to see if it contrib-
utes anything beyond the effects of B within each of its levels. The B within A sum of
squares is defined as error term number 1.

• B nested within A, in turn, is tested against error term number 2, which is defined as the
C within B within A sum of squares.

• Finally, C nested within B nested within A is tested against the within-cells sum of
squares.

User-defined error terms are specified by simply inserting = n after a term, where n is an
integer from 1 to 10. The equals sign is required. Keywords used in building a design term,
such as BY or WITHIN, are evaluated first. For example, error term number 2 in the above
example consists of the entire term C WITHIN B WITHIN A. An error-term number, but
not an error-term definition, can follow the keyword VS.

868 MANOVA: Univariate

CONSTANT Keyword

By default, the constant (grand mean) term is included as the first term in the model.

• If you have specified NOCONSTANT on the METHOD subcommand, a constant term will not
be included in any design unless you request it with the CONSTANT keyword on DESIGN.

• You can specify an error term for the constant.

• A factor named CONSTANT will not be recognized on the DESIGN subcommand.

References

Bock, R. D., 1985. Multivariate statistical methods in behavioral research. Chicago: Scientific
Software, Inc.

Cohen, J. 1977. Statistical power analysis for the behavioral sciences. San Diego, Calif.:Academe
Press.

Hays, W. 1981. Statistics (3rd ed.). New York: Holt, Rinehart and Winston.
Timm, N. H. 1975. Multivariate statistics: With applications in education and psychology.

Monterey, Calif.: Brooks/Cole.

869

MANOVA: Multivariate

MANOVA is available in the Advanced Models option.

MANOVA dependent varlist [BY factor list (min,max) [factor list...]]
 [WITH covariate list]

 [/TRANSFORM [(dependent varlist [/dependent varlist])]=
 [ORTHONORM] [{CONTRAST}] {DEVIATIONS (refcat) }]
 {BASIS } {DIFFERENCE }
 {HELMERT }
 {SIMPLE (refcat) }
 {REPEATED }
 {POLYNOMIAL[({1,2,3...})]}
 {metric }
 {SPECIAL (matrix) }

 [/RENAME={newname} {newname}...]
 {* } {* }

 [/{PRINT }=[HOMOGENEITY [(BOXM)]]
 {NOPRINT} [ERROR [([COV] [COR] [SSCP] [STDDEV])]]
 [SIGNIF [([MULTIV**] [EIGEN] [DIMENR]
 [UNIV**] [HYPOTH][STEPDOWN] [BRIEF])]]
 [TRANSFORM]]

 [/PCOMPS=[COR] [COV] [ROTATE(rottype)]
 [NCOMP(n)] [MINEIGEN(eigencut)] [ALL]]

 [/PLOT=[ZCORR]]

[/DISCRIM [RAW] [STAN] [ESTIM] [COR] [ALL]
[ROTATE(rottype)] [ALPHA({.25**})]]

{a }

[/POWER=[T({.05**})] [F({.05**})] [{APPROXIMATE}]]

 {a } {a } {EXACT }

 [/CINTERVAL=[MULTIVARIATE ({ROY })]]
 {PILLAI }
 {BONFER }
 {HOTELLING}
 {WILKS }

 [/ANALYSIS [({UNCONDITIONAL**})]=[(]dependent varlist
 {CONDITIONAL } [WITH covariate varlist]
 [/dependent varlist...][)][WITH varlist]]

 [/DESIGN...]*

* The DESIGN subcommand has the same syntax as is described in MANOVA: Univariate.

**Default if subcommand or keyword is omitted.

Example
MANOVA SCORE1 TO SCORE4 BY METHOD(1,3).

870 MANOVA: Multivariate

Overview

This section discusses the subcommands that are used in multivariate analysis of variance and
covariance designs with several interrelated dependent variables. The discussion focuses on
subcommands and keywords that do not apply, or apply in different manners, to univariate
analyses. It does not contain information on all of the subcommands you will need to specify
the design. For subcommands not covered here, see MANOVA: Univariate.

Options

Dependent Variables and Covariates. You can specify subsets and reorder the dependent
variables and covariates using the ANALYSIS subcommand. You can specify linear
transformations of the dependent variables and covariates using the TRANSFORM
subcommand. When transformations are performed, you can rename the variables using the
RENAME subcommand and request the display of a transposed transformation matrix
currently in effect using the PRINT subcommand.

Optional Output. You can request or suppress output on the PRINT and NOPRINT subcom-
mands. Additional output appropriate to multivariate analysis includes error term matrices,
Box’s M statistic, multivariate and univariate F tests, and other significance analyses. You
can also request predicted cell means for specific dependent variables on the PMEANS
subcommand, produce a canonical discriminant analysis for each effect in your model with
the DISCRIM subcommand, specify a principal components analysis of each error sum-of-
squares and cross-product matrix in a multivariate analysis on the PCOMPS subcommand,
display multivariate confidence intervals using the CINTERVAL subcommand, and generate
a half-normal plot of the within-cells correlations among the dependent variables with the
PLOT subcommand.

Basic Specification

• The basic specification is a variable list identifying the dependent variables, with the
factors (if any) named after BY and the covariates (if any) named after WITH.

• By default, MANOVA produces multivariate and univariate F tests.

Subcommand Order

• The variable list must be specified first.

• Subcommands applicable to a specific design must be specified before that DESIGN
subcommand. Otherwise, subcommands can be used in any order.

Syntax Rules

• All syntax rules applicable to univariate analysis apply to multivariate analysis. See
“Syntax Rules” on p. 845 in MANOVA: Univariate.

MANOVA: Multivariate 871

• If you enter one of the multivariate specifications in a univariate analysis, MANOVA
ignores it.

Limitations

• Maximum 20 factors.

• Memory requirements depend primarily on the number of cells in the design. For the
default full factorial model, this equals the product of the number of levels or categories
in each factor.

MANOVA Variable List

• Multivariate MANOVA calculates statistical tests that are valid for analyses of dependent
variables that are correlated with one another. The dependent variables must be specified
first.

• The factor and covariate lists follow the same rules as in univariate analyses.

• If the dependent variables are uncorrelated, the univariate significance tests have greater
statistical power.

TRANSFORM Subcommand

TRANSFORM performs linear transformations of some or all of the continuous variables (de-
pendent variables and covariates). Specifications on TRANSFORM include an optional list of
variables to be transformed, optional keywords to describe how to generate a transformation
matrix from the specified contrasts, and a required keyword specifying the transformation
contrasts.

• Transformations apply to all subsequent designs unless replaced by another TRANSFORM
subcommand.

• TRANSFORM subcommands are not cumulative. Only the transformation specified most
recently is in effect at any time. You can restore the original variables in later designs by
specifying SPECIAL with an identity matrix.

• You should not use TRANSFORM when you use the WSFACTORS subcommand to request
repeated measures analysis; a transformation is automatically performed in repeated
measures analysis (see MANOVA: Repeated Measures).

• Transformations are in effect for the duration of the MANOVA procedure only. After the
procedure is complete, the original variables remain in the working data file.

• By default, the transformation matrix is not displayed. Specify the keyword TRANSFORM
on the PRINT subcommand to see the matrix generated by the TRANSFORM subcommand.

• If you do not use the RENAME subcommand with TRANSFORM, the variables specified on
TRANSFORM are renamed temporarily (for the duration of the procedure) as T1, T2, etc.
Explicit use of RENAME is recommended.

• Subsequent references to transformed variables should use the new names. The only
exception is when you supply a VARIABLES specification on the OMEANS subcommand

872 MANOVA: Multivariate

after using TRANSFORM. In this case, specify the original names. OMEANS displays
observed means of original variables (see the OMEANS subcommand on p. 855 in
MANOVA: Univariate).

Variable Lists

• By default, MANOVA applies the transformation you request to all continuous variables
(dependent variables and covariates).

• You can enter a variable list in parentheses following the TRANSFORM subcommand. If
you do, only the listed variables are transformed.

• You can enter multiple variable lists, separated by slashes, within a single set of paren-
theses. Each list must have the same number of variables, and the lists must not overlap.
The transformation is applied separately to the variables on each list.

• In designs with covariates, transform only the dependent variables, or, in some designs,
apply the same transformation separately to the dependent variables and the covariates.

CONTRAST, BASIS, and ORTHONORM Keywords

You can control how the transformation matrix is to be generated from the specified contrasts.
If none of these three keywords is specified on TRANSFORM, the default is CONTRAST.

CONTRAST Generate the transformation matrix directly from the contrast matrix speci-
fied (see the CONTRAST subcommand on p. 847 in MANOVA: Univariate).
This is the default.

BASIS Generate the transformation matrix from the one-way basis matrix corre-
sponding to the specified contrast matrix. BASIS makes a difference only if
the transformation contrasts are not orthogonal.

ORTHONORM Orthonormalize the transformation matrix by rows before use. MANOVA
eliminates redundant rows. By default, orthonormalization is not done.

• CONTRAST and BASIS are alternatives and are mutually exclusive.

• ORTHONORM is independent of the CONTRAST/BASIS choice; you can enter it before or
after either of those keywords.

Transformation Methods

To specify a transformation method, use one of the following keywords available on the
TRANSFORM subcommand. Note that these are identical to the keywords available for the
CONTRAST subcommand (see the CONTRAST subcommand on p. 847 in MANOVA:
Univariate). However, in univariate designs, they are applied to the different levels of a fac-
tor. Here they are applied to the continuous variables in the analysis. This reflects the fact
that the different dependent variables in a multivariate MANOVA setup can often be thought
of as corresponding to different levels of some factor.

• The transformation keyword (and its specifications, if any) must follow all other specifi-
cations on the TRANSFORM subcommand.

MANOVA: Multivariate 873

DEVIATION Deviations from the mean of the variables being transformed. The first trans-
formed variable is the mean of all variables in the transformation. Other
transformed variables represent deviations of individual variables from the
mean. One of the original variables (by default the last) is omitted as redun-
dant. To omit a variable other than the last, specify the number of the variable
to be omitted in parentheses after the DEVIATION keyword. For example,

/TRANSFORM (A B C) = DEVIATION(1)

omits A and creates variables representing the mean, the deviation of B from
the mean, and the deviation of C from the mean. A DEVIATION transforma-
tion is not orthogonal.

DIFFERENCE Difference or reverse Helmert transformation. The first transformed variable
is the mean of the original variables. Each of the original variables except the
first is then transformed by subtracting the mean of those (original) variables
that precede it. A DIFFERENCE transformation is orthogonal.

HELMERT Helmert transformation. The first transformed variable is the mean of the
original variables. Each of the original variables except the last is then trans-
formed by subtracting the mean of those (original) variables that follow it. A
HELMERT transformation is orthogonal.

SIMPLE Each original variable, except the last, is compared to the last of the original
variables. To use a variable other than the last as the omitted reference variable,
specify its number in parentheses following the keyword SIMPLE. For example,

/TRANSFORM(A B C) = SIMPLE(2)

specifies the second variable, B, as the reference variable. The three trans-
formed variables represent the mean of A, B, and C, the difference between
A and B, and the difference between C and B. A SIMPLE transformation is not
orthogonal.

POLYNOMIAL Orthogonal polynomial transformation. The first transformed variable repre-
sents the mean of the original variables. Other transformed variables represent
the linear, quadratic, and higher-degree components. By default, values of the
original variables are assumed to represent equally spaced points. You can
specify unequal spacing by entering a metric consisting of one integer for each
variable in parentheses after the keyword POLYNOMIAL. For example,

/TRANSFORM(RESP1 RESP2 RESP3) = POLYNOMIAL(1,2,4)

might indicate that three response variables correspond to levels of some
stimulus that are in the proportion 1:2:4. The default metric is always
(1,2,...,k), where k variables are involved. Only the relative differences
between the terms of the metric matter: (1,2,4) is the same metric as (2,3,5)
or (20,30,50) because in each instance the difference between the second and
third numbers is twice the difference between the first and second.

REPEATED Comparison of adjacent variables. The first transformed variable is the
mean of the original variables. Each additional transformed variable is the
difference between one of the original variables and the original variable

874 MANOVA: Multivariate

that followed it. Such transformed variables are often called difference
scores. A REPEATED transformation is not orthogonal.

SPECIAL A user-defined transformation. After the keyword SPECIAL, enter a square
matrix in parentheses with as many rows and columns as there are variables
to transform. MANOVA multiplies this matrix by the vector of original vari-
ables to obtain the transformed variables (see the examples below).

Example
MANOVA X1 TO X3 BY A(1,4)
 /TRANSFORM(X1 X2 X3) = SPECIAL(1 1 1,
 1 0 -1,
 2 -1 -1)
 /DESIGN.

• The given matrix will be post-multiplied by the three continuous variables (considered as
a column vector) to yield the transformed variables. The first transformed variable will
therefore equal , the second will equal , and the third will equal

.

• The variable list is optional in this example since all three interval-level variables are
transformed.

• You do not need to enter the matrix one row at a time, as shown above. For example,

/TRANSFORM = SPECIAL(1 1 1 1 0 -1 2 -1 -1)

is equivalent to the TRANSFORM specification in the above example.

• You can specify a repetition factor followed by an asterisk to indicate multiple consecu-
tive elements of a SPECIAL transformation matrix. For example,

/TRANSFORM = SPECIAL (4*1 0 -1 2 2*-1)

is again equivalent to the TRANSFORM specification above.

Example
MANOVA X1 TO X3, Y1 TO Y3 BY A(1,4)
 /TRANSFORM (X1 X2 X3/Y1 Y2 Y3) = SPECIAL(1 1 1,
 1 0 -1,
 2 -1 -1)
 /DESIGN.

• Here the same transformation shown in the previous example is applied to X1, X2, X3 and
to Y1, Y2, Y3.

RENAME Subcommand

Use RENAME to assign new names to transformed variables. Renaming variables after a
transformation is strongly recommended. If you transform but do not rename the variables,
the names T1, T2,...,Tn are used as names for the transformed variables.

• Follow RENAME with a list of new variable names.

X1 X2 X3+ + X1 X3–
2X1 X2– X3–

MANOVA: Multivariate 875

• You must enter a new name for each dependent variable and covariate on the MANOVA
variable list.

• Enter the new names in the order in which the original variables appeared on the MANOVA
variable list.

• To retain the original name for one or more of the interval variables, you can either enter
an asterisk or reenter the old name as the new name.

• References to dependent variables and covariates on subcommands following RENAME
must use the new names. The original names will not be recognized within the MANOVA
procedure. The only exception is the OMEANS subcommand, which displays observed
means of the original (untransformed) variables. Use the original names on OMEANS.

• The new names exist only during the MANOVA procedure that created them. They do
not remain in the working data file after the procedure is complete.

Example
MANOVA A, B, C, V4, V5 BY TREATMNT(1,3)
 /TRANSFORM(A, B, C) = REPEATED
 /RENAME = MEANABC, AMINUSB, BMINUSC, *, *
 /DESIGN.

• The REPEATED transformation produces three transformed variables, which are then
assigned mnemonic names MEANABC, AMINUSB, and BMINUSC.

• V4 and V5 retain their original names.

Example
MANOVA WT1, WT2, WT3, WT4 BY TREATMNT(1,3) WITH COV
 /TRANSFORM (WT1 TO WT4) = POLYNOMIAL
 /RENAME = MEAN, LINEAR, QUAD, CUBIC, *
 /ANALYSIS = MEAN, LINEAR, QUAD WITH COV
 /DESIGN.

• After the polynomial transformation of the four WT variables, RENAME assigns appro-
priate names to the various trends.

• Even though only four variables were transformed, RENAME applies to all five continuous
variables. An asterisk is required to retain the original name for COV.

• The ANALYSIS subcommand following RENAME refers to the interval variables by their
new names.

PRINT and NOPRINT Subcommands

All of the PRINT specifications described in MANOVA: Univariate are available in multivari-
ate analyses. The following additional output can be requested. To suppress any optional out-
put, specify the appropriate keyword on NOPRINT.

ERROR Error matrices. Three types of matrices are available.

SIGNIF Significance tests.

876 MANOVA: Multivariate

TRANSFORM Transformation matrix. It is available if you have transformed the dependent
variables with the TRANSFORM subcommand.

HOMOGENEITY Test for homogeneity of variance. BOXM is available for multivariate analyses.

ERROR Keyword

In multivariate analysis, error terms consist of entire matrices, not single values. You can
display any of the following error matrices on a PRINT subcommand by requesting them in
parentheses following the keyword ERROR. If you specify ERROR by itself, without further
specifications, the default is to display COV and COR.

SSCP Error sums-of-squares and cross-products matrix.

COV Error variance-covariance matrix.

COR Error correlation matrix with standard deviations on the diagonal. This also dis-
plays the determinant of the matrix and Bartlett’s test of sphericity, a test of whether
the error correlation matrix is significantly different from an identity matrix.

SIGNIF Keyword

You can request any of the optional output listed below by entering the appropriate specifi-
cation in parentheses after the keyword SIGNIF on the PRINT subcommand. Further specifi-
cations for SIGNIF are described in MANOVA: Repeated Measures.

MULTIV Multivariate F tests for group differences. MULTIV is always printed unless
explicitly suppressed with the NOPRINT subcommand.

EIGEN Eigenvalues of the matrix. This matrix is the product of the hypothesis
sums-of-squares and cross-products (SSCP) matrix and the inverse of the
error SSCP matrix. To print EIGEN, request it on the PRINT subcommand.

DIMENR A dimension-reduction analysis. To print DIMENR, request it on the PRINT
subcommand.

UNIV Univariate F tests. UNIV is always printed except in repeated measures analysis.
If the dependent variables are uncorrelated, univariate tests have greater statis-
tical power. To suppress UNIV, use the NOPRINT subcommand.

HYPOTH The hypothesis SSCP matrix. To print HYPOTH, request it on the PRINT
subcommand.

STEPDOWN Roy-Bargmann stepdown F tests. To print STEPDOWN, request it on the
PRINT subcommand.

BRIEF Abbreviated multivariate output. This is similar to a univariate analysis of
variance table but with Wilks’ multivariate F approximation (lambda)
replacing the univariate F. BRIEF overrides any of the SIGNIF specifications
listed above.

ShSe
1–

MANOVA: Multivariate 877

SINGLEDF Significance tests for the single degree of freedom making up each effect for
ANOVA tables. Results are displayed separately corresponding to each
hypothesis degree of freedom. See MANOVA: Univariate.

• If neither PRINT nor NOPRINT is specified, MANOVA displays the results corresponding to
MULTIV and UNIV for a multivariate analysis not involving repeated measures.

• If you enter any specification except BRIEF or SINGLEDF for SIGNIF on the PRINT
subcommand, the requested output is displayed in addition to the default.

• To suppress the default, specify the keyword(s) on the NOPRINT subcommand.

TRANSFORM Keyword

The keyword TRANSFORM specified on PRINT displays the transposed transformation
matrix in use for each subsequent design. This matrix is helpful in interpreting a multi-
variate analysis in which the interval-level variables have been transformed with either
TRANSFORM or WSFACTORS.

• The matrix displayed by this option is the transpose of the transformation matrix.

• Original variables correspond to the rows of the matrix, and transformed variables
correspond to the columns.

• A transformed variable is a linear combination of the original variables using the
coefficients displayed in the column corresponding to that transformed variable.

HOMOGENEITY Keyword

In addition to the BARTLETT and COCHRAN specifications described in MANOVA: Univari-
ate, the following test for homogeneity is available for multivariate analyses:

BOXM Box’s M statistic. BOXM requires at least two dependent variables. If there is only
one dependent variable when BOXM is requested, MANOVA prints Bartlett-Box F
test statistic and issues a note.

PLOT Subcommand

In addition to the plots described in MANOVA: Univariate, the following is available for
multivariate analyses:

ZCORR A half-normal plot of the within-cells correlations among the dependent variables.
MANOVA first transforms the correlations using Fisher’s Z transformation. If errors
for the dependent variables are uncorrelated, the plotted points should lie close to
a straight line.

PCOMPS Subcommand

PCOMPS requests a principal components analysis of each error matrix in a multivariate
analysis. You can display the principal components of the error correlation matrix, the error

878 MANOVA: Multivariate

variance-covariance matrix, or both. These principal components are corrected for
differences due to the factors and covariates in the MANOVA analysis. They tend to be more
useful than principal components extracted from the raw correlation or covariance matrix
when there are significant group differences between the levels of the factors or when a sig-
nificant amount of error variance is accounted for by the covariates. You can specify any of
the keywords listed below on PCOMPS.

COR Principal components analysis of the error correlation matrix.

COV Principal components analysis of the error variance-covariance matrix.

ROTATE Rotate the principal components solution. By default, no rotation is per-
formed. Specify a rotation type (either VARIMAX, EQUAMAX, or QUARTIMAX)
in parentheses after the keyword ROTATE. To cancel a rotation specified for a
previous design, enter NOROTATE in the parentheses after ROTATE.

NCOMP(n) The number of principal components to rotate. Specify a number in paren-
theses. The default is the number of dependent variables.

MINEIGEN(n) The minimum eigenvalue for principal component extraction. Specify a cut-
off value in parentheses. Components with eigenvalues below the cutoff
will not be retained in the solution. The default is 0; all components (or the
number specified on NCOMP) are extracted.

ALL COR, COV, and ROTATE.

• You must specify either COR or COV (or both). Otherwise, MANOVA will not produce any
principal components.

• Both NCOMP and MINEIGEN limit the number of components that are rotated.
• If the number specified on NCOMP is less than two, two components are rotated provided that

at least two components have eigenvalues greater than any value specified on MINEIGEN.

• Principal components analysis is computationally expensive if the number of dependent
variables is large.

DISCRIM Subcommand

DISCRIM produces a canonical discriminant analysis for each effect in a design. (For covariates,
DISCRIM produces a canonical correlation analysis.) These analyses aid in the interpretation of
multivariate effects. You can request the following statistics by entering the appropriate key-
words after the subcommand DISCRIM:

RAW Raw discriminant function coefficients.

STAN Standardized discriminant function coefficients.

ESTIM Effect estimates in discriminant function space.

COR Correlations between the dependent variables and the canonical variables defined
by the discriminant functions.

MANOVA: Multivariate 879

ROTATE Rotation of the matrix of correlations between dependent and canonical variables.
Specify rotation type VARIMAX, EQUAMAX, or QUARTIMAX in parentheses after this
keyword.

ALL RAW, STAN, ESTIM, COR, and ROTATE.

By default, the significance level required for the extraction of a canonical variable is 0.25.
You can change this value by specifying the keyword ALPHA and a value between 0 and 1 in
parentheses:

ALPHA The significance level required before a canonical variable is extracted. The
default is 0.25. To change the default, specify a decimal number between 0 and 1
in parentheses after ALPHA.

• The correlations between dependent variables and canonical functions are not rotated
unless at least two functions are significant at the level defined by ALPHA.

• If you set ALPHA to 1.0, all discriminant functions are reported (and rotated, if you so request).

• If you set ALPHA to 0, no discriminant functions are reported.

POWER Subcommand

The following specifications are available for POWER in multivariate analysis. For applica-
tions of POWER in univariate analysis, see MANOVA: Univariate.

APPROXIMATE Approximate power values. This is the default. Approximate power values
for multivariate tests are derived from procedures presented by Muller and
Peterson (1984). Approximate values are normally accurate to three decimal
places and are much cheaper to compute than exact values.

EXACT Exact power values. Exact power values for multivariate tests are computed
from the noncentral F distribution. Exact multivariate power values will be
displayed only if there is one hypothesis degree of freedom, where all the
multivariate criteria have identical power.

• For information on the multivariate generalizations of power and effect size, see Muller
and Peterson (1984), Green (1978), and Huberty (1972).

CINTERVAL Subcommand

In addition to the specifications described in MANOVA: Univariate, the keyword MULTIVARIATE is
available for multivariate analysis. You can specify a type in parentheses after the MULTIVARIATE
keyword. The following type keywords are available on MULTIVARIATE:

ROY Roy’s largest root. An approximation given by Pillai (1967) is used. This
approximation is accurate for upper percentage points (0.95 to 1), but it is
not as good for lower percentage points. Thus, for Roy intervals, the user is
restricted to the range 0.95 to 1.

PILLAI Pillai’s trace. The intervals are computed by approximating the percentage
points with percentage points of the F distribution.

880 MANOVA: Multivariate

WILKS Wilks’ lambda. The intervals are computed by approximating the percentage
points with percentage points of the F distribution.

HOTELLING Hotelling’s trace. The intervals are computed by approximating the percent-
age points with percentage points of the F distribution.

BONFER Bonferroni intervals. This approximation is based on Student’s t distribution.

• The Wilks’, Pillai’s, and Hotelling’s approximate confidence intervals are thought to
match exact intervals across a wide range of alpha levels, especially for large sample sizes
(Burns, 1984). Use of these intervals, however, has not been widely investigated.

• To obtain multivariate intervals separately for each parameter, choose individual multi-
variate intervals. For individual multivariate confidence intervals, the hypothesis degree
of freedom is set to 1, in which case Hotelling’s, Pillai’s, Wilks’, and Roy’s intervals will
be identical and equivalent to those computed from percentage points of Hotelling’s
distribution. Individual Bonferroni intervals will differ and, for a small number of depen-
dent variables, will generally be shorter.

• If you specify MULTIVARIATE on CINTERVAL, you must specify a type keyword. If you
specify CINTERVAL without any keyword, the default is the same as with univariate anal-
ysis—CINTERVAL displays individual-univariate confidence intervals at the 0.95 level.

ANALYSIS Subcommand

ANALYSIS is discussed in MANOVA: Univariate as a means of obtaining factor-by-covariate
interaction terms. In multivariate analyses, it is considerably more useful.

• ANALYSIS specifies a subset of the continuous variables (dependent variables and
covariates) listed on the MANOVA variable list and completely redefines which variables
are dependent and which are covariates.

• All variables named on an ANALYSIS subcommand must have been named on the
MANOVA variable list. It does not matter whether they were named as dependent vari-
ables or as covariates.

• Factors cannot be named on an ANALYSIS subcommand.

• After the keyword ANALYSIS, specify the names of one or more dependent variables and,
optionally, the keyword WITH followed by one or more covariates.

• An ANALYSIS specification remains in effect for all designs until you enter another
ANALYSIS subcommand.

• Continuous variables named on the MANOVA variable list but omitted from the ANALYSIS
subcommand currently in effect can be specified on the DESIGN subcommand. See the
DESIGN subcommand on p. 863 in MANOVA: Univariate.

• You can use an ANALYSIS subcommand to request analyses of several groups of variables
provided that the groups do not overlap. Separate the groups of variables with slashes and
enclose the entire ANALYSIS specification in parentheses.

T2

MANOVA: Multivariate 881

CONDITIONAL and UNCONDITIONAL Keywords

When several analysis groups are specified on a single ANALYSIS subcommand, you can control
how each list is to be processed by specifying CONDITIONAL or UNCONDITIONAL in the paren-
theses immediately following the ANALYSIS subcommand. The default is UNCONDITIONAL.

UNCONDITIONAL Process each analysis group separately, without regard to other lists.
This is the default.

CONDITIONAL Use variables specified in one analysis group as covariates in subsequent
analysis groups.

• CONDITIONAL analysis is not carried over from one ANALYSIS subcommand to another.

• You can specify a final covariate list outside the parentheses. These covariates apply to
every list within the parentheses, regardless of whether you specify CONDITIONAL or
UNCONDITIONAL. The variables on this global covariate list must not be specified in
any individual lists.

Example
MANOVA A B C BY FAC(1,4) WITH D, E
 /ANALYSIS = (A, B / C / D WITH E)
 /DESIGN.

• The first analysis uses A and B as dependent variables and uses no covariates.

• The second analysis uses C as a dependent variable and uses no covariates.

• The third analysis uses D as the dependent variable and uses E as a covariate.

Example
MANOVA A, B, C, D, E BY FAC(1,4) WITH F G
 /ANALYSIS = (A, B / C / D WITH E) WITH F G
 /DESIGN.

• A final covariate list WITH F G is specified outside the parentheses. The covariates
apply to every list within the parentheses.

• The first analysis uses A and B, with F and G as covariates.

• The second analysis uses C, with F and G as covariates.

• The third analysis uses D, with E, F, and G as covariates.

• Factoring out F and G is the only way to use them as covariates in all three analyses, since
no variable can be named more than once on an ANALYSIS subcommand.

Example
MANOVA A B C BY FAC(1,3)
 /ANALYSIS(CONDITIONAL) = (A WITH B / C)
 /DESIGN.

• In the first analysis, A is the dependent variable, B is a covariate, and C is not used.
• In the second analysis, C is the dependent variable, and both A and B are covariates.

882

MANOVA: Repeated Measures

MANOVA is available in the Advanced Models option.

MANOVA dependent varlist [BY factor list (min,max)[factor list...]
 [WITH [varying covariate list] [(constant covariate list)]]

 /WSFACTORS = varname (levels) [varname...]

 [/WSDESIGN = [effect effect...]

 [/MEASURE = newname newname...]

 [/RENAME = newname newname...]

[/{PRINT }=[SIGNIF({AVERF**}) (HF) (GG) (EFSIZE)]]
 {NOPRINT} {AVONLY }

 [/DESIGN]*

* The DESIGN subcommand has the same syntax as is described in MANOVA: Univariate.

** Default if subcommand or keyword is omitted.

Example
MANOVA Y1 TO Y4 BY GROUP(1,2)
 /WSFACTORS=YEAR(4).

Overview

This section discusses the subcommands that are used in repeated measures designs, in
which the dependent variables represent measurements of the same variable (or variables)
at different times. This section does not contain information on all subcommands you will
need to specify the design. For some subcommands or keywords not covered here, such as
DESIGN, see MANOVA: Univariate. For information on optional output and the multi-
variate significance tests available, see MANOVA: Multivariate.

• In a simple repeated measures analysis, all dependent variables represent different
measurements of the same variable for different values (or levels) of a within-subjects
factor. Between-subjects factors and covariates can also be included in the model, just
as in analyses not involving repeated measures.

• A within-subjects factor is simply a factor that distinguishes measurements made on
the same subject or case, rather than distinguishing different subjects or cases.

• MANOVA permits more complex analyses, in which the dependent variables represent
levels of two or more within-subjects factors.

• MANOVA also permits analyses in which the dependent variables represent measure-
ments of several variables for the different levels of the within-subjects factors. These
are known as doubly multivariate designs.

• A repeated measures analysis includes a within-subjects design describing the model to
be tested with the within-subjects factors, as well as the usual between-subjects design

MANOVA: Repeated Measures 883

describing the effects to be tested with between-subjects factors. The default for both
types of design is a full factorial model.

• MANOVA always performs an orthonormal transformation of the dependent variables in a
repeated measures analysis. By default, MANOVA renames them as T1, T2, and so forth.

Basic Specification

• The basic specification is a variable list followed by the WSFACTORS subcommand.

• By default, MANOVA performs special repeated measures processing. Default output
includes SIGNIF(AVERF) but not SIGNIF(UNIV). In addition, for any within-subjects effect
involving more than one transformed variable, the Mauchly test of sphericity is displayed
to test the assumption that the covariance matrix of the transformed variables is constant
on the diagonal and zero off the diagonal. The Greenhouse-Geiser epsilon and the Huynh-
Feldt epsilon are also displayed for use in correcting the significance tests in the event that
the assumption of sphericity is violated.

Subcommand Order

• The list of dependent variables, factors, and covariates must be first.

• WSFACTORS must be the first subcommand used after the variable list.

Syntax Rules

• The WSFACTORS (within-subjects factors), WSDESIGN (within-subjects design), and
MEASURE subcommands are used only in repeated measures analysis.

• WSFACTORS is required for any repeated measures analysis.

• If WSDESIGN is not specified, a full factorial within-subjects design consisting of all main
effects and interactions among within-subjects factors is used by default.

• The MEASURE subcommand is used for doubly multivariate designs, in which the depen-
dent variables represent repeated measurements of more than one variable.

• Do not use the TRANSFORM subcommand with the WSFACTORS subcommand because
WSFACTORS automatically causes an orthonormal transformation of the dependent
variables.

Limitations

• Maximum 20 between-subjects factors. There is no limit on the number of measures for
doubly multivariate designs.

• Memory requirements depend primarily on the number of cells in the design. For the
default full factorial model, this equals the product of the number of levels or categories
in each factor.

884 MANOVA: Repeated Measures

Example

MANOVA Y1 TO Y4 BY GROUP(1,2)
 /WSFACTORS=YEAR(4)
 /CONTRAST(YEAR)=POLYNOMIAL
 /RENAME=CONST, LINEAR, QUAD, CUBIC
 /PRINT=TRANSFORM PARAM(ESTIM)
 /WSDESIGN=YEAR
 /DESIGN=GROUP.

• WSFACTORS immediately follows the MANOVA variable list and specifies a repeated
measures analysis in which the four dependent variables represent a single variable
measured at four levels of the within-subjects factor. The within-subjects factor is called
YEAR for the duration of the MANOVA procedure.

• CONTRAST requests polynomial contrasts for the levels of YEAR. Because the four vari-
ables, Y1, Y2, Y3, and Y4, in the working data file represent the four levels of YEAR, the
effect is to perform an orthonormal polynomial transformation of these variables.

• RENAME assigns names to the dependent variables to reflect the transformation.

• PRINT requests that the transformation matrix and the parameter estimates be displayed.

• WSDESIGN specifies a within-subjects design that includes only the effect of the YEAR
within-subjects factor. Because YEAR is the only within-subjects factor specified, this is
the default design, and WSDESIGN could have been omitted.

• DESIGN specifies a between-subjects design that includes only the effect of the GROUP
between-subjects factor. This subcommand could have been omitted.

MANOVA Variable List

The list of dependent variables, factors, and covariates must be specified first.

• WSFACTORS determines how the dependent variables on the MANOVA variable list will
be interpreted.

• The number of dependent variables on the MANOVA variable list must be a multiple of the
number of cells in the within-subjects design. If there are six cells in the within-subjects
design, each group of six dependent variables represents a single within-subjects variable
that has been measured in each of the six cells.

• Normally, the number of dependent variables should equal the number of cells in the
within-subjects design multiplied by the number of variables named on the MEASURE
subcommand (if one is used). If you have more groups of dependent variables than are
accounted for by the MEASURE subcommand, MANOVA will choose variable names to
label the output, which may be difficult to interpret.

• Covariates are specified after the keyword WITH. You can specify either varying covari-
ates or constant covariates, or both. Varying covariates, similar to dependent variables
in a repeated measures analysis, represent measurements of the same variable (or vari-
ables) at different times while constant covariates represent variables whose values
remain the same at each within-subjects measurement.

• If you use varying covariates, the number of covariates specified must be an integer
multiple of the number of dependent variables.

MANOVA: Repeated Measures 885

• If you use constant covariates, you must specify them in parentheses. If you use both
constant and varying covariates, constant variates must be specified after all varying
covariates.

Example
MANOVA MATH1 TO MATH4 BY METHOD(1,2) WITH PHYS1 TO PHYS4 (SES)
 /WSFACTORS=SEMESTER(4).

• The four dependent variables represent a score measured four times (corresponding to the
four levels of SEMESTER).

• The four varying covariates PHYS1 to PHYS4 represents four measurements of another
score.

• SES is a constant covariate. Its value does not change over the time covered by the four
levels of SEMESTER.

• Default contrast (POLYNOMIAL) is used.

WSFACTORS Subcommand

WSFACTORS names the within-subjects factors and specifies the number of levels for each.

• For repeated measures designs, WSFACTORS must be the first subcommand after the
MANOVA variable list.

• Only one WSFACTORS subcommand is permitted per execution of MANOVA.
• Names for the within-subjects factors are specified on the WSFACTORS subcommand.

Factor names must not duplicate any of the dependent variables, factors, or covariates
named on the MANOVA variable list.

• If there are more than one within-subjects factors, they must be named in the order
corresponding to the order of the dependent variables on the MANOVA variable list.
MANOVA varies the levels of the last-named within-subjects factor most rapidly when
assigning dependent variables to within-subjects cells (see the example below).

• Levels of the factors must be represented in the data by the dependent variables named on
the MANOVA variable list.

• Enter a number in parentheses after each factor to indicate how many levels the factor has.
If two or more adjacent factors have the same number of levels, you can enter the number
of levels in parentheses after all of them.

• Enter only the number of levels for within-subjects factors, not a range of values.

• The number of cells in the within-subjects design is the product of the number of levels
for all within-subjects factors.

Example
MANOVA X1Y1 X1Y2 X2Y1 X2Y2 X3Y1 X3Y2 BY TREATMNT(1,5) GROUP(1,2)
 /WSFACTORS=X(3) Y(2)
 /DESIGN.

• The MANOVA variable list names six dependent variables and two between-subjects
factors, TREATMNT and GROUP.

886 MANOVA: Repeated Measures

• WSFACTORS identifies two within-subjects factors whose levels distinguish the six
dependent variables. X has three levels and Y has two. Thus, there are cells
in the within-subjects design, corresponding to the six dependent variables.

• Variable X1Y1 corresponds to levels 1,1 of the two within-subjects factors; variable X1Y2
corresponds to levels 1,2; X2Y1 to levels 2,1; and so on up to X3Y2, which corresponds to
levels 3,2. The first within-subjects factor named, X, varies most slowly, and the last
within-subjects factor named, Y, varies most rapidly on the list of dependent variables.

• Because there is no WSDESIGN subcommand, the within-subjects design will include all
main effects and interactions: X, Y, and X by Y.

• Likewise, the between-subjects design includes all main effects and interactions:
TREATMNT, GROUP, and TREATMNT by GROUP.

• In addition, a repeated measures analysis always includes interactions between the within-
subjects factors and the between-subjects factors. There are three such interactions for
each of the three within-subjects effects.

CONTRAST for WSFACTORS

The levels of a within-subjects factor are represented by different dependent variables.
Therefore, contrasts between levels of such a factor compare these dependent variables.
Specifying the type of contrast amounts to specifying a transformation to be performed on
the dependent variables.

• An orthonormal transformation is automatically performed on the dependent variables in
a repeated measures analysis.

• To specify the type of orthonormal transformation, use the CONTRAST subcommand for
the within-subjects factors.

• Regardless of the contrast type you specify, the transformation matrix is orthonormalized
before use.

• If you do not specify a contrast type for within-subjects factors, the default contrast type
is orthogonal POLYNOMIAL. Intrinsically orthogonal contrast types are recommended
for within-subjects factors if you wish to examine each degree-of-freedom test. Other
orthogonal contrast types are DIFFERENCE and HELMERT. MULTIV and AVERF tests are
identical, no matter what contrast was specified.

• To perform non-orthogonal contrasts, you must use the TRANSFORM subcommand instead
of CONTRAST. The TRANSFORM subcommand is discussed in MANOVA: Multivariate.

• When you implicitly request a transformation of the dependent variables with CONTRAST
for within-subjects factors, the same transformation is applied to any covariates in the
analysis. The number of covariates must be an integer multiple of the number of depen-
dent variables.

• You can display the transpose of the transformation matrix generated by your within-
subjects contrast using the keyword TRANSFORM on the PRINT subcommand.

3 2× 6=

MANOVA: Repeated Measures 887

Example
MANOVA SCORE1 SCORE2 SCORE3 BY GROUP(1,4)
 /WSFACTORS=ROUND(3)
 /CONTRAST(ROUND)=DIFFERENCE
 /CONTRAST(GROUP)=DEVIATION
 /PRINT=TRANSFORM PARAM(ESTIM).

• This analysis has one between-subjects factor, GROUP, with levels 1, 2, 3, and 4, and one
within-subjects factor, ROUND, with three levels that are represented by the three depen-
dent variables.

• The first CONTRAST subcommand specifies difference contrasts for ROUND, the within-
subjects factor.

• There is no WSDESIGN subcommand, so a default full factorial within-subjects design is
assumed. This could also have been specified as WSDESIGN=ROUND, or simply
WSDESIGN.

• The second CONTRAST subcommand specifies deviation contrasts for GROUP, the
between-subjects factor. This subcommand could have been omitted because devia-
tion contrasts are the default.

• PRINT requests the display of the transformation matrix generated by the within-subjects
contrast and the parameter estimates for the model.

• There is no DESIGN subcommand, so a default full factorial between-subjects design is
assumed. This could also have been specified as DESIGN=GROUP, or simply DESIGN.

PARTITION for WSFACTORS

The PARTITION subcommand also applies to factors named on WSFACTORS. (See the
PARTITION subcommand on p. 849 in MANOVA: Univariate.)

WSDESIGN Subcommand

WSDESIGN specifies the design for within-subjects factors. Its specifications are like those
of the DESIGN subcommand, but it uses the within-subjects factors rather than the between-
subjects factors.

• The default WSDESIGN is a full factorial design, which includes all main effects and all
interactions for within-subjects factors. The default is in effect whenever a design is
processed without a preceding WSDESIGN or when the preceding WSDESIGN subcom-
mand has no specifications.

• A WSDESIGN specification can include main effects, factor-by-factor interactions, nested
terms (term within term), terms using the keyword MWITHIN, and pooled effects using the
plus sign. The specification is the same as on the DESIGN subcommand but involves only
within-subjects factors.

• A WSDESIGN specification cannot include between-subjects factors or terms based on
them, nor does it accept interval-level variables, the keywords MUPLUS or CONSTANT,
or error-term definitions or references.

• The WSDESIGN specification applies to all subsequent within-subjects designs until
another WSDESIGN subcommand is encountered.

888 MANOVA: Repeated Measures

Example
MANOVA JANLO,JANHI,FEBLO,FEBHI,MARLO,MARHI BY SEX(1,2)
 /WSFACTORS MONTH(3) STIMULUS(2)
 /WSDESIGN MONTH, STIMULUS
 /WSDESIGN
 /DESIGN SEX.

• There are six dependent variables, corresponding to three months and two different levels
of stimulus.

• The dependent variables are named on the MANOVA variable list in such an order that the
level of stimulus varies more rapidly than the month. Thus, STIMULUS is named last on
the WSFACTORS subcommand.

• The first WSDESIGN subcommand specifies only the main effects for within-subjects
factors. There is no MONTH by STIMULUS interaction term.

• The second WSDESIGN subcommand has no specifications and, therefore, invokes the
default within-subjects design, which includes the main effects and their interaction.

MWITHIN Keyword for Simple Effects

You can use MWITHIN on either the WSDESIGN or the DESIGN subcommand in a model with
both between- and within-subjects factors to estimate simple effects for factors nested within
factors of the opposite type.

Example
MANOVA WEIGHT1 WEIGHT2 BY TREAT(1,2)
 /WSFACTORS=WEIGHT(2)
 /DESIGN=MWITHIN TREAT(1) MWITHIN TREAT(2)
MANOVA WEIGHT1 WEIGHT2 BY TREAT(1,2)
 /WSFACTORS=WEIGHT(2)
 /WSDESIGN=MWITHIN WEIGHT(1) MWITHIN WEIGHT(2)
 /DESIGN.

• The first DESIGN tests the simple effects of WEIGHT within each level of TREAT.

• The second DESIGN tests the simple effects of TREAT within each level of WEIGHT.

MEASURE Subcommand

In a doubly multivariate analysis, the dependent variables represent multiple variables
measured under the different levels of the within-subjects factors. Use MEASURE to assign
names to the variables that you have measured for the different levels of within-subjects
factors.

• Specify a list of one or more variable names to be used in labeling the averaged results.
If no within-subjects factor has more than two levels, MEASURE has no effect.

• The number of dependent variables on the DESIGN subcommand should equal the product
of the number of cells in the within-subjects design and the number of names on MEASURE.

• If you do not enter a MEASURE subcommand and there are more dependent variables than
cells in the within-subjects design, MANOVA assigns names (normally MEAS.1, MEAS.2,
etc.) to the different measures.

MANOVA: Repeated Measures 889

• All of the dependent variables corresponding to each measure should be listed together
and ordered so that the within-subjects factor named last on the WSFACTORS subcom-
mand varies most rapidly.

Example
MANOVA TEMP1 TO TEMP6, WEIGHT1 TO WEIGHT6 BY GROUP(1,2)
 /WSFACTORS=DAY(3) AMPM(2)
 /MEASURE=TEMP WEIGHT
 /WSDESIGN=DAY, AMPM, DAY BY AMPM
 /PRINT=SIGNIF(HYPOTH AVERF)
 /DESIGN.

• There are 12 dependent variables: 6 temperatures and 6 weights, corresponding to morning
and afternoon measurements on three days.

• WSFACTORS identifies the two factors (DAY and AMPM) that distinguish the temperature
and weight measurements for each subject. These factors define six within-subjects cells.

• MEASURE indicates that the first group of six dependent variables correspond to TEMP
and the second group of six dependent variables correspond to WEIGHT.

• These labels, TEMP and WEIGHT, are used on the output requested by PRINT.

• WSDESIGN requests a full factorial within-subjects model. Because this is the default,
WSDESIGN could have been omitted.

RENAME Subcommand

Because any repeated measures analysis involves a transformation of the dependent vari-
ables, it is always a good idea to rename the dependent variables. Choose appropriate names
depending on the type of contrast specified for within-subjects factors. This is easier to do if
you are using one of the orthogonal contrasts. The most reliable way to assign new names is
to inspect the transformation matrix.

Example
MANOVA LOW1 LOW2 LOW3 HI1 HI2 HI3
 /WSFACTORS=LEVEL(2) TRIAL(3)
 /CONTRAST(TRIAL)=DIFFERENCE
 /RENAME=CONST LEVELDIF TRIAL21 TRIAL312 INTER1 INTER2
 /PRINT=TRANSFORM
 /DESIGN.

• This analysis has two within-subjects factors and no between-subjects factors.

• Difference contrasts are requested for TRIAL, which has three levels.
• Because all orthonormal contrasts produce the same F test for a factor with two levels,

there is no point in specifying a contrast type for LEVEL.

• New names are assigned to the transformed variables based on the transformation matrix.
These names correspond to the meaning of the transformed variables: the mean or
constant, the average difference between levels, the average effect of trial 2 compared to
1, the average effect of trial 3 compared to 1 and 2; and the two interactions between
LEVEL and TRIAL.

890 MANOVA: Repeated Measures

• The transformation matrix requested by the PRINT subcommand looks like Figure 1.

PRINT Subcommand

The following additional specifications on PRINT are useful in repeated measures analysis:

SIGNIF(AVERF) Averaged F tests for use with repeated measures. This is the default
display in repeated measures analysis. The averaged F tests in the
multivariate setup for repeated measures are equivalent to the
univariate (or split-plot or mixed-model) approach to repeated
measures.

SIGNIF(AVONLY) Only the averaged F test for repeated measures. AVONLY produces the
same output as AVERF and suppresses all other SIGNIF output.

SIGNIF(HF) The Huynh-Feldt corrected significance values for averaged
univariate F tests.

SIGNIF(GG) The Greenhouse-Geisser corrected significance values for averaged
univariate F tests.

SIGNIF(EFSIZE) The effect size for the univariate F and t tests.

• The keywords AVERF and AVONLY are mutually exclusive.

• When you request repeated measures analysis with the WSFACTORS subcommand, the
default display includes SIGNIF(AVERF) but does not include the usual SIGNIF(UNIV).

• The averaged F tests are appropriate in repeated measures because the dependent variables
that are averaged actually represent contrasts of the WSFACTOR variables. When the analysis
is not doubly multivariate, as discussed above, you can specify PRINT=SIGNIF(UNIV) to
obtain significance tests for each degree of freedom, just as in univariate MANOVA.

References

Burns P. R. 1984. Multiple comparison methods in MANOVA. Proceedings of the 7th SPSS
Users and Coordinators Conference.

Green, P. E. 1978. Analyzing multivariate data. Hinsdale, Ill: The Dryden Press.
Huberty, C. J. 1972. Multivariate indices of strength of association. Multivariate Behavioral

Research, 7: 523–516.
Muller, K. E., and B. L. Peterson. 1984. Practical methods for computing power in testing the mul-

tivariate general linear hypothesis. Computational Statistics and Data Analysis, 2: 143–158.
Pillai, K. C. S. 1967. Upper percentage points of the largest root of a matrix in multivariate analysis.

Biometrika, 54: 189–194.

Figure 1 Transformation matrix

 CONST LEVELDIF TRIAL1 TRIAL2 INTER1 INTER2

LOW1 0.408 0.408 -0.500 -0.289 -0.500 -0.289

LOW2 0.408 0.408 0.500 -0.289 0.500 -0.289

LOW3 0.408 0.408 0.000 0.577 0.000 0.577

HI1 0.408 -0.408 -0.500 -0.289 0.500 0.289

HI2 0.408 -0.408 0.500 -0.289 -0.500 0.289

HI3 0.408 -0.408 0.000 0.577 0.000 -0.577

891

MAPS

1
MAPS

 {/GVAR = VAR(varname)[VAR(varname)] }
 {/XY(varname)(varname)(varname) }
 {/LOOKUP(varname)(filename)}

 /GSET = "filename" [LAYER = "layer name"]

 [/SHOWLABEL = AS_IS | NO | YES]

 [/TITLE = {(DEFAULT) }
 {"string value"}]

 [/GVMISMATCH MAX = {100}
 { n }

/ROVMAP = Var(varname)
 SUM = (function name)
 [DISTRIBUTION = EQSIZE]
 EQCOUNT
 NATBREAK
 SD
 CUSTOM
 [ALLOWEMPTY = YES | NO]
 [NUMRANGES = n]
 [XRANGE = (n,n) ["string value"]]
 [LEGENDTITLE = {(DEFAULT) }
 {"string value"}
 [VISIBLE = YES | NO]

 /SYMBOLMAP = Var(varname)
 SUM = (function name)
 [LEGENDTITLE = {(DEFAULT) }]
 {"string value"}
 [VISIBLE = YES | NO]

 /DOTMAP = Var(varname)
 SUM = (function name)
 [VALUE1DOT = n]
 [LEGENDTITLE = {(DEFAULT) }]
 {"string value"}
 [VISIBLE = YES | NO]

 /IVMAP = Var(varname)

 SUM = (function name)
 [LEGENDTITLE = {(DEFAULT) }
 {"string value"}
 [VISIBLE = YES | NO]

/BARMAP = {VAR(varname) VAR(varname)...}
 {VAR(varname) BY VAR(varname)}
 SUM = (function name)
 [HEIGHT = {0.25}]
 {n }
 [INDSCALE = YES | NO]
 [LEGENDTITLE = {(DEFAULT) }]
 {"string value"}
 [VISIBLE = YES | NO]

/PIEMAP = VAR(varname) BY VAR(varname)
 SUM = (function name)
 [DIAMETER = {0.25}]
 {n }
 [GRADUATED = YES | NO]
 [LEGENDTITLE = {(DEFAULT) }
 {"string value"}
 [VISIBLE = YES | NO]

892

MAPS

Example
MAPS /GVAR = VAR(country)
 /GSET = ’World Countries’ LAYER =’World’
 /TITLE = ""
 /ROVMAP=VAR(populatn)
 SUM=(SUM) DISTRIBUTION = EQCOUNT .

Overview

Each occurrence of the MAPS command produces a single map displaying from one to six
themes (bars, pies, dot densities, symbols, and shadings for ranges or individual values) that
illustrate the distribution of data across the geographic regions displayed on the map. The
map boundaries and geographic features, such as highways and city locations, come from a
set of tables known as a geoset. The values of a geographic variable in the SPSS data must
match values of a key field in a geoset in order to place the thematic elements in the right
geographic regions.

Note: Region is used throughout this document to refer to any geographic unit. In fact, most
themes can be applied to points, such as cities or office locations, and to lines, such as high-
ways, as well as to areas with boundaries, such as countries.

Basic Specification

The basic specification has three required parts:

• The name of a geoset.
• The name of the geographic variable whose values correspond to those of a table in the

geoset. (See the XY subcommand for an alternative.)

• A theme subcommand that includes the variable on which descriptive statistics are to be
calculated for each region.

Syntax Rules

• One and only one of the GVAR, XY, or LOOKUP subcommands is required to specify the
SPSS variable to be matched with a table in the geoset. XY and LOOKUP also provide in-
formation to create a new layer.

• The GSET subcommand is required.

• At least one of the theme subcommands (ROVMAP, SYMBOLMAP, DOTMAP, IVMAP,
BARMAP, or PIEMAP) is required. Each of these can be entered once and only once.

• The GVAR (or XY or LOOKUP), GSET, LAYER, LOOK, SHOWLABEL, TITLE, and
GVMISMATCH subcommands can be entered in any order but must precede the theme sub-
commands.

893

MAPS

Operations

• Each MAPS command creates a single map.
• Data are aggregated to the level of the values of the geographic variable.

• After aggregation, data values are matched by the values of the geographic variable to the
values of a layer in a specified geoset. This is known as data binding. By default, the soft-
ware looks for a layer whose values match the values of the geographic variable specified
on the MAPS command.

• If multiple themes are requested, they are drawn in this order: individual values, range of
values, dot density, pie, bar, and symbol.

Limitations

• A maximum of ten bars or pie slices can be shown. For bars corresponding to separate
variables, the limit is six.

• A maximum of 99 values is allowed in an individual values map.

• Each theme can be applied only once to each map.

• All themes on a map must be bound to the same layer. For example, it is not possible to
have a range of values based on countries and graduated symbols based on cities.

GVAR Subcommand

The GVAR subcommand requires the name of an SPSS variable that identifies the geographic
regions, such as COUNTRY or COUNTY. The values of this variable must match the values in
a table of the geoset. Occasionally, the values of a single variable do not fully identify re-
gions, as in the case of United States counties, which can occur with the same name in more
than one state. In this case, a second variable is required to refine the match.

Example

MAPS
 /GVAR = VAR(county) VAR(state)
 /GSET = ’United States’
 /DOTMAP= VAR(sales) SUM=(sum).

• Because the same county name can occur within different states, the variable STATE is
required to ensure that COUNTY is unique.

XY Subcommand

The XY subcommand is useful when the SPSS data contain the coordinates of points to be
shown on a map. By naming these coordinates, you can create a new layer in the geoset that
contains the points and displays themes at those points. This subcommand requires three
variables, giving in order the x (longitude) and y (latitude) coordinates and a key variable
that identifies the points. The data are aggregated on the key variable; if there is more than

894

MAPS

one instance of each value of the key variable in the file, the x/y coordinates are taken from
the first occurrence of that value in the data. (The assumption is that all occurrences of the
same key value, such as the identity of an office at a particular location, will have the same
x/y coordinates.)

Example

MAPS
 /XY = VAR(x) VAR(y) VAR(company)
 /GSET = ’United States’
 /SYMBOLMAP= VAR(sales) SUM=(SUM).

• Each company in the data file has unique coordinates, designated x and y. (If some com-
panies had more than one location, it would be necessary to have a variable that designated
each location so that all locations would be shown.)

• A new layer named Company (XY) is created in the geoset.

• The total (sum) of sales to each company will be represented in the size of a symbol at
each of the x/y points.

LOOKUP Subcommand

The LOOKUP subcommand extends the capability of the XY subcommand. It allows you to
use coordinates from an existing table to create a new layer in your geoset. For example, if
you have zip codes in your data but no x/y coordinates to represent zip codes on your map,
and your geoset does not contain a zip code layer, you can instruct SPSS Maps to look up the
coordinates in a table and create a new layer, just as in XY binding. In this case, you provide
the name of the variable that you want to match to geographic coordinates and the name of
the file that contains those coordinates. The data are aggregated on that variable and then
matched to values in the lookup table (exactly as geographic variables are matched), and the
resulting layer is included in the geoset.

The lookup file can be any table in the MapInfo format to which data could be bound. The
layer constructed by LOOKUP contains points only for points present in the data, not for all
points that might be present in the lookup file. Therefore, the LOOKUP subcommand can be
useful whenever you want to create a layer containing just the points of interest to you—a
selection of cities, perhaps, instead of all of the cities in a geoset layer.

Example

MAPS
 /LOOKUP = VAR(zip) ’C:\\Program Files\spss10\Maps\ZIPCODE.TAB’
 /GSET = ’United States’
 /SYMBOLMAP= VAR(sales) SUM=(SUM).

• The SPSS data file contains the zip codes in the variable ZIP.
• The file ZIPCODE.TAB contains zip codes and the x/y coordinates of their centroids.
• A new layer containing the coordinates of each zip code in the SPSS data file is added to

the geoset.

895

MAPS

• The total (sum) of sales to each zip code will be represented in the size of a symbol at each
of the x/y points. If multiple cases have the same zip code, they will be summed to give
the total sales per zip code.

GSET Subcommand

The required GSET subcommand names the geoset that supplies the boundaries, points, and
other geographic features for the map. The filename refers to a file with a .GST extension
that includes references to the various tables that make up the geoset.

LAYER Keyword

By default, the Maps procedure searches all of the registered tables in the geoset to find
one whose values match the values of your geographic variable. It is possible for more than
one table in the geoset to contain matching values. You might, for example, have a layer
of major cities and another layer of capital cities, with a good deal of duplication between
them. The optional LAYER keyword on the GSET subcommand allows you to specify a par-
ticular layer in the geoset to which you want your geographic variable to be bound. To find
the names of all the layers in a geoset, run the Geoset Manager, which is available from
the SPSS for Windows software group on the Start menu.

SHOWLABEL Subcommand

The SHOWLABEL subcommand allows you to specify whether labels are displayed on your
map for the layer that matches your geographic variable.

AS_IS Displays or hides the labels depending on the setting within the geoset. This is the
default.

NO Hides the labels.

YES Displays the labels.

TITLE Subcommand

The TITLE subcommand specifies a title for the map. The default title is the name of the
geoset.

• The title is limited to a single line.

• Enter the title enclosed in quotation marks or apostrophes.

• Title attributes (font, size, color) can be changed through editing in the Viewer but cannot
be set through command syntax.

896

MAPS

GVMISMATCH Subcommand

When a data value in your geographic variable does not match a value in the layer to which
it is being bound, a mismatch occurs and a warning is written to a mismatch table in the
Viewer. GVMISMATCH allows you to specify the maximum number of mismatches that will
be reported. The existence of a value in the geoset that is not in the SPSS data does not con-
stitute a mismatch. If, for example, you do not have data for one of the countries shown on
your map, that country will simply appear without a theme in the color and pattern estab-
lished for it in the geoset.

Example

MAPS
 /GVAR = VAR(city)
 /GSET = ’United States’ LAYER = ’US Cities’
 /GVMISMATCH MAX = 50
 /IVMAP= VAR(SALESREP) SUM=(MODE).

• This map identifies each city with the sales representative who appears most often on the
records for that city.

• The GVMISMATCH subcommand allows up to 50 mismatches to be reported in a warning
table.

• Sales to cities not included in the U.S. Cities layer of the geoset will not be shown on the
map.

ROVMAP Subcommand

A range of values map divides the values of a variable into a set of ranges and assigns each
geographic unit to one of the ranges. On the map, the ranges are represented as gradations
between a color representing the lowest range and another color representing the highest
range. Data are first aggregated so that each geographic unit is represented by one case, and
then ranges are determined and cases are assigned to ranges.

VAR(varname) The variable whose ranges are shown on the map. $COUNT can be
used instead of VAR(varname) to produce ranges based on the count of
cases within each geographic unit. This specification is required.

(SUM=function) The aggregation to be performed on the specified variable before
ranges are determined. Not required if the variable is $COUNT.

DISTRIBUTION The method used to distribute cases into ranges. Five methods are
available:
EQSIZE divides cases into ranges of approximately equal size.
EQCOUNT puts approximately the same number of cases in each
range.
NATBREAK uses an algorithm to distribute data evenly among ranges
based on the average of each range. Values in each range are close to
the average for that range.
SD uses the standard deviation. The middle range breaks at the mean
of the data values. The ranges above and below the middle are one

897

MAPS

standard deviation above or below the mean.
CUSTOM allows you to specify your own ranges with the XRANGE
keyword.

XRANGE=(n,n) For custom ranges, specify XRANGE once for each range. Ranges may
not overlap. Optionally, you can specify a name for each range, as in
XRANGE=(13,19) ’Teenagers’.

ALLOWEMPTY Whether empty ranges should be allowed. The specifications are YES
and NO, with NO being the default for all distribution methods except
CUSTOM. With custom ranges, this specification is ignored.

NUMRANGES=n The number of ranges to create. Ignored if the distribution method is
SD or CUSTOM, or if the number and distribution of cases is too small
to produce the requested number of ranges.

LEGENDTITLE The title for the legend. (DEFAULT) explicitly requests the default,
which is the label of the variable whose ranges are shown, or blank if
counts are shown.

VISIBLE Determines whether the theme is visible when the map is initially
drawn. The default is YES. The alternative, NO, is useful on multiple-
theme maps where you intend to experiment with which themes to
show.

Example

MAPS
 /GVAR = VAR(country)
 /GSET = ’World Countries’ LAYER=’World’
 /TITLE = ’Population Increase’
 /ROVMAP = VAR(pop_incr) SUM=(MEAN)
 DISTRIBUTION = SD LEGENDTITLE = ’’.

• This command generates a map showing the various ranges of population increase in the
countries of the world.

• The SPSS data file contains only one record per country, so no real aggregation takes
place. MEAN simply yields the one value per value of COUNTRY.

• The distribution method is SD, so that ranges of population growth will be one standard
deviation wide, with the middle range breaking at the mean.

SYMBOLMAP Subcommand

A graduated symbol map places a symbol on or within each region. The size of the symbol
is proportional to the value of a summary function calculated on a single variable within each
region.

VAR(varname) The variable whose values determine the symbol size for each region.
$COUNT can be used instead of VAR(varname) to produce symbols
based on the count of cases within each geographic unit. This specifi-
cation is required.

898

MAPS

(SUM=function) The aggregation to be performed on the specified variable to produce
the values represented by the symbol sizes. Not required if the variable
is $COUNT.

LEGENDTITLE The title for the legend. (DEFAULT) explicitly requests the default,
which is the label of the variable represented by the symbols, or blank
if counts are shown.

VISIBLE Determines whether the theme is visible when the map is initially
drawn. The default is YES. The alternative, NO, is useful on multiple-
theme maps where you intend to experiment with which themes to
show.

Example

MAPS
 /GVAR = VAR(country)
 /GSET = ’World Countries’ LAYER=’World’
 /SYMBOLMAP= VAR(gdp_cap)
 SUM=(MEAN).

• This command produces a map in which a symbol within each country is proportional to
that country’s gross domestic product.

• Because the data contain only one record per country, the MEAN summary function simply
yields the value for each country.

DOTMAP Subcommand

A dot density map places within each region a number of dots proportional to the value of a
summary function calculated on a single variable within each region. Because the dots must
be spread across a region, the geographic variable used in a dot density map must correspond
to a layer that contains area boundaries. Dots are distributed randomly within each region.

VAR(varname) The variable whose values determine the density of dots for each
region. $COUNT can be used instead of VAR(varname) to produce dot
densities based on the count of cases within each geographic unit. This
specification is required.

(SUM=function) The aggregation to be performed on the specified variable to produce
the values represented by the dot density. Not required if the variable
is $COUNT.

VALUE1DOT=n The data value represented by one dot. The specification can be any
positive number, including decimal values less than 1.

LEGENDTITLE The title for the legend. (DEFAULT) explicitly requests the default,
which is the label of the variable represented by the dots, or blank if
counts are shown.

VISIBLE Determines whether the theme is visible when the map is initially
drawn. The default is YES. The alternative, NO, is useful on multiple-
theme maps where you intend to experiment with which themes to
show.

899

MAPS

Example

MAPS
 /GVAR = VAR(fromctry)
 /GSET = ’World Countries’ LAYER=’World’
 /TITLE = ’Total Messages Per Country’
 /DOTMAP= $COUNT.

• This command creates a map that uses dot densities within the borders of each country to
show the number of e-mail messages received from that country.

• The data for this example are records of individual e-mail messages.

• The geographic variable is the country from which each message originated.

• The $COUNT stand-in variable requests that the messages be counted for each country.

IVMAP Subcommand

An individual values map uses color and/or pattern differences to indicate the value each
region has on a single variable.

VAR(varname) The variable whose values determine the color and/or pattern for each
region. This specification is required.

(SUM=function) The aggregation to be performed on the specified variable to produce
the values represented by the individual colors. Required even if the
data contain only one record per region (in which case you can use any
of the functions that return the single value, such as MEAN or MODE).
From the dialog boxes, only MODE is available. Not required if the
variable is $COUNT.

LEGENDTITLE The title for the legend. (DEFAULT) explicitly requests the default,
which is the label of the variable whose values are shown.

VISIBLE Determines whether the theme is visible when the map is initially
drawn. The default is YES. The alternative, NO, is useful on multiple-
theme maps where you intend to experiment with which themes to
show.

Example

MAPS
 /GVAR = VAR(country)
 /GSET = ’World Countries’ LAYER=’World’
 /IVMAP= VAR(climate) SUM=(MODE).

• This command produces a map in which each country is colored to indicate its predomi-
nant climate.

• The legend contains the value labels for CLIMATE.

• The MODE function produces the most frequently occurring value for each country.
Because this data file contains only one record for each country, that value is obtained and
shown.

900

MAPS

BARMAP Subcommand

A bar chart map can display bars for multiple variables or for categories determined by a BY
variable.

VAR(v1) VAR(v2) ... Variables for individual bars. You can list up to six scale variables in
the form VAR(varname) VAR(varname) The data are aggregated
within the values of the geographic variable; each bar represents all of
the cases within each region. See VAR(v1) BY VAR(v2) for the alterna-
tive. You can also use $COUNT, but that must be the only variable.

VAR(v1) BY VAR(v2) V1 is the variable to be summarized within the bars; you can use
$COUNT instead of VAR(v1). V1 must be numeric. The values of v2
divide the data into separate bars. V2 can be numeric or string and
should have no more than 10 distinct values.

(SUM=function) The aggregation to be performed on the specified variable to produce
the values represented by the bars. Not required if the variable is
$COUNT.

HEIGHT The height for the bar that represents the largest value encountered in
the data. The default is 0.25 inches (0.64 cm.).

INDSCALE When set to YES, each bar is scaled independent of the other bars so
that bar heights can be compared between regions but not between
bars in a single chart. This is useful for showing variables measured
on different scales, such as population and revenue. The default is NO
so that all bars on the map use the same scale.

LEGENDTITLE The title for the legend. (DEFAULT) explicitly requests the default,
which is blank if more than one variable is represented in the bars or
if counts are shown and otherwise is the name of the variable whose
values determine the heights of the bars.

VISIBLE Determines whether the theme is visible when the map is initially
drawn. The default is YES. The alternative, NO, is useful on multiple-
theme maps where you intend to experiment with which themes to
show.

Example

MAPS
 /GVAR = VAR(state)
 /GSET = ’United States’
 /TITLE = ’Sales by Size of Customer’
 /BARMAP= $COUNT BY VAR(cosize3).

• This command produces a map of the United States with a bar chart in each state indicat-
ing the number (count) of individual sales made to small, medium, and large customers
within each state.

• The data are records of individual sales.

901

MAPS

Example

MAPS
 /GVAR = VAR(country)
 /GSET = ’World Countries’ LAYER=’World’
 /TITLE = ’World Literacy Rates’
 /BARMAP= VAR(lit_fema) VAR(lit_male)
 SUM=(MEAN) INDSCALE=NO.

• This command creates a world map and places a bar chart on each country showing the
female and male literacy rates.

• Because the data contain only one record per country, the MEAN summary function yields
that value for each country.

• INDSCALE=NO is the default, included here for illustration. Because the same scale is used
for both variables, the bar heights allow you to compare relative female and male literacy
rates within each country. If it were YES, then both female and male literacy rates would
be relative to that in other countries but independent of each other.

PIEMAP Subcommand

VAR(v1) BY VAR(v2) V1 is the variable to be summarized within each pie; you can use
$COUNT instead of VAR(v1). V1 must be numeric. The values of v2
divide the pie into slices. V2 can be numeric or string and should have
no more than 10 distinct values. Both variables are required.

(SUM=function) The aggregation to be performed on V1 to produce the values repre-
sented by the slices in each pie. Not required if the variable is
$COUNT.

DIAMETER The diameter of each pie. If GRADUATED=ON, this is the diameter of
the largest pie. The default is 0.25 inches (0.64 cm.).

 GRADUATED When GRADUATED=YES, the diameters of pies within the map are
scaled according to the total value represented by the whole pie, en-
abling comparisons between regions. The default is YES.

LEGENDTITLE The title for the legend. (DEFAULT) explicitly requests the default,
which is the label of the variable that determines the size of the slices
(V1 in the description), or blank if counts are shown.

VISIBLE Determines whether the theme is visible when the map is initially
drawn. The default is YES. The alternative, NO, is useful on multiple-
theme maps where you intend to experiment with which themes to
show.

902

MAPS

Example

MAPS
 /GVAR = VAR(state)
 /GSET = ’United States’
 /TITLE = ’Sales by Customer Type’
 /PIEMAP= VAR(sale_prd) BY VAR(industry)
 SUM=(SUM)
 GRADUATED = YES
 LEGENDTITLE = ’’.

• This command produces a map of the United States with a pie chart in each state indicat-
ing the sum of product sales by customer type (industry).

• Because GRADUATED=YES, the pies are scaled so that their diameters are proportional to
the total sales for each state relative to that of the other states.

• The null legend title prevents the variable label for INDUSTRY from being printed there,
since the title is used to give that information.

Summary Functions

The following functions are available for any map theme. Some may be inappropriate, such
as means and standard deviations in pie charts or individual values charts, and are not avail-
able through the graphical user interface, but you are not prevented from using them in the
command language. To obtain counts, use $COUNT in place of VAR(varname) as indicated in
the sections on theme subcommands.

First Values. The value found in the first case for each category in the data file at the time the
summary function was assigned.

Last Values. The value found in the last case for each category in the data file that created it.

Maximum Values. The largest value within each category.

Means. The arithmetic average for each category.

Medians. The value below which half of the cases fall in each category. If there is an even
number of cases, the median is the average of the two middle cases when they are sorted in
ascending or descending order.

Minimum Values. The smallest value within each category.

Modes. The most frequently occurring value within each category. If multiple modes exist,
the smallest value is used.

Number of Cases Above (N of Cases >). The number of cases having values above the specified
value.

Number of Cases Between (N Between). The number of cases between two specified values.

Number of Cases Equal to (N of Cases =). The number of cases equal to the specified value.

Number of Cases Greater Than or Equal to (N of Cases >=). The number of cases having values
above or equal to the specified value.

903

MAPS

Number of Cases Less Than (N of Cases <). The number of cases below the specified value.

Number of Cases Less Than or Equal to (N of Cases <=). The number of cases below or equal to
the specified value.

Standard Deviations (SD). A measure of dispersion around the mean, expressed in the same
unit of measurement as the observations, equal to the square root of the variance. In a normal
distribution, 68% of cases fall within one standard deviation of the mean and 95% of cases
fall within two standard deviations.

Sums. The sums of the values within each category.

Variances. A measure of how much observations vary from the mean, expressed in squared
units.

905

MATCH FILES

MATCH FILES FILE={file} [TABLE={file}]
 {* } {* }

 [/RENAME=(old varnames=new varnames)...]

 [/IN=varname]

 /FILE==... [TABLE= ...]

 [/BY varlist]

 [/MAP]

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/FIRST=varname] [/LAST=varname]

**Default if the subcommand is omitted.

Example
MATCH FILES FILE=PART1 /FILE=PART2 /FILE=*.

Overview

MATCH FILES combines variables from 2 up to 50 SPSS-format data files. MATCH FILES
can make parallel or nonparallel matches between different files or perform table lookups.
Parallel matches combine files sequentially by case (they are sometimes referred to as
sequential matches). Nonparallel matches combine files according to the values of one
or more key variables. In a table lookup, MATCH FILES looks up variables in one file and
transfers those variables to a case file.

The files specified on MATCH FILES can be SPSS-format data files created with SAVE or
XSAVE or the working data file. The combined file becomes the new working data file.
Statistical procedures following MATCH FILES use this combined file unless you replace it
by building another working file. You must use the SAVE or XSAVE commands if you want
to save the combined file as an SPSS-format data file.

In general, MATCH FILES is used to combine files containing the same cases but different
variables. To combine files containing the same variables but different cases, use ADD
FILES. To update existing SPSS-format data files, use UPDATE.

MATCH FILES is often used with the AGGREGATE command to add variables with
summary measures (sum, mean, and so forth) to the data. For an example, see p. 92.

Options

Variable Selection. You can specify which variables from each input file are included in the
new working file using the DROP and KEEP subcommands.

906 MATCH FILES

Variable Names. You can rename variables in each input file before combining the files using
the RENAME subcommand. This permits you to combine variables that are the same but
whose names differ in different input files, or to separate variables that are different but have
the same name.

Variable Flag. You can create a variable that indicates whether a case came from a particular
input file using IN. You can use the FIRST or LAST subcommands to create a variable that
flags the first or last case of a group of cases with the same value for the key variable.

Variable Map. You can request a map showing all variables in the new working file, their order,
and the input files from which they came using the MAP subcommand.

Basic Specification

The basic specification is two or more FILE subcommands, each of which specifies a file to
be matched. In addition, BY is required to specify the key variables for nonparallel matches.
Both BY and TABLE are required to match table-lookup files.

• All variables from all input files are included in the new working file unless DROP or
KEEP is specified.

Subcommand Order

• RENAME and IN must immediately follow the FILE or TABLE subcommand to which they
apply.

• Any BY, FIRST, LAST, KEEP, DROP, and MAP subcommands must follow all the TABLE,
FILE, RENAME, and IN subcommands..

Syntax Rules

• RENAME can be repeated after each FILE or TABLE subcommand and applies only to
variables in the file named on the immediately preceding FILE or TABLE.

• IN can be used only for a nonparallel match or for a table lookup. (Thus, IN can be used
only if BY is specified.)

• BY can be specified only once. However, multiple variables can be specified on BY. When
BY is used, all files must be sorted in ascending order of the key variables named on BY.

• MAP can be repeated as often as desired.

Operations

• MATCH FILES reads all files named on FILE or TABLE and builds a new working data file
that replaces any working file created earlier in the session.

• The new working data file contains complete dictionary information from the input
files, including variable names, labels, print and write formats, and missing-value indi-

MATCH FILES 907

cators. The new file also contains the documents from each of the input files. See DROP
DOCUMENTS for information on deleting documents.

• Variables are copied in order from the first file specified, then from the second file spec-
ified, and so on.

• If the same variable name is used in more than one input file, data are taken from the file
specified first. Dictionary information is taken from the first file containing value labels,
missing values, or a variable label for the common variable. If the first file has no such
information, MATCH FILES checks the second file, and so on, seeking dictionary
information.

• All cases from all input files are included in the combined file. Cases that are absent from
one of the input files will be assigned system-missing values for variables unique to that file.

• BY specifies that cases should be combined according to a common value on one or more
key variables. All input files must be sorted in ascending order of the key variables.

• If BY is not used, the program performs a parallel (sequential) match, combining the first
case from each file, then the second case from each file, and so on, without regard to any
identifying values that may be present.

• If the working file is named as an input file, any N and SAMPLE commands that have been
specified are applied to that file before files are matched.

Limitations

• Maximum 50 files can be combined on one MATCH FILES command.
• Maximum one BY subcommand. However, BY can specify multiple variables.

• The TEMPORARY command cannot be in effect if the working data file is used as an input file.

Example

MATCH FILES FILE=PART1 /FILE=PART2 /FILE=*.

• MATCH FILES combines three files (the working data file and two SPSS-format data files)
in a parallel match. Cases are combined according to their order in each file.

• The new working data file contains as many cases as are contained in the largest of the
three input files.

FILE Subcommand

FILE identifies the files to be combined (except table files). At least one FILE subcommand
is required on MATCH FILES. A separate FILE subcommand must be used for each input file.

• An asterisk can be specified on FILE to refer to the working data file.

• The order in which files are specified determines the order of variables in the new
working file. In addition, if the same variable name occurs in more than one input file,
the variable is taken from the file specified first.

908 MATCH FILES

• If the files have unequal numbers of cases, cases are generated from the longest file. Cases
that do not exist in the shorter files have system-missing values for variables that are
unique to those files.

Raw Data Files

To add variables from a raw data file, you must first define the raw data as the working data
file using the DATA LIST command. MATCH FILES can then combine the working data file
with an SPSS-format data file.

Example
DATA LIST FILE=GASDATA/1 OZONE 10-12 CO 20-22 SULFUR 30-32.

VARIABLE LABELS OZONE ’LEVEL OF OZONE’
CO ’LEVEL OF CARBON MONOXIDE’
SULFUR ’LEVEL OF SULFUR DIOXIDE’.

MATCH FILES FILE=PARTICLE /FILE=*.

SAVE OUTFILE=POLLUTE.

• The PARTICLE file is a previously saved SPSS-format data file.

• The GASDATA file is a raw data file and is defined on the DATA LIST command. Variable
labels are assigned on the VARIABLE LABELS command.

• MATCH FILES adds the working data file (*), which now contains the gas data, to SPSS-
format data file PARTICLE.

• SAVE saves the new working file as an SPSS-format data file with the filename POLLUTE.

BY Subcommand

BY specifies one or more identification, or key, variables that determine which cases are to
be combined. When BY is specified, cases from one file are matched only with cases from
other files that have the same values for the key variables. BY is required unless all input files
are to be matched sequentially according to the order of cases.

• BY must follow the FILE and TABLE subcommands and any associated RENAME and IN
subcommands.

• BY specifies the names of one or more key variables. The key variables must exist in all
input files. The key variables can be numeric or long or short strings.

• All input files must be sorted in ascending order of the key variables. If necessary, use
SORT CASES before MATCH FILES.

• Missing values for key variables are handled like any other values.

• Unmatched cases are assigned system-missing values (for numeric variables) or blanks
(for string variables) for variables from files that do not contain a match.

MATCH FILES 909

Duplicate Cases

Duplicate cases are those with the same values for the key variables named on the BY
subcommand.

• Duplicate cases are permitted in any input files except table files.

• When there is no table file, the first duplicate case in each file is matched with the first
matching case (if any) from the other files; the second duplicate case is matched with a
second matching duplicate, if any; and so on. (In effect, a parallel match is performed
within groups of duplicate cases.) Unmatched cases are assigned system-missing values
(for numeric variables) or blanks (for string variables) for variables from files that do not
contain a match.

• The program displays a warning if it encounters duplicate keys in one or more of the files
being matched.

TABLE Subcommand

TABLE specifies a table lookup (or keyed table) file. A lookup file contributes variables but
not cases to the new working file. Variables from the table file are added to all cases from
other files that have matching values for the key variables. FILE specifies the files that supply
the cases.

• A separate TABLE subcommand must be used to specify each lookup file, and a separate
FILE subcommand must be used to specify each case file.

• The BY subcommand is required when TABLE is used.

• All specified files must be sorted in ascending order of the key variables. If necessary, use
SORT CASES before MATCH FILES.

• A lookup file cannot contain duplicate cases (cases for which the key variable(s) named
on BY have identical values).

• An asterisk on TABLE refers to the working data file.
• Cases in a case file that do not have matches in a table file are assigned system-missing values

(for numeric variables) or blanks (for string variables) for variables from that table file.

• Cases in a table file that do not match any cases in a case file are ignored.

Example
MATCH FILES FILE=* /TABLE=MASTER /BY EMP_ID.

• MATCH FILES combines variables from the SPSS-format data file MASTER with the
working data file, matching cases by the variable EMP_ID.

• No new cases are added to the working file as a result of the table lookup.

• Cases whose value for EMP_ID is not included in the MASTER file are assigned system-
missing values for variables taken from the table.

910 MATCH FILES

RENAME Subcommand

RENAME renames variables on the input files before they are processed by MATCH FILES.
RENAME must follow the FILE or TABLE subcommand that contains the variables to be
renamed.

• RENAME applies only to the immediately preceding FILE or TABLE subcommand. To
rename variables from more than one input file, specify a RENAME subcommand after
each FILE or TABLE subcommand.

• Specifications for RENAME consist of a left parenthesis, a list of old variable names, an
equals sign, a list of new variable names, and a right parenthesis. The two variable lists
must name or imply the same number of variables. If only one variable is renamed, the
parentheses are optional.

• More than one rename specification can be specified on a single RENAME subcommand,
each enclosed in parentheses.

• The TO keyword can be used to refer to consecutive variables in the file and to generate
new variable names. (See the TO keyword on p. 23 in Volume I.)

• RENAME takes effect immediately. Any KEEP and DROP subcommands entered prior to
a RENAME must use the old names, while KEEP and DROP subcommands entered after a
RENAME must use the new names.

• All specifications within a single set of parentheses take effect simultaneously. For
example, the specification RENAME (A,B = B,A) swaps the names of the two variables.

• Variables cannot be renamed to scratch variables.

• Input SPSS-format data files are not changed on disk; only the copy of the file being
combined is affected.

Example
MATCH FILES FILE=UPDATE /RENAME=(NEWID = ID)
/FILE=MASTER /BY ID.

• MATCH FILES matches a master SPSS-format data file (MASTER) with an update data file
(UPDATE).

• Variable NEWID in the UPDATE file is renamed ID so that it will have the same name as
the identification variable in the master file and can be used on the BY subcommand.

DROP and KEEP Subcommands

DROP and KEEP are used to include a subset of variables in the new working data file. DROP
specifies a set of variables to exclude and KEEP specifies a set of variables to retain.

• DROP and KEEP do not affect the input files on disk.

• DROP and KEEP must follow all FILE, TABLE, and RENAME subcommands.

• DROP and KEEP must specify one or more variables. If RENAME is used to rename vari-
ables, specify the new names on DROP and KEEP.

• The keyword ALL can be specified on KEEP. ALL must be the last specification on KEEP,
and it refers to all variables not previously named on KEEP.

MATCH FILES 911

• DROP cannot be used with variables created by the IN, FIRST, or LAST subcommands.

• KEEP can be used to change the order of variables in the resulting file. By default, MATCH
FILES first copies the variables in order from the first file, then copies the variables in
order from the second file, and so on. With KEEP, variables are kept in the order in which
they are listed on the subcommand. If a variable is named more than once on KEEP, only
the first mention of the variable is in effect; all subsequent references to that variable
name are ignored.

Example
MATCH FILES FILE=PARTICLE /RENAME=(PARTIC=POLLUTE1)

/FILE=GAS /RENAME=(OZONE TO SULFUR=POLLUTE2 TO POLLUTE4)
/DROP=POLLUTE4.

• The renamed variable POLLUTE4 is dropped from the resulting file. DROP is specified
after all of the FILE and RENAME subcommands, and it refers to the dropped variable by
its new name.

IN Subcommand

IN creates a new variable in the resulting file that indicates whether a case came from the in-
put file named on the preceding FILE subcommand. IN applies only to the file specified on
the immediately preceding FILE subcommand.
• IN can be used only for a nonparallel match or table lookup.

• IN has only one specification—the name of the flag variable.

• The variable created by IN has the value 1 for every case that came from the associated
input file and the value 0 if the case came from a different input file.

• Variables created by IN are automatically attached to the end of the resulting file and
cannot be dropped. If FIRST or LAST is used, the variable created by IN precedes the vari-
ables created by FIRST or LAST.

Example
MATCH FILES FILE=WEEK10 /FILE=WEEK11 /IN=INWEEK11 /BY=EMPID.

• IN creates the variable INWEEK11, which has the value 1 for all cases in the resulting file
that had values in the input file WEEK11 and the value 0 for those cases that were not in
file WEEK11.

FIRST and LAST Subcommands

FIRST and LAST create logical variables that flag the first or last case of a group of cases with
the same value for the BY variables.

• FIRST and LAST must follow all TABLE and FILE subcommands and any associated
RENAME and IN subcommands.

• FIRST and LAST have only one specification—the name of the flag variable.

912 MATCH FILES

• FIRST creates a variable with the value 1 for the first case of each group and the value 0
for all other cases.

• LAST creates a variable with the value 1 for the last case of each group and the value 0 for
all other cases.

• Variables created by FIRST and LAST are automatically attached to the end of the
resulting file and cannot be dropped.

• If one file has several cases with the same values for the key variables, FIRST or LAST can
be used to create a variable that flags the first or last case of the group.

Example
MATCH FILES TABLE=HOUSE /FILE=PERSONS
/BY=HOUSEID /FIRST=HEAD.

• The variable HEAD contains the value 1 for the first person in each household and the
value 0 for all other persons. Assuming that the PERSONS file is sorted with the head of
household as the first case for each household, the variable HEAD identifies the case for
the head of household.

Example
* Using match files with only one file.

* This example flags the first of several cases with
 the same value for a key variable.

MATCH FILES FILE=PERSONS /BY HOUSEID /FIRST=HEAD.
SELECT IF (HEAD EQ 1).
CROSSTABS JOBCAT BY SEX.

• MATCH FILES is used instead of GET to read the SPSS-format data file PERSONS. The BY
subcommand identifies the key variable (HOUSEID), and FIRST creates the variable HEAD
with the value 1 for the first case in each household and the value 0 for all other cases.

• SELECT IF selects only the cases with the value 1 for HEAD, and the CROSSTABS proce-
dure is run on these cases.

MAP Subcommand

MAP produces a list of the variables that are in the new working file and the file or files from
which they came. Variables are listed in the order in which they appear in the resulting file. MAP
has no specifications and must be placed after all FILE, TABLE, and RENAME subcommands.

• Multiple MAP subcommands can be used. Each MAP shows the current status of the
working data file and reflects only the subcommands that precede the MAP subcommand.

• To obtain a map of the resulting file in its final state, specify MAP last.

• If a variable is renamed, its original and new names are listed. Variables created by IN,
FIRST, and LAST are not included in the map, since they are automatically attached to the
end of the file and cannot be dropped.

913

MATRIX—END MATRIX

This command is not available on all operating systems.

MATRIX

matrix statements

END MATRIX

The following matrix language statements can be used in a matrix program:

The following functions can be used in matrix language statements:

BREAK DO IF END LOOP MSAVE SAVE
CALL ELSE GET PRINT WRITE
COMPUTE ELSE IF LOOP READ
DISPLAY END IF MGET RELEASE

ABS Absolute values of matrix elements
ALL Test if all elements are positive
ANY Test if any element is positive
ARSIN Arcsines of matrix elements
ARTAN Arctangents of matrix elements
BLOCK Create block diagonal matrix
CDFNORM Cumulative normal distribution function
CHICDF Cumulative chi-squared distribution function
CHOL Cholesky decomposition
CMAX Column maxima
CMIN Column minima
COS Cosines of matrix elements
CSSQ Column sums of squares
CSUM Column sums
DESIGN Create design matrix
DET Determinant
DIAG Diagonal of matrix
EOF Check end of file
EVAL Eigenvalues of symmetric matrix
EXP Exponentials of matrix elements
FCDF Cumulative F distribution function
GINV Generalized inverse
GRADE Rank elements in matrix, using sequential integers for ties
GSCH Gram-Schmidt orthonormal basis
IDENT Create identity matrix

914 MATRIX—END MATRIX

INV Inverse
KRONECKER Kronecker product of two matrices
LG10 Logarithms to base 10 of matrix elements
LN Logarithms to base e of matrix elements
MAGIC Create magic square
MAKE Create a matrix with all elements equal
MDIAG Create a matrix with the given diagonal
MMAX Maximum element in matrix
MMIN Minimum element in matrix
MOD Remainders after division
MSSQ Matrix sum of squares
MSUM Matrix sum
NCOL Number of columns
NROW Number of rows
RANK Matrix rank
RESHAPE Change shape of matrix
RMAX Row maxima
RMIN Row minima
RND Round off matrix elements to nearest integer
RNKORDER Rank elements in matrix, averaging ties
RSSQ Row sums of squares
RSUM Row sums
SIN Sines of matrix elements
SOLVE Solve systems of linear equations
SQRT Square roots of matrix elements
SSCP Sums of squares and cross-products
SVAL Singular values
SWEEP Perform sweep transformation
T (Synonym for TRANSPOS)
TCDF Cumulative normal t distribution function
TRACE Calculate trace (sum of diagonal elements)
TRANSPOS Transposition of matrix
TRUNC Truncation of matrix elements to integer
UNIFORM Create matrix of uniform random numbers

MATRIX—END MATRIX 915

Example
MATRIX.
READ A /FILE=MATRDATA /SIZE={6,6} /FIELD=1 TO 60.
CALL EIGEN(A,EIGENVEC,EIGENVAL).
LOOP J=1 TO NROW(EIGENVAL).
+ DO IF (EIGENVAL(J) > 1.0).
+ PRINT EIGENVAL(J) / TITLE="Eigenvalue:" /SPACE=3.
+ PRINT T(EIGENVEC(:,J)) / TITLE="Eigenvector:" /SPACE=1.
+ END IF.
END LOOP.
END MATRIX.

Overview

The MATRIX and END MATRIX commands enclose statements that are executed by the SPSS
matrix processor. Using matrix programs, you can write your own statistical routines in the
compact language of matrix algebra. Matrix programs can include mathematical calcula-
tions, control structures, display of results, and reading and writing matrices as character files
or SPSS data files.

As discussed below, a matrix program is for the most part independent of the rest of the
SPSS session, although it can read and write SPSS data files, including the working data file.

This section does not attempt to explain the rules of matrix algebra. Many textbooks, such
as Hadley (1961) and O’Nan (1971), teach the application of matrix methods to statistics.

The SPSS MATRIX procedure was originally developed at the Madison Academic
Computing Center, University of Wisconsin.

Terminology

A variable within a matrix program represents a matrix, which is simply a set of values
arranged in a rectangular array of rows and columns.
• An (read “n by m”) matrix is one that has n rows and m columns. The integers n and

m are the dimensions of the matrix. An matrix contains elements, or data
values.

• An matrix is sometimes called a column vector, and a matrix is sometimes
called a row vector. A vector is a special case of a matrix.

• A matrix, containing a single data value, is often called a scalar. A scalar is also a
special case of a matrix.

• An index to a matrix or vector is an integer that identifies a specific row or column. Indexes
normally appear in printed works as subscripts, as in , but are specified in the matrix
language within parentheses, as in . The row index for a matrix precedes the column
index.

• The main diagonal of a matrix consists of the elements whose row index equals their
column index. It begins at the top left corner of the matrix; in a square matrix, it runs to the
bottom right corner.

• The transpose of a matrix is the matrix with rows and columns interchanged. The transpose
of an matrix is an matrix.

n m×
n m× n m×

n 1× 1 n×

1 1×

A31
A 3,1()

n m× m n×

916 MATRIX—END MATRIX

• A symmetric matrix is a square matrix that is unchanged if you flip it about the main diag-
onal. That is, the element in row i, column j equals the element in row j, column i. A
symmetric matrix equals its transpose.

• Matrices are always rectangular, although it is possible to read or write symmetric matrices
in triangular form. Vectors and scalars are considered degenerate rectangles.

• It is an error to try to create a matrix whose rows have different numbers of elements.

A matrix program does not process individual cases unless you so specify, using the control
structures of the matrix language. Unlike ordinary SPSS variables, matrix variables do not
have distinct values for different cases. A matrix is a single entity.

Vectors in matrix processing should not be confused with the vectors temporarily created
by the VECTOR command in SPSS. The latter are shorthand for a list of SPSS variables and,
like all ordinary SPSS variables, are unavailable during matrix processing.

Matrix Variables

A matrix variable is created by a matrix statement that assigns a value to a variable name.

• A matrix variable name follows the same rules as those applicable to an ordinary SPSS vari-
able name.

• The names of matrix functions and procedures cannot be used as variable names within a
matrix program. (In particular, the letter T cannot be used as a variable name because T is
an alias for the TRANSPOS function.)

• The COMPUTE, READ, GET, MGET, and CALL statements create matrices. An index variable
named on a LOOP statement creates a scalar with a value assigned to it.

• A variable name can be redefined within a matrix program without regard to the dimensions
of the matrix it represents. The same name can represent scalars, vectors, and full matrices
at different points in the matrix program.

• MATRIX—END MATRIX does not include any special processing for missing data. When
reading a data matrix from an SPSS data file, you must therefore specify whether missing
data are to be accepted as valid or excluded from the matrix.

String Variables in Matrix Programs

Matrix variables can contain short string data. Support for string variables is limited, however.
• MATRIX will attempt to carry out calculations with string variables if you so request. The

results will not be meaningful.

• You must specify a format (such as A8) when you display a matrix that contains string data.

Syntax of Matrix Language

A matrix program consists of statements. Matrix statements must appear in a matrix
program, between the MATRIX and END MATRIX commands. They are analogous to SPSS
commands and follow the rules of the SPSS command language regarding the abbreviation
of keywords; the equivalence of upper and lower case; the use of spaces, commas, and equals

MATRIX—END MATRIX 917

signs; and the splitting of statements across multiple lines. However, commas are required to
separate arguments to matrix functions and procedures and to separate variable names on the
RELEASE statement.

Matrix statements are composed of the following elements:

• Keywords, such as the names of matrix statements.

• Variable names.
• Explicitly written matrices, which are enclosed within braces ({}).

• Arithmetic and logical operators.

• Matrix functions.

• The SPSS command terminator, which serves as a statement terminator within a matrix
program.

Comments in Matrix Programs

Within a matrix program, you can enter comments in any of the forms recognized by SPSS:
on lines beginning with the COMMENT command, on lines beginning with an asterisk, or be-
tween the characters /* and */ on a command line.

Matrix Notation in SPSS

To write a matrix explicitly:

• Enclose the matrix within braces ({}).

• Separate the elements of each row by commas.

• Separate the rows by semicolons.

• String elements must be enclosed in either apostrophes or quotation marks, as is generally
true in the SPSS command language.

Example
{1,2,3;4,5,6}

• The example represents the following matrix:

Example
{1,2,3}

• This example represents a row vector:

1 2 3

4 5 6

1 2 3

918 MATRIX—END MATRIX

Example
{11;12;13}

• This example represents a column vector:

Example
{3}

• This example represents a scalar. The braces are optional. You can specify the same scalar
as 3.

Matrix Notation Shorthand

You can simplify the construction of matrices using notation shorthand.

Consecutive Integers. Use a colon to indicate a range of consecutive integers. For example,
the vector {1,2,3,4,5,6} can be written as {1:6}.

Incremented Ranges of Integers. Use a second colon followed by an integer to indicate the in-
crement. The matrix {1,3,5,7;2,5,8,11} can be written as {1:7:2;2:11:3},
where 1:7:2 indicates the integers from 1 to 7 incrementing by 2, and 2:11:3 indicates
the integers from 2 to 11 incrementing by 3.
• You must use integers when specifying a range in either of these ways. Numbers with frac-

tional parts are truncated to integers.

• If an arithmetic expression is used, it should be enclosed in parentheses.

Extraction of an Element, a Vector, or a Submatrix

You can use indexes in parentheses to extract an element from a vector or matrix, a vector
from a matrix, or a submatrix from a matrix. In the following discussion, an integer index
refers to an integer expression used as an index, which can be a scalar matrix with an integer
value or an integer element extracted from a vector or matrix. Similarly, a vector index
refers to a vector expression used as an index, which can be a vector matrix or a vector
extracted from a matrix.

11
12

13

MATRIX—END MATRIX 919

For example, if S is a scalar matrix, , R is a row vector, , C is a

column vector, , and A is a 5 × 5 matrix, , then:

R(S) = R(2) = {3}
C(S) = C(2) = {3}
• An integer index extracts an element from a vector matrix.
• The distinction between a row and a column vector does not matter when an integer index

is used to extract an element from it.

A(2,3) = A(S,3) = {23}

• Two integer indexes separated by a comma extract an element from a rectangular matrix.

A(R,2)=A(1:5:2,2)={12; 32; 52}
A(2,R)=A(2,1:5:2)={21, 23, 25}
A(C,2)=A(2:4,2)= {22;32;42}
A(2,C)=A(2,2:4)= {22,23,24}

• An integer and a vector index separated by a comma extract a vector from a matrix.

• The distinction between a row and a column vector does not matter when used as indexes
in this way.

A(2,:)=A(S,:) = {21, 22, 23, 24, 25}
A(:,2) =A(:,S)= {12; 22; 32; 42; 52}

• A colon by itself used as an index extracts an entire row or column vector from a matrix.

A(R,C)=A(R,2:4)=A(1:5:2,C)=A(1:5:2,2:4)={12,13,14;32,33,34;52,53,54}
A(C,R)=A(C,1:5:2)=A(2:4,R)=A(2:4,1:5:2)={21,23,25;31,33,35;41,43,45}

• Two vector indexes separated by a comma extract a submatrix from a matrix.

• The distinction between a row and a column vector does not matter when used as indexes
in this way.

Construction of a Matrix from Other Matrices

You can use vector or rectangular matrices to construct a new matrix, separating row expressions
by semicolons and components of row expressions by commas. If a column vector has n el-
ements and matrix M has the dimensions , then is an matrix. Sim-
ilarly, if the row vector has m elements and M is the same, then is an
matrix. In fact, you can paste together any number of matrices and vectors this way.

S 2= R 1 3 5=

C
2
3

4

= A

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35
41 42 43 44 45

51 52 53 54 55

=

Vc
n m× {M Vc}, n m 1+()×

Vr {M Vr}; n 1+() m×

920 MATRIX—END MATRIX

• All of the components of each column expression must have the same number of actual
rows, and all of the row expressions must have the same number of actual columns.

• The distinction between row vectors and column vectors must be observed carefully when
constructing matrices in this way, so that the components will fit together properly.

• Several of the matrix functions are also useful in constructing matrices; see in particular the
MAKE, UNIFORM, and IDENT functions in “Matrix Functions” on p. 927.

Example
COMPUTE M={CORNER, COL3; ROW3}.

• This example constructs the matrix M from the matrix CORNER, the column vector COL3,
and the row vector ROW3.

• COL3 supplies new row components and is separated from CORNER by a comma.

• ROW3 supplies column elements and is separated from previous expressions by a
semicolon.

• COL3 must have the same number of rows as CORNER.
• ROW3 must have the same number of columns as the matrix resulting from the previous

expressions.

• For example, if , , and , then:

Matrix Operations

You can perform matrix calculations according to the rules of matrix algebra and compare
matrices using relational or logical operators.

Conformable Matrices

Many operations with matrices make sense only if the matrices involved have “suitable”
dimensions. Most often, this means that they should be the same size, with the same number
of rows and the same number of columns. Matrices that are the right size for an operation are
said to be conformable matrices. If you attempt to do something in a matrix program with
a matrix that is not conformable for that operation—a matrix that has the wrong dimen-
sions—you will receive an error message, and the operation will not be performed. An
important exception, where one of the matrices is a scalar, is discussed below.

Requirements for carrying out matrix operations include:

• Matrix addition and subtraction require that the two matrices be the same size.

CORNER 11 12

21 22
= COL3 13

23
= ROW3 31 32 33=

M
11 12 13

21 22 23
31 32 33

=

MATRIX—END MATRIX 921

• The relational and logical operations described below require that the two matrices be the
same size.

• Matrix multiplication requires that the number of columns of the first matrix equal the
number of rows of the second matrix.

• Raising a matrix to a power can be done only if the matrix is square. This includes the
important operation of inverting a matrix, where the power is .

• Conformability requirements for matrix functions are noted in “Matrix Functions” on p. 927
and in “COMPUTE Statement” on p. 926.

Scalar Expansion

When one of the matrices involved in an operation is a scalar, the scalar is treated as a matrix
of the correct size in order to carry out the operation. This internal scalar expansion is
performed for the following operations:

• Addition and subtraction.

• Elementwise multiplication, division, and exponentiation. Note that multiplying a matrix
elementwise by an expanded scalar is equivalent to ordinary scalar multiplication—each
element of the matrix is multiplied by the scalar.

• All relational and logical operators.

Arithmetic Operators

You can add, subtract, multiply, or exponentiate matrices according to the rules of matrix
algebra, or you can perform elementwise arithmetic, in which you multiply, divide, or expo-
nentiate each element of a matrix separately. The arithmetic operators are listed below.

Sign reversal. A minus sign placed in front of a matrix reverses the sign of each
element. (The unary is also accepted but has no effect.)

 Matrix addition. Corresponding elements of the two matrices are added. The
matrices must have the same dimensions, or one must be a scalar.

– Matrix subtraction. Corresponding elements of the two matrices are subtracted.
The matrices must have the same dimensions, or one must be a scalar.

 Multiplication. There are two cases. First, scalar multiplication: if either of the
matrices is a scalar, each element of the other matrix is multiplied by that scalar.
Second, matrix multiplication: if A is an matrix and B is an matrix,

 is an matrix in which the element in row i, column k, is equal to
.

 Division. The division operator performs elementwise division (described below).
True matrix division, the inverse operation of matrix multiplication, is accom-
plished by taking the INV function (square matrices) or the GINV function (rectan-
gular matrices) of the denominator and multiplying.

1–

Unary –
+

+

*

m n× n p×
A*B m p×
Σj 1=

n A i,j() B j,k()×

/

922 MATRIX—END MATRIX

 Matrix exponentiation. A matrix can be raised only to an integer power. The
matrix, which must be square, is multiplied by itself as many times as the absolute
value of the exponent. If the exponent is negative, the result is then inverted.

 Elementwise multiplication. Each element of the matrix is multiplied by the corre-
sponding element of the second matrix. The matrices must have the same dimen-
sions, or one must be a scalar.

 Elementwise division. Each element of the matrix is divided by the corresponding
element of the second matrix. The matrices must have the same dimensions, or one
must be a scalar.

 Elementwise exponentiation. Each element of the first matrix is raised to the power
of the corresponding element of the second matrix. The matrices must have the
same dimensions, or one must be a scalar.

 Sequential integers. This operator creates a vector of consecutive integers from the
value preceding the operator to the value following it. You can specify an optional
increment following a second colon. See “Matrix Notation Shorthand” on p. 918
for the principal use of this operator.

• Use these operators only with numeric matrices. The results are undefined when they are
used with string matrices.

Relational Operators

The relational operators are used to compare two matrices, element by element. The result is
a matrix of the same size as the (expanded) operands and containing either 1 or 0. The value
of each element, 1 or 0, is determined by whether the comparison between the corresponding
element of the first matrix with the corresponding element of the second matrix is true or
false, 1 for true and 0 for false. The matrices being compared must be of the same dimensions
unless one of them is a scalar. The relational operators are listed in Table 1.

• The symbolic and alphabetic forms of these operators are equivalent.

• The symbols representing NE are system dependent. In general, the tilde
is valid for ASCII systems, while the logical-not sign , or whatever symbol is over the
number 6 on the keyboard, is valid for IBM EBCDIC systems.

• Use these operators only with numeric matrices. The results are undefined when they are
used with string matrices.

Table 1 Relational operators in matrix programs

> GT Greater than
< LT Less than
<> or ~= (¬ =) NE Not equal to
<= LE Less than or equal to
>= GE Greater than or equal to
= EQ Equal to

**

&*

&/

&**

:

(~= or =)¬ (~)
()¬

MATRIX—END MATRIX 923

Logical Operators

Logical operators combine two matrices, normally containing values of 1 (true) or 0 (false).
When used with other numerical matrices, they treat all positive values as true and all nega-
tive and 0 values as false. The logical operators are:

NOT Reverses the truth of the matrix that follows it. Positive elements yield 0, and nega-
tive or 0 elements yield 1.

AND Both must be true. The matrix A AND B is 1 where the corresponding elements of
A and B are both positive, and 0 elsewhere.

OR Either must be true. The matrix A OR B is 1 where the corresponding element of
either A or B is positive, and 0 where both elements are negative or 0.

XOR Either must be true, but not both. The matrix A XOR B is 1 where one, but not both,
of the corresponding elements of A and B is positive, and 0 where both are positive
or neither is positive.

Precedence of Operators

Parentheses can be used to control the order in which complex expressions are evaluated.
When the order of evaluation is not specified by parentheses, operations are carried out in the
order listed below. The operations higher on the list take precedence over the operations lower
on the list.

 (Unary)

 (Addition and Subtraction)

NOT
AND
OR XOR

Operations of equal precedence are performed left to right of the expressions.

Examples
COMPUTE A = {1,2,3;4,5,6}.
COMPUTE B = A + 4.
COMPUTE C = A &** 2.
COMPUTE D = 2 &** A.
COMPUTE E = A < 5.
COMPUTE F = (C &/ 2) < B.

+ –
:
** &**
* &* &/
+ –
> >= < <= <>=

924 MATRIX—END MATRIX

• The results of these COMPUTE statements are:

MATRIX and Other SPSS Commands

A matrix program is a single procedure within an SPSS session.

• No working data file is needed to run a matrix program. If one exists, it is ignored during
matrix processing unless you specifically reference it (with an asterisk) on the GET, SAVE,
MGET, or MSAVE statements.

• Variables defined in the SPSS working data file are unavailable during matrix processing,
except with the GET or MGET statements.

• Matrix variables are unavailable after the END MATRIX command, unless you use SAVE or
MSAVE to write them to the working data file.

• You cannot run a matrix program from a syntax window if split-file processing is in effect.
If you save the matrix program into a syntax file, however, you can use the INCLUDE
command to run the program even if split-file processing is in effect.

Matrix Statements

Table 2 lists all of the statements that are accepted within a matrix program. Most of them
have the same name as an analogous SPSS command and perform an exactly analogous
function. Use only these statements between the MATRIX and END MATRIX commands. Any
command not recognized as a valid matrix statement will be rejected by the matrix processor.

Exchanging Data with SPSS Data Files

Matrix programs can read and write SPSS data files.

• The GET and SAVE statements read and write ordinary (case-oriented) SPSS data files,
treating each case as a row of a matrix and each ordinary variable as a column.

Table 2 Valid matrix statements

BREAK ELSE IF MSAVE
CALL END IF PRINT
COMPUTE END LOOP READ
DISPLAY GET RELEASE
DO IF LOOP SAVE
ELSE MGET WRITE

A 1 2 3

4 5 6
= B 5 6 7

8 9 10
= C 1 4 9

16 25 36
=

D 2 4 8

16 32 64
= E 1 1 1

1 0 0
= F 1 1 1

0 0 0
=

MATRIX—END MATRIX 925

• The MGET and MSAVE statements read and write matrix-format SPSS data files, respecting
the structure defined by SPSS when it creates the file. These statements are discussed below.

• Case weighting in an SPSS data file is ignored when the file is read into a matrix program.

Using a Working Data File

You can use the GET statement to read a case-oriented working data file into a matrix vari-
able. The result is a rectangular data matrix in which cases have become rows and variables
have become columns. Special circumstances can affect the processing of this data matrix.

Split-File Processing. After a SPLIT FILE command in SPSS, a matrix program executed with
the INCLUDE command will read one split-file group with each execution of a GET statement.
This enables you to process the subgroups separately within the matrix program.

Case Selection. When a subset of cases is selected for processing, as the result of a SELECT IF,
SAMPLE, or N OF CASES command, only the selected cases will be read by the GET state-
ment in a matrix program.

Temporary Transformations. The entire matrix program is treated as a single procedure by the
SPSS system. Temporary transformations—those preceded by the TEMPORARY command—
entered immediately before a matrix program are in effect throughout that program (even if
you GET the working data file repeatedly) and are no longer in effect at the end of the matrix
program.

Case Weighting. Case weighting in a working data file is ignored when the file is read into a
matrix program.

MATRIX and END MATRIX Commands

The MATRIX command, when encountered in an SPSS session, invokes the matrix processor,
which reads matrix statements until the END MATRIX or FINISH command is encountered.

• MATRIX is a procedure and cannot be entered inside a transformation structure such as DO
IF or LOOP.

• The MATRIX procedure does not require a working data file.

• Comments are removed before subsequent lines are passed to the matrix processor.

• Macros are expanded before subsequent lines are passed to the matrix processor.

The END MATRIX command terminates matrix processing and returns control to the SPSS
command processor.

• The contents of matrix variables are lost after an END MATRIX command.
• The working data file, if present, becomes available again after an END MATRIX command.

926 MATRIX—END MATRIX

COMPUTE Statement

The COMPUTE statement carries out most of the calculations in the matrix program. It close-
ly resembles the COMPUTE command in the SPSS transformation language.

• The basic specification is the target variable, an equals sign, and the assignment expression.
Values of the target variable are calculated according to the specification on the assignment
expression.

• The target variable must be named first, and the equals sign is required. Only one target vari-
able is allowed per COMPUTE statement.

• Expressions that extract portions of a matrix, such as M(1,:) or M(1:3,4), are allowed to
assign values. (See “Matrix Notation Shorthand” on p. 918.) The target variable must be
specified as a variable.

• Matrix functions must specify at least one argument enclosed in parentheses. If an expres-
sion has two or more arguments, each argument must be separated by a comma. For a
complete discussion of the functions and their arguments, see “Matrix Functions” on p. 927.

String Values on COMPUTE Statements

Matrix variables, unlike those in the SPSS transformation language, are not checked for data
type (numeric or string) when you use them in a COMPUTE statement.
• Numerical calculations with matrices containing string values will produce meaningless

results.

• One or more elements of a matrix can be set equal to string constants by enclosing the string
constants in apostrophes or quotation marks on a COMPUTE statement.

• String values can be copied from one matrix to another with the COMPUTE statement.

• There is no way to display a matrix that contains both numeric and string values, if you
compute one for some reason.

Example
COMPUTE LABELS={"Observe", "Predict", "Error"}.
PRINT LABELS /FORMAT=A7.

• LABELS is a row vector containing three string values.

Arithmetic Operations and Comparisons

The expression on a COMPUTE statement can be formed from matrix constants and variables,
combined with the arithmetic, relational, and logical operators discussed above. Matrix con-
structions and matrix functions are also allowed.

Examples
COMPUTE PI = 3.14159265.
COMPUTE RSQ = R * R.
COMPUTE FLAGS = EIGENVAL >= 1.
COMPUTE ESTIM = {OBS, PRED, ERR}.

MATRIX—END MATRIX 927

• The first statement computes a scalar. Note that the braces are optional on a scalar constant.

• The second statement computes the square of the matrix R. R can be any square matrix,
including a scalar.

• The third statement computes a vector named FLAGS, which has the same dimension as the
existing vector EIGENVAL. Each element of FLAGS equals 1 if the corresponding element of
EIGENVAL is greater than or equal to 1, and 0 if the corresponding element is less than 1.

• The fourth statement constructs a matrix ESTIM by concatenating the three vectors or
matrices OBS, PRED, and ERR. The component matrices must have the same number of
rows.

Matrix Functions

The following functions are available in the matrix program. Except where noted, each takes
one or more numeric matrices as arguments and returns a matrix value as its result. The argu-
ments must be enclosed in parentheses, and multiple arguments must be separated by commas.

On the following list, matrix arguments are represented by names beginning with M.
Unless otherwise noted, these arguments can be vectors or scalars. Arguments that must be
vectors are represented by names beginning with V, and arguments that must be scalars are
represented by names beginning with S.

ABS(M) Absolute value. Takes a single argument. Returns a matrix having the
same dimensions as the argument, containing the absolute values of its
elements.

ALL(M) Test for all elements nonzero. Takes a single argument. Returns a
scalar: 1 if all elements of the argument are nonzero and 0 if any
element is zero.

ANY(M) Test for any element nonzero. Takes a single argument. Returns a
scalar: 1 if any element of the argument is nonzero and 0 if all elements
are zero.

ARSIN(M) Inverse sine. Takes a single argument, whose elements must be
between and 1. Returns a matrix having the same dimensions as
the argument, containing the inverse sines (arcsines) of its elements.
The results are in radians and are in the range from to .

ARTAN(M) Inverse tangent. Takes a single argument. Returns a matrix having the
same dimensions as the argument, containing the inverse tangents (arctan-
gents) of its elements, in radians. To convert radians to degrees, multiply
by , which you can compute as . For example, the
statement COMPUTE DEGREES=ARTAN(M)*45/ARTAN(1) returns a
matrix containing inverse tangents in degrees.

BLOCK(M1,M2,...) Create a block diagonal matrix. Takes any number of arguments.
Returns a matrix with as many rows as the sum of the rows in all the
arguments, and as many columns as the sum of the columns in all the
arguments, with the argument matrices down the diagonal and zeros
elsewhere. For example, if:

1–

π 2⁄– π 2⁄

180 π⁄ 45 ARTAN 1()⁄

928 MATRIX—END MATRIX

, , , and ,

then:

CDFNORM(M) Standard normal cumulative distribution function of elements. Takes
a single argument. Returns a matrix having the same dimensions as the
argument, containing the values of the cumulative normal distribution
function for each of its elements. If an element of the argument is x,
the corresponding element of the result is a number between 0 and 1,
giving the proportion of a normal distribution that is less than x. For
example, CDFNORM({-1.96,0,1.96}) results in, approximately,
{.025,.5,.975}.

CHICDF(M,S) Chi-square cumulative distribution function of elements. Takes two
arguments, a matrix of chi-square values and a scalar giving the
degrees of freedom (which must be positive). Returns a matrix having
the same dimensions as the first argument, containing the values of the
cumulative chi-square distribution function for each of its elements. If
an element of the first argument is x and the second argument is S, the
corresponding element of the result is a number between 0 and 1,
giving the proportion of a chi-square distribution with S degrees of
freedom that is less than x. If x is not positive, the result is 0.

CHOL(M) Cholesky decomposition. Takes a single argument, which must be a
symmetric positive-definite matrix (a square matrix, symmetric about
the main diagonal, with positive eigenvalues). Returns a matrix
having the same dimensions as the argument. If M is a symmetric posi-
tive-definite matrix and B=CHOL(M), then T(B)*B=M, where T is the
transpose function defined below.

A 1 1 1

1 1 1
= B 2 2

2 2
= C

3 3 3

3 3 3

3 3 3

3 3 3

= D 4 4 4=

BLOCK A B C D, , ,()

1 1 1 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0

0 0 0 2 2 0 0 0 0 0 0

0 0 0 2 2 0 0 0 0 0 0

0 0 0 0 0 3 3 3 0 0 0
0 0 0 0 0 3 3 3 0 0 0

0 0 0 0 0 3 3 3 0 0 0

0 0 0 0 0 3 3 3 0 0 0

0 0 0 0 0 0 0 0 4 4 4

=

MATRIX—END MATRIX 929

CMAX(M) Column maxima. Takes a single argument. Returns a row vector with
the same number of columns as the argument. Each column of the
result contains the maximum value of the corresponding column of the
argument.

CMIN(M) Column minima. Takes a single argument. Returns a row vector with
the same number of columns as the argument. Each column of the
result contains the minimum value of the corresponding column of the
argument.

COS(M) Cosines. Takes a single argument. Returns a matrix having the same
dimensions as the argument, containing the cosines of the elements of
the argument. Elements of the argument matrix are assumed to be
measured in radians. To convert degrees to radians, multiply by ,
which you can compute as . For example, the statement
COMPUTE COSINES=COS(DEGREES*ARTAN(1)/45) returns
cosines from a matrix containing elements measured in degrees.

CSSQ(M) Column sums of squares. Takes a single argument. Returns a row
vector with the same number of columns as the argument. Each
column of the result contains the sum of the squared values of the
elements in the corresponding column of the argument.

CSUM(M) Column sums. Takes a single argument. Returns a row vector with the
same number of columns as the argument. Each column of the result
contains the sum of the elements in the corresponding column of the
argument.

DESIGN(M) Main-effects design matrix from the columns of a matrix. Takes a
single argument. Returns a matrix having the same number of rows as
the argument, and as many columns as the sum of the numbers of
unique values in each column of the argument. Constant columns in the
argument are skipped with a warning message. The result contains 1 in
the row(s) where the value in question occurs in the argument and 0
otherwise. For example, if:

 , then:

The first three columns of the result correspond to the three distinct
values 1, 2, and 3 in the first column of A; the fourth through sixth
columns of the result correspond to the three distinct values 2, 3, and 6
in the second column of A; and the last two columns of the result corre-
spond to the two distinct values 8 and 5 in the third column of A.

π 180⁄
ARTAN 1() 45⁄

A

1 2 8

1 3 8

2 6 5

3 3 8

3 6 5

= DESIGN A()

1 0 0 1 0 0 1 0
1 0 0 0 1 0 1 0

0 1 0 0 0 1 0 1

0 0 1 0 1 0 1 0

0 0 1 0 0 1 0 1

=

930 MATRIX—END MATRIX

DET(M) Determinant. Takes a single argument, which must be a square matrix.
Returns a scalar, which is the determinant of the argument.

DIAG(M) Diagonal of a matrix. Takes a single argument. Returns a column
vector with as many rows as the minimum of the number of rows and
the number of columns in the argument. The ith element of the result
is the value in row i, column i, of the argument.

EOF(file) End of file indicator. Normally used after a READ statement. Takes a
single argument, which must be either a filename in apostrophes or
quotation marks, or a file handle defined on a FILE HANDLE command
that precedes the matrix program. Returns a scalar equal to 1 if the last
attempt to read that file encountered the last record in the file, and
equal to 0 if the last attempt did not encounter the last record in the file.
Calling the EOF function causes a REREAD specification on the READ
statement to be ignored on the next attempt to read the file.

EVAL(M) Eigenvalues of a symmetric matrix. Takes a single argument, which
must be a symmetric matrix. Returns a column vector with the same
number of rows as the argument, containing the eigenvalues of the
argument in decreasing numerical order.

EXP(M) Exponentials of matrix elements. Takes a single argument. Returns a
matrix having the same dimensions as the argument, in which each
element equals e raised to the power of the corresponding element in
the argument matrix.

FCDF(M,S1,S2) Cumulative F distribution function of elements. Takes three
arguments, a matrix of F values and two scalars giving the degrees
of freedom (which must be positive). Returns a matrix having the
same dimensions as the first argument M, containing the values of
the cumulative F distribution function for each of its elements. If an
element of the first argument is x and the second and third arguments
are S1 and S2, the corresponding element of the result is a number
between 0 and 1, giving the proportion of an F distribution with S1
and S2 degrees of freedom that is less than x. If x is not positive, the
result is 0.

GINV(M) Moore-Penrose generalized inverse of a matrix. Takes a single argu-
ment. Returns a matrix with the same dimensions as the transpose of
the argument. If A is the generalized inverse of a matrix M, then
M*A*M=M and . Both and are symmetric.

GRADE(M) Ranks elements in a matrix. Takes a single argument. Uses sequential
integers for ties.

GSCH(M) Gram-Schmidt orthonormal basis for the space spanned by the column
vectors of a matrix. Takes a single argument, in which there must be as
many linearly independent columns as there are rows. (That is, the rank
of the argument must equal the number of rows.) Returns a square
matrix with as many rows as the argument. The columns of the result
form a basis for the space spanned by the columns of the argument.

A*M*A=A A*M M*A

MATRIX—END MATRIX 931

IDENT(S1 [,S2]) Create an identity matrix. Takes either one or two arguments, which
must be scalars. Returns a matrix with as many rows as the first
argument and as many columns as the second argument, if any. If the
second argument is omitted, the result is a square matrix. Elements on
the main diagonal of the result equal 1, and all other elements equal 0.

INV(M) Inverse of a matrix. Takes a single argument, which must be square
and nonsingular (that is, its determinant must not be 0). Returns a
square matrix having the same dimensions as the argument. If A is the
inverse of M, then M*A=A*M=I, where I is the identity matrix.

KRONEKER(M1,M2) Kronecker product of two matrices. Takes two arguments. Returns a
matrix whose row dimension is the product of the row dimensions of
the arguments and whose column dimension is the product of the
column dimensions of the arguments. The Kronecker product of two
matrices A and B takes the form of an array of scalar products:

A(1,1)*B A(1,2)*B ...A(1,N)*B
A(2,1)*B A(2,2)*B ...A(2,N)*B

...
A(M,1)*B A(M,2)*B ...A(M,N)*B

LG10(M) Base 10 logarithms of the elements. Takes a single argument, all of
whose elements must be positive. Returns a matrix having the same
dimensions as the argument, in which each element is the logarithm to
base 10 of the corresponding element of the argument.

LN(M) Natural logarithms of the elements. Takes a single argument, all of
whose elements must be positive. Returns a matrix having the same
dimensions as the argument, in which each element is the logarithm to
base e of the corresponding element of the argument.

MAGIC(S) Magic square. Takes a single scalar, which must be 3 or larger, as an
argument. Returns a square matrix with S rows and S columns
containing the integers from 1 through . All the row sums and all the
column sums are equal in the result matrix. (The result matrix is only
one of several possible magic squares.)

MAKE(S1,S2,S3) Create a matrix, all of whose elements equal a specified value. Takes
three scalars as arguments. Returns an matrix, all of whose
elements equal S3.

MDIAG(V) Create a square matrix with a specified main diagonal. Takes a single
vector as an argument. Returns a square matrix with as many rows and
columns as the dimension of the vector. The elements of the vector
appear on the main diagonal of the matrix, and the other matrix
elements are all 0.

MMAX(M) Maximum element in a matrix. Takes a single argument. Returns a
scalar equal to the numerically largest element in the argument M.

MMIN(M) Minimum element in a matrix. Takes a single argument. Returns a
scalar equal to the numerically smallest element in the argument M.

S2

S1 S2×

932 MATRIX—END MATRIX

MOD(M,S) Remainders after division by a scalar. Takes two arguments, a matrix
and a scalar (which must not be 0). Returns a matrix having the same
dimensions as M, each of whose elements is the remainder after the
corresponding element of M is divided by S. The sign of each element
of the result is the same as the sign of the corresponding element of the
matrix argument M.

MSSQ(M) Matrix sum of squares. Takes a single argument. Returns a scalar that
equals the sum of the squared values of all the elements in the argument.

MSUM(M) Matrix sum. Takes a single argument. Returns a scalar that equals the
sum of all of the elements in the argument.

NCOL(M) Number of columns in a matrix. Takes a single argument. Returns a
scalar that equals the number of columns in the argument.

NROW(M) Number of rows in a matrix. Takes a single argument. Returns a scalar
that equals the number of rows in the argument.

RANK(M) Rank of a matrix. Takes a single argument. Returns a scalar that equals
the number of linearly independent rows or columns in the argument.

RESHAPE(M,S1,S2) Matrix of different dimensions. Takes three arguments, a matrix and
two scalars, whose product must equal the number of elements in the
matrix. Returns a matrix whose dimensions are given by the scalar
arguments. For example, if M is any matrix with exactly 50 elements,
then RESHAPE(M, 5, 10) is a matrix with 5 rows and 10 columns.
Elements are assigned to the reshaped matrix in order by row.

RMAX(M) Row maxima. Takes a single argument. Returns a column vector with
the same number of rows as the argument. Each row of the result
contains the maximum value of the corresponding row of the argu-
ment.

RMIN(M) Row minima. Takes a single argument. Returns a column vector with
the same number of rows as the argument. Each row of the result
contains the minimum value of the corresponding row of the argu-
ment.

RND(M) Elements rounded to the nearest integers. Takes a single argument.
Returns a matrix having the same dimensions as the argument. Each
element of the result equals the corresponding element of the argu-
ment rounded to an integer.

RNKORDER(M) Ranking of matrix elements in ascending order. Takes a single argu-
ment. Returns a matrix having the same dimensions as the argument
M. The smallest element of the argument corresponds to a result
element of 1, and the largest element of the argument to a result
element equal to the number of elements, except that ties (equal
elements in M) are resolved by assigning a rank equal to the arithmetic

MATRIX—END MATRIX 933

mean of the applicable ranks. For example, if:

, then:

RSSQ(M) Row sums of squares. Takes a single argument. Returns a column
vector having the same number of rows as the argument. Each row of
the result contains the sum of the squared values of the elements in the
corresponding row of the argument.

RSUM(M) Row sums. Takes a single argument. Returns a column vector having the
same number of rows as the argument. Each row of the result contains
the sum of the elements in the corresponding row of the argument.

SIN(M) Sines. Takes a single argument. Returns a matrix having the same
dimensions as the argument, containing the sines of the elements of
the argument. Elements of the argument matrix are assumed to be
measured in radians. To convert degrees to radians, multiply by

, which you can compute as . For example, the
statement COMPUTE SINES=SIN(DEGREES*ARTAN(1)/45)
computes sines from a matrix containing elements measured in
degrees.

SOLVE(M1,M2) Solution of systems of linear equations. Takes two arguments, the first
of which must be square and nonsingular (its determinant must be
nonzero), and the second of which must have the same number of rows
as the first. Returns a matrix with the same dimensions as the second
argument. If M1*X=M2, then X=SOLVE(M1, M2). In effect, this func-
tion sets its result X equal to INV(M1)*M2.

SQRT(M) Square roots of elements. Takes a single argument, whose elements
must not be negative. Returns a matrix having the same dimensions as
the arguments, whose elements are the positive square roots of the
corresponding elements of the argument.

SSCP(M) Sums of squares and cross-products. Takes a single argument. Returns
a square matrix having as many rows (and columns) as the argument
has columns. SSCP(M) equals T(M)*M, where T is the transpose func-
tion defined below.

SVAL(M) Singular values of a matrix. Takes a single argument. Returns a
column vector containing as many rows as the minimum of the
numbers of rows and columns in the argument, containing the singular
values of the argument in decreasing numerical order. The singular
values of a matrix M are the square roots of the eigenvalues of
T(M)*M, where T is the transpose function discussed below.

SWEEP(M,S) Sweep transformation of a matrix. Takes two arguments, a matrix and
a scalar, which must be less than or equal to both the number of rows

M
1– 21.7– 8

0 3.91 21.7–

8 9 10

= RNKORDER M()
3 1.5 6.5
4 5 1.5

6.5 8 9

=

π 180⁄ ARTAN 1() 45⁄

934 MATRIX—END MATRIX

and the number of columns of the matrix. In other words, the pivot
element of the matrix, which is M(S,S), must exist. Returns a matrix
of the same dimensions as M. Suppose that S={k} and
A=SWEEP(M,S). If M(k,k) is not 0, then

for i not equal to k
 for j not equal to k

 for i,j not equal to k

and if M(k,k) equals 0, then
for all i

 for i,j not equal to k

TCDF(M,S) Cumulative t distribution function of elements. Takes two arguments,
a matrix of t values and a scalar giving the degrees of freedom (which
must be positive). Returns a matrix having the same dimensions as M,
containing the values of the cumulative t distribution function for each
of its elements. If an element of the first argument is x and the second
argument is S, then the corresponding element of the result is a number
between 0 and 1, giving the proportion of a t distribution with S
degrees of freedom that is less than x.

TRACE(M) Sum of the main diagonal elements. Takes a single argument. Returns
a scalar, which equals the sum of the elements on the main diagonal
of the argument.

TRANSPOS(M) Transpose of the matrix. Takes a single argument. Returns the trans-
pose of the argument. TRANSPOS can be shortened to T.

TRUNC(M) Truncation of elements to integers. Takes a single argument. Returns a
matrix having the same dimensions as the argument, whose elements
equal the corresponding elements of the argument truncated to integers.

UNIFORM(S1,S2) Uniformly distributed pseudo-random numbers between 0 and 1.
Takes two scalars as arguments. Returns a matrix with the number of
rows specified by the first argument and the number of columns spec-
ified by the second argument, containing pseudo-random numbers
uniformly distributed between 0 and 1.

CALL Statement

Closely related to the matrix functions are the matrix procedures, which are invoked with the
CALL statement. Procedures, similarly to functions, accept arguments enclosed in parentheses
and separated by commas. They return their result in one or more of the arguments as noted
in the individual descriptions below. They are implemented as procedures rather than as func-
tions so that they can return more than one value or (in the case of SETDIAG) modify a matrix
without making a copy of it.

EIGEN(M,var1,var2) Eigenvectors and eigenvalues of a symmetric matrix. Takes three
arguments: a symmetric matrix and two valid variable names to which

A k k,() 1 M k k,()⁄=
A i k,() M i k,() M k k,()⁄–=
A k j,() M k j,() M k k,()()⁄=
A i j,() M k k,()*M i j,() M i k,()*M k j,()–() M k k,()⁄=

A i k,() A k i,() 0= =
A i j,() M i j,()=

MATRIX—END MATRIX 935

the results are assigned. If M is a symmetric matrix, the statement
CALL EIGEN(M, A, B) will assign to A a matrix having the same
dimensions as M, containing the eigenvectors of M as its columns, and
will assign to B a column vector having as many rows as M, containing
the eigenvalues of M in descending numerical order. The eigenvectors
in A are ordered to correspond with the eigenvalues in B; thus, the first
column corresponds to the largest eigenvalue, the second to the second
largest, and so on.

SETDIAG(M,V) Set the main diagonal of a matrix. Takes two arguments, a matrix and
a vector. Elements on the main diagonal of M are set equal to the corre-
sponding elements of V. If V is a scalar, all the diagonal elements are
set equal to that scalar. Otherwise, if V has fewer elements than the
main diagonal of M, remaining elements on the main diagonal are
unchanged. If V has more elements than are needed, the extra elements
are not used. See also MDIAG on p. 931.

SVD(M,var1,var2,var3) Singular value decomposition of a matrix. Takes four arguments: a
matrix and three valid variable names to which the results are assigned.
If M is a matrix, the statement CALL SVD(M,U,Q,V) will assign to
Q a diagonal matrix of the same dimensions as M, and to U and V
unitary matrices (matrices whose inverses equal their transposes) of
appropriate dimensions, such that M=U*Q*T(V), where T is the trans-
pose function defined above. The singular values of M are in the main
diagonal of Q.

PRINT Statement

The PRINT statement displays matrices or matrix expressions. Its syntax is as follows:

PRINT [matrix expression]
[/FORMAT="format descriptor"]
[/TITLE="title"]
[/SPACE={NEWPAGE}]

 {n }
[{/RLABELS=list of quoted names}]
{/RNAMES=vector of names }

[{/CLABELS=list of quoted names}]
{/CNAMES=vector of names }

Matrix Expression

Matrix expression is a single matrix variable name or an expression that evaluates to a
matrix. PRINT displays the specified matrix.

• The matrix specification must precede any other specifications on the PRINT statement. If
no matrix is specified, no data will be displayed, but the TITLE and SPACE specifications
will be honored.

• You can specify a matrix name, a matrix raised to a power, or a matrix function (with its
arguments in parentheses) by itself, but you must enclose other matrix expressions in
parentheses. For example, PRINT A, PRINT INV(A), and PRINT B**DET(T(C)*D)
are all legal, but PRINT A+B is not. You must specify PRINT (A+B).

936 MATRIX—END MATRIX

• Constant expressions are allowed.

• A matrix program can consist entirely of PRINT statements, without defining any matrix
variables.

FORMAT Keyword

FORMAT specifies a single format descriptor for display of the matrix data.

• All matrix elements are displayed with the same format.

• You can use any printable numeric format (for numeric matrices) or string format (for string
matrices) as defined in FORMATS.

• The matrix processor will choose a suitable numeric format if you omit the FORMAT spec-
ification, but a string format such as A8 is essential when displaying a matrix containing
string data.

• String values exceeding the width of a string format are truncated.

• See “Scaling Factor in Displays” on p. 937 for default formatting of matrices containing
large or small values.

TITLE Keyword

TITLE specifies a title for the matrix displayed. The title must be enclosed in quotation marks
or apostrophes. If it exceeds the maximum display width, it is truncated. The slash preceding
TITLE is required, even if it is the only specification on the PRINT statement. If you omit the
TITLE specification, the matrix name or expression from the PRINT statement is used as a
default title.

SPACE Keyword

SPACE controls output spacing before printing the title and the matrix. You can specify either
a positive number or the keyword NEWPAGE. The slash preceding SPACE is required, even
if it is the only specification on the PRINT statement.

NEWPAGE Start a new page before printing the title.

n Skip n lines before displaying the title.

RLABELS Keyword

RLABELS allows you to supply row labels for the matrix.

• The labels must be separated by commas.

• Enclose individual labels in quotation marks or apostrophes if they contain imbedded
commas or if you want to preserve lowercase letters. Otherwise, quotation marks or apos-
trophes are optional.

• If too many names are supplied, the extras are ignored. If not enough names are supplied,
the last rows remain unlabeled.

MATRIX—END MATRIX 937

RNAMES Keyword

RNAMES allows you to supply the name of a vector or a vector expression containing row
labels for the matrix.

• Either a row vector or a column vector can be used, but the vector must contain string data.

• If too many names are supplied, the extras are ignored. If not enough names are supplied,
the last rows remain unlabeled.

CLABELS Keyword

CLABELS allows you to supply column labels for the matrix.

• The labels must be separated by commas.

• Enclose individual labels in quotation marks or apostrophes if they contain imbedded
commas or if you want to preserve lowercase letters. Otherwise, quotation marks or apos-
trophes are optional.

• If too many names are supplied, the extras are ignored. If not enough names are supplied,
the last columns remain unlabeled.

CNAMES Keyword

CNAMES allows you to supply the name of a vector or a vector expression containing column
labels for the matrix.

• Either a row vector or a column vector can be used, but the vector must contain string data.

• If too many names are supplied, the extras are ignored. If not enough names are supplied,
the last columns remain unlabeled.

Scaling Factor in Displays

When a matrix contains very large or very small numbers, it may be necessary to use scien-
tific notation to display the data. If you do not specify a display format, the matrix processor
chooses a power-of-10 multiplier that will allow the largest value to be displayed, and it dis-
plays this multiplier on a heading line before the data. The multiplier is not displayed for each
element in the matrix. The displayed values, multiplied by the power of 10 that is indicated
in the heading, equal the actual values (possibly rounded).

• Values that are very small, relative to the multiplier, are displayed as 0.

• If you explicitly specify a scientific-notation format (Ew.d), each matrix element is
displayed using that format. This permits you to display very large and very small numbers
in the same matrix without losing precision.

Example
COMPUTE M = {.0000000001357, 2.468, 3690000000}.
PRINT M /TITLE "Default format".
PRINT M /FORMAT "E13" /TITLE "Explicit exponential format".

938 MATRIX—END MATRIX

• The first PRINT subcommand uses the default format with as the multiplier for each
element of the matrix. This results in the following output:
Default format

10 ** 9 X
.000000000 .000000002 3.690000000

Note that the first element is displayed as 0 and the second is rounded to one significant
digit.

• An explicitly specified exponential format on the second PRINT subcommand allows each
element to be displayed with full precision, as the following output shows:
Explicit exponential format
1.3570000E-10 2.4680000E+00 3.6900000E+09

Matrix Control Structures

The matrix language includes two structures that allow you to alter the flow of control within
a matrix program.

• The DO IF statement tests a logical expression to determine whether one or more subsequent
matrix statements should be executed.

• The LOOP statement defines the beginning of a block of matrix statements that should
be executed repeatedly until a termination criterion is satisfied or a BREAK statement is
executed.

These statements closely resemble the DO IF and LOOP commands in the SPSS transforma-
tion language. In particular, these structures can be nested within one another as deeply as
the available memory allows.

DO IF Structures

A DO IF structure in a matrix program affects the flow of control exactly as the analogous
commands affect an SPSS transformation program, except that missing-value considerations
do not arise in a matrix program. The syntax of the DO IF structure is as follows:

DO IF [(]logical expression[)]

 matrix statements

[ELSE IF [(]logical expression[)]]

 matrix statements

[ELSE IF...]

 .
 .
 .

[ELSE]

 matrix statements

END IF.

109

MATRIX—END MATRIX 939

• The DO IF statement marks the beginning of the structure, and the END IF statement marks
its end.

• The ELSE IF statement is optional and can be repeated as many times as desired within the
structure.

• The ELSE statement is optional. It can be used only once and must follow any ELSE IF state-
ments.

• The END IF statement must follow any ELSE IF and ELSE statements.

• The DO IF and ELSE IF statements must contain a logical expression, normally one
involving the relational operators EQ, GT, and so on. However, the matrix language allows
any expression that evaluates to a scalar to be used as the logical expression. Scalars greater
than 0 are considered true, and scalars less than or equal to 0 are considered false.

A DO IF structure affects the flow of control within a matrix program as follows:
• If the logical expression on the DO IF statement is true, the statements immediately

following the DO IF are executed up to the next ELSE IF or ELSE in the structure. Control
then passes to the first statement following the END IF for that structure.

• If the expression on the DO IF statement is false, control passes to the first ELSE IF, where
the logical expression is evaluated. If this expression is true, statements following the ELSE
IF are executed up to the next ELSE IF or ELSE statement, and control passes to the first
statement following the END IF for that structure.

• If the expressions on the DO IF and the first ELSE IF statements are both false, control passes
to the next ELSE IF, where that logical expression is evaluated. If none of the expressions is
true on any of the ELSE IF statements, statements following the ELSE statement are executed
up to the END IF statement, and control falls out of the structure.

• If none of the expressions on the DO IF statement or the ELSE IF statements is true and there
is no ELSE statement, control passes to the first statement following the END IF for that
structure.

LOOP Structures

A LOOP structure in a matrix program affects the flow of control exactly as the analogous
commands affect an SPSS transformation program, except that missing-value considerations
do not arise in a matrix program. Its syntax is as follows:

LOOP [varname=n TO m [BY k]] [IF [(]logical expression[)]

matrix statements

[BREAK]

matrix statements

END LOOP [IF [(]logical expression[)]]

The matrix statements specified between LOOP and END LOOP are executed repeatedly until
one of the following four conditions is met:
• A logical expression on the IF clause of the LOOP statement is evaluated as false.

• An index variable used on the LOOP statement passes beyond its terminal value.

940 MATRIX—END MATRIX

• A logical expression on the IF clause of the END LOOP statement is evaluated as true.

• A BREAK statement is executed within the loop structure (but outside of any nested loop
structures).

Index Clause on the LOOP Statement

An index clause on a LOOP statement creates an index variable whose name is specified im-
mediately after the keyword LOOP. The variable is assigned an initial value of n. Each time
through the loop, the variable is tested against the terminal value m and incremented by the
increment value k if k is specified, or by 1 if k is not specified. When the index variable is
greater than m for positive increments or less than m for negative increments, control passes
to the statement after the END LOOP statement.

• Both the index clause and the IF clause are optional. If both are present, the index clause
must appear first.

• The index variable must be scalar with a valid matrix variable name.

• The initial value, n, the terminal value, m, and the increment, k (if present), must be scalars
or matrix expressions evaluating to scalars. Non-integer values are truncated to integers
before use.

• If the keyword BY and the increment k are absent, an increment of 1 is used.

IF Clause on the LOOP Statement

The logical expression is evaluated before each iteration of the loop structure. If it is false,
the loop terminates and control passes to the statement after END LOOP.
• The IF clause is optional. If both the index clause and the IF clause are present, the index

clause must appear first.

• As in the DO IF structure, the logical expression of the IF clause is evaluated as scalar, with
positive values being treated as true and 0 or negative values, as false.

IF Clause on the END LOOP Statement

When an IF clause is present on an END LOOP statement, the logical expression is evaluated
after each iteration of the loop structure. If it is true, the loop terminates and control passes
to the statement following the END LOOP statement.

• The IF clause is optional.

• As in the LOOP statement, the logical expression of the IF clause is evaluated as scalar, with
positive values being treated as true and 0 or negative values, as false.

BREAK Statement

The BREAK statement within a loop structure transfers control immediately to the statement
following the (next) END LOOP statement. It is normally placed within a DO IF structure
inside the LOOP structure to exit the loop when specified conditions are met.

MATRIX—END MATRIX 941

Example
LOOP LOCATION = 1, NROW(VEC).
+ DO IF (VEC(LOCATION) = TARGET).
+ BREAK.

+ END IF.
END LOOP.

• This loop searches for the (first) location of a specific value, TARGET, in a vector, VEC.

• The DO IF statement checks whether the vector element indexed by LOCATION equals the
target.

• If so, the BREAK statement transfers control out of the loop, leaving LOCATION as the index
of TARGET in VEC.

READ Statement: Reading Character Data

The READ statement reads data into a matrix or submatrix from a character-format file—that
is, a file containing ordinary numbers or words in readable form. The syntax for the READ
statement is:

READ variable reference
[/FILE = file reference]
/FIELD = c1 TO c2 [BY w]

[/SIZE = size expression]
[/MODE = {RECTANGULAR}]

{SYMMETRIC }
[/REREAD]
[/FORMAT = format descriptor]

• The file can contain values in freefield or fixed-column format. The data can appear in
any of the field formats supported by DATA LIST.

• More than one matrix can be read from a single input record by rereading the record.
• If the end of the file is encountered during a READ operation (that is, fewer values are avail-

able than the number of elements required by the specified matrix size), a warning message
is displayed and the contents of the unread elements of the matrix are unpredictable.

Variable Specification

The variable reference on the READ statement is a matrix variable name, with or without
indexes.

For a name without indexes:

• READ creates the specified matrix variable.

• The matrix need not exist when READ is executed.

• If the matrix already exists, it is replaced by the matrix read from the file.

• You must specify the size of the matrix using the SIZE specification.

For an indexed name:
• READ creates a submatrix from an existing matrix.

942 MATRIX—END MATRIX

• The matrix variable named must already exist.

• You can define any submatrix with indexes; for example, M(:,I). To define an entire
existing matrix, specify M(:,:).

• The SIZE specification can be omitted. If specified, its value must match the size of the spec-
ified submatrix.

FILE Specification

FILE designates the character file containing the data. It can be an actual filename in apos-
trophes or quotation marks, or a file handle defined on a FILE HANDLE command that pre-
cedes the matrix program.
• The filename or handle must specify an existing file containing character data, not an SPSS

data file or a specially formatted file of another kind, such as a spreadsheet file.

• The FILE specification is required on the first READ statement in a matrix program (first in
order of appearance, not necessarily in order of execution). If you omit the FILE specifica-
tion from a later READ statement, the statement uses the most recently named file (in order
of appearance) on a READ statement in the same matrix program.

FIELD Specification

FIELD specifies the column positions of a fixed-format record where the data for matrix ele-
ments are located.

• The FIELD specification is required.

• Startcol is the number of the leftmost column of the input area.
• Endcol is the number of the rightmost column of the input area.

• Both startcol and endcol are required and both must be constants. For example,
FIELD = 9 TO 72 specifies that values to be read appear between columns 9 and 72
(inclusive) of each input record.

• The BY clause, if present, indicates that each value appears within a fixed set of columns on
the input record; that is, one value is separated from the next by its column position rather
than by a space or comma. Width is the width of the area designated for each value. For
example, FIELD = 1 TO 80 BY 10 indicates that there are eight possible values per
record and that one will appear between columns 1 and 10 (inclusive), another between
columns 11 and 20, and so on, up to columns 71 and 80. The BY value must evenly divide
the length of the field. That is, must be a multiple of the width.

• You can use the FORMAT specification (see p. 944) to supply the same information as the
BY clause of the FIELD specification. If you omit the BY clause and do not specify a format
on the FORMAT specification, READ assumes that values are separated by blanks or commas
within the designated field.

endcol startcol– 1+

MATRIX—END MATRIX 943

SIZE Specification

The SIZE specification is a matrix expression that, when evaluated, specifies the size of the
matrix to be read.

• The expression should evaluate to a two-element row or column vector. The first element
designates the number of rows in the matrix to be read; the second element gives the number
of columns.

• Values of the SIZE specification are truncated to integers if necessary.

• The size expression may be a constant, such as {5;5}, or a matrix variable name, such as
MSIZE, or any valid expression, such as INFO(1,:).

• If you use a scalar as the size expression, a column vector containing that number of rows
is read. Thus, SIZE=1 reads a scalar, and SIZE=3 reads a 3 × 1 column vector.

You must include a SIZE specification whenever you name an entire matrix (rather than a
submatrix) on the READ statement. If you specify a submatrix, the SIZE specification is op-
tional but, if included, must agree with the size of the specified submatrix.

MODE Specification

MODE specifies the format of the matrix to be read in. It can be either rectangular or symmetric.
If the MODE specification is omitted, the default is RECTANGULAR.

RECTANGULAR Matrix is completely represented in file. Each row begins on a new record,
and all entries in that row are present on that and (possibly) succeeding
records. This is the default if the MODE specification is omitted.

SYMMETRIC Elements of the matrix below the main diagonal are the same as those above
it. Only matrix elements on and below the main diagonal are read; elements
above the diagonal are set equal to the corresponding symmetric elements
below the diagonal. Each row is read beginning on a new record, although it
may span more than one record. Only a single value is read from the first
record, two values are read from the second, and so on.

• If SYMMETRIC is specified, the matrix processor first checks that the number of rows and
the number of columns are the same. If the numbers, specified either on SIZE or on the vari-
able reference, are not the same, an error message is displayed and the command is not
executed.

REREAD Specification

The REREAD specification indicates that the current READ statement should begin with the
last record read by a previous READ statement.

• REREAD has no further specifications.
• REREAD cannot be used on the first READ statement to read from a file.

• If you omit REREAD, the READ statement begins with the first record following the last one
read by the previous READ statement.

• The REREAD specification is ignored on the first READ statement following a call to the
EOF function for the same file.

944 MATRIX—END MATRIX

FORMAT Specification

FORMAT specifies how the matrix processor should interpret the input data. The format de-
scriptor can be any valid SPSS data format, such as F6, E12.2, or A6, or it can be a type
code; for example, F, E, or A.

• If you omit the FORMAT specification, the default is F.

• You can specify the width of fixed-size data fields with either a FORMAT specification or a
BY clause on a FIELD specification. You can include it in both places only if you specify the
same value.

• If you do not include either a FORMAT or a BY clause on FIELD, READ expects values sepa-
rated by blanks or commas.

• An additional way of specifying the width is to supply a repetition factor without a width
(for example, 10F, 5COMMA, or 3E). The field width is then calculated by dividing the
width of the whole input area on the FIELD specification by the repetition factor. A format
with a digit for the repetition factor must be enclosed in quotes.

• Only one format can be specified. A specification such as FORMAT=’5F2.0 3F3.0
F2.0’ is invalid.

WRITE Statement: Writing Character Data

WRITE writes the value of a matrix expression to an external file. The syntax of the WRITE
statement is:

WRITE matrix expression
[/OUTFILE = file reference]
/FIELD = startcol TO endcol [BY width]

[/MODE = {RECTANGULAR}]
{TRIANGULAR }

[/HOLD]
[/FORMAT = format descriptor]

Matrix Expression Specification

Specify any matrix expression that evaluates to the value(s) to be written.

• The matrix specification must precede any other specifications on the WRITE statement.
• You can specify a matrix name, a matrix raised to a power, or a matrix function (with its

arguments in parentheses) by itself, but you must enclose other matrix expressions in
parentheses. For example, WRITE A, WRITE INV(A), or WRITE B**DET(T(C)*D)
is legal, but WRITE A+B is not. You must specify WRITE (A+B).

• Constant expressions are allowed.

OUTFILE Specification

OUTFILE designates the character file to which the matrix expression is to be written. The
file reference can be an actual filename in apostrophes or quotation marks, or a file handle

MATRIX—END MATRIX 945

defined on a FILE HANDLE command that precedes the matrix program. The filename or file
handle must be a valid file specification.

• The OUTFILE specification is required on the first WRITE statement in a matrix program
(first in order of appearance, not necessarily in order of execution).

• If you omit the OUTFILE specification from a later WRITE statement, the statement uses the
most recently named file (in order of appearance) on a WRITE statement in the same matrix
program.

FIELD Specification

FIELD specifies the column positions of a fixed-format record to which the data should be
written.

• The FIELD specification is required.
• The start column, c1, is the number of the leftmost column of the output area.

• The end column, c2, is the number of the rightmost column of the output area.

• Both c1 and c2 are required, and both must be constants. For example,
FIELD = 9 TO 72 specifies that values should be written between columns 9 and 72
(inclusive) of each output record.

• The BY clause, if present, indicates how many characters should be allocated to the output
value of a single matrix element. The value w is the width of the area designated for each
value. For example, FIELD = 1 TO 80 BY 10 indicates that up to eight values
should be written per record, and that one should go between columns 1 and 10 (inclusive),
another between columns 11 and 20, and so on up to columns 71 and 80. The value on the
BY clause must evenly divide the length of the field. That is, c2 – c1 + 1 must be a multiple
of w.

• You can use the FORMAT specification (see below) to supply the same information as the
BY clause. If you omit the BY clause from the FIELD specification and do not specify a
format on the FORMAT specification, WRITE uses freefield format, separating matrix
elements by single blank spaces.

MODE Specification

MODE specifies the format of the matrix to be written. If MODE is not specified, the default
is RECTANGULAR.

RECTANGULAR Write the entire matrix. Each row starts a new record, and all of the values in
that row are present in that and (possibly) subsequent records. This is the
default if the MODE specification is omitted.

TRIANGULAR Write only the lower triangular entries and the main diagonal. Each row
begins a new record and may span more than one record. This mode may
save file space.

• A matrix written with MODE = TRIANGULAR must be square, but it need not be
symmetric. If it is not, values in the upper triangle are not written.

• A matrix written with MODE = TRIANGULAR may be read with MODE = SYMMETRIC.

946 MATRIX—END MATRIX

HOLD Specification

HOLD causes the last line written by the current WRITE statement to be held so that the next
WRITE to that file will write on the same line. Use HOLD to write more than one matrix on a line.

FORMAT Specification

FORMAT indicates how the internal (binary) values of matrix elements should be converted
to character format for output.

• The format descriptor is any valid SPSS data format, such as F6, E12.2, or A6, or it can
be a format type code, such as F, E, or A. It specifies how the written data are encoded and,
if a width is specified, how wide the fields containing the data are. (See FORMATS for valid
formats.)

• If you omit the FORMAT specification, the default is F.

• The data field widths may be specified either here or after BY on the FIELD specification.
You may specify the width in both places only if you give the same value.

• An additional way of specifying the width is to supply a repetition factor without a width
(for example, 10F or 5COMMA). The field width is then calculated by dividing the width of
the whole output area on the FIELD specification by the repetition factor. A format with a
digit for the repetition factor must be enclosed in quotes.

• If the field width is not specified in any of these ways, then the freefield format is used—
matrix values are written separated by one blank, and each value occupies as many positions
as necessary to avoid the loss of precision. Each row of the matrix is written starting with a
new output record.

• Only one format descriptor can be specified. Do not try to specify more than one format;
for example, ’5F2.0 3F3.0 F2.0’ is invalid as a FORMAT specification on WRITE.

GET Statement: Reading SPSS Data Files

GET reads matrices from an external SPSS data file or from the working data file. The syntax
of GET is as follows:

GET variable reference
[/FILE={file reference}]

{* }
[/VARIABLES = variable list]
[/NAMES = names vector]
[/MISSING = {ACCEPT}]

{OMIT }
{value }

[/SYSMIS = {OMIT }]
{value}

Variable Specification

The variable reference on the GET statement is a matrix variable name with or without indexes.

MATRIX—END MATRIX 947

For a name without indexes:

• GET creates the specified matrix variable.

• The size of the matrix is determined by the amount of data read from the SPSS data file or
the working file.

• If the matrix already exists, it is replaced by the matrix read from the file.

For an indexed name:
• GET creates a submatrix from an existing matrix.

• The matrix variable named must already exist.

• You can define any submatrix with indexes; for example, M(:,I). To define an entire
existing matrix, specify M(:,:).

• The indexes, along with the size of the existing matrix, specify completely the size of the
submatrix, which must agree with the dimensions of the data read from the SPSS data file.

• The specified submatrix is replaced by the matrix elements read from the SPSS data file.

FILE Specification

FILE designates the SPSS data file to be read. Use an asterisk, or simply omit the FILE spec-
ification, to designate the current working data file.

• The file reference can be either a filename enclosed in apostrophes or quotation marks, or a
file handle defined on a FILE HANDLE command that precedes the matrix program.

• If you omit the FILE specification, the working data file is used.

• In a matrix program executed with the INCLUDE command, if a SPLIT FILE command is in
effect, a GET statement that references the working data file will read a single split-file
group of cases. (A matrix program cannot be executed from a syntax window if a SPLIT
FILE command is in effect.)

VARIABLES Specification

VARIABLES specifies a list of variables to be read from the SPSS data file.

• The variable list is entered much the same as in other SPSS procedures except that the vari-
able names must be separated by commas.

• The keyword TO can be used to reference consecutive variables on the SPSS data file.
• The variable list can consist of the keyword ALL to get all the variables in the SPSS data file.

ALL is the default if the VARIABLES specification is omitted.

• All variables read from the SPSS data file should be numeric. If a string variable is specified,
a warning message is issued and the string variable is skipped.

Example
GET M /VARIABLES = AGE, RESIDE, INCOME TO HEALTH.

• The variables AGE, RESIDE, and INCOME to HEALTH from the working data file will form
the columns of the matrix M.

948 MATRIX—END MATRIX

NAMES Specification

NAMES specifies a vector to store the variable names from the SPSS data file.

• If you omit the NAMES specification, the variable names are not available to the MATRIX
procedure.

• In place of a vector name, you can use a matrix expression that evaluates to a vector, such
as A(N+1,:).

MISSING Specification

MISSING specifies how missing values declared for the SPSS data file should be handled.
• The MISSING specification is required if the SPSS data file contains missing values for any

variable being read.

• If you omit the MISSING specification and a missing value is encountered for a variable
being read, an error message is displayed and the GET statement is not executed.

The following keywords are available on the MISSING specification. There is no default.

ACCEPT Accept user-missing values for entry. If the system-missing value exists for a vari-
able to be read, you must specify SYSMIS to indicate how the system-missing value
should be handled (see “SYSMIS Specification” below).

OMIT Skip an entire observation when a variable with a missing value is encountered.

value Recode all missing values encountered (including the system-missing value) to the
specified value for entry. The replacement value can be any numeric constant.

SYSMIS Specification

SYSMIS specifies how system-missing values should be handled when you have specified
ACCEPT on MISSING.

• The SYSMIS specification is ignored unless ACCEPT is specified on MISSING.

• If you specify ACCEPT on MISSING but omit the SYSMIS specification, and a system-
missing value is encountered for a variable being read, an error message is displayed and
the GET statement is not executed.

The following keywords are available on the SYSMIS specification. There is no default.

OMIT Skip an entire observation when a variable with a system-missing value is encountered.

value Recode all system-missing values encountered to the specified value for entry. The
replacement value can be any numeric constant.

Example
GET SCORES

/VARIABLES = TEST1,TEST2,TEST3
/NAMES = VARNAMES
/MISSING = ACCEPT
/SYSMIS = -1.0.

MATRIX—END MATRIX 949

• A matrix named SCORES is read from the working data file.

• The variables TEST1, TEST2, and TEST3 form the columns of the matrix, while the cases in
the working file form the rows.

• A vector named VARNAMES, whose three elements contain the variable names TEST1,
TEST2, and TEST3, is created.

• User-missing values defined in the working data file are accepted into the matrix SCORES.
• System-missing values in the working data file are converted to the value in the matrix

SCORES.

SAVE Statement: Writing SPSS Data Files

SAVE writes matrices to an SPSS data file or to the current working data file. The rows of the
matrix expression become cases, and the columns become variables. The syntax of the SAVE
statement is as follows:

SAVE matrix expression
[/OUTFILE = {file reference}]

{* }
[/VARIABLES = variable list]
[/NAMES = names vector]
[/STRINGS = variable list]

Matrix Expression Specification

The matrix expression following the keyword SAVE is any matrix language expression that
evaluates to the value(s) to be written to an SPSS data file.

• The matrix specification must precede any other specifications on the SAVE statement.

• You can specify a matrix name, a matrix raised to a power, or a matrix function (with its
arguments in parentheses) by itself, but you must enclose other matrix expressions in
parentheses. For example, SAVE A, SAVE INV(A), or SAVE B**DET(T(C)*D) is
legal, but SAVE A+B is not. You must specify SAVE (A+B).

• Constant expressions are allowed.

OUTFILE Specification

OUTFILE designates the file to which the matrix expression is to be written. It can be an ac-
tual filename in apostrophes or quotation marks, or a file handle defined on a FILE HANDLE
command that precedes the matrix program. The filename or handle must be a valid file
specification.

• To save a matrix expression as the working data file, specify an asterisk (*). If there is no
working data file, one will be created; if there is one, it is replaced by the saved matrices.

• The OUTFILE specification is required on the first SAVE statement in a matrix program (first
in order of appearance, not necessarily in order of execution). If you omit the OUTFILE spec-
ification from a later SAVE statement, the statement uses the most recently named file (in
order of appearance) on a SAVE statement in the same matrix program.

1–

950 MATRIX—END MATRIX

• If more than one SAVE statement writes to the working data file in a single matrix program,
the dictionary of the new working data file is written on the basis of the information given
by the first such SAVE. All the subsequently saved matrices are appended to the new
working data file as additional cases. If the number of columns differs, an error occurs.

• When you execute a matrix program with the INCLUDE command, the SAVE statement
creates a new SPSS data file at the end of the matrix program’s execution, so any attempt
to GET the data file obtains the original data file, if any.

• When you execute a matrix program from a syntax window, SAVE creates a new SPSS data
file immediately, but the file remains open, so you cannot GET it until after the END MATRIX
statement.

VARIABLES Specification

You can provide variable names for the SPSS data file with the VARIABLES specification.
The variable list is a list of valid SPSS variable names separated by commas.

• You can use the TO convention, as shown in the example below.

• You can also use the NAMES specification, discussed below, to provide variable names.

Example
SAVE {A,B,X,Y} /OUTFILE=*

/VARIABLES = A,B,X1 TO X50,Y1,Y2.

• The matrix expression on the SAVE statement constructs a matrix from two column vectors
A and B and two matrices X and Y. All four matrix variables must have the same number of
rows so that this matrix construction will be valid.

• The VARIABLES specification provides descriptive names so that the SPSS variable names
in the new working data file will resemble the names used in the matrix program.

NAMES Specification

As an alternative to the explicit list on the VARIABLES specification, you can specify a name
list with a matrix expression that evaluates to a vector containing string values. The elements
of this vector are used as names for the variables.

• The NAMES specification on SAVE is designed to complement the NAMES specification on
the GET statement. Names extracted from an SPSS data file can be used in a new data file
by specifying the same vector name on both NAMES specifications.

• If you specify both VARIABLES and NAMES, a warning message is displayed and the
VARIABLES specification is used.

• If you omit both the VARIABLES and NAMES specifications, or if you do not specify names
for all columns of the matrix, the MATRIX procedure creates default names. The names have
the form COLn, where n is the column number.

MATRIX—END MATRIX 951

STRINGS Specification

The STRINGS specification provides the names of variables that contain short string data
rather than numeric data.

• By default, all variables are assumed to be numeric.

• The variable list specification following STRINGS consists of a list of SPSS variable names
separated by commas. The names must be among those used by SAVE.

MGET Statement: Reading SPSS Matrix Data Files

MGET reads an SPSS matrix-format data file. MGET puts the data it reads into separate matrix
variables. It also names these new variables automatically. The syntax of MGET is as follows:

MGET [[/] FILE = file reference]
[/TYPE = {COV }]

{CORR }
{MEAN }
{STDDEV}
{N }
{COUNT }

• Since MGET assigns names to the matrices it reads, do not specify matrix names on the
MGET statement.

FILE Specification

FILE designates an SPSS matrix-format data file. (See MATRIX DATA for a discussion of ma-
trix-format data files.) To designate the working data file (if it is a matrix-format data file),
use an asterisk, or simply omit the FILE specification.

• The file reference can be either a filename enclosed in apostrophes or quotation marks, or a
file handle defined on a FILE HANDLE command that precedes the matrix program.

• The same matrix-format SPSS data file can be read more than once.

• If you omit the FILE specification, the current working data file is used.

• MGET ignores the SPLIT FILE command in SPSS when reading the working data file. It does
honor the split-file groups that were in effect when the matrix-format data file was created.

• The maximum number of split-file groups that can be read is 99.

• The maximum number of cells that can be read is 99.

TYPE Specification

TYPE specifies the rowtype(s) to read from the matrix-format data file.

• By default, records of all rowtypes are read.

• If the matrix-format data file does not contain rows of the requested type, an error occurs.

952 MATRIX—END MATRIX

Valid keywords on the TYPE specification are:

COV A matrix of covariances.

CORR A matrix of correlation coefficients.

MEAN A vector of means.

STDDEV A vector of standard deviations.

N A vector of numbers of cases.

COUNT A vector of counts.

Names of Matrix Variables from MGET

• The MGET statement automatically creates matrix variable names for the matrices it reads.
• All new variables created by MGET are reported to the user.

• If a matrix variable already exists with the same name that MGET chose for a new variable,
the new variable is not created and a warning is issued. The RELEASE statement can be used
to get rid of a variable. A COMPUTE statement followed by RELEASE can be used to change
the name of an existing matrix variable.

 MGET constructs variable names in the following manner:
• The first two characters of the name identify the row type. If there are no cells and no split

file groups, these two characters constitute the name:

• Characters 3–5 of the variable name identify the cell number or the split-group number. Cell
identifiers consist of the letter F and a two-digit cell number. Split-group identifiers consist
of the letter S and a two-digit split-group number; for example, MNF12 or SDS22.

• If there are both cells and split groups, characters 3–5 identify the cell and characters 6–8
identify the split group. The same convention for cell or split-file numbers is used—for
example, CRF12S21.

• After the name is constructed as described above, any leading zeros are removed from the
cell number and the split-group number—for example, CNF2S99 or CVF2S1.

CV A covariance matrix (rowtype COV)
CR A correlation matrix (rowtype CORR)
MN A vector of means (rowtype MEAN)
SD A vector of standard deviations (rowtype STDDEV)
NC A vector of numbers of cases (rowtype N)
CN A vector of counts (rowtype COUNT)

MATRIX—END MATRIX 953

MSAVE Statement: Writing SPSS Matrix Data Files

The MSAVE statement writes matrix expressions to an SPSS matrix-format data file that can
be used as matrix input to other SPSS procedures. (See MATRIX DATA for a discussion of
matrix-format data files.) The syntax of MSAVE is as follows:

MSAVE matrix expression
/TYPE = {COV }

{CORR }
{MEAN }
{STDDEV}
{N }
{COUNT }

[/OUTFILE = {file reference}]
{* }

[/VARIABLES = variable list]
[/SNAMES = variable list]
[/SPLIT = split vector]
[/FNAMES = variable list]
[/FACTOR = factor vector]

• Only one matrix-format data file can be saved in a single matrix program.

• Each MSAVE statement writes records of a single rowtype. Therefore, several MSAVE state-
ments will normally be required to write a complete matrix-format data file.

• Most specifications are retained from one MSAVE statement to the next so that it is not
necessary to repeat the same specifications on a series of MSAVE statements. The exception
is the FACTOR specification, as noted below.

Example
MSAVE M /TYPE=MEAN /OUTFILE=CORRMAT /VARIABLES=V1 TO V8.
MSAVE S /TYPE STDDEV.
MSAVE MAKE(1,8,24) /TYPE N.
MSAVE C /TYPE CORR.

• The series of MSAVE statements save the matrix variables M, S, and C, which contain,
respectively, vectors of means and standard deviations and a matrix of correlation coeffi-
cients. The SPSS matrix-format data file thus created is suitable for use in a procedure such
as FACTOR.

• The first MSAVE statement saves M as a vector of means. This statement specifies OUTFILE,
a previously defined file handle, and VARIABLES, a list of variable names to be used in the
SPSS data file.

• The second MSAVE statement saves S as a vector of standard deviations. Note that the
OUTFILE and VARIABLES specifications do not have to be repeated.

• The third MSAVE statement saves a vector of case counts. The matrix function MAKE
constructs an eight-element vector with values equal to the case count (24 in this example).

• The last MSAVE statement saves C, an matrix, as the correlation matrix.

Matrix Expression Specification

• The matrix expression must be specified first on the MSAVE statement.

8 8×

954 MATRIX—END MATRIX

• The matrix expression specification can be any matrix language expression that evaluates
to the value(s) to be written to the matrix-format file.

• You can specify a matrix name, a matrix raised to a power, or a matrix function (with its
arguments in parentheses) by itself, but you must enclose other matrix expressions in
parentheses. For example, MSAVE A, SAVE INV(A), or MSAVE B**DET(T(C)*D) is
legal, but MSAVE N * WT is not. You must specify MSAVE (N * WT).

• Constant expressions are allowed.

TYPE Specification

TYPE specifies the rowtype to write to the matrix-format data file. Only a single rowtype can
be written by any one MSAVE statement.Valid keywords on the TYPE specification are:

COV A matrix of covariances.

CORR A matrix of correlation coefficients.

MEAN A vector of means.

STDDEV A vector of standard deviations.

N A vector of numbers of cases.

COUNT A vector of counts.

OUTFILE Specification

OUTFILE designates the SPSS matrix-format data file to which the matrices are to be written.
It can be an asterisk, an actual filename in apostrophes or quotation marks, or a file handle
defined on a FILE HANDLE command that precedes the matrix program. The filename or han-
dle must be a valid file specification.

• The OUTFILE specification is required on the first MSAVE statement in a matrix program.

• To save a matrix expression as the working data file (replacing any working data file created
before the matrix program), specify an asterisk (*).

• Since only one matrix-format data file can be written in a single matrix program, any
OUTFILE specification on the second and later MSAVE statements in one matrix program
must be the same as that on the first MSAVE statement.

VARIABLES Specification

You can provide variable names for the matrix-format data file with the VARIABLES specifi-
cation. The variable list is a list of valid SPSS variable names separated by commas. You can
use the TO convention.
• The VARIABLES specification names only the data variables in the matrix. Split-file variables

and grouping or factor variables are named on the SNAMES and FNAMES specifications.

• The names in the VARIABLES specification become the values of the special variable
VARNAME_ in the matrix-format data file for rowtypes of CORR and COV.

MATRIX—END MATRIX 955

• You cannot specify the reserved names ROWTYPE_ and VARNAME_ on the VARIABLES
specification.

• If you omit the VARIABLES specification, the default names COL1, COL2,..., etc., are used.

FACTOR Specification

To write an SPSS matrix-format data file with factor or group codes, you must use the FACTOR
specification to provide a row matrix containing the values of each of the factors or group vari-
ables for the matrix expression being written by the current MSAVE statement.

• The factor vector must have the same number of columns as there are factors in the matrix
data file being written. You can use a scalar when the groups are defined by a single
variable. For example, FACTOR=1 indicates that the matrix data being written are for the
value 1 of the factor variable.

• The values of the factor vector are written to the matrix-format data file as values of the
factors in the file.

• To create a complete matrix-format data file with factors, you must execute an MSAVE state-
ment for every combination of values of the factors or grouping variables (in other words,
for every group). If split-file variables are also present, you must execute an MSAVE state-
ment for every combination of factor codes within every combination of values of the split-
file variables.

Example
MSAVE M11 /TYPE=MEAN /OUTFILE=CORRMAT /VARIABLES=V1 TO V8

/FNAMES=SEX, GROUP /FACTOR={1,1}.
MSAVE S11 /TYPE STDDEV.
MSAVE MAKE(1,8,N(1,1)) /TYPE N.
MSAVE C11 /TYPE CORR.

MSAVE M12 /TYPE=MEAN /FACTOR={1,2}.
MSAVE S12 /TYPE STDDEV.
MSAVE MAKE(1,8,N(1,2)) /TYPE N.
MSAVE C12 /TYPE CORR.

MSAVE M21 /TYPE=MEAN /FACTOR={2,1}.
MSAVE S21 /TYPE STDDEV.
MSAVE MAKE(1,8,N(2,1)) /TYPE N.
MSAVE C21 /TYPE CORR.

MSAVE M22 /TYPE=MEAN /FACTOR={2,2}.
MSAVE S22 /TYPE STDDEV.
MSAVE MAKE(1,8,N(2,2)) /TYPE N.
MSAVE C22 /TYPE CORR.

• The first four MSAVE statements provide data for a group defined by the variables SEX and
GROUP, with both factors having the value 1.

• The second, third, and fourth groups of four MSAVE statements provide the corresponding
data for the other groups, in which SEX and GROUP, respectively, equal 1 and 2, 2 and 1,
and 2 and 2.

• Within each group of MSAVE statements, a suitable number-of-cases vector is created with
the matrix function MAKE.

956 MATRIX—END MATRIX

FNAMES Specification

To write an SPSS matrix-format data file with factor or group codes, you can use the
FNAMES specification to provide variable names for the grouping or factor variables.
• The variable list following the keyword FNAMES is a list of valid SPSS variable names,

separated by commas.

• If you omit the FNAMES specification, the default names FAC1, FAC2,..., etc., are used.

SPLIT Specification

To write an SPSS matrix-format data file with split-file groups, you must use the SPLIT spec-
ification to provide a row matrix containing the values of each of the split-file variables for
the matrix expression being written by the current MSAVE statement.

• The split vector must have the same number of columns as there are split-file variables in
the matrix data file being written. You can use a scalar when there is only one split-file vari-
able. For example, SPLIT=3 indicates that the matrix data being written are for the value
3 of the split-file variable.

• The values of the split vector are written to the matrix-format data file as values of the split-
file variable(s).

• To create a complete matrix-format data file with split-file variables, you must execute
MSAVE statements for every combination of values of the split-file variables. (If factor vari-
ables are present, you must execute MSAVE statements for every combination of factor
codes within every combination of values of the split-file variables.)

SNAMES Specification

To write an SPSS matrix-format data file with split-file groups, you can use the SNAMES
specification to provide variable names for the split-file variables.

• The variable list following the keyword SNAMES is a list of valid SPSS variable names
separated by commas.

• If you omit the SNAMES specification, the default names SPL1, SPL2,..., etc., are used.

DISPLAY Statement

DISPLAY provides information on the matrix variables currently defined in a matrix program
and on usage of internal memory by the matrix processor. Two keywords are available on
DISPLAY:

DICTIONARY Display variable name and row and column dimensions for each matrix
variable currently defined.

STATUS Display the status and size of internal tables. This display is intended as a
debugging aid when writing large matrix programs that approach the mem-
ory limitations of your system.

If you enter the DISPLAY statement with no specifications, both DICTIONARY and STATUS
information is displayed.

MATRIX—END MATRIX 957

RELEASE Statement

Use the RELEASE statement to release the work areas in memory assigned to matrix variables
that are no longer needed.

• Specify a list of currently defined matrix variables. Variable names on the list must be sepa-
rated by commas.

• RELEASE discards the contents of the named matrix variables. Releasing a large matrix
when it is no longer needed makes memory available for additional matrix variables.

• All matrix variables are released when the END MATRIX statement is encountered.

Macros Using the Matrix Language

Macro expansion (see DEFINE—END DEFINE) occurs before command lines are passed to the
matrix processor. Therefore, previously defined macro names can be used within a matrix pro-
gram. If the macro name expands to one or more valid matrix statements, the matrix processor
will execute those statements. Similarly, you can define an entire matrix program, including the
MATRIX and END MATRIX commands, as a macro, but you cannot define a macro within a ma-
trix program, since DEFINE and END DEFINE are not valid matrix statements.

958

MATRIX DATA

MATRIX DATA VARIABLES=varlist [/FILE={INLINE**}]
 {file }

 [/FORMAT=[{LIST**}] [{LOWER**}] [{DIAGONAL**}]]
 {FREE } {UPPER } {NODIAGONAL}
 {FULL }

 [/SPLIT=varlist] [/FACTORS=varlist]

 [/CELLS=number of cells] [/N=sample size]

 [/CONTENTS= [CORR**] [COV] [MAT] [MSE] [DFE] [MEAN] [PROX]

 [{STDDEV}] [N_SCALAR] [{N_VECTOR}] [N_MATRIX] [COUNT]]
 {SD } {N }

**Default if the subcommand is omitted.

Example
MATRIX DATA VARIABLES=ROWTYPE_ SAVINGS POP15 POP75 INCOME GROWTH.
BEGIN DATA
MEAN 9.6710 35.0896 2.2930 1106.7784 3.7576
STDDEV 4.4804 9.1517 1.2907 990.8511 2.8699
N 50 50 50 50 50
CORR 1
CORR -.4555 1
CORR .3165 -.9085 1
CORR .2203 -.7562 .7870 1
CORR .3048 -.0478 .0253 -.1295 1
END DATA.

Overview

MATRIX DATA reads raw matrix materials and converts them to a matrix data file that can be read
by procedures that handle matrix materials. The data can include vector statistics such as means
and standard deviations as well as matrices.

MATRIX DATA is similar to a DATA LIST command: it defines variable names and their or-
der in a raw data file. However, MATRIX DATA can read only data that conform to the general
format of SPSS-format matrices.

Matrix Files

Like the matrix data files created by procedures, the file that MATRIX DATA creates contains
the following variables in the indicated order. If the variables are in a different order in the
raw data file, MATRIX DATA rearranges them in the working data file.

• Split-file variables. These optional variables define split files. There can be up to eight
split variables, and they must have numeric values. Split-file variables will appear in the
order in which they are specified on the SPLIT subcommand.

MATRIX DATA 959

• ROWTYPE_. This is a string variable with A8 format. Its values define the data type for each
record. For example, it might identify a row of values as means, standard deviations, or cor-
relation coefficients. Every SPSS-format matrix data file has a ROWTYPE_ variable.

• Factor variables. There can be any number of factors. They occur only if the data include
within-cells information, such as the within-cells means. Factors have the system-missing
value on records that define pooled information. Factor variables appear in the order in
which they are specified on the FACTORS subcommand.

• VARNAME_. This is a string variable with A8 format. MATRIX DATA automatically gener-
ates VARNAME_ and its values based on the variables named on VARIABLES. You never
enter values for VARNAME_. Values for VARNAME_ are blank for records that define vector
information. Every matrix in the program has a VARNAME_ variable.

• Continuous variables. These are the variables that were used to generate the correlation
coefficients or other aggregated data. There can be any number of them. Continuous
variables appear in the order in which they are specified on VARIABLES.

Options

Data Files. You can define both inline data and data in an external file.

Data Format. By default, data are assumed to be entered in freefield format with each vector
or row beginning on a new record (the keyword LIST on the FORMAT subcommand). If each
vector or row does not begin on a new record, use the keyword FREE. You can also use FOR-
MAT to indicate whether matrices are entered in upper or lower triangular or full square or
rectangular format, and whether or not they include diagonal values.

Variable Types. You can specify split-file and factor variables using the SPLIT and FACTORS
subcommands. You can identify record types by specifying ROWTYPE_ on the VARIABLES
subcommand if ROWTYPE_ values are included in the data, or by implying ROWTYPE_ values
on CONTENTS.

Basic Specification

The basic specification is VARIABLES and a list of variables. Additional specifications are
required as follows:

• FILE is required to specify the data file if the data are not inline.

• If data are in any format other than lower-triangular with diagonal values included, FORMAT
is required.

• If the data contain values in addition to matrix coefficients, such as the mean and standard
deviation, either variable ROWTYPE_ must be specified on VARIABLES and ROWTYPE_
values must be included in the data, or CONTENTS must be used to describe the data.

• If the data include split-file variables, SPLIT is required. If there are factors, FACTORS is
required.

Specifications on most MATRIX DATA subcommands depend on whether ROWTYPE_ is in-
cluded in the data and specified on VARIABLES, or whether it is implied using CONTENTS.

960 MATRIX DATA

Table 1 summarizes the status of each MATRIX DATA subcommand in relation to the
ROWTYPE_ specification.

Subcommand Order

• SPLIT and FACTORS, when used, must follow VARIABLES.

• The remaining subcommands can be specified in any order.

Syntax Rules

• No commands can be specified between MATRIX DATA and BEGIN DATA, not even a
VARIABLE LABELS or FORMAT command. Data transformations cannot be used until
after MATRIX DATA is executed.

Operations

• MATRIX DATA defines and writes data in one step.

• MATRIX DATA clears the working data file and defines a new working file.

• If CONTENTS is not specified and ROWTYPE_ is not specified on VARIABLES, MATRIX
DATA assumes that the data contain only CORR values and issues warning messages to
alert you to its assumptions.

• With the default format, data values, including diagonal values, must be in the lower tri-
angle of the matrix. If MATRIX DATA encounters values in the upper triangle, it ignores
those values and issues a series of warnings.

• With the default format, if any matrix rows span records in the data file, MATRIX DATA
cannot form the matrix properly.

• MATRIX DATA does not allow format specifications for matrix materials. The procedure
assigns the formats shown in Table 2. To change data formats, execute MATRIX DATA

Table 1 Subcommand requirements in relation to ROWTYPE_

Subcommand Implicit ROWTYPE_
using CONTENTS

Explicit ROWTYPE_
on VARIABLES

FILE Defaults to INLINE Defaults to INLINE
VARIABLES Required Required
FORMAT Defaults to LOWER DIAG Defaults to LOWER DIAG
SPLIT Required if split files*

* If the data do not contain values for the split-file variables, this subcommand can spec-
ify a single variable, which is not specified on the VARIABLES subcommand.

Required if split files
FACTORS Required if factors Required if factors
CELLS Required if factors Inapplicable
CONTENTS Defaults to CORR Optional
N Optional Optional

MATRIX DATA 961

and then assign new formats with the FORMATS, PRINT FORMATS, or WRITE FORMATS
commands.

Format of the Raw Matrix Data File

• If LIST is in effect on the FORMAT subcommand, the data are entered in freefield format,
with blanks and commas used as separators and each scalar, vector, or row of the matrix
beginning on a new record. Unlike LIST format with DATA LIST, a vector or row of the
matrix can be contained on multiple records. The continuation records do not have a value
for ROWTYPE_.

• ROWTYPE_ values can be enclosed in apostrophes or quotes.

• The order of variables in the raw data file must match the order in which they are specified
on VARIABLES. However, this order does not have to correspond to the order of variables
in the resulting SPSS-format matrix data file.

• The way records are entered for pooled vectors or matrices when factors are present de-
pends upon whether ROWTYPE_ is specified on the VARIABLES subcommand (see the
FACTORS subcommand on p. 970).

• MATRIX DATA recognizes plus and minus signs as field separators when they are not pre-
ceded by the letter D or E. This allows MATRIX DATA to read scientific notation as well as
correlation matrices written by FORTRAN in F10.8 format. A plus sign preceded by a D
or E is read as part of the number in scientific notation.

Example

MATRIX DATA
 VARIABLES=ROWTYPE_ SAVINGS POP15 POP75 INCOME GROWTH.
BEGIN DATA
MEAN 9.6710 35.0896 2.2930 1106.7784 3.7576
STDDEV 4.4804 9.1517 1.2907 990.8511 2.8699
N 50 50 50 50 50
CORR 1
CORR -.4555 1
CORR .3165 -.9085 1
CORR .2203 -.7562 .7870 1
CORR .3048 -.0478 .0253 -.1295 1
END DATA.

• The variable ROWTYPE_ is specified on VARIABLES. ROWTYPE_ values are included in
the data.

Table 2 Print and write formats for matrix variables

Variable type Format

ROWTYPE_, VARNAME_ A8

Split-file variables F4.0

Factors F4.0

Continuous variables F10.4

962 MATRIX DATA

• No other specifications are required.

Example

* Matrix data with procedure DISCRIMINANT’.

 MATRIX DATA VARIABLES=WORLD ROWTYPE_ FOOD APPL SERVICE RENT
 /FACTORS=WORLD.
 BEGIN DATA
 1 N 25 25 25 25
 1 MEAN 76.64 77.32 81.52 101.40
 2 N 7 7 7 7
 2 MEAN 76.1428571 85.2857143 60.8571429 249.571429
 3 N 13 13 13 13
 3 MEAN 55.5384615 76 63.4615385 86.3076923
 . SD 16.4634139 22.5509310 16.8086768 77.1085326
 . CORR 1
 . CORR .1425366 1
 . CORR .5644693 .2762615 1
 . CORR .2133413 -.0499003 .0417468 1
 END DATA.

 DISCRIMINANT GROUPS=WORLD(1,3)
 /VARIABLES=FOOD APPL SERVICE RENT /METHOD=WILKS /MATRIX=IN(*).

• MATRIX DATA is used to generate a working data file that DISCRIMINANT can read.
DISCRIMINANT reads the mean, count (unweighted N), and N (weighted N) for each
cell in the data, as well as pooled values for the standard deviation and correlation
coefficients. If count equals N, only N needs to be supplied.

• ROWTYPE_ is specified on VARIABLES to identify record types in the data. Though
CONTENTS and CELLS can be used to identify record types and distinguish between
within-cells data and pooled values, it is usually easier to specify ROWTYPE_ on
VARIABLES and enter the ROWTYPE_ values in the data.

• Because factors are present in the data, the continuous variables (FOOD, APPL, SERVICE,
and RENT) must be specified last on VARIABLES and must be last in the data.

• The FACTORS subcommand identifies WORLD as the factor variable.

• BEGIN DATA immediately follows MATRIX DATA.

• N and MEAN values for each cell are entered in the data.

• ROWTYPE_ values for the pooled records are SD and COR. MATRIX DATA assigns the
values STDDEV and CORR to the corresponding vectors in the matrix. Records with
pooled information have the system-missing value (.) for the factors.

• The DISCRIMINANT procedure reads the data matrix. An asterisk (*) is specified as the in-
put file on the MATRIX subcommand because the data are in the working file.

MATRIX DATA 963

Example

* Matrix data with procedure REGRESSION.

MATRIX DATA VARIABLES=SAVINGS POP15 POP75 INCOME GROWTH
 /CONTENTS=MEAN SD N CORR /FORMAT=UPPER NODIAGONAL.

BEGIN DATA
9.6710 35.0896 2.2930 1106.7784 3.7576
4.4804 9.1517 1.2908 990.8511 2.8699
50 50 50 50 50
-.4555 .3165 .2203 .3048
-.9085 -.7562 -.0478
 .7870 .0253
-.1295
END DATA.

REGRESSION MATRIX=IN(*) /VARIABLES=SAVINGS TO GROWTH
 /DEP=SAVINGS /ENTER.

• MATRIX DATA is used to generate a matrix that REGRESSION can read. REGRESSION reads
and writes matrices that always contain the mean, standard deviation, N, and Pearson cor-
relation coefficients. Data in this example do not have ROWTYPE_ values, and the corre-
lation values are from the upper triangle of the matrix without the diagonal values.

• ROWTYPE_ is not specified on VARIABLES because its values are not included in the data.

• Because there are no ROWTYPE_ values, CONTENTS is required to define the record types
and the order of the records in the file.

• By default, MATRIX DATA reads values from the lower triangle of the matrix, including the
diagonal values. FORMAT is required in this example to indicate that the data are in the
upper triangle and do not include diagonal values.

• BEGIN DATA immediately follows the MATRIX DATA command.

• The REGRESSION procedure reads the data matrix. An asterisk (*) is specified as the
input file on the MATRIX subcommand because the data are in the working file. Since
there is a single vector of N’s in the data, missing values are handled listwise (the de-
fault for REGRESSION).

964 MATRIX DATA

Example

* Matrix data with procedure ONEWAY.

 MATRIX DATA VARIABLES=EDUC ROWTYPE_ WELL /FACTORS=EDUC.
 BEGIN DATA
 1 N 65
 2 N 95
 3 N 181
 4 N 82
 5 N 40
 6 N 37
 1 MEAN 2.6462
 2 MEAN 2.7737
 3 MEAN 4.1796
 4 MEAN 4.5610
 5 MEAN 4.6625
 6 MEAN 5.2297
 . MSE 6.2699
 . DFE 494
 END DATA.

 ONEWAY WELL BY EDUC(1,6) /MATRIX=IN(*)

• One of the two types of matrices that the ONEWAY procedure reads includes a vector of
frequencies for each factor level, a vector of means for each factor level, a record contain-
ing the pooled variance (within-group mean square error), and the degrees of freedom for
the mean square error. MATRIX DATA is used to generate a working data file containing
this type of matrix data for the ONEWAY procedure.

• ROWTYPE_ is explicit on VARIABLES and identifies record types.

• Because factors are present in the data, the continuous variables (WELL) must be specified
last on VARIABLES and must be last in the data.

• The FACTORS subcommand identifies EDUC as the factor variable.

• MSE is entered in the data as the ROWTYPE_ value for the vector of square pooled stan-
dard deviations.

• DFE is entered in the data as the ROWTYPE_ value for the vector of degrees of freedom.

• Records with pooled information have the system-missing value (.) for the factors.

VARIABLES Subcommand

VARIABLES specifies the names of the variables in the raw data and the order in which they
occur.
• VARIABLES is required.

• There is no limit to the number of variables that can be specified.

• If ROWTYPE_ is specified on VARIABLES, the continuous variables must be the last vari-
ables specified on the subcommand and must be last in the data.

• If split-file variables are present, they must also be specified on SPLIT.

• If factor variables are present, they must also be specified on FACTORS.

MATRIX DATA 965

When either of the following is true, the only variables that must be specified on VARIABLES
are the continuous variables:

1. The data contain only correlation coefficients. There can be no additional information,
such as the mean and standard deviation, and no factor information or split-file variables.
MATRIX DATA assigns the record type CORR to all records.

2. CONTENTS is used to define all record types. The data can then contain information such
as the mean and standard deviation, but no factor, split-file, or ROWTYPE_ variables.
MATRIX DATA assigns the record types defined on the CONTENTS subcommand.

Variable VARNAME_

VARNAME_ cannot be specified on the VARIABLES subcommand or anywhere on MATRIX
DATA, and its values cannot be included in the data. The MATRIX DATA command generates
the variable VARNAME_ automatically.

Variable ROWTYPE_

• ROWTYPE_ is a string variable with A8 format. Its values define the data types. All SPSS-
format matrix data files contain a ROWTYPE_ variable.

• If ROWTYPE_ is specified on VARIABLES and its values are entered in the data, MATRIX
DATA is primarily used to define the names and order of the variables in the raw data file.

• ROWTYPE_ must precede the continuous variables.

• Valid values for ROWTYPE_ are CORR, COV, MAT, MSE, DFE, MEAN, STDDEV (or
SD), N_VECTOR (or N), N_SCALAR, N_MATRIX, COUNT, or PROX. For definitions of
these values, see the CONTENTS subcommand on p. 972. Three-character abbreviations
for these values are permitted. These values can also be enclosed in quotes or apostrophes.

• If ROWTYPE_ is not specified on VARIABLES, CONTENTS must be used to define the or-
der in which the records occur within the file. MATRIX DATA follows these specifications
strictly and generates a ROWTYPE_ variable according to the CONTENTS specifications.
A data-entry error, especially skipping a record, can cause the procedure to assign the
wrong values to the wrong records.

Example
* ROWTYPE_ is specified on VARIABLES.

MATRIX DATA
 VARIABLES=ROWTYPE_ SAVINGS POP15 POP75 INCOME GROWTH.
BEGIN DATA
MEAN 9.6710 35.0896 2.2930 1106.7784 3.7576
STDDEV 4.4804 9.1517 1.2907 990.8511 2.8699
N 50 50 50 50 50
CORR 1
CORR -.4555 1
CORR .3165 -.9085 1
CORR .2203 -.7562 .7870 1
CORR .3048 -.0478 .0253 -.1295 1
END DATA.

966 MATRIX DATA

• ROWTYPE_ is specified on VARIABLES. ROWTYPE_ values in the data identify each
record type.

• Note that VARNAME_ is not specified on VARIABLES, and its values are not entered in the
data.

Example
* ROWTYPE_ is specified on VARIABLES.

MATRIX DATA
 VARIABLES=ROWTYPE_ SAVINGS POP15 POP75 INCOME GROWTH.
BEGIN DATA
’MEAN ’ 9.6710 35.0896 2.2930 1106.7784 3.7576
’SD ’ 4.4804 9.1517 1.2907 990.8511 2.8699
’N ’ 50 50 50 50 50
"CORR " 1
"CORR " -.4555 1
"CORR " .3165 -.9085 1
"CORR " .2203 -.7562 .7870 1
"CORR " .3048 -.0478 .0253 -.1295 1
END DATA.

• ROWTYPE_ values for the mean, standard deviation, N, and Pearson correlation coeffi-
cients are abbreviated and enclosed in apostrophes or quotations.

Example
* ROWTYPE_ is not specified on VARIABLES.

MATRIX DATA VARIABLES=SAVINGS POP15 POP75 INCOME GROWTH
 /CONTENTS=MEAN SD N CORR.
BEGIN DATA
9.6710 35.0896 2.2930 1106.7784 3.7576
4.4804 9.1517 1.2907 990.8511 2.8699
50 50 50 50 50
 1
-.4555 1
 .3165 -.9085 1
 .2203 -.7562 .7870 1
 .3048 -.0478 .0253 -.1295 1
END DATA.

• ROWTYPE_ is not specified on VARIABLES, and its values are not included in the data.

• CONTENTS is required to define the record types and the order of the records in the file.

FILE Subcommand

FILE specifies the matrix file containing the data. The default specification is INLINE, which
indicates that the data are included within the command sequence between the BEGIN DATA
and END DATA commands.

• If the data are in an external file, FILE must specify the file.

• If the FILE subcommand is omitted, the data must be inline.

MATRIX DATA 967

Example
MATRIX DATA FILE=RAWMTX /VARIABLES=varlist.

• FILE indicates that the data are in the file RAWMTX.

FORMAT Subcommand

FORMAT indicates how the matrix data are formatted. It applies only to matrix values in the
data, not to vector values, such as the mean and standard deviation.
• FORMAT can specify up to three keywords: one to specify the data-entry format, one to

specify matrix shape, and one to specify whether the data include diagonal values.

• The minimum specification is a single keyword.

• Default settings remain in effect unless explicitly overridden.

Data-Entry Format

FORMAT has two keywords that specify the data-entry format:

LIST Each scalar, vector, and matrix row must begin on a new record. A vector or row
of the matrix may be continued on multiple records. This is the default.

FREE Matrix rows do not need to begin on a new record. Any item can begin in the middle
of a record.

Matrix Shape

FORMAT has three keywords that specify the matrix shape. With either triangular shape, no
values—not even missing indicators—are entered for the implied values in the matrix.

LOWER Read data values from the lower triangle. This is the default.

UPPER Read data values from the upper triangle.

FULL Read the full square matrix of data values. FULL cannot be specified with NODIAGONAL.

Diagonal Values

FORMAT has two keywords that refer to the diagonal values:

DIAGONAL Data include the diagonal values. This is the default.

NODIAGONAL Data do not include diagonal values. The diagonal value is set to the system-
missing value for all matrices except the correlation matrices. For correlation
matrices, the diagonal value is set to 1. NODIAGONAL cannot be specified
with FULL.

Table 3 shows how data might be entered for each combination of FORMAT settings that govern
matrix shape and diagonal values. With UPPER NODIAGONAL and LOWER NODIAGONAL, you

968 MATRIX DATA

do not enter the matrix row that has blank values for the continuous variables. If you enter that
row, MATRIX DATA cannot properly form the matrix.

Example
MATRIX DATA VARIABLES=ROWTYPE_ V1 TO V3
 /FORMAT=UPPER NODIAGONAL.
BEGIN DATA
MEAN 5 4 3
SD 3 2 1
N 9 9 9
CORR .6 .7
CORR .8
END DATA.
LIST.

• FORMAT specifies the upper-triangle format with no diagonal values. The default LIST is
in effect for the data-entry format.

Example
MATRIX DATA VARIABLES=ROWTYPE_ V1 TO V3
 /FORMAT=UPPER NODIAGONAL.
BEGIN DATA
MEAN 5 4 3
SD 3 2 1
N 9 9 9
CORR .6 .7
CORR .8
END DATA.
LIST.

• This example is identical to the previous example. It shows that data do not have to be
aligned in columns. Data throughout this section are aligned in columns to emphasize the
matrix format.

SPLIT Subcommand

SPLIT specifies the variables whose values define the split files. SPLIT must follow the
VARIABLES subcommand.

Table 3 Various FORMAT settings

FULL

UPPER
DIAGONAL

UPPER
NODIAGONAL

LOWER
DIAGONAL

LOWER
NODIAGONAL

MEAN 5 4 3 MEAN 5 4 3 MEAN 5 4 3 MEAN 5 4 3 MEAN 5 4 3
SD 3 2 1 SD 3 2 1 SD 3 2 1 SD 3 2 1 SD 3 2 1
N 9 9 9 N 9 9 9 N 9 9 9 N 9 9 9 N 9 9 9
CORR 1 .6 .7 CORR 1 .6 .7 CORR .6 .7 CORR 1 CORR .6
CORR .6 1 .8 CORR 1 .8 CORR .8 CORR .6 1 CORR .7 .8
CORR .7 .8 1 CORR 1 CORR .7 .8 1

MATRIX DATA 969

• SPLIT can specify a subset of up to eight of the variables named on VARIABLES. All split
variables must be numeric. The keyword TO can be used to imply variables in the order
in which they are named on VARIABLES.

• A separate matrix must be included in the data for each value of each split variable.
MATRIX DATA generates a complete set of matrix materials for each.

• If the data contain neither ROWTYPE_ nor split-file variables, a single split-file variable
can be specified on SPLIT. This variable is not specified on the VARIABLES subcom-
mand. MATRIX DATA generates a complete set of matrix materials for each set of matrix
materials in the data and assigns values 1, 2, 3, etc., to the split variable until the end of
the data is encountered.

Example
MATRIX DATA VARIABLES=S1 ROWTYPE_ V1 TO V3 /SPLIT=S1.
BEGIN DATA
0 MEAN 5 4 3
0 SD 1 2 3
0 N 9 9 9
0 CORR 1
0 CORR .6 1
0 CORR .7 .8 1
1 MEAN 9 8 7
1 SD 5 6 7
1 N 9 9 9
1 CORR 1
1 CORR .4 1
1 CORR .3 .2 1
END DATA.
LIST.

• The split variable S1 has two values: 0 and 1. Two separate matrices are entered in the
data, one for each value S1.

• S1 must be specified on both VARIABLES and SPLIT.

Example
MATRIX DATA VARIABLES=V1 TO V3 /CONTENTS=MEAN SD N CORR
 /SPLIT=SPL.
BEGIN DATA
 5 4 3
 1 2 3
 9 9 9
 1
 .6 1
 .7 .8 1
 9 8 7
 5 6 7
 9 9 9
 1
 .4 1
 .3 .2 1
END DATA.
LIST.

970 MATRIX DATA

• The split variable SPL is not specified on VARIABLES, and values for SPL are not included
in the data.

• Two sets of matrix materials are included in the data. MATRIX DATA therefore assigns
values 1 and 2 to variable SPL and generates two matrices in the matrix data file.

FACTORS Subcommand

FACTORS specifies the variables whose values define the cells represented by the within-
cells data. FACTORS must follow the VARIABLES subcommand.

• FACTORS specifies a subset of the variables named on the VARIABLES subcommand.
The keyword TO can be used to imply variables in the order in which they are named
on VARIABLES.

• If ROWTYPE_ is explicit on VARIABLES and its values are included in the data, records
that represent pooled information have the system-missing value (indicated by a period)
for the factors, since the values of ROWTYPE_ are ambiguous.

• If ROWTYPE_ is not specified on VARIABLES and its values are not in the data, enter data
values for the factors only for records that represent within-cells information. Enter noth-
ing for the factors for records that represent pooled information. CELLS must be specified
to indicate the number of within-cells records, and CONTENTS must be specified to indi-
cate which record types have within-cells data.

Example
* Rowtype is explicit.

MATRIX DATA VARIABLES=ROWTYPE_ F1 F2 VAR1 TO VAR3
 /FACTORS=F1 F2.
BEGIN DATA
MEAN 1 1 1 2 3
SD 1 1 5 4 3
N 1 1 9 9 9
MEAN 1 2 4 5 6
SD 1 2 6 5 4
N 1 2 9 9 9
MEAN 2 1 7 8 9
SD 2 1 7 6 5
N 2 1 9 9 9
MEAN 2 2 9 8 7
SD 2 2 8 7 6
N 2 2 9 9 9
CORR . . .1
CORR . . .6 1
CORR . . .7 .8 1
END DATA.

• ROWTYPE_ is specified on VARIABLES.

• Factor variables must be specified on both VARIABLES and FACTORS.

• Periods in the data represent missing values for the CORR factor values.

MATRIX DATA 971

Example
* Rowtype is implicit.

MATRIX DATA VARIABLES=F1 F2 VAR1 TO VAR3
 /FACTORS=F1 F2 /CONTENTS=(MEAN SD N) CORR /CELLS=4.
BEGIN DATA
1 1 1 2 3
1 1 5 4 3
1 1 9 9 9
1 2 4 5 6
1 2 6 5 4
1 2 9 9 9
2 1 7 8 9
2 1 7 6 5
2 1 9 9 9
2 2 9 8 7
2 2 8 7 6
2 2 9 9 9
 1
 .6 1
 .7 .8 1
END DATA.

• ROWTYPE_ is not specified on VARIABLES.

• Nothing is entered for the CORR factor values because the records contain pooled
information.

• CELLS is required because there are factors in the data and ROWTYPE_ is implicit.

• CONTENTS is required to define the record types and to differentiate between the within-
cells and pooled types.

CELLS Subcommand

CELLS specifies the number of within-cells records in the data. The only valid specification
for CELLS is a single integer, which indicates the number of sets of within-cells information
that MATRIX DATA must read.

• CELLS is required when there are factors in the data and ROWTYPE_ is implicit.

• If CELLS is used when ROWTYPE_ is specified on VARIABLES, MATRIX DATA issues a
warning and ignores the CELLS subcommand.

972 MATRIX DATA

Example
MATRIX DATA VARIABLES=F1 VAR1 TO VAR3 /FACTORS=F1 /CELLS=2
 /CONTENTS=(MEAN SD N) CORR.
BEGIN DATA
1 5 4 3
1 3 2 1
1 9 9 9
2 8 7 6
2 6 7 8
2 9 9 9
 1
 .6 1
 .7 .8 1
END DATA.

• The specification for CELLS is 2 because the factor variable F1 has two values (1 and 2)
and there are therefore two sets of within-cells information.

• If there were two factor variables, F1 and F2, and each had two values, 1 and 2, CELLS
would equal 4 to account for all four possible factor combinations (assuming all 4 com-
binations are present in the data).

CONTENTS Subcommand

CONTENTS defines the record types when ROWTYPE_ is not included in the data. The min-
imum specification is a single keyword indicating a type of record. The default is CORR.
• CONTENTS is required to define record types and record order whenever ROWTYPE_ is

not specified on VARIABLES and its values are not in the data. The only exception to this
rule is the rare situation in which all data values represent pooled correlation records and
there are no factors. In that case, MATRIX DATA reads the data values and assigns the default
ROWTYPE_ of CORR to all records.

• The order in which keywords are specified on CONTENTS must correspond to the order
in which records appear in the data. If the keywords on CONTENTS are in the wrong order,
MATRIX DATA will incorrectly assign values.

CORR Matrix of correlation coefficients. This is the default. If ROWTYPE_ is not
specified on the VARIABLES subcommand and you omit the CONTENTS sub-
command, MATRIX DATA assigns the ROWTYPE_ value CORR to all matrix
rows.

COV Matrix of covariance coefficients.

MAT Generic square matrix.

MSE Vector of mean squared errors.

DFE Vector of degrees of freedom.

MEAN Vector of means.

STDDEV Vector of standard deviations. SD is a synonym for STDDEV. MATRIX DATA
assigns the ROWTYPE_ value STDDEV to the record if either STDDEV or SD
is specified.

MATRIX DATA 973

N_VECTOR Vector of counts. N is a synonym for N_VECTOR. MATRIX DATA assigns the
ROWTYPE_ value N to the record.

N_SCALAR Count. Scalars are a shorthand mechanism for representing vectors in which
all elements have the same value, such as when a vector of N’s is calculated
using listwise deletion of missing values. Enter N_SCALAR as the ROWTYPE_
value in the data and then the N_SCALAR value for the first continuous variable
only. MATRIX DATA assigns the ROWTYPE_ value N to the record and copies
the specified N_SCALAR value across all the continuous variables.

N_MATRIX Square matrix of counts. Enter N_MATRIX as the ROWTYPE_ value for each
row of counts in the data. MATRIX DATA assigns the ROWTYPE_ value N to
each of those rows.

COUNT Count vector accepted by procedure DISCRIMINANT. This contains un-
weighted N’s.

PROX Matrix produced by PROXIMITIES. Any proximity matrix can be used with
PROXIMITIES or CLUSTER. A value label of SIMILARITY or DISSIMILARITY
should be specified for PROX by using the VALUE LABELS command after
END DATA.

Example
MATRIX DATA VARIABLES=V1 TO V3 /CONTENTS=MEAN SD N_SCALAR CORR.
BEGIN DATA
 5 4 3
 3 2 1
 9
 1
 .6 1
 .7 .8 1
END DATA.
LIST.

• ROWTYPE_ is not specified on VARIABLES, and ROWTYPE_ values are not in the data.
CONTENTS is therefore required to identify record types.

• CONTENTS indicates that the matrix records are in the following order: mean, standard
deviation, N, and correlation coefficients.

• The N_SCALAR value is entered for the first continuous variable only.

Example
MATRIX DATA VARIABLES=V1 TO V3 /CONTENTS=PROX.
BEGIN DATA

data records

END DATA.
VALUE LABELS ROWTYPE_ ’PROX’ ’DISSIMILARITY’.

• CONTENTS specifies PROX to read a raw matrix and create an SPSS matrix data file in
the same format as one produced by procedure PROXIMITIES. PROX is assigned the value
label DISSIMILARITY.

974 MATRIX DATA

Within-Cells Record Definition

When the data include factors and ROWTYPE_ is not specified, CONTENTS distinguishes be-
tween within-cells and pooled records by enclosing the keywords for within-cells records in
parentheses.

• If the records associated with the within-cells keywords appear together for each set of
factor values, enclose the keywords together within a single set of parentheses.

• If the records associated with each within-cells keyword are grouped together across factor
values, enclose the keyword within its own parentheses.

Example
MATRIX DATA VARIABLES=F1 VAR1 TO VAR3 /FACTORS=F1 /CELLS=2
 /CONTENTS=(MEAN SD N) CORR.

• MEAN, SD, and N contain within-cells information and are therefore specified within pa-
rentheses. CORR is outside the parentheses because it identifies pooled records.

• CELLS is required because there is a factor specified and ROWTYPE_ is implicit.

Example
MATRIX DATA VARIABLES=F1 VAR1 TO VAR3 /FACTORS=F1 /CELLS=2
 /CONTENTS=(MEAN SD N) CORR.
BEGIN DATA
1 5 4 3
1 3 2 1
1 9 9 9
2 4 5 6
2 6 5 4
2 9 9 9
 1
 .6 1
 .7 .8 1
END DATA.

• The parentheses around the CONTENTS keywords indicate that the mean, standard devia-
tion, and N for value 1 of factor F1 are together, followed by the mean, standard deviation,
and N for value 2 of factor F1.

Example
MATRIX DATA VARIABLES=F1 VAR1 TO VAR3 /FACTORS=F1 /CELLS=2
 /CONTENTS=(MEAN) (SD) (N) CORR.
BEGIN DATA
1 5 4 3
2 4 5 6
1 3 2 1
2 6 5 4
1 9 9 9
2 9 9 9
 1
 .6 1
 .7 .8 1
END DATA.

MATRIX DATA 975

• The parentheses around each CONTENTS keyword indicate that the data include the
means for all cells, followed by the standard deviations for all cells, followed by the N
values for all the cells.

Example
MATRIX DATA VARIABLES=F1 VAR1 TO VAR3 /FACTORS=F1 /CELLS=2
 /CONTENTS=(MEAN SD) (N) CORR.
BEGIN DATA
1 5 4 3
1 3 2 1
2 4 5 6
2 6 5 4
1 9 9 9
2 9 9 9
 1
 .6 1
 .7 .8 1
END DATA.

• The parentheses around the CONTENTS keywords indicate that the data include the mean
and standard deviation for value 1 of F1, followed by the mean and standard deviation for
value 2 of F1, followed by the N values for all cells.

Optional Specification When ROWTYPE_ Is Explicit

When ROWTYPE_ is explicitly named on VARIABLES, MATRIX DATA uses ROWTYPE_ values
to determine record types.

• When ROWTYPE_ is explicitly named on VARIABLES, CONTENTS can be used for infor-
mational purposes. However, ROWTYPE_ values in the data determine record types.

• If MATRIX DATA reads values for ROWTYPE_ that are not specified on CONTENTS, it issues
a warning.

• Missing values for factors are entered as periods, even though CONTENTS is specified
(see the FACTORS subcommand on p. 970).

Example
MATRIX DATA VARIABLES=ROWTYPE_ F1 F2 VAR1 TO VAR3
 /FACTORS=F1 F2 /CONTENTS=(MEAN SD N) CORR.
BEGIN DATA
MEAN 1 1 1 2 3
SD 1 1 5 4 3
N 1 1 9 9 9
MEAN 1 2 4 5 6
SD 1 2 6 5 4
N 1 2 9 9 9
CORR . . 1
CORR . . .6 1
CORR . . .7 .8 1
END DATA.

• ROWTYPE_ is specified on VARIABLES. MATRIX DATA therefore uses ROWTYPE_ values
in the data to identify record types.

976 MATRIX DATA

• Because ROWTYPE_ is specified on VARIABLES, CONTENTS is optional. However,
CONTENTS is specified for informational purposes. This is most useful when data are
in an external file and the ROWTYPE_ values cannot be seen in the data.

• Missing values for factors are entered as periods, even though CONTENTS is specified.

N Subcommand

N specifies the population N when the data do not include it. The only valid specification is
an integer, which indicates the population N.

• MATRIX DATA generates one record with a ROWTYPE_ of N for each split file, and it uses
the specified N value for each continuous variable.

Example
MATRIX DATA VARIABLES=V1 TO V3 /CONTENTS=MEAN SD CORR
 /N=99.
BEGIN DATA
 5 4 3
 3 4 5
 1
 .6 1
 .7 .8 1
END DATA.

• MATRIX DATA uses 99 as the N value for all continuous variables.

977

MCONVERT

MCONVERT [[/MATRIX=] [IN({* })] [OUT({* })]]
 {file} {file}
 [{/REPLACE}]
 {/APPEND }

Example
MCONVERT MATRIX=OUT(CORMTX) /APPEND.

Overview

MCONVERT converts covariance matrix materials to correlation matrix materials, or vice
versa. For MCONVERT to convert a correlation matrix, the matrix data must contain CORR
values (Pearson correlation coefficients) and a vector of standard deviations (STDDEV).
For MCONVERT to convert a covariance matrix, only COV values are required in the data.

Options

Matrix Files. MCONVERT can read matrix materials from an external matrix data file, and it
can write converted matrix materials to an external file.

Matrix Materials. MCONVERT can write the converted matrix only or both the converted
matrix and the original matrix to the resulting matrix data file.

Basic Specification

The minimum specification is the command itself. By default, MCONVERT reads the original
matrix from the working data file and then replaces it with the converted matrix.

Syntax Rules

• The keywords IN and OUT cannot specify the same external file.

• The APPEND and REPLACE subcommands cannot be specified on the same MCONVERT
command.

Operations

• If the data are covariance matrix materials, MCONVERT converts them to a correlation
matrix plus a vector of standard deviations.

• If the data are a correlation matrix and vector of standard deviations, MCONVERT converts
them to a covariance matrix.

978 MCONVERT

• If there are multiple CORR or COV matrices (for example, one for each grouping (factor)
or one for each split variable), each will be converted to a separate matrix, preserving the
values of any factor or split variables.

• All cases with ROWTYPE_ values other than CORR or COV, such as MEAN, N, and
STDDEV, are always copied into the new matrix data file.

• MCONVERT cannot read raw matrix values. If your data are raw values, use the MATRIX
DATA command.

• Split variables (if any) must occur first in the file that MCONVERT reads, followed by the
variable ROWTYPE_, the grouping variables (if any), and the variable VARNAME_. All vari-
ables following VARNAME_ are the variables for which a matrix will be read and created.

Limitations

• The total number of split variables plus grouping variables cannot exceed eight.

Example

MATRIX DATA VARIABLES=ROWTYPE_ SAVINGS POP15 POP75 INCOME GROWTH
/FORMAT=FULL.

BEGIN DATA
COV 20.0740459 -18.678638 1.8304990 978.181242 3.9190106
COV -18.678638 83.7541100 -10.731666 -6856.9888 -1.2561071
COV 1.8304990 -10.731666 1.6660908 1006.52742 .0937992
COV 978.181242 -6856.9888 1006.52742 981785.907 -368.18652
COV 3.9190106 -1.2561071 .0937992 -368.18652 8.2361574
END DATA.
MCONVERT.

• MATRIX DATA defines the variables in the file and creates a working data file of matrix
materials. The values for the variable ROWTYPE_ are COV, indicating that the matrix
contains covariance coefficients. The FORMAT subcommand indicates that data are in full
square format.

• MCONVERT converts the covariance matrix to a correlation matrix plus a vector of stan-
dard deviations. By default, the converted matrix is written to the working data file.

MATRIX Subcommand

The MATRIX subcommand specifies the file for the matrix materials. By default, MATRIX
reads the original matrix from the working data file and replaces the working data file with
the converted matrix.
• MATRIX has two keywords, IN and OUT. The specification on both IN and OUT is the name

of an external file in parentheses or an asterisk (*) to refer to the working data file (the
default).

• The actual keyword MATRIX is optional.

• IN and OUT cannot specify the same external file.

MCONVERT 979

• MATRIX=IN cannot be specified unless a working data file has already been defined. To
convert an existing matrix at the beginning of a session, use GET to retrieve the matrix file
and then specify IN(*) on MATRIX.

IN The matrix file to read.

OUT The matrix file to write.

Example
GET FILE=COVMTX.
MCONVERT MATRIX=OUT(CORMTX).

• GET retrieves the SPSS-format matrix data file COVMTX. COVMTX becomes the working
data file.

• By default, MCONVERT reads the original matrix from the working data file. IN(*) can be
specified to make the default explicit.

• The keyword OUT on MATRIX writes the converted matrix to file CORMTX.

REPLACE and APPEND Subcommands

By default, MCONVERT writes only the converted matrix to the resulting matrix file. Use
APPEND to copy both the original matrix and the converted matrix.

• The only specification is the keyword REPLACE or APPEND.

• REPLACE and APPEND are alternatives.
• REPLACE and APPEND affect the resulting matrix file only. The original matrix materials,

whether in the working file or in an external file, remain intact.

APPEND Write the original matrix followed by the converted matrix to the matrix file.
If there are multiple sets of matrix materials, APPEND appends each converted
matrix to the end of a copy of its original matrix.

REPLACE Write the original matrix followed by the covariance matrix to the matrix file.

Example
MCONVERT MATRIX=OUT(COVMTX) /APPEND.

• MCONVERT reads matrix materials from the working file.

• The APPEND subcommand copies original matrix materials, appends each converted
matrix to the end of the copy of its original matrix, and writes both sets to the file COVMTX.

980

MEANS

MEANS [TABLES=]{varlist} BY varlist [BY...] [/varlist...]
 {ALL }

[/MISSING={TABLE }]
 {INCLUDE }
 {DEPENDENT}

 [/CELLS= [MEAN**] [COUNT**] [STDDEV**]
 [MEDIAN] [GMEDIAN] [SEMEAN] [SUM]
 [MIN] [MAX] [RANGE] [VARIANCE]
 [KURT] [SEKURT] [SKEW] [SESKEW]
 [FIRST] [LAST]

[NPCT] [SPCT] [NPCT(var)] [SPCT(var)]
[HARMONIC] [GEOMETRIC]
[DEFAULT]

 [ALL] [NONE]]

 [/STATISTICS=[ANOVA] [{LINEARITY}] [NONE**]]
 {ALL }

**Default if the subcommand is omitted.

Example
MEANS TABLES=V1 TO V5 BY GROUP

/STATISTICS=ANOVA.

Overview

By default, MEANS (alias BREAKDOWN) displays means, standard deviations, and group
counts for a numeric dependent variable and group counts for a string variable within groups
defined by one or more control (independent) variables. Other procedures that display
univariate statistics are SUMMARIZE, FREQUENCIES, and DESCRIPTIVES.

Options

Cell Contents. By default, MEANS displays means, standard deviations, and cell counts for a
dependent variable across groups defined by one or more control variables. You can also
display sums and variances using the CELLS subcommand.

Statistics. In addition to the statistics displayed for each cell of the table, you can obtain a
one-way analysis of variance and test of linearity using the STATISTICS subcommand.

Basic Specification

The basic specification is TABLES with a table list. The actual keyword TABLES can be
omitted.

• The minimum table list specifies a dependent variable, the keyword BY, and a control
variable.

MEANS 981

• By default, MEANS displays means, standard deviations, and number of cases.

Subcommand Order

The table list must be first if the keyword TABLES is omitted. If the keyword TABLES is
explicitly used, subcommands can be specified in any order.

Operations

• MEANS displays the number and percentage of the processed and missing cases in the
Case Process Summary table.

• MEANS displays univariate statistics for the population as a whole and for each value of
each successive control variable defined by the BY keyword on the TABLE subcommand
in the Group Statistics table.

• ANOVA and linearity statistics, if requested, are displayed in the ANOVA and Measures
of Association tables.

• If a control variable is a long string, only the short-string portion is used to identify groups
in the analysis.

• If a string variable is specified as a dependent variable on any table lists, the MEANS
procedure produces limited statistics (COUNT, FIRST, and LAST).

Limitations

• Maximum 200 variables total per MEANS command.
• Maximum 250 tables.

Example

MEANS TABLES=V1 TO V5 BY GROUP
/STATISTICS=ANOVA.

• TABLES specifies that V1 through V5 are the dependent variables. GROUP is the control
variable.

• Assuming that variables V2, V3, and V4 lie between V1 and V5 in the working data file,
five tables are produced: V1 by GROUP, V2 by GROUP, V3 by GROUP, and so on.

• STATISTICS requests one-way analysis-of-variance tables of V1 through V5 by GROUP.

Example

MEANS VARA BY VARB BY VARC/V1 V2 BY V3 V4 BY V5.

• This command contains two TABLES subcommands that omit the optional TABLES
keyword.

982 MEANS

• The first table list produces a Group Statistics table for VARA within groups defined by
each combination of values as well as the totals of VARB and VARC.

• The second table list produces a Group Statistics table displaying statistics for V1 by V3
by V5, V1 by V4 by V5, V2 by V3 by V5, and V2 by V4 by V5.

TABLES Subcommand

TABLES specifies the table list.
• You can specify multiple TABLES subcommands on a single MEANS command. The slash

between the subcommands is required. You can also name multiple table lists separated
by slashes on one TABLES subcommand.

• The dependent variable is specified first. If the dependent variable is a string variable,
MEANS produces only limited statistics (COUNT, FIRST, and LAST). The control (indepen-
dent) variables follow the BY keyword and can be numeric (integer or non-integer) or
string.

• Each use of the keyword BY in a table list adds a dimension to the table requested.
Statistics are displayed for each dependent variable by each combination of values and
the totals of the control variables across dimensions.

• The order in which control variables are displayed is the same as the order in which they
are specified on TABLES. The values of the first control variable defined for the table
appear in the leftmost column of the table and change the most slowly in the definition of
groups.

• More than one dependent variable can be specified in a table list, and more than one control
variable can be specified in each dimension of a table list.

CELLS Subcommand

By default, SUMMARIZE displays the means, standard deviations, and cell counts in each cell.
Use CELLS to modify cell information.

• If CELLS is specified without keywords, SUMMARIZE displays the default statistics.
• If any keywords are specified on CELLS, only the requested information is displayed.

• MEDIAN and GMEDIAN are expensive in terms of computer resources and time. Requesting
these statistics (via these keywords or ALL) may slow down performance.

DEFAULT Means, standard deviations, and cell counts. This is the default if CELLS is
omitted.

MEAN Cell means.

STDDEV Cell standard deviations.

COUNT Cell counts.

MEDIAN Cell median.

GMEDIAN Grouped median.

MEANS 983

SEMEAN Standard error of cell mean.

SUM Cell sums.

MIN Cell minimum.

MAX Cell maximum.

RANGE Cell range.

VARIANCE Variances.

KURT Cell kurtosis.

SEKURT Standard error of cell kurtosis.

SKEW Cell skewness.

SESKEW Standard error of cell skewness.

FIRST First value.

LAST Last value.

NPCT Percentage of the total number of cases.

SPCT Percentage of the total sum.

NPCT(var) Percentage of the total number of cases within the specified variable. The
specified variable must be one of the control variables.

SPCT(var) Percentage of the total sum within the specified variable. The specified vari-
able must be one of the control variables.

HARMONIC Harmonic mean.

GEOMETRIC Geometric mean.

ALL All cell information.

STATISTICS Subcommand

Use STATISTICS to request a one-way analysis of variance and a test of linearity for each
TABLE list.

• Statistics requested on STATISTICS are computed in addition to the statistics displayed in
the Group Statistics table.

• If STATISTICS is specified without keywords, MEANS computes ANOVA.

• If two or more dimensions are specified, the second and subsequent dimensions are ignored
in the analysis-of-variance table. To obtain a two-way and higher analysis of variance, use
the ANOVA or MANOVA procedure. The ONEWAY procedure calculates a one-way analysis
of variance with multiple comparison tests.

ANOVA Analysis of variance. ANOVA displays a standard analysis-of-variance table
and calculates eta and eta squared (displayed in the Measures of Association
table). This is the default if STATISTICS is specified without keywords.

984 MEANS

LINEARITY Test of linearity. LINEARITY (alias ALL) displays additional statistics to the
tables created by the ANOVA keyword: the sums of squares, degrees of free-
dom, and mean square associated with linear and nonlinear components, the
F ratio, and significance level for the ANOVA table and Pearson’s r and r2

for the Measures of Association table. LINEARITY is ignored if the control
variable is a string.

NONE No additional statistics. This is the default if STATISTICS is omitted.

Example
MEANS TABLES=INCOME BY SEX BY RACE

/STATISTICS=ANOVA.

• MEANS produces a Group Statistics table of INCOME by RACE within SEX and computes
an analysis of variance only for INCOME by SEX.

MISSING Subcommand

MISSING controls the treatment of missing values. If no MISSING subcommand is specified
each combination of a dependent variable and control variables is handled separately.

TABLE Delete cases with missing values on a tablewise basis. A case with a missing
value for any variable specified for a table is not used. Thus, every case con-
tained in a table has a complete set of nonmissing values for all variables in
that table. When you separate table requests with a slash, missing values are
handled separately for each list. Any MISSING specification will result in ta-
blewise treatment of missing values.

INCLUDE Include user-missing values. This option treats user-missing values as valid
values.

DEPENDENT Exclude user-missing values for dependent variables only. DEPENDENT
treats user-missing values for all control variables as valid.

References

Hays, W. L. 1981. Statistics for the social sciences, 3rd ed. New York: Holt, Rinehart, and Wilson.

985

MISSING VALUES

MISSING VALUES {varlist}(value list) [[/]{varlist} ...]
 {ALL } {ALL }

Keywords for numeric value lists:

LO, LOWEST, HI, HIGHEST, THRU

Example
MISSING VALUES V1 (8,9) V2 V3 (0) V4 (’X’) V5 TO V9 (’ ’).

Overview

MISSING VALUES declares values for numeric and short string variables as user-missing.
These values can then receive special treatment in data transformations, statistical calcula-
tions, and case selection. By default, user-missing values are treated the same as the system-
missing values. System-missing values are automatically assigned by the program when no
legal value can be produced, such as when an alphabetical character is encountered in the
data for a numeric variable, or when an illegal calculation, such as division by 0, is requested
in a data transformation.

Basic Specification

The basic specification is a single variable followed by the user-missing value or values in
parentheses. Each specified value for the variable is treated as user-missing for any analysis.

Syntax Rules

• Each variable can have a maximum of three individual user-missing values. A space or
comma must separate each value. For numeric variables, you can also specify a range of
missing values. See “Specifying Ranges of Missing Values” on p. 987.

• The missing-value specification must correspond to the variable type (numeric or string).

• The same values can be declared missing for more than one variable by specifying a
variable list followed by the values in parentheses. Variable lists must have either all
numeric or all string variables.

• Different values can be declared missing for different variables by specifying separate
values for each variable. An optional slash can be used to separate specifications.

• Missing values cannot be assigned to long string variables or to scratch variables.

• Missing values for short string variables must be enclosed in apostrophes or quotation
marks. The value specifications must include any leading or trailing blanks. (See “String
Values in Command Specifications” on p. 7 in Volume I.)

986 MISSING VALUES

• For date format variables (for example, DATE, ADATE), missing values expressed in date
formats must be enclosed in apostrophes or quotation marks, and values must be
expressed in the same date format as the defined date format for the variable.

• A variable list followed by an empty set of parentheses () deletes any user-missing
specifications for those variables.

• The keyword ALL can be used to refer to all user-defined variables in the working file,
provided the variables are either all numeric or all string. ALL can refer to both numeric
and string variables if it is followed by an empty set of parentheses. This will delete all
user-missing specifications in the working data file.

• More than one MISSING VALUES command can be specified per session.

Operations

• Unlike most transformations, MISSING VALUES takes effect as soon as it is encountered.
Special attention should be paid to its position among commands. See “Command Order”
on p. 8 in Volume I for more information.

• Missing-value specifications can be changed between procedures. New specifications
replace previous ones. If a variable is mentioned more than once on one or more MISSING
VALUES commands before a procedure, only the last specification is used.

• Missing-value specifications are saved in SPSS-format data files (see SAVE) and portable
files (see EXPORT).

Example

MISSING VALUES V1 (8,9) V2 V3 (0) V4 (’X’) V5 TO V9 (’ ’).

• The values 8 and 9 are declared missing for the numeric variable V1.

• The value 0 is declared missing for the numeric variables V2 and V3.

• The value X is declared missing for the string variable V4.

• Blanks are declared missing for the string variables between and including V5 and V9. All
of these variables must have a width of four columns.

Example

MISSING VALUES V1 ().

• Any previously declared missing values for V1 are deleted.

Example

MISSING VALUES ALL (9).

• The value 9 is declared missing for all variables in the working data file; the variables
must all be numeric. All previous user-missing specifications are overridden.

MISSING VALUES 987

Example

MISSING VALUES ALL ().

• All previously declared user-missing values for all variables in the working data file are
deleted. The variables in the working data file can be both numeric and string.

Specifying Ranges of Missing Values

A range of values can be specified as missing for numeric variables but not for string variables.

• The keyword THRU indicates an inclusive list of values. Values must be separated from
THRU by at least one blank space.

• The keywords HIGHEST and LOWEST with THRU indicate the highest and lowest values
of a variable. HIGHEST and LOWEST can be abbreviated to HI and LO.

• Only one THRU specification can be used for each variable or variable list. Each THRU
specification can be combined with one additional missing value.

Example
MISSING VALUES V1 (LOWEST THRU 0).

• All negative values and 0 are declared missing for the variable V1.

Example
MISSING VALUES V1 (0 THRU 1.5).

• Values from 0 through and including 1.5 are declared missing.

Example
MISSING VALUES V1 (LO THRU 0, 999).

• All negative values, 0, and 999 are declared missing for the variable V1.

988

MIXED

MIXED is available in the Advanced Models option.

MIXED dependent varname [BY factor list] [WITH covariate list]

[/CRITERIA = [CIN({95** })] [HCONVERGE({0** } {ABSOLUTE**})
{value} {value} {RELATIVE }

[LCONVERGE({0** } {ABSOLUTE**})] [MXITER({100**})]
{value} {RELATIVE } {n }

[MXSTEP({5**})] [PCONVERGE({1E-6**},{ABSOLUTE**})] [SCORING({1**})]
{n } {value } {RELATIVE } {n }

[SINGULAR({1E-12**})]]
{value }

[/EMMEANS = TABLES ({OVERALL })]
{factor }
{factor*factor ...}

[WITH (covariate=value [covariate = value ...])
[COMPARE [({factor})] [REFCAT({value})] [ADJ({LSD** })]]

{FIRST} {BONFERRONI}
{LAST } {SIDAK }

[/FIXED = [effect [effect ...]] [| [NOINT] [SSTYPE({1 })]]]
{3**}

[/METHOD = {ML }]
{REML**}

[/MISSING = {EXCLUDE**}]
{INCLUDE }

[/PRINT = [CORB] [COVB] [CPS] [DESCRIPTIVES] [G] [HISTORY(1**)] [LMATRIX] [R]
(n)

[SOLUTION] [TESTCOV]]

[/RANDOM = effect [effect ...]
[| [SUBJECT(varname[*varname[*...]])] [COVTYPE({VC** })]]]

{covstruct+}

[/REGWGT = varname]

[/REPEATED = varname[*varname[*...]] | SUBJECT(varname[*varname[*...]])
[COVTYPE({DIAG** })]]

{covstruct+}

[/SAVE = [tempvar [(name)] [tempvar [(name)]] ...]

[/TEST[(valuelist)] =
[’label’] effect valuelist ... [| effect valuelist ...] [divisor=value]]
[; effect valuelist ... [| effect valuelist ...] [divisor=value]]

[/TEST[(valuelist)] = [’label’] ALL list [| list] [divisor=value]]
[; ALL list [| list] [divisor=value]]

** Default if the subcommand is omitted.

+ covstruct can take the following values: AD1, AR1, ARH1, ARMA11, CS, CSH, CSR,
DIAG, FA1, FAH1, HF, ID, TP, TPH, UN, UNR, VC.

MIXED 989

Overview

The MIXED procedure fits a variety of mixed linear models. The mixed linear model expands
the general linear model used in the GLM procedure in that the data are permitted to exhibit
correlation and non-constant variability. The mixed linear model, therefore, provides the flex-
ibility of modeling not only the means of the data but also their variances and covariances.

The MIXED procedure is also a flexible tool for fitting other models that can be formulated
as mixed linear models. Such models include multilevel models, hierarchical linear models,
and random coefficient models.

Important Changes to MIXED Compared to Previous Versions

Independence of Random Effects. Prior to SPSS 11.5, random effects were assumed to be inde-
pendent. If you are using MIXED syntax jobs from a version prior to 11.5, be aware that the
interpretation of the covariance structure may have changed. For more information, see
“Interpretation of Random Effect Covariance Structures” on p. 1010.

Default Covariance Structures. Prior to SPSS 11.5, the default covariance structure for random
effects was ID, and the default covariance structure for repeated effects was VC.

Interpretation of VC Covariance Structure. Prior to SPSS 11.5, the variance components (VC)
structure was a diagonal matrix with heterogenous variances. Now, when the variance compo-
nents structure is specified on a RANDOM subcommand, a scaled identity (ID) structure is
assigned to each of the effects specified on the subcommand. If the variance components
structure is specified on the REPEATED subcommand, it will be replaced by the diagonal
(DIAG) structure. Note that the diagonal structure has the same interpretation as the variance
components structure in versions prior to 11.5.

Basic Features

Covariance Structures. Various structures are available. Use multiple RANDOM subcommands
to model a different covariance structure for each random effect.

Standard Errors. Appropriate standard errors will be automatically calculated for all hypothesis
tests on the fixed effects, and specified estimable linear combinations of fixed and random
effects.

Subject Blocking. Complete independence can be assumed across subject blocks.

Choice of Estimation Method. Two estimation methods for the covariance parameters are available.

Tuning the Algorithm. You can control the values of algorithm-tuning parameters with the
CRITERIA subcommand.

Optional Output. You can request additional output through the PRINT subcommand. The SAVE
subcommand allows you to save various casewise statistics back to the working data file.

990 MIXED

Models

The following are examples of models that can be specified using MIXED:

Model 1: Fixed-Effects ANOVA Model

Suppose that TREAT is the treatment factor and BLOCK is the blocking factor.

MIXED Y BY TREAT BLOCK
/FIXED = TREAT BLOCK.

Model 2: Randomized Complete Blocks Design

Suppose that TREAT is the treatment factor and BLOCK is the blocking factor.

MIXED Y BY TREAT BLOCK
/FIXED = TREAT
/RANDOM = BLOCK.

Model 3: Split-Plot Design

An experiment consists of two factors, A and B. The experiment unit with respect to A is C.
The experiment unit with respect to B is the individual subject, a subdivision of the factor C.
Thus, C is the whole-plot unit, and the individual subject is the split-plot unit.

MIXED Y BY A B C
/FIXED = A B A*B
/RANDOM = C(A).

Model 4: Purely Random-Effects Model

Suppose that A, B, and C are random factors.

MIXED Y BY A B C
/FIXED = | NOINT
/RANDOM = INTERCEPT A B C A*B A*C B*C | COVTYPE(CS).

The MIXED procedure allows effects specified on the same RANDOM subcommand to be
correlated. Thus, in the model above, the parameters of a compound symmetry covariance
matrix are computed across all levels of the random effects. In order to specify independent
random effects, you need to specify separate RANDOM subcommands. For example:

MIXED Y BY A B C
/FIXED = | NOINT
/RANDOM = INTERCEPT A | COVTYPE(CS)
/RANDOM = INTERCEPT B | COVTYPE(CS)
/RANDOM = INTERCEPT C | COVTYPE(CS)
/RANDOM = INTERCEPT A*B | COVTYPE(CS)
/RANDOM = INTERCEPT A*C | COVTYPE(CS)
/RANDOM = INTERCEPT B*C | COVTYPE(CS).

Here, the parameters of compound symmetry matrices are computed separately for each
random effect.

MIXED 991

Model 5: Random Coefficient Model

Suppose that the dependent variable Y is regressed on the independent variable X for each
level of A.

MIXED Y BY A WITH X
/FIXED = X
/RANDOM = INTERCEPT X | SUBJECT(A) COVTYPE(ID).

Model 6: Multilevel Analysis

Suppose that SCORE is the score of a particular achievement test given over TIME. STUDENT
is nested within CLASS, and CLASS is nested within SCHOOL.

MIXED SCORE WITH TIME
/FIXED = TIME
/RANDOM = INTERCEPT TIME | SUBJECT(SCHOOL) COVTYPE(ID)
/RANDOM = INTERCEPT TIME | SUBJECT(SCHOOL*CLASS) COVTYPE(ID)
/RANDOM = INTERCEPT TIME | SUBJECT(SCHOOL*CLASS*STUDENT)

COVTYPE(ID).

Model 7: Unconditional Linear Growth Model

Suppose that SUBJ is the individual’s identification and Y is the response of an individual
observed over TIME. The covariance structure is unspecified.

MIXED Y WITH TIME
/FIXED = TIME
/RANDOM = INTERCEPT TIME | SUBJECT(SUBJ) COVTYPE(ID).

Model 8: Linear Growth Model with a Person-Level Covariate

Suppose that PCOVAR is the person-level covariate.

MIXED Y WITH TIME PCOVAR
/FIXED = TIME PCOVAR TIME*PCOVAR
/RANDOM = INTERCEPT TIME | SUBJECT(SUBJ) COVTYPE(ID).

Model 9: Repeated Measures Analysis

Suppose that SUBJ is the individual’s identification and Y is the response of an individual
observed over several STAGEs. The covariance structure is compound symmetry.

MIXED Y BY STAGE
/RANDOM = INTERCEPT | SUBJECT(SUBJ) COVTYPE(ID)
/REPEATED = STAGE | SUBJECT(SUBJ) COVTYPE(CS).

Model 10: Repeated Measures Analysis with Time-Dependent Covariate

Suppose that SUBJ is the individual’s identification and Y is the response of an individual
observed over several STAGEs. X is an individual-level covariate that also measures over
several STAGEs. The residual covariance matrix structure is AR(1).

MIXED Y BY STAGE WITH X
/FIXED = X
/RANDOM = INTERCEPT X | SUBJECT(SUBJ) COVTYPE(ID)
/REPEATED = STAGE | SUBJECT(SUBJ) COVTYPE(AR1).

992 MIXED

Basic Specification

• The basic specification is a variable list identifying the dependent variable, the factors (if
any) and the covariates (if any).

• By default, MIXED adopts the model that consists of the intercept term as the only fixed
effect and the residual term as the only random effect.

Subcommand Order

• The variable list must be specified first.

• Subcommands can be specified in any order.

Syntax Rules

• For many analyses, the MIXED variable list, the FIXED subcommand, and the RANDOM
subcommand are the only specifications needed.

• Minimum syntax—a dependent variable must be specified.

• Empty subcommands are silently ignored.

• Multiple RANDOM subcommands are allowed. However, if an effect with the same
subject specification appears in multiple RANDOM subcommands, only the last specifica-
tion will be used.

• Multiple TEST subcommands are allowed.

• All subcommands, except the RANDOM and the TEST subcommands, should be specified
only once. If a subcommand is repeated, only the last specification will be used.

• The following words are reserved as keywords in the MIXED procedure: BY, WITH,
WITHIN.

Example
MIXED Y.

• Y is the dependent variable.

• The intercept term is the only fixed effect, and the residual term is the only random effect.

Case Frequency

• If an SPSS WEIGHT variable is specified, its values are used as frequency weights by the
MIXED procedure.

• Cases with missing weights or weights less than 0.5 are not used in the analyses.

• The weight values are rounded to the nearest whole numbers before use. For example, 0.5
is rounded to 1, and 2.4 is rounded to 2.

MIXED 993

Covariance Structure List

The following is the list of covariance structures being offered by the MIXED procedure.
Unless otherwise implied or stated, the structures are not constrained to be non-negative defi-
nite in order to avoid nonlinear constraints and to reduce the optimization complexity.
However, the variances are restricted to be non-negative.

• Separate covariance matrices are computed for each random effect; that is, while levels
of a given random effect are allowed to co-vary, they are considered independent of the
levels of other random effects.

AD1 First-order ante-dependence. The constraint is imposed
for stationarity.

Example matrix:

AR1 First-order autoregressive. The constraint is imposed for stationarity.

Example matrix:

ARH1 Heterogenous first-order autoregressive. The constraint is imposed
for stationarity.

Example matrix:

ρk 1≤

σ1
2 σ2σ

1
ρ1 σ3σ

1
ρ1ρ2 σ4σ1ρ1ρ2ρ

3

σ2σ
1
ρ1 σ2

2 σ3σ2ρ2 σ4σ2ρ2ρ3

σ3σ1ρ1ρ2 σ3σ2ρ2 σ3
2 σ4σ3ρ3

σ4σ1ρ1ρ2ρ
3

σ4σ2ρ2ρ3 σ4σ3ρ3 σ4
2

ρ 1≤

1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1

ρk 1≤

σ1
2 σ2σ

1
ρ σ3σ

1
ρ2 σ4σ1ρ3

σ2σ
1
ρ σ2

2 σ3σ2ρ σ4σ2ρ2

σ3σ1ρ2 σ3σ2ρ σ3
2 σ4σ3ρ

σ4σ1ρ3 σ4σ2ρ2 σ4σ3ρ σ4
2

994 MIXED

ARMA1 Autoregressive moving average (1,1). The constraints and are
imposed for stationarity.

Example matrix:

CS Compound symmetry. This structure has constant variance and constant
covariance.

Example matrix:

CSH Heterogenous compound symmetry. This structure has non-constant
variance and constant correlation.

Example matrix:

CSR Compound symmetry with correlation parameterization. This structure has
constant variance and constant covariance.

Example matrix:

ϕ 1≤ ρ 1≤

σ2

1 ϕ ϕρ ϕρ 2

ϕ 1 ϕ ϕρ
ϕρ ϕ 1 ϕ
ρ2 ϕρ ϕ 1

σ2 σ1
2+ σ1 σ1 σ1

σ1 σ2 σ1
2+ σ1 σ1

σ1 σ1 σ2 σ1
2+ σ1

σ1 σ1 σ1 σ2 σ1
2+

σ1
2 σ2σ1ρ σ3σ1ρ σ4σ1ρ

σ2σ1ρ σ2
2 σ3σ2ρ σ4σ2ρ

σ3σ1ρ σ3σ2ρ σ3
2 σ4σ3ρ

σ4σ1ρ σ4σ2ρ σ4σ3ρ σ4
2

σ2

1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ 1 ρ
ρ ρ ρ 1

MIXED 995

DIAG Diagonal. This is a diagonal structure with heterogenous variance. This is
the default covariance structure for repeated effects.

Example matrix:

FA1 First-order factor analytic with constant diagonal offset ().

Example matrix:

FAH1 First-order factor analytic with heterogenous diagonal offsets ().

Example matrix:

HF Huynh-Feldt. This is a circular matrix that satisfies the condition
.

σ1
2

0 0 0

0 σ2
2

0 0

0 0 σ3
2

0

0 0 0 σ4
2

d 0≥

λ1
2

d+ λ2λ
1

λ3λ1 λ4λ
1

λ2λ1 λ2
2

d+ λ3λ2 λ4λ2

λ3λ1 λ3λ2 λ3
2

d+ λ4λ3

λ4λ1 λ4λ2 λ4λ3 λ4
2

d+

dk 0≥

λ1
2

d1+ λ2λ
1

λ3λ1 λ4λ
1

λ2λ1 λ2
2

d2+ λ3λ2 λ4λ2

λ3λ1 λ3λ2 λ3
2

d3+ λ4λ3

λ4λ1 λ4λ2 λ4λ3 λ4
2

d4+

σi
2 σj

2 2σij–+ 2λ=

996 MIXED

Example matrix:

ID Identity. This is a scaled identity matrix.

Example matrix:

TP Toeplitz ().

Example matrix:

σ1
2

σ1
2 σ2

2+

2
------------------- λ–

σ1
2 σ3

2+

2
------------------- λ–

σ1
2 σ4

2+

2
------------------- λ–

σ1
2 σ2

2+

2
------------------- λ– σ2

2
σ2

2 σ3
2+

2
------------------- λ–

σ2
2 σ4

2+

2
------------------- λ–

σ1
2 σ3

2+

2
------------------- λ–

σ2
2 σ3

2+

2
------------------- λ– σ3

2
σ3

2 σ4
2+

2
------------------- λ–

σ1
2 σ4

2+

2
------------------- λ–

σ2
2 σ4

2+

2
------------------- λ–

σ3
2 σ4

2+

2
------------------- λ– σ4

2

σ2 0 0 0

0 σ2 0 0

0 0 σ2 0

0 0 0 σ2

ρk 1≤

σ2

1 ρ1 ρ2 ρ3

ρ1 1 ρ1 ρ2

ρ2 ρ1 1 ρ1

ρ3 ρ2 ρ1 1

MIXED 997

TPH Heterogenous Toeplitz ().

Example matrix:

UN Unstructured. This is a completely general covariance matrix.

Example matrix:

UNR Unstructured correlations ().

Example matrix:

VC Variance components. This is the default covariance structure for random ef-
fects. When the variance components structure is specified on a RANDOM
subcommand, a scaled identity (ID) structure is assigned to each of the effects
specified on the subcommand. If the variance components structure is spec-
ified on the REPEATED subcommand, it is replaced by the diagonal (DIAG)
structure.

ρk 1≤

σ1
2 σ2σ

1
ρ1 σ3σ

1
ρ2 σ4σ1ρ3

σ2σ
1
ρ1 σ2

2 σ3σ2ρ1 σ4σ2ρ2

σ3σ1ρ2 σ3σ2ρ1 σ3
2 σ4σ3ρ1

σ4σ1ρ3 σ4σ2ρ2 σ4σ3ρ1 σ4
2

σ1
2 σ21 σ31 σ42

σ21 σ2
2 σ32 σ24

σ31 σ32 σ3
2 σ43

σ41 σ42 σ43 σ4
2

ρjk 1≤

σ1
2 σ2σ

1
ρ21 σ3σ

1
ρ31 σ4σ1ρ41

σ2σ
1
ρ21 σ2

2 σ3σ2ρ32 σ4σ2ρ42

σ3σ1ρ31 σ3σ2ρ32 σ3
2 σ4σ3ρ43

σ4σ1ρ41 σ4σ2ρ42 σ4σ3ρ43 σ4
2

998 MIXED

Variable List

The variable list specifies the dependent variable, the factors, and the covariates in the model.

• The dependent variable must be the first specification on MIXED.

• The names of the factors, if any, must be preceded by the keyword BY.

• The names of the covariates, if any, must be preceded by the keyword WITH.

• The dependent variable and the covariates must be numeric.
• The factor variables can be of any type (numeric and string).

• Only cases with no missing values in all of the variables specified will be used.

CRITERIA Subcommand

The CRITERIA subcommand controls the iterative algorithm used in the estimation and spec-
ifies numerical tolerance for checking singularity.

CIN(value) Confidence interval level. This value is used whenever a confi-
dence interval is constructed. Specify a value greater than or
equal to 0 and less than 100. The default value is 95.

HCONVERGE(value, type) Hessian convergence criterion. Convergence is assumed if
 is less than a multiplier of value. The multiplier is 1

for ABSOLUTE type and is the absolute value of the current log-
likelihood function for RELATIVE type. The criterion is not used
if value equals 0. This criterion is not used by default. Specify a
non-negative value and a measure type of convergence.

LCONVERGE(value, type) Log-likelihood function convergence criterion. Convergence is
assumed if the ABSOLUTE or RELATIVE change in the log-like-
lihood function is less than value. The criterion is not used if a
equals 0. This criterion is not used by default. Specify a non-
negative value and a measure type of convergence.

MXITER(n) Maximum number of iterations. Specify a non-negative integer.
The default value is 100.

PCONVERGE(value, type) Parameter estimates convergence criterion. Convergence is
assumed if the maximum ABSOLUTE or maximum RELATIVE
change in the parameter estimates is less than value. The crite-
rion is not used if a equals 0. Specify a non-negative value and
a measure type of convergence. The default value for a is 10-6.

MXSTEP(n) Maximum step-halving allowed. At each iteration, the step size
is reduced by a factor of 0.5 until the log-likelihood increases or
maximum step-halving is reached. Specify a positive integer.
The default value is 5.

SCORING(n) Apply scoring algorithm. Requests to use the Fisher scoring
algorithm up to iteration number n. Specify a positive integer.
The default is 1.

g’kHk
1–
gk

MIXED 999

SINGULAR(value) Value used as tolerance in checking singularity. Specify a
positive value. The default value is 10-12.

Example
MIXED SCORE BY SCHOOL CLASS WITH AGE
/CRITERIA = CIN(90) LCONVERGE(0) MXITER(50) PCONVERGE(1E-5 RELATIVE)
/FIXED = AGE
/RANDOM = SCHOOL CLASS.

• The CRITERIA subcommand requests that a 90% confidence interval be calculated when-
ever appropriate.

• The log-likelihood convergence criterion is not used. Convergence is attained when the
maximum relative change in parameter estimates is less than 0.00001 and number of iter-
ations is less than 50.

Example
MIXED SCORE BY SCHOOL CLASS WITH AGE

/CRITERIA = MXITER(100) SCORING(100)
/FIXED = AGE
/RANDOM = SCHOOL CLASS.

• The Fisher scoring algorithm is used for all iterations.

EMMEANS Subcommand

EMMEANS displays estimated marginal means of the dependent variable in the cells and their
standard errors for the specified factors. Note that these are predicted, not observed, means.

• The TABLES keyword, followed by an option in parentheses, is required. COMPARE is
optional; if specified, it must follow TABLES.

• Multiple EMMEANS subcommands are allowed. Each is treated independently.

• If identical EMMEANS subcommands are specified, only the last identical subcommand is
in effect. EMMEANS subcommands that are redundant but not identical (for example,
crossed factor combinations such as A*B and B*A) are all processed.

TABLES(option) Table specification. Valid options are the keyword OVERALL,
factors appearing on the factor list, and crossed factors
constructed of factors on the factor list. Crossed factors can be
specified by using an asterisk (*) or the keyword BY. All factors
in a crossed factor specification must be unique.

If OVERALL is specified, the estimated marginal means of the
dependent variable are displayed, collapsing over all factors.

If a factor, or a crossing factor, is specified on the TABLES
keyword, MIXED will compute the estimated marginal mean for
each level combination of the specified factor(s), collapsing
over all other factors not specified with TABLES.

1000 MIXED

WITH (option) Covariate values. Valid options are covariates appearing on the
covariate list on the VARIABLES subcommand. Each covariate
must be followed by a numeric value or the keyword MEAN.

If a numeric value is used, the estimated marginal mean will be
computed by holding the specified covariate at the supplied
value.

When the keyword MEAN is used, the estimated marginal mean
will be computed by holding the covariate at its overall mean.
If a covariate is not specified in the WITH option, its overall
mean will be used in estimated marginal mean calculations.

COMPARE(factor) REFCAT(value) ADJ(method)

Main- or simple-main-effects omnibus tests and pairwise
comparisons of the dependent variable. This option gives the
mean difference, standard error, degrees of freedom, signifi-
cance and confidence intervals for each pair of levels for the
effect specified in the COMPARE keyword, and an omnibus test
for that effect. If only one factor is specified on TABLES,
COMPARE can be specified by itself; otherwise, the factor spec-
ification is required. In this case, levels of the specified factor
are compared with each other for each level of the other factors
in the interaction.

The optional ADJ keyword allows you to apply an adjustment to
the confidence intervals and significance values to account for
multiple comparisons. Methods available are LSD (no adjust-
ment), BONFERRONI, or SIDAK.

By default, all pairwise comparisons of the specified factor will
be constructed. Optionally, comparisons can be made to a refer-
ence category by specifying the value of that category after the
REFCAT keyword. If the compare factor is a string variable, the
category value must be a quoted string. If the compare factor is
a numeric variable, the category value should be specified as an
unquoted numeric value. Alternatively, keywords FIRST or
LAST can be used to specify whether the first or the last category
will be used as a reference category.

Example
MIXED Y BY A B WITH X

/FIXED A B X
/EMMEANS TABLES(A*B) WITH(X=0.23) COMPARE(A) ADJ(SIDAK)
/EMMEANS TABLES(A*B) WITH(X=MEAN) COMPARE(A) REFCAT(LAST) ADJ(LSD).

• In the example, the first EMMEANS subcommand will compute estimated marginal means
for all level combinations of A*B by fixing the covariate X at 0.23. Then for each level of
B, all pairwise comparisons on A will be performed using SIDAK adjustment.

MIXED 1001

• In the second EMMEANS subcommand, the estimated marginal means will be computed
by fixing the covariate X at its mean. Since REFCAT(LAST) is specified, comparison will
be made to the last category of factor A using LSD adjustment.

FIXED Subcommand

The FIXED subcommand specifies the fixed effects in the mixed model.

• Specify a list of terms to be included in the model, separated by commas or spaces.

• The intercept term is included by default.

• The default model is generated if the FIXED subcommand is omitted or empty. The default
model consists of only the intercept term (if included).

• To explicitly include the intercept term, specify the keyword INTERCEPT on the FIXED
subcommand. The INTERCEPT term must be specified first on the FIXED subcommand.

• To include a main-effect term, enter the name of the factor on the FIXED subcommand.

• To include an interaction-effect term among factors, use the keyword BY or the asterisk
(*) to connect factors involved in the interaction. For example, A*B*C means a three-way
interaction effect of the factors A, B, and C. The expression A BY B BY C is equivalent to
A*B*C. Factors inside an interaction effect must be distinct. Expressions such as A*C*A and
A*A are invalid.

• To include a nested-effect term, use the keyword WITHIN or a pair of parentheses on the
FIXED subcommand. For example, A(B) means that A is nested within B, where A and B
are factors. The expression A WITHIN B is equivalent to A(B). Factors inside a nested effect
must be distinct. Expressions such as A(A) and A(B*A) are invalid.

• Multiple-level nesting is supported. For example, A(B(C)) means that B is nested within C,
and A is nested within B(C). When more than one pair of parentheses is present, each pair
of parentheses must be enclosed or nested within another pair of parentheses. Thus,
A(B)(C) is invalid.

• Nesting within an interaction effect is valid. For example, A(B*C) means that A is nested
within B*C.

• Interactions among nested effects are allowed. The correct syntax is the interaction
followed by the common nested effect inside the parentheses. For example, the interac-
tion between A and B within levels of C should be specified as A*B(C) instead of A(C)*B(C).

• To include a covariate term in the model, enter the name of the covariate on the FIXED
subcommand.

• Covariates can be connected using the keyword BY or the asterisk (*). For example, X*X
is the product of X and itself. This is equivalent to entering a covariate whose values are
the squared values of X.

• Factor and covariate effects can be connected in many ways. Suppose that A and B are
factors and X and Y are covariates. Examples of valid combinations of factor and covariate
effects are A*X, A*B*X, X(A), X(A*B), X*A(B), X*Y(A*B), and A*B*X*Y.

• No effects can be nested within a covariate effect. Suppose that A and B are factors and X
and Y are covariates. The effects A(X), A(B*Y), X(Y), and X(B*Y) are invalid.

1002 MIXED

• The following options, which are specific for the fixed effects, can be entered after the
effects. Use the vertical bar (|) to precede the options.

NOINT No intercept. The intercept terms are excluded from the fixed
effects.

SSTYPE(n) Type of sum of squares. Specify the methods for partitioning the
sums of squares. Specify n = 1 for Type I sum of squares or n =
3 for Type III sum of squares. The default is Type III sum of
squares.

Example
MIXED SCORE BY SCHOOL CLASS WITH AGE PRETEST

/FIXED = AGE(SCHOOL) AGE*PRETEST(SCHOOL)
/RANDOM = CLASS.

• In this example, the fixed-effects design consists of the default INTERCEPT, a nested
effect AGE within SCHOOL, and another nested effect of the product of AGE and
PRETEST within SCHOOL.

Example
MIXED SCORE BY SCHOOL CLASS

/FIXED = | NOINT
/RANDOM = SCHOOL CLASS.

• In this example, a purely random-effects model is fitted. The random effects are SCHOOL
and CLASS. The fixed-effects design is empty because the implicit intercept term is
removed by the NOINT keyword.

• You can explicitly insert the INTERCEPT effect as /FIXED = INTERCEPT | NOINT. But the
specification will be identical to /FIXED = | NOINT.

METHOD Subcommand

The METHOD subcommand specifies the estimation method.
• If this subcommand is not specified, the default is REML.

• The keywords ML and REML are mutually exclusive. Only one of them can be specified once.

ML Maximum likelihood.

REML Restricted maximum likelihood. This is the default.

MISSING Subcommand

The MISSING subcommand specifies the way to handle cases with user-missing values.

• If this subcommand is not specified, the default is EXCLUDE.

• Cases, which contain system-missing values in one of the variables, are always deleted.

MIXED 1003

• The keywords EXCLUDE and INCLUDE are mutually exclusive. Only one of them can be
specified once.

EXCLUDE Exclude both user-missing and system-missing values. This is
the default.

INCLUDE User-missing values are treated as valid. System-missing
values cannot be included in the analysis.

PRINT Subcommand

The PRINT subcommand specifies additional output. If no PRINT subcommand is specified,
the default output includes:

• A model dimension summary table

• A covariance parameter estimates table

• A model fit summary table

• A test of fixed effects table

CORB Asymptotic correlation matrix of the fixed-effects parameter
estimates.

COVB Asymptotic covariance matrix of the fixed-effects parameter
estimates.

CPS Case processing summary. Displays the sorted values of the
factors, the repeated measure variables, the repeated measure
subjects, the random-effects subjects, and their frequencies.

DESCRIPTIVES Descriptive statistics. Displays the sample sizes, the means, and
the standard deviations of the dependent variable, and covari-
ates (if specified). These statistics are displayed for each distinct
combination of the factors.

G Estimated covariance matrix of random effects. This keyword is
accepted only when at least one RANDOM subcommand is spec-
ified. Otherwise, it will be ignored. If a SUBJECT variable is
specified for a random effect, then the common block is
displayed.

HISTORY(n) Iteration history. The table contains the log-likelihood function
value and parameter estimates for every n iterations beginning
with the 0th iteration (the initial estimates). The default is to
print every iteration (n = 1). If HISTORY is specified, the last
iteration is always printed regardless of the value of n.

LMATRIX Estimable functions. Displays the estimable functions used for
testing the fixed effects and for testing the custom hypothesis.

R Estimated covariance matrix of residual. This keyword is
accepted only when a REPEATED subcommand is specified.

1004 MIXED

Otherwise, it will be ignored. If a SUBJECT variable is speci-
fied, the common block is displayed.

SOLUTION A solution for the fixed-effects and the random-effects
parameters. The fixed-effects and the random-effects param-
eter estimates are displayed. Their approximate standard errors
are also displayed.

TESTCOV Tests for the covariance parameters. Displays the asymptotic
standard errors and Wald tests for the covariance parameters.

RANDOM Subcommand

The RANDOM subcommand specifies the random effects in the mixed model.

• Depending on the covariance type specified, random effects specified in one RANDOM
subcommand may be correlated.

• One covariance G matrix will be constructed for each RANDOM subcommand. The
dimension of the random effect covariance G matrix is equal to the sum of the levels of
all random effects in the subcommand.

• When the variance components (VC) structure is specified, a scaled identity (ID) structure
will be assigned to each of the effects specified. This is the default covariance type for the
RANDOM subcommand.

• Note that the RANDOM subcommand in the MIXED procedure is different in syntax from
the RANDOM subcommand in the GLM and the VARCOMP procedures.

• Use a separate RANDOM subcommand when a different covariance structure is assumed
for a list of random effects. If the same effect is listed on more than one RANDOM subcom-
mand, it must be associated with a different SUBJECT combination.

• Specify a list of terms to be included in the model, separated by commas or spaces.
• No random effects are included in the mixed model unless a RANDOM subcommand is

specified correctly.

• Specify the keyword INTERCEPT to include the intercept as a random effect. The MIXED
procedure does not include the intercept in the RANDOM subcommand by default. The
INTERCEPT term must be specified first on the RANDOM subcommand.

• To include a main-effect term, enter the name of the factor on the RANDOM subcommand.
• To include an interaction-effect term among factors, use the keyword BY or the asterisk

(*) to join factors involved in the interaction. For example, A*B*C means a three-way
interaction effect of A, B, and C, where A, B, and C are factors. The expression A BY B BY
C is equivalent to A*B*C. Factors inside an interaction effect must be distinct. Expressions
such as A*C*A and A*A are invalid.

• To include a nested-effect term, use the keyword WITHIN or a pair of parentheses on the
RANDOM subcommand. For example, A(B) means that A is nested within B, where A and
B are factors. The expression A WITHIN B is equivalent to A(B). Factors inside a nested
effect must be distinct. Expressions such as A(A) and A(B*A) are invalid.

• Multiple-level nesting is supported. For example, A(B(C)) means that B is nested within C,
and A is nested within B(C). When more than one pair of parentheses is present, each pair

MIXED 1005

of parentheses must be enclosed or nested within another pair of parentheses. Thus,
A(B)(C) is invalid.

• Nesting within an interaction effect is valid. For example, A(B*C) means that A is nested
within B*C.

• Interactions among nested effects are allowed. The correct syntax is the interaction
followed by the common nested effect inside the parentheses. For example, the interac-
tion between A and B within levels of C should be specified as A*B(C) instead of A(C)*B(C).

• To include a covariate term in the model, enter the name of the covariate on the FIXED
subcommand.

• Covariates can be connected using the keyword BY or the asterisk (*). For example, X*X
is the product of X and itself. This is equivalent to entering a covariate whose values are
the squared values of X.

• Factor and covariate effects can be connected in many ways. Suppose that A and B are
factors and X and Y are covariates. Examples of valid combinations of factor and covariate
effects are A*X, A*B*X, X(A), X(A*B), X*A(B), X*Y(A*B), and A*B*X*Y.

• No effects can be nested within a covariate effect. Suppose that A and B are factors and X
and Y are covariates. The effects A(X), A(B*Y), X(Y), and X(B*Y) are invalid.

• The following options, which are specific for the random effects, can be entered after the
effects. Use the vertical bar (|) to precede the options.

SUBJECT(varname*varname*…) Identify the subjects. Complete independence is assumed
across subjects, thus producing a block-diagonal structure
in the covariance matrix of the random effect with identical
blocks. Specify a list of variable names (of any type)
connected by asterisks. The number of subjects is equal to
the number of distinct combinations of values of the vari-
ables. A case will not be used if it contains a missing value
on any of the subject variables.

COVTYPE(type) Covariance structure. Specify the covariance structure of
the identical blocks for the random effects (see “Covari-
ance Structure List” on p. 993). The default covariance
structure for random effects is VC.

• If the REPEATED subcommand is specified, the variables in the RANDOM subject list must
be a subset of the variables in the REPEATED subject list.

• Random effects are considered independent of each other, and a separate covariance
matrix is computed for each effect.

Example
MIXED SCORE BY SCHOOL CLASS

/FIXED = INTERCEPT SCHOOL CLASS
/RANDOM = INTERCEPT SCHOOL CLASS.

1006 MIXED

REGWGT Subcommand

The REGWGT subcommand specifies the name of a variable containing the regression
weights.

• Specify a numeric variable name following the REGWGT subcommand.

• Cases with missing or non-positive weights are not used in the analyses.

• The regression weights will be applied only to the covariance matrix of the residual term.

REPEATED Subcommand

The REPEATED subcommand specifies the residual covariance matrix in the mixed-effects
model. If no REPEATED subcommand is specified, the residual covariance matrix assumes
the form of a scaled identity matrix with the scale being the usual residual variance.

• Specify a list of variable names (of any type) connected by asterisks (repeated measure)
following the REPEATED subcommand.

• Distinct combinations of values of the variables are used simply to identify the repeated
observations. Order of the values will determine the order of occurrence of the repeated
observations. Therefore, the lowest values of the variables associate with the first
repeated observation, and the highest values associate with the last repeated observation.

• The VC covariance structure is obsolete in the REPEATED subcommand. If it is specified,
it will be replaced with the DIAG covariance structure. An annotation will be made in the
output to indicate this change.

• The default covariance type for repeated effects is DIAG.
• The following keywords, which are specific for the REPEATED subcommand, can be

entered after the effects. Use the vertical bar (|) to precede the options.

SUBJECT(varname*varname*…) Identify the subjects. Complete independence is assumed
across subjects, thus producing a block-diagonal structure
in the residual covariance matrix with identical blocks. The
number of subjects is equal to the number of distinct
combinations of values of the variables. A case will not be
used if it contains a missing value on any of the subject
variables.

COVTYPE(type) Covariance structure. Specify the covariance structure of
the identical blocks for the residual covariance matrix (see
“Covariance Structure List” on p. 993). The default struc-
ture for repeated effects is DIAG.

• The SUBJECT keyword must be specified to identify the subjects in a repeated measure-
ment analysis. The analysis will not be performed if this keyword is omitted.

• The list of subject variables must contain all of the subject variables specified in all
RANDOM subcommands.

• Any variable used in the repeated measure list must not be used in the repeated subject
specification.

MIXED 1007

Example
MIXED SCORE BY CLASS

/RANDOM = CLASS | SUBJECT(SCHOOL)
/REPEATED = FLOOR | SUBJECT(SCHOOL*STUDENT).

However, the syntax in each of the following examples is invalid:

MIXED SCORE BY CLASS
/RANDOM = CLASS | SUBJECT(SCHOOL)
/REPEATED = FLOOR | SUBJECT(STUDENT).

MIXED SCORE BY CLASS
/RANDOM = CLASS | SUBJECT(SCHOOL*STUDENT)
/REPEATED = FLOOR | SUBJECT(STUDENT).

MIXED SCORE BY CLASS
/RANDOM = CLASS | SUBJECT(SCHOOL)
/REPEATED = STUDENT | SUBJECT(STUDENT*SCHOOL).

• In the first two examples, the RANDOM subject list contains a variable not on the
REPEATED subject list.

• In the third example, the REPEATED subject list contains a variable on the REPEATED
variable list.

SAVE Subcommand

Use the SAVE subcommand to save one or more casewise statistics to the working data file.
• Specify one or more temporary variables, each followed by an optional new name in

parentheses.

• If new names are not specified, default names are generated.

FIXPRED Fixed predicted values. The regression means without the random effects.

PRED Predicted values. The model fitted value.

RESID Residuals. The data value minus the predicted value.

SEFIXP Standard error of fixed predicted values. These are the standard error esti-
mates for the fixed effects predicted values obtained by the keyword
FIXPRED.

SEPRED Standard error of predicted values. These are the standard error estimates for
the overall predicted values obtained by the keyword PRED.

DFFIXP Degrees of freedom of fixed predicted values. These are the Satterthwaite
degrees of freedom for the fixed effects predicted values obtained by the key-
word FIXPRED.

DFPRED Degrees of freedom of predicted values. These are the Satterthwaite degrees
of freedom for the fixed effects predicted values obtained by the keyword
PRED.

1008 MIXED

Example
MIXED SCORE BY SCHOOL CLASS WITH AGE

/FIXED = AGE
/RANDOM = SCHOOL CLASS(SCHOOL)
/SAVE = FIXPRED(BLUE) PRED(BLUP) SEFIXP(SEBLUE) SEPRED(SEBLUP).

• The SAVE subcommand appends four variables to the working data file: BLUE, containing
the fixed predicted values, BLUP, containing the predicted values, SEBLUE, containing the
standard error of BLUE, and SEBLUP, containing the standard error of BLUP.

TEST Subcommand

The TEST subcommand allows you to customize your hypotheses tests by directly specifying
null hypotheses as linear combinations of parameters.

• Multiple TEST subcommands are allowed. Each is handled independently.

• The basic format for the TEST subcommand is an optional list of values enclosed in a pair
of parentheses, an optional label in quotes, an effect name or the keyword ALL, and a list
of values.

• When multiple linear combinations are specified within the same TEST subcommand, a
semicolon (;) terminates each linear combination except the last one.

• At the end of a contrast coefficients row, you can use the option DIVISOR=value to specify
a denominator for coefficients in that row. When specified, the contrast coefficients in
that row will be divided by the given value. Note that the equal sign is required.

• The value list preceding the first effect or the keyword ALL contains the constants, to
which the linear combinations are equated under the null hypotheses. If this value list is
omitted, the constants are assumed to be zeros.

• The optional label is a string with a maximum length of 255 characters (or 127 double-
byte characters). Only one label per TEST subcommand can be specified.

• The effect list is divided into two parts. The first part is for the fixed effects, and the
second part is for the random effects. Both parts have the same syntax structure.

• Effects specified in the fixed-effect list should have already been specified or implied on
the FIXED subcommand.

• Effects specified in the random-effect list should have already been specified on the
RANDOM subcommand.

• To specify the coefficient for the intercept, use the keyword INTERCEPT. Only one value
is expected to follow INTERCEPT.

• The number of values following an effect name must be equal to the number of parame-
ters (including the redundant ones) corresponding to that effect. For example, if the effect
A*B takes up to six parameters, then exactly six values must follow A*B.

• A number can be specified as a fraction with a positive denominator. For example, 1/3 or
–1/3 are valid, but 1/–3 is invalid.

• When ALL is specified, only a list of values can follow. The number of values must be
equal to the number of parameters (including the redundant ones) in the model.

MIXED 1009

• Effects appearing or implied on the FIXED and RANDOM subcommands but not specified
on TEST are assumed to take the value 0 for all of their parameters.

• If ALL is specified for the first row in a TEST matrix, then all subsequent rows should
begin with the ALL keyword.

• If effects are specified for the first row in a TEST matrix, then all subsequent rows should
use the effect name (thus ALL is not allowed).

• When SUBJECT() is specified on a RANDOM subcommand, the coefficients given in the
TEST subcommand will be divided by the number of subjects of that random effect
automatically.

Example
MIXED Y BY A B C

/FIX = A
/RANDOM = B C
/TEST = ’Contrasts of A’ A 1/3 1/3 1/3; A 1 -1 0; A 1 -1/2 -1/2
/TEST(1) = ’Contrast of B’ | B 1 -1
/TEST = ’BLUP at First Level of A’

ALL 0 1 0 0 | 1 0 1 0;
ALL | 1 0 0 1;
ALL 0 1 0 0;
ALL 0 1 0 0 | 0 1 0 1.

Suppose that factor A has three levels and factors B and C each have two levels.

• The first TEST is labeled Contrasts of A. It performs three contrasts among levels of A.
The first is technically not a contrast but the mean of level 1, level 2, and level 3 of A, the
second is between level 1 and level 2 of A, and the third is between level 1 and the mean
of level 2 and level 3 of A.

• The second TEST is labeled Contrast of B. Coefficients for B are preceded by the vertical
bar (|) because B is a random effect. This contrast computes the difference between level
1 and level 2 of B, and tests if the difference equals 1.

• The third TEST is labeled BLUP at First Level of A. There are four parameters for the
fixed effects (intercept and A), and there are four parameters for the random effects (B and
C). Coefficients for the fixed-effect parameters are separated from those for the random-
effect parameters by the vertical bar (|). The coefficients correspond to the parameter esti-
mates in the order in which the parameter estimates are listed in the output.

Example

Suppose factor A has 3 levels, factor B has 4 levels.

MIXED Y BY A B
/FIXED = A B
/TEST = ’test example’ A 1 -1 0 DIVISOR=3;

B 0 0 1 -1 DIVISOR=4.

• For effect A, all contrast coefficients will be divided by 3, therefore the actual coefficients
are (1/3,–1/3,0).

• For effect B, all contrast coefficients will be divided by 4, therefore the actual coefficients
are (0,0,1/4,–1/4).

1010 MIXED

Interpretation of Random Effect Covariance Structures

This section is intended to provide some insight into the specification random effects and
how their covariance structures differ from versions prior to SPSS 11.5. Throughout the
examples, let A and B be factors with 3 levels, and X and Y be covariates.

Example (Variance component models):

Random effect covariance matrix of A:

Random effect covariance matrix of B:

Overall random effect covariance matrix:

Prior to SPSS 11.5, this model could be specified by:

/RANDOM = A B | COVTYPE(ID)

or

/RANDOM = A | COVTYPE(ID)
/RANDOM = B | COVTYPE(ID)

with or without the explicit specification of the covariance structure.

As of SPSS 11.5, this model could be specified:

/RANDOM = A B | COVTYPE(VC)

or

/RANDOM = A | COVTYPE(VC)
/RANDOM = B | COVTYPE(VC)

with or without the explicit specification of the covariance structure.

or

/RANDOM = A | COVTYPE(ID)
/RANDOM = B | COVTYPE(ID)

with the explicit specification of the covariance structure.

GA σA
2 I3=

GB σB
2 I3=

G
GA 0

0 GB 6x6

=

MIXED 1011

Example (Independent random effects with heterogeneous variances):

Random effect covariance matrix of A:

Random effect covariance matrix of B:

Overall random effect covariance matrix:

Prior to SPSS 11.5, this model could be specified by:

/RANDOM = A B | COVTYPE(VC)

or

/RANDOM = A | COVTYPE(VC)
/RANDOM = B | COVTYPE(VC)

As of SPSS 11.5, this model could be specified:

/RANDOM = A B | COVTYPE(DIAG)

or

/RANDOM = A | COVTYPE(DIAG)
/RANDOM = B | COVTYPE(DIAG)

Example (Correlated random effects):

Overall random effect covariance matrix; one column belongs to X and one column belongs
to Y.

Prior to SPSS 11.5, it was impossible to specify this model.

As of SPSS 11.5, this model could be specified:

/RANDOM = A B | COVTYPE(CSR)

GA

σA1
2 0 0

0 σA2
2 0

0 0 σA3
2

=

GB

σB1
2 0 0

0 σB2
2 0

0 0 σB3
2

=

G
GA 0

0 GB 6x6

=

G σ2 σ2ρ

σ2ρ σ2
=

1012 MIXED

MODEL NAME 1013

MODEL NAME

MODEL NAME is available in the Trends option.

MODEL NAME [model name] [’model label’]

Example:
MODEL NAME PLOTA1 ’PLOT OF THE OBSERVED SERIES’.

Overview

MODEL NAME specifies a model name and label for the next procedure in the session.

Basic Specification

The specification on MODEL NAME is either a name, a label, or both.

• The default model name is MOD_n, where n increments by 1 each time an unnamed model
is created. This default is in effect if it is not changed on the MODEL NAME command, or
if the command is not specified. There is no default label.

Syntax Rules

• If both a name and label are specified, the name must be specified first.

• Only one model name and label can be specified on the command.
• The model name must be unique. It can contain up to 8 characters and must begin with a

letter (A–Z).

• The model label can contain up to 60 characters and must be specified in apostrophes.

Operations

• MODEL NAME is executed at the next model-generating procedure.

• If the MODEL NAME command is used more than once before a procedure, the last one is
in effect.

• If a duplicate model name is specified, the default MOD_n name will be used instead.
• MOD_n reinitializes at the start of every session and when the READ MODEL command is

specified (see READ MODEL). If any models in the working data file are already named
MOD_n, those numbers are skipped when new MOD_n names are assigned.

1014 Syntax Reference

Examples

MODEL NAME ARIMA1 ’First ARIMA model’.
ARIMA VARX
 /MODEL=(0,1,1).
ARIMA VARY
 /MODEL=(1,1,1).
ARIMA VARZ
 /APPLY ’ARIMA1’.

• In this example, the model name ARIMA1 and the label First ARIMA model are assigned
to the first ARIMA command.

• The second ARIMA command has no MODEL NAME command before it, so it is assigned
the name MOD_1.

• The third ARIMA command applies the model named ARIMA1 to the series VARZ. This
model is named MOD_2.

1015

MRSETS

MRSETS is available in the Tables option.

MRSETS

 /MDGROUP NAME= setname LABEL= ’label’
 VARIABLES= varlist
 VALUE= {value }
 {’chars’}

 /MCGROUP NAME= setname LABEL= ’label’
 VARIABLES= varlist

 /DELETE NAME= {[setlist]}
 {ALL }

 /DISPLAY NAME= {[setlist]}
 {ALL }

The set name must begin with a $ and follow SPSS variable naming conventions.

Square brackets shown in the DELETE and DISPLAY subcommands are required if one or more set
names is specified, but not with the keyword ALL.

Example
MRSETS
 /MDGROUP NAME=$mltnews LABEL=’News sources’
 VARIABLES=news5 news4 news3 news2 news1
 VALUE=1
 /DISPLAY NAME=[$mltnews].

MRSETS
 /MCGROUP NAME=$mltcars
 LABEL=’Car maker, most recent car’
 VARIABLES=car1 car2 car3
 /DISPLAY NAME=[$mltcars].

Overview

The MRSETS command defines and manages multiple response sets. The set definitions are
saved in the SPSS data file, so they are available whenever the file is in use. Two types can
be defined:

• Multiple dichotomy (MD) groups combine variables such that each variable becomes a
category in the group. For example, take five variables that ask for yes/no responses to
the questions:

Do you get news from the Internet?
Do you get news from the radio?
Do you get news from television?
Do you get news from news magazines?
Do you get news from newspapers?

1016 MRSETS

These variables are coded 1 for yes and 0 for no. A multiple dichotomy group combines
the five variables into a single variable with five categories in which a respondent could
be counted zero to five times, depending on how many of the five elementary variables
contain a 1 for that respondent. It is not required that the elementary variables be dichot-
omous. If the five elementary variables had the values 1 for regularly, 2 for occasionally,
and 3 for never, it would still be possible to create a multiple dichotomy group that counts
the variables with 1’s and ignores the other responses.

• Multiple category (MC) groups combine variables that have identical categories. For
example, suppose that instead of having five yes/no questions for the five news sources,
there are three variables, each coded 1 = Internet, 2 = radio, 3 = television, 4 = magazines,
and 5 = newspapers. For each variable, a respondent could select one of these values. In
a multiple category group based on these variables, a respondent could be counted zero
to three times, once for each variable for which he or she selected a news source. For this
sort of multiple response group, it is important that all of the source variables have the
same set of values and value labels and the same missing values.

The MRSETS command also allows you to delete sets and to display information about the
sets in the data file.

Syntax Conventions

The following conventions apply to the MRSETS command:

• All subcommands are optional, but at least one must be specified.

• Subcommands can be issued more than once in any order.

• Within a subcommand, attributes can be specified in any order. If an attribute is specified
more than once, the last instance is honored.

• Equals signs are required where shown in the syntax diagram.

• Square brackets are required where shown in the syntax diagram.

• The TO convention and the ALL keyword are honored in variable lists.

MDGROUP Subcommand

/MDGROUP NAME= setname LABEL= ’label’
 VARIABLES= varlist
 VALUE= {value }
 {’chars’}

The MDGROUP subcommand defines or modifies a multiple dichotomy set. A name, variable
list, and value must be specified. Optionally, a label can be specified for the set.

NAME The name of the multiple dichotomy set. The name must follow SPSS vari-
able naming conventions and begin with a $. If the name refers to an existing
set, the set definition is overwritten.

MRSETS 1017

LABEL The label for the set. The label must be quoted and cannot be wider than the
SPSS limit for variable labels. By default, the set is unlabeled.

VARIABLES The list of elementary variables that define the set. Variables must be of the
same type (numeric or string). At least two variables must be specified.

VALUE The value that indicates presence of a response. This is also referred to as the
“counted” value. If the set type is numeric, the counted value must be an
integer. If the set type is string, the counted value, after trimming trailing
blanks, cannot be wider than the narrowest elementary variable.

Elementary variables need not have variable labels, but because variable labels are used as
value labels for categories of the MD variable, a warning is issued if two or more variables
of an MD set have the same variable label. A warning is also issued if two or more elemen-
tary variables use different labels for the counted value—for example, if it is labeled Yes for
Q1 and No for Q2. When checking for label conflicts, case is ignored.

MCGROUP Subcommand

/MCGROUP NAME= setname LABEL= ’label’
 VARIABLES= varlist

The MCGROUP subcommand defines or modifies a multiple category group. A name and
variable list must be specified. Optionally, a label can be specified for the set.

NAME The name of the multiple category set. The name must follow SPSS variable
naming conventions and begin with a $. If the name refers to an existing set,
the set definition is overwritten.

LABEL The label for the set. The label must be quoted and cannot be wider than the
SPSS limit for variable labels. By default, the set is unlabeled.

VARIABLES The list of elementary variables that define the set. Variables must be of the
same type (numeric or string). At least two variables must be specified.

The elementary variables need not have value labels, but a warning is issued if two or more
elementary variables have different labels for the same value. When checking for label con-
flicts, case is ignored.

DELETE Subcommand

/DELETE NAME= {[setlist]}
 {ALL }

The DELETE subcommand deletes one or more set definitions. If one or more set names is
given, the list must be enclosed in square brackets. ALL can be used to delete all sets; it is not
enclosed in brackets.

1018 MRSETS

DISPLAY Subcommand

/DISPLAY NAME= {[setlist]}
 {ALL }

The DISPLAY subcommand creates a table of information about one or more sets. If one or
more set names is given, the list must be enclosed in square brackets. ALL can be used to refer
to all sets; it is not enclosed in brackets.

1019

MULT RESPONSE

MULT RESPONSE†

 {/GROUPS=groupname['label'](varlist ({value1,value2}))}
 {value }
 ...[groupname...]

 {/VARIABLES=varlist(min,max) [varlist...] }

 {/FREQUENCIES=varlist }

 {/TABLES=varlist BY varlist... [BY varlist] [(PAIRED)]}
 [/varlist BY...]

 [/MISSING=[{TABLE**}] [INCLUDE]]
 {MDGROUP}
 {MRGROUP}

 [/FORMAT={LABELS**} {TABLE** } [DOUBLE]]
 {NOLABELS} {CONDENSE}
 {ONEPAGE }

 [/BASE={CASES** }]
 {RESPONSES}

 [/CELLS=[COUNT**] [ROW] [COLUMN] [TOTAL] [ALL]]

†A minimum of two subcommands must be used: at least one from the pair GROUPS or VARIABLES and
one from the pair FREQUENCIES or TABLES.
 **Default if the subcommand is omitted.

Example
MULT RESPONSE GROUPS=MAGS (TIME TO STONE (2))

/FREQUENCIES=MAGS.

Overview

MULT RESPONSE displays frequencies and optional percentages for multiple-response
items in univariate tables and multivariate crosstabulations. Another procedure that
analyzes multiple-response items is TABLES, which has most, but not all, of the capabili-
ties of MULT RESPONSE. TABLES has special formatting capabilities that make it useful
for presentations.

Multiple-response items are questions that can have more than one value for each case.
For example, the respondent may have been asked to circle all magazines read within the last
month in a list of magazines. You can organize multiple-response data in one of two ways
for use in the program. For each possible response, you can create a variable that can have
one of two values, such as 1 for no and 2 for yes; this is the multiple-dichotomy method.
Alternatively, you can estimate the maximum number of possible answers from a respondent
and create that number of variables, each of which can have a value representing one of the
possible answers, such as 1 for Time, 2 for Newsweek, and 3 for PC Week. If an individual

1020 MULT RESPONSE

did not give the maximum number of answers, the extra variables receive a missing-value
code. This is the multiple-response or multiple-category method of coding answers.

To analyze the data entered by either method, you combine variables into groups. The
technique depends on whether you have defined multiple-dichotomy or multiple-response
variables. When you create a multiple-dichotomy group, each component variable with at
least one yes value across cases becomes a category of the group variable. When you create a
multiple-response group, each value becomes a category and the program calculates the
frequency for a particular value by adding the frequencies of all component variables with that
value. Both multiple-dichotomy and multiple-response groups can be crosstabulated with
other variables in MULT RESPONSE.

Options

Cell Counts and Percentages. By default, crosstabulations include only counts and no
percentages. You can request row, column, and total table percentages using the CELLS
subcommand. You can also base percentages on responses instead of respondents using BASE.

Format. You can suppress the display of value labels and request condensed format for
frequency tables using the FORMAT subcommand.

Basic Specification

The subcommands required for the basic specification fall into two groups: GROUPS and
VARIABLES name the elements to be included in the analysis; FREQUENCIES and TABLES
specify the type of table display to be used for tabulation. The basic specification requires at
least one subcommand from each group:

• GROUPS defines groups of multiple-response items to be analyzed and specifies how the
component variables will be combined.

• VARIABLES identifies all individual variables to be analyzed.

• FREQUENCIES requests frequency tables for the groups and/or individual variables spec-
ified on GROUPS and VARIABLES.

• TABLES requests crosstabulations of groups and/or individual variables specified on
GROUPS and VARIABLES.

Subcommand Order

• The basic subcommands must be used in the following order: GROUPS, VARIABLES,
FREQUENCIES, and TABLES. Only one set of basic subcommands can be specified.

• All basic subcommands must precede all optional subcommands. Optional subcommands
can be used in any order.

MULT RESPONSE 1021

Operations

• Empty categories are not displayed in either frequency tables or crosstabulations.
• If you define a multiple-response group with a very wide range, the tables require substan-

tial amounts of workspace. If the component variables are sparsely distributed, you
should recode them to minimize the workspace required.

• MULT RESPONSE stores category labels in the workspace. If there is insufficient space to
store the labels after the tables are built, the labels are not displayed.

Limitations

• The component variables must have integer values. Non-integer values are truncated.

• Maximum 100 existing variables named or implied by GROUPS and VARIABLES together.
• Maximum 20 groups defined on GROUPS.

• Maximum 32,767 categories for a multiple-response group or an individual variable.

• Maximum 10 table lists on TABLES.

• Maximum 5 dimensions per table.

• Maximum 100 groups and variables named or implied on FREQUENCIES and TABLES
together.

• Maximum 200 non-empty rows and 200 non-empty columns in a single table.

GROUPS Subcommand

GROUPS defines both multiple-dichotomy and multiple-response groups.

• Specify a name for the group and an optional label, followed by a list of the component
variables and the value or values to be used in the tabulation.

• Enclose the variable list in parentheses and enclose the values in an inner set of parentheses
following the last variable in the list.

• The label for the group is optional and can be up to 40 characters in length, including
imbedded blanks. Apostrophes or quotes around the label are not required.

• To define a multiple-dichotomy group, specify only one tabulating value (the value that
represents yes) following the variable list. Each component variable becomes a value of
the group variable, and the number of cases that have the tabulating value becomes the
frequency. If there are no cases with the tabulating value for a given component variable,
that variable does not appear in the tabulation.

• To define a multiple-response group, specify two values following the variable list. These
are the minimum and maximum values of the component variables. The group variable
will have the same range of values. The frequency for each value is tabulated across all
component variables in the list.

• You can use any valid variable name for the group except the name of an existing variable
specified on the same MULT RESPONSE command. However, you can reuse a group name
on another MULT RESPONSE command.

1022 MULT RESPONSE

• The group names and labels exist only during MULT RESPONSE and disappear once MULT
RESPONSE has been executed. If group names are referred to in other procedures, an
error results.

• For a multiple-dichotomy group, the category labels come from the variable labels
defined for the component variables.

• For a multiple-response group, the category labels come from the value labels for the first
component variable in the group. If categories are missing for the first variable but are
present for other variables in the group, you must define value labels for the missing cate-
gories. (You can use the ADD VALUE LABELS command to define extra value labels.)

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

/FREQUENCIES=MAGS.

• The GROUPS subcommand creates a multiple-dichotomy group named MAGS. The
variables between and including TIME and STONE become categories of MAGS, and the
frequencies are cases with the value 2 (indicating yes, read the magazine) for the compo-
nent variables.

• The group label is MAGAZINES READ.

Example
MULT RESPONSE GROUPS=PROBS ’PERCEIVED NATIONAL PROBLEMS’

(PROB1 TO PROB3 (1,9))
/FREQUENCIES=PROBS.

• The GROUPS subcommand creates the multiple-response group PROBS. The component
variables are the existing variables between and including PROB1 and PROB3, and the
frequencies are tabulated for the values 1 through 9.

• The frequency for a given value is the number of cases that have that value in any of the
variables PROB1 to PROB3.

VARIABLES Subcommand

VARIABLES specifies existing variables to be used in frequency tables and crosstabulations.
Each variable is followed by parentheses enclosing a minimum and a maximum value, which
are used to allocate cells for the tables for that variable.

• You can specify any numeric variable on VARIABLES, but non-integer values are truncated.

• If GROUPS is also specified, VARIABLES follows GROUPS.
• To provide the same minimum and maximum for each of a set of variables, specify a vari-

able list followed by a range specification.

• The component variables specified on GROUPS can be used in frequency tables and
crosstabulations, but you must specify them again on VARIABLES, along with a range for
the values. You do not have to respecify the component variables if they will not be used
as individual variables in any tables.

MULT RESPONSE 1023

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

/VARIABLES SEX(1,2) EDUC(1,3)
/FREQUENCIES=MAGS SEX EDUC.

• The VARIABLES subcommand names the variables SEX and EDUC so that they can be used
in a frequencies table.

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

/VARIABLES=EDUC (1,3) TIME (1,2).
/TABLES=MAGS BY EDUC TIME.

• The variable TIME is used in a group and also in a table.

FREQUENCIES Subcommand

FREQUENCIES requests frequency tables for groups and individual variables. By default, a
frequency table contains the count for each value, the percentage of responses, and the
percentage of cases. For another method of producing frequency tables for individual vari-
ables, see the FREQUENCIES procedure.
• All groups must be created by GROUPS, and all individual variables to be tabulated must

be named on VARIABLES.

• You can use the keyword TO to imply a set of group or individual variables. TO refers to
the order in which variables are specified on the GROUPS or VARIABLES subcommand.

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

/FREQUENCIES=MAGS.

• The FREQUENCIES subcommand requests a frequency table for the multiple-dichotomy
group MAGS, tabulating the frequency of the value 2 for each of the component variables
TIME to STONE.

Example
MULT RESPONSE
GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

PROBS ’PERCEIVED NATIONAL PROBLEMS’ (PROB1 TO PROB3 (1,9))
MEMS ’SOCIAL ORGANIZATION MEMBERSHIPS’ (VFW AMLEG ELKS (1))

/VARIABLES SEX(1,2) EDUC(1,3)
/FREQUENCIES=MAGS TO MEMS SEX EDUC.

• The FREQUENCIES subcommand requests frequency tables for MAGS, PROBS, MEMS,
SEX, and EDUC.

• You cannot specify MAGS TO EDUC because SEX and EDUC are individual variables, and
MAGS, PROBS, and MEMS are group variables.

1024 MULT RESPONSE

TABLES Subcommand

TABLES specifies the crosstabulations to be produced by MULT RESPONSE. Both individual
variables and group variables can be tabulated together.

• The first list defines the rows of the tables; the next list (following BY) defines the
columns. Subsequent lists following BY keywords define control variables, which
produce subtables. Use the keyword BY to separate the dimensions. You can specify up
to five dimensions (four BY keywords) for a table.

• To produce more than one table, name one or more variables for each dimension of the
tables. You can also specify multiple table lists separated by a slash. If you use the
keyword TO to imply a set of group or individual variables, TO refers to the order in which
groups or variables are specified on the GROUPS or VARIABLES subcommand.

• If FREQUENCIES is also specified, TABLES follows FREQUENCIES.
• The value labels for columns are displayed on three lines with eight characters per line.

To avoid splitting words, reverse the row and column variables, or redefine the variable
or value labels (depending on whether the variables are multiple-dichotomy or multiple-
response variables).

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

/VARIABLES=EDUC (1,3)/TABLES=EDUC BY MAGS.

• The TABLES subcommand requests a crosstabulation of variable EDUC by the multiple-
dichotomy group MAGS.

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

MEMS ’SOCIAL ORGANIZATION MEMBERSHIPS’ (VFW AMLEG ELKS (1))
/VARIABLES EDUC (1,3)/TABLES=MEMS MAGS BY EDUC.

• The TABLES subcommand specifies two crosstabulations—MEMS by EDUC, and MAGS
by EDUC.

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

/VARIABLES SEX (1,2) EDUC (1,3)
/TABLES=MAGS BY EDUC SEX/EDUC BY SEX/MAGS BY EDUC BY SEX.

• The TABLES subcommand uses slashes to separate three table lists. It produces two tables
from the first table list (MAGS by EDUC and MAGS by SEX) and one table from the second
table list (EDUC by SEX). The third table list produces separate tables for each sex (MAGS
by EDUC for male and for female).

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

PROBS ’NATIONAL PROBLEMS MENTIONED’ (PROB1 TO PROB3 (1,9))
/TABLES=MAGS BY PROBS.

MULT RESPONSE 1025

• The TABLES subcommand requests a crosstabulation of the multiple-dichotomy group
MAGS with the multiple-response group PROBS.

PAIRED Keyword

When MULT RESPONSE crosstabulates two multiple-response groups, by default it tabulates
each variable in the first group with each variable in the second group and sums the counts for
each cell. Thus, some responses can appear more than once in the table. Use PAIRED to pair
the first variable in the first group with the first variable in the second group, the second vari-
able in the first group with the second variable in the second group, and so on.

• The keyword PAIRED is specified in parentheses on the TABLES subcommand following
the last variable named for a specific table list.

• When you request paired crosstabulations, the order of the component variables on the
GROUPS subcommand determines the construction of the table.

• Although the tables can contain individual variables and multiple-dichotomy groups in a
paired table request, only variables within multiple-response groups are paired.

• PAIRED also applies to a multiple-response group used as a control variable in a three-way
or higher-order table.

• Paired tables are identified in the output by the label PAIRED GROUP.
• Percentages in paired tables are always based on responses rather than cases.

Example
MULT RESPONSE GROUPS=PSEX ’SEX OF CHILD’(P1SEX P2SEX P3SEX (1,2))

/PAGE ’AGE OF ONSET OF PREGNANCY’ (P1AGE P2AGE P3AGE (1,4))
/TABLES=PSEX BY PAGE (PAIRED).

• The PAIRED keyword produces a paired crosstabulation of PSEX by PAGE, which is a
combination of the tables P1SEX by P1AGE, P2SEX by P2AGE, and P3SEX by P3AGE.

Example
MULT RESPONSE GROUPS=PSEX ’SEX OF CHILD’(P1SEX P2SEX P3SEX (1,2))

PAGE ’AGE OF ONSET OF PREGNANCY’ (P1AGE P2AGE P3AGE (1,4))
/VARIABLES=EDUC (1,3)
/TABLES=PSEX BY PAGE BY EDUC (PAIRED).

• The TABLES subcommand pairs only PSEX with PAGE. EDUC is not paired because it is
an individual variable, not a multiple-response group.

CELLS Subcommand

By default, MULT RESPONSE displays cell counts but not percentages in crosstabulations.
CELLS requests percentages for crosstabulations.
• If you specify one or more keywords on CELLS, MULT RESPONSE displays cell counts

plus the percentages you request. The count cannot be eliminated from the table cells.

COUNT Cell counts. This is the default if you omit the CELLS subcommand.

1026 MULT RESPONSE

ROW Row percentages.

COLUMN Column percentages.

TOTAL Two-way table total percentages.

ALL Cell counts, row percentages, column percentages, and two-way table total
percentages. This is the default if you specify the CELLS subcommand without
keywords.

Example
MULT RESPONSE GROUPS=MAGS ’MAGAZINES READ’ (TIME TO STONE (2))

/VARIABLES=SEX (1,2) (EDUC (1,3)
/TABLES=MAGS BY EDUC SEX
/CELLS=ROW COLUMN.

• The CELLS subcommand requests row and column percentages in addition to counts.

BASE Subcommand

BASE lets you obtain cell percentages and marginal frequencies based on responses rather than
respondents. Specify one of two keywords:

CASES Base cell percentages on cases. This is the default if you omit the BASE
subcommand and do not request paired tables. You cannot use this specification
if you specify PAIRED on TABLE.

RESPONSES Base cell percentages on responses. This is the default if you request paired
tables.

Example
MULT RESPONSE GROUPS=PROBS ’NATIONAL PROBLEMS MENTIONED’

(PROB1 TO PROB3 (1,9))/VARIABLES=EDUC (1,3)
/TABLES=EDUC BY PROBS
/CELLS=ROW COLUMN
/BASE=RESPONSES.

• The BASE subcommand requests marginal frequencies and cell percentages based on
responses.

MISSING Subcommand

MISSING controls missing values. Its minimum specification is a single keyword.

• By default, MULT RESPONSE deletes cases with missing values on a table-by-table basis
for both individual variables and groups. In addition, values falling outside the specified
range are not tabulated and are included in the missing category. Thus, specifying a range
that excludes missing values is equivalent to the default missing-value treatment.

• For a multiple-dichotomy group, a case is considered missing by default if none of the
component variables contains the tabulating value for that case. Keyword MDGROUP
overrides the default and specifies listwise deletion for multiple-dichotomy groups.

MULT RESPONSE 1027

• For a multiple-response group, a case is considered missing by default if none of the
components has valid values falling within the tabulating range for that case. Thus, cases
with missing or excluded values on some (but not all) of the components of a group are
included in tabulations of the group variable. The keyword MRGROUP overrides the
default and specifies listwise deletion for multiple-response groups.

• You can use INCLUDE with MDGROUP, MRGROUP, or TABLE. The user-missing value is
tabulated if it is included in the range specification.

TABLE Exclude missing values on a table-by-table basis. Missing values are excluded
on a table-by-table basis for both component variables and groups. This is the
default if you omit the MISSING subcommand.

MDGROUP Exclude missing values listwise for multiple-dichotomy groups. Cases with
missing values for any component dichotomy variable are excluded from the
tabulation of the multiple-dichotomy group.

MRGROUP Exclude missing values listwise for multiple-response groups. Cases with
missing values for any component variable are excluded from the tabulation of
the multiple-response group.

INCLUDE Include user-missing values. User-missing values are treated as valid values if
they are included in the range specification on the GROUPS or VARIABLES
subcommands.

Example
MULT RESPONSE GROUPS=FINANCL ’FINANCIAL PROBLEMS MENTIONED’

(FINPROB1 TO FINPROB3 (1,3))
SOCIAL ’SOCIAL PROBLEMS MENTIONED’(SOCPROB1 TO SOCPROB4 (4,9))
/VARIABLES=EDUC (1,3)
/TABLES=EDUC BY FINANCL SOCIAL
/MISSING=MRGROUP.

• The MISSING subcommand indicates that a case will be excluded from counts in the first
table if any of the variables in the group FINPROB1 to FINPROB3 has a missing value or
a value outside the range 1 to 3. A case is excluded from the second table if any of the
variables in the group SOCPROB1 to SOCPROB4 has a missing value or value outside the
range 4 to 9.

FORMAT Subcommand

FORMAT controls table formats. The minimum specification on FORMAT is a single keyword.

Labels are controlled by two keywords:

LABELS Display value labels in frequency tables and crosstabulations. This is the
default.

NOLABELS Suppress value labels in frequency tables and crosstabulations for multiple-
response variables and individual variables. You cannot suppress the display
of variable labels used as value labels for multiple-dichotomy groups.

1028 MULT RESPONSE

The following keywords apply to the format of frequency tables:

DOUBLE Double spacing for frequency tables. By default, MULT RESPONSE uses
single spacing.

TABLE One-column format for frequency tables. This is the default if you omit the
FORMAT subcommand.

CONDENSE Condensed format for frequency tables. This option uses a three-column
condensed format for frequency tables for all multiple-response groups and indi-
vidual variables. Labels are suppressed. This option does not apply to multiple-
dichotomy groups.

ONEPAGE Conditional condensed format for frequency tables. Three-column condensed
format is used if the resulting table would not fit on a page. This option does not
apply to multiple-dichotomy groups.

Example
MULT RESPONSE GROUPS=PROBS ’NATIONAL PROBLEMS MENTIONED’

(PROB1 TO PROB3 (1,9))/VARIABLES=EDUC (1,3)
/FREQUENCIES=EDUC PROBS
/FORMAT=CONDENSE.

• The FORMAT subcommand specifies condensed format, which eliminates category labels
and displays the categories in three parallel sets of columns, each set containing one or
more rows of categories (rather than displaying one set of columns aligned vertically
down the page).

1029

MVA

MVA is available in the Missing Values Analysis option.

MVA [VARIABLES=] {varlist}
 {ALL }

 [/CATEGORICAL=varlist]

 [/MAXCAT={25**}]
 {n }

 [/ID=varname]

Description:

 [/NOUNIVARIATE]

 [/TTEST [PERCENT={5}] [{T }] [{DF } [{PROB }] [{COUNTS }] [{MEANS }]]
 {n} {NOT} {NODF} {NOPROB}] {NOCOUNTS} {NOMEANS}

 [/CROSSTAB [PERCENT={5}]]
 {n}

 [/MISMATCH [PERCENT={5}] [NOSORT]]
 {n}

 [/DPATTERN [SORT=varname[({ASCENDING })] [varname ...]]
 {DESCENDING}
 [DESCRIBE=varlist]]

 [/MPATTERN [NOSORT] [DESCRIBE=varlist]]

 [/TPATTERN [NOSORT] [DESCRIBE=varlist] [PERCENT={1}]]
 {n}

Estimation:

 [/LISTWISE]

 [/PAIRWISE]

 [/EM [predicted_varlist] [WITH predictor_varlist]
 [([TOLERANCE={0.001}]
 {value}
 [CONVERGENCE={0.0001}]
 {value }
 [ITERATIONS={25}]
 {n }
 [TDF=n]
 [LAMBDA=a]
 [PROPORTION=b]
 [OUTFILE=’file’])]

1030 MVA

 [/REGRESSION [predicted_varlist] [WITH predictor_varlist]
 [([TOLERANCE={0.001}]
 {n }
 [FLIMIT={4.0}]
 {N }
 [NPREDICTORS=number_of_predictor_variables]
 [ADDTYPE={RESIDUAL*}]
 {NORMAL }
 {T[({5}) }
 {n}
 {NONE }
 [OUTFILE=’file’])]]

* If the number of complete cases is less than half the number of cases, the default ADDTYPE specification
is NORMAL.

** Default if the subcommand is omitted.

Examples:
MVA VARIABLES=populatn density urban religion lifeexpf region
 /CATEGORICAL=region
 /ID=country
 /MPATTERN DESCRIBE=region religion.

MVA VARIABLES=all
 /EM males msport WITH males msport gradrate facratio.

Overview

MVA (Missing Value Analysis) describes the missing value patterns in a data file (data ma-
trix). It can estimate the means, the covariance matrix, and the correlation matrix by using
listwise, pairwise, regression, and EM estimation methods. Missing values themselves can
be estimated (imputed), and you can then save the new data file.

Options

Categorical variables. String variables are automatically defined as categorical. For a long
string variable, only the first eight characters are used to define categories. Quantitative vari-
ables can be designated as categorical by using the CATEGORICAL subcommand.

MAXCAT specifies the maximum number of categories for any categorical variable. If any
categorical variable has more than the specified number of distinct values, MVA is not executed.

Analyzing patterns. For each quantitative variable, the TTEST subcommand produces a series
of t tests. Values of the quantitative variable are divided into two groups, based on the pres-
ence or absence of other variables. These pairs of groups are compared using the t test.

Crosstabulating categorical variables. The CROSSTAB subcommand produces a table for each
categorical variable, showing, for each category, how many nonmissing values are in the oth-
er variables and the percentages of each type of missing value.

Displaying patterns. DPATTERN displays a case-by-case data pattern with codes for system-
missing, user-missing, and extreme values. MPATTERN displays only the cases that have
missing values and sorts by the pattern formed by missing values. TPATTERN tabulates the
cases that have a common pattern of missing values. The pattern tables have sorting options.
Also, descriptive variables can be specified.

MVA 1031

Labeling cases. For pattern tables, an ID variable can be specified to label cases.

Suppression of rows. To shorten tables, the PERCENT keyword suppresses missing value pat-
terns that occur relatively infrequently.

Statistics. Displays of univariate, listwise, and pairwise statistics are available.

Estimation. EM and REGRESSION use different algorithms to supply estimates of missing
values, which are used in calculating estimates of the mean vector, the covariance matrix,
and the correlation matrix of dependent variables. The estimates can be saved as replace-
ments for missing values in a new data file.

Basic Specification

The basic specification depends on whether you want to describe the missing data pattern or
estimate statistics. Often, description is done first, and then, considering the results, an esti-
mation is done. Alternatively, both description and estimation can be done by using the same
MVA command.

Descriptive analysis. A basic descriptive specification includes a list of variables and a statis-
tics or pattern subcommand. For example, a list of variables and the subcommand DPATTERN
would show missing value patterns for all cases with respect to the list of variables.

Estimation. A basic estimation specification includes a variable list and an estimation method.
For example, if the EM method is specified, SPSS estimates the mean vector, the covariance
matrix, and the correlation matrix of quantitative variables with missing values.

Syntax Rules

• A variables specification is required directly after the command name. The specification
can be either a variable list or the keyword ALL.

• The CATEGORICAL, MAXCAT, and ID subcommands, if used, must be placed after the vari-
ables list and before any other subcommand. These three subcommands can be in any order.

• Any combination of description and estimation subcommands can be specified. For exam-
ple, both the EM and REGRESSION subcommands can be specified in one MVA command.

• Univariate statistics are displayed unless the NOUNIVARIATE subcommand is specified.
Thus, if only a list of variables is specified, with no description or estimation subcom-
mands, univariate statistics are displayed.

• If a subcommand is specified more than once, only the last one is honored.

• The following words are reserved as keywords or internal commands in the MVA proce-
dure: VARIABLES, SORT, NOSORT, DESCRIBE, and WITH. They cannot be used as vari-
able names in MVA.

• The tables Summary of Estimated Means and Summary of Estimated Standard Deviations
are produced if you specify more than one way to estimate means and standard deviations.
The methods include univariate (default), listwise, pairwise, EM, and regression. For ex-
ample, these tables are produced when you specify both LISTWISE and EM.

1032 MVA

Symbols

 The symbols displayed in the DPATTERN and MPATTERN table cells are:

+ Extremely high value

- Extremely low value

S System-missing value

A First type of user-missing value

B Second type of user-missing value

C Third type of user-missing value

• An extremely high value is more than 1.5 times the interquartile range above the 75th per-
centile, if , where n is the number of cases.

• An extremely low value is more than 1.5 times the interquartile range below the 25th per-
centile, if , where n is the number of cases.

• For larger files—that is, —extreme values are
two standard deviations from the mean.

Missing Indicator Variables

For each variable in the VARIABLES list, a binary indicator variable is formed (internal to
MVA), indicating whether a value is present or missing.

VARIABLES Subcommand

A list of variables or the keyword ALL is required.
• The order in which the variables are listed determines the default order in the output.

• The keyword VARIABLES is optional.

• If the keyword ALL is used, the default order is the order of variables in the working data
file.

• String variables specified in the variable list, whether short or long, are automatically de-
fined as categorical. For a long string variable, only the first eight characters of the values
are used to distinguish categories.

• The list of variables must precede all other subcommands.

• Multiple lists of variables are not allowed.

CATEGORICAL Subcommand

The MVA procedure automatically treats all string variables in the variables list as categorical.
You can designate numeric variables as categorical by listing them on the CATEGORICAL
subcommand. If a variable is designated categorical, it will be ignored if listed as a depen-
dent or independent variable on the REGRESSION or EM subcommand.

number of variables() n n 150000≤log×

number of variables() n n 150000≤log×
number of variables() n n 150000>log×

MVA 1033

MAXCAT Subcommand

The MAXCAT subcommand sets the upper limit of the number of distinct values that each cat-
egorical variable in the analysis can have. The default is 25. This limit affects string variables
in the variables list and also the categorical variables defined by the CATEGORICAL subcom-
mand. A large number of categories can slow the analysis considerably. If any categorical
variable violates this limit, MVA does not run.

Example
MVA VARIABLES=populatn density urban religion lifeexpf region
 /CATEGORICAL=region
 /MAXCAT=30
 /MPATTERN.

• The CATEGORICAL subcommand specifies that region, a numeric variable, is categorical.
The variable religion, a string variable, is automatically categorical.

• The maximum number of categories in region or religion is 30. If either has more than 30
distinct values, MVA produces only a warning.

• Missing data patterns are shown for those cases that have at least one missing value in the
specified variables.

• The summary table lists the number of missing and extreme values for each variable, in-
cluding those with no missing values.

ID Subcommand

The ID subcommand specifies a variable to label cases. These labels appear in the patterns
tables. Without this subcommand, the SPSS case numbers are used.

Example
MVA VARIABLES=populatn density urban religion lifeexpf region
 /CATEGORICAL=region
 /MAXCAT=20
 /ID=country
 /MPATTERN.

• The values of the variable country are used as case labels.

• Missing data patterns are shown for those cases that have at least one missing value in the
specified variables.

NOUNIVARIATE Subcommand

By default, MVA computes univariate statistics for each variable—the number of cases with
nonmissing values, the mean, the standard deviation, the number and percentage of missing
values, and the counts of extreme low and high values. (Means, standard deviations, and ex-
treme value counts are not reported for categorical variables.)

• To suppress the univariate statistics, specify NOUNIVARIATE.

1034 MVA

Examples
MVA VARIABLES=populatn density urban religion lifeexpf region
 /CATEGORICAL=region
 /CROSSTAB PERCENT=0.

• Univariate statistics (number of cases, means, and standard deviations) are displayed for
populatn, density, urban, and lifeexpf. Also, the number of cases, counts and percentages of
missing values, and counts of extreme high and low values are displayed.

• The total number of cases and counts and percentages of missing values are displayed for
region and religion (a string variable).

• Separate crosstabulations are displayed for region and religion.

MVA VARIABLES=populatn density urban religion lifeexpf region
 /CATEGORICAL=region.
 /NOUNIVARIATE
 /CROSSTAB PERCENT=0.

• Only crosstabulations are displayed, no univariate statistics.

TTEST Subcommand

For each quantitative variable, a series of t tests is computed to test the difference of means
between two groups defined by a missing indicator variable for each of the other variables
(see “Missing Indicator Variables” on p. 1032). For example, a t test is performed on populatn
between two groups defined by whether their values are present or missing for calories. An-
other t test is performed on populatn for the two groups defined by whether their values for
density are present or missing, and so on for the remainder of the variable list.

PERCENT=n Omit indicator variables with less than the specified percentage of
missing values. You can specify a percentage from 0 to 100. The de-
fault is 5, indicating the omission of any variable with less than 5%
missing values. If you specify 0, all rows are displayed.

Display of Statistics

The following statistics can be displayed for a t test:

• The t statistic, for comparing the means of two groups defined by whether the indicator
variable is coded as missing or nonmissing (see “Missing Indicator Variables” on p.
1032).

T Display the t statistics. This is the default.

NOT Suppress the t statistics.

• The degrees of freedom associated with the t statistic.

DF Display the degrees of freedom. This is the default.

NODF Suppress the degrees of freedom.

MVA 1035

• The probability (two-tailed) associated with the t test, calculated for the variable tested
without reference to other variables. Care should be taken when interpreting this
probability.

PROB Display probabilities.

NOPROB Suppress probabilities. This is the default.

• The number of values in each group, where groups are defined by values coded as miss-
ing and present in the indicator variable.

COUNTS Display counts. This is the default.

NOCOUNTS Suppress counts.

• The means of the groups, where groups are defined by values coded as missing and
present in the indicator variable.

MEANS Display means. This is the default.

NOMEANS Suppress means.

Example
MVA VARIABLES=populatn density urban religion lifeexpf region
 /CATEGORICAL=region
 /ID=country
 /TTEST.

• The TTEST subcommand produces a table of t tests. For each quantitative variable named
in the variables list, a t test is performed, comparing the mean of the values for which the
other variable is present against the mean of the values for which the other variable is
missing.

• The table displays default statistics, including values of t, degrees of freedom, counts, and
means.

CROSSTAB Subcommand

CROSSTAB produces a table for each categorical variable, showing the frequency and per-
centage of values present (nonmissing) and the percentage of missing values for each cate-
gory as related to the other variables.

• No tables are produced if there are no categorical variables.

• Each categorical variable yields a table, whether it is a string variable assumed to be cat-
egorical or a numeric variable declared on the CATEGORICAL subcommand.

• The categories of the categorical variable define the columns of the table.

• Each of the remaining variables defines several rows—one each for the number of values
present, the percentage of values present, and the percentage of system-missing values;
and one each for the percentage of values defined as each discrete type of user-missing (if
they are defined).

1036 MVA

PERCENT=n Omit rows for variables with less than the specified percentage of
missing values. You can specify a percentage from 0 to 100. The de-
fault is 5, indicating the omission of any variable with less than 5%
missing values. If you specify 0, all rows are displayed.

Example
MVA VARIABLES=age income91 childs jazz folk
 /CATEGORICAL=jazz folk
 /CROSSTAB PERCENT=0.

• A table of univariate statistics is displayed by default.

• In the output are two crosstabulations, one for jazz and one for folk. The table for jazz dis-
plays, for each category of jazz, the number and percentage of present values for age,
income91, childs, and folk. It also displays, for each category of jazz, the percentage of each
type of missing value (system-missing and user-missing) in the other variables. The sec-
ond crosstabulation shows similar counts and percentages for each category of folk.

• No rows are omitted, since PERCENT=0.

MISMATCH Subcommand

MISMATCH produces a matrix showing percentages of cases for a pair of variables in which
one variable has a missing value and the other variable has a nonmissing value (a mismatch).
The diagonal elements are percentages of missing values for a single variable, while the off-
diagonal elements are the percentage of mismatch of the indicator variables (see “Missing
Indicator Variables” on p. 1032). Rows and columns are sorted on missing patterns.

PERCENT=n Omit patterns involving less than the specified percentage of cases.
You can specify a percentage from 0 to 100. The default is 5, indicat-
ing the omission of any pattern found in less than 5% of the cases.

NOSORT Suppress sorting of the rows and columns. The order of the variables
in the variables list is used. If ALL was used in the variables list, the
order is that of the data file.

DPATTERN Subcommand

DPATTERN lists the missing values and extreme values for each case symbolically. For a list
of the symbols used, see “Symbols” on p. 1032.

By default, the cases are listed in the order in which they appear in the file. The following
keywords are available:

SORT=varname [(order)] Sort the cases according to the values of the named variables. You
can specify more than one variable for sorting. Each sort variable
can be in ASCENDING or DESCENDING order. The default order is
ASCENDING.

DESCRIBE=varlist List values of each specified variable for each case.

MVA 1037

Example
MVA VARIABLES=populatn density urban religion lifeexpf region
 /CATEGORICAL=region
 /ID=country
 /DPATTERN DESCRIBE=region religion SORT=region.

• In the data pattern table, the variables form the columns, and each case, identified by its
country, defines a row.

• Missing and extreme values are indicated in the table, and, for each row, the number miss-
ing and percentage of variables that have missing values are listed.

• The values of region and religion are listed at the end of the row for each case.
• The cases are sorted by region in ascending order.

• Univariate statistics are displayed.

MPATTERN Subcommand

The MPATTERN subcommand symbolically displays patterns of missing values for cases that
have missing values. The variables form the columns. Each case that has any missing values
in the specified variables forms a row. The rows are sorted by missing value patterns. For use
of symbols, see “Symbols” on p. 1032.

• The rows are sorted to minimize the differences between missing patterns of consecutive
cases.

• The columns are also sorted according to missing patterns of the variables.

The following keywords are available:

NOSORT Suppress the sorting of variables. The order of the variables in the
variables list is used. If ALL was used in the variables list, the order is
that of the data file.

DESCRIBE=varlist List values of each specified variable for each case.

Example
MVA VARIABLES=populatn density urban religion lifeexpf region
 /CATEGORICAL=region
 /ID=country
 /MPATTERN DESCRIBE=region religion.

• A table of missing data patterns is produced.

• The region and the religion are named for each case listed.

1038 MVA

TPATTERN Subcommand

The TPATTERN subcommand displays a tabulated patterns table, which lists the frequency of
each missing value pattern. The variables in the variables list form the columns. Each pattern
of missing values forms a row, and the frequency of the pattern is displayed.

• An X is used to indicate a missing value.

• The rows are sorted to minimize the differences between missing patterns of consecutive
cases.

• The columns are sorted according to missing patterns of the variables.

The following keywords are available:

NOSORT Suppress the sorting of the columns. The order of the variables in the
variables list is used. If ALL was used in the variables list, the order is
that of the data file.

DESCRIBE=varlist Display values of variables for each pattern. Categories for each
named categorical variable form columns in which the number of each
pattern of missing values is tabulated. For quantitative variables, the
mean value is listed for the cases having the pattern.

PERCENT=n Omit patterns that describe fewer than 1% of the cases. You can spec-
ify a percentage from 0 to 100. The default is 1, indicating the omis-
sion of any pattern representing less than 1% of the total cases. If you
specify 0, all patterns are displayed.

Example
MVA VARIABLES=populatn density urban religion lifeexpf region
 /CATEGORICAL=region
 /TPATTERN NOSORT DESCRIBE=populatn region.

• Missing value patterns are tabulated. Each row displays a missing value pattern and the
number of cases having that pattern.

• DESCRIBE causes the mean value of populatn to be listed for each pattern. For the categories
in region, the frequency distribution is given for the cases having the pattern in each row.

LISTWISE Subcommand

For each quantitative variable in the variables list, the LISTWISE subcommand computes the
mean, the covariance between the variables, and the correlation between the variables. The
cases used in the computations are listwise nonmissing; that is, they have no missing value
in any variable listed in the VARIABLES subcommand.

Example
MVA VARIABLES=populatn density urban religion lifeexpf region
 /CATEGORICAL=region
 /LISTWISE.

• Means, covariances, and correlations are displayed for populatn, density, urban, and lifeexpf.
Only cases that have values for all of these variables are used.

MVA 1039

PAIRWISE Subcommand

For each pair of quantitative variables, the PAIRWISE subcommand computes the number of
pairwise nonmissing values, the pairwise means, the pairwise standard deviations, the pairwise
covariance, and the pairwise correlation matrices. These results are organized as matrices. The
cases used are all cases having nonmissing values for the pair of variables for which each com-
putation is done.

Example
MVA VARIABLES=populatn density urban religion lifeexpf region
 /CATEGORICAL=region
 /PAIRWISE.

• Frequencies, means, standard deviations, covariances, and the correlations are displayed
for populatn, density, urban, and lifeexpf. Each calculation uses all cases that have values
for both variables under consideration.

EM Subcommand

The EM subcommand uses an EM (expectation-maximization) algorithm to estimate the
means, the covariances, and the Pearson correlations of quantitative variables. This is an itera-
tive process, which uses two steps for each iteration. The E step computes expected values con-
ditional on the observed data and the current estimates of the parameters. The M step calculates
maximum likelihood estimates of the parameters based on values computed in the E step.

• If no variables are listed in the EM subcommand, estimates are performed for all quanti-
tative variables in the variables list.

• If you want to limit the estimation to a subset of the variables in the list, specify a subset
of quantitative variables to be estimated after the subcommand name EM. You can also
list, after the keyword WITH, the quantitative variables to be used in estimating.

• The output includes tables of means, correlations, and covariances.

• The estimation, by default, assumes that the data are normally distributed. However, you
can specify a multivariate t distribution with a specified number of degrees of freedom or
a mixed normal distribution with any mixture proportion (PROPORTION) and any stan-
dard deviation ratio (LAMBDA).

• You can save a data file with the missing values filled in. You must specify a filename
and its complete path in single or double quotation marks.

• Criteria keywords and OUTFILE specifications must be enclosed in a single pair of
parentheses.

The criteria for the EM subcommand are as follows:

TOLERANCE=value Numerical accuracy control. The tolerance helps eliminate predictor
variables that are highly correlated with other predictor variables and
would reduce the accuracy of the matrix inversions involved in the cal-
culations. The smaller the tolerance, the more inaccuracy is tolerated.
The default value is 0.001.

1040 MVA

CONVERGENCE=value Convergence criterion. Determines when iteration ceases. If the rela-
tive change in the likelihood function is less than this value, conver-
gence is assumed. The value of this ratio must be between 0 and 1. The
default value is 0.0001.

ITERATIONS=n Maximum number of iterations. Limits the number of iterations in the
EM algorithm. Iteration stops after this many iterations even if the
convergence criterion is not satisfied. The default value is 25.

Possible distribution assumptions:

TDF=n Student’s t distribution with n degrees of freedom. The degrees of free-
dom must be specified if you use this keyword. The degrees of free-
dom must be an integer greater than or equal to 2.

LAMBDA=a Ratio of standard deviations of a mixed normal distribution. Any pos-
itive real number can be specified.

PROPORTION=b Mixture proportion of two normal distributions. Any real number be-
tween 0 and 1 can specify the mixture proportion of two normal
distributions.

The following keyword produces a new data file:

OUTFILE=’file’ Specify the name of the file to be saved. Missing values for predicted
variables in the file are filled in by using the EM algorithm. Specify the
complete path in single or double quotation marks.

Examples
MVA VARIABLES=males to tuition
 /EM (OUTFILE=’c:\colleges\emdata.sav’).

• All variables on the variables list are included in the estimations.

• The output includes the means of the listed variables, a correlation matrix, and a covari-
ance matrix.

• A new data file named emdata.sav with imputed values is saved in the c:\colleges directory.

MVA VARIABLES=all
 /EM males msport WITH males msport gradrate facratio.

• For males and msport, the output includes a vector of means, a correlation matrix, and a
covariance matrix.

• The values in the tables are calculated using imputed values for males and msport. Exist-
ing observations for males, msport, gradrate, and facratio are used to impute the values that
are used to estimate the means, correlations, and covariances.

MVA VARIABLES=males to tuition
 /EM verbal math WITH males msport gradrate facratio
 (TDF=3 OUTFILE=’c:\colleges\emdata.sav’).

• The analysis uses a t distribution with three degrees of freedom.

• A new data file named emdata.sav with imputed values is saved in the c:\colleges directory.

MVA 1041

REGRESSION Subcommand

The REGRESSION subcommand estimates missing values using multiple linear regression.
It can add a random component to the regression estimate. Output includes estimates of
means, a covariance matrix, and a correlation matrix of the variables specified as predicted.

• By default, all of the variables specified as predictors (after WITH) are used in the estimation,
but you can limit the number of predictors (independent variables) by NPREDICTORS.

• Predicted and predictor variables, if specified, must be quantitative.

• By default, REGRESSION adds the observed residuals of a randomly selected complete
case to the regression estimates. However, you can specify that the program add random
normal, t, or no variates instead. The normal and t distributions are properly scaled, and
the degrees of freedom can be specified for the t distribution.

• If the number of complete cases is less than half the total number of cases, the default
ADDTYPE is NORMAL instead of RESIDUAL.

• You can save a data file with the missing values filled in. You must specify a filename
and its complete path in single or double quotation marks.

• The criteria and OUTFILE specifications for the REGRESSION subcommand must be en-
closed in a single pair of parentheses.

The criteria for the REGRESSION subcommand are as follows:

TOLERANCE=value Numerical accuracy control. The tolerance helps eliminate predictor
variables that are highly correlated with other predictor variables and
would reduce the accuracy of the matrix inversions involved in the cal-
culations. If a variable passes the tolerance criterion, it is eligible for
inclusion. The smaller the tolerance, the more inaccuracy is tolerated.
The default value is 0.001.

FLIMIT=n F-to-enter limit. The minimum value of the F statistic that a variable
must achieve in order to enter the regression estimation. You may
want to change this limit, depending on the number of variables and
the correlation structure of the data. The default value is 4.

NPREDICTORS=n Maximum number of predictor variables. This specification limits the
total number of predictors in the analysis. The analysis uses the step-
wise selected n best predictors, entered in accordance with the toler-
ance. If , it is equivalent to replacing each variable with its
mean.

n 0=

1042 MVA

ADDTYPE Type of distribution from which the error term is randomly drawn.
Random errors can be added to the regression estimates before the
means, correlations, and covariances are calculated. You can specify
one of the following types:

RESIDUAL. Error terms are chosen randomly from the observed residu-
als of complete cases to be added to the regression estimates.

NORMAL. Error terms are randomly drawn from a distribution with the
expected value 0 and the standard deviation equal to the square root of
the mean squared error term (sometimes called the root mean
squared error, or RMSE) of the regression.

T(n). Error terms are randomly drawn from the t(n) distribution and
scaled by the RMSE. The degrees of freedom can be specified in pa-
rentheses. If T is specified without a value, the default degrees of free-
dom is 5.

NONE. Estimates are made from the regression model with no error
term added.

The following keyword produces a new data file:

OUTFILE Specify the name of the new data file to be saved. Missing values for
the dependent variables in the file are imputed (filled in) by using the
regression algorithm. Specify the complete path in single or double
quotation marks.

Examples
MVA VARIABLES=males to tuition
 /REGRESSION (OUTFILE=’c:\colleges\regdata.sav’).

• All variables in the variables list are included in the estimations.

• The output includes the means of the listed variables, a correlation matrix, and a covari-
ance matrix.

• A new data file named regdata.sav with imputed values is saved in the c:\colleges directory.

MVA VARIABLES=males to tuition
 /REGRESSION males verbal math WITH males verbal math faculty
 (ADDTYPE = T(7)).

• The output includes the means of the listed variables, a correlation matrix, and a covari-
ance matrix.

• A t distribution with 7 degrees of freedom is used to produce the randomly assigned ad-
ditions to the estimates.

1043

NEW FILE

NEW FILE

Overview

The NEW FILE command clears the working data file. It is used when you want to build a
new working data file by generating data within an input program (see INPUT PROGRAM—
END INPUT PROGRAM).

Basic Specification

NEW FILE is always specified by itself. No other keyword is required or allowed.

Operations

• NEW FILE clears the working data file. The command takes effect as soon as it is
encountered. You must build a new working data file after this command to continue
your session. Transformations or procedures cannot be used before a working data file
is created.

• When you build a working data file with GET, DATA LIST, or other file definition
commands (such as ADD FILES or MATCH FILES), the working data file is automatically
replaced. It is not necessary to specify NEW FILE.

1044

NLR

NLR and CNLR are available in the Regression Models option.

MODEL PROGRAM parameter=value [parameter=value ...]
transformation commands

[DERIVATIVES
transformation commands]

[CLEAR MODEL PROGRAMS]

Procedure CNLR (Constrained Nonlinear Regression):

[CONSTRAINED FUNCTIONS
transformation commands]

CNLR dependent var

[/FILE=file] [/OUTFILE=file]

[/PRED=varname]

[/SAVE [PRED] [RESID[(varname)]] [DERIVATIVES] [LOSS]]

[/CRITERIA=[ITER n] [MITER n] [CKDER {0.5**}]
{n }

 [ISTEP {1E+20**}] [FPR n] [LFTOL n]
 {n }

 [LSTOL n] [STEPLIMIT {2**}] [NFTOL n]
 {n }

 [FTOL n] [OPTOL n] [CRSHTOL {.01**}]]
 {n }

[/BOUNDS=expression, expression, ...]

[/LOSS=varname]

[/BOOTSTRAP [=n]]

Procedure NLR (Nonlinear Regression):

NLR dependent var

[/FILE=file] [/OUTFILE=file]

[/PRED=varname]

[/SAVE [PRED] [RESID [(varname)] [DERIVATIVES]]

[/CRITERIA=[ITER {100**}] [CKDER {0.5**}]
{n } {n }

 [SSCON {1E-8**}] [PCON {1E-8**}] [RCON {1E-8**}]]
 {n } {n } {n }

**Default if the subcommand or keyword is omitted.

NLR 1045

Example
MODEL PROGRAM A=.6.
COMPUTE PRED=EXP(A*X).

NLR Y.

Overview

Nonlinear regression is used to estimate parameter values and regression statistics for models
that are not linear in their parameters. SPSS has two procedures for estimating nonlinear
equations. CNLR (constrained nonlinear regression), which uses a sequential quadratic
programming algorithm, is applicable for both constrained and unconstrained problems. NLR
(nonlinear regression), which uses a Levenberg-Marquardt algorithm, is applicable only for
unconstrained problems.

CNLR is more general. It allows linear and nonlinear constraints on any combination of
parameters. It will estimate parameters by minimizing any smooth loss function (objective
function), and can optionally compute bootstrap estimates of parameter standard errors and
correlations. The individual bootstrap parameter estimates can optionally be saved in a sepa-
rate SPSS data file.

Both programs estimate the values of the parameters for the model and, optionally,
compute and save predicted values, residuals, and derivatives. Final parameter estimates can
be saved in an SPSS data file and used in subsequent analyses.

CNLR and NLR use much of the same syntax. Some of the following sections discuss
features common to both procedures. In these sections, the notation [C]NLR means that either
the CNLR or NLR procedure can be specified. Sections that apply only to CNLR or only to NLR
are clearly identified.

Options

The Model. You can use any number of transformation commands under MODEL PROGRAM
to define complex models.

Derivatives. You can use any number of transformation commands under DERIVATIVES to
supply derivatives.

Adding Variables to Working Data File. You can add predicted values, residuals, and derivatives
to the working data file with the SAVE subcommand.

Writing Parameter Estimates to a New Data File. You can save final parameter estimates as an
external SPSS data file using the OUTFILE subcommand; you can retrieve them in subsequent
analyses using the FILE subcommand.

Controlling Model-Building Criteria. You can control the iteration process used in the regression
with the CRITERIA subcommand.

Additional CNLR Controls. For CNLR, you can impose linear and nonlinear constraints on the
parameters with the BOUNDS subcommand. Using the LOSS subcommand, you can specify a
loss function for CNLR to minimize and, using the BOOTSTRAP subcommand, you can provide
bootstrap estimates of the parameter standard errors, confidence intervals, and correlations.

1046 NLR

Basic Specification

The basic specification requires three commands: MODEL PROGRAM, COMPUTE (or any
other computational transformation command), and [C]NLR.

• The MODEL PROGRAM command assigns initial values to the parameters and signifies the
beginning of the model program.

• The computational transformation command generates a new variable to define the
model. The variable can take any legitimate name, but if the name is not PRED, the PRED
subcommand will be required.

• The [C]NLR command provides the regression specifications. The minimum specification
is the dependent variable.

• By default, the residual sum of squares and estimated values of the model parameters are
displayed for each iteration. Statistics generated include regression and residual sums of
squares and mean squares, corrected and uncorrected total sums of squares, , param-
eter estimates with their asymptotic standard errors and 95% confidence intervals, and an
asymptotic correlation matrix of the parameter estimates.

Command Order

• The model program, beginning with the MODEL PROGRAM command, must precede the
[C]NLR command.

• The derivatives program (when used), beginning with the DERIVATIVES command, must
follow the model program but precede the [C]NLR command.

• The constrained functions program (when used), beginning with the CONSTRAINED
FUNCTIONS command, must immediately precede the CNLR command. The constrained
functions program cannot be used with the NLR command.

• The CNLR command must follow the block of transformations for the model program and
the derivatives program when specified; the CNLR command must also follow the con-
strained functions program when specified.

• Subcommands on [C]NLR can be named in any order.

Syntax Rules

• The FILE, OUTFILE, PRED, and SAVE subcommands work the same way for both CNLR
and NLR.

• The CRITERIA subcommand is used by both CNLR and NLR, but iteration criteria are dif-
ferent. Therefore, the CRITERIA subcommand is documented separately for CNLR and
NLR.

• The BOUNDS, LOSS, and BOOTSTRAP subcommands can be used only with CNLR. They
cannot be used with NLR.

R2

NLR 1047

Operations

• By default, the predicted values, residuals, and derivatives are created as temporary vari-
ables. To save these variables, use the SAVE subcommand.

Weighting Cases

• If case weighting is in effect, [C]NLR uses case weights when calculating the residual sum
of squares and derivatives. However, the degrees of freedom in the ANOVA table are
always based on unweighted cases.

• When the model program is first invoked for each case, the weight variable’s value is set
equal to its value in the working data file. The model program may recalculate that value.
For example, to effect a robust estimation, the model program may recalculate the weight
variable’s value as an inverse function of the residual magnitude. [C]NLR uses the weight
variable’s value after the model program is executed.

Missing Values

Cases with missing values for any of the dependent or independent variables named on the
[C]NLR command are excluded.

• Predicted values, but not residuals, can be calculated for cases with missing values on the
dependent variable.

• [C]NLR ignores cases that have missing, negative, or zero weights. The procedure displays
a warning message if it encounters any negative or zero weights at any time during its
execution.

• If a variable used in the model program or the derivatives program is omitted from the
independent variable list on the [C]NLR command, the predicted value and some or all of
the derivatives may be missing for every case. If this happens, SPSS generates an error
message.

Example

MODEL PROGRAM A=.5 B=1.6.
COMPUTE PRED=A*SPEED**B.

DERIVATIVES.
COMPUTE D.A=SPEED**B.
COMPUTE D.B=A*LN(SPEED)*SPEED**B.

NLR STOP.

• MODEL PROGRAM assigns values to the model parameters A and B.

• COMPUTE generates the variable PRED to define the nonlinear model using parameters A
and B and the variable SPEED from the working data file. Because this variable is named
PRED, the PRED subcommand is not required on NLR.

• DERIVATIVES indicates that calculations for derivatives are being supplied.

1048 NLR

• The two COMPUTE statements on the DERIVATIVES transformations list calculate the
derivatives for the parameters A and B. If either one had been omitted, NLR would have
calculated it numerically.

• NLR specifies STOP as the dependent variable. It is not necessary to specify SPEED as the
independent variable since it has been used in the model and derivatives programs.

MODEL PROGRAM Command

The MODEL PROGRAM command assigns initial values to the parameters and signifies the
beginning of the model program. The model program specifies the nonlinear equation
chosen to model the data. There is no default model.

• The model program is required and must precede the [C]NLR command.

• The MODEL PROGRAM command must specify all parameters in the model program.
Each parameter must be individually named. Keyword TO is not allowed.

• Parameters can be assigned any acceptable SPSS variable name. However, if you intend
to write the final parameter estimates to a file with the OUTFILE subcommand, do not use
the name SSE or NCASES (see the OUTFILE subcommand on p. 1051).

• Each parameter in the model program must have an assigned value. The value can be
specified on MODEL PROGRAM or read from an existing parameter data file named on the
FILE subcommand.

• Zero should be avoided as an initial value because it provides no information on the scale
of the parameters. This is especially true for CNLR.

• The model program must include at least one command that uses the parameters and the
independent variables (or preceding transformations of these) to calculate the predicted
value of the dependent variable. This predicted value defines the nonlinear model. There
is no default model.

• By default, the program assumes that PRED is the name assigned to the variable for the
predicted values. If you use a different variable name in the model program, you must
supply the name on the PRED subcommand (see the PRED subcommand on p. 1052).

• In the model program, you can assign a label to the variable holding predicted values and
also change its print and write formats, but you should not specify missing values for this
variable.

• You can use any computational commands (such as COMPUTE, IF, DO IF, LOOP, END
LOOP, END IF, RECODE, or COUNT) or output commands (WRITE, PRINT, or XSAVE) in
the model program, but you cannot use input commands (such as DATA LIST, GET, MATCH
FILES, or ADD FILES).

• Transformations in the model program are used only by [C]NLR, and they do not affect the
working data file. The parameters created by the model program do not become a part of
the working data file. Permanent transformations should be specified before the model
program.

NLR 1049

Caution

The selection of good initial values for the parameters in the model program is very impor-
tant to the operation of [C]NLR. The selection of poor initial values can result in no solution,
a local rather than a general solution, or a physically impossible solution.

Example
MODEL PROGRAM A=10 B=1 C=5 D=1.
COMPUTE PRED= A*exp(B*X) + C*exp(D*X).

• The MODEL PROGRAM command assigns starting values to the four parameters A, B, C,
and D.

• COMPUTE defines the model to be fit as the sum of two exponentials.

DERIVATIVES Command

The optional DERIVATIVES command signifies the beginning of the derivatives program. The
derivatives program contains transformation statements for computing some or all of the
derivatives of the model. The derivatives program must follow the model program but
precede the [C]NLR command.

If the derivatives program is not used, [C]NLR numerically estimates derivatives for all the
parameters. Providing derivatives reduces computation time and, in some situations, may
result in a better solution.

• The DERIVATIVES command has no further specifications but must be followed by the set
of transformation statements that calculate the derivatives.

• You can use any computational commands (such as COMPUTE, IF, DO IF, LOOP, END
LOOP, END IF, RECODE, or COUNT) or output commands (WRITE, PRINT, or XSAVE) in
the derivatives program, but you cannot use input commands (such as DATA LIST, GET,
MATCH FILES, or ADD FILES).

• To name the derivatives, specify the prefix D. before each parameter name. For example,
the derivative name for the parameter PARM1 must be D.PARM1.

• Once a derivative has been calculated by a transformation, the variable for that derivative
can be used in subsequent transformations.

• You do not need to supply all of the derivatives. Those that are not supplied will be esti-
mated by the program. During the first iteration of the nonlinear estimation procedure,
derivatives calculated in the derivatives program are compared with numerically calcu-
lated derivatives. This serves as a check on the supplied values (see the CRITERIA sub-
command on p. 1054).

• Transformations in the derivatives program are used by [C]NLR only and do not affect the
working data file.

• For NLR, the derivative of each parameter must be computed with respect to the predicted
function. (For computation of derivatives in CNLR, see the LOSS subcommand on p.
1058.)

1050 NLR

Example
MODEL PROGRAM A=1, B=0, C=1, D=0
COMPUTE PRED = AeBx + CeDx
DERIVATIVES.
COMPUTE D.A = exp (B * X).
COMPUTE D.B = A * exp (B * X) * X.
COMPUTE D.C = exp (D * X).
COMPUTE D.D = C * exp (D * X) * X.

• The derivatives program specifies derivatives of the PRED function for the sum of the two
exponentials in the model described by the following equation:

Example
DERIVATIVES.
COMPUTE D.A = exp (B * X).
COMPUTE D.B = A * X * D.A.
COMPUTE D.C = exp (D * X).
COMPUTE D.D = C * X * D.C.

• This is an alternative way to express the same derivatives program specified in the pre-
vious example.

CONSTRAINED FUNCTIONS Command

The optional CONSTRAINED FUNCTIONS command signifies the beginning of the
constrained functions program, which specifies nonlinear constraints. The constrained func-
tions program is specified after the model program and the derivatives program (when used).
It can only be used with, and must precede, the CNLR command. For more information, see
the BOUNDS subcommand on p. 1057.

Example
MODEL PROGRAM A=.5 B=1.6.
COMPUTE PRED=A*SPEED**B.

CONSTRAINED FUNCTIONS.
COMPUTE CF=A-EXP(B).

CNLR STOP
/BOUNDS CF LE 0.

CLEAR MODEL PROGRAMS Command

CLEAR MODEL PROGRAMS deletes all transformations associated with the model program,
the derivative program, and/or the constrained functions program previously submitted. It is
primarily used in interactive mode to remove temporary variables created by these programs
without affecting the working data file or variables created by other transformation programs
or temporary programs. It allows you to specify new models, derivatives, or constrained
functions without having to run [C]NLR.

Y AeBx CeDx+=

NLR 1051

It is not necessary to use this command if you have already executed the [C]NLR proce-
dure. Temporary variables associated with the procedure are automatically deleted.

CNLR/NLR Command

Either the CNLR or the NLR command is required to specify the dependent and independent
variables for the nonlinear regression.

• For either CNLR or NLR, the minimum specification is a dependent variable.

• Only one dependent variable can be specified. It must be a numeric variable in the working
data file and cannot be a variable generated by the model or the derivatives program.

OUTFILE Subcommand

OUTFILE stores final parameter estimates for use on a subsequent [C]NLR command. The only
specification on OUTFILE is the target file. Some or all of the values from this file can be read
into a subsequent [C]NLR procedure with the FILE subcommand. The parameter data file
created by OUTFILE stores the following variables:

• All of the split-file variables. OUTFILE writes one case of values for each split-file group
in the working data file.

• All of the parameters named on the MODEL PROGRAM command.
• The labels, formats, and missing values of the split-file variables and parameters defined

for them previous to their use in the [C]NLR procedure.

• The sum of squared residuals (named SSE). SSE has no labels or missing values. The print
and write format for SSE is F10.8.

• The number of cases on which the analysis was based (named NCASES). NCASES has no
labels or missing values. The print and write format for NCASES is F8.0.

When OUTFILE is used, the model program cannot create variables named SSE or NCASES.

Example
MODEL PROGRAM A=.5 B=1.6.
COMPUTE PRED=A*SPEED**B.
NLR STOP /OUTFILE=PARAM.

• OUTFILE generates a parameter data file containing one case for four variables: A, B, SSE,
and NCASES.

FILE Subcommand

FILE reads starting values for the parameters from a parameter data file created by an
OUTFILE subcommand from a previous [C]NLR procedure. When starting values are read
from a file, they do not have to be specified on the MODEL PROGRAM command. Rather, the
MODEL PROGRAM command simply names the parameters that correspond to the parameters
in the data file.

• The only specification on FILE is the file that contains the starting values.

1052 NLR

• Some new parameters may be specified for the model on the MODEL PROGRAM
command while others are read from the file specified on the FILE subcommand.

• You do not have to name the parameters on MODEL PROGRAM in the order in which they
occur in the parameter data file. In addition, you can name a partial list of the variables
contained in the file.

• If the starting value for a parameter is specified on MODEL PROGRAM, the specification
overrides the value read from the parameter data file.

• If split-file processing is in effect, the starting values for the first subfile are taken from
the first case of the parameter data file. Subfiles are matched with cases in order until the
starting value file runs out of cases. All subsequent subfiles use the starting values for the
last case.

• To read starting values from a parameter data file and then replace those values with the
final results from [C]NLR, specify the same file on the FILE and OUTFILE subcommands.
The input file is read completely before anything is written in the output file.

Example
MODEL PROGRAM A B C=1 D=3.
COMPUTE PRED=A*SPEED**B + C*SPEED**D.
NLR STOP /FILE=PARAM /OUTFILE=PARAM.

• MODEL PROGRAM names four of the parameters used to calculate PRED, but assigns
values to only C and D. The values of A and B are read from the existing data file PARAM.

• After NLR computes the final estimates of the four parameters, OUTFILE writes over the
old input file. If, in addition to these new final estimates, the former starting values of A
and B are still desired, specify a different file on the OUTFILE subcommand.

PRED Subcommand

PRED identifies the variable holding the predicted values.

• The only specification is a variable name, which must be identical to the variable name
used to calculate predicted values in the model program.

• If the model program names the variable PRED, the PRED subcommand can be omitted.
Otherwise, the PRED subcommand is required.

• The variable for predicted values is not saved in the working data file unless the SAVE
subcommand is used.

Example
MODEL PROGRAM A=.5 B=1.6.
COMPUTE PSTOP=A*SPEED**B.
NLR STOP /PRED=PSTOP.

• COMPUTE in the model program creates a variable named PSTOP to temporarily store the
predicted values for the dependent variable STOP.

• PRED identifies PSTOP as the variable used to define the model for the NLR procedure.

NLR 1053

SAVE Subcommand

SAVE is used to save the temporary variables for the predicted values, residuals, and deriva-
tives created by the model and the derivatives programs.

• The minimum specification is a single keyword.

• The variables to be saved must have unique names on the working data file. If a naming
conflict exists, the variables are not saved.

• Temporary variables, for example, variables created after a TEMPORARY command and
parameters specified by the model program, are not saved in the working data file. They
will not cause naming conflicts.

The following keywords are available and can be used in any combination and in any order.
The new variables are always appended to the working data file in the order in which these
keywords are presented here:

PRED Save the predicted values. The variable’s name, label, and formats are
those specified for it (or assigned by default) in the model program.

RESID [(varname)] Save the residuals variable. You can specify a variable name in paren-
theses following the keyword. If no variable name is specified, the
name of this variable is the same as the specification you use for this
keyword. For example, if you use the three-character abbreviation
RES, the default variable name will be RES. The variable has the same
print and write format as the predicted values variable created by the
model program. It has no variable label and no user-defined missing
values. It is system-missing for any case in which either the dependent
variable is missing or the predicted value cannot be computed.

DERIVATIVES Save the derivative variables. The derivative variables are named with
the prefix D. to the first six characters of the parameter names. Deriv-
ative variables use the print and write formats of the predicted values
variable and have no value labels or user-missing values. Derivative
variables are saved in the same order as the parameters named on
MODEL PROGRAM. Derivatives are saved for all parameters, whether
or not the derivative was supplied in the derivatives program.

LOSS Save the user-specified loss function variable. This specification is
available only with CNLR and only if the LOSS subcommand has been
specified.

Asymptotic standard errors of predicted values and residuals, and special residuals used for
outlier detection and influential case analysis are not provided by the [C]NLR procedure.
However, for a squared loss function, the asymptotically correct values for all these statistics
can be calculated using the SAVE subcommand with [C]NLR and then using the REGRESSION
procedure. In REGRESSION, the dependent variable is still the same, and derivatives of the
model parameters are used as independent variables. Casewise plots, standard errors of
prediction, partial regression plots, and other diagnostics of the regression are valid for the
nonlinear model.

1054 NLR

Example
MODEL PROGRAM A=.5 B=1.6.
COMPUTE PSTOP=A*SPEED**B.
NLR STOP /PRED=PSTOP

/SAVE=RESID(RSTOP) DERIVATIVES PRED.
REGRESSION VARIABLES=STOP D.A D.B /ORIGIN

/DEPENDENT=STOP /ENTER D.A D.B /RESIDUALS.

• The SAVE subcommand creates the residuals variable RSTOP and the derivative variables
D.A and D.B.

• Because the PRED subcommand identifies PSTOP as the variable for predicted values in
the nonlinear model, keyword PRED on SAVE adds the variable PSTOP to the working
data file.

• The new variables are added to the working data file in the following order: PSTOP,
RSTOP, D.A, and D.B.

• The subcommand RESIDUALS for REGRESSION produces the default analysis of residuals.

CRITERIA Subcommand

CRITERIA controls the values of the cutoff points used to stop the iterative calculations in
[C]NLR.

• The minimum specification is any of the criteria keywords and an appropriate value. The
value can be specified in parentheses after an equals sign, a space, or a comma. Multiple
keywords can be specified in any order. Defaults are in effect for keywords not specified.

• Keywords available for CRITERIA differ between CNLR and NLR and are discussed sepa-
rately. However, with both CNLR and NLR, you can specify the critical value for derivative
checking.

Checking Derivatives for CNLR and NLR

Upon entering the first iteration, [C]NLR always checks any derivatives calculated on the
derivatives program by comparing them with numerically calculated derivatives. For each
comparison, it computes an agreement score. A score of 1 indicates agreement to machine
precision; a score of 0 indicates definite disagreement. If a score is less than 1, either an
incorrect derivative was supplied or there were numerical problems in estimating the deriv-
ative. The lower the score, the more likely it is that the supplied derivatives are incorrect.
Highly correlated parameters may cause disagreement even when a correct derivative is
supplied. Be sure to check the derivatives if the agreement score is not 1.

During the first iteration, [C]NLR checks each derivative score. If any score is below 1, it
begins displaying a table to show the worst (lowest) score for each derivative. If any score is
below the critical value, the program stops.

To specify the critical value, use the following keyword on CRITERIA:

CKDER n Critical value for derivative checking. Specify a number between 0 and 1 for
n. The default is 0.5. Specify 0 to disable this criterion.

NLR 1055

Iteration Criteria for CNLR

The CNLR procedure uses NPSOL (Version 4.0) Fortran Package for Nonlinear Program-
ming (Gill et al., 1986). The CRITERIA subcommand of CNLR gives the control features of
NPSOL. The following section summarizes the NPSOL documentation.

CNLR uses a sequential quadratic programming algorithm, with a quadratic programming
subproblem to determine the search direction. If constraints or bounds are specified, the first
step is to find a point that is feasible with respect to those constraints. Each major iteration
sets up a quadratic program to find the search direction, p. Minor iterations are used to solve
this subproblem. Then, the major iteration determines a steplength α by a line search, and the
function is evaluated at the new point. An optimal solution is found when the optimality
tolerance criterion is met.

The CRITERIA subcommand has the following keywords when used with CNLR:

ITER n Maximum number of major iterations. Specify any positive integer for
n. The default is , where p is the number
of parameters, is the number of linear constraints, and is the
number of nonlinear constraints. If the search for a solution stops
because this limit is exceeded, CNLR issues a warning message.

MINORITERATION n Maximum number of minor iterations. Specify any positive integer.
This is the number of minor iterations allowed within each major iter-
ation. The default is .

CRSHTOL n Crash tolerance. CRSHTOL is used to determine if initial values are
within their specified bounds. Specify any value between 0 and 1. The
default value is 0.01. A constraint of the form is considered a
valid part of the working set if .

STEPLIMIT n Step limit. The CNLR algorithm does not allow changes in the length
of the parameter vector to exceed a factor of n. The limit prevents very
early steps from going too far from good initial estimates. Specify any
positive value. The default value is 2.

FTOLERANCE n Feasibility tolerance. This is the maximum absolute difference
allowed for both linear and nonlinear constraints for a solution to be
considered feasible. Specify any value greater than 0. The default
value is the square root of your machine’s epsilon.

LFTOLERANCE n Linear feasibility tolerance. If specified, this overrides FTOLERANCE
for linear constraints and bounds. Specify any value greater than 0.
The default value is the square root of your machine’s epsilon.

NFTOLERANCE n Nonlinear feasibility tolerance. If specified, this overrides
FTOLERANCE for nonlinear constraints. Specify any value greater than
0. The default value is the square root of your machine’s epsilon.

LSTOLERANCE n Line search tolerance. This value must be between 0 and 1 (but not
including 1). It controls the accuracy required of the line search that
forms the innermost search loop. The default value, 0.9, specifies an
inaccurate search. This is appropriate for many problems, particularly
if nonlinear constraints are involved. A smaller positive value, corre-

max 50 3 p mL+(), 10mN+()
mL mN

max 50 3 n mL mN+ +(),()

a'X l≥
a'X l– CRSHTOL 1 l+()<

1056 NLR

sponding to a more accurate line search, may give better performance
if there are no nonlinear constraints, all (or most) derivatives are
supplied in the derivatives program, and the data fit in memory.

OPTOLERANCE n Optimality tolerance. If an iteration point is a feasible point and the
next step will not produce a relative change in either the parameter
vector or the objective function of more than the square root of
OPTOLERANCE, an optimal solution has been found. OPTOLERANCE
can also be thought of as the number of significant digits in the objec-
tive function at the solution. For example, if OPTOLERANCE=10-6, the
objective function should have approximately six significant digits of
accuracy. Specify any number between the FPRECISION value and 1.
The default value for OPTOLERANCE is epsilon**0.8.

FPRECISION n Function precision. This is a measure of the accuracy with which the
objective function can be checked. It acts as a relative precision when
the function is large, and an absolute precision when the function is
small. For example, if the objective function is larger than 1, and six
significant digits are desired, FPRECISION should be . If,
however, the objective function is of the order 0.001, FPRECISION
should be to get six digits of accuracy. Specify any number
between 0 and 1. The choice of FPRECISION can be very complicated
for a badly scaled problem. Chapter 8 of Gill et al. (1981) gives some
scaling suggestions. The default value is epsilon**0.9.

ISTEP n Infinite step size. This value is the magnitude of the change in param-
eters that is defined as infinite. That is, if the change in the parameters
at a step is greater than ISTEP, the problem is considered unbounded,
and estimation stops. Specify any positive number. The default value
is .

Iteration Criteria for NLR

The NLR procedure uses an adaptation of subroutine LMSTR from the MINPACK package
by Garbow et al. Because the NLR algorithm differs substantially from CNLR, the CRITERIA
subcommand for NLR has a different set of keywords.

NLR computes parameter estimates using the Levenberg-Marquardt method. At each iter-
ation, NLR evaluates the estimates against a set of control criteria. The iterative calculations
continue until one of five cutoff points is met, at which point the iterations stop and the
reason for stopping is displayed.

The CRITERIA subcommand has the following keywords when used with NLR:

ITER n Maximum number of major and minor iterations allowed. Specify any posi-
tive integer for n. The default is 100 iterations per parameter. If the search for
a solution stops because this limit is exceeded, NLR issues a warning message.

SSCON n Convergence criterion for the sum of squares. Specify any non-negative
number for n. The default is . If successive iterations fail to reduce
the sum of squares by this proportion, the procedure stops. Specify 0 to
disable this criterion.

1E 6–

1E 9–

1E 20+

1E 8–

NLR 1057

PCON n Convergence criterion for the parameter values. Specify any non-negative
number for n. The default is . If successive iterations fail to change
any of the parameter values by this proportion, the procedure stops. Specify
0 to disable this criterion.

RCON n Convergence criterion for the correlation between the residuals and the
derivatives. Specify any non-negative number for n. The default is .
If the largest value for the correlation between the residuals and the deriva-
tives equals this value, the procedure stops because it lacks the information
it needs to estimate a direction for its next move. This criterion is often
referred to as a gradient convergence criterion. Specify 0 to disable this
criterion.

Example
MODEL PROGRAM A=.5 B=1.6.
COMPUTE PRED=A*SPEED**B.
NLR STOP /CRITERIA=ITER(80) SSCON=.000001.

• CRITERIA changes two of the five cutoff values affecting iteration, ITER and SSCON, and
leaves the remaining three, PCON, RCON, and CKDER, at their default values.

BOUNDS Subcommand

The BOUNDS subcommand can be used to specify both linear and nonlinear constraints. It
can be used only with CNLR; it cannot be used with NLR.

Simple Bounds and Linear Constraints

BOUNDS can be used to impose bounds on parameter values. These bounds can involve
either single parameters or a linear combination of parameters and can be either equalities or
inequalities.

• All bounds are specified on the same BOUNDS subcommand and separated by
semicolons.

• The only variables allowed on BOUNDS are parameter variables (those named on MODEL
PROGRAM).

• Only (multiplication), (addition), (subtraction), or EQ, or GE, and or
LE can be used. When two relational operators are used (as in the third bound in the
example below), they must both be in the same direction.

Example
/BOUNDS 5 >= A;

 B >= 9;
 .01 <= 2*A + C <= 1;

 D + 2*E = 10

• BOUNDS imposes bounds on the parameters A, B, C, and D. Specifications for each param-
eter are separated by a semicolon.

1E 8–

1E 8–

* + – = >= <=

1058 NLR

Nonlinear Constraints

Nonlinear constraints on the parameters can also be specified with the BOUNDS subcom-
mand. The constrained function must be calculated and stored in a variable by a constrained
functions program directly preceding the CNLR command. The constraint is then specified
on the BOUNDS subcommand.

In general, nonlinear bounds will not be obeyed until an optimal solution has been found.
This is different from simple and linear bounds, which are satisfied at each iteration. The
constrained functions must be smooth near the solution.

Example
MODEL PROGRAM A=.5 B=1.6.
COMPUTE PRED=A*SPEED**B.

CONSTRAINED FUNCTIONS.
COMPUTE DIFF=A-10**B.

CNLR STOP /BOUNDS DIFF LE 0.

• The constrained function is calculated by a constrained functions program and stored in
variable DIFF. The constrained functions program immediately precedes CNLR.

• BOUNDS imposes bounds on the function (less than or equal to 0).
• CONSTRAINED FUNCTIONS variables and parameters named on MODEL PROGRAM

cannot be combined in the same BOUNDS expression. For example, you cannot specify
 on the BOUNDS subcommand.

LOSS Subcommand

LOSS specifies a loss function for CNLR to minimize. By default, CNLR minimizes the sum
of squared residuals. LOSS can be used only with CNLR; it cannot be used with NLR.

• The loss function must first be computed in the model program. LOSS is then used to
specify the name of the computed variable.

• The minimizing algorithm may fail if it is given a loss function that is not smooth, such
as the absolute value of residuals.

• If derivatives are supplied, the derivative of each parameter must be computed with
respect to the loss function, rather than the predicted value. The easiest way to do this is
in two steps: first compute derivatives of the model, and then compute derivatives of the
loss function with respect to the model and multiply by the model derivatives.

• When LOSS is used, the usual summary statistics are not computed. Standard errors, con-
fidence intervals, and correlations of the parameters are available only if the BOOTSTRAP
subcommand is specified.

DIFF A+() => 0

NLR 1059

Example
MODEL PROGRAM A=1 B=1.
COMPUTE PRED=EXP(A+B*T)/(1+EXP(A+B*T)).
COMPUTE LOSS=-W*(Y*LN(PRED)+(1-Y)*LN(1-PRED)).

DERIVATIVES.
COMPUTE D.A=PRED/(1+EXP(A+B*T)).
COMPUTE D.B=T*PRED/(1+EXP(A+B*T)).
COMPUTE D.A=(-W*(Y/PRED - (1-Y)/(1-PRED)) * D.A).
COMPUTE D.B=(-W*(Y/PRED - (1-Y)/(1-PRED)) * D.B).

CNLR Y /LOSS=LOSS.

• The second COMPUTE command in the model program computes the loss functions and
stores its values in the variable LOSS, which is then specified on the LOSS subcommand.

• Because derivatives are supplied in the derivatives program, the derivatives of all param-
eters are computed with respect to the loss function, rather than the predicted value.

BOOTSTRAP Subcommand

BOOTSTRAP provides bootstrap estimates of the parameter standard errors, confidence inter-
vals, and correlations. BOOTSTRAP can be used only with CNLR; it cannot be used with NLR.

Bootstrapping is a way of estimating the standard error of a statistic, using repeated
samples from the original data set. This is done by sampling with replacement to get samples
of the same size as the original data set.

• The minimum specification is the subcommand keyword. Optionally, specify the number
of samples to use for generating bootstrap results.

• By default, BOOTSTRAP generates bootstrap results based on 10*p*(p+1)/2 samples,
where p is the number of parameters. That is, 10 samples are drawn for each statistic
(standard error or correlation) to be calculated.

• When BOOTSTRAP is used, the nonlinear equation is estimated for each sample. The stan-
dard error of each parameter estimate is then calculated as the standard deviation of the
bootstrapped estimates. Parameter values from the original data are used as starting
values for each bootstrap sample. Even so, bootstrapping is computationally expensive.

• If the OUTFILE subcommand is specified, a case is written to the output file for each boot-
strap sample. The first case in the file will be the actual parameter estimates, followed by
the bootstrap samples. After the first case is eliminated (using SELECT IF), other SPSS
procedures (such as FREQUENCIES) can be used to examine the bootstrap distribution.

Example
MODEL PROGRAM A=.5 B=1.6.
COMPUTE PSTOP=A*SPEED**B.
CNLR STOP /BOOTSTRAP /OUTFILE=PARAM.
GET FILE=PARAM.
LIST.
COMPUTE ID=$CASENUM.
SELECT IF (ID > 1).
FREQUENCIES A B /FORMAT=NOTABLE /HISTOGRAM.

1060 NLR

• CNLR generates the bootstrap standard errors, confidence intervals, and parameter corre-
lation matrix. OUTFILE saves the bootstrap estimates in the file PARAM.

• GET retrieves the system file PARAM.

• LIST lists the different sample estimates along with the original estimate. NCASES in the
listing (see the OUTFILE subcommand on p. 1051) refers to the number of distinct cases
in the sample because cases are duplicated in each bootstrap sample.

• FREQUENCIES generates histograms of the bootstrapped parameter estimates.

References

Gill, P. E., W. M. Murray, M. A. Saunders, and M. H. Wright. 1986. User’s guide for NPSOL
(version 4.0): A FORTRAN package for nonlinear programming. Technical Report SOL
86-2. Department of Operations Research, Stanford University.

1061

N OF CASES

N OF CASES n

Example
N OF CASES 100.

Overview

N OF CASES (alias N) limits the number of cases in the working data file to the first n cases.

Basic Specification

The basic specification is N OF CASES followed by at least one space and a positive integer.
Cases in the working data file are limited to the specified number.

Syntax Rules

• To limit the number of cases for the next procedure only, use the TEMPORARY command
before N OF CASES (see TEMPORARY).

• In some versions of the program, N OF CASES can be specified only after a working data
file is defined.

Operations

• Unlike most transformations, N OF CASES takes effect as soon as it is encountered in the
command sequence. Thus, special attention should be paid to its position among com-
mands. See “Command Order” on p. 8 in Volume I for more information.

• N OF CASES limits the number of cases analyzed by all subsequent procedures in the
session. The working data file will have no more than n cases after the first data pass
following the N OF CASES command. Any subsequent N OF CASES command specify-
ing a greater number of cases will be ignored.

• If N OF CASES specifies more cases than can actually be built, the program builds as
many cases as possible.

• If N OF CASES is used with SAMPLE or SELECT IF, the program reads as many records
as required to build the specified n cases. It makes no difference whether the N OF
CASES precedes or follows the SAMPLE or SELECT IF command.

1062 N OF CASES

Example

GET FILE=CITY.
N 100.

• N OF CASES limits the number of cases on the working data file to the first 100 cases.
Cases are limited for all subsequent analyses.

Example

DATA LIST FILE=PRSNNL / NAME 1-20 (A) AGE 22-23 SALARY 25-30.
N 25.
SELECT IF (SALARY GT 20000).
LIST.

• DATA LIST defines variables from file PRSNNL.

• N OF CASES limits the working data file to 25 cases after cases have been selected by
SELECT IF.

• SELECT IF selects only cases in which SALARY is greater than $20,000.
• LIST produces a listing of the cases in the working data file. If the original working data

file has fewer than 25 cases in which salary is greater than 20,000, fewer than 25 cases
will be listed.

Example

DATA LIST FILE=PRSNNL / NAME 1-20(A) AGE 22-23
 SALARY 25-30 DEPT 32.
LIST.
TEMPORARY.
N 25.
FREQUENCIES VAR=SALARY.
N 50.
FREQUENCIES VAR=AGE.
REPORT FORMAT=AUTO /VARS=NAME AGE SALARY /BREAK=DEPT
 /SUMMARY=MEAN.

• The first N OF CASES command is temporary. Only 25 cases are used in the first
FREQUENCIES procedure.

• The second N OF CASES command is permanent. The second frequency table and the
report are based on 50 cases from file PRSNNL. The working data file now contains 50
cases (assuming the original working file had at least that many).

1063

NOMREG

NOMREG is available in the Regression Models option.

NOMREG dependent varname [(BASE = {FIRST } ORDER = {ASCENDING**})] [BY factor list]
{LAST**} {DATA }

 {value } {DESCENDING }
 [WITH covariate list]

 [/CRITERIA = [CIN({95**})] [DELTA({0**})] [MXITER({100**})] [MXSTEP({5**})]
{n } {n } {n } {n }

[LCONVERGE({0**})] [PCONVERGE({1.0E-6**})] [SINGULAR({1E-8**})]
 {n } {n } {n }

[BIAS({0**})] [CHKSEP({20**})]]
{n } {n }

 [/FULLFACTORIAL]

 [/INTERCEPT = {EXCLUDE }]
 {INCLUDE**}

 [/MISSING = {EXCLUDE**}]
{INCLUDE }

[/MODEL = {[effect effect ...]} [| {BACKWARD} = { effect effect ...}]]
{FORWARD }

 {BSTEP }
 {FSTEP }

 [/STEPWISE =[RULE({SINGLE** })][MINEFFECT({0** })][MAXEFFECT(n)]]
 {SFACTOR } {value}
 {CONTAINMENT}
 {NONE }

 [PIN({0.05**})] [POUT({0.10**})]
 {value } {value }

[/OUTFILE = [{MODEL }(filename)]]
 {PARAMETER}

[/PRINT = [CELLPROB] [CLASSTABLE] [CORB] [HISTORY({1**})]]
{n }

[SUMMARY] [PARAMETER] [COVB] [FIT] [LRT] [KERNEL]
 [CPS**] [STEP**] [MFI**] [NONE]

 [/SAVE = [ACPROB[(newname)]] [ESTPROB[(rootname[:{25**}])]]
 {n }
 [PCPROB[(newname)]] [PREDCAT[(newname)]]

 [/SCALE = {1** }]
{n }
{DEVIANCE}
{PEARSON }

 [/SUBPOP = varlist]

 [/TEST[(valuelist)] = {[‘label’] effect valuelist effect valuelist...;}]
{[‘label’] ALL list; }

 {[‘label’] ALL list }

** Default if the subcommand is omitted.

1064 NOMREG

Overview

NOMREG is a procedure for fitting a multinomial logit model to a polytomous nominal
dependent variable.

Options

Tuning the algorithm. You can control the values of algorithm-tuning parameters with the
CRITERIA subcommand.

Optional output. You can request additional output through the PRINT subcommand.

Exporting the model. You can export the model to an external file. The model information will
be written using the Extensible Markup Language (XML).

Basic Specification

The basic specification is one dependent variable.

Syntax Rules

• Minimum syntax—at least one dependent variable must be specified.

• The variable specification must come first.

• Subcommands can be specified in any order.
• Empty subcommands except the MODEL subcommand are ignored.

• The MODEL and the FULLFACTORIAL subcommands are mutually exclusive. Only one of
them can be specified at any time.

• The MODEL subcommand stepwise options and the TEST subcommand are mutually ex-
clusive. Only one of them can be specified at any time.

• When repeated subcommands except the TEST subcommand are specified, all specifica-
tions except the last valid one are discarded.

• The following words are reserved as keywords or internal commands in the NOMREG
procedure: BY, WITH, WITHIN.

• The set of factors and covariates used in the MODEL subcommand (or implied on the
FULLFACTORIAL subcommand) must be a subset of the variable list specified or implied
on the SUBPOP subcommand.

Variable List

The variable list specifies the dependent variable and the factors in the model.
• The dependent variable must be the first specification on NOMREG. It can be of any type

(numeric or string). Values of the dependent variable are sorted according to the ORDER
specification.

NOMREG 1065

ORDER = ASCENDING Response categories are sorted in ascending order. The lowest
value defines the first category, and the highest value defines the
last category.

ORDER = DATA Response categories are not sorted. The first value encountered in
the data defines the first category. The last distinct value defines
the last category.

ORDER = DESCENDING Response categories are sorted in descending order. The highest
value defines the first category, and the lowest value defines the
last category.

• By default, the last response category is used as the base (or reference) category. No model
parameters are assigned to the base category. Use the BASE attribute to specify a custom
base category.

BASE = FIRST The first category is the base category.

BASE = LAST The last category is the base category.

BASE = value The category with the specified value is the base category. Put the value
inside a pair of quotes if either the value is formatted (such as date or
currency) or if the dependent variable is of string type.

• Factor variables can be of any type (numeric or string). The factors follow the dependent
variable separated by the keyword BY.

• Covariate variables must be numeric. The covariates follow the factors, separated by the
keyword WITH.

• Listwise deletion is used. If any variables in a case contain missing values, that case will
be excluded.

• If the WEIGHT command was specified, the actual weight values are used for the respec-
tive category combination. No rounding or truncation will be done. However, cases with
negative and zero weight values are excluded from the analyses.

Example
NOMREG response (ORDER = DESCENDING BASE=’No’) BY factor1.

• Values of the variable response are sorted in descending order, and the category whose
value is ’No’ is the base category.

Example
NOMREG
 movie BY gender date
 /CRITERIA = CIN(95) DELTA(0) MXITER(100) MXSTEP(5) LCONVERGE(0)
 PCONVERGE(0)
 /INTERCEPT = EXCLUDE
 /PRINT = CLASSTABLE FIT PARAMETER SUMMARY LRT .

• movie is the dependent variable, gender and date are factors.

• CRITERIA specifies that the confidence level to use is 95, no delta value should be added
to cells with observed zero frequency, and neither the log-likelihood nor parameter esti-

1066 NOMREG

mates convergence criteria should be used. This means that the procedure will stop when
either 100 iterations or five step-halving operations have been performed.

• INTERCEPT specifies that the intercept should be excluded from the model.

• PRINT specifies that the classification table, goodness-of-fit statistics, parameter statistics,
model summary, and likelihood-ratio tests should be displayed.

CRITERIA Subcommand

The CRITERIA subcommand offers controls on the iterative algorithm used for estimation
and specifies numerical tolerance for checking singularity.

BIAS(n) Bias value added to observed cell frequency. Specify a non-negative
value less than 1. The default value is 0.

CHKSEP(n) Starting iteration for checking for complete separation. Specify a non-
negative integer. The default value is 20.

CIN(n) Confidence interval level. Specify a value greater than or equal to 0
and less than 100. The default value is 95.

DELTA(n) Delta value added to zero cell frequency. Specify a non-negative value
less than 1. The default value is 0.

LCONVERGE(n) Log-likelihood function convergence criterion. Convergence is assumed
if the absolute change or relative change in the log-likelihood function is
less than this value. The criterion is not used if the value is 0. Specify a
non-negative value. The default value is 0.

MXITER(n) Maximum number of iterations. Specify a positive integer. The default
value is 100.

MXSTEP(n) Maximum step-halving allowed. Specify a positive integer. The default
value is 5.

PCONVERGE(a) Parameter estimates convergence criterion. Convergence is assumed
if the absolute change or relative change in the parameter estimates is
less than this value. The criterion is not used if the value is 0. Specify
a non-negative value. The default value is .

SINGULAR(a) Value used as tolerance in checking singularity. Specify a positive
value. The default value is .

FULLFACTORIAL Subcommand

The FULLFACTORIAL subcommand generates a specific model: first, the intercept (if includ-
ed); second, all of the covariates (if specified), in the order in which they are specified; next,
all of the main factorial effects; next, all of the two-way factorial interaction effects, all of the
three-way factorial interaction effects, and so on, up to the highest possible interaction effect.

• The FULLFACTORIAL and the MODEL subcommands are mutually exclusive. Only one of
them can be specified at any time.

10 6–

10 8–

NOMREG 1067

• The FULLFACTORIAL subcommand does not take any keywords.

INTERCEPT Subcommand

The INTERCEPT subcommand controls whether intercept terms are included in the model.
The number of intercept terms is the number of response categories less one.

INCLUDE Includes the intercept terms. This is the default.

EXCLUDE Excludes the intercept terms.

MISSING Subcommand

By default, cases with missing values for any of the variables on the NOMREG variable list
are excluded from the analysis. The MISSING subcommand allows you to include cases with
user-missing values.
• Note that missing values are deleted at the subpopulation level.

EXCLUDE Excludes both user-missing and system-missing values. This is the
default.

INCLUDE User-missing values are treated as valid. System-missing values
cannot be included in the analysis.

MODEL Subcommand

The MODEL subcommand specifies the effects in the model.

• The MODEL and the FULLFACTORIAL subcommands are mutually exclusive. Only one of
them can be specified at any time.

• If more than one MODEL subcommand is specified, only the last one is in effect.

• Specify a list of terms to be included in the model, separated by commas or spaces. If the
MODEL subcommand is omitted or empty, the default model is generated. The default
model contains: first, the intercept (if included); second, all of the covariates (if speci-
fied), in the order in which they are specified; and next, all of the main factorial effects,
in the order in which they are specified.

• If a SUBPOP subcommand is specified, then effects specified in the MODEL subcommand
can only be composed using the variables listed on the SUBPOP subcommand.

• To include a main-effect term, enter the name of the factor on the MODEL subcommand.

• To include an interaction-effect term among factors, use the keyword BY or the asterisk
(*) to join factors involved in the interaction. For example, A*B*C means a three-way
interaction effect of A, B, and C, where A, B, and C are factors. The expression A BY B
BY C is equivalent to A*B*C. Factors inside an interaction effect must be distinct.
Expressions like A*C*A and A*A are invalid.

• To include a nested effect term, use the keyword WITHIN or a pair of parentheses on the
MODEL subcommand. For example, A(B) means that A is nested within B, where A and

1068 NOMREG

B are factors. The expression A WITHIN B is equivalent to A(B). Factors inside a nested
effect must be distinct. Expressions like A(A) and A(B*A) are invalid.

• Multiple-level nesting is supported. For example, A(B(C)) means that B is nested within
C, and A is nested within B(C). When more than one pair of parentheses is present, each
pair of parentheses must be enclosed or nested within another pair of parentheses. Thus,
A(B)(C) is not valid.

• Nesting within an interaction effect is valid. For example, A(B*C) means that A is nested
within B*C.

• Interactions among nested effects are allowed. The correct syntax is the interaction followed
by the common nested effect inside the parentheses. For example, interaction between
A and B within levels of C should be specified as A*B(C) instead of A(C)*B(C).

• To include a covariate term in the model, enter the name of the covariate on the MODEL
subcommand.

• Covariates can be connected, but not nested, using the keyword BY or the asterisk (*)
operator. For example, X*X is the product of X and itself. This is equivalent to a covariate
whose values are the square of those of X. However, X(Y) is invalid.

• Factor and covariate effects can be connected in many ways. No effects can be nested
within a covariate effect. Suppose A and B are factors, and X and Y are covariates.
Examples of valid combination of factor and covariate effects are A*X, A*B*X, X(A),
X(A*B), X*A(B), X*Y(A*B), and A*B*X*Y.

• A stepwise method can be specified by following the model effects with a vertical bar (|),
a stepwise method keyword, an equals sign (=), and a list of variables (or interactions or
nested effects) for which the method is to be used.

• If a stepwise method is specified, then the TEST subcommand is ignored.

• If a stepwise method is specified, then it begins with the results of the model defined on
the left side of the MODEL subcommand.

• If a stepwise method is specified, but no effects are specified on the left side of the MODEL
subcommand, then the initial model contains the intercept only (if INTERCEPT = IN-
CLUDE) or the initial model is the null model (if INTERCEPT = EXCLUDE).

• The intercept cannot be specified as an effect in the stepwise method option.

• For all stepwise methods, if two effects have tied significance levels, then the removal or
entry is performed on the effect specified first. For example, if the right side of the MOD-
EL subcommand specifies FORWARD A*B A(B), where A*B and A(B) have the same sig-
nificance level less than PIN, then A*B is entered because it is specified first.

The available stepwise method keywords are:

BACKWARD Backward elimination. As a first step, the variables (or interaction effects or
nested effects) specified on BACKWARD are entered into the model together
and are tested for removal one by one. The variable with the largest signif-
icance level of the likelihood-ratio statistic, provided that the value is larger
than POUT, is removed, and the model is re-estimated. This process contin-
ues until no more variables meet the removal criterion, or when the current
model is the same as a previous model.

NOMREG 1069

FORWARD Forward entry. The variables (or interaction effects or nested effects) spec-
ified on FORWARD are tested for entry into the model one by one, based on
the significance level of the likelihood-ratio statistic. The variable with the
smallest significance level less than PIN is entered into the model, and the
model is re-estimated. Model building stops when no more variables meet
entry criteria.

BSTEP Backward stepwise. As a first step, the variables (or interaction effects or
nested effects) specified on BSTEP are entered into the model together and
are tested for removal one by one. The variable with the largest significance
level of the likelihood-ratio statistic, provided that the value is larger than
POUT, is removed, and the model is re-estimated. This process continues un-
til no more variables meet the removal criterion. Next, variables not in the
model are tested for possible entry, based on the significance level of the
likelihood-ratio statistic. The variable with the smallest significance level
less than PIN is entered, and the model is re-estimated. This process repeats,
with variables in the model again evaluated for removal. Model building
stops when no more variables meet removal or entry criteria, or when the
current model is the same as a previous model.

FSTEP Forward stepwise. The variables (or interaction effects or nested effects)
specified on FSTEP are tested for entry into the model one by one, based on
the significance level of the likelihood-ratio statistic. The variable with the
smallest significance level less than PIN is entered into the model, and the
model is re-estimated. Next, variables that are already in the model are test-
ed for removal, based on the significance level of the likelihood-ratio statis-
tic. The variable with the largest probability greater than the specified POUT
value is removed, and the model is re-estimated. Variables in the model are
then evaluated again for removal. Once no more variables satisfy the remov-
al criterion, variables not in the model are evaluated again for entry. Model
building stops when no more variables meet entry or removal criteria, or
when the current model is the same as a previous one.

Examples
NOMREG y BY a b c
/INTERCEPT = INCLUDE
/MODEL = a b c | BACKWARD = a*b a*c b*c a*b*c.

• The initial model contains the intercept and main effects a, b, and c. Backward elimina-
tion is used to select among the two- and three-way interaction effects.

NOMREG y BY a b c
/MODEL = INTERCEPT | FORWARD = a b c.

• The initial model contains the intercept. Forward entry is used to select among the main
effects a, b, and c.

NOMREG y BY a b c
/INTERCEPT = INCLUDE
/MODEL = | FORWARD = a b c.

1070 NOMREG

• The initial model contains the intercept. Forward entry is used to select among the main
effects a, b, and c.

NOMREG y BY a b c
/INTERCEPT = EXCLUDE
/MODEL = | BSTEP = a b c.

• The initial model is the null model. Backward stepwise is used to select among the main
effects a, b, and c.

NOMREG y BY a b c
/MODEL = | FSTEP =.

• This MODEL specification yields a syntax error.

STEPWISE Subcommand

The STEPWISE subcommand gives you control of the statistical criteria when stepwise meth-
ods are used to build a model. This subcommand is ignored if a stepwise method is not spec-
ified on the MODEL subcommand.

RULE(keyword) Rule for entering or removing terms in stepwise methods. The default SIN-
GLE indicates that only one effect can be entered or removed at a time, pro-
vided that the hierarchy requirement is satisfied for all effects in the model.
SFACTOR indicates that only one effect can be entered or removed at a time,
provided that the hierarchy requirement is satisfied for all factor-only effects
in the model. CONTAINMENT indicates that only one effect can be entered or
removed at a time, provided that the containment requirement is satisfied for
all effects in the model. NONE indicates that only one effect can be entered
or removed at a time, where neither the hierarchy nor the containment re-
quirement need be satisfied for any effects in the model.

MINEFFECT(n) Minimum number of effects in final model. The default is 0. The intercept,
if any, is not counted among the effects. This criterion is ignored unless one
of the stepwise methods BACKWARD or BSTEP is specified.

MAXEFFECT(n) Maximum number of effects in final model. The default value is the total
number of effects specified or implied on the NOMREG command. The in-
tercept, if any, is not counted among the effects. This criterion is ignored un-
less one of the stepwise methods FORWARD or FSTEP is specified.

PIN(a) Probability of the likelihood-ratio statistic for variable entry. The default is
0.05. The larger the specified probability, the easier it is for a variable to en-
ter the model. This criterion is ignored unless one of the stepwise methods
FORWARD, BSTEP, or FSTEP is specified.

POUT(a) Probability of the likelihood-ratio statistic for variable removal. The default
is 0.1. The larger the specified probability, the easier it is for a variable to
remain in the model. This criterion is ignored unless one of the stepwise
methods BACKWARD, BSTEP, or FSTEP is specified.

The hierarchy requirement stipulates that, among the effects specified or implied on the
MODEL subcommand, for any effect to be in a model, all lower order effects that are part of

NOMREG 1071

the former effect must also be in the model. For example, if A, X, and A*X are specified,
then for A*X to be in a model, the effects A and X must also be in the model.

The containment requirement stipulates that, among the effects specified or implied on the
MODEL subcommand, for any effect to be in the model, all effects contained in the former
effect must also be in the model. For any two effects F and F’, F is contained in F’ if:

� both effects F and F’ involve the same covariate effect, if any (Note that effects A*X and
A*X*X are not considered to involve the same covariate effect, because the first involves
covariate effect X and the second involves covariate effect X**2.),

� F’ consists of more factors than F, and

� all factors in F also appear in F’.

The following table illustrates how the hierarchy and containment requirements relate to the
RULE options. Each row of the table gives a different set of effects specified on the MODEL
subcommand. The columns correspond to the RULE options SINGLE, SFACTOR, and CON-
TAINMENT. The cells contain the order in which effects must occur in the model. For exam-
ple, unless otherwise noted, all effects numbered 1 must be in the model for any effects
numbered 2 to be in the model.

OUTFILE Subcommand

The OUTFILE subcommand allows you to specify files to which output is written.

Table 1 Hierarchy and containment requirements

Effects SINGLE SFACTOR CONTAINMENT

A, B, A*B 1. A, B
2. A*B

1. A, B
2. A*B

1. A, B
2. A*B

X, X**2, X**3 1. X

2. X**2

3. X**3

Effects can occur in
the model in any
order.

Effects can occur in
the model in any
order.

A, X, X(A) 1. A, X

2. X(A)

Effects can occur in
the model in any
order.

1. X

2. X(A)

Effect A can occur in
the model in any
order.

A, X, X**2(A) 1. A, X

2. X**2(A)

Effects can occur in
the model in any
order.

Effects can occur in
the model in any
order.

1072 NOMREG

• Only one OUTFILE subcommand is allowed. If you specify more than one, only the last
one is executed.

• You must specify at least one keyword and a valid filename in parentheses. There is no
default.

• MODEL cannot be used if split file processing is on (SPLIT FILE command) or if more than
one dependent (DEPENDENT subcommand)variable is specified.

MODEL(filename) Write parameter estimates and their covariances to an XML file.
Specify the filename in full. NOMREG does not supply an extension.
SmartScore and future releases of WhatIf? will be able to use this file.

PARAMETER(filename) Write parameter estimates only to an XML file. Specify the filename
in full. NOMREG does not supply an extension. SmartScore and future
releases of WhatIf? will be able to use this file.

PRINT Subcommand

The PRINT subcommand displays optional output. If no PRINT subcommand is specified,
default output includes a factor information table.

CELLPROB Observed proportion, expected probability, and the residual for each cova-
riate pattern and each response category.

CLASSTABLE Classification table. The square table of frequencies of observed response
categories versus the predicted response categories. Each case is classified
into the category with the highest predicted probability.

CORB Asymptotic correlation matrix of the parameter estimates.

COVB Asymptotic covariance matrix of the parameter estimates.

FIT Goodness-of-fit statistics. The change in chi-square statistics with respect to
a model with intercept terms only (or to a null model when INTERCEPT=EX-
CLUDE). The table contains the Pearson chi-square and the likelihood-ratio
chi-square statistics. The statistics are computed based on the subpopulation
classification specified on the SUBPOP subcommand or the default classifi-
cation.

HISTORY(n) Iteration history. The table contains log-likelihood function value and pa-
rameter estimates at every nth iteration beginning with the 0th iteration (the
initial estimates). The default is to print every iteration (n = 1). The last iter-
ation is always printed if HISTORY is specified, regardless of the value of n.

KERNEL Kernel of the log-likelihood. Displays the value of the kernel of the –2 log-
likelihood. The default is to display the full –2 log-likelihood. Note that this
keyword has no effect unless the MFI or LRT keywords are specified.

LRT Likelihood-ratio tests. The table contains the likelihood-ratio test statistics
for the model and model partial effects. If LRT is not specified, just the model
test statistic is printed.

NOMREG 1073

PARAMETER Parameter estimates.

SUMMARY Model summary. Cox and Snell’s, Nagelkerke’s, and McFadden’s R2 statis-
tics.

CPS Case processing summary. This table contains information about the speci-
fied categorical variables. Displayed by default.

STEP Step summary. This table summarizes the effects entered or removed at each
step in a stepwise method. Displayed by default if a stepwise method is spec-
ified. This keyword is ignored if no stepwise method is specified.

MFI Model fitting information. This table compares the fitted and intercept-only
or null models. Displayed by default.

NONE No statistics are displayed. This option overrides all other specifications on
the PRINT subcommand.

SAVE Subcommand

The SAVE subcommand puts casewise post-estimation statistics back into the active file.
• The new names must be valid SPSS variable names, and not currently used in the working

data file.

• The rootname must be a valid SPSS variable name.

• The rootname can be followed by the number of predicted probabilities saved. The
number is a positive integer. For example, if the integer is 5, then the first five predicted
probabilities across all split files (if applicable) are saved. The default is 25.

• The new variables are saved into the active file in the order the keywords are specified on
the subcommand.

ACPROB(newname) Estimated probability of classifying a factor / covariate pattern into
the actual category.

ESTPROB(rootname:n) Estimated probabilities of classifying a factor / covariate pattern into
the response categories. There are as many number of probabilities as
the number of response category. The predicted probabilities of the
first n response categories will be saved. The default value for n is 25.
To specify n without a rootname, enter a colon before the number.

PCPROB(newname) Estimated probability of classifying a factor / covariate pattern into
the predicted category. This probability is also the maximum of the es-
timated probabilities of the factor / covariate pattern.

PREDCAT(newname) The response category which has the maximum expected probability
for a factor / covariate pattern.

1074 NOMREG

SCALE Subcommand

The SCALE subcommand specifies the dispersion scaling value. Model estimation is not
affected by this scaling value. Only the asymptotic covariance matrix of the parameter esti-
mates is affected.

N A positive number corresponding to the amount of overdispersion or
underdispersion. The default scaling value is 1, which corresponds to
no overdispersion or underdispersion.

DEVIANCE Estimates the scaling value by using the deviance function statistic.

PEARSON Estimates the scaling value by using the Pearson chi-square statistic.

SUBPOP Subcommand

The SUBPOP subcommand allows you to define the subpopulation classification used in
computing the goodness-of-fit statistics.

• A variable list is expected if the SUBPOP subcommand is specified. The variables in the list
must be a subset of the combined list of factors and covariates specified on the command
line.

• Variables specified or implied on the MODEL subcommand must be a subset of the variables
specified or implied on the SUBPOP subcommand.

• If the SUBPOP subcommand is omitted, the default classification is based on all of the
factors and the covariates specified.

• Missing values are deleted listwise on the subpopulation level.

Example
NOMREG
 movie BY gender date WITH age
 /CRITERIA = CIN(95) DELTA(0) MXITER(100) MXSTEP(5) LCONVERGE(0)
 PCONVERGE(1.0E-6) SINGULAR(1.0E-8)
 /MODEL = gender
 /SUBPOP = gender date
 /INTERCEPT = EXCLUDE .

• Though the model only consists of gender, the SUBPOP subcommand specifies that
goodness-of-fit statistics should be computed based on both gender and date.

TEST Subcommand

The TEST subcommand allows you to customize your hypothesis tests by directly specifying
null hypotheses as linear combinations of parameters.

• TEST is offered only through syntax.

• Multiple TEST subcommands are allowed. Each is handled independently.

NOMREG 1075

• The basic format for the TEST subcommand is an optional list of values enclosed in
parentheses, an optional label in quotes, an effect name or the keyword ALL, and a list of
values.

• The value list preceding the first effect or the keyword ALL are the constants to which the
linear combinations are equated under the null hypotheses. If this value list is omitted, the
constants are assumed to be all zeros.

• The label is a string with a maximum length of 255 characters (or 127 double-byte
characters). Only one label per linear combination can be specified.

• When ALL is specified, only a list of values can follow. The number of values must equal
the number of parameters (including the redundant ones) in the model.

• When effects are specified, only valid effects appearing or implied on the MODEL
subcommand can be named. The number of values following an effect name must equal
the number of parameters (including the redundant ones) corresponding to that effect. For
example, if the effect A*B takes up six parameters, then exactly six values must follow
A*B. To specify the coefficient for the intercept, use the keyword INTERCEPT. Only one
value is expected to follow INTERCEPT.

• When multiple linear combinations are specified within the same TEST subcommand, use
semicolons to separate each hypothesis.

• The linear combinations are first tested separately for each logit and then simultaneously
tested for all of the logits.

• A number can be specified as a fraction with a positive denominator. For example, 1/3 or
–1/3 are valid, but 1/–3 is invalid.

• Effects appearing or implied on the MODEL subcommand but not specified on the TEST
are assumed to take the value 0 for all of their parameters.

Example
NOMREG
 movie BY gender date
 /CRITERIA = CIN(95) DELTA(0) MXITER(100) MXSTEP(5) LCONVERGE(0)
 PCONVERGE(1.0E-6) SINGULAR(1.0E-8)
 /INTERCEPT = EXCLUDE
 /PRINT = CELLPROB CLASSTABLE FIT CORB COVB HISTORY(1) PARAMETER
 SUMMARY LRT
 /TEST (0 0) = ALL 1 0 0 0;
 ALL 0 1 0 0 .

• TEST specifies two separate tests: one in which the coefficient corresponding to the first
category for gender is tested for equality with zero, and one in which the coefficient
corresponding to the second category for gender is tested for equality with zero.

1076

NONPAR CORR

NONPAR CORR [VARIABLES=] varlist [WITH varlist] [/varlist...]

 [/PRINT={TWOTAIL**} {SIG**} {SPEARMAN**}]
 {ONETAIL } {NOSIG} {KENDALL }
 {BOTH }

 [/SAMPLE]

 [/MISSING=[{PAIRWISE**} [INCLUDE]]
 {LISTWISE }

 [/MATRIX=OUT({* })]
 {file}

**Default if the subcommand is omitted.

Example
NONPAR CORR VARIABLES=PRESTIGE SPPRES PAPRES16 DEGREE PADEG MADEG.

Overview

NONPAR CORR computes two rank-order correlation coefficients, Spearman’s rho and
Kendall’s tau-b, with their significance levels. You can obtain either or both coefficients.
NONPAR CORR automatically computes the ranks and stores the cases in memory. There-
fore, memory requirements are directly proportional to the number of cases being analyzed.

Options

Coefficients and Significance Levels. By default, NONPAR CORR computes Spearman coeffi-
cients and displays the two-tailed significance level. You can request a one-tailed test, and
you can display the significance level for each coefficient as an annotation using the PRINT
subcommand.

Random Sampling. You can request a random sample of cases using the SAMPLE subcom-
mand when there is not enough space to store all the cases.

Matrix Output. You can write matrix materials to an SPSS-format data file using the MATRIX
subcommand. The matrix materials include the number of cases used to compute each coef-
ficient and the Spearman or Kendall coefficients for each variable. These materials can be
read by other procedures.

Basic Specification

The basic specification is VARIABLES and a list of numeric variables. The actual keyword
VARIABLES can be omitted. By default, Spearman correlation coefficients are calculated.

NONPAR CORR 1077

Subcommand Order

• VARIABLES must be specified first.
• The remaining subcommands can be used in any order.

Operations

• NONPAR CORR produces one or more matrices of correlation coefficients. For each coeffi-
cient, NONPAR CORR displays the number of cases used and the significance level.

• The number of valid cases is always displayed. Depending on the specification on the
MISSING subcommand, it can be displayed for each pair or in a single annotation.

• If all cases have a missing value for a given pair of variables, or if they all have the same
value for a variable, the coefficient cannot be computed. If a correlation cannot be
computed, NONPAR CORR displays a decimal point.

• If both Spearman and Kendall coefficients are requested and MATRIX is used to write matrix
materials to an SPSS-format matrix data file, only Spearman’s coefficient will be written
with the matrix materials.

Limitations

• Maximum 25 variable lists.

• Maximum 100 variables total per NONPAR CORR command.

Example

NONPAR CORR VARIABLES=PRESTIGE SPPRES PAPRES16 DEGREE PADEG MADEG.

• By default, Spearman correlation coefficients are calculated. The number of cases upon
which the correlations are based and the two-tailed significance level are displayed for each
correlation.

VARIABLES Subcommand

VARIABLES specifies the variable list. The keyword VARIABLES is optional.

• All variables must be numeric.

• If keyword WITH is not used, NONPAR CORR displays the correlations of each variable with
every other variable in the list.

• To obtain a rectangular matrix, specify two variable lists separated by keyword WITH.
NONPAR CORR writes a rectangular matrix of variables in the first list correlated with vari-
ables in the second list.

• Keyword WITH cannot be used when the MATRIX subcommand is used.

• You can request more than one analysis. Use a slash to separate the specifications for
each analysis.

1078 NONPAR CORR

Example
NONPAR CORR VARS=PRESTIGE SPPRES PAPRES16 WITH DEGREE PADEG MADEG.

• The three variables listed before WITH define the rows; the three variables listed after WITH
define the columns of the correlation matrix.

• Spearman’s rho is displayed by default.

Example
NONPAR CORR VARIABLES=SPPRES PAPRES16 PRESTIGE

/SATCITY WITH SATHOBBY SATFAM.

• NONPAR CORR produces two Correlations tables.

• By default, Spearman’s rho is displayed.

PRINT Subcommand

By default, NONPAR CORR displays Spearman correlation coefficients. The significance
level(s) are displayed below the coefficients. The significance level is based on a two-tailed
test. Use PRINT to change these defaults.
• The Spearman and Kendall coefficients are both based on ranks.

SPEARMAN Spearman’s rho. Only Spearman coefficients are displayed. This is the default.

KENDALL Kendall’s tau-b. Only Kendall coefficients are displayed.

BOTH Kendall and Spearman coefficients. Both coefficients are displayed. If
MATRIX is used to write the correlation matrix to a matrix data file, only
Spearman coefficients are written with the matrix materials.

SIG Display the significance level. This is the default.

NOSIG Display the significance level in an annotation.

TWOTAIL Two-tailed test of significance. This test is appropriate when the direction of
the relationship cannot be determined in advance, as is often the case in
exploratory data analysis. This is the default.

ONETAIL One-tailed test of significance. This test is appropriate when the direction of
the relationship between a pair of variables can be specified in advance of
the analysis.

SAMPLE Subcommand

NONPAR CORR must store cases in memory to build matrices. SAMPLE selects a random
sample of cases when computer resources are insufficient to store all the cases. To request a
random sample, simply specify the subcommand. SAMPLE has no additional specifications.

NONPAR CORR 1079

MISSING Subcommand

MISSING controls missing-value treatments.
• PAIRWISE and LISTWISE are alternatives. You can specify INCLUDE with either PAIRWISE

or LISTWISE.

PAIRWISE Exclude missing values pairwise. Cases with a missing value for one or both
of a pair of variables for a specific correlation coefficient are excluded from
the computation of that coefficient. This allows the maximum information
available to be used in every calculation. This also results in a set of coeffi-
cients based on a varying number of cases. The number is displayed for each
pair. This is the default.

LISTWISE Exclude missing values listwise. Cases with a missing value for any variable
named in a list are excluded from the computation of all coefficients in the
Correlations table. The number of cases used is displayed in a single annota-
tion. Each variable list on a command is evaluated separately. Thus, a case
missing for one matrix might be used in another matrix. This option decreases
the amount of memory required and significantly decreases computational
time.

INCLUDE Include user-missing values. User-missing values are treated as valid values.

MATRIX Subcommand

MATRIX writes matrix materials to a matrix data file. The matrix materials always include the
number of cases used to compute each coefficient, and either the Spearman or the Kendall
correlation coefficient for each variable, whichever is requested. See “Format of the Matrix
Data File” on page 1080 for a description of the file.

• You cannot write both Spearman’s and Kendall’s coefficients to the same matrix data file.
To obtain both Spearman’s and Kendall’s coefficients in matrix format, specify separate
NONPAR CORR commands for each coefficient and define different matrix data files for
each command.

• If PRINT=BOTH is in effect, NONPAR CORR displays a matrix in the listing file for both
coefficients but writes only the Spearman coefficients to the matrix data file.

• NONPAR CORR cannot write matrix materials for rectangular matrices (variable lists
containing keyword WITH). If more than one variable list is specified, only the last variable
list that does not use keyword WITH is written to the matrix data file.

• The specification on MATRIX is keyword OUT and the name of the matrix file in parentheses.

• If you want to use a correlation matrix written by NONPAR CORR in another procedure,
change the ROWTYPE_ value RHO or TAUB to CORR using the RECODE command.

• Any documents contained in the working data file are not transferred to the matrix file.

OUT (filename) Write a matrix data file. Specify either a file or an asterisk, enclosed in paren-
theses. If you specify a file, the file is stored on disk and can be retrieved at
any time. If you specify an asterisk (*), the matrix data file replaces the
working file but is not stored on disk unless you use SAVE or XSAVE.

1080 NONPAR CORR

Format of the Matrix Data File

• The matrix data file has two special variables created by the program: ROWTYPE_ and
VARNAME_.

• Variable ROWTYPE_ is a short string variable with values N and RHO for Spearman’s
correlation coefficient. If you specify Kendall’s coefficient, the values are N and TAUB.

• VARNAME_ is a short string variable whose values are the names of the variables used to
form the correlation matrix. When ROWTYPE_ is RHO (or TAUB), VARNAME_ gives the
variable associated with that row of the correlation matrix.

• The remaining variables in the file are the variables used to form the correlation matrix.

Split Files

• When split-file processing is in effect, the first variables in the matrix data file are the split
variables, followed by ROWTYPE_, VARNAME_, and the variables used to form the corre-
lation matrix.

• A full set of matrix materials is written for each split-file group defined by the split variables.
• A split variable cannot have the same name as any other variable written to the matrix data

file.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by a procedure.

Missing Values

• With PAIRWISE treatment of missing values (the default), the matrix of N’s used to compute
each coefficient is included with the matrix materials.

• With LISTWISE or INCLUDE treatments, a single N used to calculate all coefficients is
included with the matrix materials.

Example

GET FILE GSS80 /KEEP PRESTIGE SPPRES PAPRES16 DEGREE PADEG MADEG.
NONPAR CORR VARIABLES=PRESTIGE TO MADEG

/MATRIX OUT(NPMAT).

• NONPAR CORR reads data from file GSS80 and writes one set of correlation matrix mate-
rials to the file NPMAT.

• The working data file is still GSS80. Subsequent commands are executed on file GSS80.

NONPAR CORR 1081

Example

GET FILE GSS80 /KEEP PRESTIGE SPPRES PAPRES16 DEGREE PADEG MADEG.
NONPAR CORR VARIABLES=PRESTIGE TO MADEG

/MATRIX OUT(*).
LIST.
DISPLAY DICTIONARY.

• NONPAR CORR writes the same matrix as in the example above. However, the matrix data
file replaces the working file. The LIST and DISPLAY commands are executed on the matrix
file, not on the original working file GSS80.

Example

NONPAR CORR VARIABLES=PRESTIGE SPPRES PAPRES16 DEGREE PADEG MADEG
/PRESTIGE TO DEGREE /PRESTIGE WITH DEGREE

/MATRIX OUT(NPMAT).

• Only the matrix for PRESTIGE to DEGREE is written to the matrix data file because it is the
last variable list that does not use keyword WITH.

1082

NPAR TESTS

NPAR TESTS [CHISQUARE=varlist[(lo,hi)]/] [/EXPECTED={EQUAL }]
 {f1,f2,...fn}

 [/K-S({UNIFORM [min,max] })=varlist]
 {NORMAL [mean,stddev]}
 {POISSON [mean] }
 {EXPONENTIAL [mean] }

 [/RUNS({MEAN })=varlist]
 {MEDIAN}
 {MODE }
 {value }

 [/BINOMIAL[({.5})]=varlist[({value1,value2})]]
 { p} {value }

 [/MCNEMAR=varlist [WITH varlist [(PAIRED)]]]

 [/SIGN=varlist [WITH varlist [(PAIRED)]]]

 [/WILCOXON=varlist [WITH varlist [(PAIRED)]]]

|/MH=varlist [WITH varlist [(PAIRED)]]]††

 [/COCHRAN=varlist]

 [/FRIEDMAN=varlist]

 [/KENDALL=varlist]

 [/M-W=varlist BY var (value1,value2)]

 [/K-S=varlist BY var (value1,value2)]

 [/W-W=varlist BY var (value1,value2)]

 [/MOSES[(n)]=varlist BY var (value1,value2)]

 [/K-W=varlist BY var (value1,value2)]

 [/J-T=varlist BY var (value1, value2)]††

 [/MEDIAN[(value)]=varlist BY var (value1,value2)]

 [/MISSING=[{ANALYSIS**}] [INCLUDE]]
 {LISTWISE }

 [/SAMPLE]

 [/STATISTICS=[DESCRIPTIVES] [QUARTILES] [ALL]]

[/METHOD={MC [CIN({99.0 })] [SAMPLES({10000})] }]††

 {value} {value}
 {EXACT [TIMER({5 })] }
 {value}

**Default if the subcommand is omitted.
††Available only if the Exact Tests option is installed.

NPAR TESTS 1083

Example
NPAR TESTS K-S(UNIFORM)=V1 /K-S(NORMAL,0,1)=V2.

Overview

NPAR TESTS is a collection of nonparametric tests. These tests make minimal assumptions
about the underlying distribution of the data and are described in Siegel (1956). In addition to
the nonparametric tests available in NPAR TESTS, the k-sample chi-square and Fisher’s exact
test are available in procedure CROSSTABS.

The tests available in NPAR TESTS can be grouped into three broad categories based on
how the data are organized: one-sample tests, related-samples tests, and independent-
samples tests. A one-sample test analyzes one variable. A test for related samples compares
two or more variables for the same set of cases. An independent-samples test analyzes one
variable grouped by categories of another variable.

The one-sample tests available in procedure NPAR TESTS are:

• BINOMIAL
• CHISQUARE

• K-S (Kolmogorov-Smirnov)
• RUNS

Tests for two related samples are:

• MCNEMAR

• SIGN
• WILCOXON

Tests for k related samples are:

• COCHRAN

• FRIEDMAN
• KENDALL

Tests for two independent samples are:

• M-W (Mann-Whitney)

• K-S (Kolmogorov-Smirnov)
• W-W (Wald-Wolfowitz)
• MOSES

Tests for k independent samples are:

• K-W (Kruskal-Wallis)
• MEDIAN

Tests are described below in alphabetical order.

1084 NPAR TESTS

Options

Statistical Display. In addition to the tests, you can request univariate statistics, quartiles, and
counts for all variables specified on the command. You can also control the pairing of
variables in tests for two related samples.

Random Sampling. NPAR TESTS must store cases in memory when computing tests that use
ranks. You can use random sampling when there is not enough space to store all cases.

Basic Specification

The basic specification is a single test subcommand and a list of variables to be tested. Some
tests require additional specifications. CHISQUARE has an optional subcommand.

Subcommand Order

Subcommands can be used in any order.

Syntax Rules

• The STATISTICS, SAMPLE, and MISSING subcommands are optional. Each can be speci-
fied only once per NPAR TESTS command.

• You can request any or all tests, and you can specify a test subcommand more than once
on a single NPAR TESTS command.

• If you specify a variable more than once on a test subcommand, only the first is used.

• Keyword ALL in any variable list refers to all user-defined variables in the working data
file.

• Keyword WITH controls pairing of variables in two-related-samples tests.

• Keyword BY introduces the grouping variable in two- and k-independent-samples tests.
• Keyword PAIRED can be used with keyword WITH on the MCNEMAR, SIGN, and WILCOXON

subcommands to obtain sequential pairing of variables for two related samples.

Operations

• If a string variable is specified on any subcommand, NPAR TESTS will stop executing.

• When ALL is used, requests for tests of variables with themselves are ignored and a
warning is displayed.

Limitations

• Maximum 100 subcommands.

• Maximum 500 variables total per NPAR TESTS command.

• Maximum 200 values for subcommand CHISQUARE.

NPAR TESTS 1085

BINOMIAL Subcommand

NPAR TESTS BINOMIAL [({.5})]=varlist[({value,value})]
 {p } {value }

BINOMIAL tests whether the observed distribution of a dichotomous variable is the same as that
expected from a specified binomial distribution. By default, each variable named is assumed
to have only two values, and the distribution of each variable named is compared to a binomial
distribution with p (the proportion of cases expected in the first category) equal to 0.5. The
default output includes the number of valid cases in each group, the test proportion, and the
two-tailed probability of the observed proportion.

Syntax

• The minimum specification is a list of variables to be tested.

• To change the default 0.5 test proportion, specify a value in parentheses immediately after
keyword BINOMIAL.

• A single value in parentheses following the variable list is used as a cutting point. Cases
with values equal to or less than the cutting point form the first category; the remaining
cases form the second.

• If two values appear in parentheses after the variable list, cases with values equal to the
first value form the first category, and cases with values equal to the second value form
the second category.

• If no values are specified, the variables must be dichotomous.

Operations

• The proportion observed in the first category is compared to the test proportion. The
probability of the observed proportion occurring given the test proportion and a binomial
distribution is then computed. A test statistic is calculated for each variable specified.

• If the test proportion is the default (0.5), a two-tailed probability is displayed. For any
other test proportion, a one-tailed probability is displayed. The direction of the one-tailed
test depends on the observed proportion in the first category. If the observed proportion
is more than the test proportion, the significance of observing that many or more in the
first category is reported. If the observed proportion is less than or equal to the test propor-
tion, the significance of observing that many or fewer in the first category is reported. In
other words, the test is always done in the observed direction.

Example

NPAR TESTS BINOMIAL(.667)=V1(0,1).

• NPAR TESTS displays the Binomial Test table showing the number of cases, observed
proportion, test proportion (0.667), and the one-tailed significance for each category.

1086 NPAR TESTS

• If more than 0.667 of the cases have value 0 for V1, BINOMIAL gives the probability of
observing that many or more values of 0 in a binomial distribution with probability 0.667.
If fewer than 0.667 of the cases are 0, the test will be of observing that many or fewer.

CHISQUARE Subcommand

NPAR TESTS CHISQUARE=varlist [(lo,hi)] [/EXPECTED={EQUAL** }]
 {f1,f2,... fn}

The CHISQUARE (alias CHI-SQUARE) one-sample test computes a chi-square statistic based on
the differences between the observed and expected frequencies of categories of a variable. By
default, equal frequencies are expected in each category. The output includes the frequency
distribution, expected frequencies, residuals, chi-square, degrees of freedom, and probability.

Syntax

• The minimum specification is a list of variables to be tested. Optionally, you can specify
a value range in parentheses following the variable list. You can also specify expected
proportions with the EXPECTED subcommand.

• If you use the EXPECTED subcommand to specify unequal expected frequencies, you
must specify a value greater than 0 for each observed category of the variable. The
expected frequencies are specified in ascending order of category value. You can use the
notation n*f to indicate that frequency f is expected for n consecutive categories.

• Specifying keyword EQUAL on the EXPECTED subcommand has the same effect as omit-
ting the EXPECTED subcommand.

• EXPECTED applies to all variables specified on the CHISQUARE subcommand. Use
multiple CHISQUARE and EXPECTED subcommands to specify different expected propor-
tions for variables.

Operations

• If no range is specified for the variables to be tested, a separate Chi-Square Frequency
table is produced for each variable. Each distinct value defines a category.

• If a range is specified, integer-valued categories are established for each value within the
range. Noninteger values are truncated before classification. Cases with values outside
the specified range are excluded. One combined Chi-Square Frequency table is produced
for all specified variables.

• Expected values are interpreted as proportions, not absolute values. Values are summed,
and each value is divided by the total to calculate the proportion of cases expected in the
corresponding category.

• A test statistic is calculated for each variable specified.

Example

NPAR TESTS CHISQUARE=V1 (1,5) /EXPECTED= 12, 3*16, 18.

NPAR TESTS 1087

• This example requests the chi-square test for values 1 through 5 of variable V1.

• The observed frequencies for variable V1 are compared with the hypothetical distribution
of 12/78 occurrences of value 1; 16/78 occurrences each of values 2, 3, and 4; and 18/78
occurrences of value 5.

COCHRAN Subcommand

NPAR TESTS COCHRAN=varlist

COCHRAN calculates Cochran’s Q, which tests whether the distribution of values is the same
for k related dichotomous variables. The output shows the frequency distribution for each
variable in the Cochran Frequencies table and the number of cases, Cochran’s Q, degrees of
freedom, and probability in the Test Statistics table.

Syntax

• The minimum specification is a list of two variables.

• The variables must be dichotomous and must be coded with the same two values.

Operations

• A k × 2 contingency table (variables by categories) is constructed for dichotomous
variables and the proportions for each variable are computed. A single test comparing all
variables is calculated.

• Cochran’s Q statistic has approximately a chi-square distribution.

Example

NPAR TESTS COCHRAN=RV1 TO RV3.

• This example tests whether the distribution of values 0 and 1 for RV1, RV2, and RV3 is the
same.

FRIEDMAN Subcommand

NPAR TESTS FRIEDMAN=varlist

FRIEDMAN tests whether k related samples have been drawn from the same population. The
output shows the mean rank for each variable in the Friedman Ranks table and the number of
valid cases, chi-square, degrees of freedom, and probability in the Test Statistics table.

Syntax

• The minimum specification is a list of two variables.

• Variables should be at least at the ordinal level of measurement.

1088 NPAR TESTS

Operations

• The values of k variables are ranked from 1 to k for each case, and the mean rank is calcu-
lated for each variable over all cases.

• The test statistic has approximately a chi-square distribution. A single test statistic
comparing all variables is calculated.

Example

NPAR TESTS FRIEDMAN=V1 V2 V3
/STATISTICS=DESCRIPTIVES.

• This example tests variables V1, V2, and V3, and requests univariate statistics for all three.

J-T Subcommand

NPAR TESTS /J-T=varlist BY variable(value1,value2)

J-T (alias JONCKHEERE-TERPSTRA) performs the Jonckheere-Terpstra test, which tests
whether k independent samples defined by a grouping variable are from the same population.
This test is particularly powerful when the k populations have a natural ordering. The output
shows the number of levels in the grouping variable, the total number of cases, observed,
standardized, mean, and standard deviation of the test statistic, the two-tailed asymptotic
significance, and, if a /METHOD subcommand is specified, one-tailed and two-tailed exact or
Monte Carlo probabilities. This subcommand is available only if the SPSS Exact Tests option
is installed.

Syntax

• The minimum specification is a test variable, the keyword BY, a grouping variable, and a
pair of values in parentheses.

• Every value in the range defined by the pair of values for the grouping variable forms a
group.

• If the /METHOD subcommand is specified, and the number of populations, k, is greater
than 5, the p value is estimated using the Monte Carlo sampling method. The exact p value
is not available when k exceeds 5.

Operations

• Cases from the k groups are ranked in a single series, and the rank sum for each group is
computed. A test statistic is calculated for each variable specified before BY.

• The Jonckheere-Terpstra statistic has approximately a normal distribution.

• Cases with values other than those in the range specified for the grouping variable are
excluded.

• The direction of a one-tailed inference is indicated by the sign of the standardized test statistic.

NPAR TESTS 1089

Example
NPAR TESTS /J-T=V1 BY V2(0,4)
 /METHOD=EXACT.

• This example performs the Jonckheere-Terpstra test for groups defined by values 0
through 4 of V2. The exact p values are calculated.

K-S Subcommand (One-Sample)

NPAR TESTS K-S({NORMAL [mean,stddev]})=varlist
 {POISSON [mean] }

 {UNIFORM [min,max] }
 {EXPONENTIAL [mean] }

The K-S (alias KOLMOGOROV-SMIRNOV) one-sample test compares the cumulative
distribution function for a variable with a uniform, normal, Poisson, or exponential
distribution, and it tests whether the distributions are homogeneous. The parameters of the test
distribution can be specified; the defaults are the observed parameters. The output shows the
number of valid cases, parameters of the test distribution, most-extreme absolute, positive, and
negative differences, Kolmogorov-Smirnov Z, and two-tailed probability for each variable.

Syntax

The minimum specification is a distribution keyword and a list of variables. The distribution
keywords are NORMAL, POISSON, EXPONENTIAL, and UNIFORM.

• The distribution keyword and its optional parameters must be enclosed within parentheses.

• The distribution keyword must be separated from its parameters by blanks or commas.

NORMAL [mean, stdev] Normal distribution. The default parameters are the observed mean
and standard deviation.

POISSON [mean] Poisson distribution. The default parameter is the observed mean.

UNIFORM [min,max] Uniform distribution. The default parameters are the observed mini-
mum and maximum values.

EXPONENTIAL [mean] Exponential distribution. The default parameter is the observed mean.

Operations

• The Kolmogorov-Smirnov Z is computed from the largest difference in absolute value
between the observed and test distribution functions.

• The K-S probability levels assume that the test distribution is specified entirely in
advance. The distribution of the test statistic and resulting probabilities are different
when the parameters of the test distribution are estimated from the sample. No correction
is made.

• For a mean of 100,000 or larger, a normal approximation to the Poisson distribution is
used.

1090 NPAR TESTS

• A test statistic is calculated for each variable specified.

Example

NPAR TESTS K-S(UNIFORM)=V1 /K-S(NORMAL,0,1)=V2.

• The first K-S subcommand compares the distribution of V1 with a uniform distribution
that has the same range as V1.

• The second K-S subcommand compares the distribution of V2 with a normal distribution
that has a mean of 0 and a standard deviation of 1.

K-S Subcommand (Two-Sample)

NPAR TESTS K-S=varlist BY variable(value1,value2)

K-S (alias KOLMOGOROV-SMIRNOV) tests whether the distribution of a variable is the same
in two independent samples defined by a grouping variable. The test is sensitive to any
difference in median, dispersion, skewness, and so forth, between the two distributions. The
output shows the valid number of cases in each group in the Frequency table and the largest
absolute, positive, and negative differences between the two groups, the Kolmogorov-
Smirnov Z, and the two-tailed probability for each variable in the Test Statistics table.

Syntax

• The minimum specification is a test variable, the keyword BY, a grouping variable, and a
pair of values in parentheses.

• The test variable should be at least at the ordinal level of measurement.

• Cases with the first value form one group and cases with the second value form the other.
The order in which values are specified determines which difference is the largest posi-
tive and which is the largest negative.

Operations

• The observed cumulative distributions for both groups are computed, as are the maximum
positive, negative, and absolute differences. A test statistic is calculated for each variable
named before BY.

• Cases with values other than those specified for the grouping variable are excluded.

Example

NPAR TESTS K-S=V1 V2 BY V3(0,1).

• This example specifies two tests. The first compares the distribution of V1 for cases with
value 0 for V3 with the distribution of V1 for cases with value 1 for V3.

• A parallel test is calculated for V2.

NPAR TESTS 1091

K-W Subcommand

NPAR TESTS K-W=varlist BY variable(value1,value2)

K-W (alias KRUSKAL-WALLIS) tests whether k independent samples defined by a grouping
variable are from the same population. The output shows the number of valid cases and the
mean rank of the variable in each group in the Ranks table and the chi-square, degrees of
freedom, and probability in the Test Statistics table.

Syntax

• The minimum specification is a test variable, the keyword BY, a grouping variable, and a
pair of values in parentheses.

• Every value in the range defined by the pair of values for the grouping variable forms a
group.

Operations

• Cases from the k groups are ranked in a single series, and the rank sum for each group is
computed. A test statistic is calculated for each variable specified before BY.

• Kruskal-Wallis H has approximately a chi-square distribution.

• Cases with values other than those in the range specified for the grouping variable are
excluded.

Example

NPAR TESTS K-W=V1 BY V2(0,4).

• This example tests V1 for groups defined by values 0 through 4 of V2.

KENDALL Subcommand

NPAR TESTS KENDALL=varlist

KENDALL tests whether k related samples are from the same population. W is a measure of
agreement among judges or raters where each case is one judge’s rating of several items
(variables). The output includes the mean rank for each variable in the Ranks table and the
valid number of cases, Kendall’s W, chi-square, degrees of freedom, and probability in the Test
Statistics table.

Syntax

The minimum specification is a list of two variables.

1092 NPAR TESTS

Operations

• The values of the k variables are ranked from 1 to k for each case, and the mean rank is
calculated for each variable over all cases. Kendall’s W and a corresponding chi-square
statistic are calculated, correcting for ties. In addition, a single test statistic is calculated
for all variables.

• W ranges between 0 (no agreement) and 1 (complete agreement).

Example

DATA LIST /V1 TO V5 1-10.
BEGIN DATA
2 5 4 5 1
3 3 4 5 3
3 4 4 6 2
2 4 3 6 2
END DATA.
NPAR TESTS KENDALL=ALL.

• This example tests four judges (cases) on five items (variables V1 through V5).

M-W Subcommand

NPAR TESTS M-W=varlist BY variable(value1,value2)

M-W (alias MANN-WHITNEY) tests whether two independent samples defined by a grouping
variable are from the same population. The test statistic uses the rank of each case to test
whether the groups are drawn from the same population. The output shows the number of
valid cases of each group, the mean rank of the variable within each group and the sum of
ranks in the Ranks table and the Mann-Whitney U, Wilcoxon W (the rank sum of the smaller
group), Z statistic, and probability in the Test Statistics table.

Syntax

• The minimum specification is a test variable, the keyword BY, a grouping variable, and a
pair of values in parentheses.

• Cases with the first value form one group and cases with the second value form the other.
The order in which the values are specified is unimportant.

Operations

• Cases are ranked in order of increasing size, and test statistic U (the number of times a
score from group 1 precedes a score from group 2) is computed.

• An exact significance level is computed if there are 40 or fewer cases. For more than 40
cases, U is transformed into a normally distributed Z statistic, and a normal approxima-
tion p value is computed.

• A test statistic is calculated for each variable named before BY.

• Cases with values other than those specified for the grouping variable are excluded.

NPAR TESTS 1093

Example

NPAR TESTS M-W=V1 BY V2(1,2).

• This example tests V1 based on the two groups defined by values 1 and 2 of V2.

MCNEMAR Subcommand

NPAR TESTS MCNEMAR=varlist [WITH varlist [(PAIRED)]]

MCNEMAR tests whether combinations of values between two dichotomous variables are
equally likely. The output includes a Crosstabulation table for each pair and a Test Statistics
table for all pairs showing the number of valid cases, chi-square, and probability for each pair.

Syntax

• The minimum specification is a list of two variables. Variables must be dichotomous and
must have the same two values.

• If keyword WITH is not specified, each variable is paired with every other variable in the
list.

• If WITH is specified, each variable before WITH is paired with each variable after WITH. If
PAIRED is also specified, the first variable before WITH is paired with the first variable
after WITH, the second variable before WITH with the second variable after WITH, and so
on. PAIRED cannot be specified without WITH.

• With PAIRED, the number of variables specified before and after WITH must be the same.
PAIRED must be specified in parentheses after the second variable list.

Operations

• In computing the test statistics, only combinations for which the values for the two variables
are different are considered.

• If fewer than 25 cases change values from the first variable to the second variable, the
binomial distribution is used to compute the probability.

Example

NPAR TESTS MCNEMAR=V1 V2 V3.

• This example performs the MCNEMAR test on variable pairs V1 and V2, V1 and V3, and V2
and V3.

1094 NPAR TESTS

MEDIAN Subcommand

NPAR TESTS MEDIAN [(value)]=varlist BY variable(value1,value2)

MEDIAN determines if k independent samples are drawn from populations with the same
median. The independent samples are defined by a grouping variable. For each variable, the
output shows a table of the number of cases greater than and less than or equal to the median
in each category in the Frequency table and the number of valid cases, the median, chi-square,
degrees of freedom, and probability in the Test Statistics table.

Syntax

• The minimum specification is a single test variable, the keyword BY, a grouping variable,
and two values in parentheses.

• If the first grouping value is less than the second, every value in the range defined by the
pair of values forms a group and a k-sample test is performed.

• If the first value is greater than the second, two groups are formed using the two values
and a two-sample test is performed.

• By default, the median is calculated from all cases included in the test. To override the
default, specify a median value in parentheses following the MEDIAN subcommand
keyword.

Operations

• A 2 × k contingency table is constructed with counts of the number of cases greater than
the median and less than or equal to the median for the k groups.

• Test statistics are calculated for each variable specified before BY.

• For more than 30 cases, a chi-square statistic is computed. For 30 or fewer cases, Fisher’s
exact procedure (two-tailed) is used instead of chi-square.

• For a two-sample test, cases with values other than the two specified are excluded.

Example

NPAR TESTS MEDIAN(8.4)=V1 BY V2(1,2) /MEDIAN=V1 BY V2(1,2)
/MEDIAN=V1 BY V3(1,4) /MEDIAN=V1 BY V3(4,1).

• The first two MEDIAN subcommands test variable V1 grouped by values 1 and 2 of variable
V2. The first test specifies a median of 8.4 and the second uses the observed median.

• The third MEDIAN subcommand requests a four-samples test, dividing the sample into
four groups based on values 1, 2, 3, and 4 of variable V3.

• The last MEDIAN subcommand requests a two-samples test, grouping cases based on
values 1 and 4 of V3 and ignoring all other cases.

NPAR TESTS 1095

MH Subcommand

NPAR TESTS /MH=varlist [WITH varlist [(PAIRED)]]

MH performs the marginal homogeneity test, which tests whether combinations of values
between two paired ordinal variables are equally likely. The marginal homogeneity test is
typically used in repeated measures situations. This test is an extension of the McNemar test
from binary response to multinomial response. The output shows the number of distinct
values for all test variables, the number of valid off-diagonal cell counts, mean, standard
deviation, observed and standardized values of the test statistics, the asymptotic two-tailed
probability for each pair of variables, and, if a /METHOD subcommand is specified, one-
tailed and two-tailed exact or Monte Carlo probabilities. This subcommand is available only
if the SPSS Exact Tests option has been installed.

Syntax

• The minimum specification is a list of two variables. Variables must be polychotomous and
must have more than two values. If the variables contain only two values, the McNemar
test is performed.

• If keyword WITH is not specified, each variable is paired with every other variable in the
list.

• If WITH is specified, each variable before WITH is paired with each variable after WITH. If
PAIRED is also specified, the first variable before WITH is paired with the first variable
after WITH, the second variable before WITH with the second variable after WITH, and so
on. PAIRED cannot be specified without WITH.

• With PAIRED, the number of variables specified before and after WITH must be the same.
PAIRED must be specified in parentheses after the second variable list.

Operations

• The data consist of paired, dependent responses from two populations. The marginal
homogeneity test tests the equality of two multinomial tables, and the data can be
arranged in the form of a square contingency table. A table is constructed
for each off-diagonal cell count. The marginal homogeneity test statistic is computed
for cases with different values for the two variables. Only combinations for which the
values for the two variables are different are considered. The first row of each
table specifies the category chosen by population 1, and the second row specifies the
category chosen by population 2. The test statistic is calculated by summing the first
row scores across all tables.

Example
NPAR TESTS /MH=V1 V2 V3
 /METHOD=MC.

• This example performs the marginal homogeneity test on variable pairs V1 and V2, V1 and V3,
and V2 and V3. The exact p values are estimated using the Monte Carlo sampling method.

c 1×
c c× 2 c×

2 c×

2 c×

1096 NPAR TESTS

MOSES Subcommand

NPAR TESTS MOSES[(n)]=varlist BY variable(value1,value2)

The MOSES test of extreme reactions tests whether the range of an ordinal variable is the same
in a control group and a comparison group. The control and comparison groups are defined by
a grouping variable. The output includes a Frequency table showing for each variable before
BY the total number of cases and the number of cases in each group and a Test Statistics table
showing the number of outliers removed, span of the control group before and after outliers
are removed, and one-tailed probability of the span with and without outliers.

Syntax

• The minimum specification is a test variable, the keyword BY, a grouping variable, and
two values in parentheses.

• The test variable must be at least at the ordinal level of measurement.

• The first value of the grouping variable defines the control group and the second value
defines the comparison group.

• By default, 5% of the cases are trimmed from each end of the range of the control group
to remove outliers. You can override the default by specifying a value in parentheses
following the MOSES subcommand keyword. This value represents an actual number of
cases, not a percentage.

Operations

• Values from the groups are arranged in a single ascending sequence. The span of the
control group is computed as the number of cases in the sequence containing the lowest
and highest control values.

• No adjustments are made for tied cases.

• Cases with values other than those specified for the grouping variable are excluded.

• Test statistics are calculated for each variable named before BY.

Example

NPAR TESTS MOSES=V1 BY V3(0,1) /MOSES=V1 BY V3(1,0).

• The first MOSES subcommand tests V1 using value 0 of V3 to define the control group
and value 1 for the comparison group. The second MOSES subcommand reverses the
comparison and control groups.

NPAR TESTS 1097

RUNS Subcommand

NPAR TESTS RUNS({MEAN })=varlist
 {MEDIAN}
{MODE }
{value }

RUNS tests whether the sequence of values of a dichotomized variable is random. The output
includes a Run Test table showing the test value (cut point used to dichotomize the variable
tested), number of runs, number of cases below the cut point, number of cases greater than or
equal to the cut point, and test statistic Z with its two-tailed probability for each variable.

Syntax

• The minimum specification is a cut point in parentheses followed by a test variable.

• The cut point can be specified by an exact value or one of the keywords MEAN, MEDIAN,
or MODE.

Operations

• All variables tested are treated as dichotomous: cases with values less than the cut point
form one category, and cases with values greater than or equal to the cut point form the
other category.

• Test statistics are calculated for each variable specified.

Example

NPAR TESTS RUNS(MEDIAN)=V2 /RUNS(24.5)=V2 /RUNS(1)=V3.

• This example performs three runs tests. The first tests variable V2 using the median as the
cut point. The second also tests V2, this time using 24.5 as the cut point. The third tests
variable V3 with value 1 specified as the cut point.

SIGN Subcommand

NPAR TESTS SIGN=varlist [WITH varlist [(PAIRED)]]

SIGN tests whether the distribution of two paired variables in a two-related-samples test is the
same. The output includes a Frequency table showing for each pair the number of positive
differences, number of negative differences, number of ties, and the total number and a Test
Statistics table showing the Z statistic and two-tailed probability.

Syntax

• The minimum specification is a list of two variables.
• Variables should be at least at the ordinal level of measurement.

1098 NPAR TESTS

• If keyword WITH is not specified, each variable in the list is paired with every other vari-
able in the list.

• If keyword WITH is specified, each variable before WITH is paired with each variable after
WITH. If PAIRED is also specified, the first variable before WITH is paired with the first
variable after WITH, the second variable before WITH with the second variable after WITH,
and so on. PAIRED cannot be specified without WITH.

• With PAIRED, the number of variables specified before and after WITH must be the same.
PAIRED must be specified in parentheses after the second variable list.

Operations

• The positive and negative differences between the pair of variables are counted. Ties are
ignored.

• The probability is taken from the binomial distribution if 25 or fewer differences are
observed. Otherwise, the probability comes from the Z distribution.

• Under the null hypothesis for large sample sizes, Z is approximately normally distributed
with a mean of 0 and a variance of 1.

Example

NPAR TESTS SIGN=N1,M1 WITH N2,M2 (PAIRED).

• N1 is tested with N2, and M1 is tested with M2.

W-W Subcommand

NPAR TESTS W-W=varlist BY variable(value1,value2)

W-W (alias WALD-WOLFOWITZ) tests whether the distribution of a variable is the same in two
independent samples. A runs test is performed with group membership as the criterion. The
output includes a Frequency table showing the total number of valid cases for each variable
specified before BY and the number of valid cases in each group, and a Test Statistics table
showing the number of runs, Z, and one-tailed probability of Z. If ties are present, the
minimum and maximum number of runs possible, their Z statistics, and one-tailed
probabilities are displayed.

Syntax

• The minimum specification is a single test variable, the keyword BY, a grouping variable,
and two values in parentheses.

• Cases with the first value form one group and cases with the second value form the other.
The order in which values are specified is unimportant.

NPAR TESTS 1099

Operations

• Cases are combined from both groups and ranked from lowest to highest, and a runs test
is performed using group membership as the criterion. For ties involving cases from both
groups, both the minimum and maximum number of runs possible are calculated. Test
statistics are calculated for each variable specified before BY.

• For a sample size of 30 or less, the exact one-tailed probability is calculated. For a sample
size greater than 30, the normal approximation is used.

• Cases with values other than those specified for the grouping variable are excluded.

Example

NPAR TESTS W-W=V1 BY V3(0,1).

• This example ranks cases from lowest to highest based on their values for V1 and a runs
test is performed. Cases with value 0 for V3 form one group and cases with value 1 form
the other.

WILCOXON Subcommand

NPAR TESTS WILCOXON=varlist [WITH varlist [(PAIRED)]]

WILCOXON tests whether the distribution of two paired variables in two related samples is the
same. This test takes into account the magnitude of the differences between two paired
variables. The output includes a Ranks table showing for each pair the number of valid cases,
positive and negative differences, their respective mean and sum of ranks, and the number of
ties and a Test Statistics table showing Z and probability of Z.

Syntax

• The minimum specification is a list of two variables.

• If keyword WITH is not specified, each variable is paired with every other variable in the
list.

• If keyword WITH is specified, each variable before WITH is paired with each variable after
WITH. If PAIRED is also specified, the first variable before WITH is paired with the first
variable after WITH, the second variable before WITH with the second variable after WITH,
and so on. PAIRED cannot be specified without WITH.

• With PAIRED, the number of variables specified before and after WITH must be the same.
PAIRED must be specified in parentheses after the second variable list.

Operations

• The differences between the pair of variables are counted, the absolute differences
ranked, the positive and negative ranks summed, and the test statistic Z computed from
the positive and negative rank sums.

1100 NPAR TESTS

• Under the null hypothesis for large sample sizes, Z is approximately normally distributed
with a mean of 0 and a variance of 1.

Example

NPAR TESTS WILCOXON=A B WITH C D (PAIRED).

• This example pairs A with C and B with D. If PAIRED were not specified, it would also
pair A with D and B with C.

STATISTICS Subcommand

STATISTICS requests summary statistics for variables named on the NPAR TESTS command.
Summary statistics are displayed in the Descriptive Statistics table before all test output.

• If STATISTICS is specified without keywords, univariate statistics (keyword
DESCRIPTIVES) are displayed.

DESCRIPTIVES Univariate statistics. The displayed statistics include the mean, maximum,
minimum, standard deviation, and number of valid cases for each variable
named on the command.

QUARTILES Quartiles and number of cases. The 25th, 50th, and 75th percentiles are dis-
played for each variable named on the command.

ALL All statistics available on NPAR TESTS.

MISSING Subcommand

MISSING controls the treatment of cases with missing values.
• ANALYSIS and LISTWISE are alternatives. However, each can be specified with INCLUDE.

ANALYSIS Exclude cases with missing values on a test-by-test basis. Cases with missing
values for a variable used for a specific test are omitted from that test. On
subcommands that specify several tests, each test is evaluated separately.
This is the default.

LISTWISE Exclude cases with missing values listwise. Cases with missing values for
any variable named on any subcommand are excluded from all analyses.

INCLUDE Include user-missing values. User-missing values are treated as valid values.

SAMPLE Subcommand

NPAR TESTS must store cases in memory. SAMPLE allows you to select a random sample of
cases when there is not enough space on your computer to store all the cases. SAMPLE has no
additional specifications.

• Because sampling would invalidate a runs test, this option is ignored when the RUNS
subcommand is used.

NPAR TESTS 1101

METHOD Subcommand

METHOD displays additional results for each statistic requested. If no METHOD subcommand
is specified, the standard asymptotic results are displayed. If fractional weights have been
specified, results for all methods will be calculated on the weight rounded to the nearest
integer. This subcommand is available only if the SPSS Exact Tests option has been installed.

MC Displays an unbiased point estimate and confidence interval based on the
Monte Carlo sampling method, for all statistics. Asymptotic results are also
displayed. When exact results can be calculated, they will be provided instead
of the Monte Carlo results. See SPSS Exact Tests for details of the situations
under which exact results are provided instead of Monte Carlo results.

CIN(n) Controls the confidence level for the Monte Carlo estimate. CIN is available
only when /METHOD=MC is specified. CIN has a default value of 99.0. You
can specify a confidence interval between 0.01 and 99.9, inclusive.

SAMPLES Specifies the number of tables sampled from the reference set when calculat-
ing the Monte Carlo estimate of the exact p value. Larger sample sizes lead to
narrower confidence limits but also take longer to calculate. You can specify
any integer between 1 and 1,000,000,000 as the sample size. SAMPLES has a
default value of 10,000.

EXACT Computes the exact significance level for all statistics, in addition to the
asymptotic results. If both the EXACT and MC keywords are specified, only
exact results are provided. Calculating the exact p value can be memory-
intensive. If you have specified /METHOD=EXACT and find that you have
insufficient memory to calculate results, you should first close any other
applications that are currently running in order to make more memory avail-
able. You can also enlarge the size of your swap file (see your Windows
manual for more information). If you still cannot obtain exact results, specify
/METHOD=MC to obtain the Monte Carlo estimate of the exact p value. An
optional TIMER keyword is available if you choose /METHOD=EXACT.

TIMER(n) Specifies the maximum number of minutes allowed to run the exact analysis
for each statistic. If the time limit is reached, the test is terminated, no exact
results are provided, and the program begins to calculate the next test in the
analysis. TIMER is available only when /METHOD=EXACT is specified. You
can specify any integer value for TIMER. Specifying a value of 0 for TIMER
turns the timer off completely. TIMER has a default value of 5 minutes. If a
test exceeds a time limit of 30 minutes, it is recommended that you use the
Monte Carlo, rather than the exact, method.

References

Siegel, S. 1956. Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill.

1102

NUMERIC

NUMERIC varlist[(format)] [/varlist...]

Example
NUMERIC V1 V2 (F4.0) / V3 (F1.0).

Overview

NUMERIC declares new numeric variables that can be referred to in the transformation
language before they are assigned values. Commands such as COMPUTE, IF, RECODE, and
COUNT can be used to assign values to the new numeric variables.

Basic Specification

The basic specification is the name of the new variables. By default, variables are assigned
a format of F8.2 (or the format specified on the SET command).

Syntax Rules

• A FORTRAN-like format can be specified in parentheses following a variable or vari-
able list. Each format specified applies to all variables in the list. To specify different
formats for different groups of variables, separate each format group with a slash.

• Keyword TO can be used to declare multiple numeric variables. The specified format
applies to each variable named and implied by the TO construction.

• NUMERIC can be used within an input program to predetermine the order of numeric vari-
ables in the dictionary of the working data file. When used for this purpose, NUMERIC
must precede DATA LIST in the input program.

Operations

• Unlike most transformations, NUMERIC takes effect as soon as it is encountered in the
command sequence. Special attention should be paid to its position among commands.
For more information, see “Command Order” on p. 8 in Volume I.

• The specified formats (or the defaults) are used as both print and write formats.

• Permanent or temporary variables are initialized to the system-missing value. Scratch
variables are initialized to 0.

• Variables named on NUMERIC are added to the working file in the order in which they
are specified. The order in which they are used in transformations does not affect their
order in the working data file.

NUMERIC 1103

Example

NUMERIC V1 V2 (F4.0) / V3 (F1.0).

• NUMERIC declares variables V1 and V2 with format F4.0, and variable V3 with format
F1.0.

Example

NUMERIC V1 TO V6 (F3.1) / V7 V10 (F6.2).

• NUMERIC declares variables V1, V2, V3, V4, V5, and V6 each with format F3.1, and vari-
ables V7 and V10, each with format F6.2.

Example

NUMERIC SCALE85 IMPACT85 SCALE86 IMPACT86 SCALE87 IMPACT87
SCALE88 IMPACT88.

• Variables SCALE85 to IMPACT88 are added to the working data file in the order specified
on NUMERIC. The order in which they are used in transformations does not affect their
order in the working data file.

Example

* Predetermine variable order.

INPUT PROGRAM.
STRING CITY (A24).
NUMERIC POP81 TO POP83 (F9)/ REV81 TO REV83(F10).
DATA LIST FILE=POPDATA RECORDS=3

/1 POP81 22-30 REV81 31-40
/2 POP82 22-30 REV82 31-40
/3 POP83 22-30 REV83 31-40
/4 CITY 1-24(A).

END INPUT PROGRAM.

• STRING and NUMERIC are specified within an input program to predetermine variable
order in the working data file. Though data in the file are in a different order, the working
file dictionary uses the order specified on STRING and NUMERIC. Thus, CITY is the first
variable in the dictionary, followed by POP81, POP82, POP83, REV81, REV82, and REV83.

• Formats are specified for the variables on NUMERIC. Otherwise, the program uses the
default numeric format (F8.2) from the NUMERIC command for the dictionary format, even
though it uses the format on DATA LIST to read the data. In other words, the dictionary uses
the first formats specified, even though DATA LIST may use different formats to read cases.

1104

OLAP CUBES

OLAP CUBES {varlist} BY varlist [BY...]

 [/CELLS= [MEAN**] [COUNT**] [STDDEV**]
 [NPCT**] [SPCT**] [SUM**]
 [MEDIAN] [GMEDIAN] [SEMEAN]
 [MIN] [MAX] [RANGE]
 [VARIANCE] [KURT] [SEKURT]
 [SKEW] [SESKEW] [FIRST] [LAST]
 [NPCT(var)][SPCT(var)]

 [HARMONIC] [GEOMETRIC]
 [DEFAULT]
 [ALL] [NONE]]

 [/CREATE [{’catname’}...] = {GAC } (gvarname {(gvarvalue gvarvalue) }
 {DEFAULT } {GPC } [{(gvarvalue gvarvalue)...}])]
 {GAC GPC}

 --or--

 {VAC } {(svarname svarname)}
 {VPC } {(svarname svarname)...}
 {VAC VPC}

 [/TITLE =’string’][FOOTNOTE= ’string’]

**Default if the subcommand is omitted.

Example
OLAP CUBES sales BY quarter by region

/CELLS= SUM SPCT(region).

Overview

OLAP CUBES produces summary statistics for continuous, quantitative variables within cat-
egories defined by one or more categorical grouping variables.

Options

Cell Contents. By default, OLAP CUBES displays means, standard deviations, cell counts,
sums, percentage of total N, and percentage of total sum. Optionally, you can request any
combination of available statistics.

Group Differences. You can display arithmetic and/or percentage differences between cate-
gories of a grouping variable or between different variables with the CREATE subcommand.

Format. You can specify a title and a caption for the report using the TITLE and FOOTNOTE
subcommands.

OLAP CUBES 1105

Basic Specification

The basic specification is the command name, OLAP CUBES, with a summary variable, the
keyword BY, and one or more grouping variables.

• The minimum specification is a summary variable, the keyword BY, and a grouping variable.

• By default, OLAP CUBES displays a Case Processing Summary table showing the number
and percentage of cases included, excluded, and their total, and a Layered Report showing
means, standard deviations, sums, number of cases for each category, percentage of total
N, and percentage of total sum.

Syntax Rules

• Both numeric and string variables can be specified. String variables can be short or long.
Summary variables must be numeric.

• String specifications for TITLE and FOOTNOTE cannot exceed 255 characters. Quotation
marks or apostrophes are required. When the specification breaks on multiple lines,
enclose each line in apostrophes or quotes and separate the specifications for each line by
at least one blank. To specify line breaks in titles and footnotes, use the /n specification.

• Each subcommand can be specified only once. Multiple use results in a warning, and the
last specification is used.

• When a variable is specified more than once, only the first occurrence is honored. The
same variables specified after different BY keywords will result in an error.

Limitations

• Up to 10 BY keywords can be specified.

Operations

• The data are processed sequentially. It is not necessary to sort the cases before processing.
If a BY keyword is used, the output is always sorted.

• A Case Processing Summary table is always generated, showing the number and percentage
of the cases included, excluded, and the total.

• For each combination of grouping variables specified after different BY keywords, OLAP
CUBES produces a group in the report.

Example

OLAP CUBES SALES BY REGION BY INDUSTRY
/CELLS=MEAN MEDIAN SUM.

• A Case Processing Summary table lists the number and percentage of cases included,
excluded, and the total.

1106 OLAP CUBES

• A Layered Report displays the requested statistics for sales for each group defined by
each combination of REGION and INDUSTRY.

TITLE and FOOTNOTE Subcommands

TITLE and FOOTNOTE provide a title and a caption for the Layered Report.

• TITLE and FOOTNOTE are optional and can be placed anywhere.

• The specification on TITLE or FOOTNOTE is a string within apostrophes or quotation
marks. To specify a multiple-line title or footnote, enclose each line in apostrophes or
quotation marks and separate the specifications for each line by at least one blank.

• To insert line breaks in the displayed title or footnote, use the /n specification.

• The string you specify cannot exceed 255 characters.

CELLS Subcommand

By default, OLAP CUBES displays the means, standard deviations, number of cases, sum,
percentage of total cases, and percentage of total sum.

• If CELLS is specified without keywords, OLAP CUBES displays the default statistics.
• If any keywords are specified on CELLS, only the requested information is displayed.

DEFAULT Means, standard deviations, cell counts, sum, percentage of total N, and per-
centage of total sum. This is the default if CELLS is omitted.

MEAN Cell means.

STDDEV Cell standard deviations.

COUNT Cell counts.

MEDIAN Cell median.

GMEDIAN Grouped median.

SEMEAN Standard error of cell mean.

SUM Cell sums.

MIN Cell minimum.

MAX Cell maximum.

RANGE Cell range.

VARIANCE Variances.

KURT Cell kurtosis.

SEKURT Standard error of cell kurtosis.

SKEW Cell skewness.

SESKEW Standard error of cell skewness.

OLAP CUBES 1107

FIRST First value.

LAST Last value.

SPCT Percentage of total sum.

NPCT Percentage of total number of cases.

SPCT(var) Percentage of total sum within specified variable. The specified variable
must be one of the grouping variables.

NPCT(var) Percentage of total number of cases within specified variable. The specified
variable must be one of the grouping variables.

HARMONIC Harmonic mean.

GEOMETRIC Geometric mean.

ALL All cell information.

CREATE Subcommand

CREATE allows you to calculate and display arithmetic and percentage differences between
groups or between variables. You can also define labels for these difference categories.

GAC (gvar(cat1 cat2)) Arithmetic difference (change) in the summary variable(s) statistics
between each specified pair of grouping variable categories. The
keyword must be followed by a grouping variable name specified in
parentheses, and the variable name must be followed by one or more
pairs of grouping category values. Each pair of values must be
enclosed in parentheses inside the parentheses that contain the
grouping variable name. String values must be enclosed in single or
double quotation marks. You can specify multiple pairs of category
values, but you can only specify one grouping variable, and the
grouping variable must be one of the grouping variables specified at
the beginning of the OLAP CUBES command, after the BY keyword.

The difference calculated is the summary statistic value for the second
category specified minus the summary statistic value for the first cat-
egory specified: cat2 – cat1.

GPC (gvar(cat1 cat2)) Percentage difference (change) in the summary variable(s) statistics
between each specified pair of grouping variable categories. The
keyword must be followed by a grouping variable name enclosed in
parentheses, and the variable name must be followed by one or more
pairs of grouping category values. Each pair of values must be
enclosed in parentheses inside the parentheses that contain the
grouping variable name. String values must be enclosed in single or
double quotation marks. You can specify multiple pairs of category
values, but you can only specify one grouping variable, and the
grouping variable must be one of the grouping variables specified at
the beginning of the OLAP CUBES command, after the BY keyword.

1108 OLAP CUBES

The percentage difference calculated is the summary statistic value for
the second category specified minus the summary statistic value for
the first category specified, divided by the summary statistic value for
the first category specified: (cat2 – cat1)/cat1.

VAC(svar1 svar2) Arithmetic difference (change) in summary statistics between each
pair of specified summary variables. Each pair of variables must be
enclosed in parentheses, and all specified variables must be specified
as summary variables at the beginning of the OLAP CUBES command.

The difference calculated is the summary statistic value for the second
variable specified minus the summary statistic value for the first vari-
able specified: svar2 – svar1.

VPC(svar1 svar2) Percentage difference (change) in summary statistics between each
pair of specified summary variables. Each pair of variables must be
enclosed in parentheses, and all specified variables must be specified
as summary variables at the beginning of the OLAP CUBES command.

The percentage difference calculated is the summary statistic value for
the second variable specified minus the summary statistic value for the
first variable specified: (svar2 – svar1)/svar1.

’category label’ Optional label for each difference category created. These labels must
be the first specification in the CREATE subcommand. Each label must
be enclosed in single or double quotation marks. If no labels are spec-
ified, defined value or variable labels are used. If no labels are defined,
data values or variable names are displayed. If multiple differences are
created, the order of the labels corresponds to the order the differences
are specified. To mix custom labels with default labels, use the
keyword DEFAULT for the difference categories without custom
labels.

Both arithmetic and percentage differences can be specified in the same command, but you
cannot specify both grouping variable differences (GAC/GPC) and summary variable differ-
ences (VAC/VPC) in the same command.

Example
OLAP CUBES
 sales96 BY region
 /CELLS=SUM NPCT
 /CREATE GAC GPC (region (1 3) (2 3)).

• Both the arithmetic (GAC) and percentage (GPC) differences will be calculated.

• Differences will be calculated for two different pairs of categories of the grouping vari-
able region.

• The grouping variable specified in the CREATE subcommand, region, is also specified as
a grouping variable at the beginningof the OLAP CUBES command.

OLAP CUBES 1109

Example
OLAP CUBES
 sales95 sales96 BY region
 /CELLS=SUM NPCT
 /CREATE VAC VPC (sales95 sales96).

• Both the arithmetic (VAC) and percentage (VPC) differences will be calculated.

• The difference calculated will be sales96 - sales95.

• The percentage difference calculated will be (sales96 - sales95)/sales95.

• The two variables, sales95 and sales96 are also specified as summary variables at the
beginning of the OLAP CUBES command.

Example
OLAP CUBES
 sales96 BY region
 /CELLS=SUM NPCT
 /CREATE DEFAULT ’West-East GPC’ DEFAULT ’West-Central % Difference’
 GAC GPC (region (1 3) (2 3)).

• Four labels are specified, corresponding to the four difference categories that will be
created: arithmetic and percentage differences between regions 3 and 1 and between
regions 3 and 2.

• The two DEFAULT labels will display the defined value labels or values if there aren’t any
value labels for the two arithmetic (GAC) difference categories.

1110

OMS

Note: Square brackets used in the OMS syntax chart are required parts of the syntax and are not used to
indicate optional elements. Any equals signs (=) displayed in the syntax chart are required. All
subcommands except /DESTINATION are optional.

OMS

 /SELECT CHARTS TEXTS LOGS WARNINGS TABLES HEADINGS
 or
 /SELECT ALL EXCEPT = [list]

 /IF COMMANDS = ["expression" "expression"...]
 SUBTYPES = ["expression" "expression"...]
 LABELS = ["expression" "expression"...]
 INSTANCES = [n n... LAST]

 /EXCEPTIF (same keywords as IF, except for INSTANCES)

 /DESTINATION FORMAT=OXML
 HTML
 SAV NUMBERED = ’varname’
 SVWSOXML
 TEXT
 TABTEXT
 {OUTFILE = "outfileexpression"}
 {OUTPUTSET = {SUBTYPES} FOLDER = "dirspec"}
 {LABELS }
 VIEWER={YES}
 {NO }

 /COLUMNS DIMNAMES = ["dimension1" "dimension2" ...]
or
 /COLUMNS SEQUENCE = [R1 R2 ... RALL C1 C2... CALL L1 L2... LALL]

 /TAG = "string"

 /NOWARN

Example
OMS
 /DESTINATION FORMAT = OXML OUTFILE = ’c:\mydir\myfile.xml’
 VIEWER = NO.
OMS
 /SELECT TABLES
 /IF COMMANDS = [’Regression’]
 SUBTYPES = [’Coefficients’]
 /DESTINATION FORMAT = SAV
 OUTFILE = ’c:\mydir\regression_coefficients.sav’.

Overview

The OMS command controls the routing and format of output from SPSS to files and can
suppress Viewer output. Output formats include:

OMS 1111

• SPSS data file format (SAV). Output that would be displayed in pivot tables in the Viewer
can be written out in the form of an SPSS data file, making it possible to use output as
input for subsequent commands.

• XML. Tables, text output, and even many charts can be written out in XML form.

• HTML. Tables and text output can be written out as HTML.

• Text. Tables and text ouput can be written out as simple text

The OMS command cannot route charts or warnings objects created by the IGRAPH command
or maps created by the MAPS command.

Basic Specification

The basic specification is the command name followed by a DESTINATION subcommand that
contains a FORMAT and/or a VIEWER specification. For FORMAT, an OUTFILE or
OUTPUTSET specification is also required.

Syntax Rules

• All subcommands except DESTINATION are optional. No subcommand may occur more
than once in each OMS command.

• Multiple OMS commands are allowed and are processed as discussed in “Basic Operation”
on p. 1111.

• Subcommands can appear in any order.

• If duplicates are found in a list, they are ignored except in /COLUMNS SEQUENCE where
they cause an error.

• When a keyword takes a square-bracketed list, the brackets are required even if the list con-
tains only a single item.

Basic Operation

• Once an OMS command is executed, it remains in effect until the end of the session or
until ended by an OMSEND command (see “OMSEND” on p. 1156).

• A destination file specified on an OMS command is unavailable to other SPSS commands
and other applications until the OMS command is ended by an OMSEND command or the
end of the SPSS session.

• While an OMS command is in effect, the specified destination files are stored in memory
(RAM); so active OMS commands that write a large amount of output to external files
may consume a large amount of memory.

• Multiple OMS commands are independent of each other (except as noted below). The
same output can be routed to different locations in different formats based on the specifi-
cations in different OMS commands.

• Display of output objects in the Viewer is determined by the most recent OMS command
that includes the particular output type. For example, if an OMS command includes all ta-

1112 OMS

bles from the FREQUENCIES command and also contains a VIEWER = YES specification,
and a subsequent OMS command includes all tables of the subtype ’Statistics’ with VIEW-
ER = NO, Statistics tables for subsequent FREQUENCIES commands will not be displayed
in the Viewer.

• The COLUMNS subcommand has no effect on pivot tables displayed in the Viewer.

• The order of the output objects in any particular destination is the order in which they
were created, which is determined by the order and operation of the commands that gen-
erate the output.

SELECT Subcommand

SELECT specifies the types of output objects to be routed to the specified destination(s). You
can select multiple types. You can also specify ALL with EXCEPT to exclude specified types.
If there is no SELECT subcommand, all supported output types are selected.

ALL All output objects (except for charts created by the IGRAPH command and
maps created by the MAPS command). This is the default.

CHARTS Charts (except those created by the IGRAPH command). This includes charts
created by the GRAPH command and charts created by statistical procedures
(for example, the BARCHART subcommand of the FREQUENCIES com-
mand). Chart objects are only included with XML destination formats
(OXML and SVWSOXML) .

LOGS Log text objects. Log objects contain certain types of error and warning mes-
sages. With SET PRINTBACK=ON, log objects also contain the command
syntax executed during the session. Log objects are labeled Log in the out-
line pane of the Viewer.

TABLES Output objects that are pivot tables in the Viewer. This includes Notes tables.
Tables are the only output objects that can be routed to the destination format
SAV.

TEXTS Text objects that aren’t logs or headings. This includes objects labeled Text
Output in the outline pane of the Viewer.

HEADINGS Text objects labeled Title in the outline pane of the Viewer. For destination
format OXML, heading text objects are not included.

WARNINGS Warnings objects. Warnings objects contain certain types of error and warn-
ing messages.

EXCEPT = [list] Select all types except those in the bracketed list.Used with keyword ALL.

Example
OMS /SELECT TABLES LOGS TEXTS WARNINGS HEADINGS
 /DESTINATION FORMAT = HTML OUTFILE = ’c:\mypath\myfile1.htm’.
OMS /SELECT ALL EXCEPT = [CHARTS]
 /DESTINATION FORMAT = HTML OUTFILE = ’c:\mypath\myfile2.htm’.

OMS 1113

The two SELECT subcommands are functionally equivalent. The first one explicitly lists all
types but CHARTS, and the second one explicitly excludes only CHARTS.

Figure 1 Output object types in the Viewer

IF Subcommand

The IF subcommand specifies particular output objects of the types determined by SELECT.
Without an IF subcommand, all objects of the specified types are selected. If you specify mul-
tiple conditions, only those objects that meet all conditions will be selected.

1114 OMS

Example
OMS
 /SELECT TABLES
 /IF COMMANDS = [’Regression’]
 SUBTYPES = [’Coefficients’]
 /DESTINATION FORMAT = SAV
 OUTFILE = ’c:\mydir\regression_coefficients.sav’.

This OMS command specifies that only coefficient tables from the REGRESSION command
will be selected.

COMMANDS Keyword

The COMMANDS keyword restricts the selection to the specified command(s). The keyword
COMMANDS must be followed by an equals sign (=) and a list of quoted command identifiers
enclosed in square bracket, as in:

OMS
 /SELECT TABLES
 /IF COMMANDS = [’Frequencies’ ’Factor Analysis’]
 /DESTINATION...

Command identifiers are:

• Unique. No two commands have the same identifier.

• Not case-sensitive.

• Not subject to translation, which means they are the same for all language versions and
output languages.

• Often not exactly the same or even similar to the command name. A complete list of sup-
ported commands and corresponding identifiers is provided in “Command and Subtype
Identifiers” on p. 1136. You can also obtain the identifier for a particular command by
generating output from the command in the Viewer and then right-clicking the command
heading in the outline pane and selecting Copy OMS Command Identifier from the context
menu.

Command identifiers are available for all statistical and charting procedures and any other
commands that produce blocks of output with their own identifiable heading in the outline
pane of the Viewer. For example CASESTOVARS and VARSTOCASES have corresponding
identifiers (’Cases to Variables’ and ’Variables to Cases’) because they produce their own
output blocks (with command headings in the outline pane that happen to match the identi-
fiers), but FLIP does not because any output produced by FLIP is included in a generic Log
text object.

OMS 1115

 SUBTYPES Keyword

The SUBTYPES keyword restricts the selection to the specified table types The keyword
SUBTYPES must be followed by an equals sign (=) and a list of quoted subtype identifiers
enclosed in square bracket, as in:

OMS
 /SELECT TABLES
 /IF SUBTYPES = [’Descriptive Statistics’ ’Coefficients’]
 /DESTINATION...

• Subtypes only apply to tables that would be displayed as pivot tables in the Viewer.

• Like command identifiers, subtype identifiers are not case-sensitive and are not subject to
translation.

• Unlike command identifiers, subtype identifiers are not necessarily unique. For example,
multiple commands produce a table with the subtype identifier ’Descriptive Statistics,’
but not all of those tables share the same structure. If you only want a particular table type
for a particular command, use both the COMMANDS and SUBTYPES keywords.

• A complete list of subtype identifiers is provided in “Command and Subtype Identifiers”
on p. 1136. You can also obtain the identifier for a particular table by generating output
from the command in the Viewer and then right-clicking outline item for the Table in the
outline pane of the Viewer and selecting Copy OMS Table Subtype from the context
menu. The identifiers are generally fairly descriptive of the particular table type.

LABELS Keyword

The LABELS keyword selects particular output objects according to the text displayed in the
outline pane of the Viewer. The keyword LABELS must be followed by an equals sign (=) and
a list of quoted label text enclosed in square brackets, as in:

OMS
 /SELECT TABLES
 /IF LABELS = [’Job category * Gender Crosstabulation’]
 /DESTINATION...

The LABELS keyword is useful for differentiating between multiple graphs or multiple tables
of the same type in which the outline text reflects some attribute of the particular ouput object
such as the variable names or labels. There are, however, a number of factors that can affect
the label text:
• If split file processing is on, split file group identification may be appended to the label.

• Labels that include information about variables or values are affected by the OVARS and
ONUMBERS settings on the SET command.

• Labels are affected by the current output language setting (SET OLANG).

INSTANCES Keyword

The INSTANCES subcommand selects the nth instance of an object matching the other criteria
on the IF subcommand within a single command execution. The keyword INSTANCES must

1116 OMS

be followed by an equals sign (=) and a list of positive integers and/or the keyword LAST en-
closed in square brackets.

Example
OMS
 /SELECT TABLES
 /IF COMMANDS = [’Frequencies’]
 SUBTYPES = [’Frequencies’]
 INSTANCES = [1 LAST]
 /DESTINATION...
OMS
 /SELECT TABLES
 /IF COMMANDS = [’Frequencies’]
 INSTANCES = [1 LAST]
 /DESTINATION...

• The first OMS command will select the first and last frequency tables from each FRE-
QUENCIES command.

• The second OMS command, in the absence of a SUBTYPES or LABELS specification, will
select the first and last tables of any kind from the selected command. For the FREQUEN-
CIES command (and most other statistical and charting procedures), the first table would
be the Notes table.

Wildcards

For COMMANDS, SUBTYPES, and LABELS, you can use an asterisk (*) as a wildcard indica-
tor at the end of a quoted string to include all commands, tables, and/or charts that start with
that quoted string, as in:

OMS
 /SELECT TABLES
 /IF SUBTYPES = [’Correlation*’]
 /DESTINATION...

In this example, all table subtypes that begin with "Correlation" will be selected.
The values of LABELS can contain asterisks as part of the value as in "First variable * Sec-

ond variable Crosstabulation," but only an asterisk as the last character in the quoted string
is interpreted as a wildcard, so:

 OMS
 /SELECT TABLES
 /IF LABELS = [’First Variable **’]
 /DESTINATION...

will select all tables with labels that start with "First Variable *".

EXCEPTIF Subcommand

The EXCEPTIF subcommand excludes specified output object types. It has the same key-
words and syntax as IF, with the exception of INSTANCES, which will cause an error if used
with EXCEPTIF.

OMS 1117

Example
OMS
 /SELECT TABLES
 /IF COMMANDS = [’Regression’]
 /EXCEPTIF SUBTYPES = [’Notes’ ’Case Summar*’]
 /DESTINATION...

DESTINATION Subcommand

The DESTINATION subcommand is the only required subcommand. It specifies the format
and location for the routed output. You can also use this subcommand to control what output
is displayed in the Viewer.

• Output continues to flow to a specified destination until its OMS specification is ended,
at which point the file is closed. See “Basic Operation” on p. 1111 and “OMSEND” on p.
1156 for more information.

• Different OMS commands may refer to the same destination file as long as the FORMAT
is the same. When a request becomes active, it starts contributing to the appropriate out-
put stream. If the FORMAT differs, an error results. When multiple requests target the
same destination, the output is written in the order in which it is created, not the order of
OMS commands.

Example
OMS
 /DESTINATION FORMAT = OXML OUTFILE = ’c:\mydir\myfile.xml’.

FORMAT Keyword

The DESTINATION subcommand must include either a FORMAT or VIEWER specification (or
both). The FORMAT keyword specifies the format for the routed output. The keyword must
be followed by an equals sign (=) and one of the following alternatives:

HTML HTML 4.0. Output objects that would be pivot tables in the Viewer are con-
verted to simple HTML tables. No TableLook attributes (font characteristics,
border styles, colors, etc.) are supported. Text output objects are tagged
<PRE> in the HTML. All charts and maps are excluded.

OXML SPSS Output XML. XML that conforms to the SPSSOutputXML.xsd schema.
Maps created by the MAPS command and charts created by the IGRAPH com-
mand are excluded. All other charts are included as XML that conforms to
[some chart xml schema name]. See “OXML Table Structure” on p. 1132 for
more information about SPSS Output XML.

SAV SPSS format data file. This is a binary file format. All output object types
other than tables are excluded. Each column of a table becomes a variable in
the data file. To use a data file created with OMS in the same session, you
must specify an OMSEND command to end the active OMS request before
you can open the data file. See “Routing Output to SAV Files” on p. 1123
for more information about SAV files.

1118 OMS

SVWSOXML XML used by SmartViewer Web Server. This is actually a jar/zip file contain-
ing XML, CSV, and other files. SmartViewer Web Server is a separate, serv-
er-based product.

TEXT Space-separated text. Output is written as text, with tabular output aligned
with spaces for fixed-pitch fonts. Charts and maps are excluded.

TABTEXT Tab-delimited text. For output that would be pivot tables in the Viewer, tabs
delimit table columns elements. Text block lines are written as is; no attempt
is made to divide them with tabs at useful places. All charts and maps are ex-
cluded.

Numbered Keyword

For FORMAT = SAV, you can also specify the NUMBERED keyword to identify the source ta-
bles, which can be useful if the data file is constructed from multiple tables. This creates an
additional variable in the data file. The value of the variable is a positive integer that indicates
the sequential table number. The default variable name is TableNumber_. You can override
the default with an equals sign (=) followed by a valid SPSS variable name in quotes after
the NUMBERED keyword.

Example
OMS
 /SELECT TABLES
 /IF COMMANDS = [’Regression’] SUBTYPES = [’Coefficients’]
 /DESTINATION = SAV NUMBERED = ’Table_number’
 OUTFILE = ’spssdata.sav’.

OUTFILE Keyword

If a FORMAT is specified, the DESTINATION subcommand must also include either an OUT-
FILE or OUTPUTSET specification. OUTFILE specifies an output file. The keyword must be
followed by an equals sign (=) and a file specification in quotes or a previously defined file
handle “FILE HANDLE” on p. 564.

Example
OMS
 /DESTINATION FORMAT = OXML OUTFILE = ’c:\mydir\myfile.xml’.

OUTPUTSET Keyword

OUTPUTSET is an alternative to OUTFILE that allows you to route each output object to a sep-
arate file. The keyword must be followed by an equals sign (=) and one of the following al-
ternatives:

LABELS Output file names based on ouput object label text. Label text is the text that
appears in the outline pane of the Viewer. See “LABELS Keyword” on p.
1115 for more information on labels.

OMS 1119

SUBTYPES Output file names based on subtype identifiers. Subtypes only apply to ta-
bles. See “SUBTYPES Keyword” on p. 1115

Example
OMS
 /SELECT TABLES
 /DESTINATION FORMAT = OXML OUTPUTSET = SUBTYPES.

• OUTPUTSET will not overrwrite existing files. If a specified file name already exists, an
underscore and a sequential integer will be appended to the file name.

• You cannot use OUTPUTSET with FORMAT=SVWSOXML.

FOLDER Keyword

With OUTPUTSET you can also use the FOLDER keyword to specify the location for the rout-
ed output. Since you may not know what SPSS considers to be the "current" directory, it’s
probably a good idea to explicitly specify the location. The keyword must be followed by
an equals sign (=) and a valid location specification in quotes.

Example
OMS
 /SELECT TABLES
 /IF SUBTYPES = [’Frequencies’ ’Descriptive Statistics’]
 /DESTINATION FORMAT = OXML OUTPUTSET = SUBTYPES
 FOLDER = ’c:\maindir\nextdir\newdir’.

• If the last folder (directory) specified on the path does not exist, it will be created.

• If any folders prior to the last folder on the path do not already exist, the specification is
invalid, resulting in an error.

VIEWER Keyword

By default, output is displayed in the Viewer as well as being routed to other formats and des-
tinations specified with the FORMAT keyword. You can use VIEWER = NO to suppress the
Viewer display of output for the specified output types. The VIEWER keyword can be used
without the FORMAT keyword (and associated OUTFILE or OUPUTSET keywords) to simply
control what output is displayed in the Viewer.

Example
OMS
 /SELECT TABLES
 /IF SUBTYPES = [’Correlations*’]
 /DESTINATION FORMAT SAV OUTFILE = ’c:\mydir\myfile.sav’
 VIEWER = NO.
OMS
 /SELECT TABLES
 /IF SUBTYPES = [’NOTES’]
 /DESTINATION VIEWER = NO.

1120 OMS

• The first OMS command will route tables with subtype names that start with "Correla-
tion" to an SPSS-format data file and will not display those tables in the Viewer. All other
output will be displayed in the Viewer

• The second OMS command simply suppresses the Viewer display of all Notes tables,
without routing the Notes table output anywhere else.

COLUMNS Subcommand

You can use the COLUMNS subcommand to specify the dimension elements that should ap-
pear in the columns. All other dimension elements appear in the rows.

• This subcommand applies only to tables that would be displayed as pivot tables in the
Viewer and is ignored without warning if the OMS command does not include any tables.

• With DESTINATION FORMAT = SAV, columns become variables in the data file. If you
specify multiple dimension elements on the COLUMNS subcommand, then variable
names will be constructed by combining nested element and column labels. See “Routing
Output to SAV Files” on p. 1123 for more information on SAV files.

• The COLUMNS subcommand has no effect on pivot tables displayed in the Viewer.

• If you specify multiple dimension elements, they are nested in the columns in the order
in which they are listed on the COLUMNS subcommand. For example:

COLUMNS DIMNAMES=[’Variables’ ’Statistics’]

will nest statistics within variables in the columns.

• If a table doesn’t contain any of the dimension elements listed, then all dimension ele-
ments for that table will appear in the rows.

DIMNAMES Keyword

The COLUMNS subcommand must be followed by either the DIMNAMES or SEQUENCE key-
word.

Each dimension of a table may contain zero or more elements. For example, a simple two-
dimensional crosstabulation contains a single row dimension element and a single column
dimension element, each with labels based on the variables in those dimensions, plus a single
layer dimension element labeled Statistics (if English is the output language). These element
labels may vary based on the output language (SET OLANG) and/or settings that affect the
display of variable names and/or labels in tables (SET TVARS). The keyword DIMNAMES
must be followed by an equals sign (=) and a list of quoted dimension element labels en-
closed in square brackets.

Example
OMS
 /SELECT TABLES
 /IF COMMANDS = [’Correlations’ ’Frequencies’]
 /DESTINATION FORMAT = SAV OUTPUTSET = SUBTYPES
 /COLUMNS DIMNAMES = [’Statistics’].

OMS 1121

The labels associated with the dimension elements may not always be obvious. To see all the
dimension elements and their labels for a particular pivot table:

� Activate (double-click) the table in the Viewer.

� From the menus choose:

View
Show All

and/or

� If the pivoting trays aren’t displayed, from the menus choose:

Pivot
Pivoting Trays

� Hover over each icon in the pivoting trays for a ToolTip pop-up that displays the label.

Figure 2 Displaying table dimension element labels

 SEQUENCE Keyword

SEQUENCE is an alternative to DIMNAMES that uses positional arguments. These positional
arguments do not vary based on output language or output display settings. The SEQUENCE

1122 OMS

keyword must be followed by an equals sign (=) and a list of positional arguments enclosed
in square brackets.

• The general form of a positional argument is a letter indicating the default position of the
element -- C for column, R for row, or L for layer -- followed by a positive integer indi-
cating the default position within that dimension. For example, R1 would indicate the out-
ermost row dimension element.

• A letter indicating the default dimension followed by ALL indicates all elements in that
dimension in their default order. For example, RALL would indicate all row dimension el-
ements, and CALL by itself would be unnecessary since it would not alter the default ar-
rangement of the table. ALL cannot be combined with positional sequence numbers in the
same dimension.

• SEQUENCE=[CALL RALL LALL] will put all dimension elements in the columns. With
FORMAT=SAV, this will result in one case per table in the data file.

Example
OMS
 /SELECT TABLES
 /IF COMMANDS = [’Regression’] SUBTYPES = [’Coefficient Correlations’]
 /DESTINATION FORMAT = SAV OUTFILE = ’c:\mydir\myfile.sav’
 /COLUMNS SEQUENCE = [R1 R2].

Figure 3 Positional arguments for dimension elements

TAG Subcommand

OMS commands remain in effect until the end of the session or until you explicitly end them
with the OMSEND command, and you can have multiple OMS commands in effect at the same
time. You can use the TAG subcommand to assign an ID value to each OMS command, which
allows you to selectively end particular OMS commands with a corresponding TAG keyword
on the OMSEND command. The ID values assigned on the TAG subcommand are also used
to identify OMS commands in the log created by the OMSLOG command.

Example
OMS
 /DESTINATION FORMAT = OXML OUTFILE = ’c:\mydir\myfile.xml’
 /TAG = ’oxmlout’.

OMS 1123

• The TAG subcommand must be followed by an equals sign (=) and a quoted ID value.

• The ID value cannot start with a dollar sign.

• Multiple active OMS commands cannot use the same TAG value.

See “OMSEND” on p. 1156 and “OMSLOG” on p. 1158 for more information.

NOWARN Subcommand

The NOWARN subcommand suppresses all warnings from OMS. The NOWARN subcommand
only applies to the current OMS command. It has no additional specifications.

Routing Output to SAV Files

An SPSS data file consists of variables in the columns and cases in the rows, and that’s es-
sentially how pivot tables are converted to data files:

• Columns in the table are variables in the data file. Valid variable names are constructed
from the column labels.

• Row labels in the table become variables with generic variable names (Var1, Var2, Var3...)
in the data file. The values of these variables are the row labels in the table.

• Three table-identifier variables are automatically included in the data file: Command_,
Subtype_, and Label_. All three are string variables. The first two correspond to the iden-
tifiers listed in “Command and Subtype Identifiers” on p. 1136. Label_ contains the table
title text.

• Rows in the table become cases in the data file.

Data File Created from One Table

Data files can be created from one or more tables. There are two basic variations for data
files created from a single table:

• Data file created from a two-dimensional table with no layers.

• Data file created from a three-dimension table with one or more layers.

Example

In the simplest case -- a single, two-dimensional table -- the table columns become variables
and the rows become cases in data file.

1124 OMS

Figure 4 Single two-dimensional table

• The first three variables identify the source table by command, subtype, and label.

• The two elements that defined the rows in the table -- values of the variable Gender and
statistical measures are assigned the generic variable names Var1 and Var2. These are
both string variables.

• The column labels from the table are used to create valid variable names. In this case,
those variable names are based on the variable labels of the three scale variables summa-
rized in the table. If the variables didn’t have defined variable labels or you chose to dis-
play variable names instead of variable labels as the column labels in the table, then the
variable names in the new data file would be the same as in the source data file.

Example

If the default table display places one or more elements in layers, additional variables are cre-
ated to identify the layer values.

OMS 1125

Figure 5 Table with Layers

• In the table the variable labeled Minority Classification defines the layers. In the data file,
this creates two additional variables: one that identifies the layer element, and one that
identifies the categories of the layer element.

• As with the variables created from the row elements, the variables created from the layer
elements are string variables with generic variable names (the prefix Var followed by a
sequential number).

Data Files Created from Multiple Tables

When multiple tables are routed to the same data file, each table is added to the data file in a
fashion similar to the ADD FILES command.

• Each subsequent table will always add cases to the data file.

• If column labels in the tables differ, each table may also add variables to the data file --
with missing values for cases from other tables that don’t have an identically-labeled col-
umn.

Example

Multiple tables that contain the same column labels will typically produce the most immedi-
ately useful data files (ones that don’t require additional manipulation).

1126 OMS

Figure 6 Multiple Tables with the Same Column Labels

• The second table contributes additional cases (rows) to the data file but no new variables
because the column labels are exactly the same; so there are no large patches of missing
data.

• Although the values for Command_ and Subtype_ are the same, the Label_ value identifies
the source table for each group of cases because the two frequency tables have different
titles.

Example

A new variable is created in the data file for each unique column label in the tables routed to
the data file, which will result in blocks of missing values if the tables contain different col-
umn labels.

OMS 1127

Figure 7 Multiple Tables with Different Column Labels

• The first table has columns labeled Beginning Salary and Current Salary, which are not
present in the second table, resulting in missing values for those variables for cases from
the second table.

• Conversely, the second table has columns labeled Education level and Months since hire,
which are not present in the first table, resulting in missing values for those variables for
cases from the first table.

• Mismatched variables like those in this example can occur even with tables of the same
subtype. In fact, in this example both tables are the same subtype.

Data Files Not Created from Multiple Tables

If any tables do not have the same number of row elements as the other tables, no data file
will be created. The number of rows doesn’t have to be the same; the number of row elements
that become variables in the data file must be the same.

For example, a two-variable crosstabulation and a three-variable crosstabulation from
CROSSTABS contain different numbers of row elements, since the "layer" variable is actually
nested within the row variable in the default three-variable crosstabulation display.

1128 OMS

Figure 8 Tables with different numbers of row elements

In general, the less specific the subtype selection in the OMS command, the less likely you
are to get sensible data files -- or any data files at all. For example:

OMS /SELECT TABLES /DESTINATION FORMAT=SAV OUTFILE=’mydata.sav’.

will probably fail to create a data file more often than not, since it will select all tables, in-
cluding Notes tables, which have a table structure that is incompatible with most other table
types.

Controlling Column Elements to Control Variables in the Data File

You can use the COLUMNS subcommand to specify which dimension elements should be in
the columns and therefore are used to create variables in the generated data file. This is
equivalent to pivoting the table in the Viewer.

Example

The DESCRIPTIVES command produces a table of descriptive statistics with variables in the
rows and statistics in the columns. A data file created from that table would therefore use the
statistics as variables and the original variables as cases. If you want the original variables to
be variables in the generated data file and the statistics to be cases:

OMS
 /SELECT TABLES
 /IF COMMANDS=['Descriptives'] SUBTYPES=['Descriptive Statistics']
 /DESTINATION FORMAT=SAV OUTFILE='c:\temp\temp.sav'
 /COLUMNS DIMNAMES=['Variables'].
DESCRIPTIVES VARIABLES=salary salbegin.
OMSEND.

OMS 1129

• When you use the COLUMNS subcommand, any dimension elements not listed on the sub-
command will become rows (cases) in the generated data file.

• Since the descriptive statistics table only has two dimension elements,
COLUMNS DIMNAMES=[’Variables’] will put the variables in the columns and put the sta-
tistics in the row. So this is equivalent to swapping the positions of the original row and
column elements.

Figure 9 Default and pivoted table and generated data file

Example

The FREQUENCIES command produces a descriptive statistics table with statistics in the
rows, while the DESCRIPTIVES command produces a descriptive statistics table with statis-

1130 OMS

tics in the columns. To include both table types in the same data file in a meaningful fashion,
you need to change the column dimension for one of them.

OMS
 /SELECT TABLES
 /IF COMMANDS=[’Frequencies’ ’Descriptives’]
 SUBTYPES=[’Statistics’ ’Descriptive Statistics’]
 /DESTINATION FORMAT=SAV OUTFILE=’c:\temp\temp.sav’
 /COLUMNS DIMNAMES=[’Statistics’].
FREQUENCIES
 VARIABLES=salbegin salary
 /FORMAT=NOTABLE
 /STATISTICS=MINIMUM MAXIMUM MEAN.
DESCRIPTIVES
 VARIABLES=jobtime prevexp
 /STATISTICS=MEAN MIN MAX.
OMSEND.

• The COLUMNS subcommand will be applied to all selected table types that have a Statis-
tics dimension element.

• Both table types have a Statistics dimension element, but since it’s already in the column
dimension for the table produced by the DESCRIPTIVES command, the COLUMNS sub-
command has no effect on the structure of the data from that table type.

• For the FREQUENCIES statistics table, COLUMNS DIMNAMES=[’Statistics’] is equivalent to
pivoting the Statistics dimension element into the columns and pivoting the Variables di-
mension element into the rows.

• Some of the variables will have missing values, since the table structures still aren’t ex-
actly the same with statistics in the columns.

OMS 1131

Figure 10 Combining different table types in same data file

Variable Names

OMS constructs valid, unique variable names from column labels.

• Row and layer elements are assigned generic variable names: the prefix "Var" followed
by a sequential number.

• Characters that aren’t allowed in variable names (e.g., space, parentheses) are removed.
For example, "This (Column) Label" would become a variable named ThisColumnLabel.

• If the label begins with a character that is allowed in variable names but not allowed as
the first character (e.g., a number), "@" is inserted as a prefix. For example "2nd" would
become a variable named @2nd.

• Underscores or periods at the end of labels are removed from the resulting variable names.
(The underscores at the end of the automatically generated variables Command_,
Subtype_, and Label_ are not removed.)

• If more than one element is in the column dimension, variable names are constructed by
combining category labels with underscores between category labels. Group labels are
not included. For example, if VarB is nested under VarA in the columns, you would get
variables like CatA1_CatB1, not VarA_CatA1_VarB_CatB1.

1132 OMS

Figure 11 Variable names in SAV files

OXML Table Structure

OXML is XML that conforms to the SPSSOutputXML.xsd schema. For a detailed description
of the schema, see SPSSOutputXML_schema.htm in the help\main folder of the SPSS installa-
tion folder.
• OMS command and subtype identifiers are used as values of the command and subType

attributes in OXML. For example:

<command text="Frequencies" command="Frequencies"...>
 <pivotTable text="Gender" label="Gender" subType="Frequencies"...>

These attribute values are not affected by output language (SET OLANG) or display set-
tings for variable names/labels or values/value labels (SET TVARS and SET TNUMBERS).

• XML is case-sensitive. “Command and Subtype Identifiers” on p. 1136 displays identifi-
ers in the case used in OXML.

• All the information displayed in a table is contained in attribute values in OXML. At the
individual cell level, OXML consists of "empty" elements that contain attributes but no
"content" other than that contained in attribute values.

• Table structure in OXML is represented row by row; elements that represent columns are
nested within the rows, and individual cells are nested within the column elements:

<pivotTable...>
 <dimension axis=’row’...>
 <dimension axis=’column’...>
 <category...>

OMS 1133

 <cell text=’...’ number=’...’ decimals=’...’/>
 </category>
 <category...>
 <cell text=’...’ number=’...’ decimals=’...’/>
 </category>
 </dimension>
 </dimension>
 ...
 </pivotTable>

The preceding example is a simplified representation of the structure that shows the descen-
dant/ancestor relationships of the these elements, but not necessarily the parent/child rela-
tionships, since there are typically intervening nested element levels. Figure 12 shows a
simple table as displayed in the Viewer, and Figure 13 shows the OXML that represents that
table.

Figure 12 Simple frequency table

1134 OMS

Figure 13 OXML for simple frequency table

<?xml version="1.0" encoding="UTF-8" ?>
<!--Structured XML. Copyright (C) 2003 by SPSS Inc. All rights reserved.-->
<outputTree>
 <command text="Frequencies" command="Frequencies"
 displayTableValues="label" displayOutlineValues="label"
 displayTableVariables="label" displayOutlineVariables="label">
 <pivotTable text="Gender" label="Gender" subType="Frequencies"
 varName="gender" variable="true">
 <dimension axis="row" text="Gender" label="Gender"
 varName="gender" variable="true">
 <group text="Valid">
 <group hide="true" text="Dummy">
 <category text="Female" label="Female" string="f"
 varName="gender">
 <dimension axis="column" text="Statistics">
 <category text="Frequency">
 <cell text="216" number="216"/>
 </category>
 <category text="Percent">
 <cell text="45.6" number="45.569620253165" decimals="1"/>
 </category>
 <category text="Valid Percent">
 <cell text="45.6" number="45.569620253165" decimals="1"/>
 </category>
 <category text="Cumulative Percent">
 <cell text="45.6" number="45.569620253165" decimals="1"/>
 </category>
 </dimension>
 </category>
 <category text="Male" label="Male" string="m" varName="gender">
 <dimension axis="column" text="Statistics">
 <category text="Frequency">
 <cell text="258" number="258"/>
 </category>
 <category text="Percent">
 <cell text="54.4" number="54.430379746835" decimals="1"/>
 </category>
 <category text="Valid Percent">
 <cell text="54.4" number="54.430379746835" decimals="1"/>
 </category>
 <category text="Cumulative Percent">
 <cell text="100.0" number="100" decimals="1"/>
 </category>
 </dimension>
 </category>
 </group>
 <category text="Total">
 <dimension axis="column" text="Statistics">
 <category text="Frequency">
 <cell text="474" number="474"/>
 </category>
 <category text="Percent">
 <cell text="100.0" number="100" decimals="1"/>
 </category>
 <category text="Valid Percent">
 <cell text="100.0" number="100" decimals="1"/>
 </category>
 </dimension>
 </category>
 </group>
 </dimension>
 </pivotTable>
 </command>
</outputTree>

As you may notice, a simple, small table produces a substantial amount of XML. That’s part-
ly because the XML contains some information not readily apparent in the original table,
some information that might not even be available in the original table, and a certain amount
of redundancy.

OMS 1135

• The table contents as they are (or would be) displayed in a pivot table in the Viewer are
contained in text attributes. For example:

<command text="Frequencies" command="Frequencies"...>

These text attributes can be affected by both output language (SET OLANG) and settings
that affect the display of variable names/labels and values/value labels (SET TVARS and
SET TNUMBERS). In this example, the text attribute value will differ depending on the out-
put language, whereas the command attribute value remains the same regardless of output
language.

• Wherever variables or values of variables are used in row or column labels, the XML will
contain a text attribute and one or more additional attribute values. For example:

<dimension axis="row" text="Gender" label="Gender" varName="gender">
 ...<category text="Female" label="Female" string="f" varName="gender">

For a numeric variable, there would be a number attribute instead of a string attribute. The
label attribute is only present if the variable or values have defined labels.

• The <cell> elements that contain cell values for numbers will contain the text attribute and
one or more additional attribute values. For example:

<cell text="45.6" number="45.569620253165" decimals="1"/>

The number attribute is the actual, unrounded numeric value, and the decimals attribute in-
dicates the number of decimal positions displayed in the table.

• Since columns are nested within rows, the category element that identifies each column
is repeated for each row. For example, since the statistics are displayed in the columns,
the element <category text="Frequency"> appears three times in the XML: once for the
male row, once for the female row, and once for the total row.

Examples of using XSLT to transform OXML are provided in the Help system.

1136 OMS

Command and Subtype Identifiers

Since new procedures and tables are constantly being added, this table may not provide a
complete list of command and subtype identifiers. For any command or table displayed in
the Viewer, you can find out the command or subtype identifier by right-clicking the item in
the Viewer outline pane.

Table 2

Command Command Identifier Subtype Identifier

2SLS Two-stage Least Squares Notes

2SLS Two-stage Least Squares Warnings

ACF ACF Notes

ACF ACF Warnings

AIM AIM Notes

AIM AIM Warnings

ALSCAL Alscal Notes

ALSCAL Alscal Warnings

ANACOR ANACOR Notes

ANACOR ANACOR Warnings

ANOVA ANOVA ANOVA

ANOVA ANOVA ANOVA Table

ANOVA ANOVA Case Processing Summary

ANOVA ANOVA Cell Means

ANOVA ANOVA Factor Summary

ANOVA ANOVA MCA

ANOVA ANOVA Model Goodness of Fit

ANOVA ANOVA Notes

ANOVA ANOVA Warnings

APPLY DICTIONARY Apply Dictionary Notes

APPLY DICTIONARY Apply Dictionary Warnings

AREG AREG Notes

AREG AREG Warnings

ARIMA Arima Notes

ARIMA Arima Warnings

CASEPLOT Case Plot Notes

CASEPLOT Case Plot Warnings

CASESTOVARS Cases to Variables Generated Variables

CASESTOVARS Cases to Variables Notes

CASESTOVARS Cases to Variables Processing Statistics

CASESTOVARS Cases to Variables Warnings

CATPCA CATPCA Case Processing Summary

CATPCA CATPCA Component Loadings

OMS 1137

CATPCA CATPCA CPR Original Correlations

CATPCA CATPCA CPR Transformed Correlations

CATPCA CATPCA Credit

CATPCA CATPCA Descriptive Statistics

CATPCA CATPCA Iteration History

CATPCA CATPCA Model Summary

CATPCA CATPCA Notes

CATPCA CATPCA Object Scores

CATPCA CATPCA Projected Centroids

CATPCA CATPCA Quantifications

CATPCA CATPCA Variance Accounted For

CATPCA CATPCA Warnings

CATREG Catreg ANOVA

CATREG Catreg Case Processing Summary

CATREG Catreg Coefficients

CATREG Catreg Correlations and Tolerance

CATREG Catreg CPR Original Correlations

CATREG Catreg CPR Transformed Correlations

CATREG Catreg Credit

CATREG Catreg Descriptive Statistics

CATREG Catreg Iteration History

CATREG Catreg Model Summary

CATREG Catreg Notes

CATREG Catreg Quantifications

CATREG Catreg Warnings

CCF CCF Notes

CCF CCF Warnings

CLUSTER Cluster Agglomeration Schedule

CLUSTER Cluster Case Processing Summary

CLUSTER Cluster Cluster Membership

CLUSTER Cluster Icicle

CLUSTER Cluster Notes

CLUSTER Cluster Proximity Matrix

CLUSTER Cluster Warnings

CNLR Constrained Nonlinear Regres-
sion

Notes

CNLR Constrained Nonlinear Regres-
sion

Warnings

CONJOINT Conjoint Analysis Notes

Table 2

Command Command Identifier Subtype Identifier

1138 OMS

CONJOINT Conjoint Analysis Warnings

CORRELATIONS Correlations Correlations

CORRELATIONS Correlations Descriptive Statistics

CORRELATIONS Correlations Notes

CORRELATIONS Correlations Warnings

CORRESPONDENCE Correspondence Column Profiles

CORRESPONDENCE Correspondence Confidence Column Points

CORRESPONDENCE Correspondence Confidence Row Points

CORRESPONDENCE Correspondence Correspondence Table

CORRESPONDENCE Correspondence Notes

CORRESPONDENCE Correspondence Overview Column Points

CORRESPONDENCE Correspondence Overview Row Points

CORRESPONDENCE Correspondence Permuted Correspondence Dimension

CORRESPONDENCE Correspondence Row Profiles

CORRESPONDENCE Correspondence Summary

CORRESPONDENCE Correspondence Warnings

COXREG Cox Regression Case Processing Summary

COXREG Cox Regression Categorical Variable Codings

COXREG Cox Regression Correlation Matrix of Regression Coefficients

COXREG Cox Regression Covariate Means

COXREG Cox Regression Covariate Means and Pattern Values

COXREG Cox Regression Iteration History

COXREG Cox Regression Model if Term Removed

COXREG Cox Regression Notes

COXREG Cox Regression Omnibus Tests of Model Coefficients

COXREG Cox Regression Stratum Status

COXREG Cox Regression Survival Table

COXREG Cox Regression Variables in the Equation

COXREG Cox Regression Variables not in the Equation

COXREG Cox Regression Warnings

CROSSTABS Crosstabs Case Processing Summary

CROSSTABS Crosstabs Chi Square Tests

CROSSTABS Crosstabs Crosstabulation

CROSSTABS Crosstabs Directional Measures

CROSSTABS Crosstabs Mantel-Haenszel Common Odds Ratio Estimate

CROSSTABS Crosstabs Notes

CROSSTABS Crosstabs Output File Summary

CROSSTABS Crosstabs Risk Estimate

CROSSTABS Crosstabs Symmetric Measures

Table 2

Command Command Identifier Subtype Identifier

OMS 1139

CROSSTABS Crosstabs Tests of Conditional Independence

CROSSTABS Crosstabs Tests of Homogeneity of the Odds Ratio

CROSSTABS Crosstabs Warnings

CROSSTABS Crosstabs Zero Order and Partial Gammas

CSDESCRIPTIVES CSDescriptives Notes

CSDESCRIPTIVES CSDescriptives Ratios

CSDESCRIPTIVES CSDescriptives Univariate Statistics

CSDESCRIPTIVES CSDescriptives Warnings

CSPLAN CSPlan Analysis Information

CSPLAN CSPlan Notes

CSPLAN CSPlan Sample Information

CSPLAN CSPlan Summary

CSPLAN CSPlan Warnings

CSSELECT CSSelect Case Processing Summary

CSSELECT CSSelect Notes

CSSELECT CSSelect Renamed Variables

CSSELECT CSSelect Summary

CSSELECT CSSelect Warnings

CSTABULATE CSTabulate Measures of Association

CSTABULATE CSTabulate Notes

CSTABULATE CSTabulate Oneway Table

CSTABULATE CSTabulate Tests of Homogeneous Proportions

CSTABULATE CSTabulate Tests of Independence

CSTABULATE CSTabulate Twoway Table

CSTABULATE CSTabulate Warnings

CTABLES CTables Comparisons of Means

CTABLES CTables Comparisons of Proportions

CTABLES CTables Custom Table

CTABLES CTables Notes

CTABLES CTables Pearson Chi Square Tests

CTABLES CTables Warnings

CURVEFIT Curve Fit Notes

CURVEFIT Curve Fit Warnings

DESCRIPTIVES Descriptives Descriptive Statistics

DESCRIPTIVES Descriptives Notes

DESCRIPTIVES Descriptives Warnings

DISCRIMINANT Discriminant Analysis Case Processing Summary

DISCRIMINANT Discriminant Box Test Log Determinants

DISCRIMINANT Discriminant Box Test Results

Table 2

Command Command Identifier Subtype Identifier

1140 OMS

DISCRIMINANT Discriminant Casewise Statistics

DISCRIMINANT Discriminant CDF Box Test Log Determinants

DISCRIMINANT Discriminant CDF Box Test Results

DISCRIMINANT Discriminant CDF Coefficients

DISCRIMINANT Discriminant CDF Group Covariances

DISCRIMINANT Discriminant Classification Function Coefficients

DISCRIMINANT Discriminant Classification Processing Summary

DISCRIMINANT Discriminant Classification Results

DISCRIMINANT Discriminant Coefficient Rotated Standardized CDF Coeffi-
cients

DISCRIMINANT Discriminant Correlations Between Variables and Rotated Func-
tions

DISCRIMINANT Discriminant Covariance Matrices

DISCRIMINANT Discriminant Eigenvalues

DISCRIMINANT Discriminant Functions at Group Centroids

DISCRIMINANT Discriminant Group Statistics

DISCRIMINANT Discriminant Notes

DISCRIMINANT Discriminant Pairwise Group Comparisons

DISCRIMINANT Discriminant Pooled Within Groups Matrices

DISCRIMINANT Discriminant Prior Probabilities for Groups

DISCRIMINANT Discriminant Rotated Structure Matrix

DISCRIMINANT Discriminant Standardized CDF Coefficients

DISCRIMINANT Discriminant Stepwise Wilks Lambda

DISCRIMINANT Discriminant Structure Matrix

DISCRIMINANT Discriminant Structure Rotated Standardized CDF Coefficients

DISCRIMINANT Discriminant Summary Wilks Lambda

DISCRIMINANT Discriminant Tests of Equality of Group Means

DISCRIMINANT Discriminant Variables Entered Removed

DISCRIMINANT Discriminant Variables Failing Tolerance Test

DISCRIMINANT Discriminant Variables in the Analysis

DISCRIMINANT Discriminant Variables Not in the Analysis

DISCRIMINANT Discriminant Varimax Transformation Matrix

DISCRIMINANT Discriminant Warnings

DISPLAY File Information Notes

DISPLAY File Information Warnings

EXAMINE Explore Case Processing Summary

EXAMINE Explore Descriptives

EXAMINE Explore Extreme Values

EXAMINE Explore M Estimators

Table 2

Command Command Identifier Subtype Identifier

OMS 1141

EXAMINE Explore Notes

EXAMINE Explore Percentiles

EXAMINE Explore Test of Homogeneity of Variance

EXAMINE Explore Tests of Normality

EXAMINE Explore Warnings

EXSMOOTH ExSmooth Notes

EXSMOOTH ExSmooth Warnings

FACTOR Factor Analysis Anti image Matrices

FACTOR Factor Analysis Communalities

FACTOR Factor Analysis Correlation Matrix

FACTOR Factor Analysis Covariance Matrix

FACTOR Factor Analysis Descriptive Statistics

FACTOR Factor Analysis Factor Correlation Matrix

FACTOR Factor Analysis Factor Matrix

FACTOR Factor Analysis Factor Score Coefficient Matrix

FACTOR Factor Analysis Factor Score Covariance Matrix

FACTOR Factor Analysis Factor Transformation Matrix

FACTOR Factor Analysis Goodness of fit Test

FACTOR Factor Analysis Image Covariance Matrix

FACTOR Factor Analysis Inverse of Correlation Matrix

FACTOR Factor Analysis Inverse of Covariance Matrix

FACTOR Factor Analysis KMO and Bartlett Test

FACTOR Factor Analysis Notes

FACTOR Factor Analysis Pattern Matrix

FACTOR Factor Analysis Reproduced Correlations

FACTOR Factor Analysis Reproduced Covariances

FACTOR Factor Analysis Rotated Factor Matrix

FACTOR Factor Analysis Structure Matrix

FACTOR Factor Analysis Total Variance Explained

FACTOR Factor Analysis Warnings

FIT Fit Notes

FIT Fit Warnings

FREQUENCIES Frequencies Frequencies

FREQUENCIES Frequencies Notes

FREQUENCIES Frequencies Statistics

FREQUENCIES Frequencies Warnings

GENLOG General Loglinear Analysis of Dispersion

GENLOG General Loglinear Cell Counts and Residuals

GENLOG General Loglinear Coefficients

Table 2

Command Command Identifier Subtype Identifier

1142 OMS

GENLOG General Loglinear Convergence Information

GENLOG General Loglinear Correlations of Parameter Estimates

GENLOG General Loglinear Covariances of Parameter Estimates

GENLOG General Loglinear Data Information

GENLOG General Loglinear Design Matrix

GENLOG General Loglinear Estimates

GENLOG General Loglinear Goodness of Fit Tests

GENLOG General Loglinear Iteration History

GENLOG General Loglinear Measure of Association

GENLOG General Loglinear Notes

GENLOG General Loglinear Parameter Estimates

GENLOG General Loglinear Ratios

GENLOG General Loglinear Warnings

GLM GLM Averaged Multivariate Tests

GLM GLM Bartlett Test

GLM GLM Between Subjects Factors

GLM GLM Between Subjects SSCP Matrix

GLM GLM Box Test

GLM GLM Contrast Coefficients

GLM GLM Contrast Results

GLM GLM Custom Hypothesis Tests Index

GLM GLM Custom Multivariate Tests

GLM GLM Custom Univariate Tests

GLM GLM Default Multivariate Tests

GLM GLM Descriptive Statistics

GLM GLM EMMEANS Multivariate Tests

GLM GLM EMMEANS Pairwise Comparisons

GLM GLM EMMEANS Univariate Tests

GLM GLM Estimated Marginal Means

GLM GLM Expected Mean Squares

GLM GLM General Estimable Function

GLM GLM Homogeneous Subsets

GLM GLM Levene Test

GLM GLM Mauchly Test

GLM GLM Multivariate Tests

GLM GLM Notes

GLM GLM Parameter Estimates

GLM GLM POSTHOC Multiple Comparisons

GLM GLM Residual SSCP Matrix

Table 2

Command Command Identifier Subtype Identifier

OMS 1143

GLM GLM SSCP Matrix

GLM GLM Tests of Within Subjects Contrasts

GLM GLM Tests of Within Subjects Effects

GLM GLM Transformation Coefficients

GLM GLM Univariate Test Results

GLM GLM Warnings

GLM GLM Within Subjects Factors

GLM GLM Within Subjects SSCP Matrix

GLM GLM Test of Between Subjects Fixed Effects

GLM GLM Test of Between Subjects Mixed Effects

GRAPH Graph Notes

GRAPH Graph Warnings

HILOGLINEAR HiLog Notes

HILOGLINEAR HiLog Warnings

HOMALS Homals Case Processing Summary

HOMALS Homals Discrimination Measures

HOMALS Homals Eigenvalues

HOMALS Homals Iteration History

HOMALS Homals Marginal Frequencies

HOMALS Homals Notes

HOMALS Homals Object Scores

HOMALS Homals Quantifications

HOMALS Homals Warnings

IGRAPH IGraph Notes

IGRAPH IGraph Warnings

KM Kaplan-Meier Notes

KM Kaplan-Meier Warnings

LIST List Notes

LIST List Warnings

LOGISTIC REGRESSION Logistic Regression Case Processing Summary

LOGISTIC REGRESSION Logistic Regression Casewise List

LOGISTIC REGRESSION Logistic Regression Categorical Variables Codings

LOGISTIC REGRESSION Logistic Regression Classification Table

LOGISTIC REGRESSION Logistic Regression Contingency Table

LOGISTIC REGRESSION Logistic Regression Correlation Matrix

LOGISTIC REGRESSION Logistic Regression Dependent Variable Encoding

LOGISTIC REGRESSION Logistic Regression Hosmer and Lemeshow Test

LOGISTIC REGRESSION Logistic Regression Iteration History

LOGISTIC REGRESSION Logistic Regression Model if Term Removed

Table 2

Command Command Identifier Subtype Identifier

1144 OMS

LOGISTIC REGRESSION Logistic Regression Model Summary

LOGISTIC REGRESSION Logistic Regression Notes

LOGISTIC REGRESSION Logistic Regression Omnibus Tests of Model Coefficients

LOGISTIC REGRESSION Logistic Regression Step Summary

LOGISTIC REGRESSION Logistic Regression Variables in the Equation

LOGISTIC REGRESSION Logistic Regression Variables not in the Equation

LOGISTIC REGRESSION Logistic Regression Warnings

LOGLINEAR Loglinear Notes

LOGLINEAR Loglinear Warnings

MANOVA Manova Notes

MANOVA Manova Warnings

MAPS MapX Notes

MAPS MapX Warnings

MATRIX Matrix Notes

MATRIX Matrix Warnings

MEANS Means ANOVA

MEANS Means Case Processing Summary

MEANS Means Measures of Association

MEANS Means Notes

MEANS Means Report

MEANS Means Warnings

MIXED Mixed Case Processing Summary

MIXED Mixed Contrast Coefficient

MIXED Mixed Contrast Coefficients

MIXED Mixed Correlation Matrix

MIXED Mixed Covariance Matrix

MIXED Mixed Descriptive Statistics

MIXED Mixed EMMEANS Pairwise Comparisons

MIXED Mixed EMMEANS Tests of simple effect

MIXED Mixed Estimated Marginal Means

MIXED Mixed G Matrix

MIXED Mixed Information Criteria

MIXED Mixed Iteration History

MIXED Mixed Model Dimension

MIXED Mixed Notes

MIXED Mixed Parameter Estimates

MIXED Mixed R Matrix

MIXED Mixed Tests of Fixed Effects

MIXED Mixed Warnings

Table 2

Command Command Identifier Subtype Identifier

OMS 1145

MRSETS Multiple Response Set Multiple Response Sets

MRSETS Multiple Response Set Notes

MRSETS Multiple Response Set Warnings

MULT RESPONSE Multiple Response Notes

MULT RESPONSE Multiple Response Warnings

MVA MVA CMPB_ COMPARE MEANS

MVA MVA CMPB_ COMPARE STANDARD DEVIATIONS

MVA MVA Crosstabulation

MVA MVA EOUT_ EM CORRELATIONS

MVA MVA EOUT_ EM COVARIANCES

MVA MVA EOUT_ EM MEANS

MVA MVA EOUT_ REG CORRELATIONS

MVA MVA EOUT_ REG COVARIANCES

MVA MVA EOUT_ REG MEANS

MVA MVA EXEC_ UNIVARIATE STATISTICS

MVA MVA IOUT_ CORRELATION OF MISSING INDICA-
TORS

MVA MVA LOUT_ CORRELATION

MVA MVA LOUT_ COVARIANCE

MVA MVA LOUT_ MEAN

MVA MVA MMAP_ MAP OF MISSING VALUES

MVA MVA MOUT_ CORRELATION

MVA MVA MOUT_ COVARIANCE

MVA MVA MOUT_ FREQUENCY

MVA MVA MOUT_ MEAN

MVA MVA MOUT_ STD DEV

MVA MVA Notes

MVA MVA POUT_ DATA PATTERNS

MVA MVA POUT_ MISSING PATTERNS

MVA MVA POUT_ TABULATED PATTERNS

MVA MVA TOUT_ MATRIX OF T STATISTICS

MVA MVA Warnings

NLR Non-linear Regression Notes

NLR Non-linear Regression Warnings

NOMREG Nominal Regression Asymptotic Correlation Matrix

NOMREG Nominal Regression Asymptotic Covariance Matrix

NOMREG Nominal Regression Case Processing Summary

NOMREG Nominal Regression Classification

NOMREG Nominal Regression Contrast Coefficients

Table 2

Command Command Identifier Subtype Identifier

1146 OMS

NOMREG Nominal Regression Contrast Results

NOMREG Nominal Regression Goodness-of-Fit

NOMREG Nominal Regression Iteration History

NOMREG Nominal Regression Likelihood Ratio Tests

NOMREG Nominal Regression Model Fitting Information

NOMREG Nominal Regression Notes

NOMREG Nominal Regression Observed and Predicted Frequencies

NOMREG Nominal Regression Parameter Estimates

NOMREG Nominal Regression Pseudo R-Square

NOMREG Nominal Regression Step Summary

NOMREG Nominal Regression Test Results

NOMREG Nominal Regression Warnings

NONPAR CORR Non Par Corr Correlations

NONPAR CORR Non Par Corr Notes

NONPAR CORR Non Par Corr Warnings

NPAR TESTS NPar Tests Binomial Test

NPAR TESTS NPar Tests Chi Square Frequencies

NPAR TESTS NPar Tests Chi Square Test Statistics

NPAR TESTS NPar Tests Cochran Frequencies

NPAR TESTS NPar Tests Cochran Test Statistics

NPAR TESTS NPar Tests Descriptive Statistics

NPAR TESTS NPar Tests Friedman Ranks

NPAR TESTS NPar Tests Friedman Test Statistics

NPAR TESTS NPar Tests Jonckheere Terpstra Test

NPAR TESTS NPar Tests Kendall Ranks

NPAR TESTS NPar Tests Kendall Test Statistics

NPAR TESTS NPar Tests Kruskal Wallis Ranks

NPAR TESTS NPar Tests Kruskal Wallis Test Statistics

NPAR TESTS NPar Tests Mann Whitney Ranks

NPAR TESTS NPar Tests Mann Whitney Test Statistics

NPAR TESTS NPar Tests Marginal Homogeneity Test

NPAR TESTS NPar Tests McNemar Crosstabs

NPAR TESTS NPar Tests McNemar Test Statistics

NPAR TESTS NPar Tests Median Frequencies

NPAR TESTS NPar Tests Median Test Statistics

NPAR TESTS NPar Tests Moses Frequencies

NPAR TESTS NPar Tests Moses Test Statistics

NPAR TESTS NPar Tests Notes

NPAR TESTS NPar Tests One Sample Kolmogrov Smirnov Test

Table 2

Command Command Identifier Subtype Identifier

OMS 1147

NPAR TESTS NPar Tests Runs Test

NPAR TESTS NPar Tests Sign Frequencies

NPAR TESTS NPar Tests Sign Test Statistics

NPAR TESTS NPar Tests Two Sample Kolmogorov Smirnov Frequencies

NPAR TESTS NPar Tests Two Sample Kolmogorov Smirnov Test Statistics

NPAR TESTS NPar Tests Wald Wolfowitz Frequencies

NPAR TESTS NPar Tests Wald Wolfowitz Test Statistics

NPAR TESTS NPar Tests Wilcoxon Ranks

NPAR TESTS NPar Tests Wilcoxon Test Statistics

NPAR TESTS NPar Tests Warnings

OLAP CUBES OLAP Cubes Case Processing Summary

OLAP CUBES OLAP Cubes Layered Reports

OLAP CUBES OLAP Cubes Notes

OLAP CUBES OLAP Cubes Warnings

OMSINFO OMSInfo Notes

OMSINFO OMSInfo Warnings

OMSINFO OMSInfo OMS Active Commands

ONEWAY Oneway ANOVA

ONEWAY Oneway Contrast Coefficients

ONEWAY Oneway Contrast Tests

ONEWAY Oneway Descriptives

ONEWAY Oneway Homogeneous Subsets

ONEWAY Oneway Multiple Comparisons

ONEWAY Oneway Notes

ONEWAY Oneway Robust Tests of Equality of Means

ONEWAY Oneway Test of Homogeneity of Variances

ONEWAY Oneway Warnings

ORTHOPLAN Orthoplan Notes

ORTHOPLAN Orthoplan Warnings

OVERALS Overals Case Processing Summary

OVERALS Overals Component Loadings

OVERALS Overals Iteration History

OVERALS Overals LDN Fit

OVERALS Overals List of Variables

OVERALS Overals Marginal Frequencies

OVERALS Overals Notes

OVERALS Overals Object Scores

OVERALS Overals Quantifications

OVERALS Overals Summary of Analysis

Table 2

Command Command Identifier Subtype Identifier

1148 OMS

OVERALS Overals Warnings

OVERALS Overals Weights

PACF PACF Notes

PACF PACF Warnings

PARTIAL CORR Partial Corr Correlations

PARTIAL CORR Partial Corr Descriptive Statistics

PARTIAL CORR Partial Corr Notes

PARTIAL CORR Partial Corr Warnings

PLANCARDS PlanCards Notes

PLANCARDS PlanCards Warnings

PLUM PLUM Asymptotic Correlation Matrix

PLUM PLUM Asymptotic Covariance Matrix

PLUM PLUM Case Processing Summary

PLUM PLUM Cell Information

PLUM PLUM Contrast Coefficients

PLUM PLUM Contrast Results

PLUM PLUM Goodness-of-Fit

PLUM PLUM Iteration History

PLUM PLUM Model Fitting Information

PLUM PLUM Notes

PLUM PLUM Parameter Estimates

PLUM PLUM Pseudo R-Square

PLUM PLUM Test of Parallel Lines

PLUM PLUM Test Results

PLUM PLUM Warnings

PPLOT NPPlot Notes

PPLOT NPPlot Warnings

PRINCALS Principal Component Analysis Notes

PRINCALS Principal Component Analysis Warnings

PROBIT Probit Notes

PROBIT Probit Warnings

PROXIMITIES Proximities Case Processing Summary

PROXIMITIES Proximities Notes

PROXIMITIES Proximities Proximity Matrix

PROXIMITIES Proximities Warnings

PROXSCAL Proxscal Notes

PROXSCAL Proxscal PXS TBN Case Processing Summary

PROXSCAL Proxscal PXS TBN Coordinates Common Space

PROXSCAL Proxscal PXS TBN Coordinates Individual Spaces

Table 2

Command Command Identifier Subtype Identifier

OMS 1149

PROXSCAL Proxscal PXS TBN Correlations

PROXSCAL Proxscal PXS TBN Data Weights

PROXSCAL Proxscal PXS TBN Decomposition of Stress

PROXSCAL Proxscal PXS TBN Dimension Weights GEM

PROXSCAL Proxscal PXS TBN Dimension Weights WEM

PROXSCAL Proxscal PXS TBN Distances Common Space

PROXSCAL Proxscal PXS TBN Distances Individual Spaces

PROXSCAL Proxscal PXS TBN Fixed Coordinates

PROXSCAL Proxscal PXS TBN Independent Variables

PROXSCAL Proxscal PXS TBN Initial Coordinates

PROXSCAL Proxscal PXS TBN Iteration History

PROXSCAL Proxscal PXS TBN Multiple Random Starts

PROXSCAL Proxscal PXS TBN Proximities

PROXSCAL Proxscal PXS TBN Regression Weights

PROXSCAL Proxscal PXS TBN Rotation Weights

PROXSCAL Proxscal PXS TBN Space Weights

PROXSCAL Proxscal PXS TBN Stress and Fit Measures

PROXSCAL Proxscal PXS TBN Transformed Independent Variables

PROXSCAL Proxscal PXS TBN Transformed Proximities

PROXSCAL Proxscal Warnings

QUICK CLUSTER Quick Cluster ANOVA

QUICK CLUSTER Quick Cluster Cluster Membership

QUICK CLUSTER Quick Cluster Distances between Final Cluster Centers

QUICK CLUSTER Quick Cluster Final Cluster Centers

QUICK CLUSTER Quick Cluster Initial Cluster Centers

QUICK CLUSTER Quick Cluster Iteration History

QUICK CLUSTER Quick Cluster Notes

QUICK CLUSTER Quick Cluster Number of Cases in each Cluster

QUICK CLUSTER Quick Cluster Warnings

RATIO STATISTICS Ratio Statistics Case Processing Summary

RATIO STATISTICS Ratio Statistics Notes

RATIO STATISTICS Ratio Statistics Ratio Statistics Table

RATIO STATISTICS Ratio Statistics Warnings

REGRESSION Regression ANOVA

REGRESSION Regression Casewise Diagnostics

REGRESSION Regression Coefficient Correlations

REGRESSION Regression Coefficients

REGRESSION Regression Collinearity Diagnostics

REGRESSION Regression Correlations

Table 2

Command Command Identifier Subtype Identifier

1150 OMS

REGRESSION Regression Descriptive Statistics

REGRESSION Regression Excluded Variables

REGRESSION Regression Model Summary

REGRESSION Regression Notes

REGRESSION Regression Outlier Statistics

REGRESSION Regression Residuals Statistics

REGRESSION Regression Swept Correlation Matrix

REGRESSION Regression Variables Entered Removed

REGRESSION Regression Warnings

RELIABILITY Reliability Case Processing Summary

RELIABILITY Reliability Notes

RELIABILITY Reliability ANOVA

RELIABILITY Reliability Hotellings T-Squared Test

RELIABILITY Reliability Inter Item Correlation Matrix

RELIABILITY Reliability Inter Item Covariance Matrix

RELIABILITY Reliability Intraclass Correlation Coefficient

RELIABILITY Reliability Item Statistics

RELIABILITY Reliability Item Total Statistics

RELIABILITY Reliability Reliability Statistics

RELIABILITY Reliability Scale Statistics

RELIABILITY Reliability Summary Item Statistics

RELIABILITY Reliability Test for Model Goodness of Fit

RELIABILITY Reliability Warnings

REPORT Report Notes

REPORT Report Warnings

ROC ROC Curve Area Under the Curve

ROC ROC Curve Case Processing Summary

ROC ROC Curve Coordinates of the Curve

ROC ROC Curve Notes

ROC ROC Curve Warnings

SEASON Season Notes

SEASON Season Warnings

SHOW Show Notes

SHOW Show Warnings

SPCHART SPchart Notes

SPCHART SPchart Process Statistics

SPCHART SPchart Warnings

SPECTRAL Spectral Analysis Notes

SPECTRAL Spectral Analysis Warnings

Table 2

Command Command Identifier Subtype Identifier

OMS 1151

SUMMARIZE Summarize ANOVA

SUMMARIZE Summarize Case Processing Summary

SUMMARIZE Summarize Measures of Association

SUMMARIZE Summarize Notes

SUMMARIZE Summarize Report

SUMMARIZE Summarize Warnings

SURVIVAL Survival Notes

SURVIVAL Survival Warnings

SYSFILE INFO SysInfo Notes

SYSFILE INFO SysInfo Warnings

TABLES Tables Notes

TABLES Tables Table

TABLES Tables Warnings

TDISPLAY TDISPLAY Notes

TDISPLAY TDISPLAY Warnings

TSHOW TSHOW Notes

TSHOW TSHOW Warnings

TSPLOT TSPLOT Notes

TSPLOT TSPLOT Warnings

TTEST T-Test Group Statistics

TTEST T-Test Independent Samples Test

TTEST T-Test One Sample Statistics

TTEST T-Test Notes

TTEST T-Test One Sample Test

TTEST T-Test Paired Samples Correlations

TTEST T-Test Paired Samples Statistics

TTEST T-Test Paired Samples Test

TTEST T-Test Warnings

TWOSTEP CLUSTER Twostep Cluster Centroids

TWOSTEP CLUSTER Twostep Cluster Clusterdistribution

TWOSTEP CLUSTER Twostep Cluster Frequencies

TWOSTEP CLUSTER Twostep Cluster Information Criterion

TWOSTEP CLUSTER Twostep Cluster Notes

TWOSTEP CLUSTER Twostep Cluster Warnings

UNIANOVA UNIANOVA EMMEANS Pairwise Comparisons

UNIANOVA UNIANOVA EMMEANS Univariate Tests

UNIANOVA UNIANOVA Estimated Marginal Means

UNIANOVA UNIANOVA Homogeneous Subsets

Table 2

Command Command Identifier Subtype Identifier

1152 OMS

UNIANOVA UNIANOVA Notes

UNIANOVA UNIANOVA POSTHOC Multiple Comparisons

UNIANOVA UNIANOVA Warnings

UNIANOVA UNIANOVA Test of Between Subjects Fixed Effects

UNIANOVA UNIANOVA Test of Between Subjects Mixed Effects

VARCOMP Variance Components Estima-
tion

ANOVA

VARCOMP Variance Components Estima-
tion

Asymptotic Covariance Matrix

VARCOMP Variance Components Estima-
tion

Expected Mean Squares

VARCOMP Variance Components Estima-
tion

Factor Level Information

VARCOMP Variance Components Estima-
tion

Iteration History

VARCOMP Variance Components Estima-
tion

Notes

VARCOMP Variance Components Estima-
tion

Variance Estimates

VARCOMP Variance Components Estima-
tion

Warnings

VARSTOCASES Variables to Cases Generated Variables

VARSTOCASES Variables to Cases Notes

VARSTOCASES Variables to Cases Processing Statistics

VARSTOCASES Variables to Cases Warnings

VERIFY Verify Notes

VERIFY Verify Warnings

WLS Weighted Least Squares Notes

WLS Weighted Least Squares Warnings

Table 2

Command Command Identifier Subtype Identifier

OMS 1153

1154

OMSINFO

OMSINFO.

Example
OMSINFO.

Overview

The OMSINFO command displays a table of all active OMS commands (see “OMS” on p.
1110). It has no additional specifications.

OMSINFO 1155

1156 OMSEND

OMSEND

13

Note: Square brackets used in the OMSEND syntax chart are required parts of the syntax and are not used to
indicate optional elements. Any equals signs (=) displayed in the syntax chart are required. All specifications
other than the command name OMSEND are optional.

OMSEND
 TAG = {[’idvalue’ ’idvalue’...]}
 {ALL }
 FILE = [’filespec’ ’filespec’...]
 LOG

Example
OMS
 /DESTINATION FORMAT = OXML OUTFILE = ’c:\mydir\myfile.xml’.
[some commands that produce output]
OMSEND.
[some more commands that produce output]

Overview

OMSEND ends active OMS commands. The minimum specification is the command name
OMSEND. In the absence of any other specifications, this ends all active OMS commands and
logging.

TAG Keyword

The optional TAG keyword identifies specific OMS commands to end, based on the ID value
assigned on the OMS TAG subcommand (see “TAG Subcommand” on p. 1122) or automati-
cally generated if there is no TAG subcommand. To display the automatically generated ID
values for active OMS commands, use the OMSINFO command (see “OMSINFO” on p.
1110).

The TAG keyword must be followed by an equals sign (=) and a list of quoted ID values
or the keyword ALL enclosed in square brackets.

Example
OMSEND TAG = [’reg_tables_to_sav’ ’freq_tables_to_html’].

A warning is issued if any of the specified values don’t match any active OMS commands.

FILE Keyword

The optional FILE keyword ends specific OMS commands based on the file name specified
with the OUTFILE keyword of the DESTINATION subcommand of the OMS command. The
FILE keyword must be followed by an equals sign (=) and a list of quoted file specifications
enclosed in square brackets.

OMSEND 1157

Example
OMSEND
 FILE = [’c:\mydir\mysavfile.sav’ ’c:\otherdir\myhtmlfile.htm’].

• If the specified file doesn’t exist or isn’t associated with a currently running OMS com-
mand, a warning is issued.

• The FILE keyword specification has no effect on OMS commands that use
OUTPUTSET instead of OUTFILE.

LOG Keyword

IF OMS logging is in effect (see “OMSLOG” on p. 1158), the LOG keyword ends logging.

Examples
OMSEND LOG.

In this example, the OMSEND command ends logging without ending any active OMS com-
mands.

1158

OMSLOG

OMSLOG FILE = ’filespec’
 [/APPEND = [NO]]
 [YES]
 [/FORMAT = [XML]]
 [TEXT]

Example
OMSLOG FILE = ’c:\mydir\mylog.xml’.

Overview

OMSLOG creates a log file in either XML or text form for subsequent OMS commands (see
“OMS” on p. 1110) during a session.

• The log contains one line or main XML element for each destination file and contains
the event name, file name and location, the ID tag value, and a timestamp. The log also
contains an entry when an OMS command is started and stopped.

• The log file remains open, and OMS activity is appended to the log, unless logging is
turned off by an OMSEND command (see “LOG Keyword” on p. 1157) or the end of the
SPSS session.

• A subsequent OMSLOG command that specifies a different log file ends logging to the
file specified on the previous OMSLOG command.

• A subsequent OMSLOG file that specifies the same log file will overwrite the current log
file for the default FORMAT = XML or in the absence of APPEND = YES for
FORMAT = TEXT.

• OMS activity for any OMS commands executed before the first OMSLOG command in
the session is not recorded in any log file.

Basic Specification

The basic specfication is the command name OMSLOG followed by a FILE subcommand that
specifies the log file name and location.

Syntax Rules

• The FILE subcommand is required. All other specifications are optional.

• Equals signs (=) shown in the command syntax chart and examples are required, not option-
al.

OMSLOG 1159

FILE Subcommand

The FILE subcommand specifies the log file name and location. The subcommand name must
be followed by an equals sign (=) and a file specification in quotes. If the file specification
includes location information (drive, directory/folder), the location must be a valid, existing
location; otherwise an error will result.

Example
OMSLOG FILE = ’c:\mydir\mylog.xml’.

APPEND Subcommand

If the FILE subcommand specifies an existing file, by default the file is overwritten. For text
format log files, you can use the APPEND subcommand to append new logging information
to the file instead of overwriting.

Example
OMSLOG FILE = ’c:\mydir\mylog.txt’
 /APPEND = YES
 /FORMAT = TEXT.

• APPEND = YES is only valid with FORMAT = TEXT. For XML log files, the APPEND sub-
command is ignored.

• APPEND = YES with FORMAT = TEXT will append to an existing file, even if the existing
file contains XML-format log information. (An XML file is a text file, and OMSLOG does
not differentiate based on file extension or content.)

• If the specified file does not exist, APPEND has no effect.

FORMAT Subcommand

The FORMAT subcommand specifies the format of the log file. The default format is XML.
You can use FORMAT = TEXT to write the log in simple text format.

1160

ONEWAY

ONEWAY varlist BY varname

 [/POLYNOMIAL=n] [/CONTRAST=coefficient list] [/CONTRAST=...]

[/POSTHOC=([SNK] [TUKEY] [BTUKEY] [DUNCAN] [SCHEFFE] [DUNNETT[refcat)]
[DUNNETTL(refcat)] [DUNNETTR(refcat)] [BONFERRONI] [;SD]
[SIDAK] [GT2] [GABRIEL] [FREGW] [QREGW] [T2] [T3] [GH] [C]
[WALLER({100** })]) [ALPHA({0.05**})]

{Kratio} {α }

[/RANGES={LSD }([{0.05**}])] [/RANGES=...]
 {DUNCAN } {α }
 {SNK }
 {TUKEYB }
 {TUKEY }
 {MODLSD }
 {SCHEFFE }

[/STATISTICS=[NONE**] [DESCRIPTIVES] [EFFECTS] [HOMOGENEITY] [ALL]]
 [WELCH] [BROWNFORSYTHE]

[/PLOT MEANS]

 [/MISSING=[{ANALYSIS**}] [{EXCLUDE**}]]
 {LISTWISE } {INCLUDE }

 [/MATRIX =[IN({* })] [OUT({* })] [NONE]]
 {file} {file}

**Default if the subcommand is omitted.

Example
ONEWAY V1 BY V2(1,4).

Overview

ONEWAY produces a one-way analysis of variance for an interval-level dependent variable
by one numeric independent variable that defines the groups for the analysis. Other proce-
dures that perform an analysis of variance are SUMMARIZE, UNIANOVA, and GLM (GLM is
available in the SPSS Advanced Models option). Some tests not included in the other pro-
cedures are available as options in ONEWAY.

Options

Trend and Contrasts. You can partition the between-groups sums of squares into linear, qua-
dratic, cubic, and higher-order trend components using the POLYNOMIAL subcommand. You
can specify up to 10 contrasts to be tested with the t statistic on the CONTRAST subcommand.

Post Hoc Tests. You can specify 20 different post hoc tests for comparisons of all possible pairs
of group means or multiple comparisons using the POSTHOC subcommand.

ONEWAY 1161

Statistical Display. In addition to the default display, you can obtain means, standard devia-
tions, and other descriptive statistics for each group using the STATISTICS subcommand.
Fixed- and random-effects statistics as well as Leven’s test for homogeneity of variance are
also available.

Matrix Input and Output. You can write means, standard deviations, and category frequencies
to a matrix data file that can be used in subsequent ONEWAY procedures using the MATRIX
subcommand. You can also read matrix materials consisting of means, category frequencies,
pooled variance, and degrees of freedom for the pooled variance.

Basic Specification

The basic specification is a dependent variable, keyword BY, and an independent variable.
ONEWAY produces an ANOVA table displaying the between- and within-groups sums of
squares, mean squares, degrees of freedom, the F ratio, and the probability of F for each
dependent variable by the independent variable.

Subcommand Order

• The variable list must be specified first.

• The remaining subcommands can be specified in any order.

Operations

• All values of the independent variable are used. Each different value creates one category.
• If a string variable is specified as an independent or dependent variable, ONEWAY is not

executed.

Limitations

• Maximum 100 dependent variables and 1 independent variable.

• An unlimited number of categories for the independent variable. However, post hoc tests
are not performed if the number of nonempty categories exceeds 50. Contrast tests are not
performed if the total of empty and nonempty categories exceeds 50.

• Maximum 1 POLYNOMIAL subcommand.
• Maximum 1 POSTHOC subcommand.

• Maximum 10 CONTRAST subcommands.

Example

ONEWAY V1 BY V2.

• ONEWAY names V1 as the dependent variable and V2 as the independent variable.

1162 ONEWAY

Analysis List

The analysis list consists of a list of dependent variables, keyword BY, and an independent
(grouping) variable.

• Only one analysis list is allowed, and it must be specified before any of the optional
subcommands.

• All variables named must be numeric.

POLYNOMIAL Subcommand

POLYNOMIAL partitions the between-groups sums of squares into linear, quadratic, cubic, or
higher-order trend components. The display is an expanded analysis-of-variance table that
provides the degrees of freedom, sums of squares, mean square, F, and probability of F for
each partition.

• The value specified on POLYNOMIAL indicates the highest-degree polynomial to be used.

• The polynomial value must be a positive integer less than or equal to 5 and less than the
number of groups. If the polynomial specified is greater than the number of groups, the
highest-degree polynomial possible is assumed.

• Only one POLYNOMIAL subcommand can be specified per ONEWAY command. If more
than one is used, only the last one specified is in effect.

• ONEWAY computes the sums of squares for each order polynomial from weighted poly-
nomial contrasts, using the category of the independent variable as the metric. These
contrasts are orthogonal.

• With unbalanced designs and equal spacing between groups, ONEWAY also computes
sums of squares using the unweighted polynomial contrasts. These contrasts are not
orthogonal.

• The deviation sums of squares are always calculated from the weighted sums of squares
(Speed, 1976).

Example
ONEWAY WELL BY EDUC6

/POLYNOMIAL=2.

• ONEWAY requests an analysis of variance of WELL by EDUC6 with second-order (quadratic)
polynomial contrasts.

• The ANOVA table is expanded to include both linear and quadratic terms.

CONTRAST Subcommand

CONTRAST specifies a priori contrasts to be tested by the t statistic. The specification on
CONTRAST is a vector of coefficients, where each coefficient corresponds to a category of
the independent variable. The Contrast Coefficients table displays the specified contrasts
for each group and the Contrast Tests table displays the value of the contrast and its standard

ONEWAY 1163

error, the t statistic, and the degrees of freedom and two-tailed probability of t for each vari-
able. Both pooled- and separate-variance estimates are displayed.

• A contrast coefficient must be specified or implied for every group defined for the inde-
pendent variable. If the number of contrast values is not equal to the number of groups,
the contrast test is not performed.

• The contrast coefficients for a set should sum to 0. If they do not, a warning is issued.
ONEWAY will still give an estimate of this contrast.

• Coefficients are assigned to groups defined by ascending values of the independent variable.

• The notation n*c can be used to indicate that coefficient c is repeated n times.

Example
ONEWAY V1 BY V2

/CONTRAST = -1 -1 1 1
/CONTRAST = -1 0 0 1
/CONTRAST = -1 0 .5 .5.

• V2 has four levels.

• The first CONTRAST subcommand contrasts the combination of the first two groups with
the combination of the last two groups.

• The second CONTRAST subcommand contrasts the first group with the last group.

• The third CONTRAST subcommand contrasts the first group with the combination of the
third and fourth groups.

Example
ONEWAY V1 BY V2

/CONTRAST = -1 1 2*0
/CONTRAST = -1 1 0 0
/CONTRAST = -1 1.

• The first two CONTRAST subcommands specify the same contrast coefficients for a four-
group analysis. The first group is contrasted with the second group in both cases.

• The first CONTRAST uses the n*c notation.

• The last CONTRAST does not work because only two coefficients are specified for four
groups.

POSTHOC Subcommand

POSTHOC produces post hoc tests for comparisons of all possible pairs of group means or mul-
tiple comparisons. In contrast to a priori analyses specified on the CONTRAST subcommand,
post hoc analyses are usually not planned at the beginning of the study but are suggested by
the data in the course of the study.
• Twenty post hoc tests are available. Some detect homogeneity subsets among the groups

of means, some produce pairwise comparisons, and others perform both. POSTHOC
produces a Multiple Comparison table showing up to 10 test categories. Nonempty group
means are sorted in ascending order, with asterisks indicating significantly different

1164 ONEWAY

groups. In addition, homogeneous subsets are calculated and displayed in the Homoge-
neous Subsets table if the test is designed to detect homogeneity subsets.

• When the number of valid cases in the groups varies, the harmonic mean of the group sizes
is used as the sample size in the calculation for homogeneity subsets except for QREGW
and FREGW. For QREGW and FREGW and tests for pairwise comparison, the sample sizes
of individual groups are always used.

• You can specify only one POSTHOC subcommand per ONEWAY command. If more than
one is specified, the last specification takes effect.

• You can specify one alpha value used in all POSTHOC tests using keyword ALPHA. The
default is 0.05.

SNK Student-Newman-Keuls procedure based on the Studentized range
test. Used for detecting homogeneity subsets.

TUKEY Tukey’s honestly significant difference. This test uses the Studentized
range statistic to make all pairwise comparisons between groups. Used
for pairwise comparison and for detecting homogeneity subsets.

BTUKEY Tukey’s b. Multiple comparison procedure based on the average of
Studentized range tests. Used for detecting homogeneity subsets.

DUNCAN Duncan’s multiple comparison procedure based on the Studentized
range test. Used for detecting homogeneity subsets.

SCHEFFE Scheffé’s multiple comparison t test. Used for pairwise comparison
and for detecting homogeneity subsets.

DUNNETT(refcat) Dunnett’s two-tailed t test. Used for pairwise comparison. Each group
is compared to a reference category. You can specify a reference cate-
gory in parentheses. The default is the last category. This keyword must
be spelled out in full.

DUNNETTL(refcat) Dunnett’s one-tailed t test. Used for pairwise comparison. This test
indicates whether the mean of each group (except the reference cate-
gory) is smaller than that of the reference category. You can specify a
reference category in parentheses. The default is the last category. This
keyword must be spelled out in full.

DUNNETTR(refcat) Dunnett’s one-tailed t test. Used for pairwise comparison. This test
indicates whether the mean of each group (except the reference cate-
gory) is larger than that of the reference category. You can specify a
reference category in parentheses. The default is the last category. This
keyword must be spelled out in full.

BONFERRONI Bonferroni t test. This test is based on Student’s t statistic and adjusts
the observed significance level for the fact that multiple comparisons
are made. Used for pairwise comparison.

LSD Least significant difference t test. Equivalent to multiple t tests between
all pairs of groups. Used for pairwise comparison. This test does not
control the overall probability of rejecting the hypotheses that some
pairs of means are different, while in fact they are equal.

ONEWAY 1165

SIDAK Sidak t test. Used for pairwise comparison. This test provides tighter
bounds than the Bonferroni test.

GT2 Hochberg’s GT2. Used for pairwise comparison and for detecting
homogeneity subsets. This test is based on the Studentized maximum
modulus test. Unless the cell sizes are extremely unbalanced, this test
is fairly robust even for unequal variances.

GABRIEL Gabriel’s pairwise comparisons test based on the Studentized
maximum modulus test. Used for pairwise comparison and for
detecting homogeneity subsets.

FREGW Ryan-Einot-Gabriel-Welsch’s multiple stepdown procedure based on
an F test. Used for detecting homogeneity subsets.

QREGW Ryan-Einot-Gabriel-Welsch’s multiple stepdown procedure based on
the Studentized range test. Used for detecting homogeneity subsets.

T2 Tamhane’s T2. Used for pairwise comparison. This test is based on a
t test and can be applied in situations where the variances are unequal.

T3 Tamhane’s T3. Used for pairwise comparison. This test is based on the
Studentized maximum modulus test and can be applied in situations
where the variances are unequal.

GH Games and Howell’s pairwise comparisons test based on the Studen-
tized range test. Used for pairwise comparison. This test can be applied
in situations where the variances are unequal.

C Dunnett’s C. Used for pairwise comparison. This test is based on the
weighted average of Studentized ranges and can be applied in situa-
tions where the variances are unequal.

WALLER(kratio) Waller-Duncan t test. Used for detecting homogeneity subsets. This
test uses a Bayesian approach. The k-ratio is the Type 1/Type 2 error
seriousness ratio. The default value is 100. You can specify an
integer greater than 1 within parentheses.

Example
ONEWAY WELL BY EDUC6

/POSTHOC=SNK SCHEFFE ALPHA=.01.

• ONEWAY requests two different post hoc tests. The first uses the Student-Newman-Keuls
test and the second uses Scheffé’s test. Both tests use an alpha of 0.01.

RANGES Subcommand

RANGES produces results for some post hoc tests. It is available only through syntax. You
can always produce the same results using the POSTHOC subcommand.

1166 ONEWAY

• Up to 10 RANGE subcommands are allowed. The effect is cumulative. If you specify more
than one alpha value for different range tests, the last specified value takes effect for all
tests. The default is 0.05.

• Keyword MODLSD on the RANGE subcommand is equivalent to keyword BONFERRONI
on the POSTHOC subcommand. Keyword LSDMOD is an alias for MODLSD.

PLOT MEANS Subcommand

PLOT MEANS produces a chart that plots the subgroup means (the means for each group
defined by values of the factor variable).

STATISTICS Subcommand

By default, ONEWAY displays the ANOVA table showing between- and within-groups sums
of squares, mean squares, degrees of freedom, F ratio, and probability of F. Use STATISTICS
to obtain additional statistics.

BROWNFORSYTHE Brown-Forsythe statistic. The Brown-Forsythe statistic, degrees of
freedom, and the significance level are computed for each dependent
variable.

WELCH Welch statistic. The Welch statistic, degrees of freedom, and the sig-
nificance level are computed for each dependent variable.

DESCRIPTIVES Group descriptive statistics. The statistics include the number of
cases, mean, standard deviation, standard error, minimum, maximum,
and 95% confidence interval for each dependent variable for each
group.

EFFECTS Fixed- and random-effects statistics. The statistics include the stan-
dard deviation, standard error, and 95% confidence interval for the
fixed-effects model, and the standard error, 95% confidence interval,
and estimate of between-components variance for the random-effects
model.

HOMOGENEITY Homogeneity of variance tests. The statistics include Levene statistic,
degrees of freedom, and the significance level displayed in the Test of
Homogeneity of Variances table.

NONE No optional statistics. This is the default.

ALL All statistics available for ONEWAY.

MISSING Subcommand

MISSING controls the treatment of missing values.

• Keywords ANALYSIS and LISTWISE are alternatives. Each can be used with INCLUDE or
EXCLUDE. The default is ANALYSIS and EXCLUDE.

ONEWAY 1167

• A case outside the range specified for the grouping variable is not used.

ANALYSIS Exclude cases with missing values on a pair-by-pair basis. A case with a
missing value for the dependent or grouping variable for a given analysis is
not used for that analysis. This is the default.

LISTWISE Exclude cases with missing values listwise. Cases with missing values for
any variable named are excluded from all analyses.

EXCLUDE Exclude cases with user-missing values. User-missing values are treated as
missing. This is the default.

INCLUDE Include user-missing values. User-missing values are treated as valid values.

MATRIX Subcommand

MATRIX reads and writes matrix data files.

• Either IN or OUT and a matrix file in parentheses are required.

• You cannot specify both IN and OUT on the same ONEWAY procedure.

• Use MATRIX=NONE to explicitly indicate that a matrix data file is not being written or
read.

OUT (filename) Write a matrix data file. Specify either a filename or an asterisk, enclosed in
parentheses. If you specify a filename, the file is stored on disk and can be
retrieved at any time. If you specify an asterisk (*), the matrix data file
replaces the working file but is not stored on disk unless you use SAVE or
XSAVE.

IN (filename) Read a matrix data file. If the matrix data file is the working data file, specify
an asterisk (*) in parentheses. If the matrix data file is another file, specify
the filename in parentheses. A matrix file read from an external file does not
replace the working data file.

NONE Do not read or write matrix data materials. This is the default.

Matrix Output

• ONEWAY writes means, standard deviations, and frequencies to a matrix data file that can
be used by subsequent ONEWAY procedures. See “Format of the Matrix Data File” below
for a description of the file.

Matrix Input

• ONEWAY can read the matrices it writes, and it can also read matrix materials that include
the means, category frequencies, pooled variance, and degrees of freedom for the pooled
variance. The pooled variance has a ROWTYPE_ value MSE, and the vector of degrees of
freedom for the pooled variance has the ROWTYPE_ value DFE.

1168 ONEWAY

• The dependent variables named on ONEWAY can be a subset of the dependent variables
in the matrix data file.

• MATRIX=IN cannot be specified unless a working data file has already been defined. To
read an existing matrix data file at the beginning of a session, use GET to retrieve the
matrix file and then specify IN(*) on MATRIX.

Format of the Matrix Data File

• The matrix data file includes two special variables created by the program: ROWTYPE_
and VARNAME_.

• ROWTYPE_ is a short string variable with values MEAN, STDDEV, and N.
• VARNAME_ is a short string variable that never has values for procedure ONEWAY.

VARNAME_ is included with the matrix materials so that matrices written by ONEWAY can
be read by procedures that expect to read a VARNAME_ variable.

• The independent variable is between variables ROWTYPE_ and VARNAME_.

• The remaining variables in the matrix file are the dependent variables.

Split Files

• When split-file processing is in effect, the first variables in the matrix data file are the split
variables, followed by ROWTYPE_, the independent variable, VARNAME_, and the depen-
dent variables.

• A full set of matrix materials is written for each split-file group defined by the split
variable(s).

• A split variable cannot have the same variable name as any other variable written to the
matrix data file.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by any procedure.

• Generally, matrix rows, independent variables, and dependent variables can be in any
order in the matrix data file read by keyword IN. However, all split-file variables must
precede variable ROWTYPE_, and all split-group rows must be consecutive. ONEWAY
ignores unrecognized ROWTYPE_ values.

Missing Values

Missing-value treatment affects the values written to an matrix data file. When reading a
matrix data file, be sure to specify a missing-value treatment on ONEWAY that is compatible
with the treatment that was in effect when the matrix materials were generated.

ONEWAY 1169

Example

GET FILE=GSS80.
ONEWAY WELL BY EDUC6

/MATRIX=OUT(ONEMTX).

• ONEWAY reads data from file GSS80 and writes one set of matrix materials to the file
ONEMTX.

• The working data file is still GSS80. Subsequent commands are executed on GSS80.

Example

GET FILE=GSS80.
ONEWAY WELL BY EDUC6

/MATRIX=OUT(*).
LIST.

• ONEWAY writes the same matrix as in the example above. However, the matrix data file
replaces the working data file. The LIST command is executed on the matrix file, not on
the GSS80 file.

Example

GET FILE=PRSNNL.
FREQUENCIES VARIABLE=AGE.
ONEWAY WELL BY EDUC6
/MATRIX=IN(ONEMTX).

• This example performs a frequencies analysis on PRSNNL and then uses a different file
for ONEWAY. The file is an existing matrix data file.

• MATRIX=IN specifies the matrix data file.

• ONEMTX does not replace PRSNNL as the working data file.

Example

GET FILE=ONEMTX.
ONEWAY WELL BY EDUC6

/MATRIX=IN(*).

• The GET command retrieves the matrix data file ONEMTX.

• MATRIX=IN specifies an asterisk because the working data file is the matrix data file
ONEMTX. If MATRIX=IN(ONEMTX) is specified, the program issues an error message, since
ONEMTX is already open.

• If the GET command is omitted, the program issues an error message.

References

Speed, M. F. 1976. Response curves in the one way classification with unequal numbers of observations
per cell. Proceedings of the Statistical Computing Section. American Statistical Association.

1170

ORTHOPLAN

ORTHOPLAN is available in the Conjoint option.

ORTHOPLAN [FACTORS=varlist [’labels’] (values [’labels’])...]

[{/REPLACE }]

 {/OUTFILE=file}

[/MINIMUM=value]

[/HOLDOUT=value] [/MIXHOLD={YES}]

 {NO }

Example:
ORTHOPLAN FACTORS=SPEED ’Highest possible speed’
 (70 ’70 mph’ 100 ’100 mph’ 130 ’130mph’)
 WARRANTY ’Length of warranty’
 (’1 year’ ’3 year’ ’5 year’)
 SEATS (2, 4)
 /MINIMUM=9 /HOLDOUT=6.

Overview

ORTHOPLAN generates an orthogonal main-effects plan for a full-concept conjoint analysis.
It can append or replace an existing working data file, or build a working data file if one
does not already exist. The generated plan can be listed in full-concept profile, or card,
format using PLANCARDS. The file created by ORTHOPLAN can be used as the plan file for
CONJOINT.

Options

Number of Cases. You can specify the minimum number of cases to be generated in the plan.

Holdout and Simulation Cases. In addition to the experimental main-effects cases, you can
generate a specified number of holdout cases and identify input data as simulation cases.

Basic Specification

• The basic specification is ORTHOPLAN followed by FACTORS, a variable list, and a val-
ue list in parentheses. ORTHOPLAN will generate cases in the working data file, with
each case representing a profile in the conjoint experimental plan and consisting of a new
combination of the factor values. By default, the smallest possible orthogonal plan is
generated.

• If you are appending to an existing working data file that has previously defined values,
the FACTORS subcommand is optional.

ORTHOPLAN 1171

Subcommand Order

• Subcommands can be named in any order.

Operations

• ORTHOPLAN builds a working data file if one does not already exist by using the variable
and value information on the FACTORS subcommand.

• When ORTHOPLAN appends to a working data file and FACTORS is not used, the factor
levels (values) must be defined on a previous ORTHOPLAN or VALUE LABELS command.

• New variables STATUS_ and CARD_ are created and added to the working data file by
ORTHOPLAN if they do not already exist. STATUS_=0 for experimental cases, 1 for hold-
out cases, and 2 for simulation cases. Holdout cases are judged by the subjects but are not
used when CONJOINT estimates utilities. Instead, they are used as a check on the validity
of the estimated utilities. Simulation cases are entered by the user. They are factor-level
combinations that are not rated by the subjects but are estimated by CONJOINT based on
the ratings of the experimental cases. CARD_ contains the case identification numbers in
the generated plan.

• Duplication between experimental and simulation cases is reported.
• If a user-entered experimental case (STATUS_=0) is duplicated by ORTHOPLAN, only one

copy of the case is kept.

• Occasionally, ORTHOPLAN may generate duplicate experimental cases. One way to
handle these duplicates is simply to edit or delete them, in which case the plan is no longer
orthogonal. Alternatively, you can try running ORTHOPLAN again. With a different seed,
ORTHOPLAN might produce a plan without duplicates. See the SEED subcommand on
SET in the SPSS Base Syntax Reference Guide for more information on the random seed
generator.

• The SPLIT FILE and WEIGHT commands are ignored by ORTHOPLAN.

Limitations

• Missing data are not allowed.

• A maximum of 10 factors and 9 levels can be specified per factor.

• A maximum of 81 cases can be generated by ORTHOPLAN.

Example

ORTHOPLAN FACTORS=SPEED ’Highest possible speed’
 (70 ’70 mph’ 100 ’100 mph’ 130 ’130mph’)
 WARRANTY ’Length of warranty’
 (’1 year’ ’3 year’ ’5 year’)
 SEATS (2, 4) /MINIMUM=9 /HOLDOUT=6 /OUTFILE=’CARPLAN.SAV’.

1172 ORTHOPLAN

• The FACTORS subcommand defines the factors and levels to be used in building the file.
Labels for some of the factors and some of the levels of each factor are also supplied.

• The MINIMUM subcommand specifies that the orthogonal plan should contain at least nine
full-concept cases.

• HOLDOUT specifies that six holdout cases should be generated. A new variable,
STATUS_, is created by ORTHOPLAN to distinguish these holdout cases from the regular
experimental cases. Another variable, CARD_, is created to assign identification numbers
to the plan cases.

• The OUTFILE subcommand saves the plan generated by ORTHOPLAN as a data file so it
can be used at a later date with CONJOINT.

Example

DATA LIST FREE /SPEED WARRANTY SEATS.
VALUE LABELS speed 70 ’70 mph’ 100 ’100 mph’ 130 ’130 mph’
 /WARRANTY 1 ’1 year’ 3 ’3 year’ 5 ’5 year’
 /SEATS 2 ’2 seats’ 4 ’4 seats’.
BEGIN DATA
130 5 2
130 1 4
END DATA.
ORTHOPLAN
 /OUTFILE=’CARPLAN.SAV’.

• In this example, ORTHOPLAN appends the plan to the working data file and uses the vari-
ables and values previously defined in the working data file as the factors and levels of
the plan.

• The data between BEGIN DATA and END DATA are assumed to be simulation cases and are
assigned a value of 2 on the newly created STATUS_ variable.

• The OUTFILE subcommand saves the plan generated by ORTHOPLAN as a data file so it
can be used at a later date with CONJOINT.

FACTORS Subcommand

FACTORS specifies the variables to be used as factors and the values to be used as levels in
the plan.

• FACTORS is required for building a new working data file or replacing an existing one. It
is optional for appending to an existing file.

• The keyword FACTORS is followed by a variable list, an optional label for each variable,
a list of values for each variable, and optional value labels.

• The list of values and the value labels are enclosed in parentheses. Values can be numeric
or they can be strings enclosed in apostrophes.

• The optional variable and value labels are enclosed in apostrophes.

• If the FACTORS subcommand is not used, every variable in the working data file (other
than STATUS_ and CARD_) is used as a factor, and level information is obtained from the
value labels that are defined in the working data file. ORTHOPLAN must be able to find
value information either from a FACTORS subcommand or from a VALUE LABELS com-
mand. (See the VALUE LABELS command in the SPSS Base Syntax Reference Guide.)

ORTHOPLAN 1173

Example
ORTHOPLAN FACTORS=SPEED ’Highest possible speed’
 (70 ’70 mph’ 100 ’100 mph’ 130 ’130mph’)
 WARRANTY ’Length of warranty’
 (1 ’1 year’ 3 ’3 year’ 5 ’5 year’)
 SEATS ’Number of seats’ (2 ’2 seats’ 4 ’4 seats’)
 EXCOLOR ’Exterior color’
 INCOLOR ’Interior color’ (’RED’ ’BLUE’ ’SILVER’).

• SPEED, WARRANTY, SEATS, EXCOLOR, and INCOLOR are specified as the factors. They
are given the labels Highest possible speed, Length of warranty, Number of seats, Exterior
color, and Interior color.

• Following each factor and its label are the list of values and the value labels in parentheses.
Note that the values for two of the factors, EXCOLOR and INCOLOR, are the same and thus
need to be specified only once after both factors are listed.

REPLACE Subcommand

REPLACE can be specified to indicate that the working data file, if present, should be re-
placed by the generated plan. There is no further specification after the REPLACE keyword.

• By default, the working data file is not replaced. Any new variables specified on a FACTORS
subcommand plus the variables STATUS_ and CARD_ are appended to the working data file.

• REPLACE should be used when the current working data file has nothing to do with the
plan file to be built. The working data file will be replaced with one that has variables
STATUS_, CARD_, and any other variables specified on the FACTORS subcommand.

• If REPLACE is specified, the FACTORS subcommand is required.

OUTFILE Subcommand

OUTFILE saves the orthogonal design to an SPSS data file. The only specification is a name
for the output file.
• By default, a new data file is not created. Any new variables specified on a FACTORS sub-

command plus the variables STATUS_ and CARD_ are appended to the working data file.

• The output data file contains variables STATUS_, CARD_, and any other variables speci-
fied on the FACTORS subcommand.

• The file created by OUTFILE can be used by other SPSS commands, such as PLANCARDS
and CONJOINT.

• If both OUTFILE and REPLACE are specified, REPLACE is ignored.

MINIMUM Subcommand

MINIMUM specifies a minimum number of cases for the plan.
• By default, the minimum number of cases necessary for the orthogonal plan is generated.

1174 ORTHOPLAN

• MINIMUM is followed by a positive integer less than or equal to the total number of cases
that can be formed from all possible combinations of the factor levels.

• If ORTHOPLAN cannot generate at least the number of cases requested on MINIMUM, it
will generate the largest number it can that fits the specified factors and levels.

HOLDOUT Subcommand

HOLDOUT creates holdout cases in addition to the regular plan cases. Holdout cases are
judged by the subjects but are not used when CONJOINT estimates utilities.

• If HOLDOUT is not specified, no holdout cases are produced.

• HOLDOUT is followed by a positive integer less than or equal to the total number of cases
that can be formed from all possible combinations of factor levels.

• Holdout cases are generated from another random plan, not the main-effects experimental
plan. The holdout cases will not duplicate the experimental cases or each other.

• The experimental and holdout cases will be randomly mixed in the generated plan or
the holdout cases will be listed after the experimental cases, depending on subcommand
MIXHOLD. The value of STATUS_ for holdout cases is 1. Any simulation cases will fol-
low the experimental and holdout cases.

MIXHOLD Subcommand

MIXHOLD indicates whether holdout cases should be randomly mixed with the experimental
cases or should appear separately after the experimental plan in the file.

• If MIXHOLD is not specified, the default is NO, meaning holdout cases will appear after
the experimental cases in the file.

• MIXHOLD followed by keyword YES requests that the holdout cases be randomly mixed
with the experimental cases.

• MIXHOLD specified without a HOLDOUT subcommand has no effect.

1175

OVERALS

OVERALS is available in the Categories option.

OVERALS VARIABLES=varlist (max)

/ANALYSIS=varlist[({ORDI**})]
{SNOM }
{MNOM }
{NUME }

/SETS= n (# of vars in set 1, ..., # of vars in set n)

[/NOBSERVATIONS=value]

[/DIMENSION={2** }]
{value}

[/INITIAL={NUMERICAL**}]
{RANDOM }

[/MAXITER={100**}]
{value}

[/CONVERGENCE={.00001**}]
{value }

[/PRINT=[DEFAULT] [FREQ**] [QUANT] [CENTROID**]
[HISTORY] [WEIGHTS**]
[OBJECT] [FIT] [NONE]]

[/PLOT=[NDIM=({1 ,2 }**)]
{value,value}
{ALL ,MAX }

[DEFAULT[(n)]] [OBJECT**[(varlist)][(n)]]
[QUANT[(varlist)][(n)]] [LOADINGS**[(n)]]
[TRANS[(varlist)]]Æ[CENTROID[(varlist)][(n)]]
[NONE]]

[/SAVE=[rootname][(value)]]

[/MATRIX=OUT({* })]
{file}

**Default if subcommand or keyword is omitted.

Overview

OVERALS performs nonlinear canonical correlation analysis on two or more sets of
variables. Variables can have different optimal scaling levels, and no assumptions are made
about the distribution of the variables or the linearity of the relationships.

Options

Optimal scaling levels. You can specify the level of optimal scaling at which you want to
analyze each variable.

Number of dimensions. You can specify how many dimensions OVERALS should compute.

1176 Syntax Reference

Iterations and convergence. You can specify the maximum number of iterations and the value
of a convergence criterion.

Display output. The output can include all available statistics, just the default statistics, or just
the specific statistics you request. You can also control whether some of these statistics are
plotted.

Saving scores. You can save object scores in the working data file.

Writing matrices. You can write a matrix data file containing quantification scores, centroids,
weights, and loadings for use in further analyses.

Basic Specification

• The basic specification is command OVERALS, the VARIABLES subcommand, the
ANALYSIS subcommand, and the SETS subcommand. By default, OVERALS estimates
a two-dimensional solution and displays a table listing optimal scaling levels of each
variable by set, eigenvalues and loss values by set, marginal frequencies, centroids
and weights for all variables, and plots of the object scores and component loadings.

Subcommand Order

• The VARIABLES subcommand, ANALYSIS subcommand, and SETS subcommand must
appear in that order before all other subcommands.

• Other subcommands can appear in any order.

Operations

• If the ANALYSIS subcommand is specified more than once, OVERALS is not executed.
For all other subcommands, if a subcommand is specified more than once, only the last
occurrence is executed.

• OVERALS treats every value in the range 1 to the maximum value specified on VARIABLES as
a valid category. To avoid unnecessary output, use the AUTORECODE or RECODE command
to recode a categorical variable with nonsequential values or with a large number of categories.
For variables treated as numeric, recoding is not recommended because the characteristic of
equal intervals in the data will not be maintained (see the SPSS Syntax Reference Guide for
more information on AUTORECODE and RECODE).

Limitations

• String variables are not allowed; use AUTORECODE to recode nominal string variables.

• The data must be positive integers. Zeros and negative values are treated as system-
missing, which means that they are excluded from the analysis. Fractional values are
truncated after the decimal and are included in the analysis. If one of the levels of a
categorical variable has been coded 0 or some negative value and you want to treat it

OVERALS 1177

as a valid category, use the AUTORECODE or RECODE command to recode the values
of that variable.

• OVERALS ignores user-missing value specifications. Positive user-missing values less
than the maximum value specified on the VARIABLES subcommand are treated as valid
category values and are included in the analysis. If you do not want the category included,
use COMPUTE or RECODE to change the value to something outside of the valid range.
Values outside of the range (less than 1 or greater than the maximum value) are treated
as system-missing and are excluded from the analysis.

• If one variable in a set has missing data, all variables in that set are missing for that object
(case).

• Each set must have at least three valid (nonmissing, non-empty) cases.

Example

OVERALS VARIABLES=PRETEST1 PRETEST2 POSTEST1 POSTEST2(20)
SES(5) SCHOOL(3)

/ANALYSIS=PRETEST1 TO POSTEST2 (NUME) SES (ORDI) SCHOOL (SNOM)
/SETS=3(2,2,2)
/PRINT=OBJECT FIT
/PLOT=QUANT(PRETEST1 TO SCHOOL).

• VARIABLES defines the variables and their maximum values.

• ANALYSIS specifies that all of the variables from PRETEST1 to POSTEST2 are to be
analyzed at the numeric level of optimal scaling, SES at the ordinal level, and SCHOOL
as a single nominal. These are all of the variables that will be used in the analysis.

• SETS specifies that there are three sets of variables to be analyzed and two variables in
each set.

• PRINT lists the object and fit scores.

• PLOT plots the single- and multiple-category coordinates of all of the variables in the
analysis.

VARIABLES Subcommand

VARIABLES specifies all of the variables in the current OVERALS procedure.

• The VARIABLES subcommand is required and precedes all other subcommands. The
actual word VARIABLES can be omitted.

• Each variable or variable list is followed by the maximum value in parentheses.

ANALYSIS Subcommand

ANALYSIS specifies the variables to be used in the analysis and the optimal scaling level at
which each variable is to be analyzed.

• The ANALYSIS subcommand is required and follows the VARIABLES subcommand.

• The specification on ANALYSIS is a variable list and an optional keyword in parentheses
indicating the level of optimal scaling.

1178 Syntax Reference

• The variables on ANALYSIS must also be specified on the VARIABLES subcommand.

• Only active variables are listed on the ANALYSIS subcommand. Active variables are those
used in the computation of the solution. Passive variables, those listed on the VARIABLES
subcommand but not on the ANALYSIS subcommand, are ignored in the OVERALS solution.
Object score plots can still be labeled by passive variables.

The following keywords can be specified to indicate the optimal scaling level:

MNOM Multiple nominal. The quantifications can be different for each dimension. When
all variables are multiple nominal and there is only one variable in each set,
OVERALS gives the same results as HOMALS.

SNOM Single nominal. OVERALS gives only one quantification for each category. Objects
in the same category (cases with the same value on a variable) obtain the same
quantification. When all variables are SNOM, ORDI, or NUME, and there is only one
variable per set, OVERALS will give the same results as PRINCALS.

ORDI Ordinal. This is the default for variables listed without optimal scaling levels. The
order of the categories of the observed variable is preserved in the quantified variable.

NUME Numerical. Interval or ratio scaling level. OVERALS assumes that the observed
variable already has numerical values for its categories. When all variables are
quantified at the numerical level and there is only one variable per set, the
OVERALS analysis is analogous to classical principal components analysis.

These keywords can apply to a variable list as well as to a single variable. Thus, the default
ORDI is not applied to a variable without a keyword if a subsequent variable on the list has a
keyword.

SETS Subcommand

SETS specifies how many sets of variables there are and how many variables are in each set.

• SETS is required and must follow the ANALYSIS subcommand.

• SETS is followed by an integer to indicate the number of variable sets. Following this
integer is a list of values in parentheses indicating the number of variables in each set.

• There must be at least two sets.
• The sum of the values in parentheses must equal the number of variables specified on

the ANALYSIS subcommand. The variables in each set are read consecutively from the
ANALYSIS subcommand.

For example,

/SETS=2(2,3)

indicates that there are two sets. The first two variables named on ANALYSIS are the first set,
and the last three variables named on ANALYSIS are the second set.

OVERALS 1179

NOBSERVATIONS Subcommand

NOBSERVATIONS specifies how many cases are used in the analysis.

• If NOBSERVATIONS is not specified, all available observations in the working data file are
used.

• NOBSERVATIONS is followed by an integer, indicating that the first n cases are to be used.

DIMENSION Subcommand

DIMENSION specifies the number of dimensions you want OVERALS to compute.

• If you do not specify the DIMENSION subcommand, OVERALS computes two dimensions.

• DIMENSION is followed by an integer indicating the number of dimensions.

• If all the variables are SNOM (single nominal), ORDI (ordinal), or NUME (numerical), the
maximum number of dimensions you can specify is the total number of variables on the
ANALYSIS subcommand.

• If some or all of the variables are MNOM (multiple nominal), the maximum number of di-
mensions you can specify is the number of MNOM variable levels (categories) plus the
number of nonMNOM variables, minus the number of MNOM variables.

• The maximum number of dimensions must be less than the number of observations minus 1.

• If the number of sets is two and all variables are SNOM, ORDI, or NUME, the number of
dimensions should not be more than the number of variables in the smaller set.

• If the specified value is too large, OVERALS tries to adjust the number of dimensions to
the allowable maximum. It might not be able to adjust if there are MNOM variables with
missing data.

INITIAL Subcommand

The INITIAL subcommand specifies the method used to compute the initial configuration.

• The specification on INITIAL is keyword NUMERICAL or RANDOM. If the INITIAL subcom-
mand is not specified, NUMERICAL is the default.

NUMERICAL Treat all variables except multiple nominal as numerical. This is usually best
to use when there are no SNOM variables.

RANDOM Compute a random initial configuration. This should be used only when
some or all of the variables are SNOM.

MAXITER Subcommand

MAXITER specifies the maximum number of iterations OVERALS can go through in its
computations.

• If MAXITER is not specified, OVERALS will iterate up to 100 times.

• The specification on MAXITER is an integer indicating the maximum number of iterations.

1180 Syntax Reference

CONVERGENCE Subcommand

CONVERGENCE specifies a convergence criterion value. OVERALS stops iterating if the
difference in fit between the last two iterations is less than the CONVERGENCE value.

• The default CONVERGENCE value is 0.00001.
• The specification on CONVERGENCE is any value greater than 0.000001. (Values less

than this might seriously affect performance.)

PRINT Subcommand

PRINT controls which statistics are included in your display output. The default output
includes a table listing optimal scaling levels of each variable by set, eigenvalues and loss
values by set by dimension, and the output produced by keywords FREQ, CENTROID, and
WEIGHTS.

The following keywords are available:

FREQ Marginal frequencies for the variables in the analysis.

HISTORY History of the iterations.

FIT Multiple fit, single fit, and single loss per variable.

CENTROID Category quantification scores, the projected centroids, and the centroids.

OBJECT Object scores.

QUANT Category quantifications and the single and multiple coordinates.

WEIGHTS Weights and component loadings.

DEFAULT FREQ, CENTROID, and WEIGHTS.

NONE Summary loss statistics.

PLOT Subcommand

PLOT can be used to produce plots of transformations, object scores, coordinates, centroids,
and component loadings.

• If PLOT is not specified, plots of the object scores and component loadings are produced.

The following keywords can be specified on PLOT:

LOADINGS Plot of the component loadings.

OBJECT Plot of the object scores.

TRANS Plot of category quantifications.

QUANT Plot of all category coordinates.

CENTROID Plot of all category centroids.

OVERALS 1181

DEFAULT OBJECT and LOADINGS.

NONE No plots.

• Keywords OBJECT, QUANT, and CENTROID can each be followed by a variable list in
parentheses to indicate that plots should be labeled with these variables. For QUANT and
CENTROID, the variables must be specified on both the VARIABLES and the ANALYSIS
subcommands. For OBJECT, the variables must be specified on VARIABLES but need not
appear on ANALYSIS. This means that variables not used in the computations can still be
used to label OBJECT plots. If the variable list is omitted, the default plots are produced.

• Object score plots use category labels corresponding to all categories within the defined
range. Objects in a category that is outside the defined range are labeled with the label
corresponding to the category immediately following the defined maximum category.

• If TRANS is followed by a variable list, only plots for those variables are produced. If a
variable list is not specified, plots are produced for each variable.

• All of the keywords except NONE can be followed by an integer in parentheses to indicate
how many characters of the variable or value label are to be used on the plot. (If you
specified a variable list after OBJECT, CENTROID, TRANS, or QUANT, you can specify the
value in parentheses after the list.) The value can range from 1 to 20. If the value is
omitted, 12 characters are used. Spaces between words count as characters.

• If a variable label is missing, the variable name is used for that variable. If a value label
is missing, the actual value is used.

• You should make sure that your variable and value labels are unique by at least one letter
in order to distinguish them on the plots.

• When points overlap, the points involved are described in a summary following the plot.

In addition to the plot keywords, the following can be specified:

NDIM Dimension pairs to be plotted. NDIM is followed by a pair of values in parentheses.
If NDIM is not specified, plots are produced for dimension 1 versus dimension 2.

• The first value indicates the dimension that is plotted against all higher dimensions. This
value can be any integer from 1 to the number of dimensions minus 1.

• The second value indicates the highest dimension to be used in plotting the dimension
pairs. This value can be any integer from 2 to the number of dimensions.

• Keyword ALL can be used instead of the first value to indicate that all dimensions are
paired with higher dimensions.

• Keyword MAX can be used instead of the second value to indicate that plots should be
produced up to and including the highest dimension fit by the procedure.

Example
OVERALS COLA1 COLA2 JUICE1 JUICE2 (4)
/ANALYSIS=COLA1 COLA2 JUICE1 JUICE2 (SNOM)
/SETS=2(2,2)
/PLOT NDIM(1,3) QUANT(5).

1182 Syntax Reference

• The NDIM(1,3) specification indicates that plots should be produced for two dimension
pairs—dimension 1 versus dimension 2 and dimension 1 versus dimension 3.

• QUANT requests plots of the category quantifications. The (5) specification indicates that
the first five characters of the value labels are to be used on the plots.

Example
OVERALS COLA1 COLA2 JUICE1 JUICE2 (4)
/ANALYSIS=COLA1 COLA2 JUICE1 JUICE2 (SNOM)
/SETS=2(2,2)
/PLOT NDIM(ALL,3) QUANT(5).

• This plot is the same as above except for the ALL specification following NDIM. This
indicates that all possible pairs up to the second value should be plotted, so QUANT plots
will be produced for dimension 1 versus dimension 2, dimension 2 versus dimension 3,
and dimension 1 versus dimension 3.

SAVE Subcommand

SAVE lets you add variables containing the object scores computed by OVERALS to the
working data file.

• If SAVE is not specified, object scores are not added to the working data file.

• A variable rootname can be specified on the SAVE subcommand to which OVERALS adds
the number of the dimension. Only one rootname can be specified, and it can contain up
to six characters.

• If a rootname is not specified, unique variable names are automatically generated. The
variable names are OVEn_m, where n is a dimension number and m is a set number. If
three dimensions are saved, the first set of names are OVE1_1, OVE2_1, and OVE3_1. If
another OVERALS is then run, the variable names for the second set are OVE1_2, OVE2_2,
OVE3_2, and so on.

• Following the name, the number of dimensions for which you want object scores saved
can be listed in parentheses. The number cannot exceed the value of the DIMENSION
subcommand.

• The prefix should be unique for each OVERALS command in the same session. If it is not,
OVERALS replaces the prefix with DIM, OBJ, or OBSAVE. If all of these already exist,
SAVE is not executed.

• If the number of dimensions is not specified, the SAVE subcommand saves object scores
for all dimensions.

• If you replace the working data file by specifying an asterisk (*) on a MATRIX subcom-
mand, the SAVE subcommand is not executed.

Example
OVERALS CAR1 CAR2 CAR3(5) PRICE (10)
/SET=2(3,1)
/ANALYSIS=CAR1 TO CAR3(SNOM) PRICE(NUME)
/DIMENSIONS=3
/SAVE=DIM(2).

OVERALS 1183

• Three single nominal variables, CAR1, CAR2, and CAR3, each with five categories, and
one numeric level variable, with ten categories, are analyzed.

• The DIMENSIONS subcommand requests results for three dimensions.

• SAVE adds the object scores from the first two dimensions to the working data file. The
names of these new variables will be DIM00001 and DIM00002, respectively.

MATRIX Subcommand

The MATRIX subcommand is used to write category quantifications, coordinates, centroids,
weights, and component loadings to a matrix data file.

• The specification on MATRIX is keyword OUT and a file enclosed in parentheses.

• You can specify the file with either an asterisk (*) to indicate that the working data file is
to be replaced or with the name of an external file.

• All values are written to the same file.

• The matrix data file has one case for each value of each original variable.

The variables of the matrix data file and their values are:

ROWTYPE_ String variable containing value QUANT for the category quantifications,
SCOOR_ for the single-category coordinates, MCOOR_ for multiple-
category coordinates, CENTRO_ for centroids, PCENTRO_ for projected
centroids, WEIGHT_ for weights, and LOADING_ for the component
scores.

LEVEL String variable containing the values (or value labels if present) of each
original variable for category quantifications. For cases with
ROWTYPE_=LOADING_ or WEIGHT_, the value of LEVEL is blank.

VARNAME_ String variable containing the original variable names.

VARTYPE_ String variable containing values MULTIPLE, SINGLE N, ORDINAL, or
NUMERICAL, depending on the level of optimal scaling specified for the
variable.

SET_ The set number of the original variable.

DIM1...DIMn Numeric variables containing the category quantifications, the single-
category coordinates, multiple-category coordinates, weights, centroids,
projected centroids, and component loadings for each dimension. Each one
of these variables is labeled DIMn, where n represents the dimension number.
If any of these values cannot be computed, they are assigned 0 in the file.

See the SPSS Syntax Reference Guide for more information on matrix data files.

1185

PACF

PACF [VARIABLES=] series names

 [/DIFF={1}]
 {n}

 [/SDIFF={1}]
 {n}

 [/PERIOD=n]

 [/{NOLOG**}]
 {LN }

 [/SEASONAL]

 [/MXAUTO={16**}]
 {n }

 [/APPLY [=’model name’]]

**Default if the subcommand is omitted and there is no corresponding specification on the TSET command.

Example
PACF TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PERIOD=12
 /MXAUTO=25.

Overview

PACF displays and plots the sample partial autocorrelation function of one or more time
series. You can also display and plot the partial autocorrelations of transformed series by
requesting natural log and differencing transformations from within the procedure.

Options

Modifying the Series. You can request a natural log transformation of the series using the LN
subcommand and seasonal and nonseasonal differencing to any degree using the SDIFF
and DIFF subcommands. With seasonal differencing, you can specify the periodicity on the
PERIOD subcommand.

Statistical Output. With the MXAUTO subcommand, you can specify the number of lags for
which you want values displayed and plotted, overriding the maximum specified on TSET.
You can also display and plot values only at periodic lags using the SEASONAL subcommand.

1186 PACF

Basic Specification

The basic specification is one or more series names. For each series specified, PACF auto-
matically displays the partial autocorrelation value and standard error value for each lag. It
also plots the partial autocorrelations and marks the bounds of two standard errors on the
plot. By default, PACF displays and plots partial autocorrelations for up to 16 lags or the
number of lags specified on TSET.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.
• Other subcommands can be specified more than once, but only the last specification of

each one is executed.

Operations

• Subcommand specifications apply to all series named on the PACF command.

• If the LN subcommand is specified, any differencing requested on that PACF command is
done on log-transformed series.

• Confidence limits are displayed in the plot, marking the bounds of two standard errors at
each lag.

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of series named
on the list.

Example

PACF TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PERIOD=12
 /MXAUTO=25.

• This example produces a plot of the partial autocorrelation function for the series TICKETS
after a natural log transformation, differencing, and seasonal differencing have been
applied to the series. Along with the plot, the partial autocorrelation value and standard
error are displayed for each lag.

• LN transforms the data using the natural logarithm (base e) of the series.

PACF 1187

• DIFF differences the series once.

• SDIFF and PERIOD apply one degree of seasonal differencing with a period of 12.

• MXAUTO specifies that the maximum number of lags for which output is to be produced is 25.

VARIABLES Subcommand

VARIABLES specifies the series names and is the only required subcommand. The actual
keyword VARIABLES can be omitted.

DIFF Subcommand

DIFF specifies the degree of differencing used to convert a nonstationary series to a stationary
one with a constant mean and variance before the partial autocorrelations are computed.

• You can specify 0 or any positive integer on DIFF.
• If DIFF is specified without a value, the default is 1.

• The number of values used in the calculations decreases by 1 for each degree of differencing.

Example
PACF SALES
 /DIFF=1.

• In this example, the series SALES will be differenced once before the partial autocorrela-
tions are computed and plotted.

SDIFF Subcommand

If the series exhibits a seasonal or periodic pattern, you can use the SDIFF subcommand to
seasonally difference the series before obtaining partial autocorrelations.

• The specification on SDIFF indicates the degree of seasonal differencing and can be 0 or
any positive integer.

• If SDIFF is specified without a value, the degree of seasonal differencing defaults to 1.

• The number of seasons used in the calculations decreases by 1 for each degree of seasonal
differencing.

• The length of the period used by SDIFF is specified on the PERIOD subcommand. If the
PERIOD subcommand is not specified, the periodicity established on the TSET or DATE
command is used (see the PERIOD subcommand).

1188 PACF

PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF or SEASONAL subcommand.

• The specification on PERIOD indicates how many observations are in one period or season
and can be any positive integer greater than 1.

• PERIOD is ignored if it is used without the SDIFF or SEASONAL subcommand.

• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If
TSET PERIOD is not specified, the periodicity established on the DATE command is used.
If periodicity was not established anywhere, the SDIFF and SEASONAL subcommands will
not be executed.

Example
PACF SALES
 /SDIFF=1
 /PERIOD=12.

• This PACF command applies one degree of seasonal differencing with a periodicity of 12
to the series SALES before partial autocorrelations are computed and plotted.

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base e) of the series and is used to remove
varying amplitude over time. NOLOG indicates that the data should not be log transformed.
NOLOG is the default.

• If you specify LN on a PACF command, any differencing requested on that command will
be done on the log-transformed series.

• There are no additional specifications on LN or NOLOG.

• Only the last LN or NOLOG subcommand on a PACF command is executed.

• If a natural log transformation is requested when there are values in the series that are
less than or equal to 0, the PACF will not be produced for that series because nonpositive
values cannot be log transformed.

• NOLOG is generally used with an APPLY subcommand to turn off a previous LN specification.

Example
PACF SALES
 /LN.

• This command transforms the series SALES using the natural log transformation and then
computes and plots partial autocorrelations.

SEASONAL Subcommand

Use SEASONAL to focus attention on the seasonal component by displaying and plotting
autocorrelations only at periodic lags.

• There are no additional specifications on SEASONAL.

PACF 1189

• If SEASONAL is specified, values are displayed and plotted at the periodic lags indicated on
the PERIOD subcommand. If PERIOD is not specified, the periodicity established on the
TSET or DATE command is used (see the PERIOD subcommand on p. 1188).

• If SEASONAL is not specified, partial autocorrelations for all lags up to the maximum are
displayed and plotted.

Example
PACF SALES
 /SEASONAL
 /PERIOD=12.

• In this example, partial autocorrelations are displayed and plotted at every 12th lag.

MXAUTO Subcommand

MXAUTO specifies the maximum number of lags for a series.
• The specification on MXAUTO must be a positive integer.

• If MXAUTO is not specified, the default number of lags is the value set on TSET MXAUTO.
If TSET MXAUTO is not specified, the default is 16.

• The value on MXAUTO overrides the value set on TSET MXAUTO.

Example
PACF SALES
 /MXAUTO=14.

• This command specifies 14 for the maximum number of partial autocorrelations that can
be displayed and plotted for series SALES.

APPLY Subcommand

APPLY allows you to use a previously defined PACF model without having to repeat the
specifications.
• The only specification on APPLY is the name of a previous model enclosed in apostrophes.

If a model name is not specified, the model specified on the previous PACF command is
used.

• To change one or more model specifications, specify the subcommands of only those
portions you want to change after the APPLY subcommand.

• If no series are specified on the PACF command, the series that were originally specified
with the model being reapplied are used.

• To change the series used with the model, enter new series names before or after the APPLY
subcommand.

1190 PACF

Example
PACF TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PER=12
 /MXAUTO=25.
PACF ROUNDTRP
 /APPLY.

• The first command specifies a maximum of 25 partial autocorrelations for the series
TICKETS after it has been log transformed, differenced once, and had one degree of
seasonal differencing with a periodicity of 12 applied to it. This model is assigned the
default name MOD_1.

• The second command displays and plots partial autocorrelations for series ROUNDTRP
using the same model that was specified for series TICKETS.

References

Box, G. E. P., and G. M. Jenkins. 1976. Time series analysis: Forecasting and control. San
Francisco: Holden-Day.

1191

PARTIAL CORR

PARTIAL CORR [VARIABLES=] varlist [WITH varlist]
 BY varlist [(levels)] [/varlist...]

 [/SIGNIFICANCE={TWOTAIL**}]
 {ONETAIL }

 [/STATISTICS=[NONE**] [CORR] [DESCRIPTIVES] [BADCORR] [ALL]]

 [/FORMAT={MATRIX** }]
 {SERIAL }
 {CONDENSED}

 [/MISSING=[{LISTWISE**}] [{EXCLUDE**}]]
 {ANALYSIS } {INCLUDE }

 [/MATRIX= [IN({* })] [OUT({* })]]
 {file} {file}

**Default if the subcommand is omitted.

Example
PARTIAL CORR VARIABLES=PUBTRANS MECHANIC BUSDRVER BY NETPURSE(1).

Overview

PARTIAL CORR produces partial correlation coefficients that describe the relationship
between two variables while adjusting for the effects of one or more additional variables.
PARTIAL CORR calculates a matrix of Pearson product-moment correlations. It can also
read the zero-order correlation matrix as input. Other procedures producing zero-order
correlation matrices that can be read by PARTIAL CORR include CORRELATIONS,
REGRESSION, DISCRIMINANT, and FACTOR.

Options

Significance Levels. By default, the significance level for each partial correlation coeffi-
cient is based on a two-tailed test. Optionally, you can request a one-tailed test using the
SIGNIFICANCE subcommand.

Statistics. In addition to the partial correlation coefficient, degrees of freedom, and signif-
icance level, you can obtain the mean, standard deviation, and number of nonmissing
cases for each variable, and zero-order correlation coefficients for each pair of variables
using the STATISTICS subcommand.

Format. You can specify condensed format, which suppresses the degrees of freedom and
significance level for each coefficient, and you can print only nonredundant coefficients
in serial string format using the FORMAT subcommand.

1192 PARTIAL CORR

Matrix Input and Output. You can read and write zero-order correlation matrices using the
MATRIX subcommand.

Basic Specification

The basic specification is the VARIABLES subcommand, which specifies a list of variables
to be correlated and one or more control variables following keyword BY. PARTIAL CORR
calculates the partial correlation of each variable with every other variable specified on the
correlation variable list.

Subcommand Order

Subcommands can be specified in any order.

• If VARIABLES is the first subcommand used on PARTIAL CORR, keyword VARIABLES can
be omitted.

• If VARIABLES is not the first subcommand specified on PARTIAL CORR, both the subcom-
mand keyword VARIABLES and the equals sign are required.

Operations

PARTIAL CORR produces one matrix of partial correlation coefficients for each of up to five
order values. For each coefficient, PARTIAL CORR prints the degrees of freedom and the signif-
icance level.

Limitations

• Maximum 25 variable lists on a single PARTIAL CORR command. Each variable list
contains a correlation list, a control list, and order values.

• Maximum 400 variables total can be named or implied per PARTIAL CORR command.

• Maximum 100 control variables.

• Maximum 5 different order values per single list. The largest order value that can be
specified is 100.

Example

PARTIAL CORR VARIABLES=PUBTRANS MECHANIC BUSDRVER BY NETPURSE(1).

• PARTIAL CORR produces a square matrix containing three unique first-order partial
correlations: PUBTRANS with MECHANIC controlling for NETPURSE; PUBTRANS with
BUSDRVER controlling for NETPURSE; and MECHANIC with BUSDRVER controlling for
NETPURSE.

PARTIAL CORR 1193

VARIABLES Subcommand

VARIABLES requires a correlation list of one or more pairs of variables for which partial
correlations are desired and a control list of one or more variables that will be used as
controls for the variables in the correlation list, followed by optional order values in
parentheses.

• The correlation list specifies pairs of variables to be correlated while controlling for the
variables in the control list.

• To request a square or lower-triangular matrix, do not use keyword WITH in the correla-
tion list. This obtains the partial correlation of every variable with every other variable in
the list.

• To request a rectangular matrix, specify a list of correlation variables followed by
keyword WITH and a second list of variables. This obtains the partial correlation of
specific variable pairs. The first variable list defines the rows of the matrix and the second
list defines the columns.

• The control list is specified after keyword BY.

• The correlation between a pair of variables is referred to as a zero-order correlation.
Controlling for one variable produces a first-order partial correlation, controlling for two
variables produces a second-order partial, and so on.

• You can specify order values in parentheses following the control list to indicate the exact
partials to be computed. These values also determine the partial correlation matrix or
matrices to be printed. Up to five order values can be specified. Separate each value with
at least one space or comma. The default order value is the number of control variables.

• One partial is produced for every unique combination of control variables for each order
value.

• To specify multiple analyses, use multiple VARIABLES subcommands or a slash to sepa-
rate each set of specifications on one VARIABLES subcommand. PARTIAL CORR computes
the zero-order correlation matrix for each analysis list separately.

Example
PARTIAL CORR RENT FOOD PUBTRANS WITH TEACHER MANAGER BY NETSALRY(1).

• PARTIAL CORR produces a rectangular matrix. Variables RENT, FOOD, and PUBTRANS
form the matrix rows, and variables TEACHER and MANAGER form the columns.

• Keyword VARIABLES is omitted. This is allowed because the variable list is the first spec-
ification on PARTIAL CORR.

Example
PARTIAL CORR RENT WITH TEACHER BY NETSALRY, NETPRICE (1).
PARTIAL CORR RENT WITH TEACHER BY NETSALRY, NETPRICE (2).
PARTIAL CORR RENT WITH TEACHER BY NETSALRY, NETPRICE (1,2).
PARTIAL CORR RENT FOOD PUBTRANS BY NETSALRY NETPURSE NETPRICE
(1,3).

• The first PARTIAL CORR produces two first-order partials: RENT with TEACHER control-
ling for NETSALRY, and RENT with TEACHER controlling for NETPRICE.

1194 PARTIAL CORR

• The second PARTIAL CORR produces one second-order partial of RENT with TEACHER
controlling simultaneously for NETSALRY and NETPRICE.

• The third PARTIAL CORR specifies both sets of partials specified by the previous two
commands.

• The fourth PARTIAL CORR produces three first-order partials (controlling for NETSALRY,
NETPURSE, and NETPRICE individually) and one third-order partial (controlling for all
three control variables simultaneously).

Example
PARTIAL CORR RENT FOOD WITH TEACHER BY NETSALRY NETPRICE (1,2)

/WCLOTHES MCLOTHES BY NETPRICE (1).

• PARTIAL CORR produces three matrices for the first correlation list, control list, and order
values.

• The second correlation list, control list, and order value produce one matrix.

SIGNIFICANCE Subcommand

SIGNIFICANCE determines whether the significance level is based on a one-tailed or two-
tailed test.
• By default, the significance level is based on a two-tailed test. This is appropriate when

the direction of the relationship between a pair of variables cannot be specified in advance
of the analysis.

• When the direction of the relationship can be determined in advance, a one-tailed test is
appropriate.

TWOTAIL Two-tailed test of significance. This is the default.

ONETAIL One-tailed test of significance.

STATISTICS Subcommand

By default, the partial correlation coefficient, degrees of freedom, and significance level
are displayed. Use STATISTICS to obtain additional statistics.

• If both CORR and BADCORR are requested, CORR takes precedence over BADCORR and
the zero-order correlations are displayed.

CORR Zero-order correlations with degrees of freedom and significance level.

DESCRIPTIVES Mean, standard deviation, and number of nonmissing cases. Descriptive
statistics are not available with matrix input.

BADCORR Zero-order correlation coefficients only if any of the zero-order correlations
cannot be computed. Noncomputable coefficients are displayed as a period.

NONE No additional statistics. This is the default.

ALL All additional statistics available with PARTIAL CORR.

PARTIAL CORR 1195

FORMAT Subcommand

FORMAT determines page format.
• If both CONDENSED and SERIAL are specified, only SERIAL is in effect.

MATRIX Display degrees of freedom and significance level in matrix format. This
format requires four lines per matrix row and displays the degrees of freedom
and the significance level. The output includes redundant coefficients. This is
the default.

CONDENSED Suppress the degrees of freedom and significance level. This format requires
only one line per matrix row and suppresses the degrees of freedom and
significance. A single asterisk (*) following a coefficient indicates a signifi-
cance level of 0.05 or less. Two asterisks (**) following a coefficient indi-
cate a significance level of 0.01 or less.

SERIAL Display only the nonredundant coefficients in serial string format. The coef-
ficients, degrees of freedom, and significance levels from the first row of the
matrix are displayed first, followed by all the unique coefficients from the
second row and so on for all the rows of the matrix.

MISSING Subcommand

MISSING controls the treatment of cases with missing values.

• When multiple analysis lists are specified, missing values are handled separately for each
analysis list. Thus, different sets of cases can be used for different lists.

• When pairwise deletion is in effect (keyword ANALYSIS), the degrees of freedom for a
particular partial coefficient are based on the smallest number of cases used in the calcu-
lation of any of the simple correlations.

• LISTWISE and ANALYSIS are alternatives. However, each can be used with either INCLUDE
or EXCLUDE. The default is LISTWISE and EXCLUDE.

LISTWISE Exclude cases with missing values listwise. Cases with missing values for
any of the variables listed for an analysis, including control variables, are not
used in the calculation of the zero-order correlation coefficient. This is the
default.

ANALYSIS Exclude cases with missing values on a pair-by-pair basis. Cases with
missing for one or both of a pair of variables are not used in the calculation
of zero-order correlation coefficients.

EXCLUDE Exclude user-missing values. User-missing values are treated as missing.
This is the default.

INCLUDE Include user-missing values. User-missing values are treated as valid values.

1196 PARTIAL CORR

MATRIX Subcommand

MATRIX reads and writes matrix data files.

• Either IN or OUT and a matrix file in parentheses is required. When both IN and OUT are
used on the same PARTIAL CORR procedure, they can be specified on separate MATRIX
subcommands or both on the same subcommand.

OUT (filename) Write the (highest-order) correlation matrix to a file. Specify either a file-
name or an asterisk, enclosed in parentheses. If you specify a filename, the
file is stored on disk and can be retrieved at any time. If you specify an
asterisk (*), the matrix data file replaces the working data file but is not
stored on disk unless you use SAVE or XSAVE.

IN (filename) Read a matrix data file. If the matrix data file is the working data file, specify
an asterisk (*) in parentheses. If the matrix data file is another file, specify a
filename in parentheses. Both the working data file and the matrix data file
must contain all the variables specified on the VARIABLES subcommands on
PARTIAL CORR. A matrix file read from an external file does not replace the
working data file.

Matrix Output

• The matrix materials that PARTIAL CORR writes can be used by subsequent PARTIAL
CORR procedures or by other procedures that read correlation-type matrices.

• In addition to the partial correlation coefficients, the matrix materials PARTIAL CORR
writes include the mean, standard deviation, and number of cases used to compute each
coefficient (see “Format of the Matrix Data File” on p. 1197 for a description of the file).
If PARTIAL CORR reads matrix data and then writes matrix materials based on those data,
the matrix data file that it writes will not include means and standard deviations.

• PARTIAL CORR writes a full square matrix for the analysis specified on the first VARIABLES
subcommand (or the first analysis list if keyword VARIABLES is omitted). No matrix is
written for subsequent variable lists.

• Any documents contained in the working data file are not transferred to the matrix file.

Matrix Input

• When matrix materials are read from a file other than the working data file, both the
working data file and the matrix data file specified on IN must contain all the variables
specified on the VARIABLES subcommands.

• MATRIX=IN cannot be specified unless a working data file has already been defined. To
read an existing matrix data file at the beginning of a session, use GET to retrieve the
matrix file and then specify IN(*) on MATRIX.

• PARTIAL CORR can read correlation-type matrices written by other procedures.

• The program reads variable names, variable and value labels, and print and write formats
from the dictionary of the matrix data file.

PARTIAL CORR 1197

Format of the Matrix Data File

• The matrix data file includes two special variables created by the program: ROWTYPE_
and VARNAME_.

• ROWTYPE_ is a short string variable with values N, MEAN, STDDEV, and PCORR (for
the partial correlation coefficient).

• VARNAME_ is a short string variable whose values are the names of the variables used to
form the correlation matrix. When ROWTYPE_ is PCORR, VARNAME_ gives the variable
associated with that row of the correlation matrix.

• The remaining variables in the file are the variables used to form the correlation matrix.

Split Files

• When split-file processing is in effect, the first variables in the matrix data file are the split
variables, followed by ROWTYPE_, VARNAME_, and the variables used to form the corre-
lation matrix.

• A full set of matrix materials is written for each split-file group defined by the split variables.

• A split variable cannot have the same variable name as any other variable written to the
matrix data file.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by any procedure.

Missing Values

• With pairwise treatment of missing values (MISSING=ANALYSIS is specified), the matrix
of N’s used to compute each coefficient is included with the matrix materials.

• With LISTWISE treatment, a single N used to calculate all coefficients is included with the
matrix materials.

• When reading a matrix data file, be sure to specify a missing-value treatment on PARTIAL
CORR that is compatible with the missing-value treatment that was in effect when the matrix
materials were produced.

Example

GET FILE=CITY.
PARTIAL CORR VARIABLES=BUSDRVER MECHANIC ENGINEER TEACHER COOK
 BY NETSALRY(1)

/MATRIX=OUT(PTMTX).

• PARTIAL CORR reads data from file CITY and writes one set of matrix materials to file PTMTX.

• The working data file is still CITY. Subsequent commands are executed on CITY.

1198 PARTIAL CORR

Example

GET FILE=CITY.
PARTIAL CORR VARIABLES=BUSDRVER MECHANIC ENGINEER TEACHER COOK
 BY NETSALRY(1) /MATRIX=OUT(*).
LIST.

• PARTIAL CORR writes the same matrix as in the example above. However, the matrix data
file replaces the working data file. The LIST command is executed on the matrix file, not
on the CITY file.

Example

GET FILE=PRSNNL.
FREQUENCIES VARIABLE=AGE.
PARTIAL CORR VARIABLES=BUSDRVER MECHANIC ENGINEER TEACHER COOK
 BY NETSALRY(1) /MATRIX=IN(CORMTX).

• This example performs a frequencies analysis on file PRSNNL and then uses a different
file for PARTIAL CORR. The file is an existing matrix data file.

• MATRIX=IN specifies the matrix data file. Both the working data file and the CORMTX file
must contain all variables specified on the VARIABLES subcommand on PARTIAL CORR.

• CORMTX does not replace PRSNNL as the working data file.

Example

GET FILE=CORMTX.
PARTIAL CORR VARIABLES=BUSDRVER MECHANIC ENGINEER TEACHER COOK
 BY NETSALRY(1)

/MATRIX=IN(*).

• The GET command retrieves the matrix data file CORMTX.

• MATRIX=IN specifies an asterisk because the working data file is the matrix file CORMTX.
If MATRIX=IN(CORMTX) is specified, the program issues an error message.

• If the GET command is omitted, the program issues an error message.

Example

GET FILE=CITY.
REGRESSION MATRIX=OUT(*)
 /VARIABLES=NETPURSE PUBTRANS MECHANIC BUSDRVER
/DEPENDENT=NETPURSE /ENTER.

PARTIAL CORR PUBTRANS MECHANIC BUSDRVER BY NETPURSE(1) /MATRIX=IN(*)
.

• GET retrieves the SPSS-format data file CITY.

PARTIAL CORR 1199

• REGRESSION computes correlations among the specified variables. MATRIX=OUT(*)
writes a matrix data file that replaces the working data file.

• The MATRIX=IN(*) specification on PARTIAL CORR reads the matrix materials in the
working data file.

1200 PARTIAL CORR

1201

PERMISSIONS

PERMISSIONS FILE=’filespec’

 /PERMISIONS {READONLY }
 {WRITEABLE}

Example
PERMISSIONS FILE=’c:\mydir\mydata.sav’
 /PERMISSIONS READONLY.

Overview

PERMISSIONS changes the read/write permissions for the specified file, using the operating
system facilities for changing permissions.

Syntax Rules

• A FILE specification and a PERMISSIONS subcommand are both required.

• The file specification should be enclosed in single or double quotes.

PERMISSIONS Subcommand

READONLY File permissions are set to read-only for all users. The file cannot be saved
using the same file name with subsequent changes unless the read/write per-
missions are changed in the operating system or a subsequent PERMIS-
SIONS command specifies PERMISSIONS=WRITEABLE.

WRITEABLE File permissions are set to allow writing for the file owner. If file permis-
sions were set to read-only for other users, the file remains read-only for
them.

Your ability to change the read/write permissions may be restricted by the operating system.

1202 PERMISSIONS

1203

PLANCARDS

PLANCARDS is available in the Conjoint option.

PLANCARDS [FACTORS=varlist]

 [/FORMAT={LIST}]
 {CARD}
 {BOTH}

 [/TITLE=’string’]

 [/FOOTER=’string’]

 [/OUTFILE=file]

 [/PAGINATE]

Example:
PLANCARDS FORMAT=BOTH/ OUTFILE=’DESIGN.FRM’
 /TITLE=’Car for Sale’ /FOOTER=’Type)card’
 /PAGINATE.

Overview

PLANCARDS produces full-concept profiles, or cards, from a plan file for a conjoint analysis
study. The plan file can be generated by ORTHOPLAN or entered by the user. The printed
profiles can be used as the experimental stimuli that subjects judge in terms of preference.

Options

Format. You can produce profiles in the usual listing-file format, in single-profile format, or
both.

Titles and Footers. You can specify title and footer labels that appear at the top and bottom
of the listing or, for single-card format, at the top and bottom of each profile. You can
include an identifying profile number as part of the title or footer.

Pagination. You can control whether profiles written in single-profile format should begin a
new page at the beginning of each profile.

Basic Specification

• The basic specification is PLANCARDS. This produces a standard listing of profiles in
your listing file using all variables in the working data file except STATUS_ and CARD_
as factors.

1204 PLANCARDS

Subcommand Order

• Subcommands can be named in any order.

Operations

• PLANCARDS assumes that the working data file represents a plan for a full-concept
conjoint study. Each “case” in such a file is one profile in the conjoint experimental plan.

• Factor and factor-level labels in the working data file, generated by ORTHOPLAN or by
the VARIABLE and VALUE LABELS commands, are used in the output.

• The SPSS command SPLIT FILE is ignored for single-profile format. In listing-file format,
each subfile represents a different plan, and a new listing begins for each one.

• The WEIGHT command is ignored by PLANCARDS.

Limitations

• Missing values are not recognized as missing and are treated like other values.

Example

ORTHOPLAN FACTORS=SPEED ’Highest possible speed’
 (70 ’70 mph’ 100 ’100 mph’ 130 ’130mph)
 WARRANTY ’Length of warranty’ (’1 year’ ’3 year’ ’5 year’)
 SEATS ’Number of seats’ (2, 4) /MINIMUM=9 /HOLDOUT=6.
PLANCARDS FORMAT=BOTH /OUTFILE=’DESIGN.FRM’
 /TITLE=’Car for Sale’ /FOOTER=’Type)card’ /PAGINATE.

• ORTHOPLAN generates a set of profiles (cases) for a full-concept conjoint analysis in the
working data file.

• PLANCARDS produces a standard listing file containing the profiles in the output file
DESIGN.FRM.

• Each profile in DESIGN.FRM will have the title Car for Sale at the top and the label Type
n at the bottom, where n is a profile identification number.

• The PAGINATE subcommand specifies that each new profile in the DESIGN.FRM file
should begin on a new page. This makes the profiles in the file convenient to use as the
actual profiles the experimenter hands to the subjects.

PLANCARDS 1205

Example

DATA LIST FREE/ COST NEWNESS EXPER NAME REP
 GUARAN TRIAL TRUST.
VARIABLE LABELS
 COST ’Product cost’
 NEWNESS ’Product newness’
 EXPER ’Brand experience’
 NAME "Manufacturer’s Name"
 REP "Distributor’s reputation"
 GUARAN ’Money-back Guarantee’
 TRIAL ’Free sample/trial’
 TRUST ’Endorsed by a trusted person’.
VALUE LABELS
 COST 1 ’LOW’ 2 ’HIGH’/
 NEWNESS 1 ’NEW’ 2 ’OLD’/
 EXPER 1 ’SOME’ 2 ’NONE’/
 NAME 1 ’ESTABLISHED’ 2 ’UNKNOWN’/
 REP 1 ’GOOD’ 2 ’UNKNOWN’/
 GUARAN 1 ’YES’ 2 ’NO’/
 TRIAL 1 ’YES’ 2 ’NO’/
 TRUST 1 ’YES’ 2 ’NO’.
BEGIN DATA
 1 2 2 1 2 2 2 1
 2 2 2 1 1 1 2 1
 2 2 1 2 2 1 1 1
 2 1 2 1 2 2 1 2
 2 1 1 2 2 2 2 1
 2 1 2 2 1 1 2 2
 1 1 2 2 1 2 1 1
 1 1 1 1 2 1 2 2
 1 2 1 2 1 2 2 2
 1 1 1 1 1 1 1 1
 2 2 1 1 1 2 1 2
 1 2 2 2 2 1 1 2
END DATA.
PLANCARDS TITLE=’ ’ ’Profile #)CARD’ /FOOTER=’RANK:’ ’ ’.

• In this example, the plan is entered and defined by the user rather than by ORTHOPLAN.

• PLANCARDS uses the information in the working data file to produce a set of profiles in
the standard listing file. See Figure 1 on p. 1206 for the output produced by this command.
(The variables and values in this example were taken from Akaah & Korgaonkar, 1988).

FACTORS Subcommand

FACTORS identifies the variables to be used as factors and the order in which their labels are
to appear in the output. String variables are permitted.

• Keyword FACTORS is followed by a variable list.

• By default, if FACTORS is not specified, all variables in the working data file except those
named STATUS_ or CARD_ are used as factors in the order in which they appear in the
file. (See the ORTHOPLAN command for information on variables STATUS_ and CARD_.)

1206 PLANCARDS

FORMAT Subcommand

FORMAT specifies whether the profiles should use standard listing-file format, single-profile
format, or both.

• The keyword FORMAT is followed by LIST, CARD, or BOTH. (ALL is an alias for BOTH.)

• The default output is LIST (listing-file format).

• With LIST format, holdout profiles are differentiated from experimental profiles, and sim-
ulation profiles are listed separately following the experimental and holdout profiles.
With CARD format, holdout profiles are not differentiated and simulation profiles are not
produced.

• If CARD or BOTH is specified without an OUTFILE subcommand, the single profiles are
included in the listing file.

Example
PLANCARDS FORMAT=BOTH
 /TITLE=’ ’ ’Profile #)CARD’ /FOOTER=’RANK:’.

• The listing-file and single-profile output for the first two profiles are shown in Figure 1
and Figure 2.

Figure 1 Listing-file format
Plancards:

Title:
 Profile #)CARD
Card 1
 Product cost LOW
 Product newness OLD
 Brand experience NONE
 Manufacturer’s Name ESTABLISHED
 Distributor’s reputation UNKNOWN
 Money-back Guarantee NO
 Free sample/trial NO
 Endorsed by a trusted person YES
Card 2
 Product cost HIGH
 Product newness OLD
 Brand experience NONE
 Manufacturer’s Name ESTABLISHED
 Distributor’s reputation GOOD
 Money-back Guarantee YES
 Free sample/trial NO
 Endorsed by a trusted person YES
 . . .

Footer: RANK:

PLANCARDS 1207

OUTFILE Subcommand

OUTFILE names an external file where profiles in single-profile format are to be written.

• By default, profiles are written to the listing file; no external file is written.

• The OUTFILE keyword is followed by the name of an external file. The file is specified in
the usual manner for your system.

• Profiles are written to an external file in single-profile format unless otherwise specified
on the FORMAT subcommand.

TITLE Subcommand

TITLE specifies a string to be used at the top of the output in listing format or at the top of
each new profile in profile format.

• If TITLE is not used, no title appears above the first attribute.

• The keyword TITLE is followed by a string enclosed in apostrophes.

• Quotation marks can be used to enclose the string instead of apostrophes when you want
to use an apostrophe in the title.

• Multiple strings per TITLE subcommand can be specified; each one will appear on a sep-
arate line.

• Use an empty string (’ ’) to cause a blank line.

• Multiple TITLE subcommands can be specified; each one will appear on a separate line.

Figure 2 Single-profile format
Profile #1

Product cost LOW
Product newness OLD
Brand experience NONE
Manufacturer’s Name ESTABLISHED
Distributor’s reputation UNKNOWN
Money-back Guarantee NO
Free sample/trial NO
Endorsed by a trusted person YES

RANK:

Profile #2

Product cost HIGH
Product newness OLD
Brand experience NONE
Manufacturer’s Name ESTABLISHED
Distributor’s reputation GOOD
Money-back Guarantee YES
Free sample/trial NO
Endorsed by a trusted person YES

RANK:

 . . .

1208 PLANCARDS

• If the special character sequence)CARD is specified anywhere in the title, PLANCARDS will
replace it with the sequential profile number in single-profile-formatted output. Having the
profile number automatically printed on the profile will help the experimenter to record the
data accurately. This character sequence is not translated in listing-file format.

FOOTER Subcommand

FOOTER specifies a string to be used at the bottom of the output in listing format or at the
bottom of each profile in profile format.

• If FOOTER is not used, nothing appears after the last attribute.
• FOOTER is followed by a string enclosed in apostrophes.

• Quotation marks can be used to enclose the string instead of apostrophes when you want
to use an apostrophe in the footer.

• Multiple strings per FOOTER subcommand can be specified; each one will appear on a
separate line.

• Use an empty string (’ ’) to cause a blank line.
• Multiple FOOTER subcommands can be specified; each one will appear on a separate line.

• If the special character sequence)CARD is specified anywhere in the footer, PLANCARDS
will replace it with the sequential profile number in single-profile-formatted output. Hav-
ing the profile number automatically printed on the profile will help the experimenter to
record the data accurately. This character sequence is not translated in listing-file format.

Example
PLANCARDS
 TITLE=’Profile #)CARD’ ’ ’
 ’Circle the number in the scale at the bottom that’
 ’indicates how likely you are to purchase this item.’ ’ ’
 /FOOTER= ’0 1 2 3 4 5 6 7 8 9 10’
 ’Not at all May or may Certainly’
 ’likely to not would’
 ’purchase purchase purchase’
 ’--’
 /FORMAT=CARD.

The above example would produce the following output for the first profile:

PLANCARDS 1209

PAGINATE Subcommand

PAGINATE indicates that each new profile in single-profile format should begin on a new
page.
• PAGINATE is ignored in listing-file format.

• If PAGINATE is not specified with the profile format, the profiles will not have carriage
control characters that cause page breaks after each profile.

• PAGINATE has no additional specifications.

Profile # 1

Circle the number in the scale at the bottom that
indicates how likely you are to purchase this item.

Product cost LOW
Product newness OLD
Brand experience NONE
Manufacturer’s Name ESTABLISHED
Distributor’s reputation UNKNOWN
Money-back Guarantee NO
Free sample/trial NO
Endorsed by a trusted person YES

0 1 2 3 4 5 6 7 8 9 10
Not at all May or may Certainly
likely to not would
purchase purchase purchase
--

1211

PLUM

PLUM is available in the Advanced Models option.

PLUM dependent variable [BY factor varlist] [WITH covariate varlist]

[/CRITERIA = [CIN({95** })] [DELTA({0** })] [MXITER({100**})] [MXSTEP({5**})]
 {value} {value } {n } {n }
 [LCONVERGE({0** })] [PCONVERGE({1.0E-6**})] [SINGULAR({1.0E-8**})]
 {value} {value } {value }
 [BIAS]]

[/LINK = {CAUCHIT}]
 {CLOGLOG}
 {LOGIT**}
 {NLOGLOG}
 {PROBIT }

[/LOCATION = [effect effect ...]]

[/MISSING = {EXCLUDE**}]
 {INCLUDE }

[/PRINT = [CELLINFO] [CORB] [COVB] [FIT] [HISTORY({1})] [KERNEL]
 {n}
 [TPARALLEL] [PARAMETER] [SUMMARY]]

[/SAVE = [ESTPROB [(rootname [:{25**}])] [PREDCAT [(newname)]] [PCPROB [(newname)]]
 {n } [ACPROB [(newname)]]

[/SCALE = [effect effect ...]]

[/TEST [(valuelist)] = [‘label’] effect valuelist [effect valuelist] ...;
 [effect valuelist [effect valuelist] ...;] ...]

[/TEST [(valuelist)] = [‘label’] ALL list; [ALL list;] ...].

** Default if the subcommand is omitted.

Overview

This procedure makes use of a general class of models to allow you to analyze the relation-
ship between a polytomous ordinal dependent variable and a set of predictors. These models
utilize the ordinal nature of the dependent variable and eliminate the need for rescaling.

Options

Link Functions. Five link functions are available for specifying the model with the LINK
subcommand.

Tuning the Algorithm. You can control the values of algorithm-tuning parameters with the
CRITERIA subcommand.

Optional Output. You can request additional output through the PRINT subcommand.

1212 PLUM

Basic Specification

The basic specification is one dependent variable.

Syntax Rules

• Minimum syntax—one dependent variable must be specified.

• The variable specification must come first and can be specified only once.

• Subcommands can be specified in any order.

• When subcommands (except the TEST subcommand) are repeated, previous specifica-
tions are discarded and the last subcommand is in effect.

• Empty subcommands except the LOCATION and the SCALE subcommands are ignored.
An empty LOCATION or SCALE subcommand indicates a simple additive model.

• The words BY, WITH, and WITHIN are reserved keywords in this procedure.

Variable List

The variable list specifies the dependent variable, factors, and covariates in the model.

• The dependent variable must be the first specification on the command line.

• The dependent variable is assumed to be an ordinal variable and can be of any type
(numeric versus string). The order is determined by sorting the level of the dependent
variable in ascending order. The lowest value defines the first category.

• Factor variables can be of any type (numeric versus string). Factor levels are sorted in
ascending order. The lowest value defines the first category.

• Covariate variables must be numeric.

• Names of the factors follow the dependent variable separated by the keyword BY.

• Enter the covariates, if any, following the factors. Use the keyword WITH to separate
covariates from factors (if any) and the dependent variable.

Weight Variable

• If an SPSS WEIGHT variable is specified, this procedure will take the non-missing weight
values, rounded to the nearest integer, as frequencies.

• Cases with negative frequencies are always excluded.

PLUM 1213

Example

PLUM
chist BY numcred othnstal housng WITH age duration
/LOCATION = numcred age duration
/CRITERIA = CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5)

PCONVERGE(0)
/LINK = CLOGLOG
/PRINT = FIT PARAMETER SUMMARY TPARALLEL.

• chist is the dependent variable, numcred, othnstal, and housing are factors, and age and
duration are covariates.

• The location model is based upon numcred, age, and duration. Note, however, that good-
ness-of-fit statistics will be based upon all the factors and covariates on the variable list.

• CRITERIA specifies that the confidence level to use is 95, no delta value should be added
to cells with observed zero frequency, and neither the log-likelihood nor parameter esti-
mates convergence criteria should be used. This means that the procedure will stop when
either 100 iterations or 5 step-halving operations have been performed.

• LINK specifies that the Complementary Log-log function should be used.

• PRINT specifies that the goodness-of-fit statistics, parameter statistics, model summary,
and test of parallel lines should be displayed.

CRITERIA Subcommand

The CRITERIA subcommand offers controls on the iterative algorithm used for estimation,
specifies numerical tolerance for checking singularity, and offers options to customize your
output.

BIAS Bias Value Added to All Observed Cell Frequencies. Specify a non-negative
value less than 1. The default value is 0.0.

CIN Confidence Interval Level. Specify a value greater than or equal to 0 and less
than 100. The default value is 95.

DELTA Delta Value Added to Observed Zero Frequency. Specify a non-negative
value less than 1. The default value is 0.0.

LCONVERGE Log-Likelihood Function Convergence Criterion. Convergence is assumed
if the absolute change or relative change in the log-likelihood function is less
than this value. The criterion is not used if the value is 0. Specify a non-neg-
ative value. The default value is 0.

MXITER Maximum Number of Iterations. Specify a non-negative integer. The default
value is 100. Specifying 0 gives the initial estimates.

MXSTEP Maximum Step-Halving Allowed. Specify a positive integer. The default
value is 5.

PCONVERGE Parameter Estimates Convergence Criterion. Convergence is assumed if the
maximum absolute change in each of the parameter estimates is less than this

1214 PLUM

value. The criterion is not used if the value is 0. Specify a non-negative
value. The default value is 10-6.

SINGULAR Value Used as Tolerance in Checking Singularity. Specify a positive value.
The default value is 10-8.

LINK Subcommand

The LINK subcommand offers five link functions to specify the model.
• If LINK is not specified, LOGIT is the default.

• The five keywords are mutually exclusive. Only one of them can be specified and only
once.

CAUCHIT Cauchit Function. f(x) = tan(π(x - 0.5)).

CLOGLOG Complementary Log-log Function. f(x) = log(- log(1 - x)).

LOGIT Logit Function. f(x) = log(x / (1 - x)). This is the default link function.

NLOGLOG Negative Log-log Function. f(x) = -log(- log(x)).

PROBIT Probit Function. f(x) = Φ-1(x), where Φ-1 is the inverse standard normal
cumulative distribution function.

LOCATION Subcommand

The LOCATION subcommand specifies the location model.

• Specify a list of terms to be included in the location model, separated by commas or spaces.

• The default location model is generated if the subcommand is not specified or empty. The
default model contains: 1) the intercept, 2) all the covariates (if specified) in the order
they are specified, and 3) all the main factorial effects in the order they are specified in
the variable list.

• To include the intercept term explicitly, enter the keyword INTERCEPT on the
subcommand.

• To include a main effect term, enter the name of the factor on the subcommand.

• To include an interaction effect term among factors, use the keyword BY or the asterisk
(*) to join factors involved in the interaction. For example, A*B*C means a three-way
interaction effect of A, B, and C, where A, B, and C are factors. The expression A BY B
BY C is equivalent to A*B*C. Factors inside an interaction effect must be distinct.
Expressions such as A*C*A and A*A are invalid. The keyword INTERCEPT cannot be
used to construct an interaction term.

• To include a nested effect term, use the keyword WITHIN or a pair of parentheses on the
subcommand. For example, A(B) means that A is nested within B, where A and B are
factors. The expression A WITHIN B is equivalent to A(B). Factors inside a nested effect
must be distinct. Expressions such as A(A) and A(B*A) are invalid.

• Multiple level nesting is supported. For example, A(B(C)) means that B is nested within
C, and A is nested within B(C). When more than one pair of parentheses is present, each

PLUM 1215

pair of parentheses must be enclosed or nested within another pair of parentheses. Thus,
A(B)(C) is not valid.

• Nesting within an interaction effect is valid. For example, A(B*C) means that A is nested
within B*C.

• Interactions among nested effects are allowed. The correct syntax is the interaction
followed by the common nested effect inside the parentheses. For example, interaction
between A and B within levels of C should be specified as A*B(C) instead of A(C)*B(C).

• To include a covariate term in the model, enter the name of the covariate on the
subcommand.

• Covariates can be connected, but not nested, using the keyword BY or the asterisk (*)
operator. For example, X*X is the product of X and itself. This is equivalent to a covariate
whose values are the square of those of X. On the contrary, X(Y) is invalid.

• Factor and covariate effects can be connected in many ways. No effects can be nested
within a covariate effect. Suppose A and B are factors and X and Y are covariates.
Examples of valid combination of factor and covariate effects are A*X, A*B*X, X(A),
X(A*B), X*A(B), X*Y(A*B), and A*B*X*Y.

Example
PLUM

chist BY numcred othnstal
/CRITERIA = CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5)

PCONVERGE(0)
/LOCATION = numcred othnstal numcred*othnstal

• LOCATION specifies that the location model consists of numcred, othnstal, and their inter-
action effect.

MISSING Subcommand

By default, cases with missing values for any of the variables on the variable list are excluded
from the analysis. The MISSING subcommand allows you to include cases with user-missing
values.

• If MISSING is not specified, the default is EXCLUDE.

• Listwise deletion is always used in this procedure.
• Keywords EXCLUDE and INCLUDE are mutually exclusive. Only one of them can be

specified and only once.

EXCLUDE Exclude Both User-Missing and System-Missing Values. This is the default.

INCLUDE User-Missing Values are Treated as Valid. System-missing values cannot be
included in the analysis.

PRINT Subcommand

The PRINT subcommand controls the display of optional output. If no PRINT subcommand
is specified, default output includes a case-processing summary table.

1216 PLUM

CELLINFO Cell Information. Observed and expected frequencies by category and
cumulative, Pearson residual for cumulative and category frequencies, and
observed and expected probabilities of each response category separately
and cumulatively by covariate pattern combination.

CORB Asymptotic Correlation Matrix of the Parameter Estimates.

COVB Asymptotic Covariance Matrix of the Parameter Estimates.

FIT Goodness-of-Fit Statistics. The Pearson’s Chi-square and the Likelihood
Ratio Chi-square statistics. The statistics are computed based on the
classification specified on the variable list.

HISTORY Iteration History. The table contains log-likelihood function value and
parameter estimates every n iterations. The default value is n = 1. The first
and the last iterations are always printed if HISTORY is specified and
regardless of the value of n.

KERNEL Use the kernel of the log-likelihood function for display instead of the
complete log-likelihood function.

TPARALLEL Test of Parallel Lines Assumption. Produce a chi-squared score test of the
parallel lines assumption.

PARAMETER Parameter Statistics. The parameter estimates, the standard errors, the
significances, and the confidence interval.

SUMMARY Model Summary. The Cox & Snell’s R2, the Nagelkerke’s R2, and the
McFadden’s R2 statistics.

SAVE Subcommand

The SAVE subcommand puts casewise post-estimation statistics back into the active file.

• The new variables must have valid SPSS variable names that are not in use in the working
file.

• The rootname must be a valid SPSS variable name.

• The new variables are saved to the working file in the order the keywords are specified
on the subcommand.

ESTPROB Estimated probabilities of classifying a factor/covariate pattern into the
response categories. The predicted probabilities of the first n categories are
saved. The default number of categories is 25. To specify a number of
categories without a rootname, put a colon before the number.

PREDCAT The response category that has the maximum expected probability for a
factor/covariate pattern.

PCPROB Estimated probability of classifying a factor/covariate pattern into the
predicted category. This probability is the maximum of the estimated
probabilities of the factor/covariate pattern.

PLUM 1217

ACPROB Estimated probability of classifying a factor/covariate pattern into the actual
category.

Example
PLUM

chist BY numcred othnstal
/CRITERIA = CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5)

PCONVERGE(0)
/SAVE = ACPROB(correct) PRPROB

• SAVE specifies that the estimated probabilities of correctly classifying each case should
be saved to the variable correct. The estimated probabilities of classifying each case into
the predicted category are saved to the default variable pcp_k, where k is the smallest
integer for which pcp_k does not already exist.

SCALE Subcommand

The SCALE subcommand specifies the scale component in the model.

• Specify a list of terms to be included in the model, separated by commas or spaces.

• The model will have no scale component if the subcommand is omitted.

• No scale component is generated if the subcommand is not specified or empty.

• To include a main effect term, enter the name of the factor on the subcommand.
• The keyword INTERCEPT is not allowed on the subcommand.

• To include an interaction effect term among factors, use the keyword BY or the asterisk
(*) to join factors involved in the interaction. For example, A*B*C means a three-way
interaction effect of A, B, and C, where A, B, and C are factors. The expression A BY B
BY C is equivalent to A*B*C. Factors inside an interaction effect must be distinct.
Expressions such as A*C*A and A*A are invalid.

• To include a nested effect term, use the keyword WITHIN or a pair of parentheses on the
subcommand. For example, A(B) means that A is nested within B, where A and B are
factors. The expression A WITHIN B is equivalent to A(B). Factors inside a nested effect
must be distinct. Expressions such as A(A) and A(B*A) are invalid.

• Multiple level nesting is supported. For example, A(B(C)) means that B is nested within
C, and A is nested within B(C). When more than one pair of parentheses is present, each
pair of parentheses must be enclosed or nested within another pair of parentheses. Thus,
A(B)(C) is not valid.

• Nesting within an interaction effect is valid. For example, A(B*C) means that A is nested
within B*C.

• Interactions among nested effects are allowed. The correct syntax is the interaction
followed by the common nested effect inside the parentheses. For example, interaction
between A and B within levels of C should be specified as A*B(C) instead of A(C)*B(C).

• To include a covariate term in the model, enter the name of the covariate on the
subcommand.

1218 PLUM

• Covariates can be connected, but not nested, using the keyword BY or the asterisk (*)
operator. For example, X*X is the product of X and itself. This is equivalent to a covariate
whose values are the square of those of X. On the contrary, X(Y) is invalid.

• Factor and covariate effects can be connected in many ways. No effects can be nested
within a covariate effect. Suppose A and B are factors, and X and Y are covariates.
Examples of valid combination of factor and covariate effects are A*X, A*B*X, X(A),
X(A*B), X*A(B), X*Y(A*B), and A*B*X*Y.

TEST Subcommand

The TEST subcommand allows you to customize your hypothesis tests by directly specifying
null hypotheses as linear combinations of parameters.

• TEST is offered only through syntax.

• Multiple TEST subcommands are allowed. Each is handled independently.
• The basic format of the TEST subcommand is an optional list of values enclosed in a pair

of parentheses, an optional label in quotes, an effect name or the keyword ALL, and a list
of values.

• To specify the coefficient for the intercept, use the keyword INTERCEPT. The number
of values after INTERCEPT must be equal to the number of response categories minus 1.

• When multiple linear combinations are specified within the same TEST subcommand, a
semicolon terminates each linear combination, except the last one.

• The linear combinations are separately tested for each category of the dependent variable
and then simultaneously tested for all the categories.

• If specified, the value list that immediately follows the subcommand name is the constant
that the linear combinations are equated to under the null hypotheses. If this value list is
omitted, the constants are assumed to be all zeros.

• The optional label is a string with a maximum length of 255 characters (or 127 double-
byte characters). Only one label per TEST subcommand can be specified.

• Only valid effects appearing or implied on the LOCATION or the SCALE subcommands
can be specified in a linear combination. If an effect appears in both subcommands, then
enter the effect only once on the TEST subcommand.

• To specify coefficient for the intercept, use the keyword INTERCEPT. Only one value is
expected to follow INTERCEPT.

• The number of values following an effect name must equal the number of parameters
(including the redundant ones) corresponding to that effect. For example, if the effect
A*B takes up six parameters, then exactly six values must follow A*B.

• A number can be specified as a fraction with a positive denominator. For example, 1/3 or
-1/3 are valid, but 1/-3 is invalid.

• When ALL is specified, only a list of values can follow. The number of values must equal
the combined number of LOCATION and SCALE parameters (including the redundant
ones).

• Effects appearing or implied on the LOCATION or the SCALE subcommands but not
specified on the TEST are assumed to take the value 0 for all their parameters.

PLUM 1219

• Effect names and the ALL keywords are mutually exclusive within a single TEST
subcommand.

• If ALL is specified for the first row in a TEST matrix, then all subsequent rows should
begin with the ALL keyword.

• If effects are specified for the first row in a TEST matrix, then all subsequent rows should
use effect name (thus ALL is not allowed).

Example
PLUM

chist BY housng
/CRITERIA = CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5)

PCONVERGE(1.0E-6) SINGULAR(1.0E-8)
/LINK = CLOGLOG
/PRINT = CELLINFO CORB COVB FIT HISTORY(1) PARAMETER

SUMMARY TPARALLEL
/TEST(0 0) = ALL 1 -1 0 0 0 0 0;

ALL 0 0 1 -1 0 0 0.

• There are a total of seven parameter coefficients in the model; four for the thresholds, and
three for the factor housng. TEST specifies two separate tests: one in which the first and
second thresholds are tested for equality, and one in which the third and fourth thresholds
are tested for equality.

1220

POINT

POINT KEY=varname [FILE=file]

Example
FILE HANDLE DRIVERS/ file specifications.
POINT FILE=DRIVERS /KEY=#FRSTAGE.

Overview

POINT establishes the location at which sequential access begins (or resumes) in a keyed
file. A keyed file is a file that provides access to information by a record key. An example
of a keyed file is a file containing a social security number and other information about a
firm’s employees. The social security number can be used to identify the records in the file.
For additional information on keyed files, see KEYED DATA LIST.

POINT prepares for reading the key-sequenced data set sequentially from a point that the
key value controls. Data selection commands can then be used to limit the file to the portion
you want to analyze. A DATA LIST command is used to read the data. To read keyed files
(and also direct access files), see the KEYED DATA LIST command.

Basic Specification

The basic specification is the KEY subcommand and a string variable. The value of the string
variable is used as the file key for determining where sequential retrieval (via DATA LIST)
begins or resumes.

Subcommand Order

• Subcommands can be named in any order.

• Each POINT command must precede its corresponding DATA LIST command.

Syntax Rules

• POINT can be used more than once to change the order of retrieval during processing.

• POINT must be specified in an input program and therefore cannot be used to add cases
to an existing file.

Operations

• The next DATA LIST command executed after the POINT command (for the same file) will
read a record whose key value is at least as large as that of the specified key. To prevent

POINT 1221

an infinite loop in which the same record is read again and again, either the value of the
variable specified on KEY must change from case to case or the POINT command must be
set up to execute only once.

• If the file contains a record whose key exactly matches the value of the KEY variable, the
next execution of DATA LIST will read that record, the second execution of DATA LIST will
read the next record, and so on.

• If an exact match is not found, the results depend on the operating system. On IBM imple-
mentations, reading will begin or resume at the record that has the next higher key. If the
value of the key is shorter than the file key, the value of the key variable is logically
extended with the lowest character in the collating sequence. For example, if the value of
the key variable is the single letter M, retrieval would begin or resume at the first record
that had a key (regardless of length) beginning with the letter M or a character higher in
the collating sequence.

• POINT does not report on whether the file contains a record that exactly matches the spec-
ified key. The only way to check for missing records is to display the data read by the sub-
sequent DATA LIST command using LIST.

Example

* Select a subset of records from a keyed file.

FILE HANDLE DRIVERS/ file specifications.
INPUT PROGRAM.
STRING #FRSTAGE(A2).
DO IF #FRSTAGE = ’ ’. /* First case check
+ COMPUTE #FRSTAGE = ’26’. /* Initial key
+ POINT FILE=DRIVERS /KEY=#FRSTAGE.
END IF.
DATA LIST FILE=DRIVERS NOTABLE/

AGE 19-20(A) SEX 21(A) TICKETS 12-13.
DO IF AGE > ’30’.
+ END FILE.
END IF.
END INPUT PROGRAM.
LIST.

• This example illustrates how to execute POINT for only the first case. The file contains
information about traffic violations, and it uses the individual’s age as the key. Ages
between 26 and 30 are selected.

• FILE HANDLE specifies the file handle DRIVERS.

• The INPUT PROGRAM and END INPUT PROGRAM commands begin and end the block of
commands that build cases. POINT must appear in an input program.

• STRING declares the string variable #FRSTAGE, whose value will be used as the key on
the POINT command. Since #FRSTAGE is a string variable, it is initialized as blanks.

• The first DO IF—END IF structure is executed only if no records have been read; that is,
when #FRSTAGE is blank. When #FRSTAGE is blank, COMPUTE resets #FRSTAGE to 26,
which is the initial value. POINT is executed, and it causes the first execution of DATA LIST
to read a record whose key is at least 26. Since the value of #FRSTAGE is now 26, the DO
IF—END IF structure is not executed again.

1222 POINT

• DATA LIST reads the variables AGE, SEX, and TICKETS from the file DRIVERS.

• The second DO IF—END IF structure executes an END FILE command as soon as a record
is read that contains a driver’s age greater than 30. The program does not add this last case
to the working file when it ends the file (see END FILE).

Example

FILE HANDLE DRIVERS/ file specifications.
POINT FILE=DRIVERS /KEY=#FRSTAGE.

• FILE HANDLE defines the handle for the data file to be read by POINT. The handle is spec-
ified on the FILE subcommand on POINT.

• KEY on POINT specifies the key variable. The key variable must be a string, and it must
already exist as the result of a prior DATA LIST, KEYED DATA LIST, or transformation
command.

FILE Subcommand

FILE specifies a file handle for the keyed data file.The file handle must have been previously
defined on a FILE HANDLE command.

• FILE is optional.

• If FILE is omitted, POINT reads from the last file specified on an input command, such as
DATA LIST.

Example
FILE HANDLE DRIVERS/ file specifications.
POINT FILE=DRIVERS /KEY=#NXTCASE.

• FILE HANDLE specifies DRIVERS as the file handle for the data. The FILE subcommand
on POINT specifies file handle DRIVERS.

KEY Subcommand

KEY specifies the variable whose value will be used as the file key for determining where
sequential retrieval by DATA LIST will begin or resume. This variable must be a string vari-
able, and it must already exist as the result of a prior DATA LIST, KEYED DATA LIST, or trans-
formation command.

• KEY is required. Its only specification is a single variable. The variable can be a perma-
nent variable or a scratch variable.

• Where the keys on a file are inherently numbers, such as social security numbers, the
STRING function can be used to convert the numeric variable to a string (see “Conversion
Functions” on p. 48 in Volume I).

POINT 1223

Example
FILE HANDLE DRIVERS/ file specifications.
POINT FILE=DRIVERS /KEY=#NXTCASE.

• KEY indicates that the value of the existing scratch variable #FRSTAGE will be used as the
key to reading each record.

• Variable #FRSTAGE must be an existing string variable.

1224

PPLOT

PPLOT [VARIABLES=] varlist

 [/DISTRIBUTION={NORMAL(a,b)** }]
 {EXPONENTIAL(a)}
 {WEIBUL(a,b) }
 {PARETO(a,b) }
 {LNORMAL(a,b) }
 {BETA(a,b) }
 {GAMMA(a,b) }
 {LOGISTIC(a,b) }
 {LAPLACE(a,b) }
 {UNIFORM(a,b) }
 {HNORMAL(a) }
 {CHI(df) }
 {STUDENT(df) }

 [/FRACTION={BLOM**}]
 {RANKIT}
 {TUKEY }
 {VW }

 [/TIES={MEAN** }]
 {LOW }
 {HIGH }
 {BREAK}

 [/{NOSTANDARDIZE**}]
 {STANDARDIZE }

 [/TYPE={Q-Q**}]
 {P-P }

 [/PLOT={BOTH** }]
 {NORMAL }
 {DETRENDED}

 [/DIFF={1}]
 {n}

 [/SDIFF={1}]
 {n}

 [/PERIOD=n]

 [/{NOLOG**}]
 {LN }

 [/APPLY [=’model name’]]

**Default if the subcommand is omitted.

Example
PPLOT VARX
 /FRACTION=TUKEY
 /DIFF=2.

PPLOT 1225

Overview

PPLOT (alias NPPLOT) produces probability plots of one or more sequence or time series
variables. The variables can be standardized, differenced, and/or transformed before plot-
ting. Expected normal values or deviations from expected normal values can be plotted.

Options

Modifying the Variables. You can request a natural log transformation of the sequence or
time series variables using the LN subcommand and seasonal and nonseasonal differencing
to any degree using the SDIFF and DIFF subcommands. With seasonal differencing, you
can specify the periodicity on the PERIOD subcommand. You can also plot standardized
series using the STANDARDIZE subcommand.

Plot Type. You can request p-p (proportion-proportion) or q-q (quantile-quantile) plots on
the TYPE subcommand. With the PLOT subcommand you can display normal plots,
detrended plots, or both.

Distribution Type. You can specify the distribution type on the DISTRIBUTION subcommand.
The cumulative distribution function (CDF) and the inverse distribution function (IDF)
for the specified distribution type are used to compute the expected values in the p-p and
q-q plots, respectively.

Score Calculations. On the FRACTION subcommand, you can specify one of several frac-
tional rank formulas to use for estimating the empirical distribution in p-p plots and
computing expected quantiles in q-q plots. You can specify the treatment of tied values on
the TIE subcommand.

Basic Specification

The basic specification is one or more variable names.

• For each variable specified, PPLOT produces two q-q plots of the observed values, one
versus expected normal values and the other versus deviations from normal values. By
default, expected normal values are calculated using Blom’s transformation.

• Observed values define the horizontal axis, and expected normal values or deviations
define the vertical axis.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.
• Other subcommands can be specified more than once, but only the last specification of

each one is executed.

1226 PPLOT

Operations

• Subcommand specifications apply to all plots produced by PPLOT.

• If the LN subcommand is specified, any differencing or standardization requested on that
PPLOT is done on the log-transformed series.

• If differencing (DIFF or SDIFF) is specified, any standardization is done on the differenced
series.

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of variables
named on the list.

Example

PPLOT VARX
 /FRACTION=TUKEY
 /DIFF=2.

• This command produces two normal q-q plots of VARX, one not detrended and the other
detrended.

• The expected quantile values are calculated using Tukey’s transformation.
• The variable is differenced twice before plotting.

VARIABLES Subcommand

VARIABLES specifies the sequence or time series variables to be plotted and is the only
required subcommand. The actual keyword VARIABLES can be omitted.

DISTRIBUTION Subcommand

DISTRIBUTION specifies the distribution type of your data. The default is NORMAL if the
subcommand is not specified or is specified without a keyword. If the parameters of the
distribution type are not specified, DISTRIBUTION estimates them from the sample data
and displays them with the plots.

NORMAL(a,b) Normal distribution. The location parameter a can be any numeric
value, while the scale parameter b must be positive. If they are not
specified, DISTRIBUTION estimates them from the sample mean and
sample standard deviation.

EXPONENTIAL(a) Exponential distribution. The scale parameter a must be positive. If
the parameter is not specified, DISTRIBUTION estimates it from the
sample mean. Negative observations are not allowed.

PPLOT 1227

WEIBULL(a,b) Weibull distribution. The scale and shape parameters a and b must be
positive. If they are not specified, DISTRIBUTION estimates them using
the least square method. Negative observations are not allowed.

PARETO(a,b) Pareto distribution. The threshold and shape parameters a and b must
be positive. If they are not specified, DISTRIBUTION assumes a equals
the minimum observation and estimates b by the maximum likelihood
method. Negative observations are not allowed.

LNORMAL(a,b) Lognormal distribution. The scale and shape parameters a and b must
be positive. If they are not specified, DISTRIBUTION estimates them
from the mean and standard deviation of the natural logarithm of the
sample data. Negative observations are not allowed.

BETA(a,b) Beta distribution. The shape1 and shape2 parameters a and b must be
positive. If they are not specified, DISTRIBUTION estimates them from
the sample mean and sample standard deviation. All observations
must be between 0 and 1, inclusive.

GAMMA(a,b) Gamma distribution. The shape and scale parameters a and b must be
positive. If they are not specified, DISTRIBUTION estimates them from
the sample mean and sample standard deviation if they are not speci-
fied. Negative observations are not allowed.

LOGISTIC(a,b) Logistic distribution. LOGISTIC takes a location and a scale parameter
(a and b). The scale parameter (b) must be positive. If the parameters
are not specified, DISTRIBUTION estimates them from the sample
mean and sample standard deviation.

LAPLACE(a,b) Laplace or double exponential distribution. LAPLACE takes a location
and a scale parameter (a and b). The scale parameter (b) must be
positive. If the parameters are not specified, DISTRIBUTION estimates
them from the sample mean and sample standard deviation.

UNIFORM(a,b) Uniform distribution. UNIFORM takes a minimum and a maximum pa-
rameter (a and b). a must be equal to or greater than b. If the
parameters are not specified, DISTRIBUTION assumes them from the
sample data.

HNORMAL(a) Half-normal distribution. Data are assumed to be location free or cen-
tralized. (Location parameter=0.) You can specify the scale parameter
a or let DISTRIBUTION estimate it using the maximum likelihood
method.

CHI (df) Chi-square distribution. You must specify the degrees of freedom
(df). Negative observations are not allowed.

STUDENT(df) Student’s t distribution. You must specify the degrees of freedom (df).

1228 PPLOT

FRACTION Subcommand

FRACTION specifies the formula to be used in estimating the empirical distribution in p-p
plots and calculating the expected quantile values in q-q plots.

• Only one formula can be specified. If more than one is specified, only the first is used.

• If the FRACTION subcommand is not specified, BLOM is used by default.

• These formulas will produce noticeable differences only for short series.

Four formulas are available:

BLOM Blom’s transformation, defined by the formula (r − (3/8)) / (n + (1/4)), where n is
the number of observations and r is the rank, ranging from 1 to n (Blom, 1958).

RANKIT Uses the formula (r − (1/2)) / n, where n is the number of observations and r is the
rank, ranging from 1 to n (Chambers et al., 1983).

TUKEY Tukey’s transformation, defined by the formula (r − (1/3)) / (n + (1/3)), where n is
the number of observations and r is the rank, ranging from 1 to n (Tukey, 1962).

VW Van der Waerden’s transformation, defined by the formula r / (n +1), where n is
the number of observations and r is the rank, ranging from 1 to n (Lehmann, 1975).

Example
PPLOT VARX
 /FRACTION=VW.

• This PPLOT command uses van der Waerden’s transformation to approximate the propor-
tion estimate p, which is used in the inverse distribution function.

• By default, two q-q plots are produced.

TIES Subcommand

TIES determines the way tied values are handled. The default method is MEAN.

MEAN Mean rank of tied values is used for ties. This is the default.

LOW Lowest rank of tied values is used for ties.

HIGH Highest rank of tied values is used for ties.

BREAK Consecutive ranks with ties sharing the same value. Each distinct value of
the ranked variable is assigned a consecutive rank. Ties share the same rank.

TYPE Subcommand

TYPE specifies the type of plot to produce. The default is Q-Q. Figure 1 shows a quantile-
quantile plot and Figure 2 shows a proportion-proportion plot using the same data (with a
normal distribution).

PPLOT 1229

Q-Q Quantile-quantile plots. The quantiles of the observed values are plotted against the
quantiles of the specified distribution.

P-P Proportion-proportion plots. The observed cumulative proportion is plotted
against the expected cumulative proportion if the data were a sample from a spec-
ified distribution.

PLOT Subcommand

PLOT specifies whether to produce a plot of observed values versus expected values, a plot
of observed values versus deviations from expected values, or both. Figure 1 and Figure 2
are nondetrended plots. Figure 3 shows a detrended q-q plot.

BOTH Display both detrended and nondetrended normal plots. This is the default.

NORMAL Display nondetrended normal plots. The observed values are plotted against
the expected values.

DETRENDED Display detrended plots. The observed values are plotted against the devia-
tions from the expected values.

• If you specify PLOT more than once, only the last specification is executed.

• Deviations are calculated by subtracting the expected value from the observed value.

Figure 1 Normal q-q plot of current salary

Figure 2 Normal p-p plot of current salary

1230 PPLOT

• In low resolution, a dash is used in a detrended plot to indicate where the deviation from
the expected is 0.

STANDARDIZE and NOSTANDARDIZE Subcommands

STANDARDIZE transforms the sequence or time series variables into a sample with a mean
of 0 and a standard deviation of 1. NOSTANDARDIZE indicates that the series should not
be standardized and is the default.
• There are no additional specifications on the STANDARDIZE or NOSTANDARDIZE

subcommands.

• Only the last STANDARDIZE or NOSTANDARDIZE subcommand on the PPLOT command
is executed.

• The STANDARDIZE and NOSTANDARDIZE subcommands have no effect on expected
values, which are always standardized.

• NOSTANDARDIZE is generally used with an APPLY subcommand to turn off a previous
STANDARDIZE specification.

Example
PPLOT VARX
 /STANDARDIZE.

• This example produces two q-q normal probability plots of VARX with standardized
observed values.

DIFF Subcommand

DIFF specifies the degree of differencing used before plotting to convert a nonstationary
variable to a stationary one with a constant mean and variance.

• You can specify any positive integer on DIFF.

• If DIFF is specified without a value, the default is 1.

• The number of values plotted decreases by 1 for each degree of differencing.

Figure 3 Detrended normal q-q plot of current salary

PPLOT 1231

Example
PPLOT TICKETS
 /DIFF=2.

• In this example, TICKETS is differenced twice before the expected and observed values
are plotted.

SDIFF Subcommand

If the variable exhibits a seasonal or periodic pattern, you can use the SDIFF subcommand
to seasonally difference the variable before plotting.

• The specification on SDIFF indicates the degree of seasonal differencing and can be any
positive integer.

• If SDIFF is specified without a value, the degree of seasonal differencing defaults to 1.

• The number of seasons plotted decreases by 1 for each degree of seasonal differencing.
• The length of the period used by SDIFF is specified on the PERIOD subcommand. If the

PERIOD subcommand is not specified, the periodicity established on the TSET or DATE
command is used (see the PERIOD subcommand below).

PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF subcommand.

• The specification on PERIOD indicates how many observations are in one period or
season. You can specify any positive integer on PERIOD.

• The PERIOD subcommand is ignored if it is used without the SDIFF subcommand.
• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If

TSET PERIOD is not specified either, the periodicity established on the DATE command
is used. If periodicity was not established anywhere, the SDIFF subcommand will not be
executed.

Example
PPLOT TICKETS
 /SDIFF=1
 /PERIOD=12.

• This command applies 1 degree of seasonal differencing with 12 observations per season
to the variable TICKETS.

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base e) to remove varying amplitude.
NOLOG indicates that the data should not be log transformed. NOLOG is the default.
• There are no additional specifications on LN or NOLOG.

• Only the last LN or NOLOG subcommand on a PPLOT command is executed.

1232 PPLOT

• If a natural log transformation is requested, cases with values that are less than or equal
to 0 will be set to system-missing, since nonpositive values cannot be log-transformed.

• NOLOG is generally used with an APPLY subcommand to turn off a previous LN
specification.

Example
PPLOT TICKETS
 /FRACTION=TUKEY
 /DIFF=1
 /LN.
PPLOT EARNINGS
 /APPLY
 /NOLOG.

• The first command requests a natural log transformation of variable TICKETS before
plotting.

• The second command applies the previous PPLOT specifications to variable EARNINGS.
However, EARNINGS is not log-transformed before plotting.

APPLY Subcommand

APPLY allows you to produce a plot using previously defined specifications without
having to repeat the PPLOT subcommands.

• The only specification on APPLY is the name of a previous model in quotes. If a model
name is not specified, the model specified on the previous PPLOT command is used.

• To change any plot specifications, specify the subcommands of only those portions you
want to change after the APPLY subcommand.

• If no variables are specified, the variables that were specified for the original plot are
used.

• To change the variables used with the model, enter new variable names before or after the
APPLY subcommand.

• The distribution type is applied but the parameters are not.

Example
PPLOT X1
 /FRACTION=TUKEY.
PPLOT Z1
 /APPLY.

• The first command produces two q-q normal probability plots of X1 using Tukey’s trans-
formation to compute the expected values.

• The second command requests the same plots for variable Z1.

PPLOT 1233

Example

PPLOT X1 Y1 Z1
 /FRACTION=VW.
PPLOT APPLY
 /FRACTION=BLOM.

• The first command uses van der Waerden’s transformation to calculate expected normal
values of X1, Y1, and Z1.

• The second command uses Blom’s transformation for the same three series.

Example

PPLOT VARX
 /FRACTION=RANKIT
 /DIFF
 /STANDARDIZE.
PPLOT VARY
 /APPLY
 /NOSTANDARDIZE.

• The first command differences and standardizes series VARX and then produces a normal
probability plot using the RANKIT transformation.

• The second command applies the previous plot specifications to VARY but does not stan-
dardize the series.

References

Blom, G. 1958. Statistical estimates and transformed beta variables. New York: John Wiley and
Sons.

Chambers, J. M., W. S. Cleveland, B. Kleiner, and P. A. Tukey. 1983. Graphical methods for data
analysis. Belmont, Calif.: Wadsworth International Group; Boston: Duxbury Press.

Lehmann, E. L. 1975. Nonparametrics: Statistical methods based on ranks. San Francisco:
Holden-Day.

Tukey, J. W. 1962. The future of data analysis. Annals of Mathematical Statistics, 33:22.

1234

PREDICT

PREDICT [{start date }] [THRU [{end date }]]
 {start case number} {end case number}
 {END }

Example
PREDICT Y 61 THRU Y 65.

Overview

PREDICT specifies the observations that mark the beginning and end of the forecast period.
If the forecast period extends beyond the length of the series, PREDICT extends the series in
the working data file to allow room for the forecast observations.

Basic Specification

The minimum specification on PREDICT is either the start or the end of the range, or key-
word THRU. PREDICT sets up a forecast period beginning and ending with the dates or case
numbers specified. The default starting point is the observation immediately after the end
of the series or, if USE is specified, the observation immediately after the end of the use
range (the historical period). The default end is the last observation in the series.

Syntax Rules

• You can specify a start, an end, or both.

• The start and end are specified as either date specifications or case (observation) numbers.
• Date specifications and case numbers cannot be mixed on one PREDICT command.

• Keyword THRU is required if the end of the range is specified.

• Keyword THRU by itself defines a PREDICT range starting with the first observation
after the use range and ending with the end of the series. If USE has not been specified,
PREDICT THRU is meaningless.

Date Specifications

• A date specification consists of DATE keyword(s) and value(s) (see DATE). These speci-
fications must correspond to existing date variables.

• If more than one date variable exists, the highest-order one must be included in the date
specification.

PREDICT 1235

• Values on keyword YEAR must have the same format (2 or 4 digits) as the YEAR specifi-
cations on the DATE command.

Case Specifications

The case number specification is the sequence number of the case (observation) as it is read
by the program.

Valid Range

• The start date must precede the end date.

• The start case number must be less than the end case number.

• The start can be any observation ranging from the second observation in the historical
period specified on USE to the observation immediately following the end of the historical
period. If USE is not specified, the start can be any observation ranging from the second
observation in the series to the observation immediately following the end of the series.

• For most models, the start of the predict period should not be too close to the start of the
use period.

• The predict and use periods should not be exactly the same.

• The start of the predict period should not precede the start of the use period.

Operations

• PREDICT is executed when the data are read for the next forecasting procedure (ARIMA in
SPSS Trends, CURVEFIT in SPSS Base system, and 2SLS in SPSS Regression Models).

• PREDICT is ignored by non-forecasting procedures.

• Case number specifications refer to the sequential numbers assigned to cases as they are
read.

• If the forecast period extends beyond the length of the series, PREDICT extends the series
in the working data file to allow room for the forecast observations.

• New observations added to the end of existing series will contain non-missing date vari-
ables, forecast values (variable FIT#n), confidence interval limits (variables LCL#n and
UCL#n), and, for ARIMA models, standard error of the predicted value (SEP#n). For all
other variables, including the original series, the new cases will be system-missing.

• PREDICT cannot forecast beyond the end of the series for ARIMA with regressors and
2SLS. However, it can forecast values for the dependent variable if the independent vari-
ables have valid values in the predict period.

• If the use and predict periods overlap, the model is still estimated using all observations
in the use period.

• USE and PREDICT can be used together to perform forecasting validation. To do this,
specify a use period that ends before the existing end of the series, and specify a predict
period starting with the next observation.

1236 PREDICT

• If there is a gap between the end of the use period and the start of the specified predict
period, the program will use the first observation after the end of the use period as the start
of the predict period. (This is the default.)

• The DATE command turns off all existing USE and PREDICT specifications.
• PREDICT remains in effect in a session until it is changed by another PREDICT command

or until a new DATE command is issued.

• If more than one forecasting procedure is specified after PREDICT, the USE command
should be specified between procedures so that the original series without any new,
system-missing cases will be used each time. Alternatively, you can specify

TSET NEWVAR = NONE

before the first forecasting procedure so that you can evaluate model statistics without
creating new variables or adding new cases with missing values to the original series.

Limitations

Maximum 1 range (one start and/or one end) can be specified per PREDICT command.

Example

PREDICT Y 61 THRU Y 65.

• This command specifies a forecast period from 1961 to 1965.

• The working data file must include variable YEAR_, which in this example contains only
the last 2 digits of each year.

• If variable MONTH_ also exists, the above command is equivalent to

PREDICT Y 61 M 1 THRU Y 65 M 12.

Example

PREDICT 61 THRU 65.

• This command specifies a forecast period from the 61st case (observation) to the 65th
case.

Example

PREDICT W 28 THRU W 56.

• This command specifies a forecast period from the 28th week to the 56th week.

• The working data file must include variable WEEK_.

PREDICT 1237

• If variable DAY_ also exists, the above command is equivalent to

PREDICT W 28 D 1 THRU W 56 D 7.

Example

PREDICT THRU Y 65.

• This command uses the default start date, which is the observation immediately following
the end of the use period. If USE is not specified, the default start is the observation imme-
diately following the end of the series.

• The forecast period extends from the start date through year ’65.

• The working data file must include variable YEAR_.
• Keyword THRU is required.

Example

PREDICT THRU CYCLE 4 OBS 17.

• This example uses the date variables OBS_ and CYCLE_, which must exist in the working
data file.

• CYCLE, the highest order, must be included on PREDICT.

• Keyword THRU is required.
• The forecast period extends from the default start up to the 17th observation of cycle 4.

1238

PRESERVE

PRESERVE

Overview

PRESERVE stores current SET specifications that can later be restored by the RESTORE
command. PRESERVE and RESTORE are especially useful with the macro facility.
PRESERVE—RESTORE sequences can be nested up to five levels.

Basic Specification

The only specification is the command keyword. PRESERVE has no additional specifications.

Example

GET FILE=PRSNNL.
FREQUENCIES VAR=DIVISION /STATISTICS=ALL.
PRESERVE.
SET XSORT=NO WIDTH=90 UNDEFINED=NOWARN BLANKS=000 CASE=UPLOW.
SORT CASES BY DIVISION.
REPORT FORMAT=AUTO LIST /VARS=LNAME FNAME DEPT SOCSEC SALARY

/BREAK=DIVISION /SUMMARY=MEAN.
RESTORE.

• GET reads SPSS-format data file PRSNNL.

• FREQUENCIES requests a Frequency table and all statistics for variable DIVISION.

• PRESERVE stores all current SET specifications.
• SET changes several subcommand settings.

• SORT sorts cases in preparation for a report. Because SET XSORT=NO, the sort program
is not used to sort cases; another sort program must be available.

• REPORT requests a report organized by variable DIVISION.

• RESTORE reestablishes the SET specifications that were in effect when PRESERVE was
specified.

1239

PRINCALS

PRINCALS is available in the Categories option.

PRINCALS VARIABLES=varlist(max)

[/ANALYSIS=varlist[({ORDI**})]]
{SNOM }
{MNOM }
{NUME }

[/NOBSERVATIONS=value]

[/DIMENSION={2** }]
{value}

[/MAXITER={100**}]
{value}

[/CONVERGENCE={.00001**}]
{value }

[/PRINT=[DEFAULT] [FREQ**] [EIGEN**] [LOADINGS**] [QUANT]
[HISTORY] [CORRELATION] [OBJECT] [ALL] [NONE]]

[/PLOT=[NDIM=({1 ,2 }**)]
{value,value}
{ALL ,MAX }

[DEFAULT[(n)]] [OBJECT**[(varlist)][(n)]]
[QUANT**[(varlist)][(n)]] [LOADINGS[(n)]]
[ALL[(n)]] [NONE]]

[/SAVE=[rootname] [(value}]

[/MATRIX=OUT({* })]
{file}

**Default if subcommand or keyword is omitted.

Overview

PRINCALS (principal components analysis by means of alternating least squares) analyzes
a set of variables for major dimensions of variation. The variables can be of mixed optimal
scaling levels, and the relationships among observed variables are not assumed to be linear.

Options

Optimal scaling level. You can specify the optimal scaling level for each variable to be used
in the analysis.

Number of cases. You can restrict the analysis to the first n observations.

Number of dimensions. You can specify how many dimensions PRINCALS should compute.

Iterations and convergence. You can specify the maximum number of iterations and the value
of a convergence criterion.

1240 Syntax Reference

Display output. The output can include all available statistics, only the default statistics, or
only the specific statistics you request. You can also control whether some of these statistics
are plotted.

Saving scores. You can save object scores in the working data file.

Writing matrices. You can write a matrix data file containing category quantifications and
loadings for use in further analyses.

Basic Specification

• The basic specification is command PRINCALS and the VARIABLES subcommand.
PRINCALS performs the analysis assuming an ordinal level of optimal scaling for all
variables and uses all cases to compute a two-dimensional solution. By default, mar-
ginal frequencies, eigenvalues, and summary measures of fit and loss are displayed,
and quantifications and object scores are plotted.

Subcommand Order

• The VARIABLES subcommand must precede all others.

• Other subcommands can appear in any order.

Operations

• If the ANALYSIS subcommand is specified more than once, PRINCALS is not executed. For
all other subcommands, only the last occurrence of each subcommand is executed.

• PRINCALS treats every value in the range of 1 to the maximum value specified on
VARIABLES as a valid category. Use the AUTORECODE or RECODE command if you want
to recode a categorical variable with nonsequential values or with a large number of cate-
gories to avoid unnecessary output. For variables treated as numeric, recoding is not recom-
mended because the intervals between consecutive categories will not be maintained.

Limitations

• String variables are not allowed; use AUTORECODE to recode nominal string variables
into numeric ones before using PRINCALS.

• The data must be positive integers. Zeros and negative values are treated as system-missing
and are excluded from the analysis. Fractional values are truncated after the decimal and are
included in the analysis. If one of the levels of a categorical variable has been coded 0 or a
negative value and you want to treat it as a valid category, use the AUTORECODE or
RECODE command to recode the values of that variable (see the SPSS Syntax Reference
Guide for more information on AUTORECODE and RECODE).

• PRINCALS ignores user-missing value specifications. Positive user-missing values less
than the maximum value on the VARIABLES subcommand are treated as valid category
values and are included in the analysis. If you do not want the category included, you

PRINCALS 1241

can use COMPUTE or RECODE to change the value to something outside of the valid
range. Values outside of the range (less than 1 or greater than the maximum value) are
treated as system-missing.

Example

PRINCALS VARIABLES=ACOLA BCOLA(2) PRICEA PRICEB(5)
/ANALYSIS=ACOLA BCOLA(SNOM) PRICEA PRICEB(NUME)
/PRINT=QUANT OBJECT.

• VARIABLES defines the variables and their maximum number of levels.

• The ANALYSIS subcommand specifies that variables ACOLA and BCOLA are single nomi-
nal (SNOM) and that variables PRICEA and PRICEB are numeric (NUME).

• The PRINT subcommand lists the category quantifications and object scores.

• By default, plots of the category quantifications and the object scores are produced.

VARIABLES Subcommand

VARIABLES specifies all of the variables that will be used in the current PRINCALS procedure.

• The VARIABLES subcommand is required and precedes all other subcommands. The
actual word VARIABLES can be omitted.

• Each variable or variable list is followed by the maximum number of categories (levels)
in parentheses.

• The number specified in parentheses indicates the number of categories and the maximum
category value. For example, VAR1(3) indicates that VAR1 has three categories coded 1, 2,
and 3. However, if a variable is not coded with consecutive integers, the number of
categories used in the analysis will differ from the number of observed categories. For
example, if a three category variable is coded {2, 4, 6}, the maximum category value is 6.
The analysis treats the variable as having six categories, three of which are not observed
and receive quantifications of 0.

• To avoid unnecessary output, use the AUTORECODE or RECODE command before
PRINCALS to recode a categorical variable that was coded with nonsequential values. As
noted in “Limitations,” recoding is not recommended with variables treated as numeric
(see the SPSS Base Syntax Reference Guide for more information on AUTORECODE and
RECODE).

1242 Syntax Reference

Example
DATA LIST FREE/V1 V2 V3.
BEGIN DATA
3 1 1
6 1 1
3 1 3
3 2 2
3 2 2
6 2 2
6 1 3
6 2 2
3 2 2
6 2 1
END DATA.
AUTORECODE V1 /INTO NEWVAR1.
PRINCALS VARIABLES=NEWVAR1 V2(2) V3(3).

• DATA LIST defines three variables, V1, V2, and V3.

• V1 has two levels, coded 3 and 6, V2 has two levels, coded 1 and 2, and V3 has three levels,
coded 1, 2, and 3.

• The AUTORECODE command creates NEWVAR1 containing recoded values of V1. Values
of 3 are recoded to 1 and values of 6 are recoded to 2.

• A maximum value of 2 can then be specified on the PRINCALS VARIABLES subcommand
as the maximum category value for both NEWVAR1 and V2. A maximum value of 3 is
specified for V3.

ANALYSIS Subcommand

ANALYSIS specifies the variables to be used in the computations and the optimal scaling level
used by PRINCALS to quantify each variable or variable list.

• If ANALYSIS is not specified, an ordinal level of optimal scaling is assumed for all variables.

• The specification on ANALYSIS is a variable list and an optional keyword in parentheses
to indicate the optimal scaling level.

• The variables on the variable list must also be specified on the VARIABLES subcommand.

• Variables listed on the VARIABLES subcommand but not on the ANALYSIS subcommand
can still be used to label object scores on the PLOT subcommand.

The following keywords can be specified to indicate the optimal scaling level:

MNOM Multiple nominal. The quantifications can be different for each dimension. When
all variables are multiple nominal, PRINCALS gives the same results as HOMALS.

SNOM Single nominal. PRINCALS gives only one quantification for each category. Objects
in the same category (cases with the same value on a variable) obtain the same
quantification. When DIMENSION=1 and all variables are SNOM, this solution is the
same as that of the first HOMALS dimension.

ORDI Ordinal. This is the default for variables listed without optimal scaling levels and
for all variables if the ANALYSIS subcommand is not used. The order of the
categories of the observed variable is preserved in the quantified variable.

PRINCALS 1243

NUME Numerical. This is the interval or ratio level of optimal scaling. PRINCALS assumes
that the observed variable already has numerical values for its categories. When all
variables are at the numerical level, the PRINCALS analysis is analogous to classical
principal components analysis.

These keywords can apply to a variable list as well as to a single variable. Thus, the default
ORDI is not applied to a variable without a keyword if a subsequent variable on the list has a
keyword.

NOBSERVATIONS Subcommand

NOBSERVATIONS specifies how many cases are used in the analysis.

• If NOBSERVATIONS is not specified, all available observations in the working data file are
used.

• NOBSERVATIONS is followed by an integer indicating that the first n cases are to be used.

DIMENSION Subcommand

DIMENSION specifies the number of dimensions you want PRINCALS to compute.

• If you do not specify the DIMENSION subcommand, PRINCALS computes two dimensions.

• DIMENSION is followed by an integer indicating the number of dimensions.

• If all of the variables are SNOM (single nominal), ORDI (ordinal), or NUME (numerical),
the maximum number of dimensions you can specify is the smaller of the number of ob-
servations minus 1 or the total number of variables.

• If some or all of the variables are MNOM (multiple nominal), the maximum number of di-
mensions is the smaller of the number of observations minus 1 or the total number of valid
MNOM variable levels (categories) plus the number of SNOM, ORDI, and NUME variables,
minus the number of MNOM variables without missing values.

• PRINCALS adjusts the number of dimensions to the maximum if the specified value is too
large.

• The minimum number of dimensions is 1.

MAXITER Subcommand

MAXITER specifies the maximum number of iterations PRINCALS can go through in its
computations.

• If MAXITER is not specified, PRINCALS will iterate up to 100 times.

• MAXITER is followed by an integer indicating the maximum number of iterations allowed.

1244 Syntax Reference

CONVERGENCE Subcommand

CONVERGENCE specifies a convergence criterion value. PRINCALS stops iterating if the
difference in total fit between the last two iterations is less than the CONVERGENCE value.

• If CONVERGENCE is not specified, the default value is 0.00001.
• The specification on CONVERGENCE is a convergence criterion value.

PRINT Subcommand

PRINT controls which statistics are included in your output. The default output includes
frequencies, eigenvalues, loadings, and summary measures of fit and loss.

PRINT is followed by one or more of the following keywords:

FREQ Marginal frequencies for the variables in the analysis.

HISTORY History of the iterations.

EIGEN Eigenvalues.

CORRELATION Correlation matrix for the transformed variables in the analysis. No
correlation matrix is produced if there are any missing data.

OBJECT Object scores.

QUANT Category quantifications and category coordinates for SNOM, ORDI,
and NUME variables and category quantifications in each dimension
for MNOM variables.

LOADINGS Component loadings for SNOM, ORDI, and NUME variables.

DEFAULT FREQ, EIGEN, LOADINGS, and QUANT.

ALL All of the available statistics.

NONE Summary measures of fit.

PLOT Subcommand

PLOT can be used to produce plots of category quantifications, object scores, and component
loadings.

• If PLOT is not specified, plots of the object scores and the quantifications are produced.
• No plots are produced for a one-dimensional solution.

PLOT is followed by one or more of the following keywords:

LOADINGS Plots of the component loadings of SNOM, ORDI, and NUME variables.

OBJECT Plots of the object scores.

QUANT Plots of the category quantifications for MNOM variables and plots of the
single-category coordinates for SNOM, ORDI, and NUME variables.

PRINCALS 1245

DEFAULT QUANT and OBJECT.

ALL All available plots.

NONE No plots.

• Keywords OBJECT and QUANT can each be followed by a variable list in parentheses to
indicate that plots should be labeled with these variables. For QUANT, the variables must
be specified on both the VARIABLES and ANALYSIS subcommands. For OBJECT, the
variables must be specified on VARIABLES but need not appear on the ANALYSIS subcom-
mand. This means that variables not included in the computations can still be used to label
OBJECT plots. If the variable list is omitted, only the default plots are produced.

• Object scores plots labeled with variables that appear on the ANALYSIS subcommand use
category labels corresponding to all categories within the defined range. Objects in a cat-
egory that is outside the defined range are labeled with the label corresponding to the next
category greater than the defined maximum category.

• Object scores plots labeled with variables not included on the ANALYSIS subcommand use
all category labels, regardless of whether or not the category value is inside the defined
range.

• All of the keywords except NONE can be followed by an integer in parentheses to indicate
how many characters of the variable or value label are to be used on the plot. (If you spec-
ify a variable list after OBJECT or QUANT, you can specify the value in parentheses after
the list.) The value can range from 1 to 20. If the value is omitted, twelve characters are
used. Spaces between words count as characters.

• The LOADINGS plots and one of the QUANT plots use variable labels; all other plots that
use labels use value labels.

• If a variable label is missing, the variable name is used for that variable. If a value label
is missing, the actual value is used.

• You should make sure that your variable and value labels are unique by at least one letter
in order to distinguish them on the plots.

• When points overlap, the points involved are described in a summary following the plot.

Example
PRINCALS VARIABLES COLA1 (4) COLA2 (4) COLA3 (4) COLA4 (2)
/ANALYSIS COLA1 COLA2 (SNOM) COLA3 (ORDI) COLA4 (ORDI)
/PLOT OBJECT(COLA4).

• Four variables are included in the analysis.

• OBJECT requests a plot of the object scores labeled with the values of COLA4. Any object
whose COLA4 value is not 1 or 2 is labeled 3 (or the value label for category 3, if defined).

Example
PRINCALS VARIABLES COLA1 (4) COLA2 (4) COLA3 (4) COLA4 (2)
/ANALYSIS COLA1 COLA2 (SNOM) COLA3 (ORDI)
/PLOT OBJECT(COLA4).

• Three variables are included in the analysis.

1246 Syntax Reference

• OBJECT requests a plot of the object scores labeled with the values of COLA4, a variable
not included in the analysis. Objects are labeled using all values of COLA4.

In addition to the plot keywords, the following can be specified:

NDIM Dimension pairs to be plotted. NDIM is followed by a pair of values in parentheses.
If NDIM is not specified, plots are produced for dimension 1 versus dimension 2.

• The first value indicates the dimension that is plotted against all higher dimensions. This
value can be any integer from 1 to the number of dimensions minus 1.

• The second value indicates the highest dimension to be used in plotting the dimension
pairs. This value can be any integer from 2 to the number of dimensions.

• Keyword ALL can be used instead of the first value to indicate that all dimensions are
paired with higher dimensions.

• Keyword MAX can be used instead of the second value to indicate that plots should be
produced up to, and including, the highest dimension fit by the procedure.

Example
PRINCALS COLA1 COLA2 COLA3 COLA4 (4)
/PLOT NDIM(1,3) QUANT(5).

• The NDIM(1,3) specification indicates that plots should be produced for two dimension
pairs—dimension 1 versus dimension 2 and dimension 1 versus dimension 3.

• QUANT requests plots of the category quantifications. The (5) specification indicates that
the first five characters of the value labels are to be used on the plots.

Example
PRINCALS COLA1 COLA2 COLA3 COLA4 (4)
/PLOT NDIM(ALL,3) QUANT(5).

• This plot is the same as above except for the ALL specification following NDIM. This in-
dicates that all possible pairs up to the second value should be plotted, so QUANT plots
will be produced for dimension 1 versus dimension 2, dimension 2 versus dimension 3,
and dimension 1 versus dimension 3.

SAVE Subcommand

SAVE lets you add variables containing the object scores computed by PRINCALS to the
working data file.
• If SAVE is not specified, object scores are not added to the working data file.

• A variable rootname can be specified on the SAVE subcommand to which PRINCALS adds
the number of the dimension. Only one rootname can be specified, and it can contain up
to six characters.

• If a rootname is not specified, unique variable names are automatically generated. The
variable names are PRIn_m, where n is a dimension number and m is a set number. If three
dimensions are saved, the first set of names is PRI1_1, PRI2_1, and PRI3_1. If another

PRINCALS 1247

PRINCALS is then run, the variable names for the second set are PRI1_2, PRI2_2, PRI3_2,
and so on.

• Following the name, the number of dimensions for which you want to save object scores
can be listed in parentheses. The number cannot exceed the value of the DIMENSION
subcommand.

• If the number of dimensions is not specified, the SAVE subcommand saves object scores
for all dimensions.

• If you replace the working data file by specifying an asterisk (*) on a MATRIX subcom-
mand, the SAVE subcommand is not executed.

• The prefix should be unique for each PRINCALS command in the same session. If it is not,
PRINCALS replaces the prefix with DIM, OBJ, or OBSAVE. If all of these already exist,
SAVE is not executed.

Example
PRINCALS CAR1 CAR2 CAR3(5) PRICE (10)
/ANALYSIS=CAR1 TO CAR3(SNOM) PRICE(NUM)
/DIMENSIONS=3
/SAVE=DIM(2).

• Three nominal variables, CAR1, CAR2, and CAR3, each with five categories, and one nu-
merical (interval level) variable, with ten categories, are analyzed in this PRINCALS
example.

• The DIMENSIONS subcommand requests results for three dimensions.

• SAVE adds the object scores from the first two dimensions to the working data file. The
names of these new variables will be DIM00001 and DIM00002, respectively.

MATRIX Subcommand

The MATRIX subcommand is used to write category quantifications, single-category coordi-
nates, and component loadings to a matrix data file.
• The specification on MATRIX is keyword OUT and the file enclosed in parentheses.

• You can specify the file with either an asterisk (*) to indicate that the working data file is
to be replaced or with the name of an external file.

• The category quantifications, coordinates, and component loadings are written to the
same file.

• The matrix data file has one case for each value of each original variable.

The variables of the matrix data file and their values are:

ROWTYPE_ String variable rowtype_ containing value QUANT for the category
quantifications, SCOOR_ for single-category coordinates, MCOOR_
for multiple-category coordinates, and LOADING_ for the component
scores.

LEVEL String variable containing the values (or value labels if present) of
each original variable for category quantifications. For cases with
ROWTYPE_=LOADING_, the value of LEVEL is blank.

1248 Syntax Reference

VARNAME_ String variable containing the original variable names.

VARTYPE_ String variable containing values MULTIPLE, SINGLE N, ORDINAL,
or NUMERICAL, depending on the optimal scaling level specified for
the variable.

DIM1...DIMn Numeric variables containing category quantifications, the single-
category coordinates, and component loadings for each dimension.
Each variable is labeled DIMn, where n represents the dimension num-
ber. The single-category coordinates and component loadings are
written only for SNOM, ORDI, and NUME variables.

See the SPSS Syntax Reference Guide for more information on matrix data files.

1249

PRINT

PRINT [OUTFILE=file] [RECORDS={1}] [{NOTABLE}]
 {n} {TABLE }

 /{1 } varlist [{col location [(format)]}] [varlist...]
 {rec #} {(format list) }
 {* }

 [/{2 }...]
 {rec #}

Example
PRINT / MOHIRED YRHIRED DEPT SALARY NAME.
EXECUTE.

Overview

PRINT displays the values of variables for each case in the data. PRINT is designed to be
simple enough for a quick check on data definitions and transformations and yet flexible
enough for formatting simple reports.

Options

Formats. You can specify formats for the variables (see “Formats” on p. 1251).

Strings. You can specify string values within the variable specifications. The strings can be
used to label values or to create extra space between values. Strings can also be used as
column headings. (See “Strings” on p. 1252.)

Output File. You can direct the output to a specified file using the OUTFILE subcommand.

Summary Table. You can display a table that summarizes variable formats with the TABLE
subcommand.

Basic Specification

The basic specification is a slash followed by a variable list. The values for all variables
named on the list are displayed in the output.

Subcommand Order

Subcommands can be specified in any order. However, all subcommands must be specified
before the slash that precedes the start of the variable specifications.

1250 PRINT

Syntax Rules

• A slash must precede the variable specifications. The first slash begins the definition of
the first (and possibly only) line per case of the PRINT display.

• Specified variables must already exist, but they can be numeric, string, scratch, tempo-
rary, or system variables. Subscripted variable names, such as X(1) for the first element in
vector X, cannot be used.

• Keyword ALL can be used to display the values of all user-defined variables in the
working data file.

Operations

• PRINT is executed once for each case constructed from the data file.

• PRINT is a transformation and will not be executed unless it is followed by a procedure or
the EXECUTE command.

• Because PRINT is a transformation command, the output might be mixed with casewise
procedure output. Procedures that produce individual case listings (such as LIST) should
not be used immediately after PRINT. An intervening EXECUTE or procedure command
should be specified.

• Values are displayed with a blank space between them. However, if a format is specified
for a variable, the blank space for that variable’s values is suppressed.

• Values are displayed in the output as the data are read. The PRINT output appears before
the output from the first procedure.

• If more variables are specified than can be displayed in 132 columns or within the width
specified on SET WIDTH, the program displays an error message. You must reduce the
number of variables or split the output into several records.

• User-missing values are displayed just like valid values. System-missing values are repre-
sented by a period.

Example

PRINT / MOHIRED YRHIRED DEPT SALARY NAME.
FREQUENCIES VARIABLES=DEPT.

• PRINT displays values for each variable on the variable list. The FREQUENCIES proce-
dure reads the data and causes PRINT to be executed.

• All variables are displayed using their dictionary formats. One blank space separates the
values of each variable.

Example

PRINT /ALL.
EXECUTE.

PRINT 1251

• PRINT displays values for all user-defined variables in the working data file. The EXECUTE
command executes PRINT.

Formats

By default, PRINT uses the dictionary print formats. You can specify formats for some or all
variables specified on PRINT. For a string variable, the specified format must have a width at
least as large as that of the dictionary format. String values are truncated if the specified
width is smaller than that of the dictionary format.

• Format specifications can be either column-style or FORTRAN-like (see DATA LIST). The
column location specified with column-style formats or implied with FORTRAN-like
formats refers to the column in which the variable will be displayed.

• A format specification following a list of variables applies to all of the variables in the
list. Use an asterisk to prevent the specified format from applying to variables preceding
the asterisk. The specification of columns locations implies a default print format, and
that format will apply to all previous variables if no asterisk is used.

• Printable numeric formats are F, COMMA, DOLLAR, CC, DOT, N, E, PCT, PIBHEX, RBHEX,
Z, and the date and time formats. Printable string formats are A and AHEX. Note that hex
and binary formats use different widths. For example, the AHEX format must have a width
twice that of the corresponding A format. For more information on specifying formats and
on the formats available, see DATA LIST and “Variable Formats” on p. 25 in Volume I.

• Format specifications are in effect only for the PRINT command. They do not change the
dictionary print formats.

• When a format is specified for a variable, the automatic blank following the variable in
the output is suppressed. To preserve the blank between variables, use a string (see
“Strings” on p. 1252), specify blank columns in the format, or use an X or T format
element (see DATA LIST for information on X and T).

Example
PRINT / TENURE (F2.0) ’ ’ MOHIRED YRHIRED DEPT *

SALARY85 TO SALARY88 (4(DOLLAR8,1X)) NAME.
EXECUTE.

• Format F2.0 is specified for TENURE. A blank string is specified after TENURE because
the automatic blank following the variable is suppressed by the format specification.

• MOHIRED, YRHIRED, and DEPT are displayed with default formats because the asterisk
prevents them from receiving the DOLLAR8 format specified for SALARY85 to SALARY88.
The automatic blank is preserved for MOHIRED, YRHIRED, and DEPT, but the blank is
suppressed for SALARY85 to SALARY88 by the format specification. The 1X format
element is therefore specified with DOLLAR8 to add one blank after each value of
SALARY85 to SALARY88.

• NAME uses the default dictionary format.

1252 PRINT

 Strings

You can specify string values within the variable list. Strings must be enclosed in apostro-
phes or quotation marks.

• If a format is specified for a variable list, the application of the format is interrupted by a
specified string. Thus, the string has the same effect within a variable list as an asterisk.

• Strings can be used to create column headings for the displayed variables. The PRINT
command that specifies the column headings must be used within a DO IF—END IF struc-
ture. If you want the column headings to begin a new page in the output, use a PRINT
EJECT command rather than PRINT to specify the headings (see PRINT EJECT).

Example
PRINT / NAME ’HIRED=’ MOHIRED(F2) ’/’ YRHIRED

’ SALARY=’ SALARY (DOLLAR8).
EXECUTE.

• Three strings are specified. The strings HIRED= and SALARY= label the values being
displayed. The slash specified between month hired (MOHIRED) and year hired (YRHIRED)
creates a composite hiring date. The F2 format is supplied for variable MOHIRED in order
to suppress the blank that would follow it if the dictionary format were used.

• NAME and YRHIRED are displayed with default formats. The 'HIRED=' specification
prevents the F2 format from applying to NAME, and the 'SALARY=' specification prevents
the DOLLAR8 format from applying to YRHIRED.

Example
DO IF $CASENUM EQ 1.
PRINT /’ NAME ’ 1 ’DEPT’ 25 ’HIRED’ 30 ’ SALARY’ 35.
END IF.
PRINT / NAME DEPT *

MOHIRED 30-31 ’/’ YRHIRED *
SALARY 35-42(DOLLAR).

EXECUTE.

• The first PRINT command specifies strings only. The integer after each string specifies
the beginning column number of the string. The strings will be used as column headings
for the variables. DO IF $CASENUM EQ 1 causes the first PRINT command to be executed
only once, as the first case is processed. END IF closes the structure.

• The second PRINT command specifies the variables to be displayed. It is executed once
for each case in the data. Column locations are specified to align the values with the
column headings. In this example, the T format element could also have been used to
align the variables and the column headings. For example, MOHIRED (T30,F2) begins the
display of values for variable MOHIRED in column 30.

• The asterisk after DEPT prevents the format specified for MOHIRED from applying to
NAME and DEPT. The asterisk after YRHIRED prevents the format specified for SALARY
from applying to YRHIRED.

PRINT 1253

RECORDS Subcommand

RECORDS indicates the total number of lines displayed per case. The number specified on
RECORDS is informational only. The actual specification that causes variables to display on a
new line is a slash within the variable specifications. Each new line is requested by another slash.

• RECORDS must be specified before the slash that precedes the start of the variable
specifications.

• The only specification on RECORDS is an integer to indicate the number of records for
the output. If the number does not agree with the actual number of records indicated by
slashes, the program issues a warning and ignores the specification on RECORDS.

• Specifications for each line of output must begin with a slash. An integer can follow the
slash, indicating the line on which values are to be displayed. The integer is informational
only. It cannot be used to rearrange the order of records in the output. If the integer does
not agree with the actual record number indicated by the number of slashes in the variable
specifications, the integer is ignored.

• A slash that is not followed by a variable list generates a blank line in the output.

Example
PRINT RECORDS=3 /EMPLOYID NAME DEPT

/EMPLOYID TENURE SALARY
/.

EXECUTE.

• PRINT displays the values of an individual’s name and department on one line, tenure and
salary on the next line, and the employee identification number on both lines, followed
by a blank third line. Two lines are displayed for each case, and cases in the output are
separated by a blank line.

Example
PRINT RECORDS=3 /1 EMPLOYID NAME DEPT

/2 EMPLOYID TENURE SALARY
/3.

• This PRINT command is equivalent to that in the preceding example.

Example
PRINT / EMPLOYID NAME DEPT / EMPLOYID TENURE SALARY /.

• This PRINT command is equivalent to those in the two preceding examples.

OUTFILE Subcommand

OUTFILE specifies a file for the output from the PRINT command. By default, PRINT output
is included with the rest of the output from the session.
• OUTFILE must be specified before the slash preceding the start of the variable specifications.

• The output from PRINT cannot exceed 132 characters, even if the external file is defined
with a longer record length.

1254 PRINT

Example
PRINT OUTFILE=PRINTOUT

/1 EMPLOYID DEPT SALARY /2 NAME.
EXECUTE.

• OUTFILE specifies PRINTOUT as the file that receives the PRINT output.

TABLE Subcommand

TABLE requests a table showing how the variable information is formatted. NOTABLE, which
suppresses the format table, is the default.

• TABLE must be specified before the slash that precedes the start of the variable specifications.

Example
PRINT TABLE /1 EMPLOYID DEPT SALARY /2 NAME.
EXECUTE.

• TABLE requests a summary table describing the PRINT specifications. The table is included
with the PRINT output.

1255

PRINT EJECT

PRINT EJECT [OUTFILE=file] [RECORDS={1}] [{NOTABLE}]
 {n} {TABLE }

 /{1 } varlist [{col location [(format)]}] [varlist...]
 {rec #} {(format list) }
 {* }

 [/{2 }...]
 {rec #}

Example
DO IF $CASENUM EQ 1.
PRINT EJECT /’ NAME ’ 1 ’DEPT’ 25 ’HIRED’ 30 ’ SALARY’ 35.
END IF.
PRINT / NAME DEPT *

MOHIRED(T30,F2) ’/’ YRHIRED *
SALARY (T35,DOLLAR8).

EXECUTE.

Overview

PRINT EJECT displays specified information at the top of a new page of the output. PRINT
EJECT causes a page ejection each time it is executed. If PRINT EJECT is not used in a DO
IF—END IF structure, it is executed for each case in the data, and each case is displayed on
a separate page.

PRINT EJECT is designed to be used with the PRINT command to insert titles and column
headings above the values displayed by PRINT. PRINT can also generate titles and headings,
but PRINT cannot be used to control page ejections.

PRINT EJECT and PRINT can be used for writing simple reports.

Options

The options available for PRINT EJECT are identical to those available for PRINT:

• You can specify formats for the variables.

• You can specify string values within the variable specifications. With PRINT EJECT, the
strings are usually used as titles or column headings and often include a specification for
column location.

• You can display each case on more than one line using the RECORDS subcommand.

• You can direct the output to a specified file using the OUTFILE subcommand.

• You can display a table that summarizes variable formats with the TABLE subcommand.

All of these features are documented in detail for the PRINT command and work identically
for PRINT EJECT. Refer to PRINT for additional information.

1256 PRINT EJECT

Basic Specification

The basic specification is a slash followed by a variable list and/or a list of string values that
will be used as column headings or titles. The values for each variable or string are displayed
on the top line of a new page in the output. PRINT EJECT is usually used within a DO IF—
END IF structure to control the page ejections.

Operations

• PRINT EJECT is a transformation and will not be executed unless it is followed by a pro-
cedure or the EXECUTE command.

• If PRINT EJECT is not used within a DO IF—END IF structure, it is executed for each case
in the data and displays the values for each case on a separate page.

• Values are displayed with a blank space between them. However, if a format is specified
for a variable, the blank space for that variable’s values is suppressed.

• Values are displayed in the output as the data are read. The PRINT output appears before
the output from the first procedure.

• If more variables are specified than can be displayed in 132 columns or within the width
specified on SET WIDTH, the program displays an error message. You must reduce the
number of variables or split the output into several records.

• User-missing values are displayed just like valid values. System-missing values are rep-
resented by a period.

Example

DO IF $CASENUM EQ 1.
PRINT EJECT /’ NAME ’ 1 ’DEPT’ 25 ’HIRED’ 30 ’ SALARY’ 35.
END IF.
PRINT / NAME DEPT *

MOHIRED(T30,F2) ’/’ YRHIRED *
SALARY (T35,DOLLAR8).

EXECUTE.

• PRINT EJECT specifies strings to be used as column headings and causes a page ejection.
DO IF—END IF causes the PRINT EJECT command to be executed only once, when the
system variable $CASENUM equals 1 (the value assigned to the first case in the file). Thus,
column headings are displayed on the first page of the output only. The next example
shows how to display column headings at the top of every page of the output.

• If a PRINT command were used in place of PRINT EJECT, the column headings would be-
gin immediately after the command printback.

PRINT EJECT 1257

Example

DO IF MOD($CASENUM,50) = 1.
PRINT EJECT
FILE=OUT /’ NAME ’ 1 ’DEPT’ 25 ’HIRED’ 30 ’ SALARY’ 35.
END IF.
PRINT FILE=OUT / NAME DEPT *

MOHIRED 30-31 ’/’ YRHIRED *
SALARY 35-42(DOLLAR).

EXECUTE.

• In this example, DO IF specifies that PRINT EJECT is executed if MOD (the remainder) of
$CASENUM divided by 50 equals 1 (see p. 38 for a description of MOD). Thus, column
headings are displayed on a new page after every 50th case.

• If PRINT were used instead of PRINT EJECT, column headings would display after every
50th case but would not appear at the top of a new page.

• Both PRINT EJECT and PRINT specify the same file for the output. If the FILE subcom-
mands on PRINT EJECT and PRINT do not specify the same file, the column headings and
the displayed values end up in different files.

1258

PRINT FORMATS

PRINT FORMATS varlist(format) [varlist...]

Example
PRINT FORMATS SALARY (DOLLAR8) / HOURLY (DOLLAR7.2)
 / RAISE BONUS (PCT2).

Overview

PRINT FORMATS changes variable print formats. Print formats are output formats and con-
trol the form in which values are displayed by a procedure or by the PRINT command.

PRINT FORMATS changes only print formats. To change write formats, use the WRITE
FORMATS command. To change both the print and write formats with a single specifica-
tion, use the FORMATS command. For information on assigning input formats during data
definition, see DATA LIST. For a more detailed discussion of input and output formats, see
“Variable Formats” on p. 25 in Volume I.

Basic Specification

The basic specification is a variable list followed by the new format specification in paren-
theses. All specified variables receive the new format.

Syntax Rules

• You can specify more than one variable or variable list, followed by a format in paren-
theses. Only one format can be specified after each variable list. For clarity, each set of
specifications can be separated by a slash.

• You can use keyword TO to refer to consecutive variables in the working data file.

• The specified width of a format must include enough positions to accommodate any
punctuation characters such as decimal points, commas, dollar signs, or date and time
delimiters. (This differs from assigning an input format on DATA LIST, where the program
automatically expands the input format to accommodate punctuation characters in
output.)

• Custom currency formats (CCw, CCw.d) must first be defined on the SET command be-
fore they can be used on PRINT FORMATS.

• PRINT FORMATS cannot be used with string variables. To change the length of a string
variable, declare a new variable of the desired length with the STRING command and
then use COMPUTE to copy values from the existing string into the new string.

PRINT FORMATS 1259

Operations

• Unlike most transformations, PRINT FORMATS takes effect as soon as it is encountered in
the command sequence. Special attention should be paid to its position among commands.

• Variables not specified on PRINT FORMATS retain their current print formats in the work-
ing data file. To see the current formats, use the DISPLAY command.

• The new print formats are changed only in the working file and are in effect for the dura-
tion of the session or until changed again with a PRINT FORMATS or FORMATS command.
Print formats in the original data file (if one exists) are not changed, unless the file is re-
saved with the SAVE or XSAVE command.

• New numeric variables created with transformation commands are assigned default print for-
mats of F8.2 (or the format specified on the FORMAT subcommand of SET). The FORMATS
command can be used to change the new variable’s print formats.

• New string variables created with transformation commands are assigned the format
specified on the STRING command that declares the variable. PRINT FORMATS cannot be
used to change the format of a new string variable.

• If a numeric data value exceeds its width specification, the program attempts to display
some value nevertheless. First the program rounds decimal values, then removes punctu-
ation characters, then tries scientific notation, and finally, if there is still not enough space,
produces asterisks indicating that a value is present but cannot be displayed in the as-
signed width.

Example

PRINT FORMATS SALARY (DOLLAR8) / HOURLY (DOLLAR7.2)
 / RAISE BONUS (PCT2).

• The print format for SALARY is changed to DOLLAR with eight positions, including the
dollar sign and comma when appropriate. The value 11550 is displayed as $11,550. An
eight-digit number would require a DOLLAR11 format specification: eight characters for
digits, two characters for commas, and one character for the dollar sign.

• The print format for HOURLY is changed to DOLLAR with seven positions, including the
dollar sign, decimal point, and two decimal places. The number 115 is displayed as
$115.00. If DOLLAR6.2 had been specified, the value 115 would be displayed as $115.0.
the program would truncate the last 0 because a width of 6 is not enough to display the
full value.

• The print format for both RAISE and BONUS is changed to PCT with two positions: one
position for the percentage and one position for the percent sign. The value 9 displays as
9%. Because the width allows for only two positions, the value 10 displays as 10, since
the percent sign is truncated.

1260 PRINT FORMATS

Example

COMPUTE V3=V1 + V2.
PRINT FORMATS V3 (F3.1).

• COMPUTE creates the new numeric variable V3. By default, V3 is assigned an F8.2 format
(or the default format specified on SET).

• PRINT FORMATS changes the print format for V3 to F3.1.

Example

SET CCA=’-/-.Dfl ..-’.
PRINT FORMATS COST (CCA14.2).

• SET defines a European currency format for the custom currency format type CCA.

• PRINT FORMATS assigns the print format CCA to variable COST. With the format defined
for CCA on SET, the value 37419 is displayed as Dfl’37.419,00. See the SET command
for more information on custom currency formats.

1261

PRINT SPACE

PRINT SPACE [OUTFILE=file] [numeric expression]

Example
PRINT / NAME DEPT82 *

MOHIRED(T30,F2) ’/’ YRHIRED *
SALARY82 (T35,DOLLAR8).

PRINT SPACE.
EXECUTE.

Overview

PRINT SPACE displays blank lines in the output and is generally used with a PRINT or WRITE
command. Because PRINT SPACE displays a blank line each time it is executed, it is often
used in a DO IF—END IF structure.

Basic Specification

The basic specification is simply the command PRINT SPACE.

Syntax Rules

• To display more than one blank line, specify a numeric expression after PRINT SPACE.
The expression can be an integer or a complex expression.

• OUTFILE directs the output to a specified file. OUTFILE should be specified if an
OUTFILE subcommand is specified on the PRINT or WRITE command that is used with
PRINT SPACE. The OUTFILE subcommand on PRINT SPACE and PRINT or WRITE should
specify the same file.

Operations

• If PRINT SPACE is not used in a DO IF—END IF structure, it is executed for each case in
the data and displays a blank line for every case.

1262 PRINT SPACE

Example

PRINT / NAME DEPT82 *
MOHIRED(T30,F2) ’/’ YRHIRED *
SALARY82 (T35,DOLLAR8).

PRINT SPACE.
EXECUTE.

• PRINT SPACE displays one blank line each time it is executed. Because PRINT SPACE is
not used in a DO IF—END IF structure, it is executed once for each case. In effect, the
output is double-spaced.

Example

NUMERIC #LINE.
DO IF MOD(#LINE,5) = 0.
PRINT SPACE 2.
END IF.
COMPUTE #LINE=#LINE + 1.
PRINT / NAME DEPT *

MOHIRED 30-31 ’/’ YRHIRED *
SALARY 35-42(DOLLAR).

EXECUTE.

• DO IF specifies that PRINT SPACE will be executed if MOD (the remainder) of #LINE
divided by 5 equals 1. Since #LINE is incremented by 1 for each case, PRINT SPACE is
executed once for every five cases. (See p. 38 for information on the MOD function.)

• PRINT SPACE specifies two blank lines. Cases are displayed in groups of five with two
blank lines between each group.

Example

* Printing addresses on labels.

COMPUTE #LINES=0. /*Initiate #LINES to 0
DATA LIST FILE=ADDRESS/RECORD 1-40 (A). /*Read a record
COMPUTE #LINES=#LINES+1. /*Bump counter and print
WRITE OUTFILE=LABELS /RECORD.

DO IF RECORD EQ ’ ’. /*Blank between addresses
+ PRINT SPACE OUTFILE=LABELS 8 - #LINES. /*Add extra blank #LINES
+ COMPUTE #LINES=0.
END IF.
EXECUTE.

• PRINT SPACE uses a complex expression for specifying the number of blank lines to dis-
play. The data contain a variable number of input records for each name and address,
which must be printed in a fixed number of lines for mailing labels. The goal is to know
when the last line for each address has been printed, how many lines have printed, and
therefore how many blank records must be printed in order for the next address to fit on
the next label. The example assumes that there is already one blank line between each
address on input and that you want to print eight lines per label.

PRINT SPACE 1263

• The DATA LIST command defines the data. Each line of the address is contained in col-
umns 1–40 of the data file and is assigned the variable name RECORD. For the blank line
between each address, RECORD is blank.

• Variable #LINES is the key to this example. #LINES is initialized to 0 as a scratch variable.
It is incremented for each record written. When the program encounters a blank line
(RECORD EQ ’ ’), PRINT SPACE prints a number of blank lines equal to 8 minus the num-
ber already printed, and #LINES is then reset to 0.

• OUTFILE on PRINT SPACE specifies the same file specified by OUTFILE on WRITE.

1264

PROBIT

PROBIT is available in the Regression Models option.

PROBIT response-count varname OF observation-count varname
WITH varlist [BY varname(min,max)]

 [/MODEL={PROBIT**}]
 {LOGIT }
 {BOTH }

 [/LOG=[{10** }]
 {2.718}
 {value}
 {NONE }

[/CRITERIA=[{OPTOL }({epsilon**0.8})][P({0.15**})][STEPLIMIT({0.1**})]
{CONVERGE} {n } {p } {n }

 [ITERATE({max(50,3(p+1)**})]]
 {n }

[/NATRES[=value]]

[/PRINT={[CI**] [FREQ**] [RMP**]} [PARALL] [NONE] [ALL]]
 {DEFAULT** }

[/MISSING=[{EXCLUDE**}]]
 {INCLUDE }

**Default if the subcommand or keyword is omitted.

Example
PROBIT R OF N BY ROOT(1,2) WITH X

/MODEL = BOTH.

Overview

PROBIT can be used to estimate the effects of one or more independent variables on a
dichotomous dependent variable (such as dead or alive, employed or unemployed, product
purchased or not). The program is designed for dose-response analyses and related models,
but PROBIT can also estimate logistic regression models.

Options

The Model. You can request a probit or logit response model, or both, for the observed
response proportions with the MODEL subcommand.

Transform Predictors. You can control the base of the log transformation applied to the
predictors or request no log transformation with the LOG subcommand.

PROBIT 1265

Natural Response Rates. You can instruct PROBIT to estimate the natural response rate
(threshold) of the model or supply a known natural response rate to be used in the solution
with the NATRES subcommand.

Algorithm Control Parameters. You can specify values of algorithm control parameters, such as
the limit on iterations, using the CRITERIA subcommand.

Statistics. By default, PROBIT calculates frequencies, fiducial confidence intervals, and the
relative median potency. It also produces a plot of the observed probits or logits against the
values of a single independent variable. Optionally, you can use the PRINT subcommand to
request a test of the parallelism of regression lines for different levels of the grouping vari-
able or to suppress any or all of these statistics.

Basic Specification

• The basic specification is the response-count variable, keyword OF, the observation-
count variable, keyword WITH, and at least one independent variable.

• PROBIT calculates maximum-likelihood estimates for the parameters of the default probit
response model and automatically displays estimates of the regression coefficient and
intercept terms, their standard errors, a covariance matrix of parameter estimates, and a
Pearson chi-square goodness-of-fit test of the model.

Subcommand Order

• The variable specification must be first.

• Subcommands can be named in any order.

Syntax Rules

• The variables must include a response count, an observation count, and at least one
predictor. A categorical grouping variable is optional.

• All subcommands are optional and each can appear only once.
• Generally, data should not be entered for individual observations. PROBIT expects

predictor values, response counts, and the total number of observations as the input case.

• If the data are available only in a case-by-case form, use AGGREGATE first to compute the
required response and observation counts.

Operations

• The transformed response variable is predicted as a linear function of other variables
using the nonlinear-optimization method. Note that the previous releases used the itera-
tively weighted least-squares method, which has a different way of transforming the
response variables. See the MODEL subcommand on p. 1268.

1266 PROBIT

• If individual cases are entered in the data, PROBIT skips the plot of transformed response
proportions and predictor values.

• If individual cases are entered, the chi-square goodness-of-fit statistic and associated
degrees of freedom are based on the individual cases. The case-based chi-square good-
ness-of-fit statistic generally differs from that calculated for the same data in aggregated
form.

Limitations

• Only one prediction model can be tested on a single PROBIT command, although both
probit and logit response models can be requested for that prediction.

• Confidence limits, the plot of transformed response proportions and predictor values, and
computation of relative median potency are necessarily limited to single-predictor models.

Example

PROBIT R OF N BY ROOT(1,2) WITH X
/MODEL = BOTH.

• This example specifies that both the probit and logit response models be applied to the
response frequency R, given N total observations and the predictor X.

• By default, the predictor is log transformed.

Example

* Using data in a case-by-case form

DATA LIST FREE / PREPARTN DOSE RESPONSE.
BEGIN DATA
1 1.5 0
...
4 20.0 1
END DATA.
COMPUTE SUBJECT = 1.
PROBIT RESPONSE OF SUBJECT BY PREPARTN(1,4) WITH DOSE.

• This dose-response model (Finney, 1971) illustrates a case-by-case analysis. A researcher
tests four different preparations at varying doses and observes whether each subject
responds. The data are individually recorded for each subject, with 1 indicating a
response and 0 indicating no response. The number of observations is always 1 and is
stored in variable SUBJECT.

• PROBIT warns that the data are in a case-by-case form and that the plot is therefore
skipped.

• The goodness-of-fit test and associated degrees of freedom are based on individual cases,
not dosage groups.

• PROBIT displays predicted and observed frequencies for all individual input cases.

PROBIT 1267

Example

* Aggregating case-by-case data

DATA LIST FREE/PREPARTN DOSE RESPONSE.
BEGIN DATA

1.00 1.50 .00
...
4.00 20.00 1.00

END DATA.
AGGREGATE OUTFILE=*

/BREAK=PREPARTN DOSE
/SUBJECTS=N(RESPONSE)
/NRESP=SUM(RESPONSE).

PROBIT NRESP OF SUBJECTS BY PREPARTN(1,4) WITH DOSE.

• This example analyzes the same dose-response model as the previous example, but the
data are first aggregated.

• AGGREGATE summarizes the data by cases representing all subjects who received the
same preparation (PREPARTN) at the same dose (DOSE).

• The number of cases having a nonmissing response is recorded in the aggregated variable
SUBJECTS.

• Because RESPONSE is coded 0 for no response and 1 for a response, the sum of the values
gives the number of observations with a response.

• PROBIT requests a default analysis.

• The parameter estimates for this analysis are the same as those calculated for individual
cases in the example above. The chi-square test, however, is based on the number of
dosages.

Variable Specification

The variable specification on PROBIT identifies the variables for response count, observation
count, groups, and predictors. The variable specification is required.

• The variables must be specified first. The specification must include the response-count
variable, followed by the keyword OF and then the observation-count variable.

• If the value of the response-count variable exceeds that of the observation-count variable,
a procedure error occurs and PROBIT is not executed.

• At least one predictor (covariate) must be specified following the keyword WITH. The
number of predictors is limited only by available workspace. All predictors must be
continuous variables.

• You can specify a grouping variable (factor) after the keyword BY. Only one variable can
be specified. It must be numeric and can contain only integer values. You must specify,
in parentheses, a range indicating the minimum and maximum values for the grouping
variable. Each integer value in the specified range defines a group.

• Cases with values for the grouping variable that are outside the specified range are
excluded from the analysis.

1268 PROBIT

• Keywords BY and WITH can appear in either order. However, both must follow the
response-and-observation-count variables.

Example
PROBIT R OF N WITH X.

• The number of observations having the measured response appears in variable R, and the
total number of observations is in N. The predictor is X.

Example
PROBIT R OF N BY ROOT(1,2) WITH X.

PROBIT R OF N WITH X BY ROOT(1,2).

• Because keywords BY and WITH can be used in either order, these two commands are
equivalent. Each command specifies X as a continuous predictor and ROOT as a categor-
ical grouping variable.

• Groups are identified by the levels of variable ROOT, which may be 1 or 2.

• For each combination of predictor and grouping variables, the variable R contains the
number of observations with the response of interest, and N contains the total number of
observations.

MODEL Subcommand

MODEL specifies the form of the dichotomous-response model. Response models can be
thought of as transformations (T) of response rates, which are proportions or probabilities
(p). Note the difference in the transformations between the current version and the previous
versions.

• A probit is the inverse of the cumulative standard normal distribution function. Thus, for
any proportion, the probit transformation returns the value below which that proportion
of standard normal deviates is found. For the probit response model, the program uses

. Hence:

• A logit is simply the natural log of the odds ratio, . In the Probit procedure, the
response function is given as . Hence:

T p() PROBIT p()=

T 0.025() PROBIT 0.025() 1.96–= =

T 0.400() PROBIT 0.400() 0.25–= =

T 0.500() PROBIT 0.500() 0.00= =

T 0.950() PROBIT 0.950() 1.64= =

p 1 p–()⁄
T p() p 1 p–()⁄()elog=

T 0.025() LOGIT 0.025() 3.66–= =

T 0.400() LOGIT 0.400() 0.40–= =

T 0.500() LOGIT 0.500() 0.00= =

T 0.950() LOGIT 0.950() 2.94= =

PROBIT 1269

You can request one or both of the models on the MODEL subcommand. The default is PROBIT
if the subcommand is not specified or is specified with no keyword.

PROBIT Probit response model. This is the default.

LOGIT Logit response model.

BOTH Both probit and logit response models. PROBIT displays all the output for the logit
model followed by the output for the probit model.

• If subgroups and multiple-predictor variables are defined, PROBIT estimates a separate
intercept, , for each subgroup and a regression coefficient, , for each predictor.

LOG Subcommand

LOG specifies the base of the logarithmic transformation of the predictor variables or
suppresses the default log transformation.

• LOG applies to all predictors.

• To transform only selected predictors, use COMPUTE commands before the Probit
procedure. Then specify NONE on the LOG subcommand.

• If LOG is omitted, a logarithm base of 10 is used.

• If LOG is used without a specification, the natural logarithm base e (2.718) is used.

• If you have a control group in your data and specify NONE on the LOG subcommand, the
control group is included in the analysis. See the NATRES subcommand on p. 1270.

You can specify one of the following on LOG:

value Logarithm base to be applied to all predictors.

NONE No transformation of the predictors.

Example
PROBIT R OF N BY ROOT (1,2) WITH X

/LOG = 2.

• LOG specifies a base-2 logarithmic transformation.

CRITERIA Subcommand

Use CRITERIA to specify the values of control parameters for the PROBIT algorithm. You can
specify any or all of the keywords below. Defaults remain in effect for parameters that are
not changed.

OPTOL(n) Optimality tolerance. Alias CONVERGE. If an iteration point is a feasible
point and the next step will not produce a relative change in either the param-
eter vector or the log-likelihood function of more than the square root of n,
an optimal solution has been found. OPTOL can also be thought of as the
number of significant digits in the log-likelihood function at the solution. For
example, if OPTOL=10-6, the log-likelihood function should have approxi-

aj bi

1270 PROBIT

mately six significant digits of accuracy. The default value is machine
epsilon**0.8.

ITERATE(n) Iteration limit. Specify the maximum number of iterations. The default is
, where p is the number of parameters in the model.

P(p) Heterogeneity criterion probability. Specify a cutoff value between 0 and 1
for the significance of the goodness-of-fit test. The cutoff value determines
whether a heterogeneity factor is included in calculations of confidence
levels for effective levels of a predictor. If the significance of chi-square is
greater than the cutoff, the heterogeneity factor is not included. If you spec-
ify 0, this criterion is disabled; if you specify 1, a heterogeneity factor is au-
tomatically included. The default is 0.15.

STEPLIMIT(n) Step limit. The PROBIT algorithm does not allow changes in the length of the
parameter vector to exceed a factor of n. This limit prevents very early steps
from going too far from good initial estimates. Specify any positive value.
The default value is 0.1.

CONVERGE(n) Alias of OPTOL.

NATRES Subcommand

You can use NATRES either to supply a known natural response rate to be used in the solution
or to instruct PROBIT to estimate the natural (or threshold) response rate of the model.

• To supply a known natural response rate as a constraint on the model solution, specify a
value less than 1 on NATRES.

• To instruct PROBIT to estimate the natural response rate of the model, you can indicate a
control group by giving a 0 value to any of the predictor variables. PROBIT displays the
estimate of the natural response rate and the standard error and includes the estimate in
the covariance/correlation matrix as NAT RESP.

• If no control group is indicated and NATRES is specified without a given value, PROBIT
estimates the natural response rate from the entire data and informs you that no control
group has been provided. The estimate of the natural response rate and the standard error
are displayed and NAT RESP is included in the covariance/correlation matrix.

• If you have a control group in your data and specify NONE on the LOG subcommand, the
control group is included in the analysis.

Example
DATA LIST FREE / SOLUTION DOSE NOBSN NRESP.
BEGIN DATA
1 5 100 20
1 10 80 30
1 0 100 10
...
END DATA.

PROBIT NRESP OF NOBSN BY SOLUTION(1,4) WITH DOSE
/NATRES.

max 50 3 p 1+(),()

PROBIT 1271

• This example reads four variables and requests a default analysis with an estimate of the
natural response rate.

• The predictor variable, DOSE, has a value of 0 for the third case.

• The response count (10) and the observation count (100) for this case establish the initial
estimate of the natural response rate.

• Because the default log transformation is performed, the control group is not included in
the analysis.

Example
DATA LIST FREE / SOLUTION DOSE NOBSN NRESP.
BEGIN DATA
1 5 100 20
1 10 80 30
1 0 100 10

...
END DATA.

PROBIT NRESP OF NOBSN BY SOLUTION(1,4) WITH DOSE
/NATRES = 0.10.

• This example reads four variables and requests an analysis in which the natural response
rate is set to 0.10. The values of the control group are ignored.

• The control group is excluded from the analysis because the default log transformation is
performed.

PRINT Subcommand

Use PRINT to control the statistics calculated by PROBIT.
• PROBIT always displays the plot (for a single-predictor model) and the parameter esti-

mates and covariances for the probit model.

• If PRINT is used, the requested statistics are calculated and displayed in addition to the
parameter estimates and plot.

• If PRINT is not specified or is specified without any keyword, FREQ, CI, and RMP are
calculated and displayed in addition to the parameter estimates and plot.

DEFAULT FREQ, CI, and RMP. This is the default if PRINT is not specified or is specified by
itself.

FREQ Frequencies. Display a table of observed and predicted frequencies with their
residual values. If observations are entered on a case-by-case basis, this listing can
be quite lengthy.

CI Fiducial confidence intervals. Print Finney’s (1971) fiducial confidence intervals
for the levels of the predictor needed to produce each proportion of responses.
PROBIT displays this default output for single-predictor models only. If a categor-
ical grouping variable is specified, PROBIT produces a table of confidence intervals
for each group. If the Pearson chi-square goodness-of-fit test is significant (p < 0.15
by default), PROBIT uses a heterogeneity factor to calculate the limits.

1272 PROBIT

RMP Relative median potency. Display the relative median potency (RMP) of each pair
of groups defined by the grouping variable. PROBIT displays this default output for
single-predictor models only. For any pair of groups, the RMP is the ratio of the stim-
ulus tolerances in those groups. Stimulus tolerance is the value of the predictor
necessary to produce a 50% response rate. If the derived model for one predictor and
two groups estimates that a predictor value of 21 produces a 50% response rate in
the first group, and that a predictor value of 15 produces a 50% response rate in the
second group, the relative median potency would be 21/15 = 1.40. In biological
assay analyses, RMP measures the comparative strength of preparations.

PARALL Parallelism test. Produce a test of the parallelism of regression lines for different
levels of the grouping variable. This test displays a chi-square value and its associ-
ated probability. It requires an additional pass through the data and, thus, additional
processing time.

NONE Display only the unconditional output. This option can be used to override any
other specification on the PRINT subcommand for PROBIT.

ALL All available output. This is the same as requesting FREQ, CI, RMP, and PARALL.

MISSING Subcommand

PROBIT always deletes cases having a missing value for any variable. In the output, PROBIT
indicates how many cases it rejected because of missing data. This information is displayed
with the DATA Information that prints at the beginning of the output. You can use the
MISSING subcommand to control the treatment of user-missing values.

EXCLUDE Delete cases with user-missing values. This is the default. You can also make
it explicit by using the keyword DEFAULT.

INCLUDE Include user-missing values. PROBIT treats user-missing values as valid.
Only cases with system-missing values are rejected.

References

Finney, D. J. 1971. Probit analysis. Cambridge: Cambridge University Press.

1273

PROCEDURE OUTPUT

PROCEDURE OUTPUT OUTFILE=file

Example
PROCEDURE OUTPUT OUTFILE=CELLDATA.
CROSSTABS VARIABLES=FEAR SEX (1,2)

/TABLES=FEAR BY SEX
/WRITE=ALL.

Overview

PROCEDURE OUTPUT specifies the files to which CROSSTABS and SURVIVAL (included in
the SPSS Advanced Models option) can write procedure output. PROCEDURE OUTPUT has
no other applications.

Basic Specification

The only specification is OUTFILE and the file specification. PROCEDURE OUTPUT must
precede the command to which it applies.

Operations

Commands with the WRITE subcommand or keyword write to the output file specified on
the most recent PROCEDURE OUTPUT command. If only one output file has been specified,
the output from the last such procedure overwrites all previous ones.

Example

PROCEDURE OUTPUT OUTFILE=CELLDATA.
CROSSTABS VARIABLES=FEAR SEX (1,2)

/TABLES=FEAR BY SEX
/WRITE=ALL.

• PROCEDURE OUTPUT precedes CROSSTABS and specifies CELLDATA as the file to
receive the cell frequencies.

• The WRITE subcommand on CROSSTABS is required for writing cell frequencies to a
procedure output file.

1274 PROCEDURE OUTPUT

Example

PROCEDURE OUTPUT OUTFILE=SURVTBL.
SURVIVAL TABLES=ONSSURV,RECSURV BY TREATMNT(1,3)

/STATUS = RECURSIT(1,9) FOR RECSURV
/STATUS = STATUS(3,4) FOR ONSSURV
/INTERVAL=THRU 50 BY 5 THRU 100 BY 10/PLOTS/COMPARE
/CALCULATE=CONDITIONAL PAIRWISE
/WRITE=TABLES.

• PROCEDURE OUTPUT precedes SURVIVAL and specifies SURVTBL as the file to receive
the survival tables.

• The WRITE subcommand on SURVIVAL is required for writing survival tables to a proce-
dure output file.

1275

PROXIMITIES

PROXIMITIES varlist [/VIEW={CASE** }]
 {VARIABLE}

 [/STANDARDIZE=[{VARIABLE}] [{NONE** }]]
 {CASE } {Z }
 {SD }
 {RANGE }
 {MAX }
 {MEAN }
 {RESCALE}

 [/MEASURE=[{EUCLID** }] [ABSOLUTE] [REVERSE] [RESCALE]
 {SEUCLID }
 {COSINE }
 {CORRELATION }
 {BLOCK }
 {CHEBYCHEV }
 {POWER(p,r) }
 {MINKOWSKI(p) }
 {CHISQ }
 {PH2 }
 {RR[(p[,np])] }
 {SM[(p[,np])] }
 {JACCARD[(p[,np])] }
 {DICE[(p[,np])] }
 {SS1[(p[,np])] }
 {RT[(p[,np])] }
 {SS2[(p[,np])] }
 {K1[(p[,np])] }
 {SS3[(p[,np])] }
 {K2[(p[,np])] }
 {SS4[(p[,np])] }
 {HAMANN[(p[,np])] }
 {OCHIAI[(p[,np])] }
 {SS5[(p[,np])] }
 {PHI[(p[,np])] }
 {LAMBDA[(p[,np])] }
 {D[(p[,np])] }
 {Y[(p[,np])] }
 {Q[(p[,np])] }
 {BEUCLID[(p[,np])] }
 {SIZE[(p[,np])] }
 {PATTERN[(p[,np])] }
 {BSEUCLID[(p[,np])]}
 {BSHAPE[(p[,np])] }
 {DISPER[(p[,np])] }
 {VARIANCE[(p[,np])]}
 {BLWMN[(p[,np])] }
 {NONE }

 [/PRINT=[{PROXIMITIES**}]] [/ID=varname]
 {NONE }

 [/MISSING=[EXCLUDE**] [INCLUDE]]

 [/MATRIX=[IN({file})] [OUT({file})]]
 {* } {* }

**Default if subcommand or keyword is omitted.

1276 PROXIMITIES

Example
PROXIMITIES A B C.

Overview

PROXIMITIES computes a variety of measures of similarity, dissimilarity, or distance
between pairs of cases or pairs of variables for moderate-sized data sets (see “Limitations”
below). PROXIMITIES matrix output can be used as input to procedures ALSCAL, CLUSTER,
and FACTOR. To learn more about proximities matrices and their uses, consult Anderberg
(1973) and Romesburg (1984).

Options

Standardizing Data. With the STANDARDIZE subcommand you can standardize the values for
each variable or for each case by any of several different methods.

Proximity Measures. You can compute a variety of similarity, dissimilarity, and distance
measures using the MEASURE subcommand. (Similarity measures increase with greater
similarity; dissimilarity and distance measures decrease.) MEASURE can compute
measures for interval data, frequency count data, and binary data. Only one measure can
be requested in any one PROXIMITIES procedure. With the VIEW subcommand, you can
control whether proximities are computed between variables or between cases.

Output. You can display a computed matrix using the PRINT subcommand.

Matrix Input and Output. You can write a computed proximities matrix to an SPSS-format
data file using the MATRIX subcommand. This matrix can be used as input to procedures
CLUSTER, ALSCAL, and FACTOR. You can also use MATRIX to read a similarity, dissimi-
larity, or distance matrix. This option lets you rescale or transform existing proximity
matrices.

Basic Specification

The basic specification is a variable list, which obtains Euclidean distances between cases
based on the values of each specified variable.

Subcommand Order

• The variable list must be first.

• Subcommands can be named in any order.

Operations

• PROXIMITIES ignores case weights when computing coefficients.

PROXIMITIES 1277

Limitations

• PROXIMITIES keeps the raw data for the current split-file group in memory. Storage
requirements increase rapidly with the number of cases and the number of items (cases or
variables) for which PROXIMITIES computes coefficients.

Example

PROXIMITIES A B C.

• PROXIMITIES computes Euclidean distances between cases based on the values of vari-
ables A, B, and C.

Variable Specification

• The variable list must be specified first.

• The variable list can be omitted when an input matrix data file is specified. A slash must
then be specified before the first subcommand to indicate that the variable list is omitted.

STANDARDIZE Subcommand

Use STANDARDIZE to standardize data values for either cases or variables before
computing proximities. One of two options can be specified to control the direction of
standardization:

VARIABLE Standardize the values for each variable. This is the default.

CASE Standardize the values within each case.

Several standardization methods are available. These allow you to equalize selected properties
of the values. All methods can be used with either VARIABLE or CASE. Only one standardiza-
tion method can be specified.

• If STANDARDIZE is omitted, proximities are computed using the original values (keyword
NONE).

• If STANDARDIZE is used without specifications, proximities are computed using Z scores
(keyword Z).

• STANDARDIZE cannot be used with binary measures.

NONE Do not standardize. Proximities are computed using the original values. This
is the default if STANDARDIZE is omitted.

Z Standardize values to Z scores, with a mean of 0 and a standard deviation of
1. PROXIMITIES subtracts the mean value for the variable or case from each
value being standardized and then divides by the standard deviation. If the
standard deviation is 0, PROXIMITIES sets all values for the case or variable
to 0. This is the default if STANDARDIZE is used without specifications.

1278 PROXIMITIES

RANGE Standardize values to have a range of 1. PROXIMITIES divides each value
being standardized by the range of values for the variable or case. If the range
is 0, PROXIMITIES leaves all values unchanged.

RESCALE Standardize values to have a range from 0 to 1. From each value being stan-
dardized, PROXIMITIES subtracts the minimum value and then divides by the
range for the variable or case. If a range is 0, PROXIMITIES sets all values for
the case or variable to 0.50.

MAX Standardize values to a maximum magnitude of 1. PROXIMITIES divides
each value being standardized by the maximum value for the variable or
case. If the maximum of the values is 0, PROXIMITIES divides each value by
the absolute magnitude of the smallest value and adds 1.

MEAN Standardize values to a mean of 1. PROXIMITIES divides each value being
standardized by the mean of the values for the variable or case. If the mean
is 0, PROXIMITIES adds 1 to all values for the case or variable to produce a
mean of 1.

SD Standardize values to unit standard deviation. PROXIMITIES divides each
value being standardized by the standard deviation of the values for the
variable or case. PROXIMITIES does not change the values if their standard
deviation is 0.

Example
PROXIMITIES A B C

/STANDARDIZE=CASE RANGE.

• Within each case, values are standardized to have ranges of 1.

VIEW Subcommand

VIEW indicates whether proximities are computed between cases or between variables.

CASE Compute proximity values between cases. This is the default.

VARIABLE Compute proximity values between variables.

MEASURE Subcommand

MEASURE specifies the similarity, dissimilarity, or distance measure that PROXIMITIES
computes. Three transformations are available with any of these measures:

ABSOLUTE Take the absolute values of the proximities. Use ABSOLUTE when the sign of
the values indicates the direction of the relationship (as with correlation
coefficients) but only the magnitude of the relationship is of interest.

REVERSE Transform similarity values into dissimilarities, or vice versa. Use this spec-
ification to reverse the ordering of the proximities by negating the values.

PROXIMITIES 1279

RESCALE Rescale the proximity values to a range of 0 to 1. RESCALE standardizes the
proximities by first subtracting the value of the smallest and then dividing by
the range. You would not usually use RESCALE with measures that are
already standardized on meaningful scales, as are correlations, cosines, and
many binary coefficients.

PROXIMITIES can compute any one of a number of measures between items. You can
choose among measures for interval data, frequency count data, or binary data. Available
keywords for each of these types of measures are defined in the following sections.

• Only one measure can be specified. However, each measure can be specified with any of
the transformations ABSOLUTE, REVERSE, or RESCALE. To apply a transformation to an
existing matrix of proximity values without computing any measures, use keyword NONE
(see p. 1287).

• If more than one transformation is specified, PROXIMITIES does them in the order listed
above: first ABSOLUTE, then REVERSE, and then RESCALE regardless of the order they
are specified.

• Each entry in the resulting proximity matrix represents a pair of items. The items can be
either cases or variables, whichever is specified on the VIEW subcommand.

• When the items are cases, the computation for each pair of cases involves pairs of values
for the specified variables.

• When the items are variables, the computation for each pair of variables involves pairs of
values for the variables across all cases.

Example
PROXIMITIES A B C

/MEASURE=EUCLID REVERSE.

• MEASURE specifies a EUCLID measure and a REVERSE transformation.

Measures for Interval Data

To obtain proximities for interval data, use any one of the following keywords on MEASURE:

EUCLID Euclidean distance. The distance between two items, x and y, is the square
root of the sum of the squared differences between the values for the items.
This is the default.

SEUCLID Squared Euclidean distance. The distance between two items is the sum of
the squared differences between the values for the items.

CORRELATION Correlation between vectors of values. This is a pattern similarity measure.

EUCLID x y,() Σi xi yi–()2=

SEUCLID x y,() Σi xi yi–()2=

1280 PROXIMITIES

where Zxi is the Z-score (standardized) value of x for the ith case or variable,

and N is the number of cases or variables.

COSINE Cosine of vectors of values. This is a pattern similarity measure.

CHEBYCHEV Chebychev distance metric. The distance between two items is the maximum
absolute difference between the values for the items.

BLOCK City-block or Manhattan distance. The distance between two items is the
sum of the absolute differences between the values for the items.

MINKOWSKI(p) Distance in an absolute Minkowski power metric. The distance between two
items is the pth root of the sum of the absolute differences to the pth power
between the values for the items. Appropriate selection of the integer param-
eter p yields Euclidean and many other distance metrics.

POWER(p,r) Distance in an absolute power metric. The distance between two items is the
rth root of the sum of the absolute differences to the pth power between the
values for the items. Appropriate selection of the integer parameters p and r
yields Euclidean, squared Euclidean, Minkowski, city-block, and many
other distance metrics.

Measures for Frequency Count Data

To obtain proximities for frequency count data, use either of the following keywords on
MEASURE:

CHISQ Based on the chi-square test of equality for two sets of frequencies. The
magnitude of this dissimilarity measure depends on the total frequencies of
the two cases or variables whose dissimilarity is computed. Expected values
are from the model of independence of cases or variables x and y.

CORRELATION x y,()
Σi ZxiZyi()

N 1–
-------------------------=

COSINE x y,()
Σi xiyi()

Σixi
2() Σiyi

2()
-----------------------------------=

CHEBYCHEV x y,() maxi xi yi–=

BLOCK x y,() Σi xi yi–=

MINKOWSKI x y,() Σi xi yi– p()1 p/=

POWER x y,() Σi xi yi– p()1 r/=

PROXIMITIES 1281

PH2 Phi-square between sets of frequencies. This is the CHISQ measure normal-
ized by the square root of the combined frequency. Therefore, its value
does not depend on the total frequencies of the two cases or variables
whose dissimilarity is computed.

Measures for Binary Data

Different binary measures emphasize different aspects of the relationship between sets of
binary values. However, all the measures are specified in the same way. Each measure has
two optional integer-valued parameters, p (present) and np (not present).

• If both parameters are specified, PROXIMITIES uses the value of the first as an indicator
that a characteristic is present and the value of the second as an indicator that a character-
istic is absent. PROXIMITIES skips all other values.

• If only the first parameter is specified, PROXIMITIES uses that value to indicate presence
and all other values to indicate absence.

• If no parameters are specified, PROXIMITIES assumes that 1 indicates presence and 0
indicates absence.

Using the indicators for presence and absence within each item (case or variable), PROXIMITIES
constructs a contingency table for each pair of items in turn. It uses this table to compute a
proximity measure for the pair.

PROXIMITIES computes all binary measures from the values of a, b, c, and d. These values
are tallied across variables (when the items are cases) or cases (when the items are vari-
ables). For example, if variables V, W, X, Y, Z have values 0, 1, 1, 0, 1 for case 1 and values

Item 2 characteristics

Present Absent

Item 1 characteristics

Present a b

Absent c d

CHISQ x y,()
Σi xi E xi()–()2

E xi()

Σi yi E yi()–()2

E yi()
-----------------------------------+=

PH2 x y,()

Σi xi E xi()–()2

E xi()

Σi yi E yi()–()2

E yi()
-----------------------------------+

N
---=

2 2×

1282 PROXIMITIES

0, 1, 1, 0, 0 for case 2 (where 1 indicates presence and 0 indicates absence), the contin-
gency table is as follows:

The contingency table indicates that both cases are present for two variables (W and X),
both cases are absent for two variables (V and Y), and case 1 is present and case 2 is absent
for one variable (Z). There are no variables for which case 1 is absent and case 2 is present.

The available binary measures include matching coefficients, conditional probabilities,
predictability measures, and others.

Matching Coefficients. Table 1 shows a classification scheme for PROXIMITIES matching
coefficients. In this scheme, matches are joint presences (value a in the contingency table)
or joint absences (value d). Nonmatches are equal in number to value b plus value c.
Matches and nonmatches may be weighted equally or not. The three coefficients JACCARD,
DICE, and SS2 are related monotonically, as are SM, SS1, and RT. All coefficients in Table
1 are similarity measures, and all except two (K1 and SS3) range from 0 to 1. K1 and SS3
have a minimum value of 0 and no upper limit.

Case 2 characteristics

Present Absent

Case 1 characteristics

Present 2 1

Absent 0 2

Table 1 Binary matching coefficients in PROXIMITIES

Joint absences
excluded from
numerator

Joint absences
included in
numerator

All matches included
in denominator

Equal weight for
matches and nonmatches RR SM

Double weight for
matches

 SS1

Double weight for
nonmatches

 RT

Joint absences excluded
from denominator

Equal weight for
matches and nonmatches JACCARD

Double weight for
matches DICE

PROXIMITIES 1283

RR[(p[,np])] Russell and Rao similarity measure. This is the binary dot product.

SM[(p[,np])] Simple matching similarity measure. This is the ratio of the number of
matches to the total number of characteristics.

JACCARD[(p[,np])] Jaccard similarity measure. This is also known as the similarity ratio.

DICE[(p[,np])] Dice (or Czekanowski or Sorenson) similarity measure.

SS1[(p[,np])] Sokal and Sneath similarity measure 1.

RT[(p[,np])] Rogers and Tanimoto similarity measure.

SS2[(p[,np])] Sokal and Sneath similarity measure 2.

Double weight for
nonmatches SS2

All matches excluded
from denominator

Equal weight for
matches and nonmatches K1 SS3

Table 1 Binary matching coefficients in PROXIMITIES (Continued)

Joint absences
excluded from
numerator

Joint absences
included in
numerator

RR x y,() a
a b c d+ + +
------------------------------=

SM x y,() a d+
a b c d+ + +
------------------------------=

JACCARD x y,() a
a b c+ +
---------------------=

DICE x y,() 2a
2a b c+ +
------------------------=

SS1 x y,() 2 a d+()
2 a d+() b c+ +
---------------------------------------=

RT x y,() a d+
a d 2 b c+()+ +
---------------------------------------=

SS2 x y,() a
a 2 b c+()+
-----------------------------=

1284 PROXIMITIES

K1[(p[,np])] Kulczynski similarity measure 1. This measure has a minimum value
of 0 and no upper limit. It is undefined when there are no nonmatches
(b=0 and c=0).

SS3[(p[,np])] Sokal and Sneath similarity measure 3. This measure has a minimum
value of 0 and no upper limit. It is undefined when there are no
nonmatches (b=0 and c=0).

Conditional Probabilities. The following binary measures yield values that can be interpreted
in terms of conditional probability. All three are similarity measures.

K2[(p[,np])] Kulczynski similarity measure 2. This yields the average conditional
probability that a characteristic is present in one item given that the
characteristic is present in the other item. The measure is an average
over both items acting as predictors. It has a range of 0 to 1.

SS4[(p[,np])] Sokal and Sneath similarity measure 4. This yields the conditional
probability that a characteristic of one item is in the same state (pres-
ence or absence) as the characteristic of the other item. The measure is
an average over both items acting as predictors. It has a range of 0 to 1.

HAMANN[(p[,np])] Hamann similarity measure. This measure gives the probability that a
characteristic has the same state in both items (present in both or absent
from both) minus the probability that a characteristic has different states
in the two items (present in one and absent from the other). HAMANN has
a range of −1 to +1 and is monotonically related to SM, SS1, and RT.

Predictability Measures. The following four binary measures assess the association between
items as the predictability of one given the other. All four measures yield similarities.

LAMBDA[(p[,np])] Goodman and Kruskal’s lambda (similarity). This coefficient assesses
the predictability of the state of a characteristic on one item (present or
absent) given the state on the other item. Specifically, LAMBDA

K1 x y,() a
b c+
------------=

SS3 x y,() a d+
b c+
------------=

K2 x y,() a a b+()⁄ a a c+()⁄+
2

--=

SS4 x y,() a a b+()⁄ a a c+()⁄ d b d+()⁄ d c d+()⁄+ + +
4

---=

HAMANN x y,() a d+() b c+()–
a b c d+ + +

--=

PROXIMITIES 1285

measures the proportional reduction in error using one item to predict
the other when the directions of prediction are of equal importance.
LAMBDA has a range of 0 to 1.

where
t1 = max(a,b) + max(c,d) + max(a,c) + max(b,d)

t2 = max(a + c, b + d) + max(a + d, c + d).

D[(p[,np])] Anderberg’s D (similarity). This coefficient assesses the predictability
of the state of a characteristic on one item (present or absent) given the
state on the other. D measures the actual reduction in the error proba-
bility when one item is used to predict the other. The range of D is 0 to 1.

where
t1 = max(a,b) + max(c,d) + max(a,c) + max(b,d)

t2 = max(a + c, b + d) + max(a + d, c + d)

Y[(p[,np])] Yule’s Y coefficient of colligation (similarity). This is a function of the
cross ratio for a table. It has a range of −1 to +1.

Q[(p[,np])] Yule’s Q (similarity). This is the version of Goodman and

Kruskal’s ordinal measure gamma. Like Yule’s Y, Q is a function of the
cross ratio for a table and has a range of −1 to +1.

Other Binary Measures. The remaining binary measures available in PROXIMITIES are either
binary equivalents of association measures for continuous variables or measures of special
properties of the relationship between items.

OCHIAI[(p[,np])] Ochiai similarity measure. This is the binary form of the cosine. It has
a range of 0 to 1.

LAMBDA x y,()
t1 t2–

2 a b c d+ + +() t2–
---=

D x y,()
t1 t2–

2 a b c d+ + +()
---------------------------------------=

2 2×

Y x y,() ad bc–

ad bc+
---------------------------=

2 2×

2 2×

Q x y,() ad bc–
ad bc+
------------------=

OCHIAI x y,() a
a b+

a
a c+
------------⋅=

1286 PROXIMITIES

SS5[(p[,np])] Sokal and Sneath similarity measure 5. The range is 0 to 1.

PHI[(p[,np])] Fourfold point correlation (similarity). This is the binary form of the
Pearson product-moment correlation coefficient.

BEUCLID[(p[,np])] Binary Euclidean distance. This is a distance measure. Its minimum
value is 0, and it has no upper limit.

BSEUCLID[(p[,np])] Binary squared Euclidean distance. This is a distance measure. Its
minimum value is 0, and it has no upper limit.

SIZE[(p[,np])] Size difference. This is a dissimilarity measure with a minimum value
of 0 and no upper limit.

PATTERN[(p[,np])] Pattern difference. This is a dissimilarity measure. The range is 0 to 1.

BSHAPE[(p[,np])] Binary shape difference. This dissimilarity measure has no upper or
lower limit.

DISPER[(p[,np])] Dispersion similarity measure. The range is −1 to +1.

VARIANCE[(p[,np])] Variance dissimilarity measure. This measure has a minimum value of
0 and no upper limit.

SS5 x y,() ad

a b+() a c+() b d+() c d+()
---=

PHI x y,() ad bc–

a b+() a c+() b d+() c d+()
---=

BEUCLID x y,() b c+=

BSEUCLID x y,() b c+=

SIZE x y,() b c–()2

a b c d+ + +()2
--------------------------------------=

PATTERN x y,() bc
a b c d+ + +()2

--------------------------------------=

BSHAPE x y,() a b c d+ + +() b c+() b c–()2–
a b c d+ + +()2

---=

DISPER x y,() ad bc–
a b c d+ + +()2

--------------------------------------=

VARIANCE x y,() b c+
4 a b c d+ + +()
---------------------------------------=

PROXIMITIES 1287

BLWMN[(p[,np])] Binary Lance-and-Williams nonmetric dissimilarity measure. This
measure is also known as the Bray-Curtis nonmetric coefficient. The
range is 0 to 1.

Example
PROXIMITIES A B C

/MEASURE=RR(1,2).

• MEASURE computes Russell and Rao coefficients from data in which 1 indicates the
presence of a characteristic and 2 indicates the absence. Other values are ignored.

Example
PROXIMITIES A B C

/MEASURE=SM(2).

• MEASURE computes simple matching coefficients from data in which 2 indicates presence
and all other values indicate absence.

Transforming Measures in Proximity Matrix

Use keyword NONE to apply the ABSOLUTE, REVERSE, and/or RESCALE transformations
to an existing matrix of proximity values without computing any proximity measures.

NONE Do not compute proximity measures. Use NONE only if you have specified an
existing proximity matrix on keyword IN on the MATRIX subcommand.

PRINT Subcommand

PROXIMITIES always prints the name of the measure it computes and the number of cases.
Use PRINT to control printing of the proximity matrix.

PROXIMITIES Print the matrix of the proximities between items. This is the default. The
matrix may have been either read or computed. When the number of cases or
variables is large, this specification produces a large volume of output and
uses significant CPU time.

NONE Do not print the matrix of proximities.

ID Subcommand

By default, PROXIMITIES identifies cases by case number alone. Use ID to specify an identifying
string variable for cases.

• Any string variable in the working data file can be named as the identifier. PROXIMITIES
uses the first eight characters of this variable to identify cases in the output.

BLWMN x y,() b c+
2a b c+ +
------------------------=

1288 PROXIMITIES

• When used with the MATRIX IN subcommand, the variable specified on the ID subcom-
mand identifies the labeling variable in the matrix file.

MISSING Subcommand

MISSING controls the treatment of cases with missing values.

• PROXIMITIES deletes cases with missing values listwise. By default, it excludes user-
missing values from the analysis.

EXCLUDE Exclude cases with user-missing values. This is the default.

INCLUDE Include cases with user-missing values. Only cases with system-missing
values are deleted.

MATRIX Subcommand

MATRIX reads and writes matrix data files.

• Either IN or OUT and the matrix file in parentheses are required. When both IN and OUT
are used on the same PROXIMITIES command, they can be specified on separate MATRIX
subcommands or on the same subcommand.

OUT (filename) Write a matrix data file. Specify either a filename or an asterisk (*), enclosed
in parentheses. If you specify a filename, the file is stored on disk and can be
retrieved at any time. If you specify an asterisk, the matrix data file replaces
the working data file but is not stored on disk unless you use SAVE or XSAVE.

IN (filename) Read a matrix data file. If the matrix data file is the working data file, specify
an asterisk in parentheses. If the matrix data file is another file, specify the
filename in parentheses. A matrix file read from an external file does not
replace the working data file.

When an SPSS Matrix is produced using the MATRIX OUT subcommand, it corresponds to
a unique data set. All subsequent analyses performed on this matrix would match the corre-
sponding analysis on the original data. However, if the data file is altered in any way, this
would no longer be true.

For example, if the original file is edited or rearranged it would in general no longer corre-
spond to the initially produced matrix. You need to make sure that the data match the
matrix whenever inferring the results from the matrix analysis. Specifically, when saving
the cluster membership into a working data file in the CLUSTER procedure, the proximity
matrix in the MATRIX IN statement must match the current working data file.

Matrix Output

• PROXIMITIES writes a variety of proximity matrices, each with ROWTYPE_ values of
PROX. PROXIMITIES neither reads nor writes additional statistics with its matrix materials.
See “Format of the Matrix Data File” on p. 1290 for a description of the file.

PROXIMITIES 1289

• The matrices PROXIMITIES writes can be used by PROXIMITIES or other procedures.
Procedures CLUSTER and ALSCAL can read a proximity matrix directly. Procedure
FACTOR can read a correlation matrix written by PROXIMITIES, but RECODE must first
be used to change the ROWTYPE_ value PROX to ROWTYPE_ value CORR. Also, the ID
subcommand cannot be used on PROXIMITIES if the matrix will be used in FACTOR. For
more information, see “Universals” on p. 3 in Volume I.

• If VIEW=VARIABLE, the variables in the matrix file will have the names and labels of the
original variables.

• If VIEW=CASE (the default), the variables in the matrix file will be named VAR1, VAR2,
...VARn, where n is the sequential number of the variable in the new file. The numeric
suffix n is consecutive and does not necessarily match the number of the actual case. If
there are no split files, the case number appears in the variable label in the form CASE m.
The numeric suffix m is the actual case number and may not be consecutive (for example,
if cases were selected before PROXIMITIES was executed).

• If VIEW=CASE, a numeric variable CASENO_ is added to the matrix file. Values of
CASENO_ are the case numbers in the original file.

• The new file preserves the names and values of any split-file variables in effect. When
split-file processing is in effect, no labels are generated for variables in the new file. The
actual case number is retained by the variable ID.

• Any documents contained in the working data file are not transferred to the matrix file.

Matrix Input

• PROXIMITIES can read a matrix file written by a previous PROXIMITIES procedure.

• Values for split-file variables should precede values for ROWTYPE_. CASENO_ and the
labeling variable (if present) should come after ROWTYPE_ and before VARNAME_.

• If CASENO_ is of type string rather than numeric, it will be considered unavailable and
a warning is issued.

• If CASENO_ appears on a variable list, a syntax error results.

• PROXIMITIES ignores unrecognized ROWTYPE_ values. In addition, it ignores variables
present in the matrix file that are not specified (or used by default) on the PROXIMITIES
variable list.

• The program reads variable names, variable and value labels, and print and write formats
from the dictionary of the matrix data file.

• MATRIX=IN cannot be used unless a working data file has already been defined. To read
an existing matrix data file at the beginning of a session, first use GET to retrieve the
matrix file and then specify IN(*) on MATRIX.

• When you read a matrix created with MATRIX DATA, you should supply a value label for
PROX of either SIMILARITY or DISSIMILARITY so the matrix is correctly identified. If
you do not supply a label, PROXIMITIES assumes DISSIMILARITY. (See “Format of the
Matrix Data File” below.)

• The variable list on PROXIMITIES can be omitted when a matrix file is used as input.
When the variable list is omitted, all variables in the matrix data file are used in the

1290 PROXIMITIES

analysis. If a variable list is specified, the specified variables can be a subset of the vari-
ables in the matrix file.

• With a large number of variables, the matrix data file will wrap when it is displayed (as
with LIST) and will be difficult to read. Nonetheless, the matrix values are accurate and
can be used as matrix input.

Format of the Matrix Data File

• The matrix data file includes three special variables created by the program: ROWTYPE_
and VARNAME_. Variable ROWTYPE_ is a short string variable with value PROX (for
proximity measure). PROX is assigned value labels containing the distance measure used
to create the matrix and either SIMILARITY or DISSIMILARITY as an identifier. Variable
VARNAME_ is a short string variable whose values are the names of the new variables.
Variable CASENO_ is a numeric variable with values equal to the original case numbers.

• The matrix file includes the string variable named on the ID subcommand. This variable
is used to identify cases. Up to 20 characters can be displayed for the identifier variable;
longer values are truncated. The identifier variable is present only when VIEW=CASE (the
default) and when the ID subcommand is used.

• The remaining variables in the matrix file are the variables used to form the matrix.

Split Files

• When split-file processing is in effect, the first variables in the matrix system file are the
split variables, followed by ROWTYPE_, the case-identifier variable (if VIEW=CASE and
ID are used), VARNAME_, and the variables that make up the matrix.

• A full set of matrix materials is written for each split-file group defined by the split variables.

• A split variable cannot have the same name as any other variable written to the matrix
data file.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by any procedure.

Example

PROXIMITIES V1 TO V20
/MATRIX=OUT(DISTOUT).

• PROXIMITIES produces a default Euclidean distance matrix for cases using variables V1
through V20 and saves the matrix in the SPSS-format file DISTOUT.

• The names of the variables on the matrix file will be VAR1, VAR2, ...VARn.

PROXIMITIES 1291

Example

GET FILE=CRIME.
PROXIMITIES MURDER TO MOTOR

/ID=CITY
/MEASURE=EUCLID
/MATRIX=OUT(PROXMTX).

• PROXIMITIES reads data from the SPSS-format data file CRIME and writes one set of
matrix materials to file PROXMTX.

• The working data file is still CRIME. Subsequent commands are executed on this file.

Example

GET FILE=CRIME.
PROXIMITIES MURDER TO MOTOR

/ID=CITY
/MEASURE=EUCLID
/MATRIX=OUT(*).

LIST.

• PROXIMITIES writes the same matrix as in the example above. However, the matrix data
file replaces the working data file. The LIST command is executed on the matrix file, not
on the CRIME file.

Example

GET FILE PRSNNL.
FREQUENCIES VARIABLE=AGE.

PROXIMITIES CASE1 TO CASE8
/ID=CITY
/MATRIX=IN(PROXMTX).

• This example performs a frequencies analysis on file PRSNNL and then uses a different
file containing matrix data for PROXIMITIES.

• MATRIX=IN specifies the matrix data file PROXMTX. PROXMTX does not replace PRSNNL
as the working data file.

Example

GET FILE PROXMTX.
PROXIMITIES CASE1 TO CASE8

/ID=CITY
/MATRIX=IN(*).

• This example assumes that you are starting a new session and want to read an existing
matrix data file. GET retrieves the matrix file PROXMTX.

• MATRIX=IN specifies an asterisk because the matrix data file is the working data file. If
MATRIX=IN(PROXMTX) is specified, the program issues an error message.

• If the GET command is omitted, the program issues an error message.

1292 PROXIMITIES

Example

GET FILE=CRIME.
PROXIMITIES MURDER TO MOTOR

/ID=CITY
/MATRIX=OUT(*).

PROXIMITIES
/MATRIX=IN(*)
/STANDARDIZE.

• GET retrieves the SPSS-format data file CRIME.
• The first PROXIMITIES command specifies variables for the analysis and reads data from

file CRIME. ID specifies CITY as the case identifier. MATRIX writes the resulting matrix to
the working data file.

• The second PROXIMITIES command uses the matrix file written by the first PROXIMITIES
command as input. The asterisk indicates that the matrix file is the working data file. The
variable list is omitted, indicating that all variables in the matrix are to be used.

• The slash preceding the MATRIX subcommand on the second PROXIMITIES is required.
Without the slash, PROXIMITIES would attempt to interpret MATRIX as a variable name
rather than as a subcommand.

Example

In this example, PROXIMITIES and FACTOR are used for a Q-factor analysis, in which
factors account for variance shared among observations rather than among variables. Proce-
dure FACTOR does not perform Q-factor analysis without some preliminary transformation
such as that provided by PROXIMITIES. Because the number of cases exceeds the number of
variables, the model is not of full rank and FACTOR will print a warning. This is a common
occurrence when case-by-case matrices from PROXIMITIES are used as input to FACTOR.

* Recoding a PROXIMITIES matrix for procedure FACTOR.

GET FILE=CRIME.
PROXIMITIES MURDER TO MOTOR

/MEASURE=CORR
/MATRIX=OUT(TEMPFILE).

GET FILE=TEMPFILE/DROP=ID.
RECODE ROWTYPE_ (’PROX’ = ’CORR’).
FACTOR MATRIX IN(COR=*).

• The MATRIX subcommand on PROXIMITIES writes the correlation matrix to the working
data file. Because the matrix materials will be used in procedure FACTOR, the ID subcom-
mand is not specified.

• RECODE recodes ROWTYPE_ values PROX to CORR so procedure FACTOR can read the
matrix.

• When FACTOR reads matrix materials, it reads all the variables in the file. The MATRIX
subcommand on FACTOR indicates that the matrix is a correlation matrix and data are in
the working data file.

PROXIMITIES 1293

References

Anderberg, M. R. 1973. Cluster analysis for applications. New York: Academic Press.
Romesburg, H. C. 1984. Cluster analysis for researchers. Belmont, Calif.: Lifetime Learning

Publications.

1294 PROXIMITIES

1295

PROXSCAL

PROXSCAL is available in the Categories option.

PROXSCAL varlist

[/TABLE = {rowid BY columid [BY sourceid]}]
 {sourceid }

[/SHAPE = [{LOWER**}]]
{UPPER }
{BOTH }

[/INITIAL = [{SIMPLEX** }]]
{TORGERSON }
{RANDOM[({1})] }

{n}
{[(file)] [varlist] }

[/WEIGHTS = varlist]

[/CONDITION = [{MATRIX** }]]
{UNCONDITIONAL }

[/TRANSFORMATION = [{RATIO** }]]
{INTERVAL }
{ORDINAL[({UNTIE })] }

{KEEPTIES}
{SPLINE [DEGREE = {2}] [INKNOT = {1}]}

{n} {n}

[/PROXIMITIES = [{DISSIMILARITIES**}]]
 {SIMILARITIES }

[/MODEL = [{IDENTITY** }]]
{WEIGHTED }
{GENERALIZED }
{REDUCED[({2})]}

 {n}

[/RESTRICTIONS = {COORDINATES(file) [{ALL }] }]
{varlist}

 {VARIABLES(file) [{ALL }][({INTERVAL })]}
{varlist} {NOMINAL }

 {ORDINAL[({UNTIE })] }
 {KEEPTIES}

 {SPLINE[DEGREE={2}][INKNOT={1}]}
 {n} {n}

[/ACCELERATION = NONE]

[/CRITERIA = [DIMENSIONS({2** })]
{min[,max]}

[MAXITER({100**})]
{n }

[DIFFSTRESS({0.0001**})]
{value }

[MINSTRESS({0.0001**})]]
{value }

1296 Syntax Reference

[/PRINT = [NONE][INPUT][RANDOM][HISTORY][STRESS**][DECOMPOSITION]
[COMMON**][DISTANCES][WEIGHTS**][INDIVIDUAL]
[TRANSFORMATIONS][VARIABLES**][CORRELATIONS**]]

[/PLOT = [NONE][STRESS][COMMON**][WEIGHTS**][CORRELATIONS**]
 [INDIVIDUAL({varlist})]

{ALL }
[TRANSFORMATIONS({varlist}) [({varlist})[...]]]

{ALL } {ALL }
[RESIDUALS({varlist}) [({varlist})[...]]]

{ALL } {ALL }
[VARIABLES({varlist})]]

 {ALL }

[/OUTFILE = [COMMON(file)] [WEIGHTS(file)] [DISTANCES(file)]
[TRANSFORMATIONS(file)] [VARIABLES(file)]]

[/MATRIX = IN({file})]].

** Default if the subcommand is omitted.

Overview

PROXSCAL performs multidimensional scaling of proximity data to find a least-squares rep-
resentation of the objects in a low-dimensional space. Individual differences models are al-
lowed for multiple sources. A majorization algorithm guarantees monotone convergence for
optionally transformed metric and nonmetric data under a variety of models and constraints.

Options

Data input. You can read one or more square matrices of proximities that can either be sym-
metrical or asymmetrical. Alternatively, you can provide specifications with the TABLE sub-
command for matrices with proximities in a stacked format. You can read proximity matrices
created by PROXIMITIES and CLUSTER with the MATRIX subcommand. Additionally, you
can read weights, initial configurations, fixed coordinates, and independent variables.

Methodological assumptions. You can specify transformations considering all sources (uncon-
ditional) or separate transformations for each source (matrix-conditional) on the CONDITION
subcommand. You can treat proximities as nonmetric (ordinal) or as metric (numerical or
splines) using the TRANSFORMATION subcommand. Ordinal transformations can treat tied
observations as tied (discrete) and untied (continuous). You can specify whether your prox-
imities are similarities or dissimilarities on the PROXIMITIES subcommand.

Model selection. You can specify multidimensional scaling models by selecting a combination
of PROXSCAL subcommands, keywords, and criteria. The subcommand MODEL offers, be-
sides the identity model, three individual differences models. You can specify other selec-
tions on the CRITERIA subcommand.

Constraints. You can specify fixed coordinates or independent variables to restrict the config-
uration(s) on the RESTRICTIONS subcommand. You can specify transformations (numerical,
nominal, ordinal, and splines) for the independent variables on the same subcommand.

PROXSCAL 1297

Output. You can produce output that includes the original and transformed proximities, history
of iterations, common and individual configurations, individual space weights, distances, and
decomposition of the stress. Plots can be produced of common and individual configurations,
individual space weights, transformations, and residuals.

Basic Specification

The basic specification is PROXSCAL followed by a variable list. By default, PROXSCAL pro-
duces a two-dimensional metric Euclidean multidimensional scaling solution (identity mod-
el). Input is expected to contain one or more square matrices with proximities that are
dissimilarities. The ratio transformation of the proximities is matrix-conditional. The analy-
sis uses a simplex start as an initial configuration. By default, output includes fit and stress
values, the coordinates of the common space, and a chart of the common space configuration.

Syntax Rules

• The number of dimensions (both minimum and maximum) may not exceed the number
of proximities minus one.

• Dimensionality reduction is omitted if combined with multiple random starts.

• If there is only one source, then the model is always assumed to be identity.

Limitations

• PROXSCAL needs at least three objects, which means that at least three variables must be
specified in the variable list. In the case of the TABLE subcommand, the minimum value
for rowid and columnid must be at least three.

• PROXSCAL recognizes data weights created by the WEIGHT command but only in combi-
nation with the TABLE subcommand.

• Split-file has no implications for PROXSCAL.

Variable List Subcommand

The variable list identifies the columns in the proximity matrix or matrices that PROXSCAL
reads. Each variable identifies one column of the proximity matrix, with each case in the
working data file representing one row, unless specified otherwise with the TABLE subcom-
mand. In this case, the variable list identifies whole matrices or sources.

• Only numeric variables may be specified.

• The total number of cases must be divisible by the number of variables. This is not appli-
cable when the TABLE subcommand is used.

• PROXSCAL reads data row by row; the columns are represented by the variables on the
variable list. The order of the variables on the list is crucial.

1298 Syntax Reference

Example
DATA LIST
 /object01 object02 object03 object04.

BEGIN DATA
 0 2 6 3
 2 0 5 4
 6 5 0 1
 3 4 1 0
END DATA.

PROXSCAL VARIABLES=object01 TO object04.

• This example specifies an analysis on a proximity matrix.

• The total number of cases must be divisible by 4.

TABLE Subcommand

The TABLE subcommand specifies the row identifier rowid and the column identifier columnid.
Using TABLE, the proximities of separate sources are given in separate variables on the
PROXSCAL variable list.

In the same manner, sources are identified by sourceid. In combination with rowid and
columnid, the proximities are stacked in one single variable, containing the proximities of all
sources, where sources are distinguished by the values of sourceid.

Using sourceid as the only variable on the TABLE subcommand indicates the use of
stacked matrices, where individual stacked matrices are recognized by different values of
sourceid.
• Rowid, columnid, and sourceid should not be specified on the variable list.

• When specifying both upper- and lower-triangular parts of the matrix, the SHAPE sub-
command will determine the handling of the data.

• If a cell’s value is specified multiple times, the final specification is used.

• Rowid, columnid, and sourceid must appear in that order.

• Omitting sourceid causes PROXSCAL to use the sources specified on the PROXSCAL vari-
able list. Each variable is assumed to contain the proximities of one source.

• Specifying multiple sources on the PROXSCAL variable list in conjunction with specify-
ing rowid, columnid, and sourceid is not possible and causes PROXSCAL to ignore sourceid.

rowid Row identifying variable. The values of this variable specify the row object
of a proximity. The values must be integers between 1 and the number of ob-
jects, inclusive.

columnid Column identifying variable. The values specify the column object of a prox-
imity. The values must be integers between 1 and the number of objects,
inclusive.

4 4×

PROXSCAL 1299

sourceid Source identifying variable. The values specify the source number and must
be integers between 1 and the number of sources, inclusive. The value labels
of this variable are used to identify sources on other subcommands. These
value labels must comply with SPSS variable name conventions. Omitting a
value label causes PROXSCAL to use the default label SRC_n where n is the
number of the source.

Example
DATA LIST
 /r_id c_id men women.

BEGIN DATA
2 1 1.08 1.14
3 1 0.68 1.12
3 2 0.95 0.75
4 1 0.96 0.32
4 2 0.76 0.98
4 3 0.47 0.69
.
..
13 10 0.55 0.86
13 11 0.61 0.97
13 12 0.46 0.83
END DATA.

PROXSCAL men women
/TABLE=r_id BY c_id

 /PLOT = INDIVIDUAL (women).

• PROXSCAL reads two proximity matrices (men and women), where the row objects are
specified by r_id and the column objects by c_id.

• A chart of the individual space for women is plotted.

This is one way to proceed. Another way is to add the proximities of the additional source
below the proximities of the first source and specify sourceid on the TABLE subcommand,
containing values distinguishing the first and the additional source (see the next example).

1300 Syntax Reference

Example
DATA LIST

/r_id c_id s_id prox.

BEGIN DATA
2 1 1 1.08
3 1 1 0.68
3 2 1 0.95
4 1 1 0.96
4 2 1 0.76
4 3 1 0.47
.
..
13 10 1 0.55
13 11 1 0.61
13 12 1 0.46
2 1 2 1.14
3 1 2 1.12
3 2 2 0.75
4 1 2 0.32
4 2 2 0.98
4 3 2 0.69
.
..
13 10 2 0.86
13 11 2 0.97
13 12 2 0.83
END DATA.

VALUE LABELS s_id 1 ‘men’ 2 ‘women’.

PROXSCAL prox
/TABLE=r_id BY c_id BY s_id

 /PLOT = INDIVIDUAL (women).

• PROXSCAL reads two proximity matrices. The row objects are identified by r_id and the
column objects by c_id. The proximity matrices are gathered in one variable, source01,
where each source is distinguished by a value of the source identifying variable s_id.

• A chart of the individual space for women is plotted.

Example
DATA LIST

/obj_1 obj_2 obj_3 obj_4 s_id

BEGIN DATA
0 0 0 0 1
1 0 0 0 1
2 3 0 0 1
4 5 6 0 1
0 0 0 0 2
8 9 0 0 2
10 11 12 0 2
END DATA.

VALUE LABELS s_id 1 ‘women’ 2 ‘men’.

PROXSCAL obj_1 obj_2 obj_3 obj_4
/TABLE = s_id

 /PLOT = INDIVIDUAL (women).

PROXSCAL 1301

• PROXSCAL reads two proximity matrices. The objects are given on the PROXSCAL
variable list. Each source is distinguished by a value of the source identifying variable
s_id, which is also used for labeling.

• A chart of the individual space for women is plotted.

SHAPE Subcommand

The SHAPE subcommand specifies the structure of the proximity matrix.

LOWER Lower-triangular data matrix. For a lower-triangular matrix, PROXSCAL
expects a square matrix of proximities of which the lower-triangular
elements are used under the assumption that the full matrix is symmetric.
The diagonal is ignored but must be included.

UPPER Upper-triangular data matrix. For an upper-triangular matrix, PROXSCAL
expects a square matrix of proximities of which the upper-triangular
elements are used under the assumption that the full matrix is symmetric.
The diagonal is ignored but must be included.

BOTH Full data matrix. The values in the corresponding cells in the upper and
lower triangles may be different. PROXSCAL reads the complete square
matrix and, after obtaining symmetry, continues with the lower-triangular
elements. The diagonal is ignored but must be included.

• System or other missing values on the (virtual) diagonal are ignored.

Example
PROXSCAL object01 TO object07

/SHAPE=UPPER.

• PROXSCAL reads square matrices of seven columns per matrix of which the upper-
triangular parts are used in computations.

• Although specified, the diagonal and lower-triangular part of the matrix are not used.

INITIAL Subcommand

INITIAL defines the initial or starting configuration of the common space for the analysis.
When a reduction in dimensionality is specified on the CRITERIA subcommand, a derivation
of coordinates in the higher dimensionality is used as a starting configuration in the lower
dimensionality.

• You can specify one of the three keywords listed below.

• You can specify a variable list containing the initial configuration.

SIMPLEX Simplex start. This specification is the default. PROXSCAL starts by placing
the objects in the configuration all at the same distance of each other and tak-
ing one iteration to improve this high-dimensional configuration, followed
by a dimension-reduction operation to obtain the user-provided maximum
dimensionality specified in the CRITERIA subcommand with the keyword
DIMENSIONS.

1302 Syntax Reference

TORGERSON Torgerson start. A classical scaling solution is used as initial configuration.

RANDOM (Multiple) random start. You can specify the number of random starts (n). n
is any positive integer. The random sequence can be controlled by the
RANDOM SEED command and not by a subcommand within the PROXSCAL
command. Each analysis starts with a different random configuration. In the
output, all n final stress values are reported, as well as the initial seeds of
each analysis (for reproduction purposes), followed by the full output of the
analysis with the lowest stress value. The default number of random starts is
1. Reduction of dimensionality—that is, using a maximum dimensionality
that is larger than the minimum dimensionality—is not allowed within this
option and the minimum dimensionality is used, if reduction is specified
anyway.

Instead of these keywords, a parenthesized SPSS data file can be specified containing the co-
ordinates of the initial configuration. If the variable list is omitted, the first MAXDIM variables
are automatically selected, where MAXDIM is the maximum number of dimensions requested
for the analysis on the CRITERIA subcommand. Only nonmissing values are allowed as initial
coordinates.

Example
PROXSCAL object01 TO object17

/INITIAL=RANDOM(100).

• This example performs 100 analyses each, starting with different random configurations.
The results of the analysis with the lowest final stress are displayed in the output.

WEIGHTS Subcommand

The WEIGHTS subcommand specifies non-negative weights on the proximities included in
the working data file.

• The number and order of the variables in the variable list is important. The first variable
on the WEIGHTS variable list corresponds to the first variable on the PROXSCAL variable
list. This is repeated for all variables on the variable lists. Every proximity has its own
weight. The number of variables on the WEIGHTS subcommand must therefore be equal
to the number of variables on the PROXSCAL variable list.

• Negative weights are not allowed. If specified, a warning will be issued and the procedure
will abort.

Example
DATA LIST FILE=’cola.dat’ FREE

/object01 TO object14 weight01 TO weight14.

PROXSCAL object01 TO object14
/WEIGHTS=weight01 TO weight14.

• In this example, the VARIABLES subcommand indicates that there are 14 columns per ma-
trix of which the weights can be found in weight01 to weight14.

• weight01 contains the weights for object01, etc.

PROXSCAL 1303

CONDITION Subcommand

CONDITION specifies how transformations among sources are compared. The
TRANSFORMATION subcommand specifies the type of transformation.

MATRIX Matrix conditional. Only the proximities within each source are com-
pared with each other. This is the default.

UNCONDITIONAL Unconditional. This specification is appropriate when the proximities
in all sources can be compared with each other and result in a single
transformation of all sources simultaneously.

• Note that if there is only one source, then MATRIX and UNCONDITIONAL give the same
results.

Example
PROXSCAL object01 TO object15

/CONDITION=UNCONDITIONAL
/TRANSFORMATION=ORDINAL(UNTIE).

• In this example, the proximities are ordinally transformed, where tied proximities are
allowed to be untied. The transformations are performed simultaneously over all possible
sources.

TRANSFORMATION Subcommand

TRANSFORMATION offers four different options for optimal transformation of the original
proximities. The resulting values are called transformed proximities. The distances between
the objects in the configuration should match these transformed proximities as closely as
possible.

RATIO No transformation. Omitting the entire subcommand is equivalent to using
this keyword. In both cases, the transformed proximities are proportional to
the original proximities. This “transformation” is only allowed for positive
dissimilarities. In all other cases, a warning is issued and the transformation
is set to INTERVAL.

INTERVAL Numerical transformation. In this case, the transformed proximities are pro-
portional to the original proximities, including free estimation of the inter-
cept. The inclusion of the intercept assures that all transformed proximities
are positive.

ORDINAL Ordinal transformation. The transformed proximities have the same order as
the original proximities. In parentheses, the approach to tied proximities can
be specified. Keeping tied proximities tied, also known as secondary ap-
proach to ties, is default. Specification may be implicit, ORDINAL, or explicit,
ORDINAL(KEEPTIES). Allowing tied proximities to be untied, also known as
the primary approach to ties, is specified as ORDINAL (UNTIE).

1304 Syntax Reference

SPLINE Monotone spline transformation. The transformed proximities are a smooth
nondecreasing piecewise polynomial transformation of the original proxim-
ities of the chosen degree. The pieces are specified by the number and place-
ment of the interior knots.

SPLINE Keyword

SPLINE has the following keywords:

DEGREE The degree of the polynomial. If DEGREE is not specified, the degree is
assumed to be 2. The range of DEGREE is between 1 and 3 (inclusive).

INKNOT The number of interior knots. If INKNOT is not specified, the number of
interior knots is assumed to be 1. The range of INKNOT is between 1 and the
number of different proximities.

Example
PROXSCAL object01 TO object05

/TRANSFORMATION=ORDINAL(UNTIE).

• In this example, the proximities are ordinally transformed, where tied proximities are
allowed to be untied.

• The default conditionality (MATRIX) implies that the transformation is performed for each
source separately.

PROXIMITIES Subcommand

The PROXIMITIES subcommand specifies the type of proximities used in the analysis. The
term proximity is used for either similarity or dissimilarity data.

DISSIMILARITIES Dissimilarity data. This specification is the default when PROXIMITIES is not
specified. Small dissimilarities correspond to small distances, and large
dissimilarities correspond to large distances.

SIMILARITIES Similarity data. Small similarities correspond to large distances and large
similarities correspond to small distances.

Example
PROXSCAL object01 TO object12

/PROXIMITIES=SIMILARITIES.

• In this example, PROXSCAL expects the proximities to be similarities.

PROXSCAL 1305

MODEL Subcommand

MODEL defines the scaling model for the analysis if more than one source is present.
IDENTITY is the default model. The three other models are individual differences models.

IDENTITY Identity model. All sources have the same configuration. This is the default
model, and it is not an individual differences model.

WEIGHTED Weighted Euclidean model. This model is an individual differences model
and equivalent to the INDSCAL model in the ALSCAL procedure. Each
source has an individual space, in which every dimension of the common
space is weighted differentially.

GENERALIZED Generalized Euclidean model. This model is equivalent to the GEMSCAL
model in the ALSCAL procedure. Each source has an individual space that
is equal to a rotation of the common space, followed by a differential
weighting of the dimensions.

REDUCED Reduced rank model. This model is similar to GENERALIZED, but the rank of
the individual space is equal to n. This number is always smaller than the
maximum number of dimensions and equal to or greater than 1. The default
is 2.

• If IDENTITY is specified for only one source, this subcommand is silently ignored.

• If an individual differences model is specified for only one source, a warning is issued,
and the model is set to IDENTITY.

Example
PROXSCAL object01 TO object07

/MODEL=WEIGHTED.

• A weighted Euclidean model is fitted, but only when the number of cases in the working
data file is a multiple of 7, starting from 14 (14, 21, 28, and so on). Otherwise, there is
only one source, and the model is set to IDENTITY.

RESTRICTIONS Subcommand

PROXSCAL provides two types of restrictions for the user to choose from. The first type fixes
(some) coordinates in the configuration. The second type specifies that the common space is
a weighted sum of independent variables.

COORDINATES Fixed coordinates. A parenthesized SPSS data filename must be
specified containing the fixed coordinates for the common space. A
variable list may be given, if some specific variables need to be
selected from the external file. If the variable list is omitted, the pro-
cedure automatically selects the first MAXDIM variables in the external
file, where MAXDIM is the maximum number of dimensions requested
for the analysis on the CRITERIA subcommand. A missing value
indicates that a coordinate on a dimension is free. The coordinates of
objects with nonmissing values are kept fixed during the analysis. The

1306 Syntax Reference

number of cases for each variable must be equal to the number of
objects.

VARIABLES Independent variables. The common space is restricted to be a linear
combination of the independent variables in the variable list. A paren-
thesized SPSS data file must be specified containing the independent
variables. If the variable list is omitted, the procedure automatically
selects all variables in the external file. Instead of the variable list, the
user may specify the keyword FIRST(n), where n is a positive integer,
to select the first n variables in the external file. The number of cases
for each variable must be equal to the number of objects. After the
variable selection specification, we may provide a list of keywords (in
number equal to the number of the independent variables) indicating
the transformations for the independent variables.

VARIABLES Keyword

The following keywords may be specified:

INTERVAL Numerical transformation. In this case, the transformed values of a variable
are proportional to the original values of the variable, including free estima-
tion of the intercept.

NOMINAL Nominal transformation. The values are treated as unordered. The same val-
ues will obtain the same transformed values.

ORDINAL Ordinal transformation. The values of the transformed variable have the
same order as the values of the original variable. In parenthesis, the approach
to tied values can be specified. Keeping tied values tied, also known as sec-
ondary approach to ties, is default. Specification may be implicit, ORDINAL,
or explicit, ORDINAL(KEEPTIES). Allowing tied values to be untied, also
known as the primary approach to ties, is specified as ORDINAL (UNTIE).

SPLINE Monotone spline transformation. The transformed values of the variable are
a smooth nondecreasing piecewise polynomial transformation of the original
values of the chosen degree. The pieces are specified by the number and
placement of the interior knots.

SPLINE Keyword

SPLINE has the following keywords:

DEGREE The degree of the polynomial. If DEGREE is not specified, the degree is as-
sumed to be 2. The range of DEGREE is between 1 and 3 (inclusive).

INKNOT The number of interior knots. If INKNOT is not specified, the number of
interior knots is assumed to be 1. The range of INKNOT is between 0 and the
number of different values of the variable.

PROXSCAL 1307

Example
PROXSCAL aunt TO uncle

/RESTRICTIONS=VARIABLES(ivars.sav) degree generation gender
 (ORDINAL ORDINAL NOMINAL).

• In this example, there are three independent variables specified, namely degree,
generation, and gender.

• The variables are specified in the data file ivars.sav.

• On both degree and generation, ordinal transformations are allowed. By default, tied
values in ordinal variables are kept tied. Gender is allowed to be nominally transformed.

ACCELERATION Subcommand

By default, a fast majorization method is used to minimize stress.

NONE The standard majorization update. This turns off the fast method.
• If the subcommand RESTRICTION is used with fixed coordinates or independent

variables, ACCELERATION=NONE is in effect.

• If an individual differences model is specified on the MODEL subcommand,
ACCELERATION=NONE is in effect.

Example
PROXSCAL VARIABLES=object01 TO object12

/ACCELERATION=NONE.

• Here, relaxed updates are switched off through the specification of the keyword NONE
after ACCELERATION.

CRITERIA Subcommand

Use CRITERIA to set the dimensionality and criteria for terminating the algorithm, or mini-
mization process. You can specify one or more of the following keywords:

DIMENSIONS Minimum and maximum number of dimensions. By default, PROXSCAL
computes a solution in two dimensions (min=2 and max=2). The minimum
and maximum number of dimensions can be any integers inclusively
between 1 and the number of objects minus 1, as long as the minimum is less
than or equal to the maximum. PROXSCAL starts computing a solution in the
largest dimensionality and reduces the dimensionality in steps, until the
lowest dimensionality is reached. Specifying a single value represents both
minimum and maximum number of dimensions, thus DIMENSIONS(4) is
equivalent to DIMENSIONS(4,4).

MAXITER Maximum number of iterations. By default, n=100, specifying the maximum
number of iterations that is performed while one of the convergence criterion
below (CONVERGENCE and STRESSMIN) is not yet reached. Decreasing this
number might give less accurate results but will take less time. n must have
a positive integer value.

1308 Syntax Reference

DIFFSTRESS Convergence criterion. PROXSCAL minimizes the goodness-of-fit index
normalized raw stress. By default, PROXSCAL stops iterating when the
difference in consecutive stress values is less than 0.0001 (n=0.0001). To
obtain a more precise solution, you can specify a smaller value. The value
specified must lie between 0.0 and 1.0, inclusively.

MINSTRESS Minimum stress value. By default, PROXSCAL stops iterating when the stress
value itself is small, that is, less than 0.0001 (n=0.0001). To obtain an even
more precise solution, you can specify a smaller value. The value specified
must lie between 0.0 and 1.0, inclusively.

Example
PROXSCAL VARIABLES=object01 TO object24

/CRITERIA=DIMENSIONS(2,4) MAXITER(200) DIFFSTRESS(0.00001).

• The maximum number of dimensions equals 4 and the minimum number of dimensions
equals 2. PROXSCAL computes a four-, three-, and two-dimensional solution, respectively.

• The maximum number of iteration is raised to 200.

• The convergence criterion is sharpened to 0.00001.

PRINT Subcommand

PRINT specifies the optional output. By default, PROXSCAL displays the stress and fit values
for each analysis, the coordinates of the common space, and, with appropriate specification
on corresponding subcommands, the individual space weights and transformed independent
variables, corresponding regression weights, and correlations.

• Omitting the PRINT subcommand or specifying PRINT without keywords is equivalent to
specifying COMMON, WEIGHTS, and VARIABLES.

• If a keyword(s) is specified, only the output for that particular keyword(s) is displayed.

• In the case of duplicate or contradicting keyword specification, the last keyword applies.

• Inapplicable keywords are silently ignored. That is, specifying a keyword for which no
output is available (for example, specifying INDIVIDUAL with only one source) will
silently ignore this keyword.

NONE No output. Display only the normalized raw stress and corresponding
fit values.

INPUT Input data. The display includes the original proximities, and, if
present, the data weights, the initial configuration, and the fixed
coordinates or the independent variables.

RANDOM Multiple random starts. Displays the random number seed and stress
value of each random start.

HISTORY History of iterations. Displays the history of iterations of the main
algorithm.

PROXSCAL 1309

STRESS Stress measures. Displays different stress values. The table contains
values for normalized raw stress, Stress-I, Stress-II, S-Stress,
dispersion accounted for (D.A.F.), and Tucker’s coefficient of
congruence. This is specified by default.

DECOMPOSITION Decomposition of stress. Displays an object and source decomposition
of stress, including row and column totals.

COMMON Common space. Displays the coordinates of the common space. This
is specified by default.

DISTANCES Distances. Displays the distances between the objects in the
configuration.

WEIGHTS Individual space weights. Displays the individual space weights, only
if one of the individual differences models is specified on the MODEL
subcommand. Depending on the model, the space weights are
decomposed in rotation weights and dimension weights, which are
also displayed. This is specified by default.

INDIVIDUAL Individual spaces. The coordinates of the individual spaces are
displayed, only if one of the individual differences models is specified
on the MODEL subcommand.

TRANSFORMATION Transformed proximities. Displays the transformed proximities
between the objects in the configuration.

VARIABLES Independent variables. If VARIABLES was specified on the
RESTRICTIONS subcommand, this keyword triggers the display of the
transformed independent variables and the corresponding regression
weights. This is specified by default.

CORRELATIONS Correlations. The correlations between the independent variables and
the dimensions of the common space are displayed. This is specified
by default.

Example
PROXSCAL VARIABLES=source01 TO source02

/TABLE=row_id BY col_id
/MODEL=WEIGHTED
/PRINT=HISTORY COMMON STRESS.

• Here, a weighted Euclidean model is specified with two sources.

• The output consists of the history of iterations of the main algorithm, the coordinates of
the common space, the individual space weights, and several measures of fit.

1310 Syntax Reference

PLOT Subcommand

PLOT controls the display of plots. By default, PROXSCAL produces a scatterplot of object
coordinates of the common space, the individual space weights, and the correlations between
the independent variables (i.e., equivalent to specifying COMMON, WEIGHTS, and
CORRELATIONS).

• Specifying a keyword overrides the default output and only output is generated for that
keyword.

• Duplicate keywords are silently ignored.

• In case of contradicting keywords, only the last keyword is considered.

• Inapplicable keywords (for example, stress with equal minimum and maximum number
of dimensions on the CRITERIA subcommand) are silently ignored.

• Multiple variable lists are allowed for TRANSFORMATIONS and RESIDUALS. For each
variable list, a separate plot will be displayed.

NONE No plots. PROXSCAL does not produce any plots.

STRESS Stress plot. A plot is produced of stress versus dimensions. This plot
is only produced if the maximum number of dimensions is larger than
the minimum number of dimensions.

COMMON Common space. A scatterplot matrix of coordinates of the common
space is displayed.

WEIGHTS Individual space weights. A scatterplot is produced of the individual
space weights. This is only possible if one of the individual
differences models is specified on the MODEL subcommand. For the
weighted Euclidean model, the weights are printed in plots with one
dimension on each axis. For the generalized Euclidean model, one plot
is produced per dimension, indicating both rotation and weighting of
that dimension. The reduced rank model produces the same plot as the
generalized Euclidean model does but reduces the number of
dimensions for the individual spaces.

INDIVIDUAL Individual spaces. For each source specified on the variable list, the
coordinates of the individual spaces are displayed in scatterplot
matrices. This is only possible if one of the individual differences
models is specified on the MODEL subcommand.

TRANSFORMATIONS

Transformation plots. Plots are produced of the original proximities
versus the transformed proximities. On the variable list, the sources
can be specified of which the plot is to be produced.

RESIDUALS Residuals plots. The transformed proximities versus the distances are
plotted. On the variable list, the sources can be specified of which the
plot is to be produced.

VARIABLES Independent variables. Transformation plots are produced for the
independent variables specified on the variable list.

PROXSCAL 1311

CORRELATIONS Correlations. A plot of correlations between the independent variables
and the dimensions of the common space is displayed.

Example
PROXSCAL VARIABLES=source01 TO source02

/TABLE=row_id BY col_id
/MODEL=WEIGHTED
/CRITERIA=DIMENSIONS(3)
/PLOT=COMMON INDIVIDUAL(source02).

• Here, the syntax specifies a weighted Euclidean model with two sources in three
dimensions.

• COMMON produces a scatterplot matrix defined by dimensions 1, 2, and 3.

• For the individual spaces, a scatterplot matrix with 3 dimensions is only produced for the
individual space of source02.

OUTFILE Subcommand

OUTFILE saves coordinates of the common space, individual space weights, distances, trans-
formed proximities, and transformed independent variables to an SPSS data file. The only
specification required is a name for the output file.

COMMON Common space coordinates. The coordinates of the common space are
written to an SPSS data file. The columns (variables) represent the
dimensions DIM_1, DIM_2, ..., DIM_n of the common space. The num-
ber of cases (rows) in the SPSS data file equals the number of objects.

WEIGHTS Individual space weights. The individual space weights are written to
an SPSS data file. The columns represent the dimensions DIM_1,
DIM_2, ..., DIM_n of the space weights. The number of cases depends
on the individual differences model specified on the MODEL subcom-
mand. The weighted Euclidean model uses diagonal weight matrices.
Only the diagonals are written to file and the number of cases is equal
to the number of dimensions. The generalized Euclidean model uses
full-rank nonsingular weight matrices. The matrices are written to the
SPSS data file row by row. The reduced rank model writes matrices to
the SPSS data file in the same way as the generalized Euclidean model
does but does not write the reduced part.

DISTANCES Distances. The matrices containing the distances for each source are
stacked beneath each other and written to an SPSS data file. The
number of variables in the data file are equal to the number of objects
(OBJ_1, OBJ_2, ... OBJ_n) and the number of cases in the data file are
equal to the number of objects times the number of sources.

TRANSFORMATION Transformed proximities. The matrices containing the transformed
proximities for each source are stacked beneath each other and written
to an SPSS data file. The number of variables in the file are equal to
the number of objects (OBJ_1, OBJ_2, ... OBJ_n) and the number of

1312 Syntax Reference

cases in the data file are equal to the number of objects times the num-
ber of sources.

VARIABLES Independent variables. The transformed independent variables are
written to an SPSS data file. The variables are written to the columns
(VAR_1, VAR_2, ..., VAR_n). The number of variables in the data file
are equal to the number of independent variables and the number of
cases are equal to the number of objects.

Example
PROXSCAL VARIABLES=source01 TO source04

/TABLE=row_id BY col_id
/OUTFILE=COMMON(start.dat).

• Here, the coordinates of the common space are written to the SPSS data file start.dat.

MATRIX Subcommand

MATRIX reads SPSS matrix data files. It can read a matrix written by either PROXIMITIES or
CLUSTER.

• The specification on MATRIX is the keyword IN and the matrix file in parentheses.
• Generally, data read by PROXSCAL are already in matrix form, whether in square format,

or in stacked format using the TABLE subcommand.

• The proximity matrices PROXSCAL reads have ROWTYPE_ values of PROX.

• Using MATRIX=IN, PROXSCAL will ignore variables specified on the main variable list.
All numerical variables from the matrix data file are processed.

• PROXSCAL ignores variables specified in the WEIGHTS subcommand in combination
with the use of MATRIX=IN.

• With MATRIX=IN, only a source identifying variable can be specified on the TABLE sub-
command. The sources are created as a result of a split file action.

IN) Read a matrix data file. Specify the filename in parentheses. Data read through the
MATRIX subcommand does not replace the working data file.

Example
GET FILE = ‘PROXMTX.SAV’.

PROXSCAL
/MATRIX=IN(‘MATRIX.SAV’).

• MATRIX=IN specifies an external matrix data file called matrix.sav, of which all numerical
variables are used for the current analysis.

1313

QUICK CLUSTER

QUICK CLUSTER {varlist}
 {ALL }

 [/MISSING=[{LISTWISE**}] [INCLUDE]]
 {PAIRWISE }
 {DEFAULT }

 [/FILE=file]

 [/INITIAL=(value list)]

 [/CRITERIA=[CLUSTER({2**})][NOINITIAL][MXITER({10**})] [CONVERGE({0**})]]
 {n } {n } {n }

 [/METHOD=[{KMEANS[(NOUPDATE)]**}]
 {KMEANS(UPDATE)} }
 {CLASSIFY }

 [/PRINT=[INITIAL**] [CLUSTER] [ID(varname)] [DISTANCE] [ANOVA] [NONE]]

 [/OUTFILE=file]

 [/SAVE=[CLUSTER[(varname)]] [DISTANCE[(varname)]]]

**Default if subcommand or keyword is omitted.

Example
QUICK CLUSTER V1 TO V4

/CRITERIA=CLUSTER(4)
/SAVE=CLUSTER(GROUP).

Overview

When the desired number of clusters is known, QUICK CLUSTER groups cases efficiently
into clusters. It is not as flexible as CLUSTER, but it uses considerably less processing time
and memory, especially when the number of cases is large.

Options

Algorithm Specifications. You can specify the number of clusters to form with the CRITERIA
subcommand. You can also use CRITERIA to control initial cluster selection and the criteria
for iterating the clustering algorithm. With the METHOD subcommand, you can specify how
to update cluster centers, and you can request classification only when working with very
large data files (see “Operations” on p. 1314).

Initial Cluster Centers. By default, QUICK CLUSTER chooses the initial cluster centers. Alter-
natively, you can provide initial centers on the INITIAL subcommand. You can also read
initial cluster centers from an SPSS-format data file using the FILE subcommand.

Optional Output. With the PRINT subcommand you can display the cluster membership of
each case and the distance of each case from its cluster center. You can also display the

1314 QUICK CLUSTER

distances between the final cluster centers and a univariate analysis of variance between
clusters for each clustering variable.

Saving Results. You can write the final cluster centers to an SPSS-format data file using the
OUTFILE subcommand. In addition, you can save the cluster membership of each case and
the distance from each case to its classification cluster center as new variables in the working
data file using the SAVE subcommand.

Basic Specification

The basic specification is a list of variables. By default, QUICK CLUSTER produces two clus-
ters. The two cases that are farthest apart based on the values of the clustering variables are
selected as initial cluster centers and the rest of the cases are assigned to the nearer center.
The new cluster centers are calculated as the means of all cases in each cluster, and if neither
the minimum change nor the maximum iteration criterion is met, all cases are assigned to the
new cluster centers again. When one of the criteria is met, iteration stops, the final cluster
centers are updated, and the distance of each case is computed.

Subcommand Order

• The variable list must be specified first.

• Subcommands can be named in any order.

Operations

The procedure generally involves four steps:

• First, initial cluster centers are selected, either by choosing one case for each cluster
requested or by using the specified values.

• Second, each case is assigned to the nearest cluster center, and the mean of each cluster
is calculated to obtain the new cluster centers.

• Third, the maximum change between the new cluster centers and the initial cluster centers
is computed. If the maximum change is not less than the minimum change value and the
maximum iteration number is not reached, the second step is repeated and the cluster
centers are updated. The process stops when either the minimum change or maximum
iteration criterion is met. The resulting clustering centers are used as classification centers
in the last step.

• In the last step, all cases are assigned to the nearest classification center. The final cluster
centers are updated and the distance for each case is computed.

When the number of cases is large, directly clustering all cases may be impractical. As an
alternative, you can cluster a sample of cases and then use the cluster solution for the sample
to classify the entire group. This can be done in two phases:
• The first phase obtains a cluster solution for the sample. This involves all four steps of the

QUICK CLUSTER algorithm. OUTFILE then saves the final cluster centers to an SPSS-format
data file.

QUICK CLUSTER 1315

• The second phase requires only one pass through the data. First, the FILE subcommand
specifies the file containing the final cluster centers from the first analysis. These final
cluster centers are used as the initial cluster centers for the second analysis. CLASSIFY is
specified on the METHOD subcommand to skip the second and third steps of the clustering
algorithm, and cases are classified using the initial cluster centers. When all cases are
assigned, the cluster centers are updated and the distance of each case is computed. This
phase can be repeated until final cluster centers are stable.

Example

QUICK CLUSTER V1 TO V4
/CRITERIA=CLUSTERS(4)
/SAVE=CLUSTER(GROUP).

• This example clusters cases based on their values for all variables between and including
V1 and V4 in the working data file.

• Four clusters, rather than the default two, will be formed.
• Initial cluster centers are chosen by finding four widely spaced cases. This is the default.

• The cluster membership of each case is saved in variable GROUP in the working data file.
GROUP has integer values from 1 to 4, indicating the cluster to which each case belongs.

Variable List

The variable list identifies the clustering variables.

• The variable list is required and must be the first specification on QUICK CLUSTER.

• You can use keyword ALL to refer to all user-defined variables in the working data file.

• QUICK CLUSTER uses squared Euclidean distances, which equally weight all clustering
variables. If the variables are measured in units that are not comparable, the procedure will
give more weight to variables with large variances. Therefore, you should standardize vari-
ables measured on different scales using procedure DESCRIPTIVES before performing
QUICK CLUSTER.

CRITERIA Subcommand

CRITERIA specifies the number of clusters to form and controls options for the clustering
algorithm. You can use any or all of the keywords below.

• The NOINITIAL option followed by the remaining steps of the default QUICK CLUSTER
algorithm makes QUICK CLUSTER equivalent to MacQueen’s n-means clustering method.

CLUSTER(n) Number of clusters. QUICK CLUSTER assigns cases to n clusters. The default
is 2.

NOINITIAL No initial cluster center selection. By default, initial cluster centers are
formed by choosing one case (with valid data for the clustering variables) for
each cluster requested. The initial selection requires a pass through the data
to ensure that the centers are well separated from one another. If NOINITIAL

1316 QUICK CLUSTER

is specified, QUICK CLUSTER selects the first n cases without missing values
as initial cluster centers.

MXITER(n) Maximum number of iterations for updating cluster centers. The default is
10. Iteration stops when the maximum number of iterations has been
reached. MXITER is ignored when METHOD=CLASSIFY.

CONVERGE(n) Convergence criterion controlling minimum change in cluster centers. The
default value for n is 0. The minimum change value equals the convergence
value (n) times the minimum distance between initial centers. Iteration stops
when the largest change of any cluster center is less than or equal to the
minimum change value. CONVERGE is ignored when METHOD=CLASSIFY.

METHOD Subcommand

By default, QUICK CLUSTER recalculates cluster centers after assigning all the cases and
repeats the process until one of the criteria is met. You can use the METHOD subcommand to
recalculate cluster centers after each case is assigned or to suppress recalculation until after
classification is complete. When METHOD=KMEANS is specified, QUICK CLUSTER displays
the iteration history table.

KMEANS(NOUPDATE) Recalculate cluster centers after all cases are assigned for each iter-
ation. This is the default.

KMEANS(UPDATE) Recalculate a cluster center each time a case is assigned. QUICK
CLUSTER calculates the mean of cases currently in the cluster and uses
this new cluster center in subsequent case assignment.

CLASSIFY Do not recalculate cluster centers. QUICK CLUSTER uses the initial
cluster centers for classification and computes the final cluster centers as
the means of all the cases assigned to the same cluster. When CLASSIFY
is specified, the CONVERGE or MXITER specifications on CRITERIA are
ignored.

INITIAL Subcommand

INITIAL specifies the initial cluster centers. Initial cluster centers can also be read from an
SPSS-format data file (see the FILE subcommand on p. 1317).

• One value for each clustering variable must be included for each cluster requested. Values
are specified in parentheses cluster by cluster.

Example
QUICK CLUSTER A B C D

/CRITERIA = CLUSTER(3)
/INITIAL = (13 24 1 8

7 12 5 9
10 18 17 16).

QUICK CLUSTER 1317

• This example specifies four clustering variables and requests three clusters. Thus, twelve
values are supplied on INITIAL.

• The initial center of the first cluster has a value of 13 for variable A, 24 for variable B, 1
for C, and 8 for D.

FILE Subcommand

Use FILE to obtain initial cluster centers from an SPSS-format data file.

• The only specification is the name of the file.

Example
QUICK CLUSTER A B C D

/FILE=INIT
/CRITERIA = CLUSTER(3).

• In this example, the initial cluster centers are read from file INIT. The file must contain
cluster centers for the same four clustering variables specified (A, B, C, and D).

PRINT Subcommand

QUICK CLUSTER always displays in a Final Cluster Centers table listing the centers used to
classify cases and the mean values of the cases in each cluster and a Number of Cases in Each
Cluster table listing the number of weighted (if weighting is on) and unweighted cases in
each cluster. Use PRINT to request other types of output.

• If PRINT is not specified or is specified without keywords, the default is INITIAL.

INITIAL Initial cluster centers. When SPLIT FILES is in effect, the initial cluster center
for each split file is displayed. This is the default.

CLUSTER Cluster membership. Each case displays an identifying number or value, the
number of the cluster to which it was assigned, and its distance from the
center of that cluster. This output is extensive when the number of cases is
large.

ID(varname) Case identification. The value of the specified variable is used in addition to
the case numbers to identify cases in output. Case numbers may not be
sequential if cases have been selected.

DISTANCE Pairwise distances between all final cluster centers. This output can
consume a great deal of processing time when the number of clusters
requested is large.

ANOVA Descriptive univariate F tests for the clustering variables. Since cases are
systematically assigned to clusters to maximize differences on the clustering
variables, these tests are descriptive only and should not be used to test the
null hypothesis that there are no differences between clusters. Statistics after
clustering are also available through procedure DISCRIMINANT or GLM (GLM
is available in the SPSS Advanced Models option).

1318 QUICK CLUSTER

NONE No additional output. Only the default output is displayed. NONE overrides
any other specifications on PRINT.

Example
QUICK CLUSTER A B C D E

/CRITERIA=CLUSTERS(6)
/PRINT=CLUSTER ID(CASEID) DISTANCE.

• Six clusters are formed on the basis of the five variables A, B, C, D, and E.

• For each case in the file, cluster membership and distance from cluster center are
displayed. Cases are identified by the values of the variable CASEID.

• Distances between all cluster centers are printed.

OUTFILE Subcommand

OUTFILE saves the final cluster centers in an SPSS-format data file. You can later use these
final cluster centers as initial cluster centers for a different sample of cases that use the same
variables. You can also cluster the final cluster centers themselves to obtain clusters of clusters.

• The only specification is a filename for the file.

• The program displays the name of the saved file in the procedure information notes.

Example
QUICK CLUSTER A B C D

/CRITERIA = CLUSTER(3)
/OUTFILE = QC1.

• QUICK CLUSTER writes the final cluster centers to the file QC1.

SAVE Subcommand

Use SAVE to save results of cluster analysis as new variables in the working data file.

• You can specify a variable name in parentheses following either keyword. If no variable
name is specified, QUICK CLUSTER forms unique variable names by appending an under-
score and a sequential number to the rootname QCL. The number increments with each
new variable saved.

• The program displays the new variables and a short description of each in the procedure
information notes.

CLUSTER[(varname)] The cluster number of each case. The value of the new variable is set
to an integer from 1 to the number of clusters.

DISTANCE[(varname)] The distance of each case from its classification cluster center.

Example
QUICK CLUSTER A B C D

/CRITERIA=CLUSTERS(6)
/SAVE=CLUSTER DISTANCE.

QUICK CLUSTER 1319

• Six clusters of cases are formed on the basis of the variables A, B, C, and D.

• A new variable QCL_1 is created and set to an integer between 1 and 6 to indicate cluster
membership for each case.

• Another new variable QCL_2 is created and set to the Euclidean distance between a case
and the center of the cluster to which it is assigned.

MISSING Subcommand

MISSING controls the treatment of cases with missing values.

• LISTWISE, PAIRWISE, and DEFAULT are alternatives. However, each can be used with
INCLUDE.

LISTWISE Delete cases with missing values listwise. A case with a missing value for
any of the clustering variables is deleted from the analysis and will not be
assigned to a cluster. This is the default.

PAIRWISE Assign each case to the nearest cluster on the basis of the clustering vari-
ables for which the case has nonmissing values. Only cases with missing
values for all clustering variables are deleted.

INCLUDE Treat user-missing values as valid.

DEFAULT Same as LISTWISE.

1320

RANK

RANK [VARIABLES=] varlist [({A**})] [BY varlist]
 {D }

 [/TIES={MEAN** }]
 {LOW }
 {HIGH }
 {CONDENSE}

 [/FRACTION={BLOM**}]
 {TUKEY }
 {VW }
 {RANKIT}

 [/PRINT={YES**}]
 {NO }

 [/MISSING={EXCLUDE**}]
 {INCLUDE }

The following function subcommands can each be specified once:

 [/RANK**] [/NTILES(k)] [/NORMAL] [/PERCENT]

 [/RFRACTION] [/PROPORTION] [/N] [/SAVAGE]

The following keyword can be used with any function subcommand:

 [INTO varname]

**Default if the subcommand is omitted.

Example
RANK VARIABLES=SALARY JOBTIME.

Overview

RANK produces new variables containing ranks, normal scores, and Savage and related
scores for numeric variables.

Options

Methods. You can rank variables in ascending or descending order by specifying A or D on
the VARIABLES subcommand. You can compute different rank functions and also name the
new variables using the function subcommands. You can specify the method for handling
ties on the TIES subcommand, and you can specify how the proportion estimate is computed
for the NORMAL and PROPORTIONAL functions on the FRACTION subcommand.

Format. You can suppress the display of the summary table that lists the ranked variables and
their associated new variables in the working data file using the PRINT subcommand.

RANK 1321

Basic Specification

The basic specification is VARIABLES and at least one variable from the working data file. By
default, the ranking function is RANK. Direction is ascending, and ties are handled by assign-
ing the mean rank to tied values. A summary table that lists the ranked variables and the new
variables into which computed ranks have been stored is displayed.

Subcommand Order

• VARIABLES must be specified first.

• The remaining subcommands can be specified in any order.

Operations

• RANK does not change the way the working data file is sorted.

• If new variable names are not specified with the INTO keyword on the function subcom-
mand, RANK creates default names. (See the INTO keyword on p. 1323.)

• RANK automatically assigns variable labels to the new variables. The labels identify the
source variables. For example, the label for a new variable with the default name RSALARY
is RANK of SALARY.

Example

RANK VARIABLES=SALARY JOBTIME.

• RANK ranks SALARY and JOBTIME and creates two new variables in the working file,
RSALARY and RJOBTIME, which contain the ranks.

VARIABLES Subcommand

VARIABLES specifies the variables to be ranked. Keyword VARIABLES can be omitted.

• VARIABLES is required and must be the first specification on RANK. The minimum spec-
ification is a single numeric variable. To rank more than one variable, specify a variable
list.

• After the variable list you can specify the direction for ranking in parentheses. Specify A
for ascending (smallest value gets smallest rank) or D for descending (largest value gets
smallest rank). A is the default.

• To rank some variables in ascending order and others in descending order, use both A and
D in the same variable list. A or D applies to all preceding variables in the list up to the
previous A or D specification.

• To organize ranks into subgroups, specify keyword BY followed by the variable whose
values determine the subgroups. The working data file does not have to be sorted by this
variable.

1322 RANK

• String variables cannot be specified. Use AUTORECODE to recode string variables for
ranking.

Example
RANK VARIABLES=MURDERS ROBBERY (D).

• RANK ranks MURDERS and ROBBERY and creates two new variables in the working data
file: RMURDERS and RROBBERY.

• D specifies descending order of rank. D applies to both MURDERS and ROBBERY.

Example
RANK VARIABLES=MURDERS (D) ROBBERY (A) BY ETHNIC.

• Ranks are computed within each group defined by ETHNIC. MURDERS is ranked in
descending order and ROBBERY in ascending order within each group of ETHNIC. The
working data file does not have to be sorted by ETHNIC.

Function Subcommands

The optional function subcommands specify different rank functions. RANK is the default
function.

• Any combination of function subcommands can be specified for a RANK procedure, but
each function can be specified only once.

• Each function subcommand must be preceded by a slash.

• The functions assign default names to the new variables unless keyword INTO is specified
(see the INTO keyword on p. 1323).

RANK Simple ranks. The values for the new variable are the ranks. Rank can either
be ascending or descending, as indicated on the VARIABLES subcommand.
Rank values can be affected by the specification on the TIES subcommand.

RFRACTION Fractional ranks. The values for the new variable equal the ranks divided by
the sum of the weights of the nonmissing cases. If HIGH is specified on TIES,
fractional rank values are an empirical cumulative distribution.

NORMAL Normal scores (Lehmann, 1975). The new variable contains the inverse of
the standard normal cumulative distribution of the proportion estimate
defined by the FRACTION subcommand. The default for FRACTION is BLOM.

PERCENT Fractional ranks as a percentage. The new variable contains fractional ranks
multiplied by 100.

PROPORTION Proportion estimates. The estimation method is specified by the FRACTION
subcommand. The default for FRACTION is BLOM.

N Sum of case weights. The new variable is a constant.

SAVAGE Savage scores (Lehmann, 1975). The new variable contains Savage (expo-
nential) scores.

RANK 1323

NTILES(k) Percentile groups. The new variable contains values from 1 to k, where k is
the number of groups to be generated. Each case is assigned a group value,
which is the integer part of 1+rk/(w+1), where r is the rank of the case, k is
the number of groups specified on NTILES, and w is the sum of the case
weights. Group values can be affected by the specification on TIES. There is
no default for k.

INTO Keyword

INTO specifies variable names for the new variable(s) added to the working data file. INTO
can be used with any of the function subcommands.

• INTO must follow a function subcommand. You must specify the INTO subcommand to
assign names to the new variables created by the function.

• You can specify multiple variable names on INTO. The names are assigned to the new vari-
ables in the order they are created (the order the variables are specified on the VARIABLES
subcommand).

• If you specify fewer names than the new variables, default names are used for the
remaining new variables. If you specify more names, the program issues a message and
the command is not executed.

If INTO is not specified on a function, RANK creates default names for the new variables ac-
cording to the following rules:

• The first letter of the ranking function is added to the first seven characters of the original
variable name.

• New variable names cannot duplicate variable names in the working data file or names
specified after INTO or generated by default.

• If a new default name is a duplicate, the scheme XXXnnn is used, where XXX represents
the first three characters of the function and nnn is a three-digit number starting with 001
and increased by 1 for each variable. (If the ranking function is N, XXX is simply N.) If this
naming scheme generates duplicate names, the duplicates are named RNKXXnn, where XX
is the first two characters of the function and nn is a two-digit number starting with 01 and
increased by 1 for each variable.

• If it is not possible to generate unique names, an error results.

Example
RANK VARIABLES=SALARY
/NORMAL INTO SALNORM
/SAVAGE INTO SALSAV
/NTILES(4) INTO SALQUART.

• RANK generates three new variables from variable SALARY.

• NORMAL produces the new variable SALNORM. SALNORM contains normal scores for
SALARY computed with the default formula BLOM.

• SAVAGE produces the new variable SALSAV. SALSAV contains Savage scores for SALARY.

• NTILES(4) produces the new variable SALQUART. SALQUART contains the value 1, 2, 3,
or 4 to represent one of the four percentile groups of SALARY.

1324 RANK

TIES Subcommand

TIES determines the way tied values are handled. The default method is MEAN.

MEAN Mean rank of tied values is used for ties. This is the default.

LOW Lowest rank of tied values is used for ties.

HIGH Highest rank of tied values is used for ties.

CONDENSE Consecutive ranks with ties sharing the same value. Each distinct value of
the ranked variable is assigned a consecutive rank. Ties share the same rank.

Example
RANK VARIABLES=BURGLARY /RANK INTO RMEAN /TIES=MEAN.
RANK VARIABLES=BURGLARY /RANK INTO RCONDS /TIES=CONDENSE.
RANK VARIABLES=BURGLARY /RANK INTO RHIGH /TIES=HIGH.
RANK VARIABLES=BURGLARY /RANK INTO RLOW /TIES=LOW.

• The values of BURGLARY and the four new ranking variables are shown below:
BURGLARY RMEAN RCONDS RHIGH RLOW

 0 3 1 5 1
 0 3 1 5 1
 0 3 1 5 1
 0 3 1 5 1
 0 3 1 5 1
 1 6.5 2 7 6
 1 6.5 2 7 6
 3 8 3 8 8

FRACTION Subcommand

FRACTION specifies the way to compute a proportion estimate P for the NORMAL and
PROPORTION rank functions.

• FRACTION can be used only with function subcommands NORMAL or PROPORTION. If it
is used with other function subcommands, FRACTION is ignored and a warning message
is displayed.

• Only one formula can be specified for each RANK procedure. If more than one is speci-
fied, an error results.

In the following formulas, r is the rank and w is the sum of case weights.

BLOM Blom’s transformation, defined by the formula (r – 3/8) / (w + 1/4). (Blom, 1958.)
This is the default.

RANKIT The formula is (r – 1/2) / w. (Chambers et al., 1983.)

TUKEY Tukey’s transformation, defined by the formula (r – 1/3) / (w + 1/3). (Tukey, 1962.)

VW Van der Waerden’s transformation, defined by the formula r / (w +1). (Lehmann, 1975.)

RANK 1325

Example
RANK VARIABLES=MORTGAGE VALUE /FRACTION=BLOM

/NORMAL INTO MORTNORM VALNORM.

• RANK generates new variables MORTNORM and VALNORM. MORTNORM contains normal
scores for MORTGAGE, and VALNORM contains normal scores for VALUE.

PRINT Subcommand

PRINT determines whether the summary tables are displayed. The summary table lists the
ranked variables and their associated new variables in the working data file.

YES Display the summary tables. This is the default.

NO Suppress the summary tables.

MISSING Subcommand

MISSING controls the treatment of user-missing values.

INCLUDE Include user-missing values. User-missing values are treated as valid values.

EXCLUDE Exclude all missing values. User-missing values are treated as missing. This
is the default.

Example
MISSING VALUE SALARY (0).
RANK VARIABLES=SALARY /RANK INTO SALRANK /MISSING=INCLUDE.

• RANK generates the new variable SALRANK.

• INCLUDE causes the user-missing value 0 to be included in the ranking process.

References

Blom, G. 1958. Statistical estimates and transformed beta variables. New York: John Wiley and
Sons.

Chambers, J. M., W. S. Cleveland, B. Kleiner, and P. A. Tukey. 1983. Graphical methods for data
analysis. Belmont, California: Wadsworth International Group; Boston: Duxbury Press.

Fisher, R. A. 1973. Statistical methods for research workers. 14th ed. New York: Hafner Publish-
ing Company.

Frigge, M., D. C. Hoaglin, and B. Iglewicz. 1987. Some implementations of the boxplot. In: Com-
puter Science and Statistics Proceedings of the 19th Symposium on the Interface, R. M.
Heiberger and M. Martin, eds. Alexandria, Virginia: American Statistical Association.

Lehmann, E. L. 1975. Nonparametrics: Statistical methods based on ranks. San Francisco: Hold-
en-Day.

Tukey, J. W. 1962. The future of data analysis. Annals of Mathematical Statistics, 33:22.

1326

RATIO STATISTICS

RATIO STATISTICS numerator varname WITH denominator varname
[BY group varname [({ASCENDING**})]]

{DESCENDING }
{NOSORT }

[/MISSING = {EXCLUDE**}]
{INCLUDE }

[/OUTFILE(’filename’) = [AAD] [BCOC((low,high) [(low,high)] ...)]
[CIN[({95 })]]

{value}
[COD] [MAX] [MDCOV] [MEAN] [MEDIAN] [MIN] [MNCOV] [PRD]
[RANGE] [STDDEV] [WCOC(value list)] [WGTMEAN]]

[/PRINT = [AAD] [BCOC(low,high)...] [CIN[({95 })]]
{value}

[COD] [MAX] [MDCOV] [MEAN] [MEDIAN] [MIN] [MNCOV] [PRD]
[RANGE] [STDDEV] [WCOC(value list)] [WGTMEAN]]

** Default if the subcommand is omitted.

Overview

RATIO STATISTICS provides a variety of descriptive statistics for the ratio between two
variables.

Basic Specification

The minimum specification is a numerator variable and a denominator variable, and either
an OUTFILE subcommand or a PRINT subcommand.

Subcommand Order

• The variable list must be specified first.
• Subcommands can be specified in any order.

Syntax Rules

• Empty subcommands are silently ignored.

• All subcommands should be specified only once. If a subcommand is repeated, only the
last specification will be used.

• The following words are reserved as keywords in this procedure: BY and WITH.

RATIO STATISTICS 1327

Case Frequency

• If a WEIGHT variable is specified, its values are used as frequency weights by this
procedure.

• Cases with missing or nonpositive weights are not used for computing the ratio statistics.

• The weight values are rounded to the nearest whole numbers before use. For example, 0.5
is rounded to 1, and 2.4 is rounded to 2.

Variable List

The variable list specifies the numerator variable, denominator variable, and optional group
variable.

• The numerator variable must be the first specification after the procedure name.
• The denominator variable must be preceded by the keyword WITH.

• The group variable, if specified, must be preceded by the keyword BY.

• Both the numerator and the denominator variables must be numeric.

• The group variable can be of any type (numeric or string).

• By default or when the keyword ASCENDING is specified, values of the group variable are
displayed in ascending order. Specify the keyword DESCENDING to display in descending
order. Specify NOSORT to preserve the appearance order in the data.

• Only cases with no (system- or user-) missing values in both the numerator and the
denominator variables will be used. Please note that this rule does not apply to the group
variable.

Example
RATIO STATISTICS appraise WITH price

/PRINT = AAD BCOC((1,2) (3,4)) MEAN.

• This is a typical analysis where appraise is the appraised value and price is the transaction
price. The ratio is computed by dividing appraise by price.

Example
RATIO STATISTICS appraise WITH price BY county

/PRINT = CIN(90) MEDIAN.

• The ratio is still computed by dividing appraise by price. However, separate ratio statistics
are requested for each category of county.

MISSING Subcommand

MISSING specifies the way to handle cases with user-missing values.

• A case is never used if it contains system-missing values in the numerator and/or the
denominator variables.

• If this subcommand is not specified, the default is EXCLUDE.

1328 RATIO STATISTICS

• Keywords EXCLUDE and INCLUDE are mutually exclusive. Only one of them can be
specified once.

EXCLUDE Exclude both user-missing and system-missing values. This is the default.

INCLUDE User-missing values are treated as valid. System-missing values cannot be
included in the analysis.

OUTFILE Subcommand

OUTFILE saves the requested statistics to an external file in SPSS data format.

• The requested statistics are saved in a single record in the external file.

• If a group variable has been specified, the requested statistics at each category of the
group variable will also be saved as additional records in the external file.

• A valid (server side) filename must be specified within a pair of parentheses after the
subcommand name.

The following statistics are available.

AAD Average absolute deviation. The result of summing the absolute
deviations of the ratios about the median and dividing the result by the
total number of ratios.

BCOC (low,high) …) Coefficient of concentration. The percentage of ratios that fall into an
interval. Pairs of low and high values enclosed in parentheses specify
the intervals.

CIN(a) Confidence interval. Specifying this keyword displays confidence
intervals for the mean, median, and weighted mean (if those statistics
are requested). Specify a value greater than or equal to 0 and less than
100 as the confidence level.

COD Coefficient of dispersion. The result of expressing the average
absolute deviation as a percentage of the median.

MAX Maximum. The largest ratio.

MDCOV Median-centered coefficient of variation. The result of expressing the
root mean squares of deviation from the median as a percentage of the
median.

MEAN Mean. The result of summing the ratios and dividing the result by the
total number ratios.

MEDIAN Median. The value such that number of ratios less than this value and
the number of ratios greater than this value are the same.

MIN Minimum. The smallest ratio.

MNCOV Mean-centered coefficient of variation. The result of expressing the
standard deviation as a percentage of the mean.

RATIO STATISTICS 1329

PRD Price-related differential. Also known as the index of regressivity, the
result of dividing the mean by the weighted mean.

RANGE Range. The result of subtracting the minimum ratio from the
maximum ratio.

STDDEV Standard deviation. The result of summing the squared deviations of
the ratios about the mean, dividing the result by the total number of
ratios minus one, and taking the positive square root.

WCOC(value list) Coefficient of concentration. The percent of ratios that fall within the
specified percent of the median. Specify a list of values that are greater
than 0 and less than 100.

WGTMEAN Weighted mean. The result of dividing the mean of the numerator by
the mean of the denominator. It is also the mean of the ratios weighted
by the denominator.

Example
RATIO STATISTICS appraise WITH price BY county

/OUTFILE(’C:\PropertyTax\Ratio.sav’) = CIN(90) MEDIAN.

• The median ratios and their 90% confidence intervals at each category of county are saved
to C:\PropertyTax\Ratio.sav.

• The overall median ratio and its 90% confidence intervals are also saved.

PRINT Subcommand

PRINT displays optional output. If no PRINT subcommand is specified, only a case processing
summary table is displayed by default.

AAD Average absolute deviation. The result of summing the absolute devi-
ations of the ratios about the median and dividing the result by the total
number of ratios.

BCOC(low,high) …) Coefficient of concentration. The percentage of ratios that fall into an
interval. Pairs of low and high values enclosed in parentheses specify
the intervals.

CIN(a) Confidence interval. Specifying this keyword displays confidence
intervals for the mean, median, and weighted mean (if those statistics
are requested). Specify a value greater than or equal to 0 and less than
100 as the confidence level.

COD Coefficient of dispersion. The result of expressing the average abso-
lute deviation as a percentage of the median.

MAX Maximum. The largest ratio.

MDCOV Median-centered coefficient of variation. The result of expressing the
root mean squares of deviation from the median as a percentage of the
median.

1330 RATIO STATISTICS

MEAN Mean. The result of summing the ratios and dividing the result by the
total number ratios.

MEDIAN Median. The value such that number of ratios less than this value and
the number of ratios greater than this value are the same.

MIN Minimum. The smallest ratio.

MNCOV Mean-centered coefficient of variation. The result of expressing the
standard deviation as a percentage of the mean.

PRD Price-related differential. Also known as the index of regressivity, the
result of dividing the mean by the weighted mean.

RANGE Range. The result of subtracting the minimum ratio from the
maximum ratio.

STDDEV Standard deviation. The result of summing the squared deviations of
the ratios about the mean, dividing the result by the total number of
ratios minus one, and taking the positive square root.

WCOC(value list) Coefficient of concentration. The percentage of ratios that fall within
the specified percentage of the median. Specify a list of values that are
greater than 0 and less than 100.

WGTMEAN Weighted mean. The result of dividing the mean of the numerator by
the mean of the denominator. It is also the mean of the ratios weighted
by the denominator.

Example
RATIO STATISTICS appraise WITH price BY county

/PRINT = BCOC((0.5,0.9) (1.3,1.5)) WCOC(15 30 45) MEDIAN PRD

• The median ratios and priced related differentials at each category of county are displayed.
The overall median ratio and the overall price-related differential are also displayed.

• Five coefficients of concentration are also displayed. The first two COC are percentages
of ratios that fall into the intervals: (0.5, 0.9) and (1.3, 1.5). The next three COC are per-
centages of ratios that fall within 15% of the median, 30% of the median, and 45% of the
median.

READ MODEL 1331

READ MODEL

READ MODEL is available in the Trends option.

READ MODEL FILE=’filename’

 [/KEEP={ALL** }]
 {model names}
 {procedures }

 [/DROP={model names}]
 {procedures }

 [/TYPE={MODEL**}]
 {COMMAND}

 [/TSET={CURRENT**}]
 {RESTORE }

**Default if the subcommand is omitted.

Example:
READ MODEL FILE=’ACFMOD.DAT’
 /DROP=MOD_1.

Overview

READ MODEL reads a model file that has been previously saved on the SAVE MODEL com-
mand (see SAVE MODEL). A model file contains the models generated by Trends procedures
for use with the APPLY subcommand.

Options

You can restore a subset of models from the model file using the DROP and KEEP subcom-
mands. You can control whether models are specified by model name or by the name of the
procedure that generated them using the TYPE subcommand. With the TSET subcommand,
you can restore the TSET settings that were in effect when the model file was created.

Basic Specification

The basic specification is the FILE subcommand specifying the name of a previously saved
model file.

• By default, all models contained in the specified file are restored, replacing all models that
are currently active. The restored models have their original MOD_n default names or
names assigned by the MODEL NAME command.

Subcommand Order

• Subcommands can be specified in any order.

1332 Syntax Reference

Syntax Rules

• If a subcommand is specified more than once, only the last one is executed.

Operations

• READ MODEL is executed immediately.

• Models that are currently active are erased when READ MODEL is executed. To save these
models for later use, specify the SAVE MODEL command before READ MODEL.

• Model files are designed to be read by Trends only and should not be edited.

• DATE specifications are not saved in model files. Therefore, the DATE specifications from
the current session are applied to the restored models.

• The following procedures can generate models: AREG, ARIMA, EXSMOOTH, SEASON,
and SPECTRA in SPSS Trends; ACF, CASEPLOT, CCF, CURVEFIT, NPPLOT, PACF, and
TSPLOT in the SPSS Base system; and WLS and 2SLS in SPSS Regression Models.

Limitations

• Maximum 1 filename can be specified.

Example

READ MODEL FILE=’ACFMOD.DAT’
 /DROP=MOD_1.

• In this example, all models except MOD_1 in the model file ACFMOD.DAT are restored.

FILE Subcommand

FILE names the model file to be read and is the only required subcommand.

• The only specification on FILE is the name of the model file.

• The filename must be enclosed in apostrophes.

• Only one filename can be specified.

• Only files saved with the SAVE MODEL command can be read.
• You can specify files residing in other directories by supplying a fully qualified filename.

KEEP and DROP Subcommands

DROP and KEEP allow you to restore a subset of models. By default, all models in the model
file are restored.

• KEEP specifies the models to be restored.

• DROP specifies the models to be excluded.

READ MODEL 1333

• Models can be specified using either individual model names or the names of the proce-
dures that created them. To use procedure names, you must specify COMMAND on the
TYPE subcommand.

• Model names are either the default MOD_n names or the names assigned with MODEL
NAME.

• If a procedure name is specified on KEEP, all models created by that procedure are re-
stored; on DROP, all models created by the procedure are dropped.

• Model names and procedure names cannot be mixed on a single READ MODEL command.
• If more than one KEEP or DROP subcommand is specified, only the last one is executed.

• You can specify the keyword ALL on KEEP to restore all models in the model file. This is
the default.

• The stored model file is not affected by the KEEP or DROP specification on READ MODEL.

Example
READ MODEL FILE=’ACFCCF.DAT’
 /KEEP=ACF1 ACF2.

• In this example, only models ACF1 and ACF2 are restored from model file ACFCCF.DAT.

TYPE Subcommand

TYPE indicates whether models are specified by model name or procedure name on DROP
and KEEP.

• One keyword, MODEL or COMMAND, can be specified after TYPE.

• MODEL is the default and indicates that models are specified as model names.

• COMMAND indicates that models are specified by procedure name.
• TYPE has no effect if KEEP or DROP is not specified.

• The TYPE specification applies only to the current READ MODEL command.

Example
READ MODEL FILE=’ARIMA1.DAT’
 /KEEP=ARIMA
 /TYPE=COMMAND.

• In this example, all models created by ARIMA are restored from model file ARIMA1.DAT.

TSET Subcommand

TSET allows you to restore the TSET settings that were in effect when the model was created.

• The specification on TSET is either CURRENT or RESTORE.

• CURRENT (the default) indicates you want to continue to use the current TSET settings.

• RESTORE indicates you want to restore the TSET settings that were in effect when the
model file was saved. The current TSET settings are replaced with the model file settings
when the file is restored.

1334

RECODE

For numeric variables:

RECODE varlist (value list=value)...(value list=value) [INTO varlist]
 [/varlist...]

Input keywords:

LO, LOWEST, HI, HIGHEST, THRU, MISSING, SYSMIS, ELSE

Output keywords:

COPY, SYSMIS

For string variables:

RECODE varlist [(’string’,[’string’...]=’string’)][INTO varlist]
 [/varlist...]

Input keywords:

CONVERT, ELSE

Output keyword:

COPY

Examples
RECODE V1 TO V3 (0=1) (1=0) (2,3=-1) (9=9) (ELSE=SYSMIS).

RECODE STRNGVAR (’A’,’B’,’C’=’A’)(’D’,’E’,’F’=’B’)(ELSE=’ ’).

Overview

RECODE changes, rearranges, or consolidates the values of an existing variable. RECODE can
be executed on a value-by-value basis or for a range of values. Where it can be used, RECODE
is much more efficient than the series of IF commands that produce the same transformation.

With RECODE, you must specify the new values. Use AUTORECODE to automatically
recode the values of string or numeric variables to consecutive integers.

Options

You can generate a new variable as the recoded version of an existing variable using key-
word INTO. You can also use INTO to recode a string variable into a new numeric variable
for more efficient processing, or to recode a numeric variable into a new string variable to
provide more descriptive values.

RECODE 1335

Basic Specification

The basic specification is a variable name and, within parentheses, the original values fol-
lowed by a required equals sign and a new value. RECODE changes the values on the left of
the equals sign into the single value on the right of the equals sign.

Syntax Rules

• The variables to be recoded must already exist and must be specified before the value
specifications.

• Value specifications are enclosed in parentheses. The original value or values must be
specified to the left of an equals sign. A single new value is specified to the right of the
equals sign.

• Multiple values can be consolidated into a single recoded value by specifying, to the left
of the equals sign, a list of values separated by blanks or commas. Only one recoded value
per set is allowed to the right of the equals sign.

• Multiple sets of value specifications are permitted. Each set must be enclosed in paren-
theses and can result in only one new value.

• To recode multiple variables using the same set of value specifications, specify a variable
list before the value specifications. Each variable in the list is recoded identically.

• To recode variables using different value specifications, separate each variable (or vari-
able list) and its specifications from the others by a slash.

• Original values that are not specified remain unchanged unless keyword ELSE is used or
INTO is used to recode into a new variable. ELSE refers to all original values not previ-
ously mentioned, including the system-missing value. ELSE should be the last specifica-
tion for the variable. When recoding INTO another variable, unspecified values are set to
system-missing or blank for strings.

• COPY replicates original values without recoding them.

• INTO is required to recode a string variable into a numeric variable or a numeric variable
into a string variable (see the INTO keyword on p. 1337).

Numeric Variables

• Keywords that can be used in the list of original values are LO (or LOWEST), HI (or
HIGHEST), THRU, MISSING, SYSMIS, and ELSE. Keywords that can be used in place of
a new value are COPY and SYSMIS.

• THRU specifies a value range and includes the specified end values.

• LOWEST and HIGHEST (LO and HI) specify the lowest and highest values encountered in
the data. LOWEST and HIGHEST include user-missing values but not the system-missing
value.

• MISSING specifies user-missing and system-missing values for recoding. MISSING can be
used in the list of original values only.

1336 RECODE

• SYSMIS specifies the system-missing value and can be used as both an original value and
a new value.

• See “Syntax Rules” above for a description of ELSE and COPY.

String Variables

• Keywords that can be used in the list of original values are CONVERT and ELSE. The only
keyword that can be used in place of a new value is COPY. See p. 1338 for a description
of CONVERT, and “Syntax Rules” on p. 1335 for a description of ELSE and COPY.

• Both short and long string variables can be recoded.

• Values must be enclosed in apostrophes or quotation marks.
• Blanks are significant characters.

Operations

• Value specifications are scanned left to right.

• A value is recoded only once per RECODE command.

• Invalid specifications on a RECODE command that result in errors stop all processing of
that RECODE command. No variables are recoded.

Numeric Variables

• Blank fields for numeric variables are handled according to the SET BLANKS specification
prior to recoding.

• When you recode a value that was previously defined as user-missing on the MISSING
VALUE command, the new value is not missing.

String Variables

• If the original or new value specified is shorter than the format width defined for the vari-
able, the string is right-padded with blanks.

• If the original or recoded value specified is longer than the format width defined for that
variable, the program issues an error message and RECODE is not executed.

Example

RECODE V1 TO V3 (0=1) (1=0) (2,3=-1) (9=9) (ELSE=SYSMIS)
/QVAR(1 THRU 5=1)(6 THRU 10=2)(11 THRU HI=3)(ELSE=0).

• The numeric variables between and including V1 and V3 are recoded: original values 0
and 1 are switched respectively to 1 and 0; 2 and 3 are changed to −1; 9 remains 9; and
any other value is changed to the system-missing value.

RECODE 1337

• Variable QVAR is also recoded: original values 1 through 5 are changed to 1; 6 through
10 are changed to 2; 11 through the highest value in the data are changed to 3; and any
other value, including system-missing, is changed to 0.

Example

RECODE STRNGVAR (’A’,’B’,’C’=’A’)(’D’,’E’,’F’=’B’)(ELSE=’ ’).
RECODE PET (’IGUANA’, ’SNAKE ’ = ’WILD ’).

• Values A, B, and C are changed to value A. Values D, E, and F are changed to value B.
All other values are changed to a blank.

• Values IGUANA and SNAKE are changed to value WILD. The defined width of variable
PET is 6. Thus, values SNAKE and WILD include trailing blanks for a total of six char-
acters. If blanks are not specified, the values are right-padded. In this example, the results
will be the same.

• Each string value is enclosed within apostrophes.

INTO Keyword

INTO specifies a target variable to receive recoded values from the original, or source, vari-
able. Source variables remain unchanged after the recode.
• INTO must follow the value specifications for the source variables that are being recoded

into the target variables.

• The number of target variables must equal the number of source variables.

Numeric Variables

• Target variables can be existing or new variables. For existing variables, cases with
values not mentioned in the value specifications are not changed. For new variables, cases
with values not mentioned are assigned the system-missing value.

• New numeric variables have default print and write formats of F8.2 (or the format speci-
fied on SET FORMAT).

Example
RECODE AGE (MISSING=9) (18 THRU HI=1) (0 THRU 18=0) INTO VOTER.

• The recoded AGE values are stored in target variable VOTER, leaving AGE unchanged.

• Value 18 and higher values are changed to value 1. Values between 0 and 18, but not
including 18, are recoded to 0. If the specification 0 THRU 18 preceded the specification
18 THRU HI, value 18 would be recoded to 0.

Example
RECODE V1 TO V3 (0=1) (1=0) (2=-1) INTO DEFENSE WELFARE HEALTH.

1338 RECODE

• Values for V1 through V3 are recoded and stored in DEFENSE, WELFARE, and HEALTH.
V1, V2, and V3 are not changed.

String Variables

• Target variables must already exist. To create a new string variable, declare the variable
with the STRING command before specifying it on RECODE.

• The new string values cannot be longer than the defined width of the target variable.

• If the new values are shorter than the defined width of the target variable, the values are
right-padded with blanks.

• Multiple target variables are allowed. The target variables must all be the same defined
width; the source variables can have different widths.

• If the source and target variables have different widths, the criterion for the width of the
original values is the width defined for the source variable; the criterion for the width of
the recoded values is the width defined for the target variable.

Example
STRING STATE1 (A2).
RECODE STATE (’IO’=’IA’) (ELSE=COPY) INTO STATE1.

• STRING declares variable STATE1 so that it can be used as a target variable on RECODE.

• RECODE specifies STATE as the source variable and STATE1 as the target variable. The
original value IO is recoded to IA. Keywords ELSE and COPY copy all other state codes
over unchanged. Thus, STATE and STATE1 are identical except for cases with the original
value IO.

Example
RECODE SEX (’M’=1) (’F’=2) INTO NSEX.

• RECODE recodes string variable SEX into numeric variable NSEX. Any value other than
M or F becomes system-missing.

• The program can process a large number of cases more efficiently with the numeric vari-
able NSEX than it can with the string variable SEX.

CONVERT Keyword

CONVERT recodes the string representation of numbers to their numeric representation.

• If keyword CONVERT precedes the value specifications, cases with numbers are recoded
immediately and blanks are recoded to the system-missing value, even if you specifically
recode blanks into a value.

• To recode blanks to a value other than system-missing or to recode a string value to a
noncorresponding numeric value (for example ‘0’ to 10), you must specify a recode
specification before the keyword CONVERT.

• RECODE converts numbers as if the variable were being reread using the F format.

RECODE 1339

• If RECODE encounters a value that cannot be converted, it scans the remaining value
specifications. If there is no specific recode specification for that value, the target variable
will be system-missing for that case.

Example
RECODE #JOB (CONVERT) (’-’=11) (’&’=12) INTO JOB.

• RECODE first recodes all numbers in string variable #JOB to numbers. The target variable
is JOB.

• RECODE then specifically recodes the minus sign (the “eleven” punch) to 11 and the
ampersand (or “twelve” punch in EBCDIC) to 12. Keyword CONVERT is specified first
as an efficiency measure to recode cases with numbers immediately. Blanks are recoded
to the system-missing value.

Example
RECODE #JOB (’ ’=-99) (CONVERT) (’-’=11) (’&’=12) INTO JOB.

• The result is the same as in the above example, except that blanks are changed to −99.

1340

RECORD TYPE

For mixed file types:

RECORD TYPE {value list} [SKIP]
 {OTHER }

For grouped file types:

RECORD TYPE {value list} [SKIP] [CASE=col loc]
 {OTHER }

 [DUPLICATE={WARN }] [MISSING={WARN }]
 {NOWARN} {NOWARN}

For nested file types:

RECORD TYPE {value list} [SKIP] [CASE=col loc]
 {OTHER }

 [SPREAD={YES}] [MISSING={WARN }]
 {NO } {NOWARN}

Example
FILE TYPE MIXED RECORD=RECID 1-2.
RECORD TYPE 23.
DATA LIST /SEX 5 AGE 6-7 DOSAGE 8-10 RESULT 12.
END FILE TYPE.

BEGIN DATA
21 145010 1
22 257200 2
25 235 250 2
35 167 300 3
24 125150 1
23 272075 1
21 149050 2
25 134 035 3
30 138 300 3
32 229 500 3
END DATA.

Overview

RECORD TYPE is used with DATA LIST within a FILE TYPE—END FILE TYPE structure to
define any one of the three types of complex raw data files: mixed files, which contain
several types of records that define different types of cases; hierarchical or nested files,
which contain several types of records with a defined relationship among the record types;
or grouped files, which contain several records for each case with some records missing
or duplicated (see FILE TYPE for more complete information). A fourth type of complex
file, files with repeating groups of information, can be read with the REPEATING DATA

RECORD TYPE 1341

command. REPEATING DATA can also be used to read mixed files and the lowest level of
nested files.

Each type of complex file has varying types of records. One set of RECORD TYPE and
DATA LIST commands is used to define each type of record in the data. The specifications
available for RECORD TYPE vary according to whether MIXED, GROUPED, or NESTED is
specified on FILE TYPE.

Basic Specification

For each record type being defined, the basic specification is the value of the record type
variable defined on the RECORD subcommand on FILE TYPE.

• RECORD TYPE must be followed by a DATA LIST command defining the variables for the
specified records, unless SKIP is used.

• One pair of RECORD TYPE and DATA LIST commands must be used for each defined
record type.

Syntax Rules

• A list of values can be specified if a set of different record types has the same variable
definitions. Each value must be separated by a space or comma.

• String values must be enclosed in apostrophes or quotation marks.

• For mixed files, each DATA LIST can specify variables with the same variable name, since
each record type defines a separate case. For grouped and nested files, the variable names
on each DATA LIST must be unique, since a case is built by combining all record types
together onto a single record.

• For mixed files, if the same variable is defined for more than one record type, the format
type and width of the variable should be the same on all DATA LIST commands. The
program refers to the first DATA LIST command that defines a variable for the print and
write formats to include in the dictionary of the working data file.

• For nested files, the order of the RECORD TYPE commands defines the hierarchical struc-
ture of the file. The first RECORD TYPE defines the highest-level record type, the next
RECORD TYPE defines the next highest-level record, and so forth. The last RECORD
TYPE command defines a case in the working data file.

Operations

• If a record type is specified on more than one RECORD TYPE command, the program uses
the DATA LIST command associated with the first specification and ignores all others.

• For NESTED files, the first record in the file should be the type specified on the first
RECORD TYPE command—the highest-level record of the hierarchy. If the first record in
the file is not the highest-level type, the program skips all records until it encounters a
record of the highest-level type. If the MISSING or DUPLICATE subcommands have been
specified on the FILE TYPE command, these records may produce warning messages but
will not be used to build a case in the working data file.

1342 RECORD TYPE

Example

* Reading only one record type from a mixed file.

FILE TYPE MIXED RECORD=RECID 1-2.
RECORD TYPE 23.
DATA LIST /SEX 5 AGE 6-7 DOSAGE 8-10 RESULT 12.
END FILE TYPE.

BEGIN DATA
21 145010 1
22 257200 2
25 235 250 2
35 167 300 3
24 125150 1
23 272075 1
21 149050 2
25 134 035 3
30 138 300 3
32 229 500 3
END DATA.

• FILE TYPE begins the file definition, and END FILE TYPE indicates the end of file defini-
tion. FILE TYPE specifies a mixed file type. Since the data are included between BEGIN
DATA—END DATA, the FILE subcommand is omitted. The record identification variable
RECID is located in columns 1 and 2.

• RECORD TYPE indicates that records with value 23 for variable RECID will be copied into
the working data file. All other records are skipped. The program does not issue a warning
when it skips records in mixed files.

• DATA LIST defines variables on records with the value 23 for variable RECID.

Example

* Reading multiple record types from a mixed file.

FILE TYPE MIXED FILE=TREATMNT RECORD=RECID 1-2.
+ RECORD TYPE 21,22,23,24.
+ DATA LIST /SEX 5 AGE 6-7 DOSAGE 8-10 RESULT 12.
+ RECORD TYPE 25.
+ DATA LIST /SEX 5 AGE 6-7 DOSAGE 10-12 RESULT 15.
END FILE TYPE.

• Variable DOSAGE is read from columns 8–10 for record types 21, 22, 23, and 24 and from
columns 10–12 for record type 25. RESULT is read from column 12 for record types 21,
22, 23, and 24 and from column 15 for record type 25.

• The working data file contains values for all variables defined on the DATA LIST
commands for record types 21 through 25. All other record types are skipped.

RECORD TYPE 1343

Example

* A nested file of accident records.

FILE TYPE NESTED RECORD=6 CASE=ACCID 1-4.
RECORD TYPE 1.
DATA LIST /ACC_ID 9-11 WEATHER 12-13 STATE 15-16 (A) DATE 18-24 (A).
RECORD TYPE 2.
DATA LIST /STYLE 11 MAKE 13 OLD 14 LICENSE 15-16(A) INSURNCE 18-21 (A).
RECORD TYPE 3.
DATA LIST /PSNGR_NO 11 AGE 13-14 SEX 16 (A) INJURY 18 SEAT 20-21 (A)

COST 23-24.
END FILE TYPE.

BEGIN DATA
0001 1 322 1 IL 3/13/88 /* Type 1: accident record
0001 2 1 44MI 134M /* Type 2: vehicle record
0001 3 1 34 M 1 FR 3 /* Type 3: person record
0001 2 2 16IL 322F /* vehicle record
0001 3 1 22 F 1 FR 11 /* person record
0001 3 2 35 M 1 FR 5 /* person record
0001 3 3 59 M 1 BK 7 /* person record
0001 2 3 21IN 146M /* vehicle record
0001 3 1 46 M 0 FR 0 /* person record
END DATA.

• FILE TYPE specifies a nested file type. The record identifier, located in column 6, is not
assigned a variable name, so the default scratch variable name ####RECD is used. The
case identification variable ACCID is located in columns 1–4.

• Because there are three record types, there are three RECORD TYPE commands. For each
RECORD TYPE there is a DATA LIST command to define variables on that record type. The
order of the RECORD TYPE commands defines the hierarchical structure of the file.

• END FILE TYPE signals the end of file definition.

• The program builds a case for each lowest-level (type 3) record, representing each person
in the file. There can be only one type 1 record for each type 2 record, and one type 2
record for each type 3 record. Each vehicle can be in only one accident, and each person
can be in only one vehicle. The variables from the type 1 and type 2 records are spread to
their corresponding type 3 records.

OTHER Keyword

OTHER specifies all record types that have not been mentioned on previous RECORD TYPE
commands.

• OTHER can be specified only on the last RECORD TYPE command in the file definition.

• OTHER can be used with SKIP to skip all undefined record types.
• For nested files, OTHER can be used only with SKIP. Neither can be used separately.

• If WILD=WARN is in effect for the FILE TYPE command, OTHER cannot be specified on
the RECORD TYPE command.

1344 RECORD TYPE

Example
* A mixed file.

FILE TYPE MIXED FILE=TREATMNT RECORD=RECID 1-2.
RECORD TYPE 21,22,23,24.
DATA LIST /SEX 5 AGE 6-7 DOSAGE 8-10 RESULT 12.
RECORD TYPE 25.
DATA LIST /SEX 5 AGE 6-7 DOSAGE 10-12 RESULT 15.
RECORD TYPE OTHER.
DATA LIST /SEX 5 AGE 6-7 DOSAGE 18-20 RESULT 25.
END FILE TYPE.

• The first two RECORD TYPE commands specify record types 21–25. All other record
types are specified by the third RECORD TYPE.

Example
* A nested file.

FILE TYPE NESTED FILE=ACCIDENT RECORD=#RECID 6 CASE=ACCID 1-4.
RECORD TYPE 1. /* Accident record
DATA LIST /WEATHER 12-13.
RECORD TYPE 2. /* Vehicle record
DATA LIST /STYLE 16.
RECORD TYPE OTHER SKIP.
END FILE TYPE.

• The third RECORD TYPE specifies OTHER SKIP. Type 2 records are therefore the lowest-
level records included in the working data file. These commands build one case for each
vehicle record. The person records are skipped.

• Because the data are in a nested file, OTHER can be specified only with SKIP.

SKIP Subcommand

SKIP specifies record types to skip.

• To skip selected record types, specify the values for the types you want to skip and then
specify SKIP. To skip all record types other than those specified on previous RECORD
TYPE commands, specify OTHER and then SKIP.

• For nested files, SKIP can be used only with OTHER. Neither can be used separately.

• For grouped files, OTHER cannot be specified on SKIP if WILD=WARN (the default) is in
effect for FILE TYPE.

• For mixed files, all record types that are not specified on a RECORD TYPE command are
skipped by default. No warning is issued (WILD=NOWARN on FILE TYPE is the default for
mixed files).

• For grouped files, a warning message is issued by default for all record types not specified
on a RECORD TYPE command (WILD=WARN on FILE TYPE is the default for grouped
files). If the record types are explicitly specified on SKIP, no warning is issued.

RECORD TYPE 1345

Example
FILE TYPE GROUPED FILE=HUBDATA RECORD=#RECID 80 CASE=ID 1-5

WILD=NOWARN.
RECORD TYPE 1.
DATA LIST /MOHIRED YRHIRED 12-15 DEPT79 TO DEPT82 SEX 16-20.
RECORD TYPE OTHER SKIP.
END FILE TYPE.

• The program reads variables from type 1 records and skips all other types.

• WILD=NOWARN on the FILE TYPE command suppresses the warning messages that is
issued by default for undefined record types for grouped files. Keyword OTHER cannot
be used when the default WILD=WARN specification is in effect.

Example
FILE TYPE GROUPED FILE=HUBDATA RECORD=#RECID 80 CASE=ID 1-5.
RECORD TYPE 1.
DATA LIST /MOHIRED YRHIRED 12-15 DEPT79 TO DEPT82 SEX 16-20.
RECORD TYPE 2,3 SKIP.
END FILE TYPE.

• Record type 1 is defined for each case, and record types 2 and 3 are skipped.

• WILD=WARN (the default) on FILE TYPE GROUPED is in effect. The program therefore
issues a warning message for any record types it encounters other than types 1, 2, and 3.
No warning is issued for record types 2 and 3 because they are explicitly specified on a
RECORD TYPE command.

CASE Subcommand

CASE specifies the column locations of the case identification variable when that variable
is not in the location defined by the CASE subcommand on FILE TYPE.

• CASE on RECORD TYPE applies only to those records specified by that RECORD TYPE
command. The identifier for record types without CASE on RECORD TYPE must be in the
location specified by CASE on FILE TYPE.

• CASE can be used for nested and grouped files only. CASE cannot be used for mixed files.

• CASE can be used on RECORD TYPE only if a CASE subcommand is specified on FILE
TYPE.

• The format type of the case identification variable must be the same on all records, and
the same format must be assigned on the RECORD TYPE and FILE TYPE commands. For
example, if the case identification variable is defined as a string on FILE TYPE, it cannot
be defined as a numeric variable on RECORD TYPE.

1346 RECORD TYPE

Example
* Specifying case on the record type command for a grouped file.

FILE TYPE GROUPED FILE=HUBDATA RECORD=#RECID 80 CASE=ID 1-5.
RECORD TYPE 1.
DATA LIST /MOHIRED YRHIRED 12-15 DEPT79 TO DEPT82 SEX 16-20.
RECORD TYPE 2.
DATA LIST /SALARY79 TO SALARY82 6-25
 HOURLY81 HOURLY82 40-53 (2)

PROMO81 72 AGE 54-55 RAISE82 66-70.
RECORD TYPE 3 CASE=75-79.
DATA LIST /JOBCAT 6 NAME 25-48 (A).
END FILE TYPE.

• CASE on FILE TYPE indicates that the case identification variable is located in columns
1–5. On the third RECORD TYPE command, the CASE subcommand overrides the iden-
tifier location for type 3 records. For type 3 records, the case identification variable is
located in columns 75–79.

MISSING Subcommand

MISSING controls whether the program issues a warning when it encounters a missing
record type for a case. Regardless of whether the program issues the warning, it builds the
case in the working data file with system-missing values for the variables defined on the
missing record.
• The only specification is a single keyword. NOWARN is the default for nested files. WARN

is the default for grouped files. MISSING cannot be used with MIXED files.

• MISSING on RECORD TYPE applies only to those records specified by that RECORD TYPE
command. The treatment of missing records for record types without the MISSING speci-
fication on RECORD TYPE is determined by the MISSING subcommand on FILE TYPE.

• For grouped files, the program checks whether there is a record for each case identifica-
tion number. For nested files, the program verifies that each defined case includes one
record of each type.

WARN Issue a warning message when a record type is missing for a case. This is
the default for grouped files.

NOWARN Suppress the warning message when a record type is missing for a case. This
is the default for nested files.

Example
FILE TYPE GROUPED FILE=HUBDATA RECORD=#RECID 80 CASE=ID 1-5.
RECORD TYPE 1.
DATA LIST /MOHIRED YRHIRED 12-15 DEPT79 TO DEPT82 SEX 16-20.
RECORD TYPE 2 MISSING=NOWARN.
DATA LIST /SALARY79 TO SALARY82 6-25
 HOURLY81 HOURLY82 40-53 (2) PROMO81 72 AGE 54-55 RAISE82 66-70.
RECORD TYPE 3.
DATA LIST /JOBCAT 6 NAME 25-48 (A).
END FILE TYPE.

RECORD TYPE 1347

• MISSING is not specified on FILE TYPE. Therefore the default MISSING=WARN is in effect
for all record types.

• MISSING=NOWARN is specified on the second RECORD TYPE, overriding the default
setting for type 2 records. WARN is still in effect for type 1 and type 3 records.

DUPLICATE Subcommand

DUPLICATE controls whether the program issues a warning when it encounters more than
one record of each type for a single case.

• DUPLICATE on RECORD TYPE can be used for grouped files only. DUPLICATE cannot be
used for mixed or nested files.

• The only specification is a single keyword. WARN is the default.

• DUPLICATE on RECORD TYPE applies only to those records specified by that RECORD
TYPE command. The treatment of duplicate records for record types without DUPLICATE
specification is determined by the DUPLICATE subcommand on FILE TYPE.

• Regardless of the specification on DUPLICATE, only the last record from a set of dupli-
cates is included in the working data file.

WARN Issue a warning message. The program issues a message and the first 80
characters of the last record of the duplicate set of record types. This is the
default.

NOWARN Suppress the warning message.

Example
* Specifying DUPLICATE on RECORD TYPE for a grouped file.

FILE TYPE GROUPED FILE=HUBDATA RECORD=#RECID 80 CASE=ID 1-5.
RECORD TYPE 1.
DATA LIST /MOHIRED YRHIRED 12-15 DEPT79 TO DEPT82 SEX 16-20.
RECORD TYPE 2 DUPLICATE=NOWARN.
DATA LIST /SALARY79 TO SALARY82 6-25
 HOURLY81 HOURLY82 40-53 (2) PROMO81 72 AGE 54-55 RAISE82 66-70.
RECORD TYPE 3.
DATA LIST /JOBCAT 6 NAME 25-48 (A).
END FILE TYPE.

• DUPLICATE is not specified on FILE TYPE. Therefore the default DUPLICATE=WARN is in
effect for all record types.

• DUPLICATE=NOWARN is specified on the second RECORD TYPE, overriding the FILE
TYPE setting for type 2 records. WARN is still in effect for type 1 and type 3 records.

SPREAD Subcommand

SPREAD controls whether the values for variables defined for a record type are spread to all
related cases.

1348 RECORD TYPE

• SPREAD can be used for nested files only. SPREAD cannot be used for mixed or
grouped files.

• The only specification is a single keyword. YES is the default.

• SPREAD=NO applies only to the record type specified on that RECORD TYPE command.
The default YES is in effect for all other defined record types.

YES Spread the values from the specified record type to all related cases. This is the
default.

NO Spread the values from the specified type only to the first related case. All other
cases built from the same record are assigned the system-missing value for the vari-
ables defined on the record type.

Example
* A nested file.

FILE TYPE NESTED RECORD=#RECID 6 CASE=ACCID 1-4.
RECORD TYPE 1.
DATA LIST /ACC_NO 9-11 WEATHER 12-13
 STATE 15-16 (A) DATE 18-24 (A).
RECORD TYPE 2 SPREAD=NO.
DATA LIST /STYLE 11 MAKE 13 OLD 14
 LICENSE 15-16 (A) INSURNCE 18-21 (A).
RECORD TYPE 3.
DATA LIST /PSNGR_NO 11 AGE 13-14 SEX 16 (A)
 INJURY 18 SEAT 20-21 (A) COST 23-24.
END FILE TYPE.

BEGIN DATA
0001 1 322 1 IL 3/13/88 /* Type 1: accident record
0001 2 1 44MI 134M /* Type 2: vehicle record
0001 3 1 34 M 1 FR 3 /* Type 3: person record
0001 2 2 16IL 322F /* vehicle record
0001 3 1 22 F 1 FR 11 /* person record
0001 3 2 35 M 1 FR 5 /* person record
0001 3 3 59 M 1 BK 7 /* person record
0001 2 3 21IN 146M /* vehicle record
0001 3 1 46 M 0 FR 0 /* person record
END DATA.

• The accident record (type 1) is spread to all related cases (in this example, all cases).

• The first vehicle record has one related person record. The values for STYLE, MAKE, OLD,
LICENSE, and INSURNCE are spread to the case built for the person record.

• The second vehicle record has three related person records. The values for STYLE, MAKE,
OLD, LICENSE, and INSURNCE are spread only to the case built from the first person record.
The other two cases have the system-missing values for STYLE, MAKE, OLD, LICENSE, and
INSURNCE.

• The third vehicle record has one related person record, and the values for type 2 records
are spread to that case.

1349

REFORMAT

REFORMAT {ALPHA } = varlist [/...]
 {NUMERIC}

Example
REFORMAT ALPHA=STATE /NUMERIC=HOUR1 TO HOUR6.

Overview

REFORMAT converts variables from BMDP files to variables for SPSS-format data files. It
also converts very old versions of SPSS-format data files to current SPSS-format data files.
REFORMAT can change the print formats, write formats, and missing-value specifications for
variables from alphanumeric to numeric, or from numeric to alphanumeric.

Basic Specification

The basic specification is ALPHA and a list of variables or NUMERIC and a list of variables.
• The ALPHA subcommand declares variables as string variables. The NUMERIC subcom-

mand declares variables as numeric variables.

• If both ALPHA and NUMERIC are specified, they must be separated by a slash.

Operations

• REFORMAT always assigns the print and write format F8.2 (or the format specified on
the SET command) to variables specified after NUMERIC and format A4 to variables
specified after ALPHA.

• Formats cannot be specified on REFORMAT. To define different formats for numeric
variables, use the PRINT FORMATS, WRITE FORMATS, or FORMATS commands. To
declare new format widths for string variables, use the STRING and COMPUTE
commands to perform data transformations.

• Missing-value specifications for variables named with both ALPHA and NUMERIC are
also changed to conform to the new formats.

• The SAVE or XSAVE commands can be used to save the reformatted variables in an
SPSS-format data file. This avoids having to reformat the variables each time the SPSS-
format or BMDP data set is used.

1350 REFORMAT

Example

* Convert an old SPSS-format file to a new SPSS-format data file.

GET FILE R9FILE.
REFORMAT ALPHA=STATE /NUMERIC=HOUR1 TO HOUR6.
STRING XSTATE (A2) /NAME1 TO NAME6 (A15).
COMPUTE XSTATE=STATE.
FORMATS HOUR1 TO HOUR6 (F2.0).
SAVE OUTFILE=NEWFILE /DROP=STATE

/RENAME=(XSTATE=STATE).

• GET accesses the old SPSS-format data file.

• REFORMAT converts variable STATE to a string variable with an A4 format and variables
HOUR1 to HOUR6 to numeric variables with F8.2 formats.

• STRING declares XSTATE as a string variable with two positions.

• COMPUTE transfers the information from the variable STATE to the new string variable
XSTATE.

• FORMATS changes the F8.2 formats for HOUR1 to HOUR6 to F2.0 formats.

• SAVE saves a new SPSS-format data file. The DROP subcommand drops the old variable
STATE. RENAME renames the new string variable XSTATE to the original variable name
STATE.

1351

REGRESSION

REGRESSION [MATRIX=[IN({file})] [OUT({file})]]
 {* } {* }

 [/VARIABLES={varlist }]
 {(COLLECT)**}
 {ALL }

 [/DESCRIPTIVES=[DEFAULTS] [MEAN] [STDDEV] [CORR] [COV]
 [VARIANCE] [XPROD] [SIG] [N] [BADCORR]
 [ALL] [NONE**]]

 [/SELECT={varname relation value}

 [/MISSING=[{LISTWISE** }] [INCLUDE]]
 {PAIRWISE }
 {MEANSUBSTITUTION}

 [/REGWGT=varname]

 [/STATISTICS=[DEFAULTS**] [R**] [COEFF**] [ANOVA**] [OUTS**]
 [ZPP] [LABEL] [CHA] [CI] [F] [BCOV] [SES]

[XTX] [COLLIN] [TOL] [SELECTION] [ALL]]

 [/CRITERIA=[DEFAULTS**] [TOLERANCE({0.0001**})] [MAXSTEPS(n)]
 {value }

 [PIN[({0.05**})]] [POUT[({0.10**})]]
 {value } {value }

 [FIN[({3.84 })]] [FOUT[({2.71 })]]
 {value} {value}

 [CIN[({ 95**})]]]
 {value}

 [/{NOORIGIN**}]
 {ORIGIN }

 /DEPENDENT=varlist

 [/METHOD=]{STEPWISE [varlist] } [...] [/...]
 {FORWARD [varlist] }
 {BACKWARD [varlist] }
 {ENTER [varlist] }
 {REMOVE varlist }
 {TEST(varlist)(varlist)...}

 [/OUTFILE={COVB (filename)}] [MODEL (filename)]
 {CORB (filename)}

**Default if the subcommand is omitted.

Example
REGRESSION VARIABLES=POP15,POP75,INCOME,GROWTH,SAVINGS
/DEPENDENT=SAVINGS
/METHOD=ENTER POP15,POP75,INCOME
/METHOD=ENTER GROWTH.

1352 REGRESSION

Overview

REGRESSION calculates multiple regression equations and associated statistics and plots.
REGRESSION also calculates collinearity diagnostics, predicted values, residuals, measures
of fit and influence, and several statistics based on these measures (see the section on resid-
uals beginning on p. 1367).

Options

Input and Output Control Subcommands. DESCRIPTIVES requests descriptive statistics on the
variables in the analysis. SELECT estimates the model based on a subset of cases. REGWGT
specifies a weight variable for estimating weighted least-squares models. MISSING specifies
the treatment of cases with missing values. MATRIX reads and writes matrix data files.

Equation-Control Subcommands. These optional subcommands control the calculation and
display of statistics for each equation. STATISTICS controls the statistics displayed for the
equation(s) and the independent variable(s), CRITERIA specifies the criteria used by the
variable selection method, and ORIGIN specifies whether regression is through the origin.

Analysis of Residuals, Fit, and Influence. The optional subcommands that analyze and plot
residuals and add new variables to the working data file containing predicted values, resid-
uals, measures of fit and influence, or related information, are described starting on p. 1367.
These subcommands apply to the final equation.

Basic Specification

The basic specification is DEPENDENT, which initiates the equation(s) and defines at least
one dependent variable, followed by METHOD, which specifies the method for selecting
independent variables.

• By default, all variables named on DEPENDENT and METHOD are used in the analysis.

• The default display for each equation includes a Model Summary table showing R2, an
ANOVA table, a Coefficients table displaying related statistics for variables in the equa-
tion, and an Excluded Variables table displaying related statistics for variables not yet in
the equation.

• By default, all cases in the working data file with valid values for all selected variables
are used to compute the correlation matrix on which the regression equations are based.
The default equations include a constant (intercept).

REGRESSION 1353

Subcommand Order

The standard subcommand order for REGRESSION is

REGRESSION MATRIX=...
 /VARIABLES=...
 /DESCRIPTIVES=...
 /SELECT=...
 /MISSING=...
 /REGWGT=...

• Only one equation block is allowed per REGRESSION command.

• Subcommands listed outside the equation block must be specified before any subcom-
mands within the block.

• When used, MATRIX must be specified first.

• An equation block can contain multiple METHOD subcommands. These methods are
applied, one after the other, to the estimation of the equation for that block.

• The STATISTICS, CRITERIA, and ORIGIN/NOORIGIN subcommands must precede the
DEPENDENT subcommand.

• The RESIDUALS, CASEWISE, SCATTERPLOT, SAVE, PARTIALPLOT and OUTFILE sub-
commands must follow the last METHOD subcommand in an equation block and apply
only to the final equation after all METHOD subcommands have been processed. These
subcommands are discussed in the section on residuals beginning on p. 1367.

Syntax Rules

• VARIABLES can be specified only once. If omitted, VARIABLES defaults to COLLECT.

 Equation Block
 /STATISTICS=...
 /CRITERIA=...
 /ORIGIN
 /DEPENDENT=...

 Method Block(s)
 /METHOD=...
 [/METHOD...]...

 /RESIDUALS=...
 /SAVE=...
 /CASEWISE=...
 /SCATTERPLOT=...
 /PARTIALPLOT=...
 /OUTFILE = ...

1354 REGRESSION

• The DEPENDENT subcommand can be specified only once and must be followed imme-
diately by one or more METHOD subcommands.

• CRITERIA, STATISTICS, and ORIGIN must be specified before DEPENDENT and METHOD.
If any of these subcommands are specified more than once, only the last specified is in
effect for all subsequent equations.

• More than one variable can be specified on the DEPENDENT subcommand. An equation
is estimated for each.

• If no variables are specified on METHOD, all variables named on VARIABLES but not on
DEPENDENT are considered for selection.

Operations

• REGRESSION calculates a correlation matrix that includes all variables named on
VARIABLES. All equations requested on the REGRESSION command are calculated
from the same correlation matrix.

• The MISSING, DESCRIPTIVES, and SELECT subcommands control the calculation of the
correlation matrix and associated displays.

• If multiple METHOD subcommands are specified, they operate in sequence on the equa-
tions defined by the preceding DEPENDENT subcommand.

• Only independent variables that pass the tolerance criterion are candidates for entry into
the equation (see the CRITERIA subcommand on p. 1359).

Example

REGRESSION VARIABLES=POP15,POP75,INCOME,GROWTH,SAVINGS
/DEPENDENT=SAVINGS
/METHOD=ENTER POP15,POP75,INCOME
/METHOD=ENTER GROWTH.

• VARIABLES calculates a correlation matrix of five variables for use by REGRESSION.

• DEPENDENT defines a single equation, with SAVINGS as the dependent variable.
• The first METHOD subcommand enters POP15, POP75, and INCOME into the equation.

• The second METHOD subcommand adds GROWTH to the equation containing POP15 to
INCOME.

VARIABLES Subcommand

VARIABLES names all the variables to be used in the analysis.

• The minimum specification is a list of two variables or the keyword ALL or COLLECT.
COLLECT, which must be specified in parentheses, is the default.

• Only one VARIABLES subcommand is allowed and it must precede any DEPENDENT or
METHOD subcommands.

• You can use keyword TO to refer to consecutive variables in the working data file.

REGRESSION 1355

• The order of variables in the correlation matrix constructed by REGRESSION is the same
as their order on VARIABLES. If (COLLECT) is used, the order of variables in the correla-
tion matrix is the order in which they are first listed on the DEPENDENT and METHOD sub-
commands.

ALL Include all user-defined variables in the working data file.

(COLLECT) Include all variables named on the DEPENDENT and METHOD subcom-
mands. COLLECT is the default if the VARIABLES subcommand is omitted.
COLLECT must be specified in parentheses. If COLLECT is used, the METHOD
subcommands must specify variable lists.

Example
REGRESSION VARIABLES=(COLLECT)
/DEPENDENT=SAVINGS
/METHOD=STEP POP15 POP75 INCOME
/METHOD=ENTER GROWTH.

• COLLECT requests that the correlation matrix include SAVINGS, POP15, POP75, INCOME,
and GROWTH. Since COLLECT is the default, the VARIABLES subcommand could have
been omitted.

• The DEPENDENT subcommand defines a single equation in which SAVINGS is the depen-
dent variable.

• The first METHOD subcommand requests that the block of variables POP15, POP75, and
INCOME be considered for inclusion using a stepwise procedure.

• The second METHOD subcommand adds variable GROWTH to the equation.

DEPENDENT Subcommand

DEPENDENT specifies a list of variables and requests that an equation be built for each.
DEPENDENT is required.

• The minimum specification is a single variable. There is no default variable list.

• Only one DEPENDENT subcommand can be specified. It must be followed by at least one
METHOD subcommand.

• Keyword TO on a DEPENDENT subcommand refers to the order in which variables are
specified on the VARIABLES subcommand. If VARIABLES=(COLLECT), TO refers to the
order of variables in the working data file.

• If DEPENDENT names more than one variable, an equation is built for each using the same
independent variables and methods.

METHOD Subcommand

METHOD specifies a variable selection method and names a block of variables to be evaluated
using that method. METHOD is required.

• The minimum specification is a method keyword and, for some methods, a list of vari-
ables. The actual keyword METHOD can be omitted.

1356 REGRESSION

• When more than one METHOD subcommand is specified, each METHOD subcommand is
applied to the equation that resulted from the previous METHOD subcommands.

• The default variable list for methods FORWARD, BACKWARD, STEPWISE, and ENTER
consists of all variables named on VARIABLES that are not named on the DEPENDENT
subcommand. If VARIABLES=(COLLECT), the variables must be specified for these
methods.

• There is no default variable list for the REMOVE and TEST methods.

• Keyword TO in a variable list on METHOD refers to the order in which variables are spec-
ified on the VARIABLES subcommand. If VARIABLES=(COLLECT), TO refers to the order
of variables in the working data file.

The available stepwise methods are as follows:

BACKWARD [varlist] Backward elimination. Variables in the block are considered for
removal. At each step, the variable with the largest probability-of-F
value is removed, provided that the value is larger than POUT (see the
CRITERIA subcommand on p. 1359). If no variables are in the equa-
tion when BACKWARD is specified, all independent variables in the
block are first entered.

FORWARD [varlist] Forward entry. Variables in the block are added to the equation one
at a time. At each step, the variable not in the equation with the small-
est probability of F is entered if the value is smaller than PIN (see the
CRITERIA subcommand on p. 1359).

STEPWISE [varlist] Stepwise selection. If there are independent variables already in the
equation, the variable with the largest probability of F is removed if
the value is larger than POUT. The equation is recomputed without
the variable and the process is repeated until no more independent
variables can be removed. Then, the independent variable not in the
equation with the smallest probability of F is entered if the value is
smaller than PIN. All variables in the equation are again examined
for removal. This process continues until no variables in the equa-
tion can be removed and no variables not in the equation are eligible
for entry, or until the maximum number of steps has been reached
(see the CRITERIA subcommand on p. 1359).

The methods that enter or remove the entire variable block in a single step are as follows:

ENTER [varlist] Forced entry. All variables specified are entered in a single step in
order of decreasing tolerance. You can control the order in which vari-
ables are entered by specifying the variables on multiple METH-
OD=ENTER subcommands.

REMOVE varlist Forced removal. All variables specified are removed in a single step.
REMOVE requires a variable list.

TEST (varlist) (varlist) R2 change and its significance for sets of independent variables. This
method first adds all variables specified on TEST to the current
equation. It then removes in turn each subset from the equation and
displays requested statistics. Specify test subsets in parentheses. A

REGRESSION 1357

variable can be used in more than one subset, and each subset can
include any number of variables. Variables named on TEST remain in
the equation when the method is completed.

Example
REGRESSION VARIABLES=POP15 TO GROWTH, SAVINGS
/DEPENDENT=SAVINGS
/METHOD=STEPWISE
/METHOD=ENTER.

• STEPWISE applies the stepwise procedure to variables POP15 to GROWTH.

• All variables not in the equation when the STEPWISE method is completed will be forced
into the equation with ENTER.

Example
REGRESSION VARIABLES=(COLLECT)
/DEPENDENT=SAVINGS
/METHOD=TEST(MEASURE3 TO MEASURE9)(MEASURE3,INCOME)
/METHOD=ENTER GROWTH.

• The VARIABLES=(COLLECT) specification assembles a correlation matrix that includes all
variables named on the DEPENDENT and METHOD subcommands.

• REGRESSION first builds the full equation of all the variables named on the first METHOD
subcommand: SAVINGS regressed on MEASURE3 to MEASURE9 and INCOME. For each
set of test variables (MEASURE3 to MEASURE9, and MEASURE3 and INCOME), the R2

change, F, probability, sums of squares, and degrees of freedom are displayed.

• GROWTH is added to the equation by the second METHOD subcommand. Variables
MEASURE3 to MEASURE9 and INCOME are still in the equation when this subcom-
mand is executed.

STATISTICS Subcommand

STATISTICS controls the display of statistics for the equation and for the independent variables.

• If STATISTICS is omitted or if it is specified without keywords, R, ANOVA, COEFF, and
OUTS are displayed (see below).

• If any statistics are specified on STATISTICS, only those statistics specifically requested
are displayed.

• STATISTICS must be specified before DEPENDENT and METHOD subcommands. The last
specified STATISTICS affects all equations.

Global Statistics

DEFAULTS R, ANOVA, COEFF, and OUTS. These are displayed if STATISTICS is omit-
ted or if it is specified without keywords.

ALL All statistics except F.

1358 REGRESSION

Equation Statistics

R Multiple R. R includes R2, adjusted R2, and standard error of the estimate dis-
played in the Model Summary table.

ANOVA Analysis of variance table. This option includes regression and residual sums
of squares, mean square, F, and probability of F displayed in the ANOVA
table.

CHA Change in R2. This option includes the change in R2 between steps, along
with the corresponding F and its probability, in the Model Summary table.
For each equation, F and its probability are also displayed.

BCOV Variance-covariance matrix for unstandardized regression coefficients. The
statistics are displayed in the Coefficient Correlations table.

XTX Swept correlation matrix.

COLLIN Collinearity diagnostics (Belsley et al., 1980). COLLIN includes the variance-
inflation factors (VIF) displayed in the Coefficients table, and the eigenvalues
of the scaled and uncentered cross-products matrix, condition indexes, and
variance-decomposition proportions displayed in the Collinearity Diagnostics
table.

SELECTION Selection statistics. This option includes Akaike information criterion
(AIK), Ameniya’s prediction criterion (PC), Mallows conditional mean
squared error of prediction criterion (Cp), and Schwarz Bayesian criterion
(SBC) (Judge et al., 1980). The statistics are displayed in the Model Summa-
ry table.

Statistics for the Independent Variables

COEFF Regression coefficients. This option includes regression coefficients (B), standard
errors of the coefficients, standardized regression coefficients (beta), t, and two-
tailed probability of t. The statistics are displayed in the Coefficients table.

OUTS Statistics for variables not yet in the equation that have been named on METHOD
subcommands for the equation. OUTS displays the Excluded Variables table show-
ing beta, t, two-tailed probability of t, and minimum tolerance of the variable if it
were the only variable entered next.

ZPP Zero-order, part, and partial correlation. The statistics are displayed in the Coeffi-
cients table.

CI 95% confidence interval for the unstandardized regression coefficients. The statis-
tics are displayed in the Coefficients table.

SES Approximate standard error of the standardized regression coefficients. (Meyer &
Younger, 1976.) The statistics are displayed in the Coefficients table.

TOL Tolerance. This option displays tolerance for variables in the equation in the Coef-
ficients table. For variables not yet entered into the equation, TOL displays in the

REGRESSION 1359

Excluded Variables table the tolerance each variable would have if it were the only
variable entered next.

F F value for B and its probability. This is displayed instead of the t value in the
Coefficients or Excluded Variables table.

CRITERIA Subcommand

CRITERIA controls the statistical criteria used to build the regression equations. The way in
which these criteria are used depends on the method specified on METHOD. The default
criteria are noted in the description of each CRITERIA keyword below.
• The minimum specification is a criterion keyword and its arguments, if any.

• If CRITERIA is omitted or included without specifications, the default criteria are in effect.

• The CRITERIA subcommand must be specified before DEPENDENT and METHOD sub-
commands. The last specified CRITERIA affects all equations.

Tolerance and Minimum Tolerance Tests

Variables must pass both tolerance and minimum tolerance tests in order to enter and remain
in a regression equation. Tolerance is the proportion of the variance of a variable in the equa-
tion that is not accounted for by other independent variables in the equation. The minimum
tolerance of a variable not in the equation is the smallest tolerance any variable already in the
equation would have if the variable being considered were included in the analysis.

If a variable passes the tolerance criteria, it is eligible for inclusion based on the method
in effect.

Criteria for Variable Selection

• The ENTER, REMOVE, and TEST methods use only the TOLERANCE criterion.

• BACKWARD removes variables according to the probability of F-to-remove (keyword
POUT). Specify FOUT to use F-to-remove instead.

• FORWARD enters variables according to the probability of F-to-enter (keyword PIN).
Specify FIN to use F-to-enter instead.

• STEPWISE uses both PIN and POUT (or FIN and FOUT) as criteria. If the criterion for entry
(PIN or FIN) is less stringent than the criterion for removal (POUT or FOUT), the same vari-
able can cycle in and out until the maximum number of steps is reached. Therefore, if PIN
is larger than POUT or FIN is smaller than FOUT, REGRESSION adjusts POUT or FOUT and
issues a warning.

• The values for these criteria are specified in parentheses. If a value is not specified, the
default values are used.

DEFAULTS PIN(0.05), POUT(0.10), and TOLERANCE(0.0001). These are the de-
faults if CRITERIA is omitted. If criteria have been changed, DEFAULTS
restores these defaults.

1360 REGRESSION

PIN[(value)] Probability of F-to-enter. The default value is 0.05. Either PIN or FIN
can be specified. If more than one is used, the last one specified is in
effect.

FIN[(value)] F-to-enter. The default value is 3.84. Either PIN or FIN can be speci-
fied. If more than one is used, the last one specified is in effect.

POUT[(value)] Probability of F-to-remove. The default value is 0.10. Either POUT or
FOUT can be specified. If more than one is used, the last one specified
is in effect.

FOUT[(value)] F-to-remove. The default value is 2.71. Either POUT or FOUT can be
specified. If more than one is used, the last one specified is in effect.

TOLERANCE[(value)] Tolerance. The default value is 0.0001. If the specified tolerance is
very low, REGRESSION issues a warning.

MAXSTEPS[(n)] Maximum number of steps. The value of MAXSTEPS is the sum of the
maximum number of steps for each method for the equation. The
default values are, for the BACKWARD or FORWARD methods, the
number of variables meeting PIN/POUT or FIN/FOUT criteria, and for
the STEPWISE method, twice the number of independent variables.

Confidence Intervals

CIN[(value)] Reset the value of the percent for confidence intervals. The default is
95%. The specified value sets the percentage interval used in the com-
putation of temporary variable types MCIN and ICIN. (See the list of
temporary variable types on p. 1368.)

Example
REGRESSION VARIABLES=POP15 TO GROWTH, SAVINGS
/CRITERIA=PIN(.1) POUT(.15)
/DEPENDENT=SAVINGS
/METHOD=FORWARD.

• The CRITERIA subcommand relaxes the default criteria for entry and removal for the
FORWARD method. Note that the specified PIN is less than POUT.

ORIGIN and NOORIGIN Subcommands

ORIGIN and NOORIGIN control whether or not the constant is suppressed. By default, the
constant is included in the model (NOORIGIN).

• The specification is either the ORIGIN or NOORIGIN subcommand.
• ORIGIN and NOORIGIN must be specified before the DEPENDENT and METHOD subcom-

mands. The last specified remains in effect for all equations.

• ORIGIN requests regression through the origin. The constant term is suppressed.

• If you specify ORIGIN, statistics requested on the DESCRIPTIVES subcommand are com-
puted as if the mean were 0.

REGRESSION 1361

• ORIGIN and NOORIGIN affect the way the correlation matrix is built. If matrix materials
are used as input to REGRESSION, the keyword that was in effect when the matrix was
written should be in effect when that matrix is read.

Example
REGRESSION VAR=(COL)
/ORIGIN
/DEP=HOMICIDE
/METHOD=ENTER POVPCT.

• The REGRESSION command requests an equation that regresses HOMICIDE on POVPCT
and suppresses the constant (ORIGIN).

REGWGT Subcommand

The only specification on REGWGT is the name of the variable containing the weights to be
used in estimating a weighted least-squares model. With REGWGT the default display is the
usual REGRESSION display.

• REGWGT is a global subcommand.

• If more than one REGWGT subcommand is specified on a REGRESSION procedure, only
the last one is in effect.

• REGWGT can be used with MATRIX OUT but not with MATRIX IN.
• Residuals saved from equations using the REGWGT command are not weighted. To obtain

weighted residuals, multiply the residuals created with SAVE by the square root of the
weighting variable in a COMPUTE statement.

• REGWGT is in effect for all equations and affects the way the correlation matrix is built.
Thus, if REGWGT is specified on a REGRESSION procedure that writes matrix materials
to a matrix data file, subsequent REGRESSION procedures using that file will be automat-
ically weighted.

Example
REGRESSION VARIABLES=GRADE GPA STARTLEV TREATMNT
/DEPENDENT=GRADE
/METHOD=ENTER
/SAVE PRED(P).
COMPUTE WEIGHT=1/(P*(1-P)).
REGRESSION VAR=GRADE GPA STARTLEV TREATMNT
/REGWGT=WEIGHT
/DEP=GRADE
/METHOD=ENTER.

• VARIABLES builds a correlation matrix that includes GRADE, GPA, STARTLEV, and
TREATMNT.

• DEPENDENT identifies GRADE as the dependent variable.

• METHOD regresses GRADE on GPA, STARTLEV, and TREATMNT.

• SAVE saves the predicted values from the regression equation as variable P in the working
data file (see the SAVE subcommand on p. 1374).

1362 REGRESSION

• COMPUTE creates the variable WEIGHT as a transformation of P.

• The second REGRESSION procedure performs a weighted regression analysis on the
same set of variables using WEIGHT as the weighting variable.

Example
REGRESSION VAR=GRADE GPA STARTLEV TREATMNT
/REGWGT=WEIGHT
/DEP=GRADE
/METHOD=ENTER
/SAVE RESID(RGRADE).
COMPUTE WRGRADE=RGRADE * SQRT(WEIGHT).

• This example illustrates the use of COMPUTE with SAVE to weight residuals.

• REGRESSION performs a weighted regression analysis of GRADE on GPA, STARTLEV,
and TREATMNT, using WEIGHT as the weighting variable.

• SAVE saves the residuals as RGRADE (see the SAVE subcommand on p. 1374). These re-
siduals are not weighted.

• COMPUTE creates variable WRGRADE, which contains the weighted residuals.

DESCRIPTIVES Subcommand

DESCRIPTIVES requests the display of correlations and descriptive statistics. By default,
descriptive statistics are not displayed.

• The minimum specification is simply the subcommand keyword DESCRIPTIVES, which
obtains MEAN, STDDEV, and CORR.

• If DESCRIPTIVES is specified with keywords, only those statistics specifically requested
are displayed.

• Descriptive statistics are displayed only once for all variables named or implied on
VARIABLES.

• Descriptive statistics are based on all valid cases for each variable if PAIRWISE or
MEANSUBSTITUTION has been specified on MISSING. Otherwise, only cases with valid
values for all variables named or implied on the VARIABLES subcommand are included
in the calculation of descriptive statistics.

• If regression through the origin has been requested (subcommand ORIGIN), statistics are
computed as if the mean were 0.

NONE No descriptive statistics. This is the default if the subcommand is omitted.

DEFAULTS MEAN, STDDEV, and CORR. This is the same as specifying DESCRIPTIVES
without specifications.

MEAN Display variable means in the Descriptive Statistics table.

STDDEV Display variable standard deviations in the Descriptive Statistics table.

VARIANCE Display variable variances in the Descriptive Statistics table.

CORR Display Pearson correlation coefficients in the Correlations table.

REGRESSION 1363

SIG Display one-tailed probabilities of the correlation coefficients in the Corre-
lations table.

BADCORR Display the correlation coefficients only if some coefficients cannot be
computed.

COV Display covariance in the Correlations table.

XPROD Display sum of squares and cross-product deviations from the mean in the
Correlations table.

N Display numbers of cases used to compute correlation coefficients in the
Correlations table.

ALL All descriptive statistics.

Example
REGRESSION DESCRIPTIVES=DEFAULTS SIG COV
/VARIABLES=AGE,FEMALE,YRS_JOB,STARTPAY,SALARY
/DEPENDENT=SALARY
/METHOD=ENTER STARTPAY
/METHOD=ENTER YRS_JOB.

• The variable means, standard deviations, and number of cases are displayed in the
Descriptive Statistics table and the correlation coefficients, one-tailed probabilities of the
correlation coefficients, and covariance are displayed in the Correlations table.

• Statistics are displayed for all variables named on VARIABLES, even though only variables
SALARY, STARTPAY, and YRS_JOB are used to build the equations.

• STARTPAY is entered into the equation by the first METHOD subcommand. YRS_JOB is
entered by the second METHOD subcommand.

SELECT Subcommand

By default, all cases in the working data file are considered for inclusion on REGRESSION.
Use SELECT to include a subset of cases in the correlation matrix and resulting regression
statistics.

• The required specification on SELECT is a logical expression.

• The syntax for the SELECT subcommand is as follows:

/SELECT=varname relation value

• The variable named on SELECT should not be specified on the VARIABLES subcommand.
• The relation can be EQ, NE, LT, LE, GT, or GE.

• Only cases for which the logical expression on SELECT is true are included in the calcu-
lation of the correlation matrix and regression statistics.

• All other cases, including those with missing values for the variable named on SELECT,
are not included in the computations.

1364 REGRESSION

• If SELECT is specified, residuals and predicted values are calculated and reported sepa-
rately for both selected and unselected cases by default (see the RESIDUALS subcommand
on p. 1370).

• Cases deleted from the working data file with SELECT IF, a temporary SELECT IF, or
SAMPLE are not passed to REGRESSION and are not included among either the selected
or unselected cases.

• You should not use a variable from a temporary transformation as a selection variable,
since REGRESSION reads the data file more than once if any residuals subcommands are
specified. A variable created from a temporary transformation (with IF and COMPUTE
statements) will disappear when the data are read a second time, and a variable that is the
result of a temporary RECODE will change.

Example
REGRESSION SELECT SEX EQ ’M’
/VARIABLES=AGE,STARTPAY,YRS_JOB,SALARY
/DEPENDENT=SALARY
/METHOD=STEP
/RESIDUALS=NORMPROB.

• Only cases with the value M for SEX are included in the correlation matrix calculated by
REGRESSION.

• Separate normal P_P plots are displayed for cases with SEX equal to M and for other
cases (see the RESIDUALS subcommand on p. 1370).

MATRIX Subcommand

MATRIX reads and writes matrix data files. It can read files written by previous REGRESSION
procedures or files written by other procedures such as CORRELATIONS. The matrix mate-
rials REGRESSION writes also include the mean, standard deviation, and number of cases
used to compute each coefficient. This information immediately precedes the correlation
matrix in the matrix file (see “Format of the Matrix Data File” on p. 1365).

• Either IN or OUT and a matrix file in parentheses are required on MATRIX.
• When used, MATRIX must be the first subcommand specified in a REGRESSION procedure.

• ORIGIN and NOORIGIN affect the way the correlation matrix is built. If matrix materials
are used as input to REGRESSION, the keyword that was in effect when the matrix was
written should be in effect when that matrix is read.

OUT (filename) Write a matrix data file. Specify either a filename or an asterisk, enclosed in
parentheses. If you specify a filename, the file is stored on disk and can be
retrieved at any time. If you specify an asterisk (*), the matrix data file re-
places the working file but is not stored on disk unless you use SAVE or
XSAVE.

IN (filename) Read a matrix data file. If the matrix data file is the working data file, specify
an asterisk (*) in parentheses. If the matrix data file is another file, specify
the filename in parentheses. A matrix file read from an external file does not
replace the working data file.

REGRESSION 1365

Format of the Matrix Data File

• The file has two special variables created by the program: ROWTYPE_ and VARNAME_.

• ROWTYPE_ is a short string variable with values MEAN, STDDEV, N, and CORR (for
Pearson correlation coefficient).

• VARNAME_ is a short string variable whose values are the names of the variables used to
form the correlation matrix. When ROWTYPE_ is CORR, VARNAME_ gives the variable
associated with that row of the correlation matrix.

• The remaining variables in the file are the variables used to form the correlation matrix.

• To suppress the constant term when ORIGIN is used in the analysis, value OCORR (rather
than value CORR) is written to the matrix system file. OCORR indicates that the regres-
sion passes through the origin.

Split Files

• When split-file processing is in effect, the first variables in the matrix data file are the split
variables, followed by ROWTYPE_, the independent variable, VARNAME_, and the depen-
dent variables.

• A full set of matrix materials is written for each subgroup defined by the split variable(s).
• A split variable cannot have the same variable name as any other variable written to the

matrix data file.

• If a split file is in effect when a matrix is written, the same split file must be in effect when
that matrix is read.

Missing Values

• With PAIRWISE treatment of missing values, the matrix of N’s used to compute each co-
efficient is included with the matrix materials.

• With LISTWISE treatment (the default) or MEANSUBSTITUTION, a single N used to calcu-
late all coefficients is included.

Example

REGRESSION MATRIX IN(PAY_DATA) OUT(*)
/VARIABLES=AGE,STARTPAY,YRS_JOB,SALARY
/DEPENDENT=SALARY
/METHOD=STEP.

• MATRIX IN reads the matrix data file PAY_DATA.

• A stepwise regression analysis of SALARY is performed using AGE, STARTPAY, and
YRS_JOB.

• MATRIX OUT replaces the working data file with the matrix data file that was previously
stored in the PAY_DATA file.

1366 REGRESSION

MISSING Subcommand

MISSING controls the treatment of cases with missing values. By default, a case that has a
user-missing or system-missing value for any variable named or implied on VARIABLES is
omitted from the computation of the correlation matrix on which all analyses are based.

• The minimum specification is a keyword specifying a missing-value treatment.

LISTWISE Delete cases with missing values listwise. Only cases with valid values
for all variables named on the current VARIABLES subcommand are
used. If INCLUDE is also specified, only cases with system-missing
values are deleted listwise. LISTWISE is the default if the MISSING
subcommand is omitted.

PAIRWISE Delete cases with missing values pairwise. Each correlation coeffi-
cient is computed using cases with complete data for the pair of vari-
ables correlated. If INCLUDE is also specified, only cases with system-
missing values are deleted pairwise.

MEANSUBSTITUTION Replace missing values with the variable mean. All cases are included
and the substitutions are treated as valid observations. If INCLUDE is
also specified, user-missing values are treated as valid and are includ-
ed in the computation of the means.

INCLUDE Includes cases with user-missing values. All user-missing values are
treated as valid values. This keyword can be specified along with the
methods LISTWISE, PAIRWISE, or MEANSUBSTITUTION.

Example
REGRESSION VARIABLES=POP15,POP75,INCOME,GROWTH,SAVINGS
/DEPENDENT=SAVINGS
/METHOD=STEP
/MISSING=MEANSUBSTITUTION.

• System-missing and user-missing values are replaced with the means of the variables
when the correlation matrix is calculated.

References

Belsley, D. A., E. Kuh, and R. E. Welsch. 1980. Regression diagnostics: Identifying influential
data and sources of collinearity. New York: John Wiley and Sons.

Berk, K. N. 1977. Tolerance and condition in regression computation. Journal of the American
Statistical Association, 72: 863–66.

Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lutkepohl, and T. C. Lee. 1980. The theory and prac-
tice of econometrics. 2nd ed. New York: John Wiley and Sons.

Meyer, L. S., and M. S. Younger. 1976. Estimation of standardized coefficients. Journal of the
American Statistical Association, 71: 154–57.

1367

REGRESSION: Residuals

REGRESSION VARIABLES=varlist /DEPENDENT=varname /METHOD=method

 [/RESIDUALS=[DEFAULTS] [DURBIN] [OUTLIERS({ZRESID })] [ID (varname)]
 {tempvars}

 [NORMPROB({ZRESID })] [HISTOGRAM({ZRESID })]
 {tempvars} {tempvars}

 [SIZE({SEPARATE}]
 {POOLED }

 [/CASEWISE=[DEFAULTS] [{OUTLIERS({3 })}] [PLOT({ZRESID })]
 { {value} } {tempvar}
 {ALL }

 [{DEPENDENT PRED RESID}]]
 {tempvars }

 [/SCATTERPLOT [varname,varname]...[

 [/PARTIALPLOT=[{ALL }]
 {varlist}

 [/OUTFILE={COVB (filename)}] [MODEL (filename]
 {CORB (filename)}

 [/SAVE=tempvar[(newname)] [tempvar[(newname)]...] [FITS]]

Temporary residual variables are:

PRED, ADJPRED, SRESID, MAHAL, RESID, ZPRED, SDRESID, COOK, DRESID, ZRESID,
SEPRED, LEVER, DFBETA, SDBETA, DFFIT, SDFFIT, COVRATIO, MCIN, ICIN

SAVE FITS saves:

DFFIT, SDFIT, DFBETA, SDBETA, COVRATIO

Example
REGRESSION VARIABLES=SAVINGS INCOME POP15 POP75

/WIDTH=132
/DEPENDENT=SAVINGS
/METHOD=ENTER
/RESIDUALS
/CASEWISE
/SCATTERPLOT (*ZRESID *ZPRED)
/PARTIALPLOT
/SAVE ZRESID(STDRES) ZPRED(STDPRED).

Overview

REGRESSION creates temporary variables containing predicted values, residuals, measures of
fit and influence, and several statistics based on these measures. These temporary variables
can be analyzed within REGRESSION in Casewise Diagnostics tables (CASEWISE subcom-
mand), scatterplots (SCATTERPLOT subcommand), histograms and normal probability plots

1368 REGRESSION: Residuals

(RESIDUALS subcommand), and partial regression plots (PARTIALPLOT subcommand). Any of
the residuals subcommands can be specified to obtain descriptive statistics for the predicted
values, residuals, and their standardized versions. Any of the temporary variables can be added
to the working data file with the SAVE subcommand.

Basic Specification

All residuals analysis subcommands are optional. Most have defaults that can be requested by
including the subcommand without any further specifications. These defaults are described in
the discussion of each subcommand below.

Subcommand Order

• The residuals subcommands RESIDUALS, CASEWISE, SCATTERPLOT, and PARTIALPLOT
follow the last METHOD subcommand of any equation for which residuals analysis is re-
quested. Statistics are based on this final equation.

• Residuals subcommands can be specified in any order. All residuals subcommands must
follow the DEPENDENT and METHOD subcommands.

Operations

• Residuals subcommands affect all equations.
• The temporary variables PRED (unstandardized predicted value), ZPRED (standardized

predicted value), RESID (unstandardized residual), and ZRESID (standardized residual)
are calculated and descriptive statistics are displayed whenever any residuals subcom-
mand is specified. If any of the other temporary variables are referred to on the command,
they are also calculated.

• Predicted values and statistics based on predicted values are calculated for every obser-
vation that has valid values for all variables in the equation. Residuals and statistics
based on residuals are calculated for all observations that have a valid predicted value
and a valid value for the dependent variable. The missing-values option therefore affects
the calculation of residuals and predicted values.

• No residuals or predictors are generated for cases deleted from the working data file with
SELECT IF, a temporary SELECT IF, or SAMPLE.

• All variables are standardized before plotting. If the unstandardized version of a variable
is requested, the standardized version is plotted.

• Residuals processing is not available when the working data file is a matrix file or is re-
placed by a matrix file with MATRIX OUT(*) on REGRESSION. If RESIDUALS, CASEWISE,
SCATTERPLOT, PARTIALPLOT, or SAVE are used when MATRIX IN(*) or MATRIX OUT(*) is
specified, the REGRESSION command is not executed.

For each analysis, REGRESSION can calculate the following types of temporary variables:

PRED Unstandardized predicted values.

RESID Unstandardized residuals.

REGRESSION: Residuals 1369

DRESID Deleted residuals.

ADJPRED Adjusted predicted values.

ZPRED Standardized predicted values.

ZRESID Standardized residuals.

SRESID Studentized residuals.

SDRESID Studentized deleted residuals. (See Hoaglin & Welsch, 1978.)

SEPRED Standard errors of the predicted values.

MAHAL Mahalanobis distances.

COOK Cook’s distances. (See Cook, 1977.)

LEVER Centered leverage values. (See Velleman & Welsch, 1981.)

DFBETA Change in the regression coefficient that results from the deletion of the ith
case. A DFBETA value is computed for each case for each regression coeffi-
cient generated by a model. (See Belsley et al., 1980.)

SDBETA Standardized DFBETA. An SDBETA value is computed for each case for
each regression coefficient generated by a model. (See Belsley et al., 1980.)

DFFIT Change in the predicted value when the ith case is deleted. (See Belsley et
al., 1980.)

SDFIT Standardized DFFIT. (See Belsley et al., 1980.)

COVRATIO Ratio of the determinant of the covariance matrix with the ith case deleted to
the determinant of the covariance matrix with all cases included. (See
Belsley et al., 1980.)

MCIN Lower and upper bounds for the prediction interval of the mean predicted re-
sponse. A lowerbound LMCIN and an upperbound UMCIN are generated. The
default confidence interval is 95%. The confidence interval can be reset with
the CIN subcommand. (See Dillon & Goldstein, 1984.)

ICIN Lower and upper bounds for the prediction interval for a single observation.
A lowerbound LICIN and an upperbound UICIN are generated. The default
confidence interval is 95%. The confidence interval can be reset with the CIN
subcommand. (See Dillon & Goldstein, 1984.)

Example

REGRESSION VARIABLES=SAVINGS INCOME POP15 POP75
/DEPENDENT=SAVINGS
/METHOD=ENTER
/RESIDUALS
/CASEWISE
/SCATTERPLOT (*ZRESID *ZPRED)
/PARTIALPLOT
/SAVE ZRESID(STDRES) ZPRED(STDPRED).

1370 REGRESSION: Residuals

• REGRESSION requests a single equation in which SAVINGS is the dependent variable and
INCOME, POP15, and POP75 are independent variables.

• RESIDUALS requests the default residuals output.

• Because residuals processing has been requested, statistics for predicted values, residuals,
and standardized versions of predicted values and residuals are displayed in a Residuals
Statistics table.

• CASEWISE requests a Casewise Diagnostics table for cases whose absolute value of
ZRESID is greater than 3. Values of the dependent variable, predicted value, and residual
are listed for each case.

• SCATTERPLOT requests a plot of the standardized predicted value and the standardized
residual.

• PARTIALPLOT requests partial regression plots for all independent variables.

• SAVE adds the standardized residual and the standardized predicted value to the working
data file as new variables named STDRES and STDPRED.

RESIDUALS Subcommand

RESIDUALS controls the display and labeling of summary information on outliers as well as
the display of the Durbin-Watson statistic and histograms and normal probability plots for the
temporary variables.
• If RESIDUALS is specified without keywords, it displays a histogram of residuals, a normal

probability plot of residuals, the values of $CASENUM and ZRESID for the 10 cases with
the largest absolute value of ZRESID, and the Durbin-Watson test statistic. The histogram
and the normal plot are standardized.

• If any keywords are specified on RESIDUALS, only the requested information and plots
are displayed.

DEFAULTS DURBIN, NORMPROB(ZRESID), HISTOGRAM(ZRESID), OUTLI-
ERS(ZRESID). These are the defaults if RESIDUALS is used without
specifications.

HISTOGRAM(tempvars) Histogram of the temporary variable or variables. The default is
ZRESID. You can request histograms for PRED, RESID, ZPRED,
DRESID, ADJPRED, SRESID, SDRESID, SEPRED, MAHAL, COOK, and
LEVER. The specification of any other temporary variable will result
in an error.

NORMPROB(tempvars) Normal probability (P-P) plot. The default is ZRESID. The other tem-
porary variables for which normal probability plots are available are
PRED, RESID, ZPRED, DRESID, SRESID, and SDRESID. The specifi-
cation of any other temporary variable will result in an error. Normal
probability plots are always displayed in standardized form; therefore,
when PRED, RESID, or DRESID is requested, the standardized equiva-
lent ZPRED, ZRESID or SDRESID is displayed.

OUTLIERS(tempvars) The 10 cases with the largest absolute values of the specified tempo-
rary variables. The default is ZRESID. The output includes the values

REGRESSION: Residuals 1371

of $CASENUM and of the temporary variables for the 10 cases. The
other temporary variables available for OUTLIERS are RESID, SRESID,
SDRESID, DRESID, MAHAL, and COOK. The specification of any tem-
porary variable other than these will result in an error.

DURBIN Display Durbin-Watson test statistic in the Model Summary table.

ID(varname) ID variable providing case labels for use with point selection mode in
the Chart Editor. Applicable to scatterplots produced by SCATTERPLOT,
PARTIALPLOT, and RESIDUALS. Any variable in the working data file can
be named.

SEPARATE Separate reporting of residuals statistics and plots for selected and
unselected cases. This is the default.

POOLED Pooled plots and statistics using all cases in the working file when
the SELECT subcommand is in effect. (See the SELECT subcom-
mand on p. 1363.) This is an alternative to SEPARATE.

Example
 /RESID=DEFAULT ID(SVAR)

• DEFAULT produces the default residuals statistics: Durbin-Watson statistic, a normal
probability plot and histogram of ZRESID, and an outlier listing for ZRESID.

• Descriptive statistics for ZRESID, RESID, PRED, and ZPRED are automatically displayed.

• SVAR is specified as the case identifier on the outlier output.

CASEWISE Subcommand

CASEWISE requests a Casewise Diagnostics table of residuals. You can specify a temporary
residual variable for casewise listing (via the PLOT keyword). You can also specify variables
to be listed in the table for each case.
• If CASEWISE is used without any additional specifications, it displays a Casewise Diag-

nostics table of ZRESID for cases whose absolute value of ZRESID is at least 3. By default,
the values of the case sequence number, DEPENDENT, PRED, and RESID are listed for
each case.

• Defaults remain in effect unless specifically altered.

DEFAULTS OUTLIERS(3), PLOT(ZRESID), DEPENDENT, PRED, and RESID. These
are the defaults if the subcommand is used without specifications.

OUTLIERS(value) List only cases for which the absolute standardized value of the listed vari-
able is at least as large as the specified value. The default value is 3. Key-
word OUTLIERS is ignored if keyword ALL is also present.

ALL Include all cases in the Casewise Diagnostic table. ALL is the alternative to
keyword OUTLIERS.

PLOT(tempvar) List the values of the temporary variable in the Casewise Diagnostics table.
The default temporary variable is ZRESID. Other variables that can be listed

1372 REGRESSION: Residuals

are RESID, DRESID, SRESID, and SDRESID. The specification of any tempo-
rary variable other than these will result in an error. When requested, RESID
is standardized and DRESID is Studentized in the output.

tempvars Display the values of these variables next to the casewise list entry for each
case. The default variables are DEPENDENT (the dependent variable), PRED,
and RESID. Any of the other temporary variables can be specified. If an ID
variable is specified on RESIDUALS, the ID variable is also listed.

Example
 /CASEWISE=DEFAULT ALL SRE MAH COOK SDR

• This example requests a Casewise Diagnostics table of the standardized residuals for all
cases.

• ZRESID, the dependent variable, and the temporary variables PRED, RESID, SRESID,
MAHAL, COOK, and SDRESID are for all cases.

SCATTERPLOT Subcommand

SCATTERPLOT names pairs of variables for scatterplots.

• The minimum specification for SCATTERPLOT is a pair of variables in parentheses. There
are no default specifications.

• You can specify as many pairs of variables in parentheses as you want.

• The first variable named in each set of parentheses is plotted along the vertical axis, and
the second variable is plotted along the horizontal axis.

• Plotting symbols are used to represent multiple points occurring at the same position.

• You can specify any variable named on the VARIABLES subcommand.
• You can specify PRED, RESID, ZPRED, ZRESID, DRESID, ADJPRED, SRESID, SDRESID,

SEPRED, MAHAL, COOK, and LEVER. The specification of any other temporary variables
will result in an error.

• Specify an asterisk before temporary variable names to distinguish them from user-
defined variables. For example, use *PRED to specify PRED.

Example
/SCATTERPLOT (*RES,*PRE)(*RES,SAVINGS)

• This example specifies two scatterplots: residuals against predicted values and residuals
against the values of the variable SAVINGS.

PARTIALPLOT Subcommand

PARTIALPLOT requests partial regression plots. Partial regression plots are scatterplots of the
residuals of the dependent variable and an independent variable when both of these variables
are regressed on the rest of the independent variables.

REGRESSION: Residuals 1373

• If PARTIALPLOT is included without any additional specifications, it produces a partial
regression plot for every independent variable in the equation. The plots appear in the
order the variables are specified or implied on the VARIABLES subcommand.

• If variables are specified on PARTIALPLOT, only the requested plots are displayed. The
plots appear in the order the variables are listed on the PARTIALPLOT subcommand.

• At least two independent variables must be in the equation for partial regression plots to
be produced.

ALL Plot all independent variables in the equation. This is the default.

varlist Plot the specified variables. Any variable entered into the equation can be
specified.

Example
REGRESSION VARS=PLOT15 TO SAVINGS

/DEP=SAVINGS
/METH=ENTER
/RESID=DEFAULTS
/PARTIAL.

• A partial regression plot is produced for every independent variable in the equation.

OUTFILE Subcommand

OUTFILE saves in an SPSS-format data file the parameter covariance or correlation matrix with
parameter estimates, standard errors, significance values, and residual degrees of freedom for
each term in the final equation. It also saves model information in XML format.

• The OUTFILE subcommand must follow the last METHOD subcommand.

• Only one OUTFILE subcommand is allowed. If you specify more than one, only the last
one is executed.

• You must specify at least one keyword and a valid filename in parentheses. There is no
default.

• You cannot save the parameter statistics as the working data file.

• COVB and CORB are mutually exclusive.

• MODEL cannot be used if split file processing is on (SPLIT FILE command) or if more than
one dependent (DEPENDENT subcommand)variable is specified.

COVB (filename) Write the parameter covariance matrix with other statistics. Specify
the filename in full. REGRESSION does not supply an extension.

CORB (filename) Write the parameter correlation matrix with other statistics. Specify
the filename in full. REGRESSION does not supply an extension.

MODEL (filename) Write model information to an XML file. Specify the filename in full.
REGRESSION does not supply an extension. SmartScore and future re-
leases of WhatIf? will be able to use this file.

1374 REGRESSION: Residuals

Example
REGRESSION DEPENDENT=Y
/METHOD=ENTER X1 X2
/OUTFILE CORB (covx1x2y.sav).

• The OUTFILE subcommand saves the parameter correlation matrix, and the parameter
estimates, standard errors, significance values and residual degrees of freedom for the
constant term, X1 and X2.

SAVE Subcommand

Use SAVE to add one or more residual or fit variables to the working data file.

• The specification on SAVE is one or more of the temporary variable types listed on
pp. 1368–1369, each followed by an optional name in parentheses for the new variable.

• New variable names must be unique.

• If new names are not specified, REGRESSION generates a rootname using a shortened
form of the temporary variable name with a suffix to identify its creation sequence.

• If you specify DFBETA or SDBETA on the SAVE subcommand, the number of new vari-
ables saved is the total number of variables in the equation.

FITS Save all influence statistics. FITS saves DFFIT, SDFIT, DFBETA, SDBETA, and
COVRATIO. You cannot specify new variable names when using this keyword.
Default names are generated.

Example
 /SAVE=PRED(PREDVAL) RESID(RESIDUAL) COOK(CDISTANC)

• This subcommand adds three variables to the end of the working data file: PREDVAL,
containing the unstandardized predicted value for each case; RESIDUAL, containing the
unstandardized residual; and CDISTANC, containing Cook’s distance.

Example
 /SAVE=PRED RESID

• This subcommand adds two variables named PRE_1 and RES_1 to the end of the working
data file.

Example
REGRESSION DEPENDENT=Y
/METHOD=ENTER X1 X2
/SAVE DFBETA(DFBVAR).

• The SAVE subcommand creates and saves three new variables with the names DFBVAR0,
DFBVAR1, and DFBVAR2.

REGRESSION: Residuals 1375

Example
REGRESSION VARIABLES=SAVINGS INCOME POP15 POP75 GROWTH
/DEPENDENT=SAVINGS
/METHOD=ENTER INCOME POP15 POP75
/SAVE=PRED(PREDV) SDBETA(BETA) ICIN.

• The SAVE subcommand adds seven variables to the end of the file: PREDV, containing the
unstandardized predicted value for the case; BETA0, the standardized DFBETA for the
intercept; BETA1, BETA2, and BETA3, the standardized DFBETA’s for the three indepen-
dent variables in the model; LICI_1, the lower bound for the prediction interval for an
individual case; and UICI_1, the upper bound for the prediction interval for an individual
case.

References

Belsley, D. A., E. Kuh, and R. E. Welsch. 1980. Regression diagnostics: Identifying influential
data and sources of collinearity. New York: John Wiley and Sons.

Cook, R. D. 1977. Detection of influential observations in linear regression. Technometrics, 19:
15–18.

Dillon, W. R., and M. Goldstein. 1984. Multivariate analysis: Methods and applications. New
York: John Wiley and Sons.

Hoaglin, D. C., and R. E. Welsch. 1978. The hat matrix in regression and ANOVA. American
Statistician, 32: 17–22.

Velleman, P. F., and R. E. Welsch. 1981. Efficient computing of regression diagnostics. American
Statistician, 35: 234–42.

1376

RELIABILITY

RELIABILITY VARIABLES={varlist}
 {ALL }

 [/SCALE(scalename)=varlist]

 [/MODEL={ALPHA }]
 {SPLIT[(n)] }
 {GUTTMAN }
 {PARALLEL }
 {STRICTPARALLEL}

 [/STATISTICS=[DESCRIPTIVE] [SCALE] [{ANOVA }] [ALL]]
 [COVARIANCES] [TUKEY] {ANOVA FRIEDMAN}
 [CORRELATIONS] [HOTELLING] {ANOVA COCHRAN }

 [/SUMMARY=[MEANS] [VARIANCE] [COV] [CORR] [TOTAL] [ALL]]

 [/ICC=[{MODEL(ONEWAY) }]
 {[MODEL({MIXED**})] [TYPE({CONSISTENCY**})]}
 {RANDOM } {ABSOLUTE }
 [CIN={95**}] [TESTVAL={0**}]]
 {n } {p }

 [/METHOD=COVARIANCE]

 [/MISSING={EXCLUDE**}]
 {INCLUDE }

 [/MATRIX =[IN({* })] [OUT({* })] [NOPRINT]]
 {file} {file}

**Default if the subcommand or keyword is omitted.

Example
RELIABILITY VARIABLES=SCORE1 TO SCORE10

/SCALE (OVERALL) = ALL
/MODEL = ALPHA
/SUMMARY = MEANS TOTAL.

Overview

RELIABILITY estimates reliability statistics for the components of multiple-item additive
scales. It uses any one of five models for reliability analysis and offers a variety of statistical
displays. RELIABILITY can also be used to perform a repeated measures analysis of variance,
a two-way factorial analysis of variance with one observation per cell, Tukey’s test for addi-
tivity, Hotelling’s T-square test for equality of means in repeated measures designs, and
Friedman’s two-way analysis of variance on ranks. For more complex repeated measures
designs, use the GLM procedure (available in the SPSS Advanced Models option).

RELIABILITY 1377

Options

Model Type. You can specify any one of five models on the MODEL subcommand.

Statistical Display. Statistics available on the STATISTICS subcommand include descriptive
statistics, correlation and covariance matrices, a repeated measures analysis of variance table,
Hotelling’s T-square, Tukey’s test for additivity, Friedman’s chi-square for the analysis of
ranked data, and Cochran’s Q.

Computational Method. You can force RELIABILITY to use the covariance method, even when
you are not requesting any output that requires it, by using the METHOD subcommand.

Matrix Input and Output. You can read data in the form of correlation matrices and you can
write correlation-type matrix materials to a data file using the MATRIX subcommand.

Basic Specification

The basic specification is VARIABLES and a variable list. By default, RELIABILITY displays
the number of cases, number of items, and Cronbach’s alpha. Whenever possible, it uses an
algorithm that does not require the calculation of the covariance matrix.

Subcommand Order

• VARIABLES must be specified first.

• The remaining subcommands can be named in any order.

Operations

• STATISTICS and SUMMARY are cumulative. If you enter them more than once, all requested
statistics are produced for each scale.

• If you request output that is not available for your model or for your data, RELIABILITY
ignores the request.

• RELIABILITY uses an economical algorithm whenever possible but calculates a covariance
matrix when necessary (see the METHOD subcommand on p. 1381).

Limitations

• Maximum 1 VARIABLES subcommand.

• Maximum 1 SCALE subcommand.

• Maximum 500 variables on the VARIABLES subcommand.

• Maximum 500 variables on the SCALE subcommand.

Example

RELIABILITY VARIABLES=SCORE1 TO SCORE10.

1378 RELIABILITY

• This example analyzes a scale (labeled ALL in the display output) that includes all 10
items.

• Because there is no SUMMARY subcommand, no summary statistics are displayed.

VARIABLES Subcommand

VARIABLES specifies the variables to be used in the analysis. Only numeric variables can be
used.
• VARIABLES is required and must be specified first.

• You can use keyword ALL to refer to all user-defined variables in the working data file.

SCALE Subcommand

SCALE defines a scale for analysis, providing a label for the scale and specifying its compo-
nent variables. If SCALE is omitted, all variables named on VARIABLES are used, and the label
for the scale is ALL.

• The label is specified in parentheses after SCALE. It can have a maximum of eight char-
acters and can use only the letters A to Z and the numerals 0 to 9.

• RELIABILITY does not add any new variables to the working data file. The label is used
only to identify the output. If the analysis is satisfactory, use COMPUTE to create a new
variable containing the sum of the component items.

• Variables named on SCALE must have been named on the VARIABLES subcommand. Use
the keyword ALL to refer to all variables named on the VARIABLES subcommand.

Example
RELIABILITY VARIABLES = ITEM1 TO ITEM20

/SCALE (A) = ITEM1 TO ITEM10.

RELIABILITY VARIABLES = ITEM1 TO ITEM20
/SCALE (B) = ITEM1 TO ITEM20.

• Analyses for scales A and B both only use cases that have complete data for items 1
through 20.

MODEL Subcommand

MODEL specifies the type of reliability analysis for the scale named on the SCALE subcom-
mand.

ALPHA Cronbach’s α. Standardized item α is displayed. This is the default.

SPLIT [(n)] Split-half coefficients. You can specify a number in parentheses to
indicate how many items should be in the second half. For example,
MODEL SPLIT (6) uses the last six variables for the second half and all
others for the first. By default, each half has an equal number of items,
with the odd item, if any, going to the first half.

RELIABILITY 1379

GUTTMAN Guttman’s lower bounds for true reliability.

PARALLEL Maximum-likelihood reliability estimate under parallel assumptions.
This model assumes that items have the same variance but not neces-
sarily the same mean.

STRICTPARALLEL Maximum-likelihood reliability estimate under strictly parallel
assumptions. This model assumes that items have the same means, the
same true score variances over a set of objects being measured, and the
same error variance over replications.

STATISTICS Subcommand

STATISTICS displays optional statistics. There are no default statistics.

• STATISTICS is cumulative. If you enter it more than once, all requested statistics are
produced for each scale.

DESCRIPTIVES Item means and standard deviations.

COVARIANCES Inter-item variance-covariance matrix.

CORRELATIONS Inter-item correlation matrix.

SCALE Scale means and scale variances.

TUKEY Tukey’s test for additivity. This helps determine whether a transforma-
tion of the items is needed to reduce nonadditivity. The test displays
an estimate of the power to which the items should be raised in order
to be additive.

HOTELLING Hotelling’s T-square. This is a test for equality of means among the
items.

ANOVA Repeated measures analysis of variance table.

FRIEDMAN Friedman’s chi-square and Kendall’s coefficient of concordance.
These apply to ranked data. You must request ANOVA in addition to
FRIEDMAN; Friedman’s chi-square appears in place of the usual F test.
If the ANOVA keyword is not specified, the FRIEDMAN keyword is
silently ignored.

COCHRAN Cochran’s Q. This applies when all items are dichotomies. You must
request ANOVA in addition to COCHRAN; the Q statistic appears in
place of the usual F test. If the ANOVA keyword is not specified, the
COCHRAN keyword is silently ignored.

ALL All applicable statistics.

1380 RELIABILITY

ICC Subcommand

ICC displays intraclass correlation coefficients for single measure and average measure.
Single measure applies to single measurements, for example, the rating of judges, individual
item scores, or the body weights of individuals. Average measure, however, applies to
average measurements, for example, the average rating of k judges, or the average score for
a k-item test.

MODEL Model.You can specify the model for the computation of ICC. There
are three keywords for this option. ONEWAY is the one-way random
effects model (people effects are random). RANDOM is the two-way
random effect model (people effects and the item effects are random).
MIXED is the two-way mixed (people effects are random and the item
effects are fixed). MIXED is the default. Only one model can be speci-
fied.

TYPE Type of definition. When the model is RANDOM or MIXED, one of the
two TYPE keywords may be given. CONSISTENCY is the consistency
definition and ABSOLUTE is the absolute agreement definition. For the
consistency coefficient, the between measures variance is excluded
from the denominator variance, and for absolute agreement, it is not.

CIN The value of the percent for confidence interval and significance level
of the hypothesis testing.

TESTVAL The value with which an estimate of ICC is compared. The value
should be between 0 and 1.

SUMMARY Subcommand

SUMMARY displays summary statistics for each individual item in the scale.

• SUMMARY is cumulative. If you enter it more than once, all requested statistics are
produced for the scale.

• You can specify one or more of the following:

MEANS Statistics on item means. The average, minimum, maximum, range,
ratio of maximum to minimum, and variance of the item means.

VARIANCE Statistics on item variances. This displays the same statistics as for
MEANS.

COVARIANCES Statistics on item covariances. This displays the same statistics as for
MEANS.

CORRELATIONS Statistics on item correlations. This displays the same statistics as for
MEANS.

TOTAL Statistics comparing each individual item to the scale composed of the
other items. The output includes the scale mean, variance, and Cron-
bach’s α without the item, and the correlation between the item and
the scale without it.

RELIABILITY 1381

ALL All applicable summary statistics.

METHOD Subcommand

By default, RELIABILITY uses a computational method that does not require the calculation
of a covariance matrix wherever possible. METHOD forces RELIABILITY to calculate the cova-
riance matrix. Only a single specification applies to METHOD:

COVARIANCE Calculate and use the covariance matrix, even if it is not needed.

If METHOD is not specified, RELIABILITY computes the covariance matrix for all variables on
each VARIABLES subcommand only if any of the following is true:
• You specify a model other than ALPHA or SPLIT.

• You request COV, CORR, FRIEDMAN, or HOTELLING on the STATISTICS subcommand.

• You request anything other than TOTAL on the SUMMARY subcommand.

• You write the matrix to a matrix data file, using the MATRIX subcommand.

MISSING Subcommand

MISSING controls the deletion of cases with user-missing data.

• RELIABILITY deletes cases from analysis if they have a missing value for any variable
named on the VARIABLES subcommand. By default, both system-missing and user-
missing values are excluded.

EXCLUDE Exclude user-missing and system-missing values. This is the default.

INCLUDE Treat user-missing values as valid. Only system-missing values are excluded.

MATRIX Subcommand

MATRIX reads and writes SPSS matrix data files.

• Either IN or OUT and the matrix file in parentheses are required. When both IN and OUT
are used on the same RELIABILITY procedure, they can be specified on separate MATRIX
subcommands or on the same subcommand.

• If both IN and OUT are used on the same RELIABILITY command and there are grouping
variables in the matrix input file, these variables are treated as if they were split variables.
Values of the grouping variables in the input matrix are passed on to the output matrix (see
“Split Files” on p. 1382).

OUT (filename) Write a matrix data file. Specify either a filename or an asterisk (*), enclosed
in parentheses. If you specify a filename, the file is stored on disk and can be
retrieved at any time. If you specify an asterisk, the matrix file replaces the
working data file but is not stored on disk unless you use SAVE or XSAVE.

IN (filename) Read a matrix data file. If the matrix data file is the working data file, specify
an asterisk (*) in parentheses. If it is another file, specify the filename in

1382 RELIABILITY

parentheses. A matrix file read from an external file does not replace the
working data file.

Matrix Output

• RELIABILITY writes correlation-type matrices that include the number of cases, means, and
standard deviations with the matrix materials (see “Format of the Matrix Data File” below
for a description of the file). These matrix materials can be used as input to RELIABILITY
or other procedures.

• Any documents contained in the working data file are not transferred to the matrix file.

• RELIABILITY displays the scale analysis when it writes matrix materials. To suppress the
display of scale analysis, specify keyword NOPRINT on MATRIX.

Matrix Input

• RELIABILITY can read a matrix data file created by a previous RELIABILITY command or
by another SPSS procedure. The matrix input file must have records of type N, MEAN,
STDDEV, and CORR for each split-file group. For more information, see the Universals
section.

• SPSS reads variable names, variable and value labels, and print and write formats from
the dictionary of the matrix data file.

• MATRIX=IN cannot be used unless a working data file has already been defined. To read
an existing matrix data file at the beginning of a session, use GET to retrieve the matrix
file and then specify IN(*) on MATRIX.

Format of the Matrix Data File

• The matrix data file includes two special variables created by SPSS: ROWTYPE_ and
VARNAME_. Variable ROWTYPE_ is a short string variable having values N, MEAN,
STDDEV, and CORR. Variable VARNAME_ is a short string variable whose values are
the names of the variables used to form the correlation matrix.

• When ROWTYPE_ is CORR, VARNAME_ gives the variable associated with that row of
the correlation matrix.

• The remaining variables in the matrix file are the variables used to form the correlation
matrix.

Split Files

• When split-file processing is in effect, the first variables in the matrix data file will be the
split variables, followed by ROWTYPE_, VARNAME_, and the dependent variable(s).

• If grouping variables are in the matrix input file, their values are between ROWTYPE_ and
VARNAME_. The grouping variables are treated like split-file variables.

• A full set of matrix materials is written for each split-file group defined by the split variables.

RELIABILITY 1383

• A split variable cannot have the same variable name as any other variable written to the
matrix data file.

• If split-file processing is in effect when a matrix is written, the same split file must be in
effect when that matrix is read by any procedure.

Missing Values

Missing-value treatment affects the values written to a matrix data file. When reading a matrix
data file, be sure to specify a missing-value treatment on RELIABILITY that is compatible with
the treatment that was in effect when the matrix materials were generated.

Example

DATA LIST / TIME1 TO TIME5 1-10.
BEGIN DATA
0 0 0 0 0
0 0 1 1 0
0 0 1 1 1
0 1 1 1 1
0 0 0 0 1
0 1 0 1 1
0 0 1 1 1
1 0 0 1 1
1 1 1 1 1
1 1 1 1 1
END DATA.
RELIABILITY VARIABLES=TIME1 TO TIME5

/MATRIX=OUT(RELMTX).
LIST.

• RELIABILITY reads data from the working data file and writes one set of matrix materials
to file RELMTX.

• The working data file is still the file defined by DATA LIST. Subsequent commands are
executed in this file.

1384 RELIABILITY

Example

DATA LIST / TIME1 TO TIME5 1-10.
BEGIN DATA
0 0 0 0 0
0 0 1 1 0
0 0 1 1 1
0 1 1 1 1
0 0 0 0 1
0 1 0 1 1
0 0 1 1 1
1 0 0 1 1
1 1 1 1 1
1 1 1 1 1
END DATA.
RELIABILITY VARIABLES=TIME1 TO TIME5

/MATRIX=OUT(*) NOPRINT.
LIST.

• RELIABILITY writes the same matrix as in the previous example. However, the matrix data
file replaces the working data file. The LIST command is executed in the matrix file, not
in the file defined by DATA LIST.

• Because NOPRINT is specified on MATRIX, scale analyses are not displayed.

Example

GET FILE=RELMTX.
RELIABILITY VARIABLES=ALL

/MATRIX=IN(*).

• This example assumes that you are starting a new session and want to read an existing
matrix data file. GET retrieves the matrix data file RELMTX.

• MATRIX=IN specifies an asterisk because the matrix data file is the working data file. If
MATRIX=IN(RELMTX) is specified, SPSS issues an error message.

• If the GET command is omitted, SPSS issues an error message.

Example

GET FILE=PRSNNL.
FREQUENCIES VARIABLE=AGE.

RELIABILITY VARIABLES=ALL
/MATRIX=IN(RELMTX).

• This example performs a frequencies analysis on file PRSNNL and then uses a different file
containing matrix data for RELIABILITY. The file is an existing matrix data file. In order for
this to work, the analysis variables named in RELMTX must also exist in PRSNNL.

• RELMTX must have records of type N, MEAN, STDDEV, and CORR for each split-file
group.

• RELMTX does not replace PRSNNL as the working data file.

RELIABILITY 1385

Example

GET FILE=PRSNNL.
CORRELATIONS VARIABLES=V1 TO V5

/MATRIX=OUT(*).
RELIABILITY VARIABLES=V1 TO V5

/MATRIX=IN(*).

• RELIABILITY uses matrix input from procedure CORRELATIONS. An asterisk is used to
specify the working data file for both the matrix output from CORRELATIONS and the
matrix input for RELIABILITY.

1386

RENAME VARIABLES

RENAME VARIABLES {(varname=varname) [(varname ...)]}
 {(varnames=varnames) }

Example
RENAME VARIABLES (JOBCAT=TITLE).

Overview

RENAME VARIABLES changes the names of variables in the working data file while pre-
serving their original order, values, variable labels, value labels, missing values, and print
and write formats.

Basic Specification

• The basic specification is an old variable name, an equals sign, and the new variable
name. The equals sign is required.

Syntax Rules

• Multiple sets of variable specifications are allowed. Each set can be enclosed in parentheses.

• You can specify a list of old variable names followed by an equals sign and a list of new
variable names. The same number of variables must be specified on both lists. A single
set of parentheses enclosing the entire specification is required for this method.

• Keyword TO can be used on the left side of the equals sign to refer to variables in the
working data file, and on the right side of the equals sign to generate new variable names
(see the TO keyword on p. 23).

• Old variable names do not need to be specified according to their order in the working
data file.

• Name changes take place in one operation. Therefore, variable names can be exchanged
between two variables (see the example on p. 1387).

• Multiple RENAME VARIABLES commands are allowed.
• RENAME VARIABLES cannot follow either a TEMPORARY or a MODEL PROGRAM

command.

RENAME VARIABLES 1387

Example

RENAME VARIABLES (MOHIRED=MOSTART) (YRHIRED=YRSTART).

• MOHIRED is renamed to MOSTART and YRHIRED to YRSTART. The parentheses are optional.

Example

RENAME VARIABLES (MOHIRED YRHIRED=MOSTART YRSTART).

• The same name changes are specified as in the previous example. The parentheses are
required, since variable lists are used.

Example

RENAME VARIABLES (A=B) (B=A).

• Variable names are exchanged between two variables: A is renamed to B, and B is renamed
to A.

Mixed Case Variable Names

You can use the RENAME VARIABLES command to change the case of any characters in a
variable name.

Example
RENAME VARIABLES (newvariable = NewVariable).

• For the existing variable name specification, case is ignored. Any combination of upper
and lower case will work.

• For the new variable name, case will be preserved as entered for display purposes.

1388

REPEATING DATA

REPEATING DATA [FILE=file]

 /STARTS=beg col[-end col] /OCCURS={value }
 {varname}

 [/LENGTH={value }] [/CONTINUED[=beg col[-end col]]]
 {varname}

 [/ID={col loc}=varname] [/{TABLE }]
 {format } {NOTABLE}

 /DATA=variable specifications

Example
INPUT PROGRAM.
DATA LIST / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=NUMVEH
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.

END INPUT PROGRAM.

BEGIN DATA
1001 02 02 FORD T8PONTIAC C6
1002 04 01 CHEVY C4
1003 02 03 CADILAC C8FORD T6VW C4
END DATA.
LIST.

Overview

REPEATING DATA reads input cases whose records contain repeating groups of data. For
each repeating group, REPEATING DATA builds one output case in the working data file. All
of the repeating groups in the data must contain the same type of information, although the
number of groups for each input case may vary. Information common to the repeating
groups for each input case can be recorded once for that case and then spread to each
resulting output case. In this respect, a file with a repeating data structure is like a hierar-
chical file with both levels of information recorded on a single record rather than on sepa-
rate record types. For information on reading hierarchical files, see FILE TYPE—END FILE
TYPE.

 REPEATING DATA must be used within an INPUT PROGRAM structure or within a FILE
TYPE structure with mixed or nested data. In an INPUT PROGRAM structure, REPEATING
DATA must be preceded by a DATA LIST command. In a FILE TYPE structure, DATA LIST is
needed only if there are variables to be spread to each resulting output case.

REPEATING DATA 1389

Options

Length of Repeating Groups. If the length of the repeating groups varies across input cases, you
can specify a variable that indicates the length on the LENGTH subcommand. You can also
use LENGTH if you do not want to read all the data in each repeating group.

Continuation Records. You can use the CONTINUED subcommand to indicate that the
repeating groups for each input case are contained on more than one record. You can check
the value of an identification variable across records for the same input case using the ID
subcommand.

Summary Tables. You can suppress the display of the table that summarizes the names, loca-
tions, and formats of the variables specified on the DATA subcommand using the NOTABLE
subcommand.

Basic Specification

The basic specification requires three subcommands: STARTS, OCCURS, and DATA.
• STARTS specifies the beginning column of the repeating data segments. When there are

continuation records, STARTS can specify the ending column of the last repeating group
on the first record of each input case.

• OCCURS specifies the number of repeating groups on each input case. OCCURS can
specify a number if the number of repeating groups is the same for all input cases. Other-
wise, OCCURS should specify the name of a variable whose value for each input case
indicates the number of repeating groups for that case.

• DATA specifies names, location within the repeating segment, and format for each variable
to be read from the repeated groups.

Subcommand Order

• DATA must be the last subcommand specified on REPEATING DATA.

• The remaining subcommands can be named in any order.

Syntax Rules

• REPEATING DATA can be specified only within an INPUT PROGRAM structure, or within
a FILE TYPE structure with mixed or nested data. DATA LIST, REPEATING DATA, and any
transformation commands used to build the output cases must be placed within the INPUT
PROGRAM or FILE TYPE structure. Transformations that apply to the output cases should
be specified after the END INPUT PROGRAM or END FILE TYPE command.

• LENGTH must be used if the last variable specified on the DATA subcommand is not read
from the last position of each repeating group or if the length of the repeating groups
varies across input cases.

• CONTINUED must be used if repeating groups for each input case are continued on succes-
sive records.

1390 REPEATING DATA

• The DATA LIST command used with REPEATING DATA must define all fixed-format data
for the records.

• Repeating groups are usually recorded at the end of the fixed-format records, but fixed-
format data may follow the repeating data in data structures such as IBM SMF and RMF
records. Use the following sequence in such cases.

DATA LIST .../* Read the fixed-format data before repeating data
REREAD COLUMNS= .../* Skip repeating data
DATA LIST .../* Read the fixed-format data after repeating data
REPEATING DATA ... /*Read repeating data

Operations

• Fixed-location data specified on the DATA LIST are spread to each output case.

• If LENGTH is not specified, the program uses the default length for repeating data groups,
which is determined from specifications on the DATA subcommand. For more information
on the default length, see the LENGTH subcommand on p. 1397.

Cases Generated

• The number of output cases generated is the number specified on the OCCURS subcom-
mand. Physical record length or whether fields are non-blank does not affect the number
of cases generated.

• If the number specified for OCCURS is nonpositive or missing, no cases are generated.

Records Read

• If CONTINUED is not specified, all repeating groups are read from the first record of each
input case.

• If CONTINUED is specified, the first continuation record is read when the first record for
the input case is exhausted, that is, when the next repeating group would extend past the
end of the record. The ending column for the first record is defined on STARTS. If the
ending column is not specified on STARTS, the logical record length is used (see below).

• Subsequent continuation records are read when the current continuation record is
exhausted. Exhaustion of the current continuation record is detected when the next
repeating group would extend past the end of the record. The ending column for contin-
uation records is defined on CONTINUED. If the ending column is not specified on
CONTINUED, the logical record length is used (see below).

• For inline data, the record length is always 80. For data stored in a file, the record length
is generally whatever was specified on the FILE HANDLE command or the default of 1024.
Shorter records are extended with blanks when they are read. For IBM implementations,
the physical record length is available and is used.

REPEATING DATA 1391

Reading Past End of Record

If one or more fields extend past the end of the actual record, or if CONTINUED is specified
and the ending column specified on either STARTS or CONTINUED is beyond the end of the
actual record, the program takes the following action:

• For string data with format A, the data record is considered to be extended logically with
blanks. If the entire field lies past the end of the record, the resulting value will be all blanks.

• For numeric data, a warning is issued and the resulting value is system-missing.

Example

* Build a file with each case representing one vehicle and
 spread information about the household to each case.

INPUT PROGRAM.
DATA LIST / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=NUMVEH
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.
END INPUT PROGRAM.

BEGIN DATA
1001 02 02 FORD T8PONTIAC C6
1002 04 01 CHEVY C4
1003 02 03 CADILAC C8FORD T6VW C4
END DATA.
LIST.

• Data are extracted from a file representing household records. Each input case is recorded
on a single record; there are no continuation records.

• The total number of persons living in the house and number of vehicles owned by the
household is recorded on each record. The first field of numbers (columns 1–4) for each
record is an identification number unique to each record. The next two fields of numbers
are number of persons in household and number of vehicles. The remainder of the record
contains repeating groups of information about each vehicle: the make of vehicle, model,
and number of cylinders.

• INPUT PROGRAM indicates the beginning of the input program and END INPUT PROGRAM
indicates the end of the input program.

• DATA LIST reads the variables from the household portion of the record. All fixed-format
variables are defined on DATA LIST.

• REPEATING DATA reads the information from the repeating groups and builds the output
cases. Repeating groups start in column 12. The number of repeating groups for each
input case is given by the value of variable NUMVEH. Three variables are defined for each
repeating group: MAKE, MODEL, and NUMCYL.

• The first input record contains two repeating groups, producing two output cases in the
working data file. One output case is built from the second input record which contains
information on one vehicle, and three output cases are built from the third record. The
values of the fixed-format variables defined on DATA LIST are spread to every new case
built in the working data file. Six cases result, as shown in Figure 1.

1392 REPEATING DATA

Example

* Use REPEATING DATA with FILE TYPE MIXED: read only type 3 records.

FILE TYPE MIXED RECORD=#SEQNUM 2-4.
RECORD TYPE 003.
REPEATING DATA STARTS=12 /OCCURS=3
/DATA=MAKE 1-8(A) MODEL 9(A) NUMCYL 10.
END FILE.
END FILE TYPE.

BEGIN DATA
1001 02 02 FORD T8PONTIAC C6
1002 04 01 CHEVY C4
1003 02 03 CADILAC C8FORD T6VW C4
END DATA.
LIST.

• The task in this example is to read only the repeating data for records with value 003 for
variable #SEQNUM.

• REPEATING DATA is used within a FILE TYPE structure, which specifies a mixed file type.
The record identification variable #SEQNUM is located in columns 2–4.

• RECORD TYPE specifies that only records with value 003 for #SEQNUM are copied into
the working data file. All other records are skipped.

• REPEATING DATA indicates that the repeating groups start in column 12. The OCCURS
subcommand indicates there are three repeating groups on each input case, and the DATA
subcommand specifies names, locations, and formats for the variables in the repeating
groups.

• The DATA LIST command is not required in this example, since none of the information
on the input case is being spread to the output cases. However, if there were multiple
input cases with value 003 for #SEQNUM and they did not all have three repeating
groups, DATA LIST would be required to define a variable whose value for each input
case indicated the number of repeating groups for that case. This variable would then
be specified on the OCCURS subcommand.

Figure 1 Output cases built with REPEATING DATA
SEQNUM NUMPERS NUMVEH MAKE MODEL NUMCYL

 1 2 2 FORD T 8
 1 2 2 PONTIAC C 6
 2 4 1 CHEVY C 4
 3 2 3 CADILAC C 8
 3 2 3 FORD T 6
 3 2 3 VW C 4

NUMBER OF CASES READ = 6 NUMBER OF CASES LISTED = 6

REPEATING DATA 1393

Example

* Create a data set of child records.

INPUT PROGRAM.
DATA LIST / PARENTID 1 DATE 3-6 NCHILD 8.
REPEATING DATA STARTS=9 /OCCURS=NCHILD
/DATA=BIRTHDAY 2-5 VACDATE 7-10.
END INPUT PROGRAM.

COMPUTE AGE=DATE - BIRTHDAY.
COMPUTE VACAGE=VACDATE - BIRTHDAY.

DO IF PARENTID NE LAG(PARENTID,1) OR $CASENUM EQ 1.
COMPUTE CHILD=1.
ELSE.
COMPUTE CHILD=LAG(CHILD,1)+1.
END IF.
FORMAT AGE VACAGE CHILD (F2).

BEGIN DATA
1 1987 2 1981 1983 1982 1984
2 1988 1 1979 1984
3 1988 3 1978 1981 1981 1986 1983 1986
4 1988 1 1984 1987
END DATA.
LIST.

• Data are from a file that contains information on parents within a school district. Each
input case is recorded on a single record; there are no continuation records.

• Each record identifies the parents by a number and indicates how many children they
have. The repeating groups give the year of birth and year of vaccination for each child.

• REPEATING DATA indicates that the repeating groups begin in column 9. The value of
NCHILD indicates how many repeating groups there are for each record.

• The first two COMPUTE commands compute the age for each child and age at vaccination.
These transformation commands are specified outside the input program.

• Because the repeating groups do not have descriptive values, the DO IF structure computes
variable CHILD to distinguish between the first-born child, second-born child, etc. The
value for CHILD will be 1 for the first-born, 2 for the second-born, and so forth. The LIST
output is shown in Figure 2.

Figure 2 Output cases built with REPEATING DATA
PARENTID DATE NCHILD BIRTHDAY VACDATE AGE VACAGE CHILD

 1 1987 2 1981 1983 6 2 1
 1 1987 2 1982 1984 5 2 2
 2 1988 1 1979 1984 9 5 1
 3 1988 3 1978 1981 10 3 1
 3 1988 3 1981 1986 7 5 2
 3 1988 3 1983 1986 5 3 3
 4 1988 1 1984 1987 4 3 1

NUMBER OF CASES READ = 7 NUMBER OF CASES LISTED = 7

1394 REPEATING DATA

STARTS Subcommand

STARTS indicates the beginning location of the repeating data segment on the first record of
each input case. STARTS is required and can specify either a number or a variable name.

• If the repeating groups on the first record of each input case begin in the same column,
STARTS specifies a column number.

• If the repeating groups on the first record of each input case do not begin in the same
column, STARTS specifies the name of a variable whose value for each input case indicates
the beginning location of the repeating groups on the first record. The variable can be
defined on DATA LIST or created by transformation commands that precede REPEATING
DATA.

• When repeating groups are continued on multiple records for each input case, STARTS
must also specify an ending location if there is room on the logical record length for more
repeating groups than are contained on the first record of each input case. The ending
column applies only to the first record of each input case. See the CONTINUED subcom-
mand on p. 1398 for an example.

• The ending column can be specified as a number or a variable name. Specifications for
the beginning column and the ending column are separated by a hyphen. The values of
the variable used to define the ending column must be valid values and must be larger
than the starting value.

• If the variable specified for the ending column is undefined or missing for an input case,
the program displays a warning message and builds no output cases from that input case.
If the variable specified for the ending column on STARTS has a value that is less than the
value specified for the starting column, the program issues a warning and builds output
cases only from the continuation records of that input case; it does not build cases from
the first record of the case.

• If the ending location is required but not supplied, the program generates output cases
with system-missing values for the variables specified on the DATA subcommand and may
misread all data after the first or second record in the data file (see the CONTINUED
subcommand on p. 1398).

Example
* Repeating groups in the same location.

INPUT PROGRAM.
DATA LIST FILE=VEHICLE / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=NUMVEH
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.
END INPUT PROGRAM.

• STARTS specifies column number 12. The repeating groups must therefore start in
column 12 of the first record of each input case.

REPEATING DATA 1395

Example
* Repeating groups in varying locations.

INPUT PROGRAM.
DATA LIST FILE=VEHICLE / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
+ DO IF (SEQNUM LE 100).
+ COMPUTE FIRST=12.
+ ELSE.
+ COMPUTE FIRST=15.
+ END IF.
REPEATING DATA STARTS=FIRST /OCCURS=NUMVEH
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.
END INPUT PROGRAM.

• This example assumes that each input case is recorded on a single record and that there
are no continuation records. Repeating groups begin in column 12 for all records with
sequence numbers 1 through 100 and in column 15 for all records with sequence numbers
greater than 100.

• The sequence number for each record is defined as variable SEQNUM on the DATA LIST
command. The DO IF—END IF structure creates the variable FIRST with value 12 for
records with sequence numbers through 100 and value 15 for records with sequence
numbers greater than 100.

• Variable FIRST is specified on the STARTS subcommand.

OCCURS Subcommand

OCCURS specifies the number of repeating groups for each input case. OCCURS is required
and specifies a number if the number of groups is the same for all input cases or a variable if
the number of groups varies across input cases. The variable must be defined on a DATA LIST
command or created with transformation commands.

Example
INPUT PROGRAM.
DATA LIST / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=NUMVEH
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.
END INPUT PROGRAM.

BEGIN DATA
1001 02 02 FORD T8PONTIAC C6
1002 04 01 CHEVY C4
1003 02 03 CADILAC C8FORD T6VW C4
END DATA.
LIST.

• Data for each input case are recorded on a single record; there are no continuation records.
• The value for variable NUMVEH in columns 9 and 10 indicates the number of repeating

groups on each record. One output case is built in the working data file for each occur-
rence of a repeating group.

1396 REPEATING DATA

• In the data, NUMVEH has the value 2 for the first case, 1 for the second, and 3 for the third.
Thus, six cases are built from these records. If the value of NUMVEH is 0, no cases are
built from that record.

Example
* Read only the first repeating group from each record.

INPUT PROGRAM.
DATA LIST FILE=VEHICLE / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=1
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.
END INPUT PROGRAM.
LIST.

• Since OCCURS specifies that there is only one repeating group for each input case, only
one output case is built from each input case regardless of the actual number of repeating
groups.

DATA Subcommand

DATA specifies a name, location within each repeating segment, and format for each variable
to be read from the repeating groups. DATA is required and must be the last subcommand on
REPEATING DATA.

• The specifications for DATA are the same as for the DATA LIST command.

• The specified location of the variables on DATA is their location within each repeating
group—not their location within the record.

• Any input format available on the DATA LIST command can be specified on the DATA
subcommand. Both FORTRAN-like and the column-style specifications can be used.

Example
INPUT PROGRAM.
DATA LIST FILE=VEHICLE / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=NUMVEH
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.
END INPUT PROGRAM.
LIST.

• Variable MAKE is a string variable read from positions 1 through 8 of each repeating
group; MODEL is a single-character string variable read from position 9; and NUMCYL is
a one-digit numeric variable read from position 10.

• The DATA LIST command defines variables SEQNUM, NUMPERS, and NUMVEH. These
variables are spread to each output case built from the repeating groups.

FILE Subcommand

REPEATING DATA always reads the file specified on its associated DATA LIST or FILE TYPE
command. The FILE subcommand on REPEATING DATA explicitly specifies the name of the
file.

REPEATING DATA 1397

• FILE must specify the same file as its associated DATA LIST or FILE TYPE command.

Example
INPUT PROGRAM.
DATA LIST FILE=VEHICLE / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA FILE=VEHICLE /STARTS=12 /OCCURS=NUMVEH
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.
END INPUT PROGRAM.
LIST.

• FILE on REPEATING DATA specifically identifies the VEHICLE file, which is also specified
on the DATA LIST command.

LENGTH Subcommand

LENGTH specifies the length of each repeating data group. The default length is the number
of columns between the beginning column of the repeating data groups and the ending posi-
tion of the last variable specified on DATA. (For the first record of each input case, STARTS
specifies the beginning column of the repeating groups. For continuation records, repeating
groups are read from column 1 by default or from the column specified on CONTINUED.)

• The specification on LENGTH can be a number or the name of a variable.

• LENGTH must be used if the last variable specified on the DATA subcommand is not read
from the last position of each repeating group, or if the length of the repeating groups
varies across input cases.

• If the length of the repeating groups varies across input cases, the specification must be a
variable whose value for each input case is the length of the repeating groups for that case.
The variable can be defined on DATA LIST or created with transformation commands.

• If the value of the variable specified on LENGTH is undefined or missing for an input case,
the program displays a warning message and builds only one output case for that input case.

Example
* Read only the variable MAKE for each vehicle.

* The data contain two values that are not specified on the
DATA subcommand. The first is in position 9 of the repeating

 groups, and the second is in position 10.

INPUT PROGRAM.
DATA LIST FILE=VEHICLE / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=NUMVEH /LENGTH=10
/DATA=MAKE 1-8 (A).
END INPUT PROGRAM.

• LENGTH indicates that each repeating group is 10 columns long. LENGTH is required
because MAKE is not read from the last position of each repeating group. As illustrated in
previous examples, each repeating group also includes variable MODEL (position 9) and
NUMCYL (position 10).

• DATA specifies that MAKE is in positions 1 through 8 of each repeating group. Positions 9
and 10 of each repeating group are skipped.

1398 REPEATING DATA

CONTINUED Subcommand

CONTINUED indicates that the repeating groups are contained on more than one record for
each input case.

• Each repeating group must be fully recorded on a single record: a repeating group cannot
be split across records.

• The repeating groups must begin in the same column on all continuation records.
• If CONTINUED is specified without beginning and ending columns, the program assumes

that the repeating groups begin in column 1 of continuation records and searches for
repeating groups by scanning to the end of the record or to the value specified by
OCCURS. See “Operations” on p. 1390 for additional information on how records are
read.

• If the repeating groups on continuation records do not begin in column 1, CONTINUED
must specify the column in which the repeating groups begin.

• If there is room on the logical record length for more repeating groups than are contained
on the first record of each input case, the STARTS subcommand must indicate an ending
column for the records. The ending column on STARTS applies only to the first record of
each input case.

• If there is room on the logical record length for more repeating groups than are contained
on the continuation records of each input case, the CONTINUED subcommand must indicate
an ending column. The ending column on CONTINUED applies to all continuation records.

Example
* This example assumes the logical record length is 80.

INPUT PROGRAM.
DATA LIST / ORDERID 1-5 NITEMS 7-8.
REPEATING DATA STARTS=10 /OCCURS=NITEMS /CONTINUED=7
/DATA=ITEM 1-9 (A) QUANTITY 11-13 PRICE (DOLLAR7.2,1X).
END INPUT PROGRAM.

BEGIN DATA
10020 07 01-923-89 001 25.99 02-899-56 100 101.99 03-574-54 064 61.29
10020 04-780-32 025 13.95 05-756-90 005 56.75 06-323-47 003 23.74
10020 07-350-95 014 11.46
20030 04 01-781-43 010 10.97 02-236-54 075 105.95 03-655-83 054 22.99
20030 04-569-38 015 75.00
END DATA.
LIST.

• Data are extracted from a mail-order file. Each input case represents one complete order.
The data show two complete orders recorded on a total of five records.

• The order number is recorded in columns 1 through 5 of each record. The first three
records contain information for order 10020; the next two records contain information for
order 20030. The second field of numbers on the first record of each order indicates the
total number of items ordered. The repeating groups begin in column 10 on the first
record and in column 7 on continuation records. Each repeating data group represents one
item ordered and contains three variables—the item inventory number, the quantity
ordered, and the price.

REPEATING DATA 1399

• DATA LIST defines variables ORDERID and NITEMS on the first record of each input case.

• STARTS on REPEATING DATA indicates that the repeating groups on the first record of
each input case begin in column 10.

• OCCURS indicates that the total number of repeating groups for each input case is the
value of NITEMS.

• CONTINUED must be used because the repeating groups are continued on more than one
record for each input case. CONTINUED specifies a beginning column because the
repeating groups begin in column 7 rather than in column 1 on the continuation records.

• DATA defines variables ITEM, QUANTITY, and PRICE for each repeating data group. ITEM
is in positions 1–9, QUANTITY is in positions 11–13, and PRICE is in positions 14–20 and
is followed by one blank column. The length of the repeating groups is therefore 21
columns. The LIST output is shown in Figure 3.

Example
* Specifying an ending column on the STARTS subcommand.
* This example assumes the logical record length is 80.

INPUT PROGRAM.
DATA LIST / ORDERID 1-5 NITEMS 7-8.
REPEATING DATA STARTS=10-55 /OCCURS=NITEMS /CONTINUED=7
/DATA=ITEM 1-9 (A) QUANTITY 11-13 PRICE (DOLLAR7.2,1X).
END INPUT PROGRAM.

BEGIN DATA
10020 07 01-923-89 001 25.99 02-899-56 100 101.99
10020 03-574-54 064 61.29 04-780-32 025 13.95 05-756-90 005 56.75
10020 06-323-47 003 23.74 07-350-95 014 11.46
20030 04 01-781-43 010 10.97 02-236-54 075 105.95
20030 03-655-83 054 22.99 04-569-38 015 75.00
END DATA.
LIST.

• Data are the same as in the previous example; however, records are entered differently.
The first record for each input case contains only two repeating groups.

• DATA LIST defines variables ORDERID and NITEMS in columns 1–8 on the first record of
each input case. Column 9 is blank. DATA defines variables ITEM, QUANTITY, and PRICE

Figure 3 Cases generated by REPEATING DATA
ORDERID NITEMS ITEM QUANTITY PRICE

 10020 7 01-923-89 1 $25.99
 10020 7 02-899-56 100 $101.99
 10020 7 03-574-54 64 $61.29
 10020 7 04-780-32 25 $13.95
 10020 7 05-756-90 5 $56.75
 10020 7 06-323-47 3 $23.74
 10020 7 07-350-95 14 $11.46
 20030 4 01-781-43 10 $10.97
 20030 4 02-236-54 75 $105.95
 20030 4 03-655-83 54 $22.99
 20030 4 04-569-38 15 $75.00

NUMBER OF CASES READ = 11 NUMBER OF CASES LISTED = 11

1400 REPEATING DATA

in positions 1–20 of each repeating group, followed by a blank. Thus, each repeating
group is 21 columns wide. The length of the first record of each input case is therefore 51
columns: 21 columns for each of two repeating groups, plus the eight columns defined on
DATA LIST, plus column 9, which is blank. The operating system’s logical record length
is 80, which allows room for one more repeating group on the first record of each input
case. STARTS must therefore specify an ending column that does not provide enough
columns for another repeating group; otherwise, the program creates an output case with
missing values for the variables specified on DATA.

• STARTS specifies that the program is to scan only columns 10–55 of the first record of
each input case looking for repeating data groups. It will scan continuation records begin-
ning in column 7 until the value specified on the OCCURS subcommand is reached.

Example
* Specifying an ending column on the CONTINUED subcommand.
* This example assumes the logical record length is 80.

INPUT PROGRAM.
DATA LIST / ORDERID 1-5 NITEMS 7-8.
REPEATING DATA STARTS=10-55 /OCCURS=NITEMS /CONTINUED=7-55
/DATA=ITEM 1-9 (A) QUANTITY 11-13 PRICE (DOLLAR7.2,1X).
END INPUT PROGRAM.

BEGIN DATA
10020 07 01-923-89 001 25.99 02-899-56 100 101.99
10020 03-574-54 064 61.29 04-780-32 025 13.95
10020 05-756-90 005 56.75 06-323-47 003 23.74
10020 07-350-95 014 11.46
20030 04 01-781-43 010 10.97 89-236-54 075 105.95
20030 03-655-83 054 22.99 04-569-38 015 75.00
END DATA.
LIST.

• The data are the same as in the previous two examples, but records are entered differently.
The first record and the continuation records for each input case store only two repeating
groups each.

• The operating system’s logical record length is 80, which allows room for more repeating
groups on all records.

• STARTS specifies that the program is to scan only columns 10-55 of the first record of
each input case looking for repeating data groups.

• CONTINUED specifies that the program is to scan only columns 7–55 of all continuation
records.

ID Subcommand

ID compares the value of an identification variable across records of the same input case. ID
can be used only when CONTINUED is specified. The identification variable must be defined
on a DATA LIST command and must be recorded on all records in the file.

REPEATING DATA 1401

• The ID subcommand has two specifications: the location of the variable on the continua-
tion records and the name of the variable (as specified on the DATA LIST command). The
specifications must be separated from each other by an equals sign.

• The format specified on the ID subcommand must be the same as the format specified for
the variable on DATA LIST. However, the location can be different on the continuation
records.

• If the values of the identification variable are not the same on all records for a single input
case, the program displays an error message and stops reading data.

Example
INPUT PROGRAM.
DATA LIST / ORDERID 1-5 NITEMS 7-8.
REPEATING DATA STARTS=10-50 /OCCURS=NITEMS
/CONTINUED=7 /ID=1-5=ORDERID
/DATA=ITEM 1-9 (A) QUANTITY 11-13 PRICE 15-20 (2).
END INPUT PROGRAM.

BEGIN DATA
10020 04 45-923-89 001 25.9923-899-56 100 101.99
10020 63-780-32 025 13.9554-756-90 005 56.75
20030 03 45-781-43 010 10.9789-236-54 075 105.95
20030 32-569-38 015 75.00
END DATA.
LIST.

• The order number in the data is recorded in columns 1–5 of each record.

• ORDERID is defined on the DATA LIST command as a five-column integer variable. The
first specification on the ID subcommand must therefore specify a five-column integer
variable. The location of the variable can be different on continuation records.

TABLE and NOTABLE Subcommands

TABLE displays a table summarizing all variables defined on the DATA subcommand. The
summary table lists the names, locations, and formats of the variables and is identical in
format to the summary table displayed by the DATA LIST command. NOTABLE suppresses the
table. TABLE is the default.

Example
INPUT PROGRAM.
DATA LIST FILE=VEHICLE / SEQNUM 2-4 NUMPERS 6-7 NUMVEH 9-10.
REPEATING DATA STARTS=12 /OCCURS=NUMVEH /NOTABLE
/DATA=MAKE 1-8 (A) MODEL 9 (A) NUMCYL 10.
END INPUT PROGRAM.

• NOTABLE suppresses the display of the summary table.

1402

REPORT

REPORT [/FORMAT=[{MANUAL }] [{NOLIST }] [ALIGN({LEFT })] [TSPACE({1})]
 {AUTOMATIC} {LIST[(n)]} {CENTER} {n}
 {RIGHT }
 [CHDSPACE({1})] [FTSPACE({1})] [SUMSPACE({1})] [COLSPACE({4})]
 {n} {n} {n} {n}
 [BRKSPACE({ 1 })][LENGTH({1,length})] [MARGINS({1,width})]
 { n } {t,b } {l,r }
 {-1†} {*,* } {*,* }
 [CHALIGN({TOP })] [UNDERSCORE({OFF})] [PAGE1({1})] [MISSING {’.’}]]
 {BOTTOM†} {ON†} {n} {'s'}
 [ONEBREAKCOLUMN {OFF**}] [INDENT {2**}] [CHWRAP {OFF**}] [PREVIEW {OFF**}]
 {ON } {n } {ON } {ON }
 [/OUTFILE=file]
 [/STRING=stringname (varname[(width)] [(BLANK)] ['literal'])
 /VARIABLES=varname ({VALUE}) [+ varname({VALUE})] ['col head'] [option list]
 {LABEL} {LABEL}
 {DUMMY} {DUMMY}

where option list can contain any of the following:

 (width) (OFFSET({0 })) ({LEFT })
 {n } {CENTER†}
 {CENTER†} {RIGHT }

 [/MISSING={VAR }]
 {NONE }
 {LIST[([varlist][{1}])]}
 {n}

 [/TITLE=[{LEFT }] 'line1' 'line2'...] [/FOOTNOTE=[{LEFT }] 'line1' 'line2'...]
 {CENTER} {CENTER}
 {RIGHT } {RIGHT }
 [)PAGE] [)DATE] [)var]

 [/BREAK=varlist ['col head'] [option list]]

where option list can contain any of the following:

 (width) ({VALUE }) ({NOTOTAL}) ({SKIP({1} }))
 {LABEL†} {TOTAL } {n}
 {PAGE[(RESET)]}
 (OFFSET({0 })) (UNDERSCORE[(varlist)]) ({LEFT }) ({NONAME})
 {n } {CENTER†} {NAME }
 {CENTER†} {RIGHT }

 [/SUMMARY=function...['summary title'][(break col #)] [SKIP({0})]
 {n}
 or
 [/SUMMARY=PREVIOUS[({1})]]
 {n}

where function is

 aggregate [(varname[({PLAIN })][(d)][varname...])]
 {format††}
 or
 composite(argument)[(report col[({PLAIN })][(d)])]
 {format††}

**Default if the keyword is omitted.
†Default if FORMAT=AUTOMATIC.
††Any printable output format is valid. See FORMATS.

REPORT 1403

Aggregate functions:

Composite functions:

where arg is either one of the aggregate functions or a constant

Example
REPORT FORMAT=LIST

/VARIABLES=PRODUCT (LABEL) ’ ’ ’Retail’ ’Products’
SALES ’Annual’ ’Sales’ ’1981’

/BREAK=DEPT ’Department’ (LABEL)
/SUMMARY=VALIDN (PRODUCT) MEAN (SALES).

Overview

REPORT produces case listings and summary statistics and gives you considerable control over
the appearance of the output. REPORT calculates all the univariate statistics available in
DESCRIPTIVES and the statistics and subpopulation means available in MEANS. In addition,
REPORT calculates statistics not directly available in any other procedure, such as computa-
tions involving aggregated statistics.

REPORT provides complete report format defaults but also lets you customize a variety
of table elements, including column widths, titles, footnotes, and spacing. Because REPORT
is so flexible and the output has so many components, it is often efficient to preview report
output using a small number of cases until you find the format that best suits your needs.

Defaults

Column Heads. REPORT uses variable labels as default column heads; if no variable labels have
been specified, variable names are used. If ONEBREAKCOLUMN is ON, the default head for the
first BREAK subcommand is used.

VALIDN VARIANCE PLT(n)
SUM KURTOSIS PIN(min,max)
MIN SKEWNESS FREQUENCY(min,max)
MAX MEDIAN(min,max) PERCENT(min,max)
MEAN MODE(min,max)
STDDEV PGT(n)

DIVIDE(arg1 arg2 [factor])
MULTIPLY(arg1...argn)
PCT(arg1 arg2)
SUBTRACT(arg1 arg2)
ADD(arg1...argn)
GREAT(arg1...argn)
LEAST(arg1...argn)
AVERAGE(arg1...argn)

1404 REPORT

Column Widths. Default column widths are determined by REPORT, using the maximum of the
following for each column:

• The widest print format in the column, whether it is a variable print format or a summary
print format.

• The width of any temporary variable defined with the STRING subcommand on REPORT.

• If a column heading is assigned, the length of the longest title line in the heading when
CHWRAP is off, and the longest word in the title when CHWRAP is on. Underscores,
which are removed on printing, can be used to create longer words in the title.

• When no column heading is specified, the length of the longest word in the variable label,
or the length of the variable name.

• If you specify LABEL on VARIABLES or BREAK, the length of the variable’s longest value
label. If FORMAT=MANUAL is in effect, 20 is the maximum value used for this criterion.

• The minimum column width is 8 when FORMAT=MANUAL; it can be less when
FORMAT=AUTOMATIC.

Automatic Fit. When the above criteria for column width result in a report that is too wide for
the report margins, FORMAT=AUTOMATIC shrinks the report. AUTOMATIC performs the
following two steps sequentially, stopping as soon as the report fits within the margins:

1. AUTOMATIC reduces intercolumn spacing incrementally until it reaches a minimum inter-
column space of 1. It will never reduce it to 0.

2. AUTOMATIC shortens widths for strings specified on the STRING subcommand or for
value label strings when the LABEL option is specified. It begins with the longest string if
that string is at least 15 characters wide and shortens the column width as much as needed
(up to 40% of its length), wrapping the string within the new width. If necessary, it repeats
the step, using different defined strings. It will not shorten the column width of the same
string twice.

REPORT does not implement the automatic fit unless AUTOMATIC is specified on the
FORMAT subcommand.

AUTOMATIC versus MANUAL Defaults. Many default settings depend on whether you specify
AUTOMATIC or MANUAL on FORMAT. Table 1 shows the defaults according to either of the
specifications.

Table 1 Keyword default settings

Subcommand

Keyword

Default for
AUTOMATIC

Default for
MANUAL

FORMAT ALIGN left left
 BRKSPACE
 summary report 1 1
 listing report –1 1
 CHALIGN bottom top
 CHDSPACE 1 1
 COLSPACE 4 4
 FTSPACE 1 1

REPORT 1405

Options

Format. REPORT provides full format defaults and offers you optional control over page
length, vertical spacing, margin and column widths, page titles, footnotes, and labels for

 LENGTH 1,system length 1,system length
 LIST|NOLIST NOLIST NOLIST
 MARGINS 1,system width 1,system width
 MISSING . .
 PAGE1 1 1
 SUMSPACE 1 1
 TSPACE 1 1
 UNDERSCORE on off

ONEBREAKCOLUMN off off
INDENT1 2 2
CHWRAP off off
PREVIEW off off

VARIABLES LABEL|VALUE|DUMMY VALUE VALUE
 LEFT|CENTER|RIGHT CENTER2 RIGHT for numbers
 LEFT for strings
 OFFSET CENTER 0

BREAK LABEL|VALUE LABEL VALUE
 LEFT|CENTER|RIGHT CENTER2 RIGHT for numbers
 LEFT for strings
 NAME|NONAME NONAME NONAME
 OFFSET CENTER3 0
 PAGE off off
 SKIP 1 1
 TOTAL|NOTOTAL NOTOTAL NOTOTAL
 UNDERSCORE off off

SUMMARY PREVIOUS 1 1
 SKIP 0 0

1 No effect when ONEBREAKCOLUMN is on.
2 LEFT when ONEBREAKCOLUMN is on.
3 0 when ONEBREAKCOLUMN is on.

Table 1 Keyword default settings (Continued)

Subcommand

Keyword

Default for
AUTOMATIC

Default for
MANUAL

1406 REPORT

statistics. The maximum width and length of the report are controlled by specifications on
the SET command. The FORMAT subcommand on REPORT controls how the report is laid
out on a page and whether case listings are displayed. The VARIABLES subcommand spec-
ifies the variables that are listed or summarized in the report (report variables) and
controls the titles, width, and contents of report columns. The BREAK subcommand spec-
ifies the variables that define groups (break variables) and controls the titles, width, and
contents of break columns. SUMMARY specifies statistics and controls the titles and
spacing of summary lines. The TITLE and FOOTNOTE subcommands control the specifica-
tion and placement of multiple-line titles and footnotes. STRING concatenates variables to
create temporary variables that can be specified on VARIABLES or BREAK.

Output File. You can direct reports to a file separate from the file used for the rest of the output
from your session using the OUTFILE subcommand.

Statistical Display. The statistical display is controlled by the SUMMARY subcommand. Statis-
tics can be calculated for each category of a break variable and for the group as a whole. Avail-
able statistics include mean, variance, standard deviation, skewness, kurtosis, sum, minimum,
maximum, mode, median, and percentages. Composite functions perform arithmetic opera-
tions using two or more summary statistics calculated on single variables.

Missing Values. You can override the default to include user-missing values in report statistics
and listings with the MISSING subcommand. You can also use FORMAT to define a missing-
value symbol to represent missing data.

Basic Specification

The basic specification depends on whether you want a listing report or a summary report.
A listing report without subgroup classification requires FORMAT and VARIABLES. A listing
report with subgroup classification requires FORMAT, VARIABLES, and BREAK. A summary
report requires VARIABLES, BREAK, and SUMMARY.

Listing Reports. FORMAT=LIST and VARIABLES with a variable list are required. Case listings
are displayed for each variable named on VARIABLES. There are no break groups or summary
statistics unless BREAK or SUMMARY is specified.

Summary Reports. VARIABLES, BREAK, and SUMMARY are required. The report is organized
according to the values of the variable named on BREAK. The variable named on BREAK must
be named on a preceding SORT CASES command. Specified statistics are computed for the
variables specified on VARIABLES for each subgroup defined by the break variables.

Subcommand Order

The following order must be observed among subcommands when they are used:

• FORMAT must precede all other subcommands.

• VARIABLES must precede BREAK.

• OUTFILE must precede BREAK.

• Each SUMMARY subcommand must immediately follow its associated BREAK. Multiple
SUMMARY subcommands associated with the same BREAK must be specified consecutively.

REPORT 1407

• TITLE and FOOTNOTE can appear anywhere after FORMAT except between BREAK and
SUMMARY.

• MISSING must follow VARIABLES and precede the first BREAK.

• STRING must precede VARIABLES.

Syntax Rules

• Only one each of the FORMAT, STRING, VARIABLES, and MISSING subcommands is
allowed.

• To obtain multiple break groups, use multiple BREAK subcommands.
• To obtain multiple summaries for a break level, specify multiple SUMMARY subcom-

mands for the associated BREAK.

• Keywords on REPORT subcommands have default specifications that are in effect if the
keyword is not specified. Specify keywords only when you wish to change a default.

• Keywords are enclosed in parentheses if the subcommand takes variable names as arguments.

Operations

• REPORT processes cases sequentially. When the value of a break variable changes, REPORT
displays a statistical summary for cases processed since the last set of summary statistics was
displayed. Thus, the file must be sorted in order on the break variable or variables.

• The maximum width and page length of the report are determined by the SET command.

• If a column is not wide enough to display numeric values, REPORT first rounds decimal
digits, then converts to scientific notation if possible, and then displays asterisks. String
variables that are wider than the column are truncated.

• The format used to display values in case listings is controlled by the dictionary format
of the variable. Each statistical function in REPORT has a default format.

Limitations

• Maximum 500 variables per VARIABLES subcommand. You can specify more than 500
variables if you stack them (see “VARIABLES Subcommand” on p. 1414).

• Maximum 10 dummy variables per VARIABLES subcommand.

• Maximum 20 MODE and MEDIAN requests per SUMMARY subcommand.

• Maximum 20 PGT, PLT, and PIN requests per SUMMARY subcommand.

• Maximum 50 strings per STRING subcommand.

• The length of titles and footnotes cannot exceed the report width.
• The length of string variables created on STRING cannot exceed the page width.

• There is no fixed limit on the number of BREAK and SUMMARY subcommands. However,
the page width limits the number of variables that can be displayed and thereby limits the
number of break variables.

1408 REPORT

• The maximum width of a report is 255 characters.

• The number of report variables that can be specified depends upon the width of the report,
the width of the variable columns, and the number of BREAK subcommands.

• Maximum 50 variables for the FREQUENCY or PERCENT functions.
• Memory requirements significantly increase if FREQUENCY, PERCENT, MEDIAN, or

MODE is requested for variables with a wide range of values. The amount of workspace
required is 20 + 8*(max−min +1) bytes per variable per function per break. If the same
range is used for different statistics for the same variable, only one set of cells is collected.
For example, FREQUENCY(1,100)(VARA) PERCENT(1,100)(VARA) requires only 820
bytes.

• If TOTAL is in effect, workspace requirements are almost doubled.

• Memory requirements also increase if value labels are displayed for variables with many
value labels. The amount of workspace required is 4 + 24*n bytes per variable, where n
is the number of value labels specified for the variable.

Example

SORT CASES BY DEPT.
REPORT FORMAT=LIST

/VARIABLES=PRODUCT (LABEL) ’ ’ ’Retail’ ’Products’
SALES ’Annual’ ’Sales’ ’1981’

/BREAK=DEPT ’Department’ (LABEL)
/SUMMARY=VALIDN (PRODUCT) MEAN (SALES) ’No.Sold,Mean Sales’.

• This report is a listing of products and sales by department. A summary of the total
number of products sold and the average sales by department is also produced.

• Cases are first sorted by DEPT so that cases are grouped by department for the case listing
and for the calculation of statistics.

• FORMAT requests a report that lists individual cases within each break group.

• VARIABLES specifies PRODUCT and SALES as the report variables. Keyword LABEL
requests that the case listings for PRODUCT display value labels instead of values. Three-
line column headings are provided for each report column. The first line of the column
heading is blank for the variable PRODUCT.

• BREAK identifies DEPT as the break variable and provides a one-line column title for the
break column. LABEL displays the value label instead of the value itself.

• SUMMARY calculates the valid number of cases for PRODUCT and the mean of SALES for
each value of DEPT. A title is provided for the summary line to override the default title,
VALIDN.

FORMAT Subcommand

FORMAT controls the overall width and length of the report and vertical spacing. Keywords and
their arguments can be specified in any order.
• MANUAL and AUTOMATIC are alternatives. The default is MANUAL.

• LIST and NOLIST are alternatives. The default is NOLIST.

REPORT 1409

MANUAL Default settings for manual format. MANUAL displays values for break
variables, right-justifies numeric values and their column headings,
left-justifies value labels and string values and their column headings,
top-aligns and does not underscore column headings, extends column
widths to accommodate the variable’s longest value label (but not the
longest word in the variable label) up to a width of 20, and generates
an error message when a report is too wide for its margins. MANUAL is
the default.

AUTOMATIC Default settings for automatic format. AUTOMATIC displays labels for
break variables, centers all data, centers column headings but left-
justifies column headings if value labels or string values exceed the
width of the longest word in the heading, bottom-aligns and under-
scores column headings, extends column widths to accommodate the
longest word in a variable label or the variable’s longest value label,
and shrinks a report that is too wide for its margins.

LIST(n) Individual case listing. The values of all variables named on VARIABLES
are displayed for each case. The optional n inserts a blank line after each
n cases. By default, no blank lines are inserted. Values for cases are listed
using the default formats for the variables.

NOLIST No case listing. This is the default.

PAGE(n) Page number for the first page of the report. The default is 1.

LENGTH(t,b) Top and bottom line numbers of the report. You can specify any
numbers to define the report page length. By default, the top of the
report begins at line 1, and the bottom of the report is the last line of
the system page. You can use an asterisk for t or b to indicate a default
value. If the specified length does not allow even one complete line of
information to be displayed, REPORT extends the length specification
and displays a warning.

MARGINS(l,r) Columns for the left and right margins. The right column cannot
exceed 255. By default, the left margin is display column 1 and the
right margin is the rightmost display column of the system page. You
can use an asterisk for l or r to indicate a default value.

ALIGN Placement of the report relative to its margins. LEFT, CENTER, or
RIGHT can be specified in the parentheses following the keyword.
LEFT left-justifies the report. CENTER centers the report between its
margins. RIGHT right-justifies the report. The default is LEFT.

COLSPACE(n) Number of spaces between each column. The default is 4 or the
average number of spaces that will fit within report margins, which-
ever is less. When AUTOMATIC is in effect, REPORT overrides the
specified column spacing if necessary to fit the report between its
margins.

CHALIGN Alignment of column headings. Either TOP or BOTTOM can be speci-
fied in the parentheses following the keyword. TOP aligns all column

1410 REPORT

headings with the first, or top, line of multiple-line headings. BOTTOM
aligns headings with the last, or bottom, line of multiple-line headings.
When AUTOMATIC is in effect, the default is BOTTOM; when MANUAL
is in effect, the default is TOP.

UNDERSCORE Underscores for column headings. Either ON or OFF can be specified
in the parentheses following the keyword. ON underscores the bottom
line of each column heading for the full width of the column. OFF does
not underscore column headings. The default is ON when AUTOMATIC
is in effect and OFF when MANUAL is in effect.

TSPACE(n) Number of blank lines between the report title and the column heads.
The default is 1.

CHDSPACE(n) Number of blank lines beneath the longest column head. The default
is 1.

BRKSPACE(n) Number of blank lines between the break head and the next line. The
next line is a case if LIST is in effect or the first summary line if NOLIST
is in effect. BRKSPACE(–1) places the first summary statistic or the first
case listing on the same line as the break value. When a summary line
is placed on the same line as the break value, the summary title is
suppressed. When AUTOMATIC is in effect, the default is −1; when
MANUAL is in effect, it is 1.

SUMSPACE(n) Number of blank lines between the last summary line at the lower
break level and the first summary line at the higher break level when
they break simultaneously. SUMSPACE also controls spacing between
the last listed case and the first summary line if LIST is in effect. The
default is 1.

FTSPACE(n) Minimum number of blank lines between the last listing on the page
and the footnote. The default is 1.

MISSING ‘s’ Missing-value symbol. The symbol can be only one character and
represents both system- and user-missing values. The default is a
period.

ONEBREAKCOLUMN Display subgroups defined on multiple BREAK subcommands in a
single column. You can specify OFF or ON in parentheses after the
keyword. The default is OFF. When ONEBREAKCOLUMN is ON, it
applies to all BREAK subcommands. For its effect on break column
head, width, and alignment, see the BREAK subcommand on p. 1418.
For its effect on the basic format of the report, see Figure 2.

INDENT(n) Indention of break values and summary titles of each successive
subgroup defined by one BREAK subcommand in a single break
column. INDENT is effective only when ONEBREAKCOLUMN is on.
Multiple variables specified on one BREAK subcommand are indented
as a block. The default specification is 2. When ONEBREAKCOLUMN
is OFF, specification on INDENT is ignored.

REPORT 1411

CHWRAP Automatically wrap user-specified column heads. You can specify
OFF or ON in parentheses after the keyword. The default is OFF. When
CHWRAP is ON, user-specified heads for either break or variable
columns are wrapped. If multiple lines are specified for a head, each
line is wrapped, if necessary, independent of other lines. To prevent
wrapping at blanks, use the underscore character (_) to signify a hard
blank in your head specification. The underscore serves as a hard
blank only in user-specified heads and only when CHWRAP is ON. The
underscore does not appear in the printed heading.

PREVIEW Display the first page of output only. You can specify OFF or ON either
in parentheses or with one blank space separating the specification
from the keyword. The default is OFF. When PREVIEW is ON, the
program stops processing after the first page for you to quickly check
the format of your report.

Page Layout

Figure 1 shows the complete page layout and subcommand specifications used to control the
basic format of the report when ONEBREAKCOLUMN is off (the default). Figure 2 shows the
same page when ONEBREAKCOLUMN is on. In both figures, FORMAT=AUTOMATIC and
BRKSPACE defaults to –1.

Example
SORT DIVISION DEPT.

REPORT FORMAT=AUTOMATIC LIST ONEBREAKCOLUMN(ON) CHWRAP(ON)
/VARIABLES=LNAME TENURE SALARY
/BREAK=DIVISION (20)(NOTOTAL)
/SUMMARY=VALIDN (LNAME TENURE) MEAN (SALARY)

 ’Mean Salary for Tenured Members within the Division’
 /BREAK=DEPT
 /SUMMARY=VALIDN (LNAME TENURE) MEAN (SALARY)
 ’Mean Salary for Tenured Members within the Department’.

• This example creates a report with two break variables: DEPARTMENT breaks within
DIVISION.

• The two break variables are placed in a single break column. The column head is the vari-
able label of DIVISION.

OUTFILE Subcommand

OUTFILE directs the report to a file separate from the file used for the rest of the output from
your session. This allows you to print the report without having to delete the extraneous
material that would be present in the output.

• OUTFILE must follow FORMAT and must precede BREAK.

• You can append multiple reports to the same file by naming the same file on the OUTFILE
subcommand for each REPORT command.

1412 REPORT

Figure 1 Page layout for REPORT when ONEBREAKCOLUMN is off
--- top of page --

*************** TITLE ****************

BREAK HEAD BREAK HEAD
COLUMN
HEAD
(VAR)

COLUMN
HEAD
(VAR)

COLUMN
HEAD
(VAR)

COLUMN
HEAD
(VAR)

BREAK A VALUE 1 BREAK B VALUE 1 VALUE VALUE VALUE VALUE
VALUE VALUE VALUE VALUE

VALUE VALUE VALUE VALUE
VALUE VALUE VALUE VALUE

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

BREAK B VALUE 2

VALUE VALUE VALUE VALUE
VALUE VALUE VALUE VALUE

VALUE VALUE VALUE VALUE
VALUE VALUE VALUE VALUE

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

BREAK A VALUE 2 BREAK B VALUE 1 VALUE VALUE VALUE VALUE
VALUE VALUE VALUE VALUE

VALUE VALUE VALUE VALUE
VALUE VALUE VALUE VALUE

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

BREAK B VALUE 2 VALUE VALUE VALUE VALUE

VALUE VALUE VALUE VALUE

VALUE VALUE VALUE VALUE
VALUE VALUE VALUE VALUE

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

SUMMARY TITLE AGG AGG AGG AGG

*************** FOOTNOTE ****************
--- bottom of page ---

| |
Left margin Right margin

LENGTH
TSPACE

CHDSPACE

BRKSPACE

LIST

SUMSPACE

SKIP w/ SUMMARY

SKIP w/ BREAK
BRKSPACE

LIST

SUMSPACE
stats for B=2, A=1

SUMSPACE
stats for A=1

SKIP w/ BREAK

BRKSPACE

LIST

SUMSPACE

SKIP w/ SUMMARY

SKIP w/ BREAK

BRKSPACE

LIST

SUMSPACE

FTSPACE
LENGTH

REPORT 1413

Figure 2 Page layout for REPORT when ONEBREAKCOLUMN is on
--- top of page --

*************** TITLE ****************

BREAK HEAD
COLUMN
HEAD (VAR)

COLUMN
HEAD (VAR)

COLUMN
HEAD (VAR)

COLUMN
HEAD (VAR)

BREAK A VALUE 1

 BREAK B VALUE 1 VALUE

VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

 SUMMARY TITLE

 SUMMARY TITLE

AGG

AGG

AGG

AGG

AGG

AGG

AGG

AGG

 BREAK B VALUE 2 VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

 SUMMARY TITLE

 SUMMARY TITLE

AGG

AGG

AGG

AGG

AGG

AGG

AGG

AGG

SUMMARY TITLE

SUMMARY TITLE

AGG

AGG

AGG

AGG

AGG

AGG

AGG

AGG

BREAK A VALUE 2

 BREAK B VALUE 1 VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

 SUMMARY TITLE

 SUMMARY TITLE

AGG

AGG

AGG

AGG

AGG

AGG

AGG

AGG

 BREAK B VALUE 2 VALUE

VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

 SUMMARY TITLE

 SUMMARY TITLE

AGG

AGG

AGG

AGG

AGG

AGG

AGG

AGG

SUMMARY TITLE

SUMMARY TITLE

AGG

AGG

AGG

AGG

AGG

AGG

AGG

AGG

*************** FOOTNOTE ****************
--- bottom of page ---
| |
Left margin Right margin

LENGTH
TSPACE

CHDSPACE

BRKSPACE

LIST

SUMSPACE

SKIP w/ SUMMARY

SKIP w/ BREAK

BRKSPACE

SUMSPACE
stats for B=2, A=1

SUMSPACE
stats for A=1

SKIP w/ BREAK

BRKSPACE

LIST

SUMSPACE

SKIP w/ BREAK

BRKSPACE

LIST

FTSPACE

LENGTH

stats for B=1, A=2

stats for B=2, A=2

stats for A=2

stats for B=1, A=1

INDENT

1414 REPORT

Example
REPORT FORMAT=AUTOMATIC LIST

/OUTFILE=PRSNLRPT
/VARIABLES=LNAME AGE TENURE JTENURE SALARY
/BREAK=DIVISION
/SUMMARY=MEAN.

REPORT FORMAT=AUTOMATIC
/OUTFILE=PRSNLRPT
/VARIABLES=LNAME AGE TENURE JTENURE SALARY
/BREAK=DIVISION
/SUMMARY=MEAN
/SUMMARY=MIN
/SUMMARY=MAX.

• Both a listing report and a summary report are written to file PRSNLRPT.

VARIABLES Subcommand

The required VARIABLES subcommand names the variables to be listed and summarized in the
report. You can also use VARIABLES to control column titles, column widths, and the contents
of report columns.

• The minimum specification on VARIABLES is a list of report variables. The number of
variables that can be specified is limited by the system page width.

• Each report variable defines a report column. The value of the variable or an aggregate
statistic calculated for the variable is displayed in that variable’s report column.

• Variables are assigned to columns in the order in which they are named on VARIABLES.

• Variables named on BREAK can also be named on VARIABLES.

• When FORMAT=LIST, variables can be stacked in a single column by linking them
with plus signs (+) on the VARIABLES subcommand. If no column heading is speci-
fied, REPORT uses the default heading from the first variable on the list. Only values
from the first variable in the column are used to calculate summaries.

• Optional specifications apply only to the immediately preceding variable or list of vari-
ables implied by the TO keyword. Options can be specified in any order.

• All optional specifications except column headings must be enclosed in parentheses;
column headings must be enclosed in apostrophes or quotation marks.

Column Contents

The following options can be used to specify the contents of the report column for each variable:

(VALUE) Display the values of the variable. This is the default.

(LABEL) Display value labels. If value labels are not defined, values are displayed.

(DUMMY) Display blank spaces. DUMMY defines a report column for a variable that
does not exist in the working data file. Dummy variables are used to control
spacing or to reserve space for statistics computed for other variables. Do not
name an existing variable as a dummy variable.

REPORT 1415

• VALUE and LABEL have no effect unless LIST has been specified on the FORMAT
subcommand.

• When AUTOMATIC is in effect, value labels or string values are centered in the column
based on the length of the longest string or label; numeric values are centered based on
the width of the widest value or summary format. When MANUAL is in effect, value labels
or string values are left-justified in the column and numeric values are right-justified. (See
the OFFSET keyword on p. 1416.)

Column Heading

The following option can be used to specify a heading for the report column:

‘column heading’ Column heading for the preceding variable. The heading must be
enclosed in apostrophes or quotation marks. If no column heading is
specified, the default is the variable label or, if no variable label has
been specified, the variable name.

• To specify multiple-line headings, enclose each line in a set of apostrophes or quotation
marks, using the conventions for strings (see “Command Specification” on p. 4 in
Volume I). The specifications for title lines should be separated by at least one blank.

• Default column headings wrap for as many lines as are required to display the entire label.
If AUTOMATIC is in effect, user-specified column headings appear exactly as specified,
even if the column width must be extended. If MANUAL is in effect, user-specified titles
wrap to fit within the column width.

Column Heading Alignment

The following options can be used to specify how column headings are aligned:

(LEFT) Left-aligned column heading.

(CENTER) Centered column heading.

(RIGHT) Right-aligned column heading.

• If AUTOMATIC is in effect, column headings are centered within their columns by default.
If value labels or string values exceed the width of the longest word in the heading, the
heading is left-justified.

• If MANUAL is in effect, column headings are left-justified for value labels or string values
and right-justified for numeric values by default.

1416 REPORT

Column Format

The following options can be used to specify column width and adjust the position of the
column contents:

(width) Width for the report column. If no width is specified for a variable, REPORT
determines a default width using the criteria described under “Defaults” on
p. 1403. If you specify a width that is not wide enough to display numeric
values, REPORT first rounds decimal digits, then converts to scientific
notation if possible, and then displays asterisks. Value labels or string
values that exceed the width are wrapped.

(OFFSET) Position of the report column contents. The specification is either n or
CENTER specified in parentheses. OFFSET(n) indicates the number of
spaces to offset the contents from the left for value labels or string values,
and from the right for numeric values. OFFSET(CENTER) centers contents
within the center of the column. If AUTOMATIC is in effect, the default is
CENTER. If MANUAL is in effect, the default is 0. Value labels and string
values are left-justified and numeric values are right-justified.

Example
 /VARIABLES=V1 TO V3(LABEL) (15)

V4 V5 (LABEL)(OFFSET (2))(10)
SEP1 (DUMMY) (2) ’’
V6 ’Results using’ "Lieben’s Method" ’of Calculation’

• The width of the columns for variables V1 through V3 is 15 each. Value labels are
displayed for these variables in the case listing.

• The column for variable V4 uses the default width. Values are listed in the case listing.

• Value labels are displayed for variable V5. The column width is 10. Column contents are
offset two spaces from the left.

• SEP1 is a dummy variable. The column width is 2, and there is at least one space on each
side of SEP1. Thus, there are at least four blanks between the columns for V5 and V6.
SEP1 is given a null title to override the default column title SEP1.

• V6 has a three-line title. Its column uses the default width, and values are listed in the case
listing.

STRING Subcommand

STRING creates a temporary string variable by concatenating variables and user-specified
strings. These variables exist only within the REPORT procedure.

• The minimum specification is a name for the string variable followed by a variable name
or a user-specified string enclosed in parentheses.

• The name assigned to the string variable must be unique.

• Any combination of string variables, numeric variables, and user-specified strings can be
used in the parentheses to define the string.

• Keyword TO cannot be used within the parentheses to imply a variable list.

REPORT 1417

• More than one string variable can be defined on STRING.

• If a case has a missing value for a variable within the parentheses, the variable passes the
missing value to the temporary variable without affecting other elements specified.

• A string variable defined in REPORT cannot exceed the system page width.

• String variables defined on STRING can be used on VARIABLES or BREAK.

The following options can be used to specify how components are to be concatenated:

(width) Width of the preceding variable within the string. The default is the dictio-
nary width of the variable. The maximum width for numeric variables within
the string definition is 16. The maximum width for a string variable is the
system page width. If the width specified is less than that required by the
value, numeric values are displayed as asterisks and string values are trun-
cated. If the width exceeds the width of a value, numeric values are padded
with zeros on the left and string values are padded with blanks on the right.

(BLANK) Left-pad values of the preceding numeric variable with blanks. The default
is to left-pad values of numeric variables with zeros. If a numeric variable
has a dollar or comma format, it is automatically left-padded with blanks.

‘literal’ User-specified string. Any combination of characters can be specified within
apostrophes or quotation marks.

Example
 /STRING=JOB1(AVAR NVAR)

 JOB2(AVAR(2) NVAR(3))
 JOB3(AVAR(2) NVAR(BLANK) (4))

• STRING defines three string variables to be used within the report.

• Assume that AVAR is a string variable read from a four-column field using keyword FIXED
on DATA LIST and that NVAR is a computed numeric variable with the default format of
eight columns with two implied decimal places.

• If a case has value KJ for AVAR and value 241 for NVAR, JOB1 displays the value
‘KJ 00241.00’, JOB2 the value ‘KJ241’, and JOB3 the value ‘KJ 241’. If NVAR has the
system-missing value for a case, JOB1 displays the value ‘KJ.’

Example
 /STRING=SOCSEC(S1 ’-’ S2 ’-’ S3)

• STRING concatenates the three variables S1, S2, and S3, each of which contains a segment
of the social security number.

• Hyphens are inserted between the segments when the values of SOCSEC are displayed.

• This example assumes that the variables S1, S2, and S3 were read from three-column,
two-column, and four-column fields respectively, using the keyword FIXED on DATA LIST.
These variables would then have default format widths of 3, 2, and 4 columns and would
not be left-padded with zeros.

1418 REPORT

BREAK Subcommand

BREAK specifies the variables that define the subgroups for the report, or it specifies summary
totals for reports with no subgroups. BREAK also allows you to control the titles, width, and
contents of break columns and to begin a new page for each level of the break variable.

• A break occurs when any one of the variables named on BREAK changes value. Cases
must be sorted by the values of all BREAK variables on all BREAK subcommands.

• The BREAK subcommand must precede the SUMMARY subcommand that defines the
summary line for the break.

• A break column is reserved for each BREAK subcommand if ONEBREAKCOLUMN is OFF
(the default).

• To obtain multiple break levels, specify multiple break variables on a BREAK subcommand.

• If more than one variable is specified on a BREAK subcommand, a single break column is
used. The value or value label for each variable is displayed on a separate line in the order
in which the variables are specified on BREAK. The first variable specified changes most
slowly. The default column width is the longest of the default widths for any of the break
variables.

• To obtain summary totals without any break levels, use keyword TOTAL in parentheses
on BREAK without listing any variables. TOTAL must be specified on the first BREAK
subcommand.

• When MISSING=VAR is specified, user-missing values are displayed in case listings but
are not included in summary statistics. When NONE is specified, user-missing values are
ignored. System-missing values are displayed as missing in case and break listings.

• Optional specifications apply to all variables in the break column and to the break column
as a whole. Options can be specified in any order following the last variable named.

• All optional specifications except column headings must be enclosed in parentheses;
column headings must be enclosed in apostrophes.

Column Contents

The following can be used to specify the contents of the break column:

(VALUE) Display values of the break variables.

(LABEL) Display value labels. If no value labels have been defined, values are displayed.

• The value or label is displayed only once for each break change but it is repeated at the
top of the page in a multiple-page break group.

• When AUTOMATIC is in effect, the default is LABEL; when MANUAL is in effect, the default
is VALUE.

• When AUTOMATIC is in effect, the value or label is centered in the column. When MANUAL is
in effect, value labels and string values are left-justified and numeric values are right-justified.
Keywords OFFSET, ONEBREAKCOLUMN, and INDENT can also affect positioning.

REPORT 1419

Column Heading

The following option specifies headings used for the break column.

‘column heading’ Column heading for the break column. The heading must be included in
apostrophes or quotation marks. The default heading is the variable label of
the break variable or, if no label has been defined, the variable name. If the
break column is defined by more than one variable, the label or name of the
first variable is used. If ONEBREAKCOLUMN is ON, the specified or implied
column heading for the first BREAK subcommand is used.

• To specify multiple-line headings, enclose each line in a set of apostrophes or quotation
marks, following the conventions for strings (see “Command Specification” on p. 4 in
Volume I). Separate the specifications for heading lines with at least one blank.

• Default column headings wrap for as many lines as are required to display the entire label.

• User-specified column headings appear exactly as specified if CHWRAP is OFF (the
default). If CHWRAP is ON, any user-defined line longer than the specified or default
column width is automatically wrapped.

Column Heading Alignment

The following options can be used to specify how column headings are aligned:

(LEFT) Left-aligned column heading.

(CENTER) Centered column heading.

(RIGHT) Right-aligned column heading.

• When AUTOMATIC is in effect, column headings are centered within their columns by de-
fault. If value labels or string values exceed the width of the longest word in the heading,
the heading is left-justified.

• When MANUAL is in effect, column headings are left-justified for value labels or string
values and right-justified for numeric values.

• When ONEBREAKCOLUMN is ON, all column contents are left aligned. Specifications of
CENTER and RIGHT on BREAK are ignored.

Column Format

The following options can be used to format break columns:

(width) Column width for the break column. If no width is specified for a variable,
REPORT determines a default width using the criteria described under
“Defaults” on p. 1403. If ONEBREAKCOLUMN is ON, the column width spec-
ified or implied by the first BREAK subcommand is used. If you specify a
width that is not wide enough to display numeric values, REPORT first
rounds decimal digits, then converts them to scientific notation if possible,
and then displays asterisks. Value labels or string values that exceed the
width are wrapped.

1420 REPORT

(OFFSET) Position of the break column contents. The specification is either n or CENTER
specified in parentheses. OFFSET(n) indicates the number of spaces to offset
the contents from the left for value labels or string values, and from the right
for numeric values. OFFSET(CENTER) centers contents within the column. If
AUTOMATIC is in effect, the default is CENTER. If MANUAL is in effect, the
default is 0: value labels and string values are left-justified and numeric values
are right-justified. If ONEBREAKCOLUMN is ON, the offset is applied along
with the indentation specified on INDENT, always from the left. The specifica-
tion of CENTER on OFFSET is ignored.

(UNDERSCORE) Use underscores below case listings. Case listing columns produced by
FORMAT LIST are underscored before summary statistics are displayed.
You can optionally specify the names of one or more report variables after
UNDERSCORE; only the specified columns are underscored.

(TOTAL) Display the summary statistics requested on the next SUMMARY subcom-
mand for all the cases in the report. TOTAL must be specified on the first
BREAK subcommand and applies only to the next SUMMARY subcommand
specified.

(NOTOTAL) Display summary statistics only for each break. This is the default.

(SKIP(n)) Skip n lines after the last summary line for a break before beginning the next
break. The default for n is 1.

(PAGE) Begin each break on a new page. If RESET is specified on PAGE, the page
counter resets to the PAGE1 setting on the FORMAT subcommand every time
the break value changes for the specified variable. PAGE cannot be specified
for listing reports with no break levels.

(NAME) Display the name of the break variable next to each value or value label of
the break variable. NAME requires enough space for the length of the vari-
able name plus two additional characters (for a colon and a blank space) in
addition to the space needed to display break values or value labels. NAME is
ignored if the break-column width is insufficient.

(NONAME) Suppress the display of break variable names. This is the default.

Example
SORT DIVISION BRANCH DEPT.
REPORT FORMAT=AUTOMATIC MARGINS (1,70) BRKSPACE(-1)

/VARIABLES=SPACE(DUMMY) ’ ’ (4)
SALES ’Annual’ ’Sales’ ’1981’ (15) (OFFSET(2))
EXPENSES ’Annual’ ’Expenses’ ’1981’ (15) (OFFSET(2))

/BREAK=DIVISION
BRANCH (10) (TOTAL) (OFFSET(1))

/SUMMARY=MEAN

/BREAK=DEPT ’Department’ (10)
/SUMMARY=MEAN.

REPORT 1421

• This example creates a report with three break variables. BRANCH breaks within values
of DIVISION, and DEPT breaks within values of BRANCH.

• FORMAT sets margins to a maximum of 70 columns and requests that summary lines be
displayed on the same line as break values. Because LIST is not specified on FORMAT,
only summary statistics are displayed.

• VARIABLES defines three report columns, each occupied by a report variable: SPACE,
SALES, and EXPENSES.

• The variable SPACE is a dummy variable that exists only within REPORT. It has a null
heading and a width of 4. It is used as a space holder to separate the break columns from
the report columns.

• SALES has a three-line heading and a width of 15. The values of SALES are offset two
spaces from the right.

• EXPENSES is the third report variable and has the same width and offset specifications as
SALES.

• The leftmost column in the report is reserved for the first two break variables, DIVISION and
BRANCH. Value labels are displayed, since this is the default for AUTOMATIC. The break
column has a width of 10 and the value labels are offset one space from the left. Value labels
more than nine characters long are wrapped. The default column heading is used. TOTAL
requests a summary line at the end of the report showing the mean of all cases in the report.

• The first SUMMARY subcommand displays the mean of each report variable in its report
column. This line is displayed each time the value of DIVISION or BRANCH changes.

• The third break variable, DEPT, occupies the second column from the left in the report.
The break column has a width of 10 and has a one-line heading. Value labels are displayed
in the break column, and those exceeding 10 characters are wrapped.

• The second SUMMARY subcommand displays the mean for each report variable when the
value of DEPT changes.

SUMMARY Subcommand

SUMMARY calculates a wide range of aggregate and composite statistics.

• SUMMARY must be specified if LIST is not specified on FORMAT.

• The minimum specification is an aggregate or a composite function and its arguments.
This must be the first specification on SUMMARY.

• Each SUMMARY subcommand following a BREAK subcommand specifies a new summary
line.

• The default location of the summary title is the column of the break variable to which the
summary applies. When more than one function is named on SUMMARY, the default
summary title is that of the function named first. Both the title and its default column loca-
tion can be altered (see “Summary Titles” on p. 1425).

• The default format can be altered for any function (see “Summary Print Formats” on p. 1426).

• SUMMARY subcommands apply only to the preceding BREAK subcommand. If there is no
SUMMARY subcommand after a BREAK subcommand, no statistics are displayed for that
break level.

1422 REPORT

• To use the summary specifications from a previous BREAK subcommand for the current
BREAK subcommand, specify keyword PREVIOUS on SUMMARY. (See “Other Summary
Keywords” on p. 1428.)

• Summary statistics are displayed in report columns. With aggregate functions, you can
compute summary statistics for all report variables or for a subset (see “Aggregate Func-
tions” below). With composite functions, you can compute summaries for all or a subset
of report variables and you have additional control over the placement of summary statis-
tics in particular report columns (see “Composite Functions” on p. 1424).

• Multiple summary statistics requested on one SUMMARY subcommand are all displayed
on the same line. More than one function can be specified on SUMMARY as long as you
do not attempt to place two results in the same report column (REPORT will not be
executed if you do). To place results of more than one function in the same report column,
use multiple SUMMARY subcommands.

• Any composite and aggregate functions except FREQUENCY and PERCENT can be spec-
ified on the same summary line.

• To insert blank lines between summaries when more than one summary line is requested
for a break, use keyword SKIP followed by the number of lines to skip in parentheses. The
default is 0. (See “Other Summary Keywords” on p. 1428.)

Aggregate Functions

Use the aggregate functions to request descriptive statistics for report variables.

• If no variable names are specified as arguments to an aggregate function, the statistic is
calculated for all variables named on VARIABLES (all report variables).

• To request an aggregate function for a subset of report variables, specify the variables in
parentheses after the function keyword.

• All variables specified for an aggregate function must have been named on VARIABLES.

• Keyword TO cannot be used to specify a list of variables for an aggregate function.

• The result of an aggregate function is always displayed in the report column reserved for
the variable for which the function was calculated.

• To use several aggregate functions for the same report variable, specify multiple SUMMARY
subcommands. The results are displayed on different summary lines.

• The aggregate functions FREQUENCY and PERCENT have special display formats and
cannot be placed on the same summary line with other aggregate or composite functions.
They can be specified only once per SUMMARY subcommand.

• Aggregate functions use only cases with valid values.

VALIDN Valid number of cases. This is the only function available for string
variables.

SUM Sum of values.

MIN Minimum value.

MAX Maximum value.

REPORT 1423

MEAN Mean.

STDDEV Standard deviation. Aliases are SD and STDEV.

VARIANCE Variance.

KURTOSIS Kurtosis.

SKEWNESS Skewness.

MEDIAN(min,max) Median value for values within the range. MEDIAN sets up integer-
valued bins for counting all values in the specified range. Noninteger
values are truncated when the median is calculated.

MODE(min,max) Modal value for values within the range. MODE sets up integer-valued
bins for counting all values in the specified range. Noninteger values
are truncated when the mode is calculated.

PGT(n) Percentage of cases with values greater than n. Alias PCGT.

PLT(n) Percentage of cases with values less than n. Alias PCLT.

PIN(min,max) Percentage of cases within the inclusive value range specified. Alias
PCIN.

FREQUENCY(min,max) Frequency counts for values within the inclusive range. FREQUENCY
sets up integer-valued bins for counting all values in the specified range. Nonin-
teger values are truncated when the frequency is computed. FREQUENCY
cannot be mixed with other aggregate statistics on a summary line.

PERCENT(min,max) Percentages for values within the inclusive range. PERCENT sets up
integer-valued bins for counting all values in the specified range.
Noninteger values are truncated when the percentages are computed.
PERCENT cannot be mixed with other aggregate statistics on a
summary line.

Example
SORT CASES BY BVAR AVAR.
REPORT FORMAT=AUTOMATIC LIST /VARIABLES=XVAR YVAR ZVAR

/BREAK=BVAR
/SUMMARY=SUM
/SUMMARY=MEAN (XVAR YVAR ZVAR)
/SUMMARY=VALIDN(XVAR)

/BREAK=AVAR
/SUMMARY=PREVIOUS.

• FORMAT requests a case listing, and VARIABLES establishes a report column for variables
XVAR, YVAR, and ZVAR. The report columns have default widths and titles.

• Both break variables, BVAR and AVAR, have default widths and headings.

• Every time the value of BVAR changes, three summary lines are displayed. The first line
contains the sums for variables XVAR, YVAR, and ZVAR. The second line contains the

1424 REPORT

means of all three variables. The third line displays the number of valid cases for XVAR
in the report column for XVAR.

• Every time the value of AVAR changes within each value of BVAR, the three summary
lines requested for BVAR are displayed. These summary lines are based on cases with the
current values of BVAR and AVAR.

Example
SORT CASES BY DEPT.
REPORT FORMAT=AUTOMATIC

/VARIABLES=WAGE BONUS TENURE
/BREAK=DEPT (23)
/SUMMARY=SUM(WAGE BONUS) MEAN(TENURE) ’Sum Income: Mean Tenure’.

• SUMMARY defines a summary line consisting of the sums of WAGE and BONUS and the
mean of TENURE. The result of each aggregate function is displayed in the report column
of the variable for which the function is calculated.

• A title is assigned to the summary line. A width of 23 is defined for the break column to
accommodate the title for the summary line.

Composite Functions

Use composite functions to obtain statistics based on aggregated statistics, to place a summary
statistic in a column other than that of the report variable for which it was calculated, or to
manipulate variables not named on VARIABLES.

• Composite functions can be computed for the following aggregate functions: VALIDN,
SUM, MIN, MAX, MEAN, STDEV, VARIANCE, KURTOSIS, SKEWNESS, PGT, PLT, and PIN.
Constants can also be arguments to composite functions.

• When used within composite functions, aggregate functions can have only one variable
as an argument.

• A composite function and its arguments cannot be separated by other SUMMARY
specifications.

• The result of a composite function can be placed in any report column, including columns
of dummy or string variables, by specifying a target column. To specify a target column,
enclose the variable name of the column in parentheses after the composite function and its
arguments. By default, the results of a composite function are placed in the report column
of the first variable specified on the composite function that is also specified on VARIABLES.

• The format for the result of a composite function can be specified in parentheses after the
name of the column location, within the parentheses that enclose the column-location
specification.

DIVIDE(arg1 arg2 [factor]) Divide the first argument by the second and then multiply the result
by the factor if it is specified.

MULTIPLY(arg1 ... argn) Multiply the arguments.

PCT(arg1 arg2) The percentage of the first argument over the second.

SUBTRACT(arg1 arg2) Subtract the second argument from the first.

REPORT 1425

ADD(arg1 ... argn) Add the arguments.

GREAT(arg1 ... argn) The maximum of the arguments.

LEAST(arg1 ... argn) The minimum of the arguments.

AVERAGE(arg1 ... argn) The average of the arguments.

Example
SORT CASES BY DEPT.
REPORT FORMAT=AUTOMATIC BRKSPACE(-1)

/VARIABLES=WAGE BONUS SPACE1 (DUMMY) ’’ BNFT1 BNFT2 SPACE2 (DUMMY)
’’

/BREAK=DEPT

/SUMMARY=MEAN(WAGE BONUS BNFT1 BNFT2)
ADD(VALIDN(WAGE)) (SPACE2)

/SUMMARY=ADD(SUM(WAGE) SUM(BONUS))
ADD(SUM(BNFT1) SUM(BNFT2)) ’Totals’ SKIP(1)

/SUMMARY=DIVIDE(MEAN(WAGE) MEAN(BONUS)) (SPACE1 (COMMA)(2))
DIVIDE(MEAN(BNFT1) MEAN(BNFT2)) (SPACE2 (COMMA)(2)) ’Ratios’
SKIP(1).

• VARIABLES defines six report columns. The columns for WAGE, BONUS, BNFT1, and
BNFT2 contain aggregate statistics based on those variables. The variables SPACE1 and
SPACE2 are dummy variables that are created for use as space holders; each is given a
blank heading to suppress the default column heading.

• The first SUMMARY computes the means of the variables WAGE, BONUS, BNFT1, and
BNFT2. Because BRKSPACE=–1, this summary line will be placed on the same line as the
break value and will have no summary title. The means are displayed in the report column
for each variable. SUMMARY also computes the valid number of cases for WAGE and places
the result in the SPACE2 column.

• The second SUMMARY adds the sum of WAGE to the sum of BONUS. Since no location is
specified, the result is displayed in the WAGE column. In addition, the sum of BNFT1 is
added to the sum of BNFT2 and the result is placed in the BNFT1 column. The title for the
summary line is Totals. One line is skipped before the summary line requested by this
SUMMARY subcommand is displayed.

• The third summary line divides the mean of WAGE by the mean of BONUS and places the
result in SPACE1. The ratio of the mean of BNFT1 to the mean of BNFT2 is displayed in
the SPACE2 column. The results are displayed with commas and two decimal places. The
title for the summary line is Ratios. One line is skipped before the summary line requested
by this SUMMARY subcommand is displayed.

Summary Titles

• You can specify a summary title enclosed in apostrophes or quotation marks, following
the conventions for strings (see “Command Specification” on p. 4 in Volume I). Table 2
shows the default titles.

1426 REPORT

• The summary title must be specified after the first function and its arguments. It cannot
separate any function from its arguments.

• A summary title can be only one line long.

• A summary title wider than the break column extends into the next break column to the
right. If the title is wider than all of the available break columns, it is truncated.

• Only one summary title can be specified per summary line. If more than one is specified,
the last is used.

• The summary title is left- or right-justified depending upon whether the break title is left-
or right-justified.

• The default location for the summary title is the column of the BREAK variable to which
the summary applies. With multiple breaks, you can override the default placement of the
title by specifying, in parentheses following the title, the number of the break column in
which you want the summary title to be displayed.

• In a report with no break levels, REPORT displays the summary title above the summary
line at the left margin.

Summary Print Formats

All functions have default formats that are used to display results (see Table 3). You can over-
ride these defaults by specifying a format keyword and/or the number of decimal places.
• Any printable formats or the PLAIN keyword can be specified. Format specifications must

be enclosed in parentheses.

Table 2 Default title for summary lines

Function Title

VALIDN N
VARIANCE Variance
SUM Sum
MEAN Mean
STDDEV StdDev
MIN Minimum
MAX Maximum
SKEWNESS Skewness
KURTOSIS Kurtosis
PGT(n) >n
PLT(n) <n
PIN(min,max) In n1 to n2
FREQUENCY(min,max) Total
PERCENT(min,max) Total
MEDIAN(min,max) Median
MODE(min,max) Mode

REPORT 1427

• For aggregate functions, the format and/or number of decimal places is specified after the
variable name, within the parentheses that enclose the variable name. The variable must
be explicitly named as an argument.

• For composite functions, the format and/or number of decimal places is specified after the
variable name of the column location, within the parentheses that enclose the variable
name. The column location must be explicitly specified.

• If the report column is wide enough, SUM, MEAN, STDDEV, MIN, MAX, MEDIAN, MODE,
and VARIANCE use DOLLAR or COMMA format, if a DOLLAR or COMMA format has been
declared for the variable on either the FORMATS or PRINT FORMATS command.

• If the column is not wide enough to display the decimal digits for a given function,
REPORT displays fewer decimal places. If the column is not wide enough to display
the integer portion of the number, REPORT uses scientific notation if possible, or, if
not, displays asterisks.

• An exact value of 0 is displayed with one 0 to the left of the decimal point and as many 0
digits to the right as specified by the format. A number less than 1 in absolute value is
displayed without a 0 to the left of the decimal point, except with DOLLAR and COMMA
formats.

(PLAIN) Uses the setting on SET DECIMAL for the thousands separator and decimal delim-
iter. PLAIN overrides dictionary formats. This is the default for all functions except
SUM, MEAN, STDDEV, MIN, MAX, MEDIAN, MODE, and VARIANCE. For these func-
tions, the default is the dictionary format of the variable for which the function is
computed.

(d) Number of decimal places.

Example
 /SUMMARY=MEAN(INCOME (DOLLAR)(2))

 ADD(SUM(INCOME)SUM(WEALTH)) (WEALTH(DOLLAR(2))

• SUMMARY displays the mean of INCOME with dollar format and two decimal places. The
result is displayed in the INCOME column.

• The sums of INCOME and WEALTH are added, and the result is displayed in the WEALTH
column with dollar format and two decimal places.

Table 3 Default print formats for functions

Function Format type Width Decimal places

VALIDN F 5 0
SUM Dictionary Dictionary + 2 Dictionary
MEAN Dictionary Dictionary Dictionary
STDDEV Dictionary Dictionary Dictionary
VARIANCE Dictionary Dictionary Dictionary
MIN Dictionary Dictionary Dictionary
MAX Dictionary Dictionary Dictionary
SKEWNESS F 5 2

1428 REPORT

Where DATE formats are specified, functions with the dictionary format type
display the DATE formats, using the column width as the display width.

Other Summary Keywords

The following additional keywords can be specified on SUMMARY. These keywords are not
enclosed in parentheses.

SKIP(n) Blank lines before the summary line. The default is 0. If SKIP is specified for
the first SUMMARY subcommand for a BREAK, it skips the specified lines
after skipping the number of lines specified for BRKSPACE on FORMAT.
Similarly, with case listings SKIP skips n lines after the blank line at the end
of the listing.

PREVIOUS(n) Use the SUMMARY subcommands specified for the nth BREAK. If n is not
specified, PREVIOUS refers to the set of SUMMARY subcommands for the
previous BREAK. If an integer is specified, the SUMMARY subcommands
from the nth BREAK are used. If PREVIOUS is specified, no other specifica-
tion can be used on that SUMMARY subcommand.

TITLE and FOOTNOTE Subcommands

TITLE and FOOTNOTE provide titles and footnotes for the report.

• TITLE and FOOTNOTE are optional and can be placed anywhere after FORMAT except
between the BREAK and SUMMARY subcommands.

KURTOSIS F 5 2
PGT PCT 6 1
PLT PCT 6 1
PIN PCT 6 1
MEDIAN Dictionary Dictionary Dictionary
MODE Dictionary Dictionary Dictionary
PERCENT F 6 1
FREQUENCY F 5 0
DIVIDE F Dictionary 0
PCT PCT 6 2
SUBTRACT F Dictionary 0
ADD F Dictionary 0
GREAT F Dictionary 0
LEAST F Dictionary 0
AVERAGE F Dictionary 0
MULTIPLY F Dictionary 0

Table 3 Default print formats for functions (Continued)

Function Format type Width Decimal places

REPORT 1429

• The specification on TITLE or FOOTNOTE is the title or footnote in apostrophes or quota-
tion marks. To specify a multiple-line title or footnote, enclose each line in apostrophes
or quotation marks and separate the specifications for each line by at least one blank.

• The default REPORT title is the title specified on the TITLE command. If there is no TITLE
command specified in your session, the default REPORT title is the first line of the header.

• Titles begin on the first line of the report page. Footnotes end on the last line of the report page.
• Titles and footnotes are repeated on each page of a multiple-page report.

• The positional keywords LEFT, CENTER, and RIGHT can each be specified once. The
default is CENTER.

• If the total width needed for the combined titles or footnotes for a line exceeds the page
width, REPORT generates an error message.

LEFT Left-justify titles or footnotes within the report page margins.

RIGHT Right-justify titles or footnotes within the report page margins.

CENTER Center titles and footnotes within the report page width.

The following can be specified as part of the title or footnote.

)PAGE Display the page number right-justified in a five-character field.

)DATE Display the current date in the form dd/mmm/yy, right-justified in a nine-
character field.

)var Display this variable’s value label at this position. If you specify a variable
that has no value label, the value is displayed, formatted according to its print
format. You cannot specify a scratch or system variable or a variable created
with the STRING subcommand. If you want to use a variable named DATE or
PAGE in the file, change the variable’s name with the RENAME VARIABLES
command before you use it on the TITLE or FOOTNOTE subcommands, to
avoid confusion with the)PAGE and)DATE keywords.

•)PAGE,)DATE, and)var are specified within apostrophes or quotation marks and can be
mixed with string segments within the apostrophes or quotation marks.

• A variable specified on TITLE or FOOTNOTE must be defined in the working data file, but
does not need to be included as a column on the report.

• One label or value from each variable specified on TITLE or FOOTNOTE is displayed on
every page of the report. If a new page starts with a case listing, REPORT takes the value
label from the first case listed. If a new page starts with a BREAK line, REPORT takes the
value label from the first case of the new break group. If a new page starts with a summary
line, REPORT takes the value label from the last case of the break group being summarized.

Example
 /TITLE=LEFT ’Personnel Report’ ’Prepared on)DATE’

RIGHT ’Page:)PAGE’

• TITLE specifies two lines for a left-justified title and one line for a right-justified title.
These titles are displayed at the top of each page of the report.

• The second line of the left-justified title contains the date on which the report was processed.

1430 REPORT

• The right-justified title displays the page number following the string Page: on the same
line as the first line of the left-justified title.

MISSING Subcommand

MISSING controls the treatment of cases with missing values.

• MISSING specifications apply to variables named on VARIABLES and SUMMARY and to
strings created with the STRING subcommand.

• Missing-value specifications are ignored for variables named on BREAK when
MISSING=VAR or NONE. There is one break category for system-missing values and one
for each user-missing value.

• The character used to indicate missing values is controlled by the FORMAT subcommand.

VAR Missing values are treated separately for each variable. Missing
values are displayed in case listings but are not included in the calcu-
lation of summary statistics on a function-by-function basis. This is
the default.

NONE User-missing values are treated as valid values. This applies to all
variables named on VARIABLES.

LIST[([varlist][n])] Cases with the specified number of missing values across the specified
list of variables are not used. The variable list and n are specified in
parentheses. If n is not specified, the default is 1. If no variables are
specified, all variables named on VARIABLES are assumed.

Example
 /MISSING= LIST (XVAR,YVAR,ZVAR 2)

• Any case with two or more missing values across the variables XVAR, YVAR, and ZVAR is
omitted from the report.

1431

REREAD

REREAD [FILE=file]
 [COLUMN=expression]

Example
INPUT PROGRAM.
DATA LIST /KIND 10-14 (A).

DO IF (KIND EQ ’FORD’).
REREAD.
DATA LIST /PARTNO 1-2 PRICE 3-6 (DOLLAR,2) QUANTITY 7-9.
END CASE.

ELSE IF (KIND EQ ’CHEVY’).
REREAD.
DATA LIST /PARTNO 1-2 PRICE 15-18 (DOLLAR,2) QUANTITY 19-21.
END CASE.
END IF.

END INPUT PROGRAM.

BEGIN DATA
111295100FORD
11 CHEVY 295015
END DATA.

Overview

REREAD instructs the program to reread a record in the data. It is available only within an
INPUT PROGRAM structure and is generally used to define data using information obtained
from a previous reading of the record. REREAD is usually specified within a conditional
structure, such as DO IF—END IF, and is followed by a DATA LIST command. When it
receives control for a case, REREAD places the pointer back to the column specified for the
current case and begins reading data as defined by the DATA LIST command that follows.

Options

Data Source. You can use inline data or data from an external file specified on the FILE
subcommand. Using external files allows you to open multiple files and merge data.

Beginning Column. You can specify a beginning column other than column 1 using the
COLUMN subcommand.

Basic Specification

The basic specification is the command keyword REREAD. The program rereads the
current case according to the data definitions specified on the following DATA LIST.

1432 REREAD

Subcommand Order

Subcommands can be specified in any order.

Syntax Rules

• REREAD is available only within an INPUT PROGRAM structure.

• Multiple REREAD commands can be used within the input program. Each must be followed
by an associated DATA LIST command.

Operations

• REREAD causes the next DATA LIST command to reread the most recently processed
record in the specified file.

• When it receives control for a case, REREAD places the pointer back to column 1 for
the current case and begins reading data as defined by the DATA LIST that follows. If the
COLUMN subcommand is specified, the pointer begins reading in the specified column
and uses it as column 1 for data definition.

• REREAD can be used to read part of a record in FIXED format and the remainder in LIST
format. Mixing FIXED and FREE formats yields unpredictable results.

• Multiple REREAD commands specified without an intervening DATA LIST do not have a
cumulative effect. All but the last are ignored.

Example

INPUT PROGRAM.
DATA LIST /PARTNO 1-2 KIND 10-14 (A).

DO IF (KIND EQ ’FORD’).
REREAD.
DATA LIST /PRICE 3-6 (DOLLAR,2) QUANTITY 7-9.
END CASE.

ELSE IF (KIND EQ ’CHEVY’).
REREAD.
DATA LIST /PRICE 15-18 (DOLLAR,2) QUANTITY 19-21.
END CASE.
END IF.
END INPUT PROGRAM.

BEGIN DATA
111295100FORD CHAPMAN AUTO SALES
121199005VW MIDWEST VOLKSWAGEN SALES
11 395025FORD BETTER USED CARS
11 CHEVY 195005 HUFFMAN SALES & SERVICE
11 VW 595020 MIDWEST VOLKSWAGEN SALES
11 CHEVY 295015 SAM’S AUTO REPAIR
12 CHEVY 210 20 LONGFELLOW CHEVROLET
9555032 VW HYDE PARK IMPORTS
END DATA.
LIST.

REREAD 1433

• Data are extracted from an inventory of automobile parts. The automobile part number
always appears in columns 1 and 2, and the automobile type always appears in columns
10 through 14. The location of other information such as price and quantity depends on
both the part number and the type of automobile.

• The first DATA LIST extracts the part number and type of automobile.

• Depending on the information from the first DATA LIST, the records are reread using one
of two DATA LIST commands, pulling the price and quantity from different places.

• The two END CASE commands limit the working data file to only those cases with part
11 and automobile type Ford or Chevrolet. Without the END CASE commands, cases
would be created for other part numbers and automobile types, with missing values for
price, quantity, and buyer.

The LIST output is shown in Figure 1.

Example

* Multiple REREAD commands for the same record.

INPUT PROGRAM.
DATA LIST NOTABLE/ CDIMAGE 1-20(A).
REREAD COLUMN = 6. /* A, C, and E are in column 6
REREAD COLUMN = 11. /* B, D, and F are in column 11
DATA LIST NOTABLE/ INFO 1(A).
END INPUT PROGRAM.
LIST.
BEGIN DATA
1 A B
2 C D
3 E F
END DATA.

• Multiple REREAD commands are used without an intervening DATA LIST. Only the last
one is used. Thus, the starting column comes from the last REREAD specified and the
pointer is reset to column 11.

• Figure 2 shows the results from the LIST command.

Figure 1 Listed information for part 11
PARTNO KIND PRICE QUANTITY

11 FORD $12.95 100
11 FORD $3.95 25
11 CHEVY $1.95 5
11 CHEVY $2.95 15

Figure 2 Listed information after multiple REREAD commands

CDIMAGE INFO

1 A B B
2 C D D
3 E F F

1434 REREAD

FILE Subcommand

FILE specifies an external raw data file from which the next DATA LIST command reads data.

• The default file is the file specified on the immediately preceding DATA LIST command.

• If the file specified on FILE is not the default file, the same file must be specified on the
next DATA LIST. Otherwise, the FILE subcommand is ignored and the DATA LIST command
reads the next record from the file specified on it or, if no file is specified, from the file
specified on the previous DATA LIST command.

Example
INPUT PROGRAM.
DATA LIST FILE=UPDATE END=#EOF NOTABLE
 /#ID 1-3. /*Get rep ID in new sales file.
DATA LIST FILE = SALESREP NOTABLE
 /ID 1-3 SALES 4-11(F,2)
 NEWSALE 12-19(F,2). /*Get rep record from master file.

LOOP IF #EOF OR (#ID GT ID). /*If UPDATE ends or no new sales made.
+ COMPUTE NEWSALE = 0. /*Set NEWSALE to 0
+ END CASE. /*Build a case.
+ DATA LIST FILE = SALESREP NOTABLE
 /ID 1-3 SALES 4-11(F,2)
 NEWSALE 12-19(F,2). /*Continue reading masterfile.
END LOOP

DO IF NOT #EOF. /*If new sales made.
+ REREAD FILE=UPDATE COLUMN = 4. /*Read new sales from UPDATE.
+ DATA LIST FILE=UPDATE
 /NEWSALE 1-8(F,2).
+ COMPUTE SALES=SALES+NEWSALE. /*Update master file.
END IF.
END CASE. /*Build a case.
END INPUT PROGRAM.

LIST.

• This example uses REREAD to merge two raw data files (SALESREP and UPDATE).
• Both files are sorted by sales representative ID number. The UPDATE file contains

only records for sales representatives who have made new sales, with variables ID and
NEWSALE. The master file SALESREP contains records for all sales representatives,
with variables SALES (which contains year-to-date sales) and NEWSALE (which
contains the update values each time the file is updated).

• If a sales representative has made no new sales, there is no matching ID in the UPDATE
file. When UPDATE is exhausted or when the ID’s in the two files do not match, the loop
structure causes the program to build a case with NEWSALE equal to 0 and then continue
reading the master file.

• When the ID’s match (and the UPDATE file is not yet exhausted), the REREAD command
is executed. The following DATA LIST rereads the record in UPDATE that matches the ID
variable. NEWSALE is read from the UPDATE file starting from column 4 and SALES is
updated. Note that the following DATA LIST specifies the same file.

REREAD 1435

• When the updated base is built, the program returns to the first DATA LIST command in
the input program and reads the next ID from the UPDATE file. If the UPDATE file is
exhausted (#EOF=1), the loop keeps reading records from the master file until it reaches
the end of the file.

• The same task can be accomplished using MATCH FILES. With MATCH FILES, the raw data
must be read and saved as SPSS-format data files first.

COLUMN Subcommand

COLUMN specifies a beginning column for the REREAD command to read data. The default
is column 1. You can specify a numeric expression for the column.

Example
INPUT PROGRAM.
DATA LIST /KIND 10-14 (A).
COMPUTE #COL=1.
IF (KIND EQ ’CHEVY’) #COL=13.

DO IF (KIND EQ ’CHEVY’ OR KIND EQ ’FORD’).
REREAD COLUMN #COL.
DATA LIST /PRICE 3-6 (DOLLAR,2) QUANTITY 7-9.
END CASE.
END IF.
END INPUT PROGRAM.
BEGIN DATA
111295100FORD CHAPMAN AUTO SALES
121199005VW MIDWEST VOLKSWAGEN SALES
11 395025FORD BETTER USED CARS
11 CHEVY 195005 HUFFMAN SALES & SERVICE
11 VW 595020 MIDWEST VOLKSWAGEN SALES
11 CHEVY 295015 SAM’S AUTO REPAIR
12 CHEVY 210 20 LONGFELLOW CHEVROLET
9555032 VW HYDE PARK IMPORTS
END DATA.
LIST.

• The task in this example is to read PRICE and QUANTITY for Chevrolets and Fords only.
A scratch variable is created to indicate the starting column positions for PRICE and
QUANTITY, and a single DATA LIST command is used to read data for both types of
automobiles.

• Scratch variable #COL is set to 13 for Chevrolets and 1 for all other automobiles. For
Fords, the data begin in column 1. Variable PRICE is read from columns 3–6 and
QUANTITY is read from columns 7–9. When the record is a Chevrolet, the data begins
in column 13. Variable PRICE is read from columns 15–18 (15 is 3, 16 is 4, and so
forth), and QUANTITY is read from columns 19–21.

1436 REREAD

Example
* Reading both FIXED and LIST input with REREAD.

INPUT PROGRAM.
DATA LIST NOTABLE FIXED/ A 1-14(A). /*Read the FIXED portion
REREAD COLUMN = 15.
DATA LIST LIST/ X Y Z. /*Read the LIST portion
END INPUT PROGRAM.

* The value 1 on the first record is in column 15.

LIST.
BEGIN DATA
FIRST RECORD 1 2 3 -1 -2 -3
NUMBER 2 4 5
THE THIRD 6 7 8
#4
FIFTH AND LAST9 10 11
END DATA.

• Columns 1–14 are read in FIXED format. REREAD then resets the pointer to column 15.
Thus, beginning in column 15, values are read in LIST format.

• The second DATA LIST specifies only three variables. Thus, the values –1, –2, and –3 on
the first record are not read.

• The program generates a warning for the missing value on record 2 and a second warning
for the three missing values on record 4.

• On the fifth and last record there is no delimiter between value LAST and value 9. REREAD
can still read the 9 in LIST format.

1437

RESTORE

RESTORE

Overview

RESTORE restores SET specifications that were stored by a previous PRESERVE
command. RESTORE and PRESERVE are especially useful when using the macro facility.
PRESERVE—RESTORE sequences can be nested up to five levels.

Basic Specification

The only specification is the command keyword. RESTORE has no additional specifications.

Example

GET FILE=PRSNNL.
FREQUENCIES VAR=DIVISION /STATISTICS=ALL.
PRESERVE.
SET XSORT=NO WIDTH=90 UNDEFINED=NOWARN BLANKS=000 CASE=UPLOW.
SORT CASES BY DIVISION.
REPORT FORMAT=AUTO LIST /VARS=LNAME FNAME DEPT SOCSEC SALARY

/BREAK=DIVISION /SUMMARY=MEAN.
RESTORE.

• GET reads SPSS-format data file PRSNNL.

• FREQUENCIES requests a frequency table and all statistics for variable DIVISION.

• PRESERVE stores all current SET specifications.
• SET changes several subcommand settings.

• SORT sorts cases in preparation for a report. Because SET XSORT=NO, the sort program
is not used to sort cases; another sort program must be available.

• REPORT requests a report organized by variable DIVISION.

• RESTORE reestablishes all the SET specifications that were in effect when PRESERVE
was specified.

1438

RMV

RMV new variables={LINT (varlist) }
 {MEAN (varlist [{,2 }]) }
 { {,n } }
 { {ALL} }
 {MEDIAN (varlist [{,2 }])}
 { {,n } }
 { {ALL} }
 {SMEAN (varlist) }
 {TREND (varlist) }

 [/new variables=function (varlist [,span])]

Function keywords:

Example
RMV NEWVAR1=LINT(OLDVAR1).

Overview

RMV produces new variables by copying existing variables and replacing any system- or
user-missing values with estimates computed by one of several methods. You can also use
RMV to replace the values of existing variables. The estimated values are computed from
valid data in the existing variables. The new or revised variables can be used in any proce-
dure and can be saved in an SPSS-format data file.

Basic Specification

The basic specification is one or more new variable names, an equals sign, a function, and
an equal number of existing variables. RMV displays a list of the new variables, the number
of missing values replaced, the case numbers of the first and last nonmissing cases, the
number of valid cases, and the function used to produce the variables.

Syntax Rules

• The existing variables (and span, if specified) must be enclosed in parentheses.

• The equals sign is required.

• You can specify more than one equation on RMV.

LINT Linear interpolation
MEAN Mean of surrounding values
MEDIAN Median of surrounding values
SMEAN Variable mean
TREND Linear trend at that point

RMV 1439

• Equations are separated by slashes.

• You can specify only one function per equation.

• You can create more than one new variable per equation by specifying more than one new
variable name on the left and an equal number of existing variables on the right.

Operations

• Each new variable is added to the working data file.

• If the new variable named already exists, its values are replaced.

• If the new variable named does not already exist, it is created.
• If the same variable is named on both sides of the equation, the new variable will replace

the existing variable. Valid values from the existing variable are copied into the new vari-
able, and missing values are replaced with estimates.

• Variables are created in the order in which they are specified on the RMV command.

• If multiple variables are created on a single equation, the first new variable is based on
the first existing variable, the second new variable is based on the second existing vari-
able, and so forth.

• RMV automatically generates a variable label for each new variable describing the func-
tion and variable used to create it and the date and time of creation.

• The format of a new variable depends on the function specified and on the format of the
existing variable.

• RMV honors the TSET MISSING setting that is currently in effect.
• RMV does not honor the USE command.

Limitations

• Maximum 1 function per equation.

• There is no limit on the number of variables created by an equation.

• There is no limit on the number of equations per RMV command.

LINT Function

LINT replaces missing values using linear interpolation. The last valid value before the
missing value and the first valid value after the missing value are used for the interpolation.

• The only specification on LINT is a variable or variable list in parentheses.

• LINT will not replace missing values at the endpoints of variables.

Example
RMV NEWVAR1=LINT(OLDVAR1).

• This example produces a new variable called NEWVAR1.

1440 RMV

• NEWVAR1 will have the same values as OLDVAR1 but with missing values replaced by
linear interpolation.

MEAN Function

MEAN replaces missing values with the mean of valid surrounding values. The number of
surrounding values used to compute the mean depends on the span.

• The specification on MEAN is a variable or variable list and a span, in parentheses.
• The span specification is optional and can be any positive integer or keyword ALL.

• A span of n uses n valid cases before and after the missing value.

• If span is not specified, it defaults to 2.

• Keyword ALL computes the mean of all valid values.

• MEAN will not replace missing values if there are not enough valid surrounding cases to
satisfy the span specification.

Example
RMV B=MEAN(A,3).

• This example produces a new variable called B.

• B will have the same values as variable A but with missing values replaced by means of
valid surrounding values.

• Each mean is based on 6 values, that is, the 3 nearest valid values on each side of the
missing value.

MEDIAN Function

MEDIAN replaces missing values with the median of valid surrounding values. The number
of surrounding values used to compute the median depends on the span.

• The specification on MEDIAN is a variable or variable list and a span, in parentheses.

• The span specification is optional and can be any positive integer or keyword ALL.
• A span of n uses n valid cases before and after the missing value.

• If span is not specified, it defaults to 2.

• Keyword ALL computes the median of all valid values.

• MEDIAN will not replace missing values if there are not enough valid surrounding cases
to satisfy the span specification.

Example
RMV B=MEDIAN(A,3).

• This example produces a new variable called B.

• B will have the same values as A but with missing values replaced by medians of valid
surrounding values.

RMV 1441

• Each median is based on 6 values, that is, the 3 nearest valid values on each side of the
missing value.

SMEAN Function

SMEAN replaces missing values in the new variable with the variable mean.

• The only specification on SMEAN is a variable or variable list in parentheses.

• The SMEAN function is equivalent to the MEAN function with a span specification of ALL.

Example
RMV VAR1 TO VAR4=SMEAN(VARA VARB VARC VARD).

• Four new variables (VAR1, VAR2, VAR3, and VAR4) are created.

• VAR1 copies the values of VARA, VAR2 copies VARB, VAR3 copies VARC, and VAR4
copies VARD. Any missing values in an existing variable are replaced with the mean of
that variable.

TREND Function

TREND replaces missing values in the new variable with the linear trend for that point. The
existing variable is regressed on an index variable scaled 1 to n. Missing values are replaced
with their predicted values.

• The only specification on TREND is a variable or variable list in parentheses.

Example
RMV YHAT=TREND(VARY).

• This example creates a new variable called YHAT.

• YHAT has the same values as VARY but with missing values replaced by predicted values.

1442

ROC

ROC varlist BY varname({varvalue })
{‘varvalue’}

[/MISSING = {EXCLUDE**}]
{INCLUDE }

[/CRITERIA = [CUTOFF({INCLUDE**})] [TESTPOS({LARGE**}) [CI({95**})]
 {EXCLUDE } {SMALL } {value}

[DISTRIBUTION({FREE** })]]
{NEGEXPO}

[/PLOT = [CURVE**[(REFERENCE)]] [NONE]]

[/PRINT = [SE] [COORDINATES]].

** Default if subcommand is omitted.

Overview

ROC produces a receiver operating characteristic (ROC) curve and an estimate of the area
under the curve.

Options

Distributional Assumptions. In the CRITERIA subcommand, the user can choose the nonpara-
metric or parametric method to estimate the standard error of the area under the curve.
Currently, the bi-negative exponential distribution is the only parametric option.

Optional Output. In addition to an estimate of the area under the ROC curve, the user may
request its standard error, a confidence interval, and a p value under the null hypothesis that
the area under the curve equals 0.5. A table of cutoff values and coordinates used to plot the
ROC curve may also be displayed.

Basic Specification

The basic specification is one variable as the test result variable and one variable as the
actual state variable with one of its values. ROC uses the nonparametric (distribution-free)
method to calculate the area under the ROC curve. The default and minimum output is a
chart of the ROC curve and a table of the area under the curve.

Syntax Rules

• Minimum syntax: You always need a test result variable and one actual state variable
with one of its values in the ROC command line.

ROC 1443

• The test result variable must be numeric, but the state variable can be any type with any
format.

• Subcommands can be specified in any order.

• When a subcommand is duplicated, only the last one is honored given that all duplicates
have no syntax errors. A syntax warning is issued.

• Within a subcommand, if two or more exclusive or contradictory keywords are given, the
latter keywords override the earlier ones. A syntax warning is issued.

• If a keyword is duplicated within a subcommand, it is silently ignored.

Limitations

• Only the nonparametric method and one parametric method are available as the compu-
tational options for the standard error of the area under the curve at this moment. In the
future, binormal and bilogistic distributions may be added to the parametric option.

Example

ROC
 pred BY default (1)
 /PLOT = CURVE
 /CRITERIA = CUTOFF(INCLUDE) TESTPOS(LARGE)
 DISTRIBUTION(FREE) CI(95)
 /MISSING = EXCLUDE .

• pred is the test result variable, and default is the actual state variable. The “positive” group
is identified by the value 1.

• The PLOT subcommand specifies that the ROC curve chart should be displayed without
the diagonal reference line.

• CRITERIA specifies that classification of values of the test result variable as members of
the “positive” group includes values greater than or equal to the cutoff values, the stan-
dard error of the area under the curve is to be estimated nonparametrically, and the confi-
dence level for the asymptotic interval for the area under the curve is 95.

• MISSING specifies that both user-missing and system-missing values are excluded.
• No optional table output is printed.

varlist BY varname(varvalue)

The varlist specifies one or more test result variables. They must be of numeric type.
The varname separated from the varlist by the word BY specifies the actual state variable.

It can be of any type and any format. The user must also specify a varvalue in brackets after
the second varname to define the “positive” group of the actual state variable. All other valid
state values are assumed to indicate the negative group.

1444 ROC

MISSING Subcommand

Cases with system-missing values in the test result variable and the actual state variable are
always excluded from the analysis. However, the MISSING subcommand allows the user to
redefine the user-missing values to be valid.

EXCLUDE Exclude both user-missing and system-missing values. Cases with
a system-missing value or a user-missing value in either the test
result variable or the actual state variable are excluded from the
analysis. This is the active default.

INCLUDE User-missing values are treated as valid. Cases with a system-
missing value in either the test result variable or the actual state
variable are excluded from the analysis.

CRITERIA Subcommand

The CRITERIA subcommand allows the user to decide whether or not the cutoff value is
included as the positive test result value, whether or not the larger or smaller value direction
of the test result variable indicates the positive test result, the confidence level of the
asymptotic confidence interval produced by /PRINT = SE, and the estimation method for the
standard error of the area under the curve.

CUTOFF(INCLUDE) Positive classification of test result values includes the cutoff
values. Note that the positive test result direction is controlled by
the TESTPOS keyword. This is the active default.

CUTOFF(EXCLUDE) Positive classification of test result values excludes the cutoff
values. This distinction leads to the different sets of cutoff values,
but none of the output (chart or table) is affected at this moment
because the user cannot choose the cutoff values for the
classification.

TESTPOS(LARGE) The user can specify which direction of the test result variable indi-
cates increasing strength of conviction that the subject is test
positive. The larger the test result value is, the more positive the
test result is. LARGE is the active default.

TESTPOS(SMALL) The smaller the test result value is, the more positive the test result is.

CI(n) Confidence level in the (two-sided) asymptotic confidence interval
of the area. The user can specify any confidence level in (0, 100)
for the asymptotic confidence interval created by /PRINT = SE. The
active default parameter value is 95.

DISTRIBUTION(FREE) The method of calculating the standard error of the area under the
curve. When FREE, the standard error of the area under the curve
is estimated nonparametrically—that is, without any distributional
assumption.

ROC 1445

DISTRIBUTION(NEGEXPO) The standard error is estimated assuming the bi-negative exponen-
tial distribution. This latter option is valid only when the number
of positive actual state observations equals the number of negative
actual state observations.

PRINT Subcommand

The PRINT subcommand controls the display of optional table output. Note that the area
under the curve is always displayed.

SE Standard error of the area estimate. In addition to the standard
error of the estimated area under the curve, the asymptotic 95% (or
other user-specified confidence level) confidence interval as well
as the asymptotic p value under the null hypothesis that the true
area = 0.5 are calculated. Note that the area under the curve statistic
is asymptotically normally distributed.

COORDINATES Coordinate points of the ROC curve along with the cutoff values.
Pairs of sensitivity and 1 – specificity values are given with the
cutoff values for each curve.

PLOT Subcommand

The PLOT subcommand controls the display of chart output.

CURVE(REFERENCE) The ROC curve chart is displayed. The keyword CURVE is the
active default. In addition, the user has an option to draw the diag-
onal reference line (sensitivity = 1 – specificity) by the bracketed
parameter REFERENCE.

NONE The ROC curve chart is suppressed.

1446

SAMPLE

SAMPLE {decimal value}
 {n FROM m }

Example
SAMPLE .25.

Overview

SAMPLE permanently draws a random sample of cases for processing in all subsequent pro-
cedures. For a temporary sample, use a TEMPORARY command before SAMPLE.

Basic Specification

The basic specification is either a decimal value between 0 and 1 or the sample size followed
by keyword FROM and the size of the working data file.

• To select an approximate percentage of cases, specify a decimal value between 0 and 1.
• To select an exact-size random sample, specify a positive integer less than the file size,

followed by keyword FROM and the file size.

Operations

• SAMPLE is a permanent transformation.

• Sampling is based on a pseudo-random-number generator that depends on a seed value
established by the program. On some implementations of the program, this number
defaults to a fixed integer, and a SAMPLE command that specifies n FROM m will
generate the identical sample whenever a session is rerun. To generate a different sample
each time, use the SET command to reset SEED to a different value for each session. See
the SET command for more information.

• If sampling is done using the n FROM m method and the TEMPORARY command is spec-
ified, successive samples will not be the same because the seed value changes each time
a random number series is needed within a session.

• A proportional sample (a sample based on a decimal value) usually does not produce the
exact proportion specified.

• If the number specified for m following FROM is less than the actual file size, the sample
is drawn only from the first m cases.

• If the number following FROM is greater than the actual file size, the program samples
an equivalent proportion of cases from the working data file (see example).

• If SAMPLE follows SELECT IF, it samples only cases selected by SELECT IF.

SAMPLE 1447

• If SAMPLE precedes SELECT IF, cases are selected from the sample.

• If more than one SAMPLE is specified in a session, each acts upon the sample selected by
the preceding SAMPLE command.

• If N OF CASES is used with SAMPLE, the program reads as many records as required to
build the specified n cases. It makes no difference whether the N OF CASES precedes or
follows the SAMPLE.

Limitations

SAMPLE cannot be placed in a FILE TYPE—END FILE TYPE or INPUT PROGRAM—END INPUT
PROGRAM structure. It can be placed nearly anywhere following these commands in a trans-
formation program. See Appendix A for a discussion of program states and the placement of
commands.

Example

SAMPLE .25.

• This command samples approximately 25% of the cases in the working data file.

Example

SAMPLE 500 FROM 3420.

• The working data file must have 3420 cases or more to obtain a random sample of exactly
500 cases.

• If the file contains fewer than 3420 cases, proportionally fewer cases are sampled.

• If the file contains more than 3420 cases, a random sample of 500 cases is drawn from the
first 3420 cases.

Example

DO IF SEX EQ ’M’.
SAMPLE 1846 FROM 8000.
END IF.

• SAMPLE is placed inside a DO IF—END IF structure to sample subgroups differently.
Assume that this is a survey of 10,000 people in which 80% of the sample is male, while
the known universe is 48% male. To obtain a sample that corresponds to the known
universe and that maximizes the size of the sample, 1846 (48/52*2000) males and all
females must be sampled. The DO IF structure is used to restrict the sampling process to
the males.

1448

SAVE

SAVE OUTFILE=’filespec’

 [/VERSION={3**}]
 {2 }

 [/UNSELECTED=[{RETAIN}]
 {DELETE}

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/RENAME=(old varlist=new varlist)...]

 [/MAP] [/{COMPRESSED }]
 {UNCOMPRESSED}

 [/NAMES]

 [/PERMISSIONS={READONLY }
 {WRITEABLE}

**Default if the subcommand is omitted.

Example
SAVE OUTFILE=EMPL /RENAME=(AGE=AGE88) (JOBCAT=JOBCAT88).

Overview

SAVE produces an SPSS-format data file. An SPSS-format data file contains data plus a dictio-
nary. The dictionary contains a name for each variable in the data file plus any assigned vari-
able and value labels, missing-value flags, and variable print and write formats. The dictionary
also contains document text created with the DOCUMENTS command.

XSAVE also creates SPSS-format data files. The difference is that SAVE causes data to be
read, while XSAVE is not executed until data are read for the next procedure.

See SAVE TRANSLATE and SAVE SCSS for information on saving data files that can be
used by other programs.

Options

Compatibility with Early Releases. You can save a data file that can be read by SPSS releases
prior to 7.5.

Variable Subsets and Order. You can save a subset of variables and reorder the variables that
are saved using the DROP and KEEP subcommands.

Variable Names. You can rename variables as they are copied into the SPSS-format data file
using the RENAME subcommand.

SAVE 1449

Variable Map. To confirm the names and order of the variables saved in the SPSS-format data
file, use the MAP subcommand. MAP displays the variables saved in the SPSS-format data
file next to their corresponding names in the working data file.

Data Compression. You can write the data file in compressed or uncompressed form using the
COMPRESSED or UNCOMPRESSED subcommand.

Basic Specification

The basic specification is the OUTFILE subcommand, which specifies a name for the SPSS-
format data file to be saved.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• OUTFILE is required and can be specified only once. If OUTFILE is specified more than
once, only the last OUTFILE specified is in effect.

• KEEP, DROP, RENAME, and MAP can each be used as many times as needed.

• Only one of the subcommands COMPRESSED or UNCOMPRESSED can be specified per
SAVE command.

Operations

• SAVE is executed immediately and causes the data to be read.

• The new SPSS-format data file dictionary is arranged in the same order as the working file
dictionary, unless variables are reordered with the KEEP subcommand. Documentary text
from the working file dictionary is always saved unless it is dropped with the DROP
DOCUMENTS command before SAVE.

• New variables created by transformations and procedures previous to the SAVE command
are included in the new SPSS-format data file, and variables altered by transformations
are saved in their modified form. Results of any temporary transformations immediately
preceding the SAVE command are included in the file; scratch variables are not.

• SPSS-format data files are binary files designed to be read and written by SPSS only.
SPSS-format data files can be edited only with the UPDATE command. Use the MATCH
FILES and ADD FILES commands to merge SPSS-format data files.

• The working data file is still available for transformations and procedures after SAVE is
executed.

• SAVE processes the dictionary first and displays a message that indicates how many vari-
ables will be saved. Once the data are written, SAVE indicates how many cases were saved.
If the second message does not appear, the file was probably not completely written.

1450 SAVE

Example

GET FILE=HUBEMPL.
SAVE OUTFILE=EMPL88 /RENAME=(AGE=AGE88) (JOBCAT=JOBCAT88).

• The GET command retrieves the SPSS-format data file HUBEMPL.

• The RENAME subcommand renames variable AGE to AGE88 and variable JOBCAT to
JOBCAT88.

• SAVE causes the data to be read and saves a new SPSS-format data file with filename
EMPL88. The original SPSS-format data file HUBEMPL is not changed.

Example

GET FILE=HUBEMPL.
TEMPORARY.
RECODE DEPT85 TO DEPT88 (1,2=1) (3,4=2) (ELSE=9).
VALUE LABELS DEPT85 TO DEPT88 1 ‘MANAGEMENT’ 2 ‘OPERATIONS’ 9
‘UNKNOWN’.
SAVE OUTFILE=HUBTEMP.
CROSSTABS DEPT85 TO DEPT88 BY JOBCAT.

• The GET command retrieves the SPSS-format data file HUBEMPL.

• The TEMPORARY command indicates that RECODE and VALUE LABELS are in effect only
for the next command that reads the data (SAVE).

• The RECODE command recodes values for all variables between and including DEPT85
and DEPT88 on the working data file.

• The VALUE LABELS command specifies new labels for the recoded values.

• The OUTFILE subcommand on SAVE specifies HUBTEMP as the new SPSS-format data file.
HUBTEMP will include the recoded values for DEPT85 to DEPT88 and the new value labels.

• The CROSSTABS command crosstabulates DEPT85 to DEPT88 with JOBCAT. Since the
RECODE and VALUE LABELS commands were temporary, the CROSSTABS output does
not reflect the recoding and new labels.

• If XSAVE were specified instead of SAVE, the data would be read only once. Both the
saved SPSS-format data file and the CROSSTABS output would reflect the temporary
recoding and labeling of the department variables.

OUTFILE Subcommand

OUTFILE specifies the SPSS-format data file to be saved. OUTFILE is required and can be
specified only once. If OUTFILE is specified more than once, only the last OUTFILE is in
effect.

SAVE 1451

VERSION Subcommand

VERSION allows you to save a data file that can be opened in SPSS releases prior to 7.5. The
default is 3 if VERSION is not specified or specified with no value. Specify 2 to save a file
compatible with earlier releases.

Variable Names

When using data files with variable names longer than eight bytes in SPSS 10.x or 11.x,
unique, eight byte versions of variable names are used -- but the original variable names are
preserved for use in release 12.0 or later. In releases prior to SPSS 10, the original long vari-
able names are lost if you save the data file.

UNSELECTED Subcommand

UNSELECTED determines whether cases excluded on a previous FILTER or USE command
are to be retained or deleted in the SPSS-format data file. The default is RETAIN. The
UNSELECTED subcommand has no effect when the working data file does not contain
unselected cases.

RETAIN Retain the unselected cases. All cases in the working data file are saved. This
is the default when UNSELECTED is specified by itself.

DELETE Delete the unselected cases. Only cases that meet the FILTER or USE criteria
are saved in the SPSS-format data file.

DROP and KEEP Subcommands

DROP and KEEP are used to save a subset of variables. DROP specifies the variables not to
save in the new data file; KEEP specifies the variables to save in the new data file; variables
not named on KEEP are dropped.

• Variables can be specified in any order. The order of variables on KEEP determines the
order of variables in the SPSS-format data file. The order on DROP does not affect the
order of variables in the SPSS-format data file.

• Keyword ALL on KEEP refers to all remaining variables not previously specified on KEEP.
ALL must be the last specification on KEEP.

• If a variable is specified twice on the same subcommand, only the first mention is recognized.

• Multiple DROP and KEEP subcommands are allowed. Specifying a variable that is not in
the working data file or that has been dropped because of a previous DROP or KEEP
subcommand results in an error, and the SAVE command is not executed.

• Keyword TO can be used to specify a group of consecutive variables in the active file.

1452 SAVE

Example
GET FILE=PRSNL.
COMPUTE TENURE=(12-CMONTH +(12*(88-CYEAR)))/12.
COMPUTE JTENURE=(12-JMONTH +(12*(88-JYEAR)))/12.
VARIABLE LABELS TENURE ’Tenure in Company’

JTENURE ’Tenure in Grade’.
SAVE OUTFILE=PRSNL88 /DROP=GRADE STORE
 /KEEP=LNAME NAME TENURE JTENURE ALL.

• The variables TENURE and JTENURE are created by COMPUTE commands and assigned
variable labels by the VARIABLE LABELS command. TENURE and JTENURE are added to
the end of the working data file.

• DROP excludes variables GRADE and STORE from file PRSNL88. KEEP specifies that
LNAME, NAME, TENURE, and JTENURE are the first four variables in file PRSNL88,
followed by all remaining variables not specified on DROP. These remaining variables are
saved in the same sequence as they appear in the original file.

RENAME Subcommand

RENAME changes the names of variables as they are copied into the new SPSS-format data
file.

• The specification on RENAME is a list of old variable names followed by an equals sign
and a list of new variable names. The same number of variables must be specified on
both lists. Keyword TO can be used in the first list to refer to consecutive variables in
the working data file and in the second list to generate new variable names. The entire
specification must be enclosed in parentheses.

• Alternatively, you can specify each old variable name individually, followed by an equals
sign and the new variable name. Multiple sets of variable specifications are allowed. The
parentheses around each set of specifications are optional.

• RENAME does not affect the working data file. However, if RENAME precedes DROP or
KEEP, variables must be referred to by their new names on DROP or KEEP.

• Old variable names do not need to be specified according to their order in the working
data file.

• Name changes take place in one operation. Therefore, variable names can be exchanged
between two variables.

• Multiple RENAME subcommands are allowed.

Example
SAVE OUTFILE=EMPL88 /RENAME AGE=AGE88 JOBCAT=JOBCAT88.

• RENAME specifies two name changes for the file EMPL88: the variable AGE is renamed to
AGE88 and the variable JOBCAT is renamed to JOBCAT88.

Example
SAVE OUTFILE=EMPL88 /RENAME (AGE JOBCAT=AGE88 JOBCAT88).

SAVE 1453

• The name changes are identical to those in the previous example: AGE is renamed to
AGE88 and JOBCAT is renamed to JOBCAT88. The parentheses are required with this
method.

MAP Subcommand

MAP displays a list of the variables in the SPSS-format data file and their corresponding
names in the working data file.

• The only specification is keyword MAP. There are no additional specifications.

• Multiple MAP subcommands are allowed. Each MAP subcommand maps the results of
subcommands that precede it, but not results of subcommands that follow it.

Example
GET FILE=HUBEMPL.
SAVE OUTFILE=EMPL88 /RENAME=(AGE=AGE88)(JOBCAT=JOBCAT88)
 /KEEP=LNAME NAME JOBCAT88 ALL /MAP.

• MAP is used to confirm the new names for AGE and JOBCAT and the order of variables in
the EMPL88 file (LNAME, NAME, and JOBCAT88, followed by all remaining variables from
the working data file).

COMPRESSED and UNCOMPRESSED Subcommands

COMPRESSED saves the file in compressed form. UNCOMPRESSED saves the file in uncom-
pressed form. In a compressed file, small integers (from −99 to 155) are stored in one byte
instead of the eight bytes used in an uncompressed file.
• The only specification is the keyword COMPRESSED or UNCOMPRESSED. There are no

additional specifications.

• Compressed data files occupy less disk space than do uncompressed data files.

• Compressed data files take longer to read than do uncompressed data files.

• The GET command, which reads SPSS-format data files, does not need to specify whether
the files it reads are compressed or uncompressed.

• Only one of the subcommands COMPRESSED or UNCOMPRESSED can be specified per
SAVE command. COMPRESSED is usually the default, though UNCOMPRESSED may be
the default on some systems.

NAMES Subcommand

For all variable names longer than eight bytes, NAMES displays the 8-byte equivalents that
will be used if you read the data file into a version of SPSS prior to release 12.0.

1454 SAVE

PERMISSIONS Subcommand

The PERMISSIONS subcommand sets the operating system read/write permissions for the
file.

READONLY File permissions are set to read-only for all users. The file cannot be saved
using the same file name with subsequent changes unless the read/write per-
missions are changed in the operating system or the subsequent SAVE com-
mand specifies PERMISSIONS=WRITEABLE.

WRITEABLE File permissions are set to allow writing for the file owner. If file permis-
sions were set to read-only for other users, the file remains read-only for
them.

Your ability to change the read/write permissions may be restricted by the operating system.

SAVE 1455

1456 Syntax Reference

SAVE MODEL

SAVE MODEL is available in the Trends option.

SAVE MODEL OUTFILE=’filename’

 [/KEEP={ALL** }]
 {model names}
 {procedures }

 [/DROP={model names}]
 {procedures }

 [/TYPE={MODEL**}]
 {COMMAND}

**Default if the subcommand is omitted.

Example:
SAVE MODEL OUTFILE=’ACFMOD.DAT’
 /DROP=MOD_1.

Overview

SAVE MODEL saves the models created by Trends procedures into a model file. The saved
model file can be read later on in the session or in another session with the READ MODEL
command.

Options

You can save a subset of models into the file using the DROP and KEEP subcommands. You
can control whether models are specified by model name or by the name of the procedure
that generated them using the TYPE subcommand.

Basic Specification

The basic specification is the OUTFILE subcommand followed by a filename.

• By default, SAVE MODEL saves all currently active models in the specified file. Each
model saved in the file includes information such as the procedure that created it, the
model name, the variable names specified, subcommands and specifications used, and pa-
rameter estimates. The names of the models are either the default MOD_n names or the
names assigned on the MODEL NAME command. In addition to the model specifications,
the TSET settings currently in effect are saved.

Subcommand Order

• Subcommands can be specified in any order.

SAVE MODEL 1457

Syntax Rules

• If a subcommand is specified more than once, only the last one is executed.

Operations

• SAVE MODEL is executed immediately.

• Model files are designed to be read and written by Trends only and should not be edited.

• The active models are not affected by the SAVE MODEL command.
• DATE specifications are not saved in the model file.

• Models are not saved in SPSS data files.

• The following procedures can generate models: AREG, ARIMA, EXSMOOTH, SEASON,
and SPECTRA in SPSS Trends; ACF, CASEPLOT, CCF, CURVEFIT, NPPLOT, PACF, and
TSPLOT in the SPSS Base system; and WLS and 2SLS in SPSS Regression Models.

Limitations

• Maximum 1 filename can be specified.

Example

SAVE MODEL OUTFILE=’ACFMOD.DAT’
 /DROP=MOD_1.

• In this example, all models except MOD_1 that are currently active are saved in the file
ACFMOD.DAT.

OUTFILE Subcommand

OUTFILE names the file where models will be stored and is the only required subcommand.

• The only specification on OUTFILE is the name of the model file.

• The filename must be enclosed in apostrophes.

• Only one filename can be specified.

• You can store models in other directories by specifying a fully qualified filename.

KEEP and DROP Subcommands

DROP and KEEP allow you to save a subset of models. By default, all currently active models
are saved.
• KEEP specifies models to be saved in the model file.

• DROP specifies models that are not saved in the model file.

1458 Syntax Reference

• Models can be specified using either individual model names or the names of the proce-
dures that created them. To use procedure names, you must specify COMMAND on the
TYPE subcommand.

• Model names are either the default MOD_n names or the names assigned with MODEL
NAME.

• If you specify a procedure name on KEEP, all models created by that procedure are saved;
on DROP, any models created by that procedure are not included in the model file.

• Model names and procedure names cannot be mixed on a single SAVE MODEL command.
• If more than one KEEP or DROP subcommand is specified, only the last one is executed.

• You can specify the keyword ALL on KEEP to save all models that are currently active.
This is the default.

Example
SAVE MODEL OUTFILE=’ACFCCF.DAT’
 /KEEP=ACF1 ACF2

• In this example, only models ACF1 and ACF2 are saved in model file ACFCCF.DAT.

TYPE Subcommand

TYPE indicates whether models are specified by model name or procedure name on DROP
and KEEP.

• One keyword, MODEL or COMMAND, can be specified after TYPE.

• MODEL is the default and indicates that models are specified as model names.
• COMMAND indicates that the models are specified by procedure name.

• TYPE has no effect if KEEP or DROP is not specified.

• The TYPE specification applies only to the current SAVE MODEL command.

Example
SAVE MODEL OUTFILE=’ARIMA1.DAT’
 /KEEP=ARIMA
 /TYPE=COMMAND.

• This command saves all models that were created by the ARIMA procedure into the model
file ARIMA1.DAT.

1459

SAVE TRANSLATE

This command is not available on all operating systems.

SAVE TRANSLATE

[{/OUTFILE=file }]*
 {/CONNECT=ODBC connect string}**

 [/TYPE={DB2 }]
 {DB3 }
 {DB4 }
 {ODBC}
 {PC }
 {SAS }
 {SYM }
 {SLK }
 {TAB }
 {WKS }
 {WK1 }
 {WK3 }
 {XLS }

 [/VERSION={1}]+++
 {2}
 {3}
 {6}
 {7}
 {8}
 {X}

 [/PLATFORM={ALPHA}]+++
 {WINDOWS}
 {UNIX}

 [/CELLS={VALUES}]+
 {LABELS}+

 [{/VALFILE=filename}]++

 [/TABLE = ODBC table name]**

 [/RENAME=(old varlist=new varlist)[(...)]

 [/KEEP={ALL }]
 {varlist}

 [/DROP=varlist]

 [{/COMPRESSED }]
 {/UNCOMPRESSED}

 [/FIELDNAMES]***

 [/MAP]

 [{/REPLACE}]
 {/APPEND }****

 [/UNSELECTED=[{RETAIN}]
 {DELETE}

* Invalid for TYPE=ODBC; required for all other types.

1460 SAVE TRANSLATE

** Required for TYPE=ODBC; invalid for all other types.
*** Available only for spreadsheet formats.
****Available only for ODBC format.
+ Available only for Excel 97-2000 format.
++ Available only for SAS formats, excluding transport file format.
+++ Required for SAS formats.

Example
SAVE TRANSLATE OUTFILE=’SALESREP.XLS’
 /TYPE=XLS
 /VERSION=8
/KEEP=SALES, UNITS, MONTHS, PRICE1 TO PRICE20
/FIELDNAMES.

Keyword Type of file

WK1 1-2-3 Release 2.0
WKS 1-2-3 Release 1A
WK3 1-2-3 Release 3.0
SYM Symphony releases
SLK Multiplan or Excel in SYLK (symbolic

link) format
XLS Microsoft Excel
DB2 dBASE II
DB3 dBASE III
DB4 dBASE IV
TAB Tab-delimited ASCII file
ODBC Database accessed via ODBC
PC SPSS/PC+ system file
SAS SAS file format

Version Application

1 Symphony Release 1.0
2 Excel 2.1, Symphony Release 2.0, dBASE II
3 dBASE III or dBASE III PLUS
6 SAS v6
7 SAS v7-8
8 Excel 97-2000 Workbook
X SAS transport file

SAVE TRANSLATE 1461

Overview

SAVE TRANSLATE translates the working data file into a file that can be used by other soft-
ware applications. Supported formats are 1-2-3, Symphony, Multiplan, Excel, dBASE II,
dBASE III, dBASE IV, tab-delimited ASCII files, SAS, and SPSS/PC+ data files.

Options

Variable Subsets. You can use the DROP and KEEP subcommands to specify variables to omit
or retain in the resulting file.

Variable Names. You can rename variables as they are copied to the spreadsheet, database, or
tab-delimited ASCII file using the RENAME subcommand.

Variable Map. To confirm the names and order of the variables saved in the resulting file, use
the MAP subcommand. MAP displays the variables saved in the file next to their correspond-
ing names in the working data file.

Spreadsheet Files. You can use the FIELDNAMES subcommand to translate variable names to
field names in a spreadsheet file.

Value Labels. You can export value labels rather than values in spreadsheet files using the
CELLS subcommand.

SAS Value Labels. Use the VALFILE subcommand to create a SAS syntax file containing your
data’s value labels. This option is available only when exporting to a SAS file type.

Basic Specification

• The basic specification is OUTFILE with a file specification in apostrophes.

• TYPE and a keyword to indicate the type of dBASE file is also required to save dBASE
database files.

• The VERSION subcommand is optional, although it should be set for any format that has
more than one version.

Subcommand Order

• OUTFILE or CONNECT must be specified first. OUTFILE is invalid for TYPE=ODBC and
required for all other types. CONNECT is required for TYPE=ODBC and invalid for all
other types.

• The remaining subcommands can be specified in any order.

Operations

• The working data file remains available after SAVE TRANSLATE is executed.

1462 SAVE TRANSLATE

• User-missing values are transferred as actual values.

• If the working data file contains more variables than the file can receive, SAVE TRANSLATE
writes the maximum number of variables that the file can receive.

Spreadsheets

Variables in the working data file become columns, and cases become rows in the spread-
sheet file.

• If you specify FIELDNAMES, variable names become the first row and indicate field
names.

• If you specify CELLS, value labels can be saved instead of data values. The default is to
have data values saved.

• String variable values are left-justified and numeric variable values are right-justified.

• The resulting spreadsheet file is given the range name of SPSS.

• System-missing values are translated to N/A in spreadsheet files.

SPSS formats are translated as follows:

Databases

Variables in the working data file become fields, and cases become records in the database
file.

• Characters that are allowed in variable names but not in dBASE field names are translated
to colons in dBASE II and underscores in dBASE III and dBASE IV.

• Numeric variables containing the system-missing value are translated to **** in dBASE III
and dBASE IV and 0 in dBASE II.

• The width and precision of translated numeric variables are taken from the print format—
the total number of characters for the number is taken from the width of the print format,
and the number of digits to the right of the decimal point is taken from the decimals in the
print format. To adjust the width and precision, use the PRINT FORMATS command before
using SAVE TRANSLATE. Values that cannot be converted to the given width and preci-
sion are converted to missing values.

SPSS 1-2-3/Symphony Excel

Number Fixed 0.00;#,##0.00;...
COMMA Comma 0.00;#,##0.00;...
DOLLAR Currency $#,##0_);...
DATE Date d-mmm-yy
TIME Time hh:mm:ss
String Label General

SAVE TRANSLATE 1463

Variable formats are translated to dBASE formats as follows:

Tab-Delimited ASCII Files

Variables in the working data file become columns and cases become rows in the ASCII file.

• If you specify FIELDNAMES, variable names become the first row as column headings.

• All values are delimited by tabs.
• The resulting ASCII file is given the extension .DAT if no file extension is explicitly

specified.

• System-missing values are translated to N/A in ASCII files.

• SPSS formats are not translated.

SAS Files

Data can be saved in one of six different SAS data file formats. A SAS transport file is a se-
quential file written in SAS transport format and can be read by SAS with the XPORT engine
and PROC COPY or the DATA step.

• Certain characters that are allowed in SPSS variable names are not valid in SAS, such as
@, #, and $. These illegal characters are replaced with an underscore when the data are
exported.

• SPSS variable labels containing more than 40 characters are truncated when exported to
a SAS v6 file.

• Where they exist, SPSS variable labels are mapped to the SAS variable labels. If no vari-
able label exists in the SPSS data, the variable name is mapped to the SAS variable label.

• SAS allows only one value for missing, whereas SPSS allows the definition of numerous
missing values. As a result, all missing values in SPSS are mapped to a single missing
value in the SAS file.

SPSS dBASE

Number Numeric
String Character
Dollar Numeric
Comma Numeric

1464 SAVE TRANSLATE

The following table shows the variable type matching between the original data in SPSS and
the exported data in SAS.

SPSS/PC+ System Files

Variables are saved as they are defined. The resulting file is given the extension .SYS if no
extension is explicitly specified. The dictionary is saved so that labels, formats, missing value
specifications, and other dictionary information are preserved.

Limitations

• A maximum of 2048 cases can be translated to 1-2-3 Release 1A, a maximum of 8192
cases, to 1-2-3 Release 2.0 or Symphony files, and a maximum of 16,384 cases (65,536
for Excel 97 and later) and 256 variables, to Excel.

• A maximum of 65,535 cases and 32 variables can be translated to dBASE II, a maximum
of 1 billion cases (subject to disk space availability) and 128 variables, to dBASE III, and
a maximum of 1 billion cases (subject to disk space availability) and 255 variables, to
dBASE IV.

OUTFILE Subcommand

OUTFILE assigns a name to the file to be saved. The only specification is the name of the file. On
some operating systems, file specifications should be enclosed in quotation marks or apostrophes.

Example
SAVE TRANSLATE OUTFILE=’STAFF.DBF’/TYPE=DB3.

• SAVE TRANSLATE creates a dBASE III file called STAFF.DBF. The TYPE subcommand is
required to specify the type of dBASE file to save.

SPSS Variable Type SAS Variable Type SAS Data Format

Numeric Numeric 12
Comma Numeric 12
Dot Numeric 12
Scientific Notation Numeric 12
Date Numeric Date
Date (Time) Numeric Time
Date (Date-Time) Numeric DateTime
Dollar Numeric 12
Custom Currency Numeric 12
String Character $8

SAVE TRANSLATE 1465

CONNECT Subcommand

CONNECT identifies the database name and other parameters for TYPE=ODBC.

Example
SAVE TRANSLATE
 /CONNECT="DSN=MSAccess;UID=rkrishna;PWD=123xyz"
 /TABLE="mytable"
 /TYPE=ODBC.

TABLE Subcommand

TABLE identifies the table name for TYPE=ODBC.

Example
SAVE TRANSLATE
 /CONNECT="DSN=MSAccess;UID=rkrishna;PWD=123xyz"
 /TABLE="mytable"
 /TYPE=ODBC.

REPLACE Subcommand

REPLACE gives permission to overwrite an existing file of the same name. It takes no further
specifications.

APPEND Subcommand

APPEND appends to an existing database table after type and variable name validations.
There must be a matching column in the table for each SPSS variable. If a column that can
correctly store an SPSS variable is not found, a failure is returned. If the table contains more
columns than the number of SPSS variables, the command still stores the data in the table.
The variable names and column names must match exactly. A variable can be stored in a col-
umn as long as the column type is one that can store values of the SPSS variable type. So, a
column of any numeric type (short integer, integer, float, double, etc.) is valid for a numeric
SPSS variable, and a column of any character type is valid for a string SPSS variable.

APPEND is valid only for TYPE=ODBC. You can specify either APPEND or REPLACE but
not both.

TYPE Subcommand

TYPE indicates the format of the resulting file.

• TYPE can be omitted for spreadsheet files if the file extension named on OUTFILE is the
default for the type of file you are saving.

• TYPE with the keyword DB2, DB3, or DB4 is required for translating to dBASE files.

• TYPE takes precedence over the file extension.

1466 SAVE TRANSLATE

WK1 1-2-3 Release 2.0.

WKS 1-2-3 Release 1.4.

SYM Symphony releases.

SLK Multiplan (symbolic format).

XLS Excel.

DB2 dBASE II.

DB3 dBASE III or dBASE III PLUS.

DB4 dBASE IV.

TAB Tab-delimited ASCII data files.

PC SPSS/PC+ system files.

ODBC Database accessed via ODBC.

SAS SAS data files and SAS transport files.

Example
SAVE TRANSLATE OUTFILE=’PROJECT.XLS’ /TYPE=XLS /VERSION=8.

• SAVE TRANSLATE translates the working data file into the Excel spreadsheet file named
PROJECT.XLS.

Writing to an ODBC Database Source

The following rules apply when writing to a database with TYPE=ODBC:

• If any case cannot be stored in the database for any reason, an error is returned. Therefore,
either all cases are stored or none.

• At insert time, a check is performed to see if the value being stored in a column is likely
to cause an overflow. If that is the case, the user is warned about the overflow and that a
SYSMIS is stored instead.

• If any variable names in the working data file contain characters not allowed by the data-
base, they are replaced by an underscore. If this causes a duplicate variable name, a new
variable name is generated.

• The following SPSS variable type classes are supported:
VC_STRING
VC_NUMERIC
VC_PERCENT
VC_CURRENCY
VC_TIME
VC_DATE

• If a variable falls into the VC_UNKNOWN category, it is dropped. SPSS missing values are
treated as missing values in the databases.

SAVE TRANSLATE 1467

• Date variables are treated as Date columns, but if the database treats Date variables as
TimeStamp (that is, as datetime columns), then the time part of TimeStamp is assigned a
zero value (00:00.00) internally. The date value is unaltered when read back into SPSS.

• Datetime variables are stored as datetime (TimeStamp) columns.

• If a database does not support storing fractional seconds, the fractional value is truncated.

• SPSS dictionary information is not stored in the database table. Any formatting informa-
tion contained in the SPSS dictionary is lost.

VERSION Subcommand

VERSION specifies the file version for multiversion applications. For example, this subcom-
mand is necessary to differentiate between Excel 4.0, Excel 5.0, and Excel 97 files. If no
VERSION is specified, the lowest supported version number is assumed.

Example
SAVE TRANSLATE OUTFILE=’STAFF.XLS’ /TYPE=XLS /VERSION=8.

• SAVE TRANSLATE creates an Excel spreadsheet file in the version 97 format.

PLATFORM Subcommand

The PLATFORM subcommand is required for all SAS file types, with the exception of SAS
transport files. Enter the keyword corresponding to the platform on which the target SAS file
is intended. There is no default value for this command. Choose from the following key-
words: WINDOWS, ALPHA, UNIX.

Example
SAVE TRANSLATE OUTFILE=’STAFF.SD7’ /TYPE=SAS /VERSION=7
/PLATFORM=WINDOWS /VALFILE=’LABELS.SAS’

Version Application

1 Symphony Release 1.0
2 Symphony Release 2.0, dBASE II
3 dBASE III or dBASE III PLUS
4 Excel 4.0, dBASE IV
5 Excel 5.0/95 Workbook
6 SAS v6
7 SAS v7-8
8 Excel 97-2000 Workbook
X SAS transport file

1468 SAVE TRANSLATE

CELLS Subcommand

CELLS, when set to LABELS, saves value labels instead of data values in Excel 97 format or
later. The default value of VALUES saves the data values.

Example
SAVE TRANSLATE OUTFILE=’STAFF.XLS’ /TYPE=XLS /VERSION=8
/CELLS=LABELS.

• SAVE TRANSLATE creates an Excel spreadsheet file in the version 97 format with value
labels written to the file rather than data values.

VALFILE Subcommand

The VALFILE subcommand, which is available only for SAS file formats, excluding the SAS
transport file format, saves value labels to a SAS syntax file. This syntax file is used in con-
junction with the saved SAS data file to re-create value labels in SAS.
• The syntax file has a .sas file extension.

Example
SAVE TRANSLATE OUTFILE=’STAFF.SD7’ /TYPE=SAS /VERSION=7
/PLATFORM=WINDOWS /VALFILE=’LABELS.SAS’.

• SAVE TRANSLATE saves the current data as a SAS v7 short filename file and creates a
SAS syntax file named LABELS.SAS, which contains the value labels for the data.

FIELDNAMES Subcommand

FIELDNAMES translates variable names into field names in the spreadsheet.

• FIELDNAMES can be used with spreadsheets and tab-delimited ASCII files. FIELDNAMES
is ignored when used with database files.

• Variable names are transferred to the first row of the spreadsheet file.

Example
SAVE TRANSLATE OUTFILE='STAFF.SYM' /VERSION=2 /FIELDNAMES.

• SAVE TRANSLATE creates a Symphony Release 2.0 spreadsheet file containing all vari-
ables from the working data file. The variable names are transferred to the Symphony file.

UNSELECTED Subcommand

UNSELECTED determines whether cases excluded on a previous FILTER or USE command
are to be retained or deleted in the SPSS-format data file. The default is RETAIN. The
UNSELECTED subcommand has no effect when the working data file does not contain un-
selected cases.

SAVE TRANSLATE 1469

RETAIN Retain the unselected cases. All cases in the working data file are saved. This
is the default when UNSELECTED is specified by itself.

DELETE Delete the unselected cases. Only cases that meet the FILTER or USE criteria
are saved in the SPSS-format data file.

DROP and KEEP Subcommands

Use DROP or KEEP to include only a subset of variables in the resulting file. DROP specifies
a set of variables to exclude. KEEP specifies a set of variables to retain. Variables not speci-
fied on KEEP are dropped.
• Specify a list of variable, column, or field names separated by commas or spaces.

• KEEP does not affect the order of variables in the resulting file. Variables are kept in their
original order.

• Specifying a variable that is not in the working data file or that has been dropped because
of a previous DROP or KEEP subcommand results in an error and the SAVE command is
not executed.

Example
SAVE TRANSLATE OUTFILE=’ADDRESS.DBF’ /TYPE=DB4 /DROP=PHONENO, ENTRY.

• SAVE TRANSLATE creates a dBASE IV file named ADDRESS.DBF, dropping the variables
PHONENO and ENTRY.

RENAME Subcommand

RENAME changes the names of variables as they are copied into the resulting file.
• The specification on RENAME is a list of old variable names followed by an equals sign

and a list of new variable names. The same number of variables must be specified on both
lists. The keyword TO can be used in the first list to refer to consecutive variables in the
working data file and in the second list to generate new variable names (see “Keyword
TO” on p. 23 in Volume I). The entire specification must be enclosed in parentheses.

• Alternatively, you can specify each old variable name individually, followed by an equals
sign and the new variable name. Multiple sets of variable specifications are allowed. The
parentheses around each set of specifications are optional.

• RENAME does not affect the working data file. However, if RENAME precedes DROP or
KEEP, variables must be referred to by their new names on DROP or KEEP.

• Old variable names do not need to be specified according to their order in the working
data file.

• Name changes take place in one operation. Therefore, variable names can be exchanged
between two variables.

• Multiple RENAME subcommands are allowed.

1470 SAVE TRANSLATE

Example
SAVE TRANSLATE OUTFILE=’STAFF.SYM’ VERSION=2 /FIELDNAMES
 /RENAME AGE=AGE88 JOBCAT=JOBCAT88.

• RENAME renames the variable AGE to AGE88 and JOBCAT to JOBCAT88 before they are
copied to the first row of the spreadsheet.

Example
SAVE TRANSLATE OUTFILE=’STAFF.SYM’ VERSION=2 /FIELDNAMES
 /RENAME (AGE JOBCAT=AGE88 JOBCAT88).

• The name changes are identical to those in the previous example: AGE is renamed to
AGE88 and JOBCAT is renamed to JOBCAT88. The parentheses are required with this
method.

MAP Subcommand

MAP displays a list of the variables in the resulting file and their corresponding names in the
working data file.
• The only specification is the keyword MAP. There are no additional specifications.

• Multiple MAP subcommands are allowed. Each MAP subcommand maps the results of
subcommands that precede it but not the results of subcommands that follow it.

Example
GET FILE=HUBEMPL.
SAVE TRANSLATE OUTFILE=’STAFF.SYM’ /VERSION=2 /FIELDNAMES
 /RENAME=(AGE=AGE88)(JOBCAT=JOBCAT88).

• MAP is specified to confirm that the variable AGE is renamed to AGE88 and JOBCAT is
renamed to JOBCAT88.

1471

SCRIPT

SCRIPT ‘filename’ [(quoted string)]

Overview

SCRIPT runs a script created to customize the program or automate regularly performed
tasks.

Basic Specification

The basic specification is keyword SCRIPT with a filename. The filename is required. The
optional quoted string, enclosed in parentheses, can be passed to the script.

Operations

SCRIPT runs the specified script. The effect is the same as opening the script file in the
Script Editor and running it from there.

Running Scripts that Contain SPSS Commands

If a script run via the SCRIPT command contains SPSS commands, those commands must
be run asynchronously. To run commands asynchronously, set the bSync parameter of the
ExecuteCommands method to False, as in:

Dim objSpssApp as ISpssApp

Dim strCommands as String

Set objSpssApp = CreateObject("SPSS.Application")

’ Construct and execute syntax commands:

strCommands = "GET FILE = ’c:\spss\bank.sav’ " & vbCr

strCommands = strCommands & "Display Dictionary."

objSpssApp.ExecuteCommands strCommands, False

1472 SCRIPT

SEASON 1473

SEASON

SEASON is available in the Trends option.

SEASON [VARIABLES=] series names

 [/MODEL={MULTIPLICATIVE**}]
 {ADDITIVE }

 [/MA={EQUAL }]
 {CENTERED}

 [/PERIOD=n]

 [/APPLY [=’model name’]]

**Default if the subcommand is omitted.

Example:
SEASON VARX
 /MODEL=ADDITIVE
 /MA=EQUAL.

Overview

SEASON estimates multiplicative or additive seasonal factors for time series using any spec-
ified periodicity. SEASON is an implementation of the Census Method I, otherwise known as
the ratio-to-moving-average method (see Makridakis et al., 1983, and McLaughlin, 1984).

Options

Model Specification. You can specify either a multiplicative or additive model on the MODEL
subcommand. You can specify the periodicity of the series on the PERIOD subcommand.

Computation Method. Two methods of computing moving averages are available on the MA
subcommand for handling series with even periodicities.

Statistical Output. Specify TSET PRINT=BRIEF to display only the initial seasonal factor esti-
mates. TSET PRINT=DETAILED produces the same output as the default.

New Variables. To evaluate the displayed averages, ratios, factors, adjusted series, trend-cycle,
and error components without creating new variables, specify TSET NEWVAR=NONE prior to
SEASON. This can result in faster processing time. To add new variables without erasing the
values of previous Trends-generated variables, specify TSET NEWVAR=ALL. This saves all
new variables generated during the current session in the working data file and may require
extra processing time.

Basic Specification

The basic specification is one or more series names.

1474 Syntax Reference

• By default, SEASON uses a multiplicative model to compute and display moving averages,
ratios, seasonal factors, the seasonally adjusted series, the smoothed trend-cycle compo-
nents, and the irregular (error) component for each series (variable) specified. The default
periodicity is the periodicity established on TSET or DATE.

• Unless the default on TSET NEWVAR is changed prior to the procedure, SEASON creates
four new variables for each series specified: SAF#n to contain the seasonal adjustment
factors, SAS#n to contain the seasonally adjusted series, STC#n to contain the smoothed
trend-cycle components, and ERR#n to contain the irregular (error) component. These
variables are automatically named, labeled, and added to the working data file. (For vari-
able naming and labeling conventions, see “New Variables” on p. 1734.)

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.

• Other subcommands can be specified more than once, but only the last specification of
each one is executed.

Operations

• The endpoints of the moving averages and ratios are displayed as system-missing in the
output.

• Missing values are not allowed anywhere in the series. (You can use the RMV command
to replace missing values, and USE to ignore missing observations at the beginning or end
of a series. See RMV and USE in the SPSS Syntax Reference Guide for more information.)

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of series named
on the list.

Example

SEASON VARX
 /MODEL=ADDITIVE
 /MA=EQUAL.

• In this example, an additive model is specified for the decomposition of VARX.

• The moving average will be computed using the EQUAL method.

SEASON 1475

VARIABLES Subcommand

VARIABLES specifies the series names and is the only required subcommand. The actual key-
word VARIABLES can be omitted.

• Each series specified must contain at least four full seasons of data.

MODEL Subcommand

MODEL specifies whether the seasonal decomposition model is multiplicative or additive.
• The specification on MODEL is the keyword MULTIPLICATIVE or ADDITIVE.

• If more than one keyword is specified, only the first is used.

• MULTIPLICATIVE is the default if the MODEL subcommand is not specified or if MODEL is
specified without any keywords.

Example
SEASON VARX
 /MODEL=ADDITIVE.

• This example uses an additive model for the seasonal decomposition of VARX.

MA Subcommand

MA specifies how to treat an even-periodicity series when computing moving averages.

• MA should be specified only when the periodicity is even. When periodicity is odd, the
EQUAL method is always used.

• For even-periodicity series, the keyword EQUAL or CENTERED can be specified.
CENTERED is the default.

• EQUAL calculates moving averages with a span (number of terms) equal to the periodicity
and all points weighted equally.

• CENTERED calculates moving averages with a span (number of terms) equal to the peri-
odicity plus 1 and endpoints weighted by 0.5.

• The periodicity is specified on the PERIOD subcommand (see the PERIOD subcommand
on p. 1476).

Example
SEASON VARY
 /MA=CENTERED
 /PERIOD=12.

• In this example, moving averages are computed with spans of 13 terms and endpoints
weighted by 0.5.

1476 Syntax Reference

PERIOD Subcommand

PERIOD indicates the size of the period.

• The specification on PERIOD indicates how many observations are in one period or sea-
son and can be any positive integer.

• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If
TSET PERIOD is not specified, the periodicity established on the DATE command is used.
If periodicity was not established anywhere, the SEASON command will not be executed.

Example
SEASON SALES
 /PERIOD=12.

• In this example, a periodicity of 12 is specified for SALES.

APPLY Subcommand

APPLY allows you to use a previously defined SEASON model without having to repeat the
specifications. For general rules on APPLY, see the APPLY subcommand on p. 1737.

• The only specification on APPLY is the name of a previous model in quotes. If a model
name is not specified, the model specified on the previous SEASON command is used.

• To change one or more model specifications, specify the subcommands of only those por-
tions you want to change after the APPLY subcommand.

• If no series are specified on the command, the series that were originally specified with
the model being reapplied are used.

• To change the series used with the model, enter new series names before or after the
APPLY subcommand. If a series name is specified before APPLY, the slash before the sub-
command is required.

Example
SEASON X1
 /MODEL=ADDITIVE.
SEASON Z1
 /APPLY.

• The first command specifies an additive model for the seasonal decomposition of X1.

• The second command applies the same type of model to series Z1.

Example

SEASON X1 Y1 Z1
 /MODEL=MULTIPLICATIVE.
SEASON APPLY
 /MODEL=ADDITIVE.

• The first command specifies a multiplicative model for the seasonal decomposition of X1,
Y1, and Z1.

SEASON 1477

• The second command applies an additive model to the same three variables.

References

Makridakis, S., S. C. Wheelwright, and V. E. McGee. 1983. Forecasting: Methods and applica-
tions. New York: John Wiley & Sons.

McLaughlin, R. L. 1984. Forecasting techniques for decision making. Rockville, Md.: Control
Data Management Institute.

1478

SELECT IF

SELECT IF [(]logical expression[)]

The following relational operators can be used in logical expressions:

The following logical operators can be used in logical expressions:

Example
SELECT IF (SEX EQ ’MALE’).

Overview

SELECT IF permanently selects cases for analysis based upon logical conditions found in the
data. These conditions are specified in a logical expression. The logical expression can contain
relational operators, logical operators, arithmetic operations, and any functions allowed in
COMPUTE transformations (see COMPUTE and see “Transformation Expressions” on p. 37 in
Volume I). For temporary case selection, specify a TEMPORARY command before SELECT IF.

Basic Specification

The basic specification is simply a logical expression.

Symbol Definition Symbol Definition

EQ or = Equal to NE or <>* Not equal to
LT or < Less than LE or <= Less than or equal to
GT or > Greater than GE or >= Greater than or equal to*

* On ASCII systems (for example, UNIX, VAX, and all PC’s) you can also use ~=;
on IBM EBCDIC systems (for example, IBM 360 and IBM 370) you can also use ¬=.

Symbol Definition

AND or & Both relations must be true
OR or | Either relation can be true
Not* Reverses the outcome of an expression*

* On ASCII systems you can also use ~; on IBM EBCDIC systems
you can also use ¬ (or the symbol above number 6).

SELECT IF 1479

Syntax Rules

• Logical expressions can be simple logical variables or relations, or complex logical tests
involving variables, constants, functions, relational operators, and logical operators. The
logical expression can use any of the numeric or string functions allowed in COMPUTE
transformations (see COMPUTE and see “Transformation Expressions” on p. 37 in
Volume I).

• Parentheses can be used to enclose the logical expression. Parentheses can also be used
within the logical expression to specify the order of operations. Extra blanks or parentheses
can be used to make the expression easier to read.

• A relation can compare variables, constants, or more complicated arithmetic expressions.
Relations cannot be abbreviated. For example, (A EQ 2 OR A EQ 5) is valid while
(A EQ 2 OR 5) is not. Blanks (not commas) must be used to separate relational operators
from the expressions being compared.

• A relation cannot compare a string variable to a numeric value or variable, or vice versa.
A relation cannot compare the result of the logical functions SYSMIS, MISSING, ANY, or
RANGE to a number.

• String values used in expressions must be specified in quotation marks and must include
any leading or trailing blanks. Lowercase letters are considered distinct from uppercase
letters.

Operations

• SELECT IF permanently selects cases. Cases not selected are dropped from the working
data file.

• The logical expression is evaluated as true, false, or missing. If a logical expression is
true, the case is selected; if it is false or missing, the case is not selected.

• Multiple SELECT IF commands issued prior to a procedure command must all be true for
a case to be selected.

• SELECT IF should be placed before other transformations for efficiency considerations.

• Logical expressions are evaluated in the following order: first numeric functions, then ex-
ponentiation, then arithmetic operators, then relational operators, and last logical opera-
tors. Use parentheses to change the order of evaluation.

• If N OF CASES is used with SELECT IF, the program reads as many records as required to
build the specified n cases. It makes no difference whether the N OF CASES precedes or
follows the SELECT IF.

• System variable $CASENUM is the sequence number of a case in the working data file.
Although it is syntactically correct to use $CASENUM on SELECT IF, it does not produce
the expected results. To select a set of cases based on their sequence in a file, create your
own sequence variable with the transformation language prior to selecting (see the
example below).

1480 SELECT IF

Missing Values

• If the logical expression is indeterminate because of missing values, the case is not selected.
In a simple relational expression, a logical expression is indeterminate if the expression on
either side of the relational operator is missing.

• If a compound expression is used in which relations are joined by the logical operator OR,
the case is selected if either relation is true, even if the other is missing.

• To select cases with missing values for the variables within the expression, use the
missing-value functions. To include cases with values that have been declared user-
missing along with other cases, use the VALUE function (see p. 53 in Volume I).

Limitations

SELECT IF cannot be placed within a FILE TYPE—END FILE TYPE or INPUT PROGRAM—END
INPUT PROGRAM structure. It can be placed nearly anywhere following these commands in
a transformation program. See Appendix A for a discussion of program states and the place-
ment of commands.

Example

SELECT IF (SEX EQ ’MALE’).

• All subsequent procedures will use only cases in which the value of SEX is MALE.

• Since upper and lower case are treated differently in comparisons of string variables, cases
for which the value of SEX is male are not selected.

Example

SELECT IF (INCOME GT 75000 OR INCOME LE 10000).

• The logical expression tests whether a case has a value either greater than 75,000 or less
than or equal to 10,000. If either relation is true, the case is used in subsequent analyses.

 Example

SELECT IF (V1 GE V2).

• This example selects cases where variable V1 is greater than or equal to V2. If either V1
or V2 is missing, the logical expression is indeterminate and the case is not selected.

SELECT IF 1481

Example

SELECT IF (SEX = ’F’ & INCOME <= 10000).

• The logical expression tests whether string variable SEX is equal to F and if numeric variable
INCOME is less than or equal to 10,000. Cases that meet both conditions are included in sub-
sequent analyses. If either SEX or INCOME is missing for a case, the case is not selected.

Example

SELECT IF (SYSMIS(V1)).

• The logical expression tests whether V1 is system-missing. If it is, the case is selected for
subsequent analyses.

Example

SELECT IF (VALUE(V1) GT 0).

• Cases are selected if V1 is greater than 0, even if the value of V1 has been declared user-
missing.

Example

SELECT IF (V1 GT 0).

• Cases are not selected if V1 is user-missing, even if the user-missing value is greater than 0.

Example

SELECT IF (RECEIV GT DUE AND (REVNUS GE EXPNS OR BALNCE GT 0)).

• By default, AND is executed before OR. This expression uses parentheses to change the
order of evaluation.

• The program first tests whether variable REVNUS is greater than or equal to variable
EXPNS, or variable BALNCE is greater than 0. Second, the program tests whether RECEIV
is greater than DUE. If one of the expressions in parentheses is true and RECEIV is greater
than DUE, the case is selected.

• Without the parentheses, the program would first test whether RECEIV is greater than DUE
and REVNUS is greater than or equal to EXPNS. Second, the program would test whether
BALNCE is greater than 0. If the first two expressions are true or if the third expression is
true, the case is selected.

1482 SELECT IF

Example

SELECT IF ((V1-15) LE (V2*(-0.001))).

• The logical expression compares whether V1 minus 15 is less than or equal to V2 multi-
plied by −0.001. If it is, the case is selected.

Example

SELECT IF ((YRMODA(88,13,0) - YRMODA(YVAR,MVAR,DVAR)) LE 30).

• The logical expression subtracts the number of days representing the date (YVAR, MVAR,
and DVAR) from the number of days representing the last day in 1988. If the difference is
less than or equal to 30, the case is selected.

Example

* Creating a sequence number.

COMPUTE #CASESEQ=#CASESEQ+1.
SELECT IF (MOD(#CASESEQ,2)=0).

• This example computes a scratch variable, #CASESEQ, containing the sequence numbers
for each case. Every other case beginning with the second is selected.

• #CASESEQ must be a scratch variable so that it is not reinitialized for every case. An alter-
native is to use the LEAVE command.

Example

DO IF SEX EQ ’M’.
+ SELECT IF PRESTIGE GT 50.
ELSE IF SEX EQ ’F’.
+ SELECT IF PRESTIGE GT 45.
END IF.

• The SELECT IF commands within the DO IF structure select males with prestige scores
above 50 and females with prestige scores above 45.

1483

SET

SET [WORKSPACE={4096**}] [MXCELLS={AUTOMATIC**}]
 { n } {n }

 [FORMAT={F8.2**}] [CTEMPLATE {NONE** }
{Fw.d } {filename}

[TLOOK {NONE** }]
{filename}

[ONUMBERS={LABELS**}] [OVARS={LABELS**}]
{VALUES } {NAMES }
{BOTH } {BOTH }

[TFIT={BOTH**}] [TNUMBERS={VALUES**}] [TVARS={NAMES**}]
{LABELS} {LABELS } {LABELS }

{BOTH } {BOTH }

 [SEED={2000000**}
 {RANDOM }]

{n }

 [EPOCH={AUTOMATIC }]
 {begin year}

 [{ERRORS } = {LISTING**}]
 {RESULTS } {NONE }

 {PRINTBACK} = {NONE** }
 {MESSAGES } {LISTING}

 [JOURNAL=[{YES**}] [filename]]
 {NO }

 [MEXPAND={ON**}] [MPRINT={OFF**}] [MNEST={50**}] [MITERATE={1000**}]
 {OFF } {ON } {n } {n }

 [BLANKS={SYSMIS**}] [UNDEFINED={WARN**}]
 {value } {NOWARN}

[MXWARNS={10**}] [MXLOOPS={40**}] [MXERRS={40**}
{n } {n } {n }

 [COMPRESSION={ON**}]
 {OFF }

 [BLOCK={X’2A’** }]
 {X’hexchar’ }
 {’character’}

 [BOX={X’2D7C2B2B2B2B2B2B2B2B2B’**}]
 {X’hexstring’ }
 {’character’ }

[CCA={’-,,,’ }] [CCB={’-,,,’ }] [CCC={’-,,,’ }]
 {'format’} {'format’} {'format'}

 [CCD={’-,,,’ }] [CCE={’-,,,’ }]
 {'format’} {'format'}

 [CACHE {20**}]
 {n }

1484 SET

[HEADER={NO** }]
 {YES }
 {BLANK}

 [LENGTH={59**}] [WIDTH={80**}]
 {n } {255 }
 {NONE} {n }

 [SMALL=n]

 [OLANG output language]

 [DEFOLANG default output language]

 [SCALEMIN=n]

** Default setting at installation.

See the discussions of specific subcommands in this manual and consult the documentation for your system
for more details.

Example
SET BLANKS=0/UNDEFINED=NOWARN/TLOOK=’C:\SPSSWIN7\MYTABLE.TLO’.

Overview

Many of the running options in the program can be tailored to your own preferences with the
SET command. The default settings for these options vary from system to system. To display
the current settings, use the SHOW command. A setting changed by SET remains in effect for
the entire working session unless changed again by another SET command. The PRESERVE
command saves the current settings so that you can return to them later in the session with the
RESTORE command. PRESERVE and RESTORE are especially useful with the macro facility.

Options

Memory Management. Dynamically allocate memory using the WORKSPACE subcommand
when some procedures complain of memory shortage. Increase maximum cell numbers for
a pivot table using the MXCELLS subcommand.

Output Format. Change the default (F8.2) print and write formats used for numeric variables
using the FORMAT subcommand. Specify a TableLook file and/or a chart template file using
the TLOOK and CTEMPLATE subcommands. Define default display of variables in the outline
or pivot tables using the ONUMBERS, OVARS, TNUMBERS, and TVARS subcommands.
Specify default column widths using the TFIT subcommand.

Samples and Random Numbers. You can change the initial seed value to a particular number
using the SEED subcommand.

Output Destination. You can send error messages, resource utilization messages, command
printback, and the output from your commands to your screen and/or to a file using the
ERRORS, MESSAGES, PRINTBACK, and RESULTS subcommands. You can also suppress
each of these using the keyword NONE.

SET 1485

Journal Files. You can determine whether or not the program keeps a journal file during a
session using the JOURNAL subcommand. A journal file records the commands that you have
entered along with any error or warning messages generated by the commands. A modified
journal file can be used as a command file in subsequent sessions.

Macro Displays. You can control macro expansion, the maximum number of loop iterations,
and nesting levels within a macro using the MEXPAND, MITERATE, and MNEST subcom-
mands. You can also control the display of the variables, commands, and parameters that a
macro uses using the MPRINT subcommands.

Blanks and Undefined Input Data. You can specify the value that the program should use when
it encounters a completely blank field for a numeric variable using the BLANKS subcom-
mand. You can also turn off the warning message that the program issues when it encounters
an invalid value for a numeric variable using UNDEFINED.

Maximum Errors and Loops. You can raise or lower the default number of errors and warnings
allowed in a session before processing stops using the MXERRS and MXWARNS subcom-
mands. You can raise or lower the maximum number of iterations allowed for the LOOP—
END LOOP structure using the MXLOOPS.

Scratch File Compression. You can specify whether scratch files are kept in compressed or
uncompressed form using the COMPRESSION subcommand.

Custom Currency Formats. You can customize currency formats for your own applications using
the CCA, CCB, CCC, CCD, and CCE subcommands. For example, you can display currency as
French francs rather than American dollars.

Cache File. The CACHE subcommand creates a complete copy of the active data file in tempo-
rary disk space after a specified number of changes in the active data file. Caching the active
data file can improve performance.

Basic Specification

The basic specification is at least one subcommand.

Subcommand Order

Subcommands can be named in any order.

Syntax Rules

• You can specify as many subcommands as needed. Subcommands must be separated by at
least one space or slash.

• Only one keyword or argument can be specified for each subcommand.

• SET can be used more than once in the command sequence.

• YES and ON are aliases for each other. NO and OFF are aliases for each other.

1486 SET

Operations

• Settings specified on SET remain in effect until they are changed by another SET command
or until the current session is ended.

• Each time SET is used, only the specified settings are changed. All others remain at their
previous settings or the default.

Example

SET BLANKS=0/UNDEFINED=NOWARN/TLOOK=’C:\SPSSWIN7\MYTABLE.TLO’.

• BLANKS specifies 0 as the value that the program should use when it encounters a
completely blank field for a numeric variable.

• UNDEFINED=NOWARN suppresses the message that the program displays whenever
anything other than a number or a blank is encountered as the value for a numeric variable.

• TLOOK specifies that the table properties defined in c:\spsswin7\mytable.tlo will be used to
define the default TableLook in the output. The default is NONE, which uses the TableLook
provided as the system default.

WORKSPACE and MXCELLS Subcommands

WORKSPACE is used to allocate more memory for some procedures when you receive a
message that the available memory has been used up or that only a given number of variables
can be processed. MXCELLS is used to increase the maximum number of cells you can create
for a new pivot table when you receive a warning that a pivot table cannot be created because
it exceeds the maximum number of cells allowed by the available memory.

• WORKSPACE allocates workspace memory in kilobytes for some procedures that allocate
only one block of memory, such as Crosstabs or Frequencies. The default is 4096.

• Do not increase either the workspace memory allocation unless the program issues a
message that there is not enough memory to complete a procedure.

• Use MXCELLS with caution. Set MXCELLS at a number higher than the limit indicated in
the warning message you receive. Set the number back to the default after the table is
created.

• The memory allocation or cell maximum number increase takes effect as soon as you run
the SET command.

Note: The MXMEMORY subcommand is no longer supported.

FORMAT Subcommand

FORMAT specifies the default print and write formats for numeric variables. This default
format applies to numeric variables defined on DATA LIST in freefield format and to all
numeric variables created by transformation commands, unless a format is explicitly speci-
fied.

• The specification must be a simple F format. The default is F8.2.

SET 1487

• You can use the PRINT FORMATS, WRITE FORMATS, and FORMATS commands to change
print and write formats.

• Format specifications on FORMAT are output formats. When specifying the width, enough
positions must be allowed to include any punctuation characters such as decimal points,
commas, and dollar signs.

• If a numeric data value exceeds its width specification, the program attempts to display
some value nevertheless. First, the program rounds decimal values, then removes punctu-
ation characters, then tries scientific notation, and finally, if there is still not enough space,
produces asterisks indicating that a value is present but cannot be displayed in the assigned
width.

TLOOK and CTEMPLATE Subcommands

TLOOK and CTEMPLATE specify a file used to define the table and chart appearance in the
output. The default for either command is NONE, which produces tables and charts using the
system defaults.

• TLOOK determines the properties of output tables produced. The properties include the
borders, placement of titles, column and row labels, text font, and column and cell formats.

• CTEMPLATE determines the properties of output charts and plots. The properties include
line style, color, fill pattern, and text font of relevant chart elements such as frames, titles,
labels, and legends.

• The specification on TLOOK or CTEMPLATE remains in effect until a new TLOOK or
CTEMPLATE is specified.

NONE Use the system defaults. The tables and charts in the output do not use cus-
tomized properties.

filename Use the specified file as templates for tables/charts in the output. You can
specify a full path in quotation marks.

ONUMBERS, OVARS, TNUMBERS, and TVARS Subcommands

ONUMBERS, OVARS, TNUMBERS, and TVARS control how variables are displayed in the
outline for pivot table output and in the pivot tables.
• ONUMBERS controls the display of variable values in the outline for pivot tables. The

default at installation is LABELS.

• OVARS controls the display of variables in the outline for pivot tables. The default at
installation is LABELS.

• TNUMBERS controls the display of variable values in the pivot tables. The default at
installation is VALUES.

• TVARS controls the display of variables in the pivot tables. The default at installation is
NAMES.

NAMES Display variable names.

VALUES Display variable values.

1488 SET

LABELS Displays variable labels.

BOTH Displays both labels and values for variables or both names and labels for
variables.

TFIT Subcommand

TFIT controls the default column widths of the pivot tables. The default at installation is
BOTH.

BOTH Adjust column widths to accommodate both labels and data.

LABELS Adjust column widths to accommodate labels only. This setting produces
compact tables, but data values wider than labels will be displayed as asterisks.

SEED Subcommand

SEED specifies the random number seed. You can specify any integer, preferably a number
greater than 1 but less than 2,000,000,000, which approaches the limit on some machines.
• The program uses a pseudo-random-number generator to select random samples or create

uniform or normal distributions of random numbers. The generator begins with a seed, a
large integer. Starting with the same seed, the system will repeatedly produce the same
sequence of numbers and will select the same sample from a given data file.

• At the start of each session, the seed is set to a value that may vary or may be fixed,
depending on the implementation. You can set the seed yourself with the SEED subcom-
mand.

• By default, the seed value changes each time a random-number series is needed in a
session. To repeat the same random distribution within a session, specify the same seed
each time.

• The random number seed can be changed any number of times within a session.

• To set the seed to a random number explicitly, use the keyword RANDOM.

Example
SET SEED=987654321.

• The random number seed is set to the value 987,654,321. The seed will be in effect the next
time the random-number generator is called.

EPOCH Subcommand

EPOCH defines the 100-year span dates entered with two-digit years and for date functions
with a two-digit year specification.

AUTOMATIC 100-year span beginning 69 years prior to the current date and ending 30
years after the current date.

begin year First year of the 100-year span.

SET 1489

Example
SET EPOCH=1900.

• All dates entered with two-digit year values are read as years between 1900 and 1999. For
example, a date entered as 10/29/87 is read as 10/29/1987.

Example
SET EPOCH=1980.

• Dates entered with two-digit year values between 80 and 99 are read as years between 1980
and 1999.

• Dates entered with two-digit year values between 00 and 79 are read as years between 2000
and 2079.

ERRORS, MESSAGES, RESULTS, and PRINTBACK Subcommands

ERRORS, MESSAGES, RESULTS, and PRINTBACK are used with keywords LISTING and NONE
to route program output. ERRORS, MESSAGES, and RESULTS apply only to text output. PRINT-
BACK applies to all commands entered in a syntax window or generated from a dialog box during
a session.

• ERRORS refers to both error messages and warning messages for text output.
• MESSAGES refers to resource utilization messages displayed with text output, including

the heading and the summaries (such as the amount of memory used by a command).

• RESULTS refers to the text output generated by program commands.

• PRINTBACK refers to command printback in the journal file. Syntax is always displayed as
part of the Notes in the syntax window.

LISTING Display output in the designated output window. Alias ON or YES. For
PRINTBACK, alias BOTH. The executed commands are printed back in the
journal and displayed in the log in the output window. You can either display
an icon only or list all of the commands.

NONE Suppress the output. Alias NO or OFF.

The default routes vary from operating system to operating system and according to the way
commands are executed. In windowed environments, the typical defaults are:

Subcommand Windowed environments

ERRORS LISTING
MESSAGES NONE
PRINTBACK BOTH
RESULTS LISTING

1490 SET

JOURNAL Subcommand

Alias to LOG. The program creates a journal file to keep track of the commands submitted
and error and warning messages generated during a session. JOURNAL is used to assign a file-
name to the journal file or to stop or resume the journal.

• Journal files with the default filename are erased at the beginning of each session. To
preserve the contents of a journal file, assign a name with SET JOURNAL at the beginning
of the session. Alternatively, if you have used the default name for a journal file, you can
rename the file before beginning another session.

• If you use multiple journal files, you should not start with one file, go to another file, and
then return to the first file. On many systems, the program will not append new information
to the first file but will overwrite the previous contents.

filename Filename for the journal file. The default name varies by system.

YES Start sending commands and messages to the journal file.

NO Stop sending commands and messages to the journal file.

Example
SET JOURNAL MYLOG.
GET FILE=HUBDATA.
SET JOURNAL OFF.
LIST.
SET JOURNAL ON.
FREQUENCIES VARIABLES=ALL.

• The first SET command opens the journal file MYLOG.
• The GET command is copied into the journal file. The SET command then turns the journal

off. The LIST command is not copied into the journal file but is executed. The second SET
command turns the journal on again, and the FREQUENCIES command is copied into the
journal file.

MEXPAND and MPRINT Subcommands

MEXPAND and MPRINT control whether macros are expanded and whether the expanded
macros are displayed. For more information on macros, see DEFINE and Appendix D.

The specifications for MEXPAND are:

ON Expand macros. This is the default.

OFF Do not expand macros. The command line that calls the macro is treated like any
other command line. If the macro call is a command, it will be executed; otherwise,
it will trigger an error message.

The specifications for MPRINT are:

ON Include expanded macro commands in the output.

OFF Exclude expanded macro commands from the output. This is the default.

SET 1491

• MPRINT is effective only when MEXPAND is ON and is independent of the PRINTBACK
subcommand.

MITERATE and MNEST Subcommands

MITERATE and MNEST control the maximum loop traversals and the maximum nesting levels
permitted in macro expansions, respectively.

• The specification on MITERATE or MNEST is a positive integer. The default for MITERATE
is 1000. The default for MNEST is 50.

BLANKS Subcommand

BLANKS specifies the value that the program should use when it encounters a completely
blank field for a numeric variable. By default, the program uses the system-missing value.
• BLANKS controls only the translation of numeric fields. If a blank field is read with a string

format, the resulting value is a blank.

• The value specified on BLANKS is not automatically defined as a missing value.

• The BLANKS specification applies to all numeric variables. You cannot use different spec-
ifications for different variables.

• BLANKS must be specified before data are read. Otherwise, blanks in numeric fields are
converted to the system-missing value (the default) as they are read.

UNDEFINED Subcommand

UNDEFINED controls whether the program displays a warning message when it encounters
anything other than a number or a blank as the value for a numeric variable. The default is
WARN.

• Warning messages that are suppressed are still counted toward the maximum allowed
before the session is terminated. To control the number of warnings (and therefore the
number of invalid values) allowed in a session, use the MXWARNS subcommand.

WARN Display a warning message when an invalid value is encountered for a
numeric variable. This is the default.

NOWARN Suppress warning messages for invalid values.

•

MXERRS and MXWARNS Subcommands

MXERRS and MXWARNS control the maximum number of error messages and warnings
SPSS displays during one working session. The default for MXERRS is 40; the default for
MXWARNS is 10.

• Errors counted are those that cause SPSS to stop execution of a command but continue
the session. MXERRS applies only to command files submitted for execution through

1492 SET

SPSSB in the server version of SPSS. When the MXERRS limit is exceeded, SPSS termi-
nates the session.

• All errors are included with warnings in the count toward the MXWARNS limit. Notes are
not. For information on notes, warnings, and errors, see “Listing File” on p. 23.

• In interactive mode or in SPSS for Windows and other windowed environments, MXERRS
does not apply. If you have set MXWARNS, SPSS stops displaying warning messages when
the limit is exceeded but the working session continues.

• In batch mode in non-windowed environments, SPSS terminates the session when the
MXWARNS limit is exceeded. You may wish to reset MXWARNS when using batch mode.

Example
��� �������� ���	
������

• MXERRS specifies that a maximum of 5 errors can occur before an SPSS session is
terminated.

• MXWARNS specifies that a maximum of 200 warnings can be displayed. When the limit
is exceeded, SPSS stops is displaying warnings if it is in a windowed environment or is
running the commands interactively. Otherwise, SPSS terminates the session.

MXLOOPS Subcommand

MXLOOPS specifies the maximum number of times a loop defined by the LOOP—END LOOP
structure is executed for a single case or input record. The default is 40.

• MXLOOPS prevents infinite loops, which may occur if no cutoff is specified for the loop
structure (see LOOP—END LOOP).

• When a loop is terminated, control passes to the command immediately following the END
LOOP command, even if the END LOOP condition is not yet met.

EXTENSIONS Subcommand

This subcommand is no longer supported.

COMPRESSION Subcommand

COMPRESSION determines whether scratch files created during a session are in compressed
or uncompressed form.

• A compressed scratch file occupies less space on disk than does an uncompressed scratch
file but requires more processing.

• The specification takes effect the next time a scratch file is written and stays in effect until
SET COMPRESSION is specified again or until the end of the session.

• The default setting varies. Use SHOW to display the default on your system.

YES Compress scratch files.

SET 1493

NO Do not compress scratch files.

BLOCK Subcommand

BLOCK specifies the character used for drawing icicle plots.

• You can specify any single character either as a quoted string or as a quoted hexadecimal
pair preceded by the character X.

• The default is X’2A’.

Example
SET BLOCK=’#’.

• This command specifies a pound sign (#) as the character to be used for drawing bar charts.
The character is specified as a quoted string.

BOX Subcommand

BOX specifies the characters used to draw grids in MULT RESPONSE. Other procedures may
also use these characters in plots and other displays. The specification is either a 3- or an 11-
character quoted string, in which the characters represent, respectively:

• The characters can be specified either as a quoted string or hexadecimal pairs. Specify an
X before the quoted hexadecimal pairs.

• The defaults vary from system to system. To display the current settings, use the SHOW
command.

• The default is X’2D7C2B2B2B2B2B2B2B2B2B’.

LENGTH and WIDTH Subcommands

LENGTH and WIDTH specify the maximum page length and width for the output, respectively.
The default for LENGTH is 59 lines; the default for WIDTH is 80. These two subcommands
apply only to text output.
• The page length includes the first printed line on the page through the last line that can be

printed. The printer that you use most likely includes a margin at the top; that margin is not
included in the length used by this program. The default, 59 lines, allows for a 1/2-inch
margin at the top and bottom of an 11-inch page printed with 6 lines per inch, or an 8 1/2-
inch page printed with 8 lines per inch.

1 horizontal line 7 upper right corner
2 vertical line 8 left T
3 middle (cross) 9 right T
4 lower left corner 10 top T
5 upper left corner 11 bottom T
6 lower right corner

1494 SET

• You can specify any length from 40 through 999,999 lines. If a long page length is speci-
fied, the program continues to provide page ejects and titles at the start of each procedure
and at logical points in the display, such as between crosstabulations.

• To suppress page ejects, use keyword NONE on LENGTH. The program will insert titles at
logical points in the display but will not supply page ejects.

• You can specify any number of characters from 80 through 255 for WIDTH. The specified
width does not include the carriage control character. All procedures can fit the output to
an 80-column page using a 10 pt. fixed pitch font.

HEADER Subcommand

HEADER controls whether the output includes headings. The HEADER subcommand applies
to both default headings and those specified on the TITLE and SUBTITLE commands. This
command applies only to text output from this program. The default is NO.

NO Suppress headings in text output. All general headings, including pagination, are
replaced by a single blank line.

YES Display headings in text output.

BLANK Suppress headings but start a new page.

CCA, CCB, CCC, CCD, and CCE Subcommands

You can specify up to five custom currency formats using the subcommands CCA, CCB, CCC,
CCD, and CCE.

• Each custom currency subcommand defines one custom format and can include four spec-
ifications in the following order: a negative prefix, a prefix, a suffix, and a negative suffix.

• The specifications are delimited by either periods or commas, whichever you do not want
to use as a decimal point in the format.

• If your custom currency format includes periods or commas that you need to distinguish
from delimiters (e.g., the format includes a period but the decimal indicator is a comma; so
the period must also be used as the delimiter), use a single quote as an escape character
before the period or comma that is part of the custom currency format.

• Each currency specification must always contain three commas or three periods. All other
specifications are optional.

• Use blanks in the specification only where you want blanks in the format.

• The entire specification must be enclosed in single or double quotes. If the format includes
a single quote as an escape character, the entire specification must be enclosed in double
quotes.

• A specification cannot exceed 16 characters (excluding the apostrophes).

• Custom currency formats cannot be specified as input formats on DATA LIST. Use them
only as output formats in the FORMATS, WRITE FORMATS, PRINT FORMATS, WRITE, and
PRINT commands.

SET 1495

Example
SET CCA=’-,$,,’.

• A minus sign (-) preceding the first command is used as the negative prefix.

• A dollar sign is specified for the prefix.
• No suffixes are specified (there are two consecutive commas before the closing apostrophe).

• Since commas are used as separators in the specification, the decimal point is represented
by a period.

Example
SET CCA=’(,,,-)’ CCB=’,,%,’ CCC=’(,$,,)’ CCD=’-/-.Dfl ..-’.
FORMATS VARA(CCA9.0)/ VARB(CCB6.1)/ VARC(CCC8.0)/ VARD(CCD14.2).

• SET defines four custom currency formats. Table 1 summarizes the currency specifications.

• FORMATS assigns these formats to specific variables.

CACHE Subcommand

The CACHE subcommand creates a complete copy of the active data file in temporary disk
space after a specified number of changes in the active data file. If you have the available
disk space, this can improve performance. The default number of changes before the active
file is cached is 20.

Example
SET CACHE 10.

SMALL Subcommand

The SMALL subcommand controls the display of numbers in scientific notation in output for
small decimal values.

Table 1 Custom currency examples

 CCA CCB CCC CCD

negative prefix (none (–/–
prefix none none $ Dfl
suffix none % none none
negative suffix –) none) –
separator , , , .
sample positive number 23,456 13.7% $352 Dfl 37.419,00
sample negative number (19,423–) 13.7% ($189) –/–Dfl 135,19–

1496 SET

Example
SET SMALL = 0.

SET SMALL = .001.

• The first SET SMALL command suppresses the display of scientific notation in all output.

• The second SET SMALL command will only display scientific notation for values less than
0.001.

OLANG Subcommand

The OLANG subcommand controls the language used in output. It does not apply to simple
text output, interactive graphics, or maps (available with the Maps option). Available
languages may vary. (The General tab in the Options dialog box displays a list of available
output languages.) Valid language keywords include ENGLISH, FRENCH, GERMAN,
SPANISH, ITALIAN, JAPANESE, KOREAN, and CHINESE. Additional valid language keywords
may include POLISH and RUSSIAN.

Output produced after the command is executed will be in the specified language if that
language is available. Additional language materials may be available for downloading from
the SPSS Web site.

Example
SET OLANG = GERMAN.

• The language keyword is not case sensitive.

• Do not enclose the language keyword in quotes or other string delimiters.

DEFOLANG Subcommand

The DEFOLANG subcommand specifies the default output language if the language specified
on the OLANG subcommand is not available. The initial default setting is the language of the
installed software version. For example, if you install the English version of the software on
a Japanese operating system, the default output language is English.

Example
SET DEFOLANG = JAPANESE.

• The language keyword is not case sensitive.

• Do not enclose the language keyword in quotes or other string delimiters.

SCALEMIN Subcommand

For data files created in versions of SPSS prior to version 8.0, you can specify the minimum
number of data values for a numeric variable used to classify the variable as scale or nominal.
Variables with fewer than the specified number of unique values are classified as nominal.

SET 1497

Any variable with defined value labels is classified as nominal, regardless of the number of
unique values.

1498

SHOW

SHOW [ALL] [BLANKS] [BLKSIZE] [BOX] [BLOCK] [BUFNO] [CC] [CCA] [CCB]

 [CCC] [CCD] [CCE] [CACHE} [COMPRESSION] [CTEMPLATE] [DEFOLANG]

 [DIRECTORY] [ENVIRONMENT] [EPOCH] [ERRORS] [FILTER] [FORMAT] [HEADER]

 [LENGTH] [LICENSE] [LOCALE] [MESSAGES] [MEXPAND][MITERATE]

 [MNEST] [MPRINT] [MXCELLS] [MXERRS] [MXLOOPS] [MXWARNS]

 [N] [OLANG] [ONUMBERS] [OVARS] [PRINTBACK] [RESULTS] [SCALEMIN]

 [SCOMPRESSION] [SEED] [SMALL] [SYSMIS] [TFIT] [TLOOK] [TNUMBERS]

 [TVARS] [UNDEFINED] [WEIGHT] [WIDTH] [WORKSPACE] [$VARS]

Overview

SHOW displays current settings for running options. Most of these settings can be changed
with the SET command.

Basic Specification

The basic specification is simply the command keyword, which displays important current
settings (keyword ALL). Some displayed option settings are applicable only when you have
options such as Tables and Categories.

Subcommand Order

Subcommands can be named in any order.

Syntax

• If any subcommands are specified, only the requested settings are displayed.

• SHOW can be specified more than once.

Example

SHOW BLANKS /UNDEFINED /MXWARNS.

• BLANKS shows the value to which a completely blank field for a numeric variable is
translated.

• UNDEFINED indicates whether a message displays whenever the program encounters
anything other than a number or a blank as the value for a numeric variable.

SHOW 1499

• MXWARNS displays the maximum number of warnings allowed before a session is
terminated.

Subcommands

The following alphabetical list shows the available subcommands.

ALL Display important settings applicable to your system. This is the
default.

BLANKS Value to which a completely blank field for a numeric variable is
translated. The default is the system-missing value.

BLKSIZE Default block length used for scratch files and SPSS-format data files.
The default varies by system. BLKSIZE cannot be changed with SET.

BOX Characters used to draw boxes. Both character and hexadecimal repre-
sentations are displayed. The default is X’2D7C2B2B2B2B2B2B2B2B2B’.
This setting applies only to text output from the program.

BLOCK Character used to draw bar charts. Both character and hexadecimal
representations are displayed. The default is X’2A’. This setting applies
only to the text output from the program.

BUFFNO The default number of buffers used for all files managed by the system
for input and output. The default varies by system. BUFFNO cannot be
changed with SET.

CC Custom currency formats. CC shows the current custom currency for-
mats that have been defined for CCA, CCB, CCC, CCD, and CCE on
SET. In Windows environments, they reflect the Regional Settings
Properties. You can also request any of these keywords individually.

CACHE Cache active data file. This setting shows the number of changes in the
active data file before a cache file is created. The default is 20.

COMPRESSION Compression of scratch files. The setting is either ON or OFF (alias
YES or NO). The default varies by system.

CTEMPLATE Chart template file. The setting is either NONE or a filename.

DEFOLANG Default output language. Default output language to use if the
language specified on the OLANG subcommand is not available. The
initial default setting is the language version of the installed software.

DIRECTORY Default directory. The root directory used to determine the locations
of files specified with no paths or relative paths. A wide variety of ac-
tions can change the current default directory during a session.

ENVIRONMENT Operating system and computer information. Includes information on
environment variables, defined paths, domain, etc.

1500 SHOW

EPOCH Range of years for date-format variables and date functions entered
with a 2-digit year value. AUTOMATIC indicates a 100-year range be-
ginning 69 years before the current year and 30 years after the current
year.

ERRORS Error messages for text output. The setting can be LISTING (alias YES
or ON) or NONE (alias NO or OFF).

EXTENSIONS No longer supported.

FILTER Filter status. Indicates if filtering is currently in effect (FILTER com-
mand) and the filter variable in use (if any).

FORMAT Default print and write formats for numeric variables defined on
DATA LIST in freefield format and to all numeric variables created by
transformation commands. The default is F8.2.

HEADER Headings for text output. The setting is YES, NO, or BLANK. The
default is NO.

JOURNAL No longer supported.

LENGTH Maximum page length for output. The default is 59. This setting
applies only to the text output from the program.

LICENSE Licensed components, expiration date, release number, and maximum
number of users permitted by the license.

LOCALE Operating system locale setting and codepage. In Windows operating
systems, locale is set in the Regional Options control panel.

MESSAGES Resource utilization messages for text output. The setting can be
LISTING (alias YES or ON) or NONE (alias NO or OFF).

MXERRS Maximum number of errors allowed and number of errors so far in
current session. Note: In most implementations of SPSS, the maxi-
mum number of errors defined on SET MXERRS is ignored. However,
the information about number of errors in the current session provided
in SHOW MXERRS can be useful.

MEXPAND Macro expansion. The setting is either ON (alias YES) or OFF (alias
NO). The default is ON.

MITERATE Maximum loop iterations permitted in macro expansions. The default
is 1000.

MNEST Maximum nesting level for macros. The default is 50.

MPRINT Inclusion of expanded macros in the output. The setting is either ON
(alias YES) or OFF (alias NO). The default is OFF.

MXCELLS Maximum number of cells allowed for a new pivot table. The default
is AUTOMATIC, allowing the number to be determined by the available
memory.

MXLOOPS Maximum executions of a loop on a single case. The default is 40.

SHOW 1501

MXMEMORY No longer supported.

MXWARNS Maximum number of warnings and errors shown for text output. The
default is 10.

N Unweighted number of cases in the working data file. N displays
UNKNOWN if a working data file has not yet been created. N cannot
be changed with SET.

OLANG Output language for pivot tables.

ONUMBERS Display of variable values in the outline for pivot tables. The settings
can be LABELS, VALUES, and BOTH.

OVARS Display of variables as headings. The settings can be LABELS,
NAMES, and BOTH.

PRINTBACK Command printback. The setting can be BOTH (alias LISTING, YES,
or ON) or NONE (alias NO or OFF). The default is BOTH at system
installation.

RESULTS Output from commands. Not applicable to output displayed in pivot ta-
bles. The setting can be LISTING (alias YES or ON) or NONE (alias NO
or OFF).

SCALEMIN For data files created in versions of SPSS prior to version 8.0, the min-
imum number of unique values for a numeric variable used to classify
the variable as scale. Only affects pre-8.0 data files opened in later
version.

SCOMPRESSION Compression of SPSS-format data files. This setting can be overridden
by the COMPRESSED or UNCOMPRESSED subcommands on the
SAVE or XSAVE commands. The default setting varies by system.
SCOMPRESSION cannot be changed with SET.

SEED Seed for the random-number generator. The default is generally
2,000,000 but may vary by system.

SMALL Decimal value to control display of scientific notation in output.

SYSMIS The system-missing value. SYSMIS cannot be changed with SET.

TFIT Adjust column widths in pivot tables. The settings can be BOTH (label
and data) and LABELS.

TLOOK Pivot table template file. The setting can be either NONE or a filename.

TNUMBER Display of variable values in pivot tables. The settings can be VALUES,
LABELS, and BOTH.

TVARS Display of variables as headings. The settings can be NAMES,
LABELS, and BOTH.

UNDEFINED Warning message for undefined data. WARN is the default. NOWARN
suppresses messages but does not alter the count of warnings toward
the MXWARNS total.

1502 SHOW

WEIGHT Variable used to weight cases. WEIGHT can be specified for SHOW
only; it cannot be changed with SET.

WIDTH Maximum page width for the output. The default is 132 columns for
batch mode and 80 for interactive mode. This setting applies only to
text output from the program.

WORKSPACE Special workspace memory limit in kilobytes. The default is 4096.

$VARS Values of system variables. $VARS cannot be changed with SET.

1503

SORT CASES

SORT CASES [BY] varlist[({A})] [varlist...]
 {D}

Example
SORT CASES BY DIVISION (A) STORE (D).

Overview

SORT CASES reorders the sequence of cases in the working data file based on the values of
one or more variables. You can optionally sort cases in ascending or descending order, or
use combinations of ascending and descending order for different variables.

Basic Specification

The basic specification is a variable or list of variables that are used as sort keys. By default,
cases are sorted in ascending order of each variable, starting with the first variable named.
For each subsequent variable, cases are sorted in ascending order within categories of the
previously named variables.

Syntax Rules

• Keyword BY is optional.

• BY variables can be numeric or string but not scratch, system, or temporary variables.

• You can explicitly request the default sort order (ascending) by specifying A or UP in
parentheses after the variable name. To sort cases in descending order, specify D or
DOWN.

• An order specification (A or D) applies to all variables in the list up to the previous order
specification. If you combine ascending and descending order on the same SORT CASES
command, you may need to specify the default A explicitly.

Operations

• SORT CASES first sorts the file according to the first variable named. For subsequent
variables, cases are sorted within categories of the previously named variables.

• The sort sequence of string variables depends on the character set in use on your system.
With EBCDIC character sets, most special characters are sorted first, followed by lower-
case alphabetical characters, uppercase alphabetical characters, and, finally, numbers. The
order is almost exactly reversed with ASCII character sets. Numbers are sorted first, fol-
lowed by uppercase alphabetical characters and then lowercase alphabetical characters. In

1504 SORT CASES

addition, special characters are sorted between the other character types. Use the INFO com-
mand (not available on all systems) to obtain information on the character set in use on your
system and the exact sort sequence.

SORT CASES with Other Procedures

• In AGGREGATE, cases are sorted in order of the break variable or variables. You do not
have to use SORT CASES prior to running AGGREGATE, since the procedure does its own
sorting.

• You can use SORT CASES in conjunction with the BY keyword in ADD FILES to interleave
cases with the same variables but from different files.

• With MATCH FILES, cases must be sorted in the same order for all files you combine.

• With UPDATE, cases must be sorted in ascending order of the key variable or variables in
both the master file and all transaction files.

• You can use the PRINT command to check the results of a SORT CASES command. PRINT
must be followed by a procedure or EXECUTE to be executed.

Example

SORT CASES BY DIVISION (A) STORE (D).

• Cases are sorted in ascending order of variable DIVISION. Cases are further sorted in
descending order of STORE within categories of DIVISION. A must be specified so that D
applies to STORE only.

Example

SORT CASES DIVISION STORE (A) AGE (D).

• Cases are sorted in ascending order of DIVISION. Keyword BY is not used in this example.
• Cases are further sorted in ascending order of STORE within values of DIVISION. Speci-

fication A applies to both DIVISION and STORE.

• Cases are further sorted in descending order of AGE within values of STORE and DIVISION.

1505

SPCHART

This command is available only on systems with high-resolution graphics capabilities.

SPCHART
 [/TEMPLATE=’filename’]

 [/TITLE=’line 1’ [’line 2’]]
 [/SUBTITLE=’line 1’]
 [/FOOTNOTE=’line 1’ [’line 2’]]

 {[/XR=]{var BY var } }
 {var var [var var...][BY var]}
 { /XS= {var BY var } }
 {var var [var var...][BY var]}
 { /IR= var [BY var] }
 { /I= var [BY var] }
 { /NP= {var BY var }}
 {COUNT(var) N({var }) [BY var]}
 {value }
 { /P= {var BY var } }
 {COUNT(var) N({var }) [BY var]}
 {value }
 { /C= {var BY var } }
 {COUNT(var) N({var }) [BY var]}
 {value }
 { /U= {var BY var }}
 {COUNT(var) N({var }) [BY var]}
 {value}

 [/STATISTICS = [CP] [CPL] [CPU] [K] [CPK] [CR] [CPM]
 [CZL] [CZU] [CZMIN] [CZMAX] [CZOUT]
 [PP] [PPL] [PPU] [PPK] [PR] [PPM]
 [PZL] [PZU] [PZMIN] [PZMAX] [PZOUT]
 [AZOUT]]

 [/CAPSIGMA = [{RBAR }]]
 {SBAR }
 {MRBAR }
 {WITHIN}

 [/SPAN={2**}]
 {n }

 [{/CONFORM }=value]
 {/NONCONFORM}

 [/SIGMA={3**}]
 {n }

 [/MINSAMPLE={2**}]
 {n }

 [/LSL=value] [/USL=value]

 [TARGET = value]

 [/MISSING=[{NOREPORT**}] [{EXCLUDE**}]
 {REPORT } {INCLUDE }

**Default if the subcommand is omitted.

1506 SPCHART

Overview

SPCHART generates several types of high-resolution control charts. A control chart plots a
quality characteristic measured or computed from a sample versus the sample number or
time. It is a widely used process-control technique for testing the hypothesis that the process
is in a state of statistical control. All control charts display four series:

• The process line representing the quality characteristic for each sample.
• The center line indicating the average value of the quality characteristic corresponding to

the in-control state.

• Two horizontal lines showing the upper control limit and the lower control limit.

Control charts are used as a technique for improving productivity, preventing defects and un-
necessary process adjustments, and gathering information about process capability.

 SPCHART produces X-bar, R, s, individuals, and moving range charts as well as np, p, c,
and u charts. You may need to transform your data so that they conform to the required data
organization described under each chart type subcommand.

Control charts are available only on systems where high-resolution display is available.

Options

Titles and Footnotes. You can specify a title, subtitle, and footnote for the control chart using
the TITLE, SUBTITLE, and FOOTNOTE subcommands.

Chart Type. You can request a specific type of control chart using the XR, XS, IR, I, NP, P, C,
or U subcommand.

Templates. You can specify a template, using the TEMPLATE subcommand, to override the
default chart attribute settings on your system.

Control Limits. You can specify a sigma value on the SIGMA subcommand to modify the cal-
culated upper and lower control limits. You can also specify fixed limits using the USL and
LSL subcommands. The upper and lower limits you specify will be displayed simultaneously
with the calculated control limits.

Basic Specification

The basic specification is a chart type subcommand. By default, the title of the generated
chart is Control Chart followed by the label of the process variable. The subtitle provides
split-file information if split-file processing is in effect, and the one-line footnote provides
the sigma value.

Subcommand Order

Subcommands can be specified in any order.

SPCHART 1507

Syntax Rules

• Only one chart type subcommand can be specified.
• Keyword SPAN is used only with IR and I subcommands.

• Keyword CONFORM or NONCONFORM is used only with NP and P subcommands.

Operations

• SPCHART plots four basic series: the process, the center line, the upper control line, and
the lower control line.

• The chart title, subtitle, and footnote are assigned as they are specified on TITLE, SUBTITLE,
and FOOTNOTE subcommands. If you do not use these subcommands, the chart title is
Control Chart, followed by the label of the process variable, and a one-line footnote displays
the sigma level.

• The category variable label is used as the title for the category axis. If no variable label is
defined, the variable name is used. If no category variable is defined, the title is null.

• The category variable value labels are used as the category axis labels. If no value labels
are defined, values are used. If no category variable is defined, integer values from 1 to n
are used, where n is the number of subgroups or units plotted.

• All series are plotted as lines. When a series has a constant value across all samples, the
value is reported in the legend entry for the series.

• Case weights are not honored for control charts when each case is a subgroup. They are
honored when each case is a unit and when the weights are integers. When weighted data
are used in an individuals chart, replicated cases are plotted on the control chart.

• The calculated control limits are always displayed and can be suppressed only by editing
the chart in a chart window.

• You can specify preset control limits for an X-bar or I chart, as some industries often do.
The specified control limits are displayed simultaneously with the calculated limits.

Limitations

• Control charts cannot have fewer than 2 or more than 3000 points.

• The subgroup size in X-bar and range charts cannot exceed 100.

• The span for individual charts is limited to 100.

Example

SPCHART /TEMPLATE=’CNTR.CHT’
 /IR=SUBSIZE.

• This command generates an individuals chart and a moving range chart. The process vari-
able SUBSIZE is a numeric variable that measures the size variation of the product.

• Both charts uses the attributes defined for the template saved in CNTR.CHT.

1508 SPCHART

• The default span (2) and sigma value (3) are used.

• Since no BY variable is specified, the x axis is labeled by sequence numbers.

TITLE, SUBTITLE, and FOOTNOTE Subcommands

TITLE, SUBTITLE, and FOOTNOTE specify lines of text placed at the top or bottom of the con-
trol chart.

• One or two lines of text can be specified for TITLE or FOOTNOTE, and one line of text can
be specified for SUBTITLE.

• Each line of text must be enclosed in apostrophes or quotation marks. The maximum
length of any line is 72 characters.

• The default font sizes and types are used for the title, subtitle, and footnote.

• By default, the title, subtitle, and footnote are left-aligned with the y axis.

• If you do not specify TITLE, the default title is Control Chart followed by the label of the
process variable.

• If you do not specify SUBTITLE, the subtitle provides the split-file information if split-file
processing is in effect; otherwise it is null, which leaves more space for the chart.

• If you do not specify FOOTNOTE, the sigma level is identified as the first line of the footnote.

Example
SPCHART TITLE = ’Wheel Production’

/SUBTITLE = ’Process Control’
 /IR=SUBSIZE.

XR and XS Subcommands

XR produces an X-bar chart and an R chart. XS produces an X-bar chart and an s chart. X-bar,
R, and s charts are control charts for continuous variables, such as size, weight, length, and
temperature.

An X-bar chart plots the mean of each subgroup. The center line indicates the mean of
subgroup means. The control limits are calculated from subgroup means, numbers, standard
deviations, and the user-specified SIGMA value (see “SIGMA Subcommand” on p. 1521).
Figure 1 shows an X-bar chart.

SPCHART 1509

An R chart plots range values (maximum-minimum) of successive subgroups. The center
line indicates the mean of subgroup ranges. The control limits are calculated from subgroup
ranges, numbers, and the user-specified SIGMA value (see “SIGMA Subcommand” on p.
1521). The R chart tests whether the process variability is in control. When the subgroup size
is relatively small (4, 5, or 6), the range method yields almost as good an estimator of the
variance as does the subgroup variance. Figure 2 shows an R chart.

An s chart plots subgroup standard deviations. The center line indicates the mean of sub-
group standard deviations. The control limits are calculated from subgroup standard devia-
tions, numbers, and the user-specified SIGMA value (see “SIGMA Subcommand” on p.
1521). The s chart tests whether the process variability is in control, especially when the sub-
group size is from moderate to large. Figure 3 shows an s chart.

Figure 1 X-bar chart

Figure 2 R chart

1510 SPCHART

Data Organization

For X-bar, R, or s charts, data can be organized in two ways: each case is a unit or each case
is a subgroup.

• Each case is a unit with a subgroup identifier. Cases are assigned to a category according
to the value of the identifier. Table 1 is an example of this type of data organization. The
data do not have to be sorted by subgroup. A BY variable (the subgroup identifier) is
required to sort and aggregate data and label the process variable.

• Each case is a subgroup. There are as many variables as individuals within one sample.
A sample identifier is not required. When there is one, it is used for labeling. Table 2
shows the same data as Table 1 but organized in a different way.

Table 1 Each case is a unit for X-bar, R, and s charts

Subgroup Length

 8:50 6.35
11:30 6.39
 8:50 6.40
11:30 6.46
 8:50 6.32
11:30 6.37
 8:50 6.39
11:30 6.36
... ...

Table 2 Each case is a subgroup for X-bar, R, and s charts

Subgroup N1 N2 N3 N4

 8:50 6.35 6.40 6.32 6.39
11:30 6.39 6.46 6.37 6.36
...

Figure 3 S chart

SPCHART 1511

Variable Specification

If data are organized as shown in Table 1, the variable specifications on XR and XS subcom-
mands are

VAR BY VAR

The variable specified before BY is the process variable, the variable that contains values for
all instances to be plotted (for example, LENGTH in Table 1). The variable specified after BY
is the category variable or the BY variable, which is the subgroup identifier (for example,
SUBGROUP in Table 1). The process variable must be numeric while the category variable
can be of any type. The chart is sorted by the category variable.

If data are organized as shown in Table 2, the variable specifications on XR and XS sub-
commands are

VAR VAR [VAR...] [BY VAR]

Each of the variables specified before BY represents an instance to be plotted (for example,
N1 to N3 in Table 2). At least two variables are required and each must be numeric. Keyword
BY and the category variable (for example, SUBGROUP in Table 2) are optional; if specified,
the category variable provides labels for the category axis and can be any type of variable. If
omitted, the category axis is labeled from 1 to the number of variables specified before key-
word BY.

Example
SPCHART /TEMPLATE=’CTRL.CHT’
 /XR SUBSIZE BY SHIFT.

• The data are organized as shown in Table 1. SUBSIZE is a numeric variable that measures
the part size. SHIFT contains the subgroup identifier (work shift number).

• The chart template is stored in the chart file CTRL.CHT.

I and IR Subcommands

I produces an individuals chart and IR produces an individuals and a moving range chart. Both
types are control charts for continuous variables, such as size, weight, length, and temperature.

An individuals chart plots each individual observation on a control chart. The center line
indicates the mean of all individual values and the control limits are calculated from the mean
of the moving ranges, the span, and the user-specified SIGMA value. Individuals charts are
often used with moving range charts to test process variability when the subgroup size is 1.
This occurs frequently when automated inspection and measurement technology is used and
every unit manufactured is analyzed. It also occurs when the process is so slow that a larger
subgroup size becomes impractical. Figure 4 shows an individuals chart.

1512 SPCHART

A moving range chart plots moving ranges of n successive observations on a control chart,
where n is the specified span (see “SPAN Subcommand” on p. 1521). The center line is the
mean of moving ranges and the control limits are calculated from the ranges, the span, and
the user-specified SIGMA value (see “SIGMA Subcommand” on p. 1521). Figure 5 shows a
moving range chart.

Data Organization

For individuals and moving range charts, data must be organized so that each case is a unit.
Cases are not sorted or aggregated before plotting.

 Variable Specification

The variable specification for I or IR subcommand is

VAR [BY VAR]

You must specify the process variable that contains the value for each individual observation.
Each observation is plotted for the individuals chart. The range of n consecutive observations
(where n is the value specified on the SPAN subcommand) is calculated and plotted for the

Figure 4 Individuals chart

Figure 5 Moving range chart

SPCHART 1513

moving range chart. The range data for the first n-1 cases are missing, but the mean and the
limit series are not.

Keyword BY and the category variable are optional. When specified, the category variable
is used for labeling the category axis and can be any type of variable. If omitted, the category
axis is labeled 1 to the number of individual observations in the process variable.

Example
SPCHART /TEMPLATE=’CTRL.CHT’
 /IR=SUBSIZE.

• This command requests an individuals chart and a moving range chart. The two charts are
shown in Figure 4 and Figure 5.

• The default span (2) and sigma value (3) are used.

P and NP Subcommands

P produces a p chart and NP produces an np chart. Both types are control charts for attributes.
That is, they use data that can be counted, such as the number of nonconformities and the
percentage of defects.

A p chart plots the fraction nonconforming on a control chart. Fraction nonconforming
is the proportion of nonconforming or defective items in a subgroup to the total number of
items in that subgroup. It is usually expressed as a decimal or, occasionally, as a percent-
age. The center line of the control chart is the mean of the subgroup fractions and the con-
trol limits are based on a binomial distribution and can be controlled by the user-specified
SIGMA value.

An np chart plots the number nonconforming rather than the fraction nonconforming. The
center line is the mean of the numbers of nonconforming or defective items. The control
limits are based on the binomial distribution and can be controlled by the user-specified
SIGMA value. When the subgroup sizes are unequal, np charts are not recommended.

Figure 6 P chart

1514 SPCHART

Data Organization

Data for p and np charts can be organized in two ways: each case is a unit or each case is a
subgroup.

• Each case is a unit with a conformity status variable and a subgroup identifier. Cases are
assigned to a category by the value of the subgroup identifier. Table 3 is an example of
this type of data organization. The data do not have to be sorted. A BY variable (the
subgroup identifier) is required to sort and aggregate data and label the category axis.

• Each case is a subgroup. One variable contains the total number of items within a
subgroup and one variable contains the total number of nonconforming or defective items
in the subgroup. The subgroup identifier is optional. If specified, it is used for labeling
purposes. Table 4 is an example of this type of data organization. The data are the same
as used in Table 3.

Table 3 Each case is a unit for p and np charts

Subgroup Outcome

January Cured
January Cured
January Cured
January Relapse
February Relapse
February Cured
February Relapse
February Relapse
... ...

Figure 7 NP chart

SPCHART 1515

Variable Specification

If data are organized as illustrated in Table 3, the variable specification on P or NP subcom-
mands is

VAR BY VAR

The variable specified before BY is the status variable (for example, OUTCOME in Table 3). The
value of this variable determines whether an item is considered conforming or nonconforming.
The status variable can be any type, but if it is a string, the value specified on CONFORM (or
NONCONFORM) must be enclosed in apostrophes (see “CONFORM and NONCONFORM
Subcommands” on p. 1521). The variable specified after BY is the category variable. It can be
any type of variable. The chart is sorted by values of the category variable.

If data are organized as shown in Table 4, the variable specification on P or NP is

COUNT(VAR) N({VAR}) [BY VAR]
 {VAL}

The variable specified on keyword COUNT is the variable containing the number of noncon-
forming or defective items (for example, RELAPSE in Table 4). The specification on keyword
N is either the variable containing the sample size or a positive integer for a constant size
across samples (for example, N in Table 4). The COUNT variable cannot be larger than the N
variable for any given subgroup; if it is, the subgroup is dropped from calculation and plot-
ting. Keyword BY and the category variable are optional. When specified, the category vari-
able is used for category axis labels; otherwise, the category axis is labeled 1 to the number
of subgroups. Cases are unsorted for the control chart.

C and U Subcommands

C produces a c chart and U produces a u chart. Both types are control charts for attributes.
That is, they use data that can be counted.

A c chart plots the total number of defects or nonconformities in each subgroup. A defect or
nonconformity is one specification that an item fails to satisfy. Each nonconforming item has
at least one defect, but any nonconforming item may have more than one defect. The center line
of the c chart indicates the mean of the defect numbers of all subgroups. The control limits are

Table 4 Each case is a subgroup for p and np charts

Subgroup Relapse N

January 1 4
February 3 4
...

1516 SPCHART

based on the Poisson distribution and can be controlled by the user-specified SIGMA value.
When the sample sizes are not equal, c charts are not recommended.

A u chart plots the average number of defects or nonconformities per inspection unit within
a subgroup. Each subgroup contains more than one inspection unit. The center line of the u
chart indicates the average number of defects per unit of all subgroups. The control limits are
based on Poisson distribution and can be controlled by the user-specified SIGMA value.

Data Organization

Data for c and u charts can be organized in two ways: each case is a unit or each case is a
subgroup.

• Each case is a unit with a variable containing the number of defects for that unit and a
subgroup identifier. Cases are assigned to each subgroup by the value of the identifier.
Table 5 is an example of this type of data organization. Data do not have to be sorted by
subgroup. A BY variable (the subgroup identifier) is required to sort and aggregate data
and to label the category axis.

• Each case is a subgroup. One variable contains the total number of units within the
subgroup and one variable contains the total number of defects for all units within the
subgroup. The subgroup identifier is optional. When specified, it is used as category axis
labels; otherwise, the number 1 to the number of subgroups are used to label the category

Figure 8 C chart

Figure 9 U chart

SPCHART 1517

axis. Table 6 is an example of this method of data organization. The data are the same as
in Table 5.

Variable Specification

If data are organized as in Table 5, the variable specification on C and U subcommands is

VAR BY VAR

The variable specified before keyword BY contains the number of defects in each unit (for
example, COUNT in Table 5). It must be numeric. The variable specified after keyword BY is
the subgroup identifier (for example, SUBGROUP in Table 5). It can be any type of variable.
The chart is sorted by values of the subgroup identifier.

If data are organized as shown in Table 6, the variable specification on C and U subcom-
mands is

COUNT(VAR) N({VAR}) [BY VAR]
 {VAL}

The specification is the same as that for p and np charts.

STATISTICS Subcommand

Any keyword may be specified in any place in the subcommand, but for a conceptual clarity
the keywords are organized as follows: the Process Capability Indices, the Process Perfor-
mance Indices, and the Measure(s) for Assessing Normality.

• This subcommand is silently ignored if the chart is not one of XR, XS, IR, and I.

Table 5 Each case is a unit for c and u charts

ID Subgroup Count

1 January 0
2 January 2
3 January 0
4 January 0
5 February 5
6 February 1
7 February 0
8 February 0
...

Table 6 Each case is a sample for c and u charts

Subgroup Relapses N

JANUARY 1 4
FEBRUARY 3 4
...

1518 SPCHART

• A duplicated subcommand name causes a syntax error.

• A duplicated keyword is silently ignored.

• There is no default keyword or parameter value.

The Process Capability Indices

CP Capability of the process.

CPU The distance between the process mean and the upper specification limit
scaled by capability sigma.

CPL The distance between the process mean and the lower specification limit
scaled by capability sigma.

K The deviation of the process mean from the midpoint of the specification lim-
its. This is computed independently of the estimated capability sigma.

CPK Capability of process related to both dispersion and centeredness. It is the
minimum of CpU and CpL. If only one specification limit is provided, we
compute and report a unilateral CpK instead of taking the minimum.

CR The reciprocal of CP.

CPM An index relating capability sigma and the difference between the process
mean and the target value. A target value must be specified on the TARGET
subcommand by the user.

CZU The number of capability sigmas between the process mean and the upper
specification limit.

CZL The number of capability sigmas between the process mean and the lower
specification limit.

CZMIN The minimum number of capability sigmas between the process mean and
the specification limits.

CZMAX The maximum number of capability sigmas between the process mean and
the specification limits.

CZOUT The estimated percentage outside the specification limits. The standard nor-
mal approximation is based on the CZU and CZL.

• For each of the keywords other than CPK, both of the LSL subcommand and the USL
subcommands must be specified. Otherwise, the keyword(s) are ignored and issue a
syntax warning. For CPK, at least one of the LSL and USL subcommands must be specified.

• The keyword CPM is ignored with a syntax warning if the TARGET subcommand is not
specified.

SPCHART 1519

The Process Performance Indices

PP Performance of the process.

PPU The distance between the process mean and the upper specification limit
scaled by process standard deviation.

PPL The distance between the process mean and the lower specification limit
scaled by process standard deviation.

PPK Performance of process related to both dispersion and centeredness. It is the
minimum of PpU and PpL. If only one specification limit is provided, we
compute and report a unilateral PpK instead of taking the minimum.

PR The reciprocal of PP.

PPM An index relating process variance and the difference between the process
mean and the target value. A target value must be specified on the TARGET
subcommand by the user.

PZU The number of standard deviations between the process mean and the upper
specification limit.

PZL The number of standard deviations between the process mean and the lower
specification limit.

PZMIN The minimum number of standard deviations between the process mean and
the specification limits.

PZMAX The maximum number of standard deviations between the process mean and
the specification limits.

PZOUT The estimated percentage outside the specification limits. The standard nor-
mal approximation is based on the PZU and PZL.

• For each of the keywords other than PPK, both of the LSL subcommand and the USL
subcommand must be specified. Otherwise, we ignore the keyword(s) and issue a syntax
warning. For PPK, at least one of the LSL and USL subcommands must be specified.

• The keyword PPM is ignored with a syntax warning, if the TARGET subcommand is not
specified.

Measure(s) for Assessing Normality

AZOUT The observed percentage outside the specification limits. A point is defined
outside the specification limits, when its value is greater than or equal to the
USL or is less than or equal to the LSL.

• For AZOUT, both of the LSL subcommand and the USL subcommand must be specified.
Otherwise, we ignore the keyword and issue a syntax warning.

1520 SPCHART

CAPSIGMA Subcommand

This subcommand defines the capability sigma estimator, which is required in computing all
the Process Capability Indices except K requested by the STATISTICS subcommand (which
applies to /XR, /XS, /I, or /IR only). There are four options:

RBAR Mean sample range. The estimated capability sigma is based on the mean
of the sample group ranges.

SBAR Mean sample standard deviation. The estimated capability sigma is based
on the mean of the sample group standard deviations.

MRBAR Mean sample moving range. The estimated capability sigma is based on the
mean of the sample moving ranges. The span defined by the SPAN subcom-
mand is used. (Recall that its passive default value is 2.)

WITHIN Sample within-group variance. The estimated capability sigma is the square
root of the sample within-group variance.

The validity of specification depends on the chart specification (i.e., /XR, /XS, /I, or /IR).

• When this subcommand is omitted or specified without a keyword by the user, the default
conditional on the chart specification is implicitly assumed (see the table above).

• The user specification of an invalid combination (e.g., /I and /CAPSIGMA = RBAR) causes
a syntax error, if this subcommand is relevant, i.e., an applicable STATISTICS keyword is
specified. Otherwise, we issue a syntax warning. When the chart specification is not one
of /XR, /XS, /I, or /IR, the CAPSIGMA subcommand is silently ignored.

• The user specification of this subcommand, when valid with respect to the chart specifi-
cation, is silently ignored, unless an applicable STATISTICS keyword is specified.

• A duplicated subcommand name causes a syntax error.
• A duplicated keyword is silently ignored, but if two or more keywords are specified and

they do not mean the identical keyword, then a syntax error message is issued.

Table 7 Valid CAPSIGMA options by chart specification

Chart Specification Valid CAPSIGMA options

XR RBAR (default)
SBAR

WITHIN
XS RBAR

SBAR (default)
WITHIN

I MRBAR (default)
IR MRBAR (default)

SPCHART 1521

SPAN Subcommand

SPAN specifies the span from which the moving range for an individuals chart is calculated.
The specification must be an integer value greater than 1. The default is 2. SPAN applies only
to I and IR chart specifications.

Example
SPCHART /IR=SUBSIZE /SPAN=5.

• The SPAN subcommand specifies that the moving ranges are computed from every five
individual samples.

CONFORM and NONCONFORM Subcommands

Either CONFORM or NONCONFORM is required when you specify a status variable on the P
or NP subcommand. That occurs when data are organized so that each case is an inspection
unit (see “P and NP Subcommands” on p. 1513).

• Either subcommand requires a value specification. The value can be numeric or string.
String values must be enclosed within apostrophes.

• If CONFORM is specified, all values for the status variable other than the value specified
are tabulated as nonconformities. If NONCONFORM is specified, only the specified value
is tabulated as nonconformities.

• CONFORM and NONCONFORM apply only to P and NP chart specifications.

SIGMA Subcommand

SIGMA allows you to define the sigma level for a control chart. The value specified on SIGMA
is used in calculating the upper and lower control limits on the chart. You can specify a num-
ber larger than 1 but less than or equal to 10. The larger the SIGMA value, the greater the range
between the upper and the lower control limits. The default is 3.

MINSAMPLE Subcommand

MINSAMPLE specifies the minimum sample size for X-bar, R, or s charts. When you specify
XR or XS on SPCHART, any subgroup with a size smaller than that specified on MINSAMPLE
is excluded from the chart and from all computations. If each case is a subgroup, there must
be at least as many variables named as the number specified on MINSAMPLE. The default is 2.

LSL and USL Subcommand

LSL and USL allow you to specify fixed lower and upper control limits. Fixed control limits
are often used in manufacturing processes as designer-specified limits. These limits are dis-
played on the chart along with the calculated limits. If you do not specify LSL and USL, no

1522 SPCHART

fixed control limits are displayed. However, if you want only the specified control limits, you
must edit the chart in a chart window to suppress the calculated series.

Example
SPCHART /TEMPLATE=’CTRL.CHT’
 /XS=SUBSIZE
 /USL=74.50
 /LSL=73.50.

• The USL and LSL subcommands specify the control limits according to the designing en-
gineer. The center line is most probably at 74.00.

• The specified upper and lower limits are displayed together with the control limits calcu-
lated from the observed standard deviation and the sigma value.

TARGET Subcommand

This subcommand defines the target value used in computing CpM and PpM requested by
the STATISTICS subcommand. The value may be any real number less than or equal to the
USL value and greater than or equal to the LSL value.

• This subcommand is silently ignored, if no applicable STATISTICS keyword is specified.
• If the value is numeric but out of the valid range, we warn and ignore the CPM or/and PPM

keyword(s), if any, in the STATISTICS subcommand.

MISSING Subcommand

MISSING controls the treatment of missing values in the control chart.

• The default is NOREPORT and EXCLUDE.

• REPORT and NOREPORT are alternatives and apply only to category variables. They
control whether categories (subgroups) with missing values are created.

• INCLUDE and EXCLUDE are alternatives and apply to process variables.

NOREPORT Suppress missing-value categories. This is the default.

REPORT Report and plot missing-value categories.

EXCLUDE Exclude user-missing values. Both user- and system-missing values for the pro-
cess variable are excluded from computation and plotting. This is the default.

INCLUDE Include user-missing values. Only system-missing values for the process
variable are excluded from computation and plotting.

SPCHART 1523

1524 Syntax Reference

SPECTRA

SPECTRA is available in the Trends option.

SPECTRA [VARIABLES=] series names

 [/{CENTER NO**}]
 {CENTER }

 [/{CROSS NO**}]
 {CROSS }

 [/WINDOW={HAMMING** [({5 })] }]
 { {span} }
 {BARTLETT [(span)] }
 {PARZEN [(span)] }
 {TUKEY [(span)] }
 {UNIT or DANIELL [(span)]}
 {NONE }
 {w-p, ..., w0, ..., wp }

 [/PLOT= [P] [S] [CS] [QS] [PH] [A]
 [G] [K] [ALL] [NONE]
 [BY {FREQ }]]
 {PERIOD}

 [/SAVE = [FREQ (name)] [PER (name)] [SIN (name)]
 [COS (name)] [P (name)] [S (name)]
 [RC (name)] [IC (name)] [CS (name)]
 [QS (name)] [PH (name)] [A (name)]
 [G (name)] [K (name)]]

 [/APPLY [=’model name’]]

**Default if the subcommand is omitted.

Example:
SPECTRA HSTARTS
 /CENTER
 /PLOT P S BY FREQ.

Overview

SPECTRA plots the periodogram and spectral density function estimates for one or more se-
ries. You can also request bivariate spectral analysis. Moving averages, termed windows, can
be used for smoothing the periodogram values to produce spectral densities.

Options

Output. In addition to the periodogram, you can produce a plot of the estimated spectral den-
sity with the PLOT subcommand. You can suppress the display of the plot by frequency or
the plot by period using the keyword BY on PLOT. To display intermediate values and the plot
legend, specify TSET PRINT=DETAILED before SPECTRA. To reduce the range of values dis-
played in the plots, you can center the data using the CENTER subcommand.

SPECTRA 1525

Cross-Spectral Analysis. You can specify cross-spectral (bivariate) analysis with the CROSS
subcommand and select which bivariate plots are produced using PLOT.

New Variables. Variables computed by SPECTRA can be saved in the working data file for use
in subsequent analyses with the SAVE subcommand.

Spectral Windows. You can specify a spectral window and its span for calculation of the spec-
tral density estimates.

Basic Specification

The basic specification is one or more series names.

• By default, SPECTRA plots the periodogram for each series specified. The periodogram
is shown first by frequency and then by period. No new variables are saved by default.

 Figure 1 and Figure 2 show the default plots produced by the basic specification.

Subcommand Order

• Subcommands can be specified in any order.

Figure 1 SPECTRA=PRICE (by frequency)

Figure 2 SPECTRA=PRICE (by period)

1526 Syntax Reference

Syntax Rules

• VARIABLES can be specified only once.

• Other subcommands can be specified more than once, but only the last specification of
each one is executed.

Operations

• SPECTRA cannot process series with missing observations. (You can use the RMV com-
mand to replace missing values, and USE to ignore missing observations at the beginning
or end of a series. See RMV and USE in the SPSS Syntax Reference Guide for more infor-
mation.)

• If the number of observations in the series is odd, the first case is ignored.

• If the SAVE subcommand is specified, new variables are created for each series specified.
For bivariate analyses, new variables are created for each series pair.

• SPECTRA requires memory both to compute variables and to build plots. Requesting few-
er plots may enable you to analyze larger series.

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of series named
on the list.

Example

SPECTRA HSTARTS
 /CENTER
 /PLOT P S BY FREQ.

• This example produces a plot of the periodogram and spectral density estimate for series
HSTARTS.

• CENTER adjusts the series to have a mean of 0.

• PLOT specifies that the periodogram (P) and the spectral density estimate (S) should be
plotted against frequency (BY FREQ).

VARIABLES Subcommand

VARIABLES specifies the series names and is the only required subcommand. The actual key-
word VARIABLES can be omitted.

• VARIABLES must be specified before the other subcommands.

• Each series specified is analyzed separately unless the CROSS subcommand is specified.
• The series must contain at least six cases.

SPECTRA 1527

Example
SPECTRA VARX VARY.

• This command produces the default display for two series, VARX and VARY.

CENTER Subcommand

CENTER adjusts the series to have a mean of 0. This reduces the range of values displayed in
the plots.

• If CENTER is not specified, the ordinate of the first periodogram value is 2n times the
square of the mean of the series, where n is the number of cases.

• You can specify CENTER NO to suppress centering when applying a previous model with
APPLY.

Example
SPECTRA VARX VARY
 /CENTER.

• This example produces the default display for VARX and VARY. The plots are based on the
series after their means have been adjusted to 0.

WINDOW Subcommand

WINDOW specifies a spectral window to use when the periodogram is smoothed to obtain the
spectral density estimate. If WINDOW is not specified, the Tukey-Hamming window with a
span of 5 is used.

• The specification on WINDOW is a window name and a span in parentheses, or a sequence
of user-specified weights.

• The window name can be any one of the keywords listed below.

• Only one window keyword is accepted. If more than one is specified, the first is used.

• The span is the number of periodogram values in the moving average and can be any in-
teger. If an even number is specified, it is decreased by 1.

• Smoothing near the end of series is accomplished via reflection. For example, if the span
is 5, the second periodogram value is smoothed by averaging the first, third, and fourth
values and twice the second value.

The following data windows can be specified. Each formula defines the upper half of the
window. The lower half is symmetric with the upper half. In all formulas, p is the integer part
of the number of spans divided by 2, Dp is the Dirichlet kernel of order p, and Fp is the Fejer
kernel of order p (Priestley, 1981).

HAMMING Tukey-Hamming window. The weights are

where k=0, ... p. This is the default.

Wk 0.54Dp 2πfk() 0.23Dp 2πfk
π
p---+

 0.23Dp 2πfk
π
p---+

 + +=

1528 Syntax Reference

TUKEY Tukey-Hanning window. The weights are

where k=0, ... p.

PARZEN Parzen window. The weights are

where k=0, ... p.

BARTLETT Bartlett window. The weights are where k=0, ... p.

UNIT Equal-weight window. The weights are wk = 1 where k=0, ... p. DANIELL is

an alias for UNIT.

NONE No smoothing. If NONE is specified, the spectral density estimate is the same
as the periodogram.

w-p,...w0,...,wp User-specified weights. W0 is applied to the periodogram value being
smoothed, and the weights on either side are applied to preceding and fol-
lowing values. If the number of weights is even, it is assumed that wp is not
supplied. The weight after the middle one is applied to the periodogram
value being smoothed. W0 must be positive.

Example
SPECTRA VAR01
 /WINDOW=TUKEY(3)
 /PLOT=P S.

• In this example, the Tukey window weights with a span of three are used.
• The PLOT subcommand plots both the periodogram and the spectral density estimate,

both by frequency and period.

PLOT Subcommand

PLOT specifies which plots are displayed.

• If PLOT is not specified, only the periodogram is plotted for each series specified. Each
periodogram is shown both by frequency and by period.

• You can specify more than one plot keyword.

• Keywords can be specified in any order.
• The plot keywords K, CS, QS, PH, A, and G apply only to bivariate analyses. If the sub-

command CROSS is not specified, these keywords are ignored.

• The period (horizontal) axis on a plot BY PERIOD is scaled in natural logarithms from 0.69
to ln(n), where n is the number of cases.

Wk 0.5Dp 2πfk() 0.25Dp 2πfk
π
p---+

 0.25Dp 2πfk
π
p---–

 + +=

Wk
1
p--- 2 2πfk()cos+() Fp 2⁄ 2πfk()()2

=

Wk Fp 2πfk()=

SPECTRA 1529

• The frequency (horizontal) axis on a plot BY FREQ is scaled from 0 to 0.5, expressing the
frequency as a fraction of the length of the series.

• The periodogram and estimated spectrum (vertical axis) are scaled in natural logs.

The following plot keywords are available:

P Periodogram. This is the default.

S Spectral density estimate.

K Squared coherency. Applies only to bivariate analyses.

CS Cospectral density estimate. Applies only to bivariate analyses.

QS Quadrature spectrum estimate. Applies only to bivariate analyses.

PH Phase spectrum. Applies only to bivariate analyses.

A Cross amplitude. Applies only to bivariate analyses.

G Gain. Applies only to bivariate analyses.

ALL All plots. For bivariate analyses, this includes all plots listed above. For univariate
analyses, this includes the periodogram and the spectral density estimate.

BY Keyword

By default, SPECTRA displays both frequency and period plots. You can use BY to produce
only frequency plots or only period plots.

• BY FREQ indicates that all plots are plotted by frequency only. Plots by period are not pro-
duced.

• BY PERIOD indicates that all plots are plotted by period only. Plots by frequency are not
produced.

Example
SPECTRA SER01
 /PLOT=P S BY FREQ.

• This command plots both the periodogram and the spectral density estimate for SER01.
The plots are shown by frequency only.

CROSS Subcommand

CROSS is used to specify bivariate spectral analysis.

• When CROSS is specified, the first series named on the VARIABLES subcommand is the
independent variable. All remaining variables are dependent.

• Each series after the first is analyzed with the first series independently of other series
named.

• Univariate analysis of each series specified is still performed.

1530 Syntax Reference

• You can specify CROSS NO to turn off bivariate analysis when applying a previous model
with APPLY.

Example
SPECTRA VARX VARY VARZ
 /CROSS.

• In this example, bivariate spectral analyses of series VARX with VARY and VARX with
VARZ are requested in addition to the usual univariate analyses of VARX, VARY, and
VARZ.

SAVE Subcommand

SAVE saves computed SPECTRA variables in the working data file for later use. SPECTRA dis-
plays a list of the new variables and their labels, showing the type and source of those variables.

• You can specify any or all of the output keywords listed below.

• A name to be used for generating variable names must follow each output keyword. The
name must be enclosed in parentheses.

• For each output keyword, one variable is created for each series named on SPECTRA and
for each bivariate pair.

• The keywords RC, IC, CS, QS, PH, A, G, and K apply only to bivariate analyses. If CROSS
is not specified, these keywords are ignored.

• SAVE specifications are not used when models are reapplied using APPLY. They must be
specified each time variables are to be saved.

• The output variables correspond to the Fourier frequencies. They do not correspond to the
original series.

• Since each output variable has only (n/2 + 1) cases (where n is the number of cases), the
values for the second half of the series are set to system-missing.

• Variable names are generated by adding _n to the specified name, where n ranges from 1
to the number of series specified.

• For bivariate variables, the suffix is _n_n, where the n’s indicate the two variables used in
the analysis.

• The frequency (FREQ) and period (PER) variable names are constant across all series and
do not have a numeric suffix.

• If the generated variable name is longer than maximum variable name length, or if the
specified name already exists, the variable is not saved.

The following output keywords are available:

FREQ Fourier frequencies.

PER Fourier periods.

SIN Value of a sine function at the Fourier frequencies.

COS Value of a cosine function at the Fourier frequencies.

SPECTRA 1531

P Periodogram values.

S Spectral density estimate values.

RC Real part values of the cross-periodogram. Applies only to bivariate analyses.

IC Imaginary part values of the cross-periodogram. Applies only to bivariate analyses.

CS Cospectral density estimate values. Applies only to bivariate analyses.

QS Quadrature spectrum estimate values. Applies only to bivariate analyses.

PH Phase spectrum estimate values. Applies only to bivariate analyses.

A Cross-amplitude values. Applies only to bivariate analyses.

G Gain values. Applies only to bivariate analyses.

K Squared coherency values. Applies only to bivariate analyses.

Example
SPECTRA VARIABLES=STRIKES RUNS
 /SAVE= FREQ (FREQ) P (PGRAM) S (SPEC).

• This example creates five variables: FREQ, PGRAM_1, PGRAM_2, SPEC_1, and SPEC_2.

APPLY Subcommand

APPLY allows you to use a previously defined SPECTRA model without having to repeat the
specifications. For general rules on APPLY, see the APPLY subcommand on p. 1737.

• The only specification on APPLY is the name of a previous model in quotes. If a model
name is not specified, the model specified on the previous SPECTRA command is used.

• To change one or more model specifications, specify the subcommands of only those por-
tions you want to change after the APPLY subcommand.

• If no series are specified on the command, the series that were originally specified with
the model being reapplied are used.

• To change the series used with the model, enter new series names before or after the
APPLY subcommand. If a variable name is specified before APPLY, the slash before the
subcommand is required.

• The SAVE specifications from the previous model are not reused by APPLY. They must be
specified each time variables are to be saved.

Examples
SPECTRA VAR01
 /WINDOW=DANIELL (3)
 /CENTER
 /PLOT P S BY FREQ.
SPECTRA APPLY
 /PLOT P S.

1532 Syntax Reference

• The first command plots both the periodogram and the spectral density estimate for
VAR01. The plots are shown by frequency only.

• Since the PLOT subcommand is respecified, the second command produces plots by both
frequency and period. All other specifications remain the same as in the first command.

References

Bloomfield, P. 1976. Fourier analysis of time series. New York: John Wiley & Sons.
Fuller, W. A. 1976. Introduction to statistical time series. New York: John Wiley & Sons.
Gottman, J. M. 1981. Time-series analysis: A comprehensive introduction for social scientists.

Cambridge: Cambridge University Press.
Priestley, M. B. 1981. Spectral Analysis and Time Series. Volumes 1 & 2. London: Academic

Press.

1533

SPLIT FILE

SPLIT FILE {OFF }
 [{LAYERED }] {BY varlist}
 {SEPARATE}

Example
SORT CASES BY SEX.
SPLIT FILE BY SEX.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.

Overview

SPLIT FILE splits the working data file into subgroups that can be analyzed separately. These
subgroups are sets of adjacent cases in the file that have the same values for the specified
split variables. Each value of each split variable is considered a break group, and cases with-
in a break group must be grouped together in the working data file. If they are not, the SORT
CASES command must be used before SPLIT FILE to sort cases in the proper order.

Basic Specification

The basic specification is keyword BY followed by the variable or variables that define the
split-file groups.

• By default, the split-file groups are compared within the same table(s).

• You can turn off split-file processing using keyword OFF.

Syntax Rules

• SPLIT FILE can specify both numeric and string split variables, including long string vari-
ables and variables created by temporary transformations. It cannot specify scratch or
system variables.

• SPLIT FILE is in effect for all procedures in a session unless you limit it with a TEMPORARY
command, turn it off, or override it with a new SPLIT FILE or SORT CASES command.

Operations

• Unlike most transformations, SPLIT FILE takes effect as soon as it is encountered in the
command sequence. Thus, special attention should be paid to its position among com-
mands. For more information, see “Command Order” on p. 8 in Volume I.

• The file is processed sequentially. A change or break in values on any one of the split
variables signals the end of one break group and the beginning of the next.

1534 SPLIT FILE

• AGGREGATE ignores the SPLIT FILE command. To split files using AGGREGATE, name
the variables used to split the file as break variables ahead of any other break variables on
AGGREGATE. AGGREGATE still produces one file, but the aggregated cases are in the
same order as the split-file groups.

• If SPLIT FILE is in effect when a procedure writes matrix materials, the program writes
one set of matrix materials for every split group. If a procedure reads a file that contains
multiple sets of matrix materials, the procedure automatically detects the presence of
multiple sets.

• If SPLIT FILE names any variable that was defined by the NUMERIC command, the pro-
gram prints page headings indicating the split-file grouping.

Limitations

• SPLIT FILE can specify or imply up to eight variables.

LAYERED and SEPARATE Subcommands

LAYERED and SEPARATE specify how split-file groups are displayed in the output.

• Only one of them can be specified. If neither is specified with the BY variable list, LAYERED
is the default.

• LAYERED and SEPARATE do not apply to the text output.

LAYERED Display split-file groups in the same table in the outermost column.

SEPARATE Display split-file groups as separate tables.

Example

SORT CASES BY SEX.
SPLIT FILE BY SEX.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.

• SORT CASES arranges cases in the file according to the values of variable SEX.

• SPLIT FILE splits the file according to the values of variable SEX, and FREQUENCIES gen-
erates separate median income tables for men and women.

• By default, the two groups (men and women) are compared in the same Frequency and
Statistics tables.

Example

SORT CASES BY SEX.
TEMPORARY.
SPLIT FILE SEPARATE BY SEX.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.

SPLIT FILE 1535

• Because of the TEMPORARY command, SPLIT FILE applies to the first procedure only.
Thus, the first FREQUENCIES procedure generates separate tables for men and women.
The second FREQUENCIES procedure generates tables that include both sexes.

Example

SORT CASES BY SEX.
SPLIT FILE SEPARATE BY SEX.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.
SPLIT FILE OFF.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.

• SPLIT FILE does not apply to the second FREQUENCIES procedure because it is turned off
after the first FREQUENCIES procedure. This example produces the same results as the
example above.

Example

SORT CASES BY SEX RACE.
SPLIT FILE BY SEX.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.
SPLIT FILE BY SEX RACE.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.

• The first SPLIT FILE command applies to the first FREQUENCIES procedure. The second
SPLIT FILE command overrides the first and splits the file by sex and race. This split is in
effect for the second FREQUENCIES procedure.

1536

STRING

STRING varlist (An) [/varlist...]

Example
STRING STATE1 (A2).
RECODE STATE (’IO’=’IA’) (ELSE=COPY) INTO STATE1.

Overview

STRING declares new string variables that can be used as target variables in data transfor-
mations.

Basic Specification

The basic specification is the name of the new variables and, in parentheses, the variable
format.

Syntax Rules

• If keyword TO is used to create multiple string variables, the specified format applies to
each variable named and implied by TO.

• To declare variables with different formats, separate each format group with a slash.

• STRING can be used within an input program to determine the order of string variables
in the dictionary of the working data file. When used for this purpose, STRING must pre-
cede DATA LIST in the input program. See p. 1103 for an example.

• STRING cannot be used to redefine an existing variable.

• String variables cannot have zero length; A0 is an illegal format.

• All implementations of the program allow the A format. Other string formats may be
available on some systems. In addition, the definition of a long string depends on your
operating system. Use keyword LOCAL on the INFO command to obtain documentation
for your operating system.

Operations

• Unlike most transformations, STRING takes effect as soon as it is encountered in the
command sequence. Thus, special attention should be paid to its position among com-
mands. For more information, see “Command Order” on p. 8 in Volume I.

• New string variables are initialized as blanks.

STRING 1537

• Variables declared on STRING are added to the working data file in the order they are
specified. This order is not changed by the order in which the variables are used in the
transformation language.

• The length of a string variable is fixed by the format specified when it is declared and can-
not be changed by FORMATS. To change the length of a string variable, declare a new
variable with the desired length and then use COMPUTE to assign the values of the original
variable to it.

Example

STRING STATE1 (A2).
RECODE STATE (’IO’=’IA’) (ELSE=COPY) INTO STATE1.

• STRING declares variable STATE1 with an A2 format.

• RECODE specifies STATE as the source variable and STATE1 as the target variable. The
original value IO is recoded to IA. Keywords ELSE and COPY copy all other state codes
over unchanged. Thus, STATE and STATE1 are identical except for cases with the original
value IO.

Example

STRING V1 TO V6 (A8) / V7 V10 (A16).

• STRING declares variables V1, V2, V3, V4, V5, and V6, each with an A8 format, and vari-
ables V7 and V10, each with an A16 format.

1538

SUBTITLE

SUBTITLE [’]text[’]

Example
SUBTITLE "Children’s Training Shoes Only".

Overview

SUBTITLE inserts a left-justified subtitle on the second line from the top of each page of the
output. The default subtitle contains the installation name and information about the hard-
ware and operating system.

Basic Specification

The only specification is the subtitle itself.

Syntax Rules

• The subtitle can include any characters. To specify a blank subtitle, enclose a blank
between apostrophes.

• The subtitle can be up to 60 characters long. Subtitles longer than 60 characters are
truncated.

• The apostrophes or quotation marks enclosing the subtitle are optional; using them
allows you to include apostrophes or quotation marks in the subtitle.

• If the subtitle is enclosed in apostrophes, quotation marks are valid characters but apos-
trophes must be specified as double apostrophes. If the subtitle is enclosed in quotation
marks, apostrophes are valid characters but quotation marks must be specified as double
quotation marks.

• More than one SUBTITLE command is allowed in a single session.

• A subtitle cannot be placed between a procedure command and BEGIN DATA—END DATA
or within data records when the data are inline.

Operations

• Each SUBTITLE command overrides the previous one and takes effect on the next output
page.

• SUBTITLE is independent of TITLE and each can be changed separately.

• The subtitle will not be displayed if HEADER=NO is specified on SET.

SUBTITLE 1539

Example

TITLE ’Running Shoe Study from Runner’’s World Data’.
SUBTITLE "Children’s Training Shoes Only".

• The title is enclosed in apostrophes, so the apostrophe in Runner’s must be specified as a
double apostrophe.

• The subtitle is enclosed in quotation marks, so the apostrophe in Children’s is simply
specified as an apostrophe.

Example

TITLE ’Running Shoe Study from Runner’’s World Data’.
SUBTITLE ’ ’.

• This subtitle is specified as a blank. This suppresses the default subtitle.

1540

SUMMARIZE

SUMMARIZE [TABLES=]{varlist} [BY varlist] [BY...] [/varlist...]
 {ALL }

 [/TITLE =’string’] [FOOTNOTE= ’string’]

 [/CELLS= [COUNT**] [MEAN] [STDDEV]
 [MEDIAN] [GMEDIAN] [SEMEAN] [SUM]
 [MIN] [MAX] [RANGE] [VARIANCE]
 [KURT] [SEKURT] [SKEW] [SESKEW]
 [FIRST] [LAST]
 [NPCT] [SPCT] [NPCT(var)] [SPCT(var)]

[HARMONIC] [GEOMETRIC]
[DEFAULT]

 [ALL] [NONE]]

 [/MISSING=[{EXCLUDE**}][{VARIABLE** }]
 {INCLUDE } {TABLE }
 {DEPENDENT}

 [FORMAT=[{NOLIST** }] [{CASENUM }] [{TOTAL**}] [MISSING=’string’]
 {LIST } {NOCASENUM } {NOTOTAL}
 {VALIDLIST}

 [/STATISTICS=[ANOVA] [{LINEARITY}] [NONE**]]
 {ALL }

**Default if the subcommand is omitted.

Example
SUMMARIZE TABLES=V1 TO V5 BY GROUP

/STATISTICS=ANOVA.

Overview

SUMMARIZE produces univariate statistics for specified variables. You can break the variables
into groups defined by one or more control (independent) variables. Another procedure that
displays univariate statistics is FREQUENCIES.

Options

Cell Contents. By default, SUMMARIZE displays means, standard deviations, and cell counts.
You can also display aggregated statistics, including sums, variances, median, range,
kurtosis, skewness, and their standard error, using the CELLS subcommand.

Statistics. In addition to the statistics displayed for each cell of the table, you can obtain a
one-way analysis of variance and test of linearity using the STATISTICS subcommand.

Format. By default, SUMMARIZE produces a Summary Report with a total category for each
group defined by the control variables. You can request a Listing Report with or without
case numbers using the FORMAT subcommand. You can also remove the total category from

SUMMARIZE 1541

each group. You can specify a title and a caption for the Summary or Listing Report using
the TITLE and FOOTNOTE subcommands.

Basic Specification

The basic specification is TABLES with a variable list. Each variable creates a category.
The actual keyword TABLES can be omitted.

• The minimum specification is a dependent variable.

• By default, SUMMARIZE displays a Case Processing Summary table showing the number
and percentage of cases included, excluded, and their total, and a Summary Report show-
ing means, standard deviations, and number of cases for each category.

Syntax Rules

• Both numeric and string variables can be specified. String variables can be short or long.

• If there is more than one TABLES subcommand, FORMAT=LIST or VALIDLIST results in an
error.

• String specifications for TITLE and FOOTNOTE cannot exceed 255 characters. Quotation
marks or apostrophes are required. When the specification breaks on multiple lines, en-
close each line in apostrophes or quotation marks and separate the specifications for each
line by at least one blank.

• Each subcommand except TABLES can be specified only once. Multiple use results in a
warning, and the last specification is used.

• Multiple TABLES subcommands are allowed, but multiple specifications use a lot of com-
puter resources and time.

• There is no limit on the number of variables you can specify on each TABLES subcommand.
• When a variable is specified more than once, only the first occurrence is honored. The

same variables specified after different BY keywords will result in an error.

Limitations

• Only 5 BY keywords can be specified.

Operations

• The data are processed sequentially. It is not necessary to sort the cases before processing.
If a BY keyword is used, the output is always sorted.

• A Case Processing Summary table is always generated, showing the number and percent-
age of the cases included, excluded, and the total.

• For each combination of control variables specified after different BY keywords,
SUMMARIZE produces a group in the Summary Report (depending on the specification on

1542 SUMMARIZE

the FORMAT subcommand). By default, mean, standard deviation, and number of cases
are displayed for each group and for the total.

• An ANOVA table and a Measure of Association table are produced if additional statistics
are requested.

Example

SUMMARIZE TABLES=V1 BY SEX BY GROUP
/STATISTICS=ANOVA.

• A Case Processing Summary table lists the number and percentage of cases included, ex-
cluded, and the total.

• A Summary Report displays means, standard deviations, and numbers of cases for each
group defined by each combination of SEX and GROUP.

• An ANOVA table displays analysis of variance with only SEX as the grouping variable.

TABLES Subcommand

TABLES specifies the dependent and control variables.
• You can specify multiple TABLES subcommands on a single SUMMARIZE command.

• For FORMAT=LIST or VALIDLIST, only one TABLES subcommand is allowed. Multiple de-
pendent and control variables add more breaks to the Listing Report. Total statistics are dis-
played at the end for each combination defined by different values of the control variables.

• For FORMAT=NOLIST, which is the default, each use of keyword BY adds a dimension to
the table requested. Total statistics are displayed with each group.

• The order in which control variables are displayed is the same as the order in which they
are specified on TABLES. The values of the first control variable defined for the table ap-
pear in the leftmost column of the table and change the most slowly in the definition of
groups.

• Statistics are displayed for each dependent variable in the same report.

• More than one dependent variable can be specified in a table list, and more than one con-
trol variable can be specified in each dimension of a table list.

TITLE and FOOTNOTE Subcommands

TITLE and FOOTNOTE provide a title and a caption for the Summary or Listing Report.

• TITLE and FOOTNOTE are optional and can be placed anywhere.

• The specification on TITLE or FOOTNOTE is a string within apostrophes or quotation
marks. To specify a multiple-line title or footnote, enclose each line in apostrophes or
quotation marks and separate the specifications for each line by at least one blank.

• The string you specify cannot exceed 255 characters.

SUMMARIZE 1543

CELLS Subcommand

By default, SUMMARIZE displays the means, standard deviations, and cell counts in each cell.
Use CELLS to modify cell information.

• If CELLS is specified without keywords, SUMMARIZE displays the default statistics.

• If any keywords are specified on CELLS, only the requested information is displayed.

• MEDIAN and GMEDIAN use a lot of computer resources and time. Requesting these statis-
tics (via these keywords or ALL) may slow down performance.

DEFAULT Means, standard deviations, and cell counts. This is the default if CELLS is
omitted.

MEAN Cell means.

STDDEV Cell standard deviations.

COUNT Cell counts.

MEDIAN Cell median.

GMEDIAN Grouped median.

SEMEAN Standard error of cell mean.

SUM Cell sums.

MIN Cell minimum.

MAX Cell maximum.

RANGE Cell range.

VARIANCE Variances.

KURT Cell kurtosis.

SEKURT Standard error of cell kurtosis.

SKEW Cell skewness.

SESKEW Standard error of cell skewness.

FIRST First value.

LAST Last value.

SPCT Percentage of total sum.

NPCT Percentage of total number of cases.

SPCT(var) Percentage of total sum within specified variable. The specified variable
must be one of the control variables.

NPCT(var) Percentage of total number of cases within specified variable. The specified
variable must be one of the control variables.

HARMONIC Harmonic mean.

1544 SUMMARIZE

GEOMETRIC Geometric mean.

ALL All cell information.

MISSING Subcommand

MISSING controls the treatment of cases with missing values. There are two groups of
keywords.

• EXCLUDE, INCLUDE, and DEPENDENT specify the treatment of user-missing values. The
default is EXCLUDE.

EXCLUDE All user-missing values are excluded. This is the default.

INCLUDE User-missing values are treated as valid values.

DEPENDENT User-missing values are considered missing in a dependent variable
and valid in a grouping variable (variables specified after a BY
keyword).

• VARIABLE and TABLE specify how cases with missing values for dependent variables are
excluded. The default is VARIABLE.

• Cases with missing values for any control variables are always excluded.

VARIABLE A case is excluded when all of the values for variables in that table are
missing. This is the default.

TABLE A case is excluded when any value is missing within a table.

FORMAT Subcommand

FORMAT specifies whether you want a case listing for your report, and if you do, whether
you want case numbers displayed for the listing. It also determines whether your reports will
display a total category for each group and how they are going to indicate missing values.

NOLIST Display a Summary Report without a case listing. This is the default.

LIST Display a Listing Report showing all cases.

VALIDLIST Display a Listing Report showing only the valid cases.

CASENUM Display case numbers as a category in the Listing Reports. This is the
default when FORMAT=LIST or VALIDLIST.

NOCASENUM Do not display case numbers.

TOTAL Display the summary statistics for the total of each group with the la-
bel Total. This is the default.

NOTOTAL Display the total category without a label.

MISSING=’string’ Display system-missing values as a specified string.

SUMMARIZE 1545

STATISTICS Subcommand

Use STATISTICS to request a one-way analysis of variance and a test of linearity for each table
list.

• Statistics requested on STATISTICS are computed in addition to the statistics displayed in
the Group Statistics table.

• If STATISTICS is specified without keywords, SUMMARIZE computes ANOVA.

• If two or more dimensions are specified, the second and subsequent dimensions are ig-
nored in the analysis-of-variance table.

ANOVA Analysis of variance. ANOVA displays a standard analysis-of-variance table
and calculates eta and eta squared (displayed in the Measures of Association
table). This is the default if STATISTICS is specified without keywords.

LINEARITY Test of linearity. LINEARITY (alias ALL) displays additional statistics to the
tables created by the ANOVA keyword—the sums of squares, degrees of
freedom, and mean square associated with linear and nonlinear components,
the F ratio, and the significance level for the ANOVA table and Pearson’s r
and r2 for the Measures of Association table. LINEARITY is ignored if the
control variable is a string.

NONE No additional statistics. This is the default if STATISTICS is omitted.

Example
SUMMARIZE TABLES=INCOME BY SEX BY RACE

/STATISTICS=ANOVA.

• SUMMARIZE produces a Group Statistics table of INCOME by RACE within SEX and com-
putes an analysis of variance only for INCOME by SEX.

1546

SURVIVAL

SURVIVAL is available in the Advanced Models option.

SURVIVAL TABLES=survival varlist
[BY varlist (min, max)...][BY varlist (min, max)...]

/INTERVALS=THRU n BY a [THRU m BY b ...]

/STATUS=status variable({min, max}) FOR {ALL }
 {value } {survival varlist}

[/STATUS=...]

[/PLOT ({ALL })={ALL } BY {ALL } BY {ALL }]
 {LOGSURV } {survival varlis} {varlist} {varlist}
 {SURVIVAL}
 {HAZARD }
 {DENSITY }
 {OMS }

[/PRINT={TABLE**}]
{NOTABLE}

[/COMPARE={ALL** } BY {ALL** } BY {ALL** }]
{survival varlist} {varlist} {varlist}

[/CALCULATE=[{EXACT** }] [PAIRWISE] [COMPARE]]
 {CONDITIONAL}
{APPROXIMATE}

[/MISSING={GROUPWISE**} [INCLUDE]]
 {LISTWISE }

[/WRITE=[{NONE**}]]
{TABLES}

 {BOTH }

**Default if subcommand or keyword is omitted.

Example
SURVIVAL TABLES=MOSFREE BY TREATMNT(1,3)

/STATUS = PRISON (1) FOR MOSFREE
/INTERVAL=THRU 24 BY 3.

Overview

SURVIVAL produces actuarial life tables, plots, and related statistics for examining the
length of time to the occurrence of an event, often known as survival time. Cases can be
classified into groups for separate analyses and comparisons. Time intervals can be
calculated with the SPSS date- and time-conversion functions—for example, CTIME.DAYS
or YRMODA. For a closely related alternative nonparametric analysis of survival times using
the product-limit Kaplan-Meier estimator, see the KM command. For an analysis of survival
times with covariates, including time-dependent covariates, see the COXREG command.

SURVIVAL 1547

Options

Life Tables. You can list the variables to be used in the analysis, including any control vari-
ables on the TABLES subcommand. You can also suppress the life tables in the output with
the PRINT subcommand.

Intervals. SURVIVAL reports the percentage alive at various times after the initial event. You
can select the time points for reporting with the INTERVALS subcommand.

Plots. You can plot the survival functions for all cases or separately for various subgroups
with the PLOT subcommand.

Comparisons. When control variables are listed on the TABLES subcommand, you can com-
pare groups based on the Wilcoxon (Gehan) statistic using the COMPARE subcommand. You
can request pairwise or approximate comparisons with the CALCULATE subcommand.

Writing a File. You can write the life tables, including the labeling information, to a file with
the WRITE subcommand.

Basic Specification

• The basic specification requires three subcommands: TABLES, INTERVALS, and STATUS.
TABLES identifies at least one survival variable from the working data file, INTERVALS
divides the time period into intervals, and STATUS names a variable that indicates whether
the event occurred.

• The basic specification prints one or more life tables, depending on the number of survival
and control variables specified.

Subcommand Order

• TABLES must be first.

• Remaining subcommands can be named in any order.

Syntax Rules

• Only one TABLES subcommand can be specified, but multiple survival variables can be
named. A survival variable cannot be specified as a control variable on any subcommands.

• Only one INTERVALS subcommand can be in effect on a SURVIVAL command. The
interval specifications apply to all of the survival variables listed on TABLES. If multiple
INTERVALS subcommands are used, the last specification supersedes all previous ones.

• Only one status variable can be listed on each STATUS subcommand. To specify multiple
status variables, use multiple STATUS subcommands.

• You can specify multiple control variables on one BY keyword. Use a second BY keyword
to specify second-order control variables to interact with the first-order control variables.

• All variables, including survival variables, control variables, and status variables, must be
numeric. SURVIVAL does not process string variables.

1548 SURVIVAL

Operations

• SURVIVAL computes time intervals according to specified interval widths, calculates the
survival functions for each interval, and builds one life table for each group of survival
variables. The life table is displayed unless explicitly suppressed.

• When the PLOT subcommand is specified, SURVIVAL plots the survival functions for all
cases or separately for various groups.

• When the COMPARE subcommand is specified, SURVIVAL compares survival-time
distributions of different groups based on the Wilcoxon (Gehan) statistic.

Limitations

• Maximum 20 survival variables.
• Maximum 100 control variables total on the first- and second-order control-variable lists

combined.

• Maximum 20 THRU and BY specifications on INTERVALS.

• Maximum 35 values can appear on a plot.

Example

SURVIVAL TABLES=MOSFREE BY TREATMNT(1,3)
/STATUS = PRISON (1) FOR MOSFREE
/INTERVALS = THRU 24 BY 3.

• The survival analysis is used to examine the length of time between release from prison
and return to prison for prisoners in three treatment programs. The variable MOSFREE is
the length of time in months a prisoner stayed out of prison. The variable TREATMNT
indicates the treatment group for each case.

• A value of 1 on the variable PRISON indicates a terminal outcome—that is, cases coded
as 1 have returned to prison. Cases with other non-negative values for PRISON have not
returned. Because we don’t know their final outcome, such cases are called censored.

• Life tables are produced for each of the three subgroups. INTERVALS specifies that the
survival experience be described every three months for the first two years.

TABLES Subcommand

TABLES identifies the survival and control variables to be included in the analysis.

• The minimum specification is one or more survival variables.

• To specify one or more first-order control (or factor) variables, use the keyword BY
followed by the control variable(s). First-order control variables are processed in
sequence. For example, BY A(1,3) B(1,2) results in five groups (, ,

, , and).

• You can specify one or more second-order control variables following a second BY
keyword. Separate life tables are generated for each combination of values of the first-
order and second-order controls. For example, BY A(1,3) BY B(1,2) results in six

A 1= A 2=
A 3= B 1= B 2=

SURVIVAL 1549

groups (, , , ,
, and).

• Each control variable must be followed by a value range in parentheses. These values
must be integers separated by a comma or a blank. Non-integer values in the data are trun-
cated, and the case is assigned to a subgroup based on the integer portion of its value on
the variable. To specify only one value for a control variable, use the same value for the
minimum and maximum.

• To generate life tables for all cases combined, as well as for control variables, use COMPUTE
to create a variable that has the same value for all cases. With this variable as a control, tables
for the entire set of cases, as well as for the control variables, will be produced.

Example
SURVIVAL TABLES = MOSFREE BY TREATMNT(1,3) BY RACE(1,2)

/STATUS = PRISON(1)
/INTERVAL = THRU 24 BY 3.

• MOSFREE is the survival variable, and TREATMNT is the first-order control variable. The
second BY defines RACE as a second-order control group having a value of 1 or 2.

• Six life tables with the median survival time are produced, one for each pair of values for
the two control variables.

INTERVALS Subcommand

INTERVALS determines the period of time to be examined and how the time will be grouped for
the analysis. The interval specifications apply to all of the survival variables listed on TABLES.

• SURVIVAL always uses 0 as the starting point for the first interval. Do not specify the 0.
The INTERVALS specification must begin with the keyword THRU.

• Specify the terminal value of the time period after the keyword THRU. The final interval
includes any observations that exceed the specified terminal value.

• The grouping increment, which follows the keyword BY, must be in the same units as the
survival variable.

• The period to be examined can be divided into intervals of varying lengths by repeating
the THRU and BY keywords. The period must be divided in ascending order. If the time
period is not a multiple of the increment, the endpoint of the period is adjusted upward to
the next even multiple of the grouping increment.

• When the period is divided into intervals of varying lengths by repeating the THRU and BY
specifications, the adjustment of one period to produce even intervals changes the starting
point of subsequent periods. If the upward adjustment of one period completely overlaps
the next period, no adjustment is made and the procedure terminates with an error.

Example
SURVIVAL TABLES = MOSFREE BY TREATMNT(1,3)

/STATUS = PRISON(1) FOR MOSFREE
/INTERVALS = THRU 12 BY 1 THRU 24 BY 3.

A 1= B 1= A 1= B 2= A 2= B 1= A 2= B 2= A 3=
B 1= A 3= B 2=

1550 SURVIVAL

• INTERVALS produces life tables computed from 0 to 12 months at one-month intervals
and from 13 to 24 months at three-month intervals.

Example
SURVIVAL ONSSURV BY TREATMNT (1,3)

/STATUS = OUTCOME (3,4) FOR ONSSURV
/INTERVALS = THRU 50 BY 6.

• On the INTERVALS subcommand, the value following BY (6) does not divide evenly into
the period to which it applies (50). Thus, the endpoint of the period is adjusted upward to
the next even multiple of the BY value, resulting in a period of 54 with 9 intervals of 6
units each.

Example
SURVIVAL ONSSURV BY TREATMNT (1,3)

/STATUS = OUTCOME (3,4) FOR ONSSURV
/INTERVALS = THRU 50 BY 6 THRU 100 BY 10 THRU 200 BY 20.

• Multiple THRU and BY specifications are used on the INTERVAL subcommand to divide
the period of time under examination into intervals of different lengths.

• The first THRU and BY specifications are adjusted to produce even intervals as in the
previous example. As a result, the following THRU and BY specifications are automati-
cally readjusted to generate 5 intervals of 10 units (through 104), followed by 5 intervals
of 20 units (through 204).

STATUS Subcommand

To determine whether the terminal event has occurred for a particular observation, SURVIVAL
checks the value of a status variable. STATUS lists the status variable associated with each
survival variable and the codes that indicate that a terminal event occurred.

• Specify a status variable followed by a value range enclosed in parentheses. The value
range identifies the codes that indicate that the terminal event has taken place. All
cases with non-negative times that do not have a code in the value range are classified
as censored cases, which are cases for which the terminal event has not yet occurred.

• If the status variable does not apply to all the survival variables, specify FOR and the name
of the survival variable(s) to which the status variable applies.

• Each survival variable on TABLES must have an associated status variable identified by a
STATUS subcommand.

• Only one status variable can be listed on each STATUS subcommand. To specify multiple
status variables, use multiple STATUS subcommands.

• If FOR is omitted on the STATUS specification, the status-variable specification applies to
all of the survival variables not named on another STATUS subcommand.

• If more than one STATUS subcommand omits the keyword FOR, the final STATUS
subcommand without FOR applies to all survival variables not specified by FOR on other
STATUS subcommands. No warning is printed.

SURVIVAL 1551

Example
SURVIVAL ONSSURV BY TREATMNT (1,3)

/INTERVALS = THRU 50 BY 5, THRU 100 BY 10
/STATUS = OUTCOME (3,4) FOR ONSSURV.

• STATUS specifies that a code of 3 or 4 on OUTCOME means that the terminal event for the
survival variable ONSSURV occurred.

Example
SURVIVAL TABLES = NOARREST MOSFREE BY TREATMNT(1,3)

/STATUS = ARREST (1) FOR NOARREST
/STATUS = PRISON (1)
/INTERVAL=THRU 24 BY 3.

• STATUS defines the terminal event for NOARREST as a value of 1 for ARREST. Any other
value for ARREST is considered censored.

• The second STATUS subcommand defines the value of 1 for PRISON as the terminal event.
The keyword FOR is omitted. Thus, the status-variable specification applies to MOSFREE,
which is the only survival variable not named on another STATUS subcommand.

PLOT Subcommand

PLOT produces plots of the cumulative survival distribution, the hazard function, and the
probability density function. The PLOT subcommand can plot only the survival functions
generated by the TABLES subcommand; PLOT cannot eliminate control variables.

• When specified by itself, the PLOT subcommand produces all available plots for each
survival variable. Points on each plot are identified by values of the first-order control
variables. If second-order controls are used, a separate plot is generated for every value
of the second-order control variables.

• To request specific plots, specify, in parentheses following PLOT, any combination of the
keywords defined below.

• Optionally, generate plots for only a subset of the requested life tables. Use the same
syntax as used on the TABLES subcommand for specifying survival and control vari-
ables, omitting the value ranges. Each survival variable named on PLOT must have as
many control levels as were specified for that variable on TABLES. However, only one
control variable needs to be present for each level. If a required control level is missing
on the PLOT specification, the default BY ALL is used for that level. The keyword ALL
can be used to refer to an entire set of survival or control variables.

• To determine the number of plots that will be produced, multiply the number of functions
plotted by the number of survival variables times the number of first-order controls times
the number of distinct values represented in all of the second-order controls.

ALL Plot all available functions. ALL is the default if PLOT is used without
specifications.

LOGSURV Plot the cumulative survival distribution on a logarithmic scale.

SURVIVAL Plot the cumulative survival distribution on a linear scale.

1552 SURVIVAL

HAZARD Plot the hazard function.

DENSITY Plot the density function.

OMS Plot the one-minus-survival function.

Example
SURVIVAL TABLES = NOARREST MOSFREE BY TREATMNT(1,3)

/STATUS = ARREST (1) FOR NOARREST
/STATUS = PRISON (1) FOR MOSFREE
/INTERVALS = THRU 24 BY 3
/PLOT (SURVIVAL,HAZARD) = MOSFREE.

• Separate life tables are produced for each of the survival variables (NOARREST and
MOSFREE) for each of the three values of the control variable TREATMNT.

• PLOT produces plots of the cumulative survival distribution and the hazard rate for
MOSFREE for the three values of TREATMNT (even though TREATMNT is not included
on the PLOT specification).

• Because plots are requested only for the survival variable MOSFREE, no plots are generated
for the variable NOARREST.

PRINT Subcommand

By default, SURVIVAL prints life tables. PRINT can be used to suppress the life tables.

TABLE Print the life tables. This is the default.

NOTABLE Suppress the life tables. Only plots and comparisons are printed. The WRITE
subcommand, which is used to write the life tables to a file, can be used when
NOTABLE is in effect.

Example
SURVIVAL TABLES = MOSFREE BY TREATMNT(1,3)

/STATUS = PRISON (1) FOR MOSFREE
/INTERVALS = THRU 24 BY 3
/PLOT (ALL)
/PRINT = NOTABLE.

• PRINT NOTABLE suppresses the printing of life tables.

COMPARE Subcommand

COMPARE compares the survival experience of subgroups defined by the control variables.
At least one first-order control variable is required for calculating comparisons.

• When specified by itself, the COMPARE subcommand produces comparisons using the
TABLES variable list.

• Alternatively, specify the survival and control variables for the comparisons. Use the
same syntax as used on the TABLES subcommand for specifying survival and control vari-
ables, omitting the value ranges. Only variables that appear on the TABLES subcommand

SURVIVAL 1553

can be listed on COMPARE, and their role as survival, first-order, and second-order control
variables cannot be altered. The keyword TO can be used to refer to a group of variables,
and the keyword ALL can be used to refer to an entire set of survival or control variables.

• By default, COMPARE calculates exact comparisons between subgroups. Use the CALCULATE
subcommand to obtain pairwise comparisons or approximate comparisons.

Example
SURVIVAL TABLES = MOSFREE BY TREATMNT(1,3)

/STATUS = PRISON (1) FOR MOSFREE
/INTERVAL = THRU 24 BY 3
/COMPARE.

• COMPARE computes the Wilcoxon (Gehan) statistic, degrees of freedom, and observed
significance level for the hypothesis that the three survival curves based on the values of
TREATMNT are identical.

Example
SURVIVAL TABLES=ONSSURV,RECSURV BY TREATMNT(1,3)

/STATUS = RECURSIT(1,9) FOR RECSURV
/STATUS = STATUS(3,4) FOR ONSSURV
/INTERVAL = THRU 50 BY 5 THRU 100 BY 10
/COMPARE = ONSSURV BY TREATMNT.

• COMPARE requests a comparison of ONSSURV by TREATMNT. No comparison is made
of RECSURV by TREATMNT.

CALCULATE Subcommand

CALCULATE controls the comparisons of survival for subgroups specified on the COMPARE
subcommand.

• The minimum specification is the subcommand keyword by itself. EXACT is the default.

• Only one of the keywords EXACT, APPROXIMATE, and CONDITIONAL can be speci-
fied. If more than one keyword is used, only one is in effect. The order of precedence
is APPROXIMATE, CONDITIONAL, and EXACT.

• The keywords PAIRWISE and COMPARE can be used with any of the EXACT, APPROXIMATE,
or CONDITIONAL keywords.

• If CALCULATE is used without the COMPARE subcommand, CALCULATE is ignored.
However, if the keyword COMPARE is specified on CALCULATE and the COMPARE
subcommand is omitted, SPSS generates an error message.

• Data can be entered into SURVIVAL for each individual case or aggregated for all cases in
an interval. The way in which data are entered determines whether an exact or an approx-
imate comparison is most appropriate. See “Using Aggregated Data” on p. 1554.

EXACT Calculate exact comparisons. This is the default. You can obtain exact com-
parisons based on the survival experience of each observation with individual
data. While this method is the most accurate, it requires that all of the data be
in memory simultaneously. Thus, exact comparisons may be impractical for

1554 SURVIVAL

large samples. It is also inappropriate when individual data are not available
and data aggregated by interval must be used.

APPROXIMATE Calculate approximate comparisons only. Approximate comparisons are
appropriate for aggregated data. The approximate-comparison approach
assumes that all events occur at the midpoint of the interval. With exact com-
parisons, some of these midpoint ties can be resolved. However, if interval
widths are not too great, the difference between exact and approximate
comparisons should be small.

CONDITIONAL Calculate approximate comparisons if memory is insufficient. Approximate
comparisons are produced only if there is insufficient memory available for
exact comparisons.

PAIRWISE Perform pairwise comparisons. Comparisons of all pairs of values of the
first-order control variable are produced along with the overall comparison.

COMPARE Produce comparisons only. Survival tables specified on the TABLES sub-
command are not computed, and requests for plots are ignored. This allows
all available workspace to be used for comparisons. The WRITE subcom-
mand cannot be used when this specification is in effect.

Example
SURVIVAL TABLES = MOSFREE BY TREATMNT(1,3)

/STATUS = PRISON (1) FOR MOSFREE
/INTERVAL = THRU 24 BY 3
/COMPARE /CALCULATE = PAIRWISE.

• PAIRWISE on CALCULATE computes the Wilcoxon (Gehan) statistic, degrees of freedom,
and observed significance levels for each pair of values of TREATMNT, as well as for an
overall comparison of survival across all three TREATMNT subgroups: group 1 with group
2, group 1 with group 3, and group 2 with group 3.

• All comparisons are exact comparisons.

Example
SURVIVAL TABLES = MOSFREE BY TREATMNT(1,3)

/STATUS = PRISON (1) FOR MOSFREE
/INTERVAL = THRU 24 BY 3
/COMPARE /CALCULATE = APPROXIMATE COMPARE.

• APPROXIMATE on CALCULATE computes the Wilcoxon (Gehan) statistic, degrees of
freedom, and probability for the overall comparison of survival across all three
TREATMNT subgroups using the approximate method.

• Because the keyword COMPARE is specified on CALCULATE, survival tables are not
computed.

Using Aggregated Data

When aggregated survival information is available, the number of censored and uncensored
cases at each time point must be entered. Up to two records can be entered for each interval,

SURVIVAL 1555

one for censored cases and one for uncensored cases. The number of cases included on each
record is used as the weight factor. If control variables are used, there will be up to two
records (one for censored and one for uncensored cases) for each value of the control variable
in each interval. These records must contain the value of the control variable and the number
of cases that belong in the particular category as well as values for survival time and status.

Example
DATA LIST / SURVEVAR 1-2 STATVAR 4 SEX 6 COUNT 8.
VALUE LABELS STATVAR 1 ’DECEASED’ 2 ’ALIVE’
 /SEX 1 ’FEMALE’ 2 ’MALE’.
BEGIN DATA
 1 1 1 6
 1 1 1 1
 1 2 2 2
 1 1 2 1
 2 2 1 1
 2 1 1 2
 2 2 2 1
 2 1 2 3
 ...
END DATA.
WEIGHT COUNT.
SURVIVAL TABLES = SURVEVAR BY SEX (1,2)
 /INTERVALS = THRU 10 BY 1
 /STATUS = STATVAR (1) FOR SURVEVAR.

• This example reads aggregated data and performs a SURVIVAL analysis when a control
variable with two values is used.

• The first data record has a code of 1 on the status variable STATVAR, indicating that it is
an uncensored case, and a code of 1 on SEX, the control variable. The number of cases for
this interval is 6, the value of the variable COUNT. Intervals with weights of 0 do not have
to be included.

• COUNT is not used in SURVIVAL but is the weight variable. In this example, each interval
requires four records to provide all of the data for each SURVEVAR interval.

MISSING Subcommand

MISSING controls missing-value treatments. The default is GROUPWISE.

• Negative values on the survival variables are automatically treated as missing data. In
addition, cases outside the value range on a control variable are excluded.

• GROUPWISE and LISTWISE are mutually exclusive. However, each can be used with
INCLUDE.

GROUPWISE Exclude missing values groupwise. Cases with missing values on a variable
are excluded from any calculation involving that variable. This is the default.

LISTWISE Exclude missing values listwise. Cases missing on any variables named on
TABLES are excluded from the analysis.

INCLUDE Include user-missing values. User-missing values are included in the analysis.

1556 SURVIVAL

WRITE Subcommand

WRITE writes data in the survival tables to a file. This file can be used for further analyses or
to produce graphics displays.

• When WRITE is omitted, the default is NONE. No output file is created.

• When WRITE is used, a PROCEDURE OUTPUT command must precede the SURVIVAL
command. The OUTFILE subcommand on PROCEDURE OUTPUT specifies the output file.

• When WRITE is specified without a keyword, the default is TABLES.

NONE Do not write procedure output to a file. This is the default when WRITE is omitted.

TABLES Write survival-table data records. All survival-table statistics are written to a file.

BOTH Write out survival-table data and label records. Variable names, variable labels,
and value labels are written out along with the survival table statistics.

Format

WRITE writes five types of records. The keyword TABLES writes record types 30, 31, and 40.
The keyword BOTH writes record types 10, 20, 30, 31, and 40. The format of each record
type is described in Table 1 through Table 5.

• One type-10 record is produced for each life table.

• Column 56 specifies the number of orders of control variables (0, 1, or 2) that have been
applied to the life table.

• Columns 57–60 specify the number of rows in the life table. This number is the number
of intervals in the analysis that show subjects entering; intervals in which no subjects
enter are not noted in the life tables.

Table 1 Record type 10, produced only by keyword BOTH

Columns Content Format

1–2 Record type (10) F2.0
3–7 Table number F5.0
8–15 Name of survival variable A8
16–55 Variable label of survival variable A40
56 Number of BY’s (0, 1, or 2) F1.0
57–60 Number of rows in current survival table F4.0

SURVIVAL 1557

• One type-20 record is produced for each control variable in each life table.

• If only first-order controls have been placed in the survival analysis, one type-20 record will
be produced for each table. If second-order controls have also been applied, two type-20
records will be produced per table.

• Information on record type 30 continues on record type 31. Each pair of type-30 and
type-31 records contains the information from one line of the life table.

Table 2 Record type 20, produced by keyword BOTH

Columns Content Format

1–2 Record type (20) F2.0
3–7 Table number F5.0
8–15 Name of control variable A8
16–55 Variable label of control variable A40
56–60 Value of control variable F5.0
61–80 Value label for this value A20

Table 3 Record type 30, produced by both keywords TABLES and BOTH

Columns Content Format

1–2 Record type (30) F2.0
3–7 Table number F5.0
8–13 Beginning of interval F6.2
14–21 Number entering interval F8.2
22–29 Number withdrawn in interval F8.2
30–37 Number exposed to risk F8.2
38–45 Number of terminal events F8.2

Table 4 Record type 31, continuation of record type 30

Columns Content Format

1–2 Record type (31) F2.0
3–7 Table number F5.0
8–15 Proportion terminating F8.6
16–23 Proportion surviving F8.6
24–31 Cumulative proportion surviving F8.6
32–39 Probability density F8.6
40–47 Hazard rate F8.6
48–54 S.E. of cumulative proportion surviving F7.4
55–61 S.E. of probability density F7.4
62–68 S.E. of hazard rate F7.4

1558 SURVIVAL

• Record type 31 is a continuation of record type 30.

• As many type-30 and type-31 record pairs are output for a table as it has lines (this number
is noted in columns 57–60 of the type-10 record for the table).

• Type-40 records indicate the completion of the series of records for one life table.

Record Order

The SURVIVAL output file contains records for each of the life tables specified on the TABLES
subcommand. All records for a given table are produced together in sequence. The records
for the life tables are produced in the same order as the tables themselves. All life tables for
the first survival variable are written first. The values of the first- and second-order control
variables rotate, with the values of the first-order controls changing more rapidly.

Example
PROCEDURE OUTPUT OUTFILE = SURVTBL.
SURVIVAL TABLES = MOSFREE BY TREATMNT(1,3)

/STATUS = PRISON (1) FOR MOSFREE
/INTERVAL = THRU 24 BY 3
/WRITE = BOTH.

• WRITE generates a procedure output file called SURVTBL, containing life tables, variable
names and labels, and value labels stored as record types 10, 20, 30, 31, and 40.

Table 5 Record type 40, produced by both keywords TABLES and BOTH

Columns Content Format

1–2 Record type (40) F2.0

1559

SYSFILE INFO

SYSFILE INFO [FILE=] ’file specification’

Example
SYSFILE INFO FILE=’PERSNL.SAV’.

Overview

SYSFILE INFO displays complete dictionary information for all variables in an SPSS-format
data file. You do not have to retrieve the file with GET to use SYSFILE INFO. If the file has
already been retrieved, use DISPLAY DICTIONARY to display dictionary information.

Basic Specification

The basic specification is the command keyword and a complete file specification enclosed
in apostrophes.

Syntax Rules

• Only one file specification is allowed per command. To display dictionary information
for more than one SPSS-format data file, use multiple SYSFILE INFO commands.

• The file extension, if there is one, must be specified, even if it is the default.

• The subcommand keyword FILE is optional. When FILE is specified, the equals sign is
required.

Operations

• No procedure is needed to execute SYSFILE INFO, since SYSFILE INFO obtains informa-
tion from the dictionary alone.

• SYSFILE INFO displays the variable name, label, sequential position in the file, print and
write format, missing values, and value labels for each variable in the specified file. Up
to 60 characters can be displayed for variable and value labels.

Example

SYSFILE INFO FILE=’PERSNL.SAV’.

• The program displays the complete dictionary information for all variables in the SPSS-
format data file PERSNL.SAV.

1560 SYSFILE INFO

TDISPLAY 1561

TDISPLAY

TDISPLAY is available in the Trends option.

TDISPLAY [{ALL }]
 {model names }
 {command names}

[/TYPE={MODEL**}]
 {COMMAND}

**Default if the subcommand is omitted.

Example:
TDISPLAY MOD_2 MOD_3
 /TYPE=MODEL.

Overview

TDISPLAY displays information about currently active Trends models. These models are au-
tomatically generated by many Trends procedures for use with the APPLY subcommand (see
the APPLY subcommand on p. 1737).

Options

If models are specified on TDISPLAY, information about just those models is displayed. You
can control whether models are specified by model name or by the name of the procedure
that generated them using the TYPE subcommand.

Basic Specification

The basic specification is simply the command keyword TDISPLAY.
• By default, TDISPLAY produces a list of all currently active models. The list includes the

model names, the commands that created each model, model labels if specified, and cre-
ation dates and times.

Syntax Rules

• To display information on a subset of active models, specify those models after
TDISPLAY.

• Models can be specified using either individual model names or the names of the proce-
dures that created them. To use procedure names, you must specify the TYPE subcom-
mand with the keyword COMMAND.

• Model names are either the default MOD_n names or the names assigned with MODEL
NAME.

1562 Syntax Reference

• If procedure names are specified, all models created by those procedures are displayed.

• Model names and procedure names cannot be mixed on the same TDISPLAY command.
• You can specify the keyword ALL after TDISPLAY to display all models that are currently

active. This is the default.

Operations

• Only models currently active are displayed.

• The following procedures can generate models: AREG, ARIMA, EXSMOOTH, SEASON,
and SPECTRA in SPSS Trends; ACF, CASEPLOT, CCF, CURVEFIT, NPPLOT, PACF, and
TSPLOT in the SPSS Base system; and WLS and 2SLS in SPSS Regression Models.

Example

TDISPLAY.

• The command keyword by itself displays information about all currently active models.

TYPE Subcommand

TYPE indicates whether models are specified by model name or procedure name.

• One keyword, MODEL or COMMAND, can be specified after TYPE.

• MODEL is the default and indicates that models are specified as model names.

• COMMAND specifies that models are specified by procedure name.

• TYPE has no effect if model names or command names are not listed after TDISPLAY.
• If more than one TYPE subcommand is specified, only the last one is used.

• The TYPE specification applies only to the current TDISPLAY command.

Example
TDISPLAY ACF ARIMA
 /TYPE=COMMAND.

• This command displays all currently active models that were created by procedures ACF
and ARIMA.

1563

TEMPORARY

TEMPORARY

Example
SORT CASES BY SEX.
TEMPORARY.
SPLIT FILE BY SEX.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.

Overview

TEMPORARY signals the beginning of temporary transformations that are in effect only for the
next procedure. New numeric or string variables created after the TEMPORARY command are
temporary variables. Any modifications made to existing variables after the TEMPORARY
command are also temporary.

With TEMPORARY you can perform separate analyses for subgroups in the data and then
repeat the analysis for the file as a whole. You can also use TEMPORARY to transform data
for one analysis but not for other subsequent analyses.

TEMPORARY can be applied to the following commands:

• Transformation commands COMPUTE, RECODE, IF, and COUNT, and the DO REPEAT
utility.

• The LOOP and DO IF structures.
• Format commands PRINT FORMATS, WRITE FORMATS, and FORMATS.

• Data selection commands SELECT IF, SAMPLE, FILTER, and WEIGHT.

• Variable declarations NUMERIC, STRING, and VECTOR.

• Labeling commands VARIABLE LABELS and VALUE LABELS, and the MISSING VALUES
command.

• SPLIT FILE.
• XSAVE.

Basic Specification

The only specification is the keyword TEMPORARY. There are no additional specifications.

Operations

• Once TEMPORARY is specified, you cannot refer to previously existing scratch variables.

• Temporary transformations apply to the next command that reads the data. Once the data
are read, the temporary transformations are no longer in effect.

1564 TEMPORARY

• The XSAVE command leaves temporary transformations in effect. SAVE, however, reads the
data and turns temporary transformations off after the file is written. (See example below.)

• TEMPORARY cannot be used with SORT CASES, MATCH FILES, ADD FILES, or COMPUTE
with a LAG function. If any of these commands follows TEMPORARY in the command
sequence, there must be an intervening procedure or command that reads the data to first
execute the TEMPORARY command.

• TEMPORARY cannot be used within the DO IF—END IF or LOOP—END LOOP structures.

Example

SORT CASES BY SEX.
TEMPORARY.
SPLIT FILE BY SEX.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.
FREQUENCIES VARS=INCOME /STATISTICS=MEDIAN.

• SPLIT FILE applies to the first FREQUENCIES procedure, which generates separate median
income tables for men and women.

• SPLIT FILE is not in effect for the second FREQUENCIES procedure, which generates a
single median income table that includes both men and women.

Example

DATA LIST FILE=HUBDATA RECORDS=3
/1 #MOBIRTH #DABIRTH #YRBIRTH 6-11 DEPT88 19.

COMPUTE AGE=($JDATE - YRMODA(#YRBIRTH,#MOBIRTH,#DABIRTH))/365.25.
VARIABLE LABELS AGE ’EMPLOYEE’’S AGE’

DEPT88 ’DEPARTMENT CODE IN 1988’.

TEMPORARY.
RECODE AGE (LO THRU 20=1)(20 THRU 25=2)(25 THRU 30=3)(30 THRU 35=4)

(35 THRU 40=5)(40 THRU 45=6)(45 THRU 50=7)(50 THRU 55=8)
(55 THRU 60=9)(60 THRU 65=10)(65 THRU HI=11).

VARIABLE LABELS AGE ’EMPLOYEE AGE CATEGORIES’.
VALUE LABELS AGE 1 ’Up to 20’ 2 ’20 to 25’ 3 ’25 to 30’ 4 ’30 to 35’

5 ’35 to 40’ 6 ’40 to 45’ 7 ’45 to 50’ 8 ’50 to 55’
9 ’55 to 60’ 10 ’60 to 65’ 11 ’65 and older’.

FREQUENCIES VARIABLES=AGE.
MEANS AGE BY DEPT88.

• COMPUTE creates variable AGE from the dates in the data.

• FREQUENCIES uses the temporary version of variable AGE with temporary variable and
value labels.

• MEANS uses the unrecoded values of AGE and the permanent variable label.

TEMPORARY 1565

Example

GET FILE=HUBEMPL.
TEMPORARY.
RECODE DEPT85 TO DEPT88 (1,2=1) (3,4=2) (ELSE=9).
VALUE LABELS DEPT85 TO DEPT88 1 ’MANAGEMENT’
 2 ’OPERATIONS’
 3 ’UNKNOWN’.
XSAVE OUTFILE=HUBTEMP.
CROSSTABS DEPT85 TO DEPT88 BY JOBCAT.

• Both the saved SPSS-format data file and the CROSSTABS output will reflect the
temporary recoding and labeling of the department variables.

• If XSAVE is replaced with SAVE, the SPSS-format data file will reflect the temporary
recoding and labeling but the CROSSTABS output will not.

1566

TITLE

TITLE [’]text[’]

Example
TITLE "Running Shoe Study from Runner’s World Data".

Overview

TITLE inserts a left-justified title on the top line of each page of output. The default title in-
dicates the version of the system being used.

Basic Specification

The only specification is the title.

Syntax Rules

• The title can include any characters. To specify a blank title, enclose a blank between
apostrophes.

• The title can be up to 60 characters long. Titles longer than 60 characters are truncated.

• The apostrophes or quotation marks enclosing the title are optional; using them allows
you to include apostrophes or quotation marks in the title.

• If the subtitle is enclosed in apostrophes, quotation marks are valid characters but apos-
trophes must be specified as double apostrophes. If the subtitle is enclosed in quotation
marks, apostrophes are valid characters but quotation marks must be specified as double
quotation marks.

• More than one TITLE command is allowed in a single session.

• A title cannot be placed between a procedure command and BEGIN DATA—END DATA or
within data records when the data are inline.

Operations

• The title is displayed as part of the output heading, which also includes the date and page
number. If HEADER=NO is specified on SET, the heading, including the title and subtitle,
will not be displayed.

• Each TITLE command overrides the previous one and takes effect on the next output
page.

• Only the title portion of the heading changes. The date and page number are still displayed.

TITLE 1567

• TITLE is independent of SUBTITLE, and each can be changed separately.

Example

TITLE "Running Shoe Study from Runner’s World Data".
SUBTITLE ’Children’’s Training Shoes Only’.

• The title is enclosed in quotation marks, so the apostrophe in Runner’s is a valid character.

• The subtitle is enclosed in apostrophes, so the apostrophe in Children’s must be specified
as a double apostrophe.

Example

TITLE ’ ’.
SUBTITLE ’ ’.

• The title and subtitle are specified as blanks. This suppresses the default title and subtitle.
The date and page number still display on the title line.

1568

TSET

TSET
 [PRINT={DEFAULT**}] [/NEWVAR={CURRENT**}] [/MXAUTO={16**}]
 {BRIEF } {NONE } {lags}
 {DETAILED } {ALL }

 [/MXCROSS={7** }] [/MXNEWVARS={60**}] [/MXPREDICT={60**}]
 {lags} {n } {n }

 [/MISSING={EXCLUDE**}] [/CIN={95** }] [/TOLER={0.0001**}]
 {INCLUDE } {value} {value }

 [/CNVERGE={0.001**}] [/ACFSE={IND**}]
 {value } {MA }

 [/PERIOD=n] [/ID=varname]

 [/{CONSTANT**}]
 {NOCONSTANT}

 [/DEFAULT]

**Default if the subcommand is omitted.

Example
TSET PERIOD 6 NEWVAR NONE MXAUTO 25.

Overview

TSET sets global parameters to be used by procedures that analyze time series and sequence
variables. To display the current settings of these parameters, use the TSHOW command.

Basic Specification

The basic specification is at least one subcommand.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• The slash between subcommands is optional.

• You can specify DEFAULT on any subcommand to restore the default setting for that
subcommand.

• Subcommand DEFAULT restores all TSET subcommands to their defaults.

TSET 1569

Operations

• TSET takes effect immediately.
• Only the settings specified are affected. All others remain at their previous settings or the

default.

• Subcommands on other procedures that perform the same function as subcommands on
TSET override the TSET specifications for those procedures.

• Procedures that are affected by TSET specifications are CASEPLOT, NPPLOT, and
TSPLOT.

DEFAULT Subcommand

DEFAULT resets all TSET settings back to their defaults. There are no additional specifications
on DEFAULT.

ID Subcommand

ID specifies a variable whose values are used to label observations in plots.

• The only specification on ID is the name of a variable in the working data file.

• If ID is not specified, the DATE_ variable is used to label observations.

• If ID is specified within the procedure, it overrides the TSET specification for that procedure.

MISSING Subcommand

MISSING controls the treatment of user-missing values.

• The specification on MISSING is keyword INCLUDE or EXCLUDE. The default is EXCLUDE.

• INCLUDE indicates that observations with user-missing values should be treated as valid
values and included in analyses.

• EXCLUDE indicates that observations with user-missing values should be excluded from
analyses.

MXNEWVARS Subcommand

MXNEWVARS indicates the maximum number of new variables that can be generated by a
procedure.

• The specification on MXNEWVARS indicates the maximum and can be any positive integer.

• The default maximum number is 60 new variables per procedure.

1570 TSET

MXPREDICT Subcommand

MXPREDICT indicates the maximum number of new cases that can be added to the working
data file per procedure when the PREDICT command is used.

• The specification on MXPREDICT can be any positive integer.

• The default maximum number of new cases is 60 per procedure.

PERIOD Subcommand

PERIOD indicates the size of the period to be used for seasonal differencing.

• The specification on PERIOD indicates how many observations are in one season or
period and can be any positive integer.

• There is no default for the PERIOD subcommand.

• The specification on TSET PERIOD overrides the periodicity of DATE variables.

• If a period is specified within an individual procedure, it overrides the TSET PERIOD
specification for that procedure.

PRINT Subcommand

PRINT controls how much output is produced.

• The specification on PRINT can be BRIEF, DETAILED, or DEFAULT. The amount of output
produced by DEFAULT is generally between the amount produced by BRIEF and DETAILED.

• For procedures with multiple iterations, BRIEF generally means that final statistics are
displayed with no iteration history. DEFAULT provides a one-line summary at each itera-
tion in addition to the final statistics. DETAILED provides a complete summary of each
iteration (where necessary) plus the final statistics.

• For some procedures, the default and detailed output is the same. For many of the simpler
procedures, brief, default, and detailed are all the same.

1571

TSHOW

TSHOW

Example
TSHOW.

Overview

TSHOW displays a list of all the current specifications on the TSET, USE, PREDICT, and
DATE commands.

Basic Specification

The command keyword TSHOW is the only specification.

Operations

• TSHOW is executed immediately.
• TSHOW lists every current specification for the TSET, USE, PREDICT, and DATE com-

mands, as well as the default settings.

Example

TSHOW.

• The TSHOW command produces a list of the current settings on TSET, USE, PREDICT,
and DATE commands.

1572

TSPLOT

TSPLOT [VARIABLES=] variable names

 [/DIFF={1}]
 {n}

 [/SDIFF={1}]
 {n}

 [/PERIOD=n]

 [/{NOLOG**}]
 {LN }

 [/ID=varname]

 [/MARK={varname}]
 {date }

 [/SPLIT {UNIFORM**}]
 {SCALE }

 [/APPLY [=’model name’]]

For plots with one variable:

 [/FORMAT=[{NOFILL**}] [{NOREFERENCE**}]
 (BOTTOM } {REFERENCE }

For plots with multiple variables:

 [/FORMAT={NOJOIN**}]
 {JOIN }
 {HILO }

**Default if the subcommand is omitted.

Example
TSPLOT TICKETS
 /LN
 /DIFF
 /SDIFF
 /PERIOD=12
 /FORMAT=REFERENCE
 /MARK=Y 55 M 6.

Overview

TSPLOT produces a plot of one or more time series or sequence variables. You can request
natural log and differencing transformations to produce plots of transformed variables.
Several plot formats are available.

TSPLOT 1573

Options

Modifying the Variables. You can request a natural log transformation of the variables using
the LN subcommand and seasonal and nonseasonal differencing to any degree using the
SDIFF and DIFF subcommands. With seasonal differencing, you can also specify the period-
icity on the PERIOD subcommand.

Plot Format. With the FORMAT subcommand, you can fill in the space on one side of the
plotted values on plots with one variable. You can also plot a reference line indicating the
variable mean. For plots with two or more variables, you can specify whether you want to
join the values for each observation with a vertical line. With the ID subcommand you can
label the horizontal axis with the values of a specified variable. You can mark the onset of an
intervention variable on the plot with the MARK subcommand.

Split-File Processing. You can control how data that have been divided into subgroups by a
SPLIT FILE command should be plotted using the SPLIT subcommand.

Basic Specification

The basic specification is one or more variable names.

• If the DATE command has been specified, the horizontal axis is labeled with the DATE_
variable at periodic intervals. Otherwise, sequence numbers are used. The vertical axis is
labeled with the value scale of the plotted variable(s).

Figure 1 shows a default plot with DATE=YEAR 1900. Figure 2 shows the same default plot
in low resolution.

Figure 1 TSPLOT VARIABLES=PRICE (in high resolution)

1574 TSPLOT

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• VARIABLES can be specified only once.

• Other subcommands can be specified more than once, but only the last specification of
each one is executed.

Operations

• Subcommand specifications apply to all variables named on the TSPLOT command.

• If the LN subcommand is specified, any differencing requested on that TSPLOT command
is done on the log-transformed variables.

• Split-file information is displayed as part of the subtitle and transformation information
is displayed as part of the footnote.

• In low resolution, the plot frame size depends on the page size specified on the SET command.

Limitations

• Maximum 1 VARIABLES subcommand. There is no limit on the number of variables
named on the list.

Example

TSPLOT TICKETS
 /LN
 /DIFF
 /SDIFF
 /PERIOD=12
 /FORMAT=REFERENCE
 /MARK=Y 55 M 6.

• This command produces a plot of TICKETS after a natural log transformation, differ-
encing, and seasonal differencing have been applied.

• LN transforms the data using the natural logarithm (base e) of TICKETS.

• DIFF differences the logged variable once.

• SDIFF and PERIOD apply one degree of seasonal differencing with a period of 12.

• FORMAT=REFERENCE adds a reference line representing the variable mean. In low resolu-
tion, the area between the plotted values and the mean is filled with the plotting symbol (T).

• MARK provides a marker on the plot at June 1955. The marker is displayed as a vertical
reference line.

TSPLOT 1575

VARIABLES Subcommand

VARIABLES specifies the names of the variables to be plotted and is the only required
subcommand. The actual keyword VARIABLES can be omitted.

DIFF Subcommand

DIFF specifies the degree of differencing used to convert a nonstationary variable to a
stationary one with a constant mean and variance before plotting.

• You can specify any positive integer on DIFF.

• If DIFF is specified without a value, the default is 1.

• The number of values plotted decreases by 1 for each degree of differencing.

Example
TSPLOT TICKETS
 /DIFF=2.

• In this example, TICKETS is differenced twice before plotting.

SDIFF Subcommand

If the variable exhibits a seasonal or periodic pattern, you can use the SDIFF subcommand to
seasonally difference the variable before plotting.
• The specification on SDIFF indicates the degree of seasonal differencing and can be any

positive integer.

• If SDIFF is specified without a value, the degree of seasonal differencing defaults to 1.

• The number of seasons plotted decreases by 1 for each degree of seasonal differencing.

• The length of the period used by SDIFF is specified on the PERIOD subcommand. If the
PERIOD subcommand is not specified, the periodicity established on the TSET or DATE
command is used (see the PERIOD subcommand below).

PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF subcommand.

• The specification on PERIOD indicates how many observations are in one period or
season and can be any positive integer.

• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If
TSET PERIOD is not specified, the periodicity established on the DATE command is used.
If periodicity was not established anywhere, the SDIFF subcommand will not be executed.

1576 TSPLOT

Example
TSPLOT TICKETS
 /SDIFF=1
 /PERIOD=12.

• This command applies one degree of seasonal differencing with 12 observations per
season to TICKETS before plotting.

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base e) of the variable and is used to
remove varying amplitude over time. NOLOG indicates that the data should not be log trans-
formed. NOLOG is the default.
• If you specify LN on TSPLOT, any differencing requested on that command will be done

on the log-transformed variables.

• There are no additional specifications on LN or NOLOG.

• Only the last LN or NOLOG subcommand on a TSPLOT command is executed.

• If a natural log transformation is requested, any value less than or equal to zero is set to
system-missing.

• NOLOG is generally used with an APPLY subcommand to turn off a previous LN specification.

Example
TSPLOT TICKETS
 /LN.

• In this example, TICKETS is transformed using the natural logarithm before plotting.

ID Subcommand

ID names a variable whose values will be used as labels for the horizontal axis.

• The only specification on ID is a variable name. If you have a variable named ID in your
working data file, the equals sign after the subcommand is required.

• If the ID subcommand is not used and TSET ID has not been specified, the axis is labeled
with the DATE_ variable created by the DATE command. If the DATE command has not
been specified, the observation number is used as the label.

Example
TSPLOT VARA
 /ID=VARB.

• In this example the values of VARB will be used to label the horizontal axis of VARA at
periodic intervals.

TSPLOT 1577

FORMAT Subcommand

FORMAT controls the plot format.
• The specification on FORMAT is one of the keywords listed below.

• Keywords NOFILL, BOTTOM, REFERENCE and NOREFERENCE apply to plots with one
variable. NOFILL and BOTTOM are alternatives that indicate how the plot is filled. NOREF-
ERENCE and REFERENCE are alternatives that specify whether a reference line is
displayed.

• Keywords JOIN, NOJOIN, and HILO apply to plots with multiple variables and are alterna-
tives. NOJOIN is the default. Only one keyword can be specified on a FORMAT subcom-
mand for plots with multiple variables.

The following formats are available for plots with one variable:

NOFILL Plot only the values for the variable with no fill. NOFILL produces a plot with
no fill above or below the plotted values. This is the default format when one
variable is specified.

BOTTOM Plot the values for the variable and fill in the area below the curve. If the
plotted variable has missing or negative values, BOTTOM is ignored and the
default NOFILL is used instead. Figure 2 shows a filled plot.

NOREFERENCE Do not plot a reference line. This is the default when one variable is specified.

REFERENCE Plot a reference line indicating the variable mean. A fill chart is displayed as
an area chart with a reference line and a non-fill chart is displayed as a line
chart with a reference line. Figure 3 shows a no-fill plot with a reference line
indicating the variable mean.

Figure 2 FORMAT=BOTTOM

1578 TSPLOT

The following formats are available for plots with multiple variables:

NOJOIN Plot the values of each variable named. Different colors or line patterns are used
for multiple variables. Multiple occurrences of the same value for a single obser-
vation are plotted using a dollar sign ($). This is the default format for plots with
multiple variables.

JOIN Plot the values of each variable and join the values for each observation. Values
are plotted as described for NOJOIN and the values for each observation are joined
together by a line. Figure 4 contains a plot in this format with three time series
(PRICE, INCOME, and CONSUMP).

HILO Plot the highest and lowest values across variables for each observation and join
the two values together. The high and low values are plotted as a horizontal bar and
are joined with a line. If more than three variables are specified HILO is ignored and
the default NOJOIN is used. Figure 5 contains a high-low plot with three time series
(PRICE, INCOME, and CONSUMP).

Figure 3 FORMAT=REFERENCE

Figure 4 FORMAT=JOIN

TSPLOT 1579

MARK Subcommand

MARK indicates the onset of an intervention variable.

• The onset date is indicated by a vertical reference line.

• The specification on MARK can be either a variable name or an onset date if the DATE_
variable exists.

• If a variable is named, the plot indicates where the values of that variable change.
• A date specification follows the same format as the DATE command; that is, a keyword

followed by a value. For example, the specification for June 1955 is Y 1955 M 6 (or Y 55
M 6 if only the last 2 digits of the year are used on DATE).

Figure 6 shows a plot with the year 1945 marked as the onset date.

SPLIT Subcommand

SPLIT specifies how to plot data that have been divided into subgroups by a SPLIT FILE
command. The default is UNIFORM.

Figure 5 FORMAT=HILO

Figure 6 MARK=Y 1945

1580 TSPLOT

UNIFORM Scale uniformly. The vertical axis is scaled according to the values of the
entire data set.

SCALE Scale individually. The vertical axis is scaled according to the values of each
individual subgroup.

• If FORMAT=REFERENCE is specified when SPLIT=SCALE, the reference line is placed at
the mean of the subgroup. If FORMAT=REFERENCE is specified when SPLIT=UNIFORM,
the reference line is placed at the overall mean.

Example
SPLIT FILE BY REGION.
TSPLOT TICKETS / SPLIT=SCALE.

• In this example, the data have been split into subgroups by REGION. The plots produced
with the SCALE subcommand have vertical axes that are individually scaled according to
the values of each particular region.

APPLY Subcommand

APPLY allows you to produce a plot using previously defined specifications without having
to repeat the TSPLOT subcommands.
• The only specification on APPLY is the name of a previous model enclosed in apostrophes.

If a model name is not specified, the specifications from the previous TSPLOT command
are used.

• To change one or more specifications of the plot, specify the subcommands of only those
portions you want to change after subcommand APPLY.

• If no variables are specified, the variables that were specified for the original plot are used.
• To plot different variables, enter new variable names before or after the APPLY subcommand.

Example
TSPLOT TICKETS
 /LN
 /DIFF=1
 /SDIFF=1
 /PERIOD=12.
TSPLOT ROUNDTRP
 /APPLY.
TSPLOT APPLY
 /NOLOG.

• The first command produces a plot of TICKETS after a natural log transformation, differ-
encing, and seasonal differencing have been applied.

• The second command plots the values for ROUNDTRP using the same subcommands
specified for TICKETS.

• The third command produces another plot of ROUNDTRP but this time without a log
transformation. ROUNDTRP is still differenced once and seasonally differenced with a
periodicity of 12.

1581

T-TEST

One-sample tests:

T-TEST TESTVAL n /VARIABLE=varlist

Independent-samples tests:

T-TEST GROUPS=varname ({1,2** }) /VARIABLES=varlist
 {value }
 {value,value}

Paired-samples tests:

 T-TEST PAIRS=varlist [WITH varlist [(PAIRED)]] [/varlist ...]

All types of tests:

 [/MISSING={ANALYSIS**} [INCLUDE]]
 {LISTWISE }

 [/CRITERIA=CI({0.95**})
 {value }

**Default if the subcommand is omitted.

Examples
T-TEST GROUPS=WORLD(1,3) /VARIABLES=NTCPRI NTCSAL NTCPUR.

T-TEST PAIRS=TEACHER CONSTRUC MANAGER.

Overview

T-TEST compares sample means by calculating Student’s t and displays the two-tailed
probability of the difference between the means. Statistics are available for one-sample
(tested against a specified value), independent samples (different groups of cases), or
paired samples (different variables). Other procedures that compare group means are
ANOVA, ONEWAY, UNIANOVA, GLM, and MANOVA (GLM and MANOVA are available in the
SPSS Advanced Models option).

Options

Statistics. There are no optional statistics. All statistics available are displayed by default.

Basic Specification

The basic specification depends on whether you want a one-sample test, an independent-
samples test or a paired-samples test. For all types of tests, T-TEST displays Student’s t,

1582 T-TEST

degrees of freedom, and two-tailed probabilities, as well as the mean, standard deviation,
standard error, and count for each group or variable.

• To request a one-sample test, use the TESTVAL and VARIABLES subcommands. The out-
put includes a One-Sample Statistics table showing univariate statistics and a One-Sam-
ple Test table showing the test value, the difference between the sample mean and the test
value and two-tailed probability level.

• To request an independent-samples test, use the GROUPS and VARIABLES subcommands.
The output includes a Group Statistics table showing summary statistics by group for
each dependent variable and an Independent-Samples Test table showing both pooled-
and separate-variance estimates, along with the F value used to test homogeneity of vari-
ance and its probability. The two-tailed probability is displayed for the t value.

• To request a paired-samples test, use the PAIRS subcommand. The output includes a Paired
Statistics table showing univariate statistics by pairs, a Paired Samples Correlations table
showing correlation coefficients and two-tailed probability level for a test of the coeffi-
cient for each pair, and a Paired Samples Test table showing the paired differences between
the means and two-tailed probability levels for a test of the differences.

Subcommand Order

Subcommands can be named in any order.

Operations

• If a variable specified on GROUPS is a long string, only the short-string portion is used to
identify groups in the analysis.

• Probability levels are two-tailed. To obtain the one-tailed probability, divide the two-
tailed probability by 2.

Limitations

• Maximum 1 TESTVAL and 1 VARIABLES subcommand per one-sample t test.

• Maximum 1 GROUPS and 1 VARIABLES subcommand per independent-samples t test.

Example

T TEST TESTVAL 28000 /VARIABLES=CHISAL LASAL NYSAL.

• This one-sample t test compares the means of CHISAL, LASAL, and NYSAL each with the
standard value (28000).

Example

T-TEST GROUPS=WORLD(1,3) /VARIABLES=NTCPRI NTCSAL NTCPUR.

T-TEST 1583

• This independent-samples t test compares the means of the two groups defined by values
1 and 3 of WORLD for variables NTCPRI, NTCSAL, and NTCPUR.

Example

T-TEST PAIRS=TEACHER CONSTRUC MANAGER.

• This paired-samples t test compares the means of TEACHER with CONSTRUC, TEACHER
with MANAGER, and CONSTRUC with MANAGER.

VARIABLES Subcommand

VARIABLES specifies the dependent variables to be tested in a one-sample or an independent-
samples t test.

• VARIABLES can specify multiple variables, all of which must be numeric.
• When specified along with TESTVAL, the mean of all cases for each variable is compared

with the specified value.

• When specified along with GROUPS, the means of two groups of cases defined by the
GROUPS subcommand are compared.

• If both TESTVAL and GROUPS are specified, a one-sample test and an independent-
samples test are performed on each variable.

TESTVAL Subcommand

TESTVAL specifies the value with which a sample mean is compared.
• Only one TESTVAL subcommand is allowed.

• Only one value can be specified on the TESTVAL subcommand.

GROUPS Subcommand

GROUPS specifies a variable used to group cases for independent-samples t tests.

• GROUPS can specify only one variable, which can be numeric or string.

Any one of three methods can be used to define the two groups for the variable specified on
GROUPS:

• Specify a single value in parentheses to group all cases with a value equal to or greater
than the specified value into one group and the remaining cases into the other group.

• Specify two values in parentheses to include cases with the first value in one group and
cases with the second value in the other group. Cases with other values are excluded.

• If no values are specified on GROUP, T-TEST uses 1 and 2 as default values for numeric
variables. There is no default for string variables.

1584 T-TEST

PAIRS Subcommand

PAIRS requests paired-samples t tests.

• The minimum specification for a paired-samples test is PAIRS with an analysis list. Only
numeric variables can be specified on the analysis list. The minimum analysis list is two
variables.

• If keyword WITH is not specified, each variable in the list is compared with every other
variable on the list.

• If keyword WITH is specified, every variable to the left of WITH is compared with every
variable to the right of WITH. WITH can be used with PAIRED to obtain special pairing.

• To specify multiple analysis lists, use multiple PAIRS subcommands, each separated by a
slash. Keyword PAIRS is required only for the first analysis list; a slash can be used to
separate each additional analysis list.

(PAIRED) Special pairing for paired-samples test. PAIRED must be enclosed in paren-
theses and must be used with keyword WITH. When PAIRED is specified, The
first variable before WITH is compared with the first variable after WITH, the
second variable before WITH is compared with the second variable after
WITH, and so forth. The same number of variables should be specified before
and after WITH; unmatched variables are ignored and a warning message is
issued. PAIRED generates an error message if keyword WITH is not specified
on PAIRS.

Example
T-TEST PAIRS=TEACHER CONSTRUC MANAGER.
T-TEST PAIRS=TEACHER MANAGER WITH CONSTRUC ENGINEER.
T-TEST PAIRS=TEACHER MANAGER WITH CONSTRUC ENGINEER (PAIRED).

• The first T-TEST compares TEACHER with CONSTRUC, TEACHER with MANAGER, and
CONSTRUC with MANAGER.

• The second T-TEST compares TEACHER with CONSTRUC, TEACHER with ENGINEER,
MANAGER with CONSTRUC, and MANAGER with ENGINEER. TEACHER is not compared
with MANAGER, and CONSTRUC is not compared with ENGINEER.

• The third T-TEST compares TEACHER with CONSTRUC and MANAGER with ENGINEER.

CRITERIA Subcommand

CRITERIA resets the value of the confidence interval. Keyword CI is required. You can spec-
ify a value between 0 and 1 in the parentheses. The default is 0.95.

MISSING Subcommand

MISSING controls the treatment of missing values. The default is ANALYSIS.

• ANALYSIS and LISTWISE are alternatives; however, each can be specified with INCLUDE.

T-TEST 1585

ANALYSIS Delete cases with missing values on an analysis-by-analysis or pair-by-pair
basis. For independent-samples tests, cases with missing values for either the
grouping variable or the dependent variable are excluded from the analysis of
that dependent variable. For paired-samples tests, a case with a missing value
for either of the variables in a given pair is excluded from the analysis of that
pair. This is the default.

LISTWISE Exclude cases with missing values listwise. A case with a missing value for
any variable specified on either GROUPS or VARIABLES is excluded from
any independent-samples test. A case with a missing value for any variable
specified on PAIRS is excluded from any paired-samples test.

INCLUDE Include user-missing values. User-missing values are treated as valid values.

1586

2SLS

2SLS is available in the Regression Models option.

2SLS [EQUATION=]dependent variable WITH predictor variable

 [/[EQUATION=]dependent variable...]

 /INSTRUMENTS=varlist

 [/ENDOGENOUS=varlist]

 [/{CONSTANT**}
 {NOCONSTANT}

 [/PRINT=COV]

 [/SAVE = [PRED] [RESID]]

 [/APPLY[=’model name’]]

**Default if the subcommand or keyword is omitted.

Example
2SLS VAR01 WITH VAR02 VAR03
 /INSTRUMENTS VAR03 LAGVAR01.

Overview

2SLS performs two-stage least-squares regression to produce consistent estimates of param-
eters when one or more predictor variables might be correlated with the disturbance. This
situation typically occurs when your model consists of a system of simultaneous equations
wherein endogenous variables are specified as predictors in one or more of the equations.
The two-stage least-squares technique uses instrumental variables to produce regressors
that are not contemporaneously correlated with the disturbance. Parameters of a single
equation or a set of simultaneous equations can be estimated.

Options

New Variables. You can change NEWVAR settings on the TSET command prior to 2SLS to
evaluate the regression statistics without saving the values of predicted and residual vari-
ables, or save the new values to replace the values saved earlier, or save the new values with-
out erasing values saved earlier (see the TSET command). You can also use the SAVE
subcommand on 2SLS to override the NONE or the default CURRENT settings on NEWVAR.

Covariance Matrix. You can obtain the covariance matrix of the parameter estimates in addi-
tion to all of the other output by specifying PRINT=DETAILED on the TSET command prior
to 2SLS. You can also use the PRINT subcommand to obtain the covariance matrix regard-
less of the setting on PRINT.

2SLS 1587

Basic Specification

The basic specification is at least one EQUATION subcommand and one INSTRUMENTS sub-
command.

• For each equation specified, 2SLS estimates and displays the regression analysis-of-variance
table, regression standard error, mean of the residuals, parameter estimates, standard errors
of the parameter estimates, standardized parameter estimates, t statistic significance tests and
probability levels for the parameter estimates, tolerance of the variables, the parameter esti-
mates, and correlation matrix of the parameter estimates.

• If the setting on NEWVAR is either ALL or the default CURRENT, two new variables con-
taining the predicted and residual values are automatically created for each equation. The
variables are labeled and added to the working data file.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• The INSTRUMENTS subcommand must specify at least as many variables as are specified
after WITH on the longest EQUATION subcommand.

• If a subcommand is specified more than once, the effect is cumulative (except for the
APPLY subcommand, which executes only the last occurrence).

Operations

• 2SLS cannot produce forecasts beyond the length of any regressor series.
• 2SLS honors the SPSS WEIGHT command.

• 2SLS uses listwise deletion of missing data. Whenever a variable is missing a value for a
particular observation, that observation will not be used in any of the computations.

EQUATION Subcommand

EQUATION specifies the structural equations for the model and is required. The actual key-
word EQUATION is optional.

• An equation specifies a single dependent variable, followed by keyword WITH and one or
more predictor variables.

• You can specify more than one equation. Multiple equations are separated by slashes.

Example
2SLS EQUATION=Y1 WITH X1 X2
 /INSTRUMENTS=X1 LAGX2 X3.

1588 2SLS

• In this example, Y1 is the dependent variable and X1 and X2 are the predictors. The instru-
ments used to predict the X2 values are X1, LAGX2, and X3.

INSTRUMENTS Subcommand

INSTRUMENTS specifies the instrumental variables. These variables are used to compute
predicted values for the endogenous variables in the first stage of 2SLS.

• At least one INSTRUMENTS subcommand must be specified.
• If more than one INSTRUMENTS subcommand is specified, the effect is cumulative. All

variables named on INSTRUMENTS subcommands are used as instruments to predict all
the endogenous variables.

• Any variable in the working data file can be named as an instrument.

• Instrumental variables can be specified on the EQUATION subcommand, but this is not
required.

• The INSTRUMENTS subcommand must name at least as many variables as are specified
after WITH on the longest EQUATION subcommand.

• If all the predictor variables are listed as the only INSTRUMENTS, the results are the same
as results from ordinary least-squares regression.

Example
2SLS DEMAND WITH PRICE, INCOME
 /PRICE WITH DEMAND, RAINFALL, LAGPRICE
 /INSTRUMENTS=INCOME, RAINFALL, LAGPRICE.

• The endogenous variables are PRICE and DEMAND.

• The instruments to be used to compute predicted values for the endogenous variables are
INCOME, RAINFALL, and LAGPRICE.

ENDOGENOUS Subcommand

All variables not specified on the INSTRUMENTS subcommand are used as endogenous vari-
ables by 2SLS. The ENDOGENOUS subcommand simply allows you to document what these
variables are.

• Computations are not affected by specifications on the ENDOGENOUS subcommand.

Example
2SLS Y1 WITH X1 X2 X3
 /INSTRUMENTS=X2 X4 LAGY1
 /ENDOGENOUS=Y1 X1 X3.

• In this example, the ENDOGENOUS subcommand is specified to document the endoge-
nous variables.

2SLS 1589

CONSTANT and NOCONSTANT Subcommands

Specify CONSTANT or NOCONSTANT to indicate whether a constant term should be estimated
in the regression equation. The specification of either subcommand overrides the CONSTANT
setting on the TSET command for the current procedure.

• CONSTANT is the default and specifies that the constant term is used as an instrument.

• NOCONSTANT eliminates the constant term.

SAVE Subcommand

SAVE saves the values of predicted and residual variables generated during the current session
to the end of the working data file. The default names FIT_n and ERR_n will be generated,
where n increments each time variables are saved for an equation. SAVE overrides the NONE
or the default CURRENT setting on NEWVAR for the current procedure.

PRED Save the predicted value. The new variable is named FIT_n, where n increments
each time a predicted or residual variable is saved for an equation.

RESSID Save the residual value. The new variable is named ERR_n, where n increments
each time a predicted or residual variable is saved for an equation.

PRINT Subcommand

PRINT can be used to produce an additional covariance matrix for each equation. The only
specification on this subcommand is keyword COV. The PRINT subcommand overrides the
PRINT setting on the TSET command for the current procedure.

APPLY Subcommand

APPLY allows you to use a previously defined 2SLS model without having to repeat the
specifications.

• The only specification on APPLY is the name of a previous model. If a model name is not
specified, the model specified on the previous 2SLS command is used.

• To change the series used with the model, enter new series names before or after the
APPLY subcommand.

• To change one or more model specifications, specify the subcommands of only those por-
tions you want to change after the APPLY subcommand.

• If no series are specified on the command, the series that were originally specified with
the model being reapplied are used.

Example
2SLS Y1 WITH X1 X2 / X1 WITH Y1 X2
 /INSTRUMENTS=X2 X3.
2SLS APPLY
 /INSTRUMENTS=X2 X3 LAGX1.

1590 2SLS

• In this example, the first command requests 2SLS using X2 and X3 as instruments.

• The second command specifies the same equations but changes the instruments to X2, X3,
and LAGX1.

2SLS 1591

1592

TWOSTEP CLUSTER

TWOSTEP CLUSTER

[/CATEGORICAL VARIABLES = varlist]

[/CONTINUOUS VARIABLES = varlist]

[/CRITERIA [INITHRESHOLD({0** })] [MXBRANCH({8**})]
{value} {n }

[MXLEVEL({3**})]]
{n }

[/DISTANCE {EUCLIDEAN }]
{LIKELIHOOD**}

[/HANDLENOISE {0**}]
{n }

[/INFILE FILE = filename]

[/MEMALLOCATE {64**}]
{n }

[/MISSING {EXCLUDE**}]
{INCLUDE }

[/NOSTANDARDIZE [VARIABLES = varlist]]

[/NUMCLUSTERS {AUTO** {15**} [{AIC }]}]
{n } {BIC**}

{FIXED = n }

[/OUTFILE [MODEL = filename] [STATE = filename]]

[/PLOT [BARFREQ] [PIEFREQ]
[VARCHART [COMPARE {BYCLUSTER**}] [NONPARAMETRIC] [CONFIDENCE {95**}] [OMIT]]]

{BYVAR } {n }

[/PRINT [IC] [COUNT] [SUMMARY]]

[/SAVE CLUSTER [VARIABLE = varname]]

**Default if the subcommand is omitted.

Overview

TWOSTEP CLUSTER groups observations into clusters based on a nearness criterion. The
procedure uses a hierarchical agglomerative clustering procedure in which individual cases
are successively combined to form clusters whose centers are far apart. This algorithm is
designed to cluster large numbers of cases. It passes the data once to find the cluster centers
and again to assign cluster memberships. In addition to the benefit of few data passes, the
procedure allows the user to set the amount of memory used by the clustering algorithm.

Basic Features

Cluster Features (CF) Tree. TWOSTEP CLUSTER clusters observations by building a data
structure called the CF tree, which contains the cluster centers. The CF tree is grown during

TWOSTEP CLUSTER 1593

the first stage of clustering and values are added to its leaves if they are close to the cluster
center of a particular leaf.

Distance Measure. Two types of distance measures are offered—the traditional Euclidean dis-
tance and the likelihood distance. The former is available when no categorical variables are
specified. The latter is especially useful when categorical variables are used. The likelihood
function is computed using the normal density for continuous variables and the multinomial
probability mass function for categorical variables. All variables are treated as independent.

Tuning the Algorithm. You can control the values of algorithm-tuning parameters with the
CRITERIA subcommand.

Noise Handling. The clustering algorithm can optionally retain any outliers that do not fit in the
CF tree. If possible, these values will be placed in the CF tree after it is completed. Otherwise,
TWOSTEP CLUSTER will discard them after preclustering.

Missing Values. TWOSTEP CLUSTER will delete listwise any records with missing fields.

Numclusters. This subcommand specifies the number of clusters into which the data will be
partitioned. The user may tell TWOSTEP CLUSTER to automatically select the number of
clusters.

Optional Output. You can specify output to an XML file with the OUTFILE subcommand. The
cluster membership for each case used can be saved to the working data file with the SAVE
subcommand.

Weights. TWOSTEP CLUSTER ignores specification on the WEIGHT command.

Basic Specification

• The minimum specification is a list of variables, either categorical or continuous, to be
clustered.

• The number of clusters may be specified with the NUMCLUSTERS subcommand.

• Unless the NOSTANDARDIZE subcommand is given, TWOSTEP CLUSTER will standard-
ize all continuous variables.

• If DISTANCE is Euclidean, TWOSTEP CLUSTER will accept only continuous variables.

Subcommand Order

• The subcommands can be specified in any order.

Syntax Rules

• Minimum syntax: a variable must be specified.
• Empty subcommands are silently ignored.

• Variables listed in the CONTINUOUS subcommand must be numeric.

• If a subcommand is issued more than once, TWOSTEP CLUSTER will ignore all but the
last issue.

1594 TWOSTEP CLUSTER

Example

TWOSTEP CLUSTER
/CONTINUOUS VARIABLES = INCOME
/CATEGORICAL VARIABLES = GENDER RACE
/NUMCLUSTERS AUTO 10 AIC
/PLOT VARCHART NONPARAMETRIC CONFIDENCE 80.

• Clusters will be based on the values of INCOME, GENDER, and RACE, where INCOME is
specified as a continuous variable, and GENDER and RACE are specified as categorical
variables.

• The optimal number of clusters, up to a maximum of 10, will be determined automatically
by the procedure using the Akaike Information Criterion to choose between models.

• For each cluster, a chart will be produced that compares the importance of the variables
using a nonparametric measure and a confidence level of 80%.

Variable List

The variable lists specify those variables to be clustered. The first variable list specifies only
continuous variables, and the second list specifies only categorical variables (that is, the two
lists are disjoint).

CATEGORICAL Subcommand

The CATEGORICAL subcommand specifies a list of categorical variables.

Example
TWOSTEP CLUSTER

/CATEGORICAL VARIABLES = RACE GENDER CITIZEN
/PRINT SUMMARY COUNT.

This tells TWOSTEP CLUSTER to cluster the categorical variables RACE, GENDER and
CITIZEN. Summary statistics by cluster and cluster frequencies are output in tables.

CONTINUOUS Subcommand

The CONTINUOUS subcommand specifies a list of scale variables.

Example
TWOSTEP CLUSTER

/CATEGORICAL VARIABLES = RACE GENDER CITIZEN
/CONTINUOUS VARIABLES = INCOME
/PRINT SUMMARY COUNT.

This tells TWOSTEP CLUSTER to cluster the categorical variables RACE, GENDER, and
CITIZEN, and the numeric variable INCOME. Summary statistics by cluster and cluster
frequencies are output in tables.

TWOSTEP CLUSTER 1595

CRITERIA Subcommand

The CRITERIA subcommand specifies the following settings for the clustering algorithm:

INITTHRESHOLD The initial threshold used to grow the CF tree. The default is 0. If in-
serting a specific case into a leaf of the CF tree would yield tightness
less than the threshold, the leaf is not split. If the tightness exceeds the
threshold, the leaf is split.

MXBRANCH The maximum number of child nodes that a leaf node can have. The
default is 8.

MXLEVEL The maximum number of levels that the CF tree can have. The default
is 3.

DISTANCE Subcommand

The distance subcommand determines how distances will be computed between clusters.

EUCLIDEAN Use the Euclidean distance to compute distances between clusters. You may
select Euclidean distance if all variables are continuous. TWOSTEP
CLUSTER will return a syntax error if you specify Euclidean distance with
non-numeric variables.

LIKELIHOOD Use the minus log-likelihood to compute distances between clusters. This
is the default. The likelihood function is computed assuming all variables are
independent. Continuous variables are assumed to be normally distributed,
and categorical variables are assumed to be multinomially distributed.

HANDLENOISE Subcommand

The HANDLENOISE subcommand tells TWOSTEP CLUSTER to treat outliers specially during
clustering. During growth of the CF tree, this subcommand is relevant only if the CF tree
fills. The CF tree is full if it cannot accept any more cases in a leaf node and no leaf node can
be split. The default value of HANDLENOISE is 0, equivalent to no noise handling.

• If the CF tree fills and HANDLENOISE is greater than 0, the CF tree will be re-grown after
placing any data in sparse leaves into their own noise leaf. A leaf is considered sparse if
the ratio of the number of cases in the sparse leaf to the number of cases in the largest leaf
is less than HANDLENOISE. After the tree is grown, the outliers will be placed in the CF
tree, if possible. If not, the outliers are discarded for the second phase of clustering.

• If the CF tree fills and HANDLENOISE is equal to 0, the threshold will be increased and
CF tree re-grown with all cases. After final clustering, values that cannot be assigned to
a cluster are labeled outliers. The outlier cluster is given an identification number of –1.
The outlier cluster is not included in the count of the number of clusters; that is, if you
specify n clusters and noise handling, TWOSTEP CLUSTER will output n clusters and one
noise cluster.

1596 TWOSTEP CLUSTER

Example
TWOSTEP CLUSTER

/CATEGORICAL VARIABLES = RACE GENDER CITIZEN
/CONTINUOUS VARIABLES = INCOME
/HANDLENOISE 25
/PRINT SUMMARY COUNT.

This tells TWOSTEP CLUSTER to cluster the categorical variables RACE, GENDER and
CITIZEN, and the numeric variable INCOME. If the CF tree fills, a noise leaf is constructed
from cases whose leaves contain fewer than 25 percent of the cases contained by the largest
leaf. The CF tree is then re-grown, ignoring the noise leaf. After the tree is re-grown, cases
from the noise leaf are checked to see if they fit any of the leaves in the new tree. Any cases
that still do not fit are discarded as outliers. Summary statistics by cluster and cluster fre-
quencies are output in tables.

INFILE Subcommand

The INFILE subcommand causes TWOSTEP CLUSTER to update a cluster model whose CF
Tree has been saved as an XML file with the OUTFILE subcommand and STATE keyword.
The model will be updated with the data in the active file. The user must supply variable
names in the active file in the order they are stored in the XML file. TWOSTEP CLUSTER will
update the cluster model in memory only, leaving unaltered the XML file.

• If the INFILE subcommand is given, TWOSTEP CLUSTER will ignore the CRITERIA,
DISTANCE, HANDLENOISE and MEMALLOCATE subcommands, if given.

MEMALLOCATE Subcommand

The MEMALLOCATE subcommand specifies the maximum amount of memory in megabytes
(MB) that the cluster algorithm should use. If the procedure exceeds this maximum, it will
use the disk to store information that will not fit in memory.

• The minimum value you can specify is 4. If this subcommand is not specified, the default
value is 64MB.

• Consult your system administrator for the largest value you can specify on your system.

MISSING Subcommand

The MISSING subcommand specifies how to handle cases with user-missing values.

• If this subcommand is not specified, the default is EXCLUDE.

• TWOSTEP CLUSTER deletes any case with a system-missing value.
• Keywords EXCLUDE and INCLUDE are mutually exclusive. Only one of them can be

specified.

EXCLUDE Exclude both user-missing and system-missing values. This is the default.

INCLUDE User-missing values are treated as valid. System-missing values cannot be
included in the analysis.

TWOSTEP CLUSTER 1597

NOSTANDARDIZE Subcommand

The NOSTANDARDIZE subcommand will prevent TWOSTEP CLUSTER from standardizing
the continuous variables specified with the VARIABLES keyword. If this subcommand is not
specified, TWOSTEP CLUSTER will standardize all continuous variables by subtracting the
mean and dividing by the standard deviation. If the NOSTANDARDIZE subcommand is given
without a variable list, TWOSTEP CLUSTER will not standardize any continuous variables.

NUMCLUSTERS Subcommand

The NUMCLUSTERS subcommand specifies the number of clusters into which the data will
be partitioned.

AUTO Automatic selection of the number of clusters. Under AUTO, you may specify
a maximum number of possible clusters. TWOSTEP CLUSTER will search for
the best number of clusters between 1 and the maximum using the criterion
that you specify. The criterion for deciding the number of clusters can be
either the Bayesian Information Criterion (BIC) or Akaike Information Crite-
rion (AIC). TWOSTEP CLUSTER will find at least one cluster if the AUTO
keyword is given.

FIXED User-specified number of clusters. Specify a positive integer.

Examples
TWOSTEP CLUSTER

/CONTINUOUS VARIABLES = INCOME
/CATEGORICAL VARIABLES = GENDER RACE
/NUMCLUSTERS AUTO 10 AIC
/PRINT SUMMARY COUNT.

TWOSTEP CLUSTER uses the variables RACE, GENDER and INCOME for clustering. Specifi-
cations on the NUMCLUSTERS subcommand will instruct the procedure to automatically
search for the number of clusters using the Akaike Information Criterion and require the
answer to lie between 1 and 10.

TWOSTEP CLUSTER
/CONTINUOUS VARIABLES = INCOME
/CATEGORICAL VARIABLES = RACE GENDER
/NUMCLUSTERS FIXED 7
/PRINT SUMMARY COUNT.

Here the procedure will find exactly seven clusters.

OUTFILE Subcommand

The OUTFILE subcommand directs TWOSTEP CLUSTER to write its output to the specified
filename as XML.

MODEL Save the final model output.

1598 TWOSTEP CLUSTER

STATE Save the CF tree. Use the STATE keyword if you want to update the model
later.

You must supply a valid filename on your operating system. We recommend specifying the
full path of the filename.

PLOT Subcommand

The PLOT subcommand specifies optional output.

BARFREQ Print a bar chart of frequencies for each cluster.

PIEFREQ Print a pie chart showing the percentage and counts of observations
within each cluster.

VARCHART Variable importance charts. This option prints several different charts
showing the importance of each variable within each cluster. The out-
put will be sorted by the importance rank of each variable.

VARCHART Keyword

There are several options for the variable importance charts.

COMPARE Compare variables or clusters. This tells TWOSTEP CLUSTER to
either create one plot per cluster (BYCLUSTER) or one plot per variable
(BYVARIABLE).

NONPARAMETRIC Importance measure. This keyword tells TWOSTEP CLUSTER which
measure of variable importance to plot. If this keyword is not given,
TWOSTEP CLUSTER will report a Pearson chi-square statistic as the
importance of a categorical variable and a t statistic as the importance
for a continuous variable. If NONPARAMETRIC is given, the impor-
tance will be one minus the p value for the test of equality of means
(continuous) or expected frequency (categorical) with the overall data
set.

CONFIDENCE Set confidence level for importance. This keyword causes TWOSTEP
CLUSTER to consider 1 – CONFIDENCE as the alpha level of an equal-
ity test of a variable’s distribution within a cluster versus the variable’s
overall distribution. You may specify any value between 0 and 100. If
the NONPARAMETRIC or BYVARIABLE keywords are given, the value
of CONFIDENCE will be shown as a vertical line on the graph of vari-
able importances. The default value is 95.

OMIT Ignore nonsignificant variables. This keyword will cause TWOSTEP
CLUSTER not to show any variables whose importance is not signifi-
cant at the alpha level given by 1 – CONFIDENCE.

TWOSTEP CLUSTER 1599

Examples
TWOSTEP CLUSTER

/CONTINUOUS VARIABLES = INCOME LIFESPAN
/PLOT VARCHART.

TWOSTEP CLUSTER will print a bar chart for each cluster. Each bar chart will have two bars,
one for INCOME and one for LIFESPAN. For each cluster, the bar length for INCOME is the t
statistic for testing the equality of the within-cluster mean for INCOME to the overall mean of
INCOME. The bar length for LIFESPAN is defined similarly.

TWOSTEP CLUSTER
/CONTINUOUS VARIABLES = INCOME LIFESPAN
/PLOT VARCHART COMPARE BYVARIABLE.

TWOSTEP CLUSTER will print two bar charts, one for INCOME and one for LIFESPAN. Each
bar will correspond to the variable’s importance in a cluster. The bar lengths are the t statistics
mentioned above.

TWOSTEP CLUSTER
/CONTINUOUS VARIABLES = INCOME LIFESPAN
/PLOT VARCHART NONPARAMETRIC CONFIDENCE 98.

TWOSTEP CLUSTER will print one bar chart per cluster, as in the first example, although the
variable importance will now be 1 minus the p value of the test of equality of means. Under
the null hypothesis of equality of means, each importance value is uniformly distributed on
(0,1). The CONFIDENCE keyword tells TWOSTEP CLUSTER to print a reference line at 0.98.

TWOSTEP CLUSTER
/CONTINUOUS VARIABLES = VAR1 VAR2 VAR3...VARn
/PLOT VARCHART NONPARAMETRIC CONDFIDENCE 98 OMIT.

TWOSTEP CLUSTER will print bar charts as in the previous example, but any variable whose
importance is less than 0.98 will not be shown.

TWOSTEP CLUSTER
/CATEGORICAL VARIABLES = VAR1 VAR2...VARn
/PLOT VARCHART NONPARAMETRIC CONFIDENCE 80.

TWOSTEP CLUSTER will print a bar chart for each cluster. The variable importance will be
1 minus the p value of the Pearson chi-square statistic for testing the equality of cluster prob-
abilities and overall probabilities. For example, the importance of VAR1 will be 1 minus the
p value for the test of equality of the within-cluster distribution of VAR1 to the overall distri-
bution of VAR1. A vertical line will be drawn with value 0.8.

PRINT Subcommand

The PRINT subcommand causes TWOSTEP CLUSTER to print tables related to each cluster.

IC Information criterion. Prints the chosen information criterion (AIC or BIC)
for different numbers of clusters. If this keyword is specified when the AUTO
keyword is not used with the NUMCLUSTERS subcommand, TWOSTEP
CLUSTER will skip this keyword and issue a warning. TWOSTEP CLUSTER
will ignore this keyword if AUTO 1 is specified in the NUMCLUSTERS
subcommand.

1600 TWOSTEP CLUSTER

SUMMARY Descriptive statistics by cluster. This option prints two tables describing the
variables in each cluster. In one table, means and standard deviations are
reported for continuous variables. The other table reports frequencies of
categorical variables. All values are separated by cluster.

COUNT Cluster frequencies. This option prints a table containing a list of clusters
and how many observations are in each cluster.

SAVE Subcommand

The SAVE subcommand allows you to save cluster output to the working file.

CLUSTER Save the cluster identification. The cluster number for each case is saved; the
user may specify a variable name using the VARIABLE keyword, otherwise,
it is saved to TSC_n, where n is a positive integer indicating the ordinal of the
SAVE operation completed by this procedure in a given session.

1601

UNIANOVA

UNIANOVA dependent var [BY factor list [WITH covariate list]]

[/RANDOM=factor factor...]

[/REGWGT=varname]

[/METHOD=SSTYPE({1 })]
 {2 }
 {3**}
 {4 }

[/INTERCEPT=[INCLUDE**] [EXCLUDE]]

[/MISSING=[INCLUDE] [EXCLUDE**]]

[/CRITERIA=[EPS({1E-8**})][ALPHA({0.05**})]
 {a } {a }

[/PRINT = [DESCRIPTIVE] [HOMOGENEITY] [PARAMETER][ETASQ]
 [GEF] [LOF] [OPOWER] [TEST(LMATRIX)]]

[/PLOT=[SPREADLEVEL] [RESIDUALS]
 [PROFILE (factor factor*factor factor*factor*factor ...)]

[/TEST=effect VS {linear combination [DF(df)]}]
 {value DF (df) }

[/LMATRIX={["label"] effect list effect list ...;...}]
 {["label"] effect list effect list ... }
 {["label"] ALL list; ALL... }
 {["label"] ALL list }

[/KMATRIX= {number }]
 {number;...}

[/CONTRAST (factor name)={DEVIATION[(refcat)]** }]
 {SIMPLE [(refcat)] }
 {DIFFERENCE }
 {HELMERT }
 {REPEATED }
 {POLYNOMIAL [({1,2,3...})]}

 {metric }
 {SPECIAL (matrix) }

[/POSTHOC =effect [effect...]
 ([SNK] [TUKEY] [BTUKEY][DUNCAN]
 [SCHEFFE] [DUNNETT(refcat)] [DUNNETTL(refcat)]
 [DUNNETTR(refcat)] [BONFERRONI] [LSD] [SIDAK]
 [GT2] [GABRIEL] [FREGW] [QREGW] [T2] [T3] [GH] [C]
 [WALLER ({100** })])]
 {kratio}
 [VS effect]

[/EMMEANS=TABLES({OVERALL })] [COMPARE ADJ([LSD] [BONFERRONI] [SIDAK])]
 {factor }
 {factor*factor...}

[/SAVE=[tempvar [(name)]] [tempvar [(name)]]...]

 [/OUTFILE= [{COVB (filename)}] [EFFECT(filename)] [DESIGN(filename)]
 {CORB (filename)}

[/DESIGN={[INTERCEPT...] }]

 {[effect effect...]}

1602 UNIANOVA

** Default if subcommand or keyword is omitted.

Temporary variables (tempvar) are:

PRED, WPRED, RESID, WRESID, DRESID, ZRESID, SRESID, SEPRED, COOK, LEVER

Example
UNIANOVA YIELD BY SEED FERT
 /DESIGN.

Overview

This section describes the use of UNIANOVA for univariate analyses. The UNIANOVA proce-
dure provides regression analysis and analysis of variance for one dependent variable by one
or more factors and/or variables.

Options

Design Specification. You can specify which terms to include in the design on the DESIGN
subcommand. This allows you to estimate a model other than the default full factorial model,
incorporate factor-by-covariate interactions or covariate-by-covariate interactions, and indi-
cate nesting of effects.

Contrast Types. You can specify contrasts other than the default deviation contrasts on the
CONTRAST subcommand.

Optional Output. You can choose from a wide variety of optional output on the PRINT subcom-
mand. Output appropriate to univariate designs includes descriptive statistics for each cell,
parameter estimates, Levene’s test for equality of variance across cells, partial eta-squared
for each effect and each parameter estimate, the general estimable function matrix, and a
contrast coefficients table (L’ matrix). The OUTFILE subcommand allows you to write out
the covariance or correlation matrix, the design matrix, or the statistics from the between-
subjects ANOVA table into a separate SPSS data file.

Using the EMMEANS subcommand, you can request tables of estimated marginal means
of the dependent variable and their standard deviations. The SAVE subcommand allows you
to save predicted values and residuals in weighted or unweighted and standardized or
unstandardized forms. You can specify different means comparison tests for comparing all
possible pairs of cell means using the POSTHOC subcommand. In addition, you can specify
your own hypothesis tests by specifying an L matrix and a K matrix to test the univariate
hypothesis LB = K.

Basic Specification

• The basic specification is a variable list identifying the dependent variable, the factors (if
any), and the covariates (if any).

• By default, UNIANOVA uses a model that includes the intercept term, the covariate (if any),
and the full factorial model, which includes all main effects and all possible interactions
among factors. The intercept term is excluded if it is excluded in the model by specifying

UNIANOVA 1603

the keyword EXCLUDE on the INTERCEPT subcommand. Sums of squares are calculated
and hypothesis tests are performed using type-specific estimable functions. Parameters are
estimated using the normal equation and a generalized inverse of the SSCP matrix.

Subcommand Order

• The variable list must be specified first.

• Subcommands can be used in any order.

Syntax Rules

• For many analyses, the UNIANOVA variable list and the DESIGN subcommand are the only
specifications needed.

• If you do not enter a DESIGN subcommand, UNIANOVA will use a full factorial model, with
main effects of covariates, if any.

• Minimum syntax—at least one dependent variable must be specified, and at least one of
the following must be specified: INTERCEPT, a between-subjects factor, or a covariate.
The design contains the intercept by default.

• If more than one DESIGN subcommand is specified, only the last one is in effect.

• Dependent variables and covariates must be numeric, but factors can be numeric or string
variables.

• If a string variable is specified as a factor, only the first eight characters of each value are
used in distinguishing among values.

• If more than one MISSING subcommand is specified, only the last one is in effect.

• The following words are reserved as keywords or internal commands in the UNIANOVA
procedure:

INTERCEPT, BY, WITH, ALL, OVERALL, WITHIN

Variable names that duplicate these words should be changed before you run UNIANOVA.

Limitations

• Any number of factors can be specified, but if the number of between-subjects factors
plus the number of split variables exceeds 18, the Descriptive Statistics table is not printed
even when you request it.

• Memory requirements depend primarily on the number of cells in the design. For the
default full factorial model, this equals the product of the number of levels or categories
in each factor.

1604 UNIANOVA

Example

UNIANOVA YIELD BY SEED FERT WITH RAINFALL
 /PRINT=DESCRIPTIVE PARAMETER
 /DESIGN.

• YIELD is the dependent variable; SEED and FERT are factors; RAINFALL is a covariate.

• The PRINT subcommand requests the descriptive statistics for the dependent variable for
each cell and the parameter estimates, in addition to the default tables Between-Subjects
Factors and Univariate Tests.

• The DESIGN subcommand requests the default design, a full factorial model with a
covariate. This subcommand could have been omitted or could have been specified in full as

/DESIGN = INTERCEPT RAINFALL, SEED, FERT, SEED BY FERT.

UNIANOVA Variable List

The variable list specifies the dependent variable, the factors, and the covariates in the model.

• The dependent variable must be the first specification on UNIANOVA.

• The names of the factors follow the dependent variable. Use the keyword BY to separate
the factors from the dependent variable.

• Enter the covariates, if any, following the factors. Use the keyword WITH to separate
covariates from factors (if any) and the dependent variable.

Example
UNIANOVA DEPENDNT BY FACTOR1 FACTOR2, FACTOR3.

• In this example, three factors are specified.

• A default full factorial model is used for the analysis.

Example
UNIANOVA Y BY A WITH X
 /DESIGN.

• In this example, the DESIGN subcommand requests the default design, which includes the
intercept term, the covariate X, and the factor A.

RANDOM Subcommand

RANDOM allows you to specify which effects in your design are random. When the RANDOM
subcommand is used, a table of expected mean squares for all effects in the design is displayed,
and an appropriate error term for testing each effect is calculated and used automatically.

• Random always implies a univariate mixed-model analysis.

• If you specify an effect on RANDOM, higher-order effects containing the specified effect
(excluding any effects containing covariates) are automatically treated as random effects.

UNIANOVA 1605

• The keyword INTERCEPT and effects containing covariates are not allowed on this
subcommand.

• When the RANDOM subcommand is used, the appropriate error terms for the hypothesis
testing of all effects in the model are automatically computed and used.

• More than one RANDOM subcommand is allowed. The specifications are accumulated.

Example
UNIANOVA DEP BY A B
 /RANDOM = B
 /DESIGN = A,B, A*B.

• In the example, effects B and A*B are considered as random effects. Notice that if only
effect B is specified in the RANDOM subcommand, A*B is automatically considered as a
random effect.

• The hypothesis testing for each effect (A, B, and A*B) in the design will be carried out
using the appropriate error term, which is calculated automatically.

REGWGT Subcommand

The only specification on REGWGT is the name of the variable containing the weights to be
used in estimating a weighted least-squares model.

• Specify a numeric weight variable name following the REGWGT subcommand. Only
observations with positive values in the weight variable will be used in the analysis.

• If more than one REGWGT subcommand is specified, only the last one is in effect.

Example
UNIANOVA OUTCOME BY TREATMNT
 /REGWGT WT.

• The procedure performs a weighted least-squares analysis. The variable WT is used as the
weight variable.

METHOD Subcommand

METHOD controls the computational aspects of the UNIANOVA analysis. You can specify one
of four different methods for partitioning the sums of squares. If more than one METHOD
subcommand is specified, only the last one is in effect.

SSTYPE(1) Type I sum-of-squares method. The Type I sum-of-squares method is also
known as the hierarchical decomposition of the sum-of-squares method. Each
term is adjusted only for the terms that precede it on the DESIGN subcommand.
Under a balanced design, it is an orthogonal decomposition, and the sums of
squares in the model add up to the total sum of squares.

SSTYPE(2) Type II sum-of-squares method. This method calculates the sum of squares of
an effect in the model adjusted for all other “appropriate” effects. An

1606 UNIANOVA

appropriate effect is one that corresponds to all effects that do not contain the
effect being examined.

For any two effects F1 and F2 in the model, F1 is said to be contained in F2
under the following three conditions:
• Both effects F1 and F2 have the same covariate, if any.
• F2 consists of more factors than F1.
• All factors in F1 also appear in F2.
The intercept effect is treated as contained in all the pure factor effects.
However, it is not contained in any effect involving a covariate. No effect is
contained in the intercept effect. Thus, for any one effect F of interest, all other
effects in the model can be classified as in one of the following two groups: the
effects that do not contain F or the effects that contain F.

If the model is a main-effects design (that is, only main effects are in the
model), the Type II sum-of-squares method is equivalent to the regression
approach sums of squares. This means that each main effect is adjusted for
every other term in the model.

SSTYPE(3) Type III sum-of-squares method. This is the default. This method calculates
the sum of squares of an effect F in the design as the sum of squares adjusted
for any other effects that do not contain it, and orthogonal to any effects (if
any) that contain it. The Type III sums of squares have one major advantage—
they are invariant with respect to the cell frequencies as long as the general
form of estimability remains constant. Hence, this type of sums of squares is
often used for an unbalanced model with no missing cells. In a factorial design
with no missing cells, this method is equivalent to the Yates’ weighted squares
of means technique, and it also coincides with the overparameterized -
restricted model.

SSTYPE(4) Type IV sum-of-squares method. This method is designed for a situation in
which there are missing cells. For any effect F in the design, if F is not
contained in any other effect, then Type IV = Type III = Type II. When F is
contained in other effects, then Type IV distributes the contrasts being made
among the parameters in F to all higher-level effects equitably.

Example
UNIANOVA DEP BY A B C
 /METHOD=SSTYPE(3)
 /DESIGN=A, B, C.

• The design is a main-effects model.

• The METHOD subcommand requests that the model be fitted with Type III sums of
squares.

INTERCEPT Subcommand

INTERCEPT controls whether an intercept term is included in the model. If more than one
INTERCEPT subcommand is specified, only the last one is in effect.

Σ

UNIANOVA 1607

INCLUDE Include the intercept term. The intercept (constant) term is included in the
model. This is the default.

EXCLUDE Exclude the intercept term. The intercept term is excluded from the model.
Specification of the keyword INTERCEPT on the DESIGN subcommand
overrides INTERCEPT = EXCLUDE.

MISSING Subcommand

By default, cases with missing values for any of the variables on the UNIANOVA variable list
are excluded from the analysis. The MISSING subcommand allows you to include cases with
user-missing values.

• If MISSING is not specified, the default is EXCLUDE.

• Pairwise deletion of missing data is not available in UNIANOVA.

• Keywords INCLUDE and EXCLUDE are mutually exclusive.

• If more than one MISSING subcommand is specified, only the last one is in effect.

EXCLUDE Exclude both user-missing and system-missing values. This is the default
when MISSING is not specified.

INCLUDE User-missing values are treated as valid. System-missing values cannot be
included in the analysis.

CRITERIA Subcommand

CRITERIA controls the statistical criteria used to build the models.

• More than one CRITERIA subcommand is allowed. The specifications are accumulated.
Conflicts across CRITERIA subcommands are resolved using the conflicting specification
given on the last CRITERIA subcommand.

• The keyword must be followed by a positive number in parentheses.

EPS(n) The tolerance level in redundancy detection. This value is used for redun-
dancy checking in the design matrix. The default value is 1E–8.

ALPHA(n) The alpha level. This keyword has two functions. First, it gives the alpha level
at which the power is calculated for the F test. Once the noncentrality param-
eter for the alternative hypothesis is estimated from the data, then the power is
the probability that the test statistic is greater than the critical value under the
alternative hypothesis. The second function of alpha is to specify the level of
the confidence interval. If the alpha level specified is n, the value

 indicates the level of confidence for all individual and simulta-
neous confidence intervals generated for the specified model. The value of n
must be between 0 and 1, exclusive. The default value of alpha is 0.05. This
means that the default power calculation is at the 0.05 level, and the default
level of the confidence intervals is 95%, since .

1 n–() 100×

1 0.05–() 100× 95=

1608 UNIANOVA

PRINT Subcommand

PRINT controls the display of optional output.

• Some PRINT output applies to the entire UNIANOVA procedure and is displayed only once.

• Additional output can be obtained on the EMMEANS, PLOT, and SAVE subcommands.

• Some optional output may greatly increase the processing time. Request only the output
you want to see.

• If no PRINT command is specified, default output for a univariate analysis includes a
factor information table and a Univariate Tests table (ANOVA) for all effects in the model.

• If more than one PRINT subcommand is specified, only the last one is in effect.

The following keywords are available for UNIANOVA univariate analyses.

DESCRIPTIVES Basic information about each cell in the design. Observed means,
standard deviations, and counts for the dependent variable in all cells.
The cells are constructed from the highest-order crossing of the
between-subjects factors. If the number of between-subjects factors
plus the number of split variables exceeds 18, the Descriptive Statis-
tics table is not printed.

HOMOGENEITY Tests of homogeneity of variance. Levene’s test for equality of vari-
ances for the dependent variable across all level combinations of the
between-subjects factors. If there are no between-subjects factors, this
keyword is not valid.

PARAMETER Parameter estimates. Parameter estimates, standard errors, t tests, and
confidence intervals for each test.

OPOWER Observed power. The observed power for each test.

LOF Lack of fit. Lack of fit test which allows you to determine if the current
model adequately accounts for the relationship between the response
variable and the predictors.

ETASQ Partial eta-squared (). This value is an overestimate of the actual
effect size in an F test. It is defined as

where F is the test statistic and dfh and dfe are its degrees of freedom
and degrees of freedom for error. The keyword EFSIZE can be used in
place of ETASQ.

GEF General estimable function table. This table shows the general form
of the estimable functions.

TEST(LMATRIX) Set of contrast coefficients (L) matrices. The transpose of the L matrix
(L’) is displayed. This set always includes one matrix displaying the
estimable function for each between-subjects effect appearing or
implied in the DESIGN subcommand. Also, any L matrices generated
by the LMATRIX or CONTRAST subcommands are displayed.
TEST(ESTIMABLE) can be used in place of TEST(LMATRIX).

η2

partial eta-squared dfh F×
dfh F× dfe+
--------------------------------=

UNIANOVA 1609

Example
UNIANOVA DEP BY A B WITH COV
 /PRINT=DESCRIPTIVE, TEST(LMATRIX), PARAMETER
 /DESIGN.

• Since the design in the DESIGN subcommand is not specified, the default design is used. In
this case, the design includes the intercept term, the covariate COV, and the full factorial
terms of A and B, which are A, B, and A*B.

• For each combination of levels of A and B, SPSS displays the descriptive statistics of DEP.

• The set of L matrices that generates the sums of squares for testing each effect in the
design is displayed.

• The parameter estimates, their standard errors, t tests, confidence intervals, and the
observed power for each test are displayed.

PLOT Subcommand

PLOT provides a variety of plots useful in checking the assumptions needed in the analysis.
The PLOT subcommand can be specified more than once. All of the plots requested on each
PLOT subcommand are produced.

Use the following keywords on the PLOT subcommand to request plots:

SPREADLEVEL Spread-versus-level plots. Plots of observed cell means versus standard
deviations, and versus variances.

RESIDUALS Observed by predicted by standardized residuals plot. A plot is produced for
each dependent variable. In a univariate analysis, a plot is produced for the
single dependent variable.

PROFILE Line plots of dependent variable means for one-way, two-way, or three-way
crossed factors. The PROFILE keyword must be followed by parentheses
containing a list of one or more factor combinations. All factors specified
(either individual or crossed) must be made up of only valid factors on the
factor list. Factor combinations on the PROFILE keyword may use an asterisk
(*) or the keyword BY to specify crossed factors. A factor cannot occur in a
single factor combination more than once.

The order of factors in a factor combination is important, and there is no
restriction on the order of factors. If a single factor is specified after the
PROFILE keyword, a line plot of estimated means at each level of the factor
is produced. If a two-way crossed factor combination is specified, the output
includes a multiple-line plot of estimated means at each level of the first spec-
ified factor, with a separate line drawn for each level of the second specified
factor. If a three-way crossed factor combination is specified, the output
includes multiple-line plots of estimated means at each level of the first
specified factor, with separate lines for each level of the second factor, and
separate plots for each level of the third factor.

1610 UNIANOVA

Example
UNIANOVA DEP BY A B
 /PLOT = SPREADLEVEL PROFILE(A A*B A*B*C)
 /DESIGN.

Assume each of the factors A, B, and C has three levels.

• Spread-versus-level plots are produced showing observed cell means versus standard
deviations and observed cell means versus variances.

• Five profile plots are produced. For factor A, a line plot of estimated means at each level
of A is produced (one plot). For the two-way crossed factor combination A*B, a multiple-
line plot of estimated means at each level of A, with a separate line for each level of B, is
produced (one plot). For the three-way crossed factor combination A*B*C, a multiple-line
plot of estimated means at each level of A, with a separate line for each level of B, is
produced for each of the three levels of C (three plots).

TEST Subcommand

The TEST subcommand allows you to test a hypothesis term against a specified error term.

• TEST is valid only for univariate analyses. Multiple TEST subcommands are allowed,
each executed independently.

• You must specify both the hypothesis term and the error term. There is no default.

• The hypothesis term is specified before the keyword VS. It must be a valid effect specified
or implied on the DESIGN subcommand.

• The error term is specified after the keyword VS. You can specify either a linear combi-
nation or a value. The linear combination of effects takes the general form:
coefficient*effect +/– coefficient*effect ...

• All effects in the linear combination must be specified or implied on the DESIGN subcom-
mand. Effects specified or implied on DESIGN but not listed after VS are assumed to have
a coefficient of 0.

• Duplicate effects are allowed. UNIANOVA adds coefficients associated with the same
effect before performing the text. For example, the linear combination 5*A–0.9*B–A
will be combined to 4*A–0.9B.

• A coefficient can be specified as a fraction with a positive denominator—for example,
1/3 or –1/3, but 1/–3 is invalid.

• If you specify a value for the error term, you must specify the degrees of freedom after
the keyword DF. The degrees of freedom must be a positive real number. DF and the
degrees of freedom are optional for a linear combination.

Example
UNIANOVA DEP BY A B
 /TEST = A VS B + A*B
 /DESIGN = A, B, A*B.

• A is tested against the pooled effect of B + A*B.

UNIANOVA 1611

LMATRIX Subcommand

The LMATRIX subcommand allows you to customize your hypotheses tests by specifying the
L matrix (contrast coefficients matrix) in the general form of the linear hypothesis LB = K,
where K = 0 if it is not specified on the KMATRIX subcommand. The vector B is the parameter
vector in the linear model.

• The basic format for the LMATRIX subcommand is an optional label in quotation marks,
an effect name or the keyword ALL, and a list of real numbers. There can be multiple effect
names (or the keyword ALL) and number lists.

• The optional label is a string with a maximum length of 255 characters. Only one label
can be specified.

• Only valid effects appearing or implied on the DESIGN subcommand can be specified on
the LMATRIX subcommand.

• The length of the list of real numbers must be equal to the number of parameters
(including the redundant ones) corresponding to that effect. For example, if the effect A*B
takes up six columns in the design matrix, then the list after A*B must contain exactly six
numbers.

• A number can be specified as a fraction with a positive denominator—for example, 1/3
or –1/3, but 1/–3 is invalid.

• A semicolon (;) indicates the end of a row in the L matrix.

• When ALL is specified, the length of the list that follows ALL is equal to the total number
of parameters (including the redundant ones) in the model.

• Effects appearing or implied on the DESIGN subcommand but not specified here are
assumed to have entries of 0 in the corresponding columns of the L matrix.

• Multiple LMATRIX subcommands are allowed. Each is treated independently.

Example
UNIANOVA DEP BY A B
 /LMATRIX = “B1 vs B2 at A1”
 B 1 -1 0 A*B 1 -1 0 0 0 0 0 0 0
 /LMATRIX = “Effect A”
 A 1 0 -1
 A*B 1/3 1/3 1/3
 0 0 0
 -1/3 -1/3 -1/3;
 A 0 1 -1
 A*B 0 0 0
 1/3 1/3 1/3
 -1/3 -1/3 -1/3
 /LMATRIX = “B1 vs B2 at A2”
 ALL 0
 0 0 0
 1 -1 0
 0 0 0 1 -1 0 0 0 0
 /DESIGN = A, B, A*B.

Assume that factors A and B each have three levels. There are three LMATRIX subcommands;
each is treated independently.

1612 UNIANOVA

• B1 versus B2 at A1. In the first LMATRIX subcommand, the difference is tested between
levels 1 and 2 of effect B when effect A is fixed at level 1. Since there are three levels each
in effects A and B, the interaction effect A*B takes up nine columns in the design matrix.

• Effect A. In the second LMATRIX subcommand, effect A is tested. Since there are three levels
in effect A, at most two independent contrasts can be formed; thus, there are two rows in
the L matrix, which are separated by a semicolon (;). The first row tests the difference
between levels 1 and 3 of effect A, while the second row tests the difference between levels
2 and 3 of effect A.

• B1 versus B2 at A2. In the last LMATRIX subcommand, the keyword ALL is used. The first
0 corresponds to the intercept effect; the next three zeros correspond to effect A.

KMATRIX Subcommand

The KMATRIX subcommand allows you to customize your hypothesis tests by specifying the
K matrix (contrast results matrix) in the general form of the linear hypothesis LB = K. The
vector B is the parameter vector in the linear model.

• The default K matrix is a zero matrix; that is, LB = 0 is assumed.

• For the KMATRIX subcommand to be valid, at least one of the following subcommands
must be specified: the LMATRIX subcommand or the INTERCEPT = INCLUDE
subcommand.

• If KMATRIX is specified but LMATRIX is not specified, the LMATRIX is assumed to take the
row vector corresponding to the intercept in the estimable function, provided the subcom-
mand INTERCEPT = INCLUDE is specified. In this case, the K matrix can be only a scalar
matrix.

• If KMATRIX and LMATRIX are specified, then the number of rows in the requested K and
L matrices must be equal. If there are multiple LMATRIX subcommands, then all requested
L matrices must have the same number of rows, and K must have the same number of
rows as these L matrices.

• A semicolon (;) can be used to indicate the end of a row in the K matrix.

• If more than one KMATRIX subcommand is specified, only the last one is in effect.

Example
UNIANOVA DEP BY A B
 /LMATRIX = “Effect A”
 A 1 0 -1; A 1 -1 0
 /LMATRIX = “Effect B”
 B 1 0 -1; B 1 -1 0
 /KMATRIX = 0; 0
 /DESIGN = A B.

In this example, assume that factors A and B each have three levels.

• There are two LMATRIX subcommands; both have two rows.

• The first LMATRIX subcommand tests whether the effect of A is 0, while the second
LMATRIX subcommand tests whether the effect of B is 0.

• The KMATRIX subcommand specifies that the K matrix also has two rows, each with value 0.

UNIANOVA 1613

CONTRAST Subcommand

CONTRAST specifies the type of contrast desired among the levels of a factor. For a factor with
k levels or values, the contrast type determines the meaning of its degrees of freedom.

• Specify the factor name in parentheses following the subcommand CONTRAST.

• You can specify only one factor per CONTRAST subcommand, but you can enter multiple
CONTRAST subcommands.

• After closing the parentheses, enter an equals sign followed by one of the contrast keywords.

• This subcommand creates an L matrix such that the columns corresponding to the factor
match the contrast given. The other columns are adjusted so that the L matrix is estimable.

The following contrast types are available:

DEVIATION Deviations from the grand mean. This is the default for between-subjects
factors. Each level of the factor except one is compared to the grand mean. One
category (by default, the last) must be omitted so that the effects will be inde-
pendent of one another. To omit a category other than the last, specify the
number of the omitted category (which is not necessarily the same as its value)
in parentheses after the keyword DEVIATION. For example,

UNIANOVA Y BY B
 /CONTRAST(B)=DEVIATION(1).

Suppose factor B has three levels, with values 2, 4, and 6. The specified
contrast omits the first category, in which B has the value 2. Deviation contrasts
are not orthogonal.

POLYNOMIAL Polynomial contrasts. This is the default for within-subjects factors. The
first degree of freedom contains the linear effect across the levels of the
factor, the second contains the quadratic effect, and so on. In a balanced
design, polynomial contrasts are orthogonal. By default, the levels are
assumed to be equally spaced; you can specify unequal spacing by entering
a metric consisting of one integer for each level of the factor in parentheses
after the keyword POLYNOMIAL. (All metrics specified cannot be equal;
thus, (1, 1, . . . 1) is not valid.) For example,

UNIANOVA RESPONSE BY STIMULUS
 /CONTRAST(STIMULUS) = POLYNOMIAL(1,2,4).

Suppose that factor STIMULUS has three levels. The specified contrast indi-
cates that the three levels of STIMULUS are actually in the proportion 1:2:4.
The default metric is always (1, 2, . . . k), where k levels are involved. Only the
relative differences between the terms of the metric matter; (1, 2, 4) is the same
metric as (2, 3, 5) or (20, 30, 50) because, in each instance, the difference
between the second and third numbers is twice the difference between the first
and second.

DIFFERENCE Difference or reverse Helmert contrasts. Each level of the factor except the
first is compared to the mean of the previous levels. In a balanced design,
difference contrasts are orthogonal.

k 1–

1614 UNIANOVA

HELMERT Helmert contrasts. Each level of the factor except the last is compared to the
mean of subsequent levels. In a balanced design, Helmert contrasts are
orthogonal.

SIMPLE Each level of the factor except the last is compared to the last level. To use a
category other than the last as the omitted reference category, specify its
number (which is not necessarily the same as its value) in parentheses
following the keyword SIMPLE. For example,

UNIANOVA Y BY B
 /CONTRAST(B)=SIMPLE(1).

Suppose that factor B has three levels with values 2, 4, and 6. The specified
contrast compares the other levels to the first level of B, in which B has the
value 2. Simple contrasts are not orthogonal.

REPEATED Comparison of adjacent levels. Each level of the factor except the first is
compared to the previous level. Repeated contrasts are not orthogonal.

SPECIAL A user-defined contrast. Values specified after this keyword are stored in a
matrix in column major order. For example, if factor A has three levels, then
CONTRAST(A)= SPECIAL(1 1 1 1 -1 0 0 1 -1) produces the following contrast
matrix:

1 1 0
1 –1 1
1 0 –1

Orthogonal contrasts are particularly useful. In a balanced design, contrasts are orthog-
onal if the sum of the coefficients in each contrast row is 0 and if, for any pair of contrast
rows, the products of corresponding coefficients sum to 0. DIFFERENCE, HELMERT, and
POLYNOMIAL contrasts always meet these criteria in balanced designs.

Example
UNIANOVA DEP BY FAC
 /CONTRAST(FAC)=DIFFERENCE
 /DESIGN.

• Suppose that the factor FAC has five categories and therefore four degrees of freedom.

• CONTRAST requests DIFFERENCE contrasts, which compare each level (except the first)
with the mean of the previous levels.

UNIANOVA 1615

POSTHOC Subcommand

POSTHOC allows you to produce multiple comparisons between means of a factor. These
comparisons are usually not planned at the beginning of the study but are suggested by the
data in the course of study.

• Post hoc tests are computed for the dependent variable. The alpha value used in the tests
can be specified by using the keyword ALPHA on the CRITERIA subcommand. The default
alpha value is 0.05. The confidence level for any confidence interval constructed is

. The default confidence level is 95.
• Only between-subjects factors appearing in the factor list are valid in this subcommand.

Individual factors can be specified.

• You can specify one or more effects to be tested. Only fixed main effects appearing or
implied on the DESIGN subcommand are valid test effects.

• Optionally, you can specify an effect defining the error term following the keyword VS
after the test specification. The error effect can be any single effect in the design that is
not the intercept or a main effect named on a POSTHOC subcommand.

• A variety of multiple comparison tests are available. Some tests are designed for detecting
homogeneity subsets among the groups of means, some are designed for pairwise
comparisons among all means, and some can be used for both purposes.

• For tests that are used for detecting homogeneity subsets of means, non-empty group
means are sorted in ascending order. Means that are not significantly different are included
together to form a homogeneity subset. The significance for each homogeneity subset of
means is displayed. In a case where the numbers of valid cases are not equal in all groups,
for most post hoc tests, the harmonic mean of the group sizes is used as the sample size in
the calculation. For QREGW or FREGW, individual sample sizes are used.

• For tests that are used for pairwise comparisons, the display includes the difference between
each pair of compared means, the confidence interval for the difference, and the signifi-
cance. The sample sizes of the two groups being compared are used in the calculation.

• Output for tests specified on the POSTHOC subcommand are available according to their
statistical purposes. The following table illustrates the statistical purpose of the post hoc
tests:

1 α–() 100×

1616 UNIANOVA

• Tests that are designed for homogeneity subset detection display the detected homogeneity
subsets and their corresponding significances.

• Tests that are designed for both homogeneity subset detection and pairwise comparisons
display both kinds of output.

• For the DUNNETT, DUNNETTL, and DUNNETTR keywords, only individual factors can be
specified.

• The default reference category for DUNNETT, DUNNETTL, and DUNNETTR is the last
category. An integer greater than 0 within parentheses can be used to specify a different
reference category. For example, POSTHOC = A (DUNNETT(2)) requests a DUNNETT test
for factor A, using the second level of A as the reference category.

• The keywords DUNCAN, DUNNETT, DUNNETTL, and DUNNETTR must be spelled out in
full; using the first three characters alone is not sufficient.

• If the REGWT subcommand is specified, weighted means are used in performing post
hoc tests.

Post Hoc Tests Statistical Purpose

Keyword Homogeneity Subsets
Detection

Pairwise Comparison and
Confidence Interval

LSD Yes
SIDAK Yes
BONFERRONI Yes
GH Yes
T2 Yes
T3 Yes
C Yes
DUNNETT Yes*

* Only C.I.’s for differences between test group means and control group means
are given.

DUNNETTL Yes*
DUNNETTR Yes*
SNK Yes
BTUKEY Yes
DUNCAN Yes
QREGW Yes
FREGW Yes
WALLER Yes†

† No significance for Waller test is given.

TUKEY Yes Yes
SCHEFFE Yes Yes
 GT2 Yes Yes
 GABRIEL Yes Yes

UNIANOVA 1617

• Multiple POSTHOC subcommands are allowed. Each specification is executed indepen-
dently so that you can test different effects against different error terms.

SNK Student-Newman-Keuls procedure based on the Studentized range
test.

TUKEY Tukey’s honestly significant difference. This test uses the Studentized
range statistic to make all pairwise comparisons between groups.

BTUKEY Tukey’s b. Multiple comparison procedure based on the average of
Studentized range tests.

DUNCAN Duncan’s multiple comparison procedure based on the Studentized
range test.

SCHEFFE Scheffé’s multiple comparison t test.

DUNNETT(refcat) Dunnett’s two-tailed t test. Each level of the factor is compared to a
reference category. A reference category can be specified in paren-
theses. The default reference category is the last category. This keyword
must be spelled out in full.

DUNNETTL(refcat) Dunnett’s one-tailed t test. This test indicates whether the mean at any
level (except the reference category) of the factor is smaller than that
of the reference category. A reference category can be specified in
parentheses. The default reference category is the last category. This
keyword must be spelled out in full.

DUNNETTR(refcat) Dunnett’s one-tailed t test. This test indicates whether the mean at any
level (except the reference category) of the factor is larger than that of
the reference category. A reference category can be specified in paren-
theses. The default reference category is the last category. This
keyword must be spelled out in full.

BONFERRONI Bonferroni t test. This test is based on Student’s t statistic and adjusts
the observed significance level for the fact that multiple comparisons
are made.

LSD Least significant difference t test. Equivalent to multiple t tests between
all pairs of groups. This test does not control the overall probability of
rejecting the hypotheses that some pairs of means are different, while
in fact they are equal.

SIDAK Sidak t test. This test provides tighter bounds than the Bonferroni test.

GT2 Hochberg’s GT2. Pairwise comparisons test based on the Studentized
maximum modulus test. Unless the cell sizes are extremely unbal-
anced, this test is fairly robust even for unequal variances.

GABRIEL Gabriel’s pairwise comparisons test based on the Studentized
maximum modulus test.

FREGW Ryan-Einot-Gabriel-Welsch’s multiple stepdown procedure based on
an F test.

1618 UNIANOVA

QREGW Ryan-Einot-Gabriel-Welsch’s multiple stepdown procedure based on
the Studentized range test.

T2 Tamhane’s T2. Tamhane’s pairwise comparisons test based on a t test.
This test can be applied in situations where the variances are unequal.

T3 Dunnett’s T3. Pairwise comparisons test based on the Studentized
maximum modulus. This test is appropriate when the variances are
unequal.

GH Games and Howell’s pairwise comparisons test based on the Studen-
tized range test. This test can be applied in situations where the vari-
ances are unequal.

C Dunnett’s C. Pairwise comparisons based on the weighted average of
Studentized ranges. This test can be applied in situations where the
variances are unequal.

WALLER(kratio) Waller-Duncan t test. This test uses a Bayesian approach. It is
restricted to cases with equal sample sizes. For cases with unequal
sample sizes, the harmonic mean of the sample size is used. The k-ratio
is the Type 1/Type 2 error seriousness ratio. The default value is 100.
You can specify an integer greater than 1 within parentheses.

EMMEANS Subcommand

EMMEANS displays estimated marginal means of the dependent variable in the cells (with
covariates held at their overall mean value) and their standard errors for the specified factors.
Note that these are predicted, not observed, means. The estimated marginal means are calcu-
lated using a modified definition by Searle, Speed, and Milliken (1980).

• TABLES, followed by an option in parentheses, is required. COMPARE is optional; if spec-
ified, it must follow TABLES.

• Multiple EMMEANS subcommands are allowed. Each is treated independently.

• If identical EMMEANS subcommands are specified, only the last identical subcommand is
in effect. EMMEANS subcommands that are redundant but not identical (for example,
crossed factor combinations such as A*B and B*A) are all processed.

TABLES(option) Table specification. Valid options are the keyword OVERALL, factors
appearing on the factor list, and crossed factors constructed of factors
on the factor list. Crossed factors can be specified using an asterisk (*)
or the keyword BY. All factors in a crossed factor specification must
be unique.

If OVERALL is specified, the estimated marginal means of the depen-
dent variable are displayed, collapsing over between-subjects factors.

If a between-subjects factor, or a crossing of between-subjects factors,
is specified on the TABLES keyword, UNIANOVA collapses over any
other between-subjects factors before computing the estimated
marginal means for the dependent variable.

UNIANOVA 1619

COMPARE ADJ(method) Pairwise comparisons of the dependent variable. Each level of the
factor specified in the TABLES command is compared with each other
level for all combinations of other factors. Valid options for the confi-
dence interval adjustment method are the keywords LSD, BONFER-
RONI, and SIDAK. The confidence intervals and significance values are
adjusted to account for multiple comparisons.

If OVERALL is specified on TABLES, COMPARE is invalid.

Example
UNIANOVA DEP BY A B
 /EMMEANS = TABLES(A*B) COMPARE(A) ADJ(LSD)
 /DESIGN.

• The output of this analysis includes a pairwise comparisons table for the dependent
variable DEP.

• Assume that A has three levels and B has two levels. The first level of A is compared with
the second and third levels, the second level with the first and third levels, and the third
level with the first and second levels. The pairwise comparison is repeated for the two
levels of B.

SAVE Subcommand

Use SAVE to add one or more residual or fit values to the working data file.

• Specify one or more temporary variables, each followed by an optional new name in
parentheses.

• WPRED and WRESID can be saved only if REGWGT has been specified.

• Specifying a temporary variable on this subcommand results in a variable being added to
the active data file for each dependent variable.

• You can specify variable names for the temporary variables. These names must be
unique, valid variable names.

• If new names are not specified, UNIANOVA generates a rootname using a shortened form
of the temporary variable name with a suffix.

• If more than one SAVE subcommand is specified, only the last one is in effect.

PRED Unstandardized predicted values.

WPRED Weighted unstandardized predicted values. Available only if REGWGT has
been specified.

RESID Unstandardized residuals.

WRESID Weighted unstandardized residuals. Available only if REGWGT has been
specified.

DRESID Deleted residuals.

ZRESID Standardized residuals.

1620 UNIANOVA

SRESID Studentized residuals.

SEPRED Standard errors of predicted value.

COOK Cook’s distances.

LEVER Uncentered leverage values.

OUTFILE Subcommand

The OUTFILE subcommand writes an SPSS-format data file that can be used in other proce-
dures.

• You must specify a keyword on OUTFILE. There is no default.

• You must specify a filename in parentheses after a keyword. A filename with a path must
be enclosed within quotation marks. The asterisk (*) is not allowed.

• If you specify more than one keyword, a different filename is required for each.

• If more than one OUTFILE subcommand is specified, only the last one is in effect.
• For COVB or CORB, the output will contain, in addition to the covariance or correlation

matrix, three rows for each dependent variable: a row of parameter estimates, a row of
residual degrees of freedom, and a row of significance values for the t statistics corre-
sponding to the parameter estimates. All statistics are displayed separately by split.

COVB (filename) Writes the parameter covariance matrix.

CORB (filename) Writes the parameter correlation matrix.

EFFECT (filename) Writes the statistics from the between-subjects ANOVA table.

DESIGN (filename) Writes the design matrix. The number of rows equals the number of
cases, and the number of columns equals the number of parameters.
The variable names are DES_1, DES_2, ..., DES_p, where p is the
number of the parameters.

DESIGN Subcommand

DESIGN specifies the effects included in a specific model. The cells in a design are defined
by all of the possible combinations of levels of the factors in that design. The number of cells
equals the product of the number of levels of all the factors. A design is balanced if each cell
contains the same number of cases. UNIANOVA can analyze both balanced and unbalanced
designs.

• Specify a list of terms to be included in the model, separated by spaces or commas.

• The default design, if the DESIGN subcommand is omitted or is specified by itself, is a design
consisting of the following terms in order: the intercept term (if INTERCEPT=INCLUDE is
specified), next the covariates given in the covariate list, and then the full factorial model
defined by all factors on the factor list and excluding the intercept.

• To include a term for the main effect of a factor, enter the name of the factor on the
DESIGN subcommand.

UNIANOVA 1621

• To include the intercept term in the design, use the keyword INTERCEPT on the DESIGN
subcommand. If INTERCEPT is specified on the DESIGN subcommand, the subcommand
INTERCEPT=EXCLUDE is overridden.

• To include a term for an interaction between factors, use the keyword BY or the asterisk
(*) to join the factors involved in the interaction. For example, A*B means a two-way
interaction effect of A and B, where A and B are factors. A*A is not allowed because factors
inside an interaction effect must be distinct.

• To include a term for nesting one effect within another, use the keyword WITHIN or a pair
of parentheses on the DESIGN subcommand. For example, A(B) means that A is nested
within B. The expression A(B) is equivalent to the expression A WITHIN B. When more than
one pair of parentheses is present, each pair of parentheses must be enclosed or nested
within another pair of parentheses. Thus, A(B)(C) is not valid.

• Multiple nesting is allowed. For example, A(B(C)) means that B is nested within C, and A
is nested within B(C).

• Interactions between nested effects are not valid. For example, neither A(C)*B(C) nor
A(C)*B(D) is valid.

• To include a covariate term in the design, enter the name of the covariate on the DESIGN
subcommand.

• Covariates can be connected, but not nested, through the * operator to form another cova-
riate effect. Therefore, interactions among covariates such as X1*X1 and X1*X2 are valid,
but not X1(X2). Using covariate effects such as X1*X1, X1*X1*X1, X1*X2, and X1*X1*X2*X2
makes fitting a polynomial regression model easy in UNIANOVA.

• Factor and covariate effects can be connected only by the * operator. Suppose A and B are
factors, and X1 and X2 are covariates. Examples of valid factor-by-covariate interaction
effects are A*X1, A*B*X1, X1*A(B), A*X1*X1, and B*X1*X2.

• If more than one DESIGN subcommand is specified, only the last one is in effect.

Example
UNIANOVA Y BY A B C WITH X
 /DESIGN A B(A) X*A.

• In this example, the design consists of a main effect A, a nested effect B within A, and an
interaction effect of a covariate X with a factor A.

1622

UPDATE

UPDATE FILE={master file}
 {* }

 [/RENAME=(old varnames=new varnames)...]

 [/IN=varname]

 /FILE={transaction file1}
 {* }

 [/FILE=transaction file2]

 /BY key variables

 [/MAP]

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

**Default if the subcommand is omitted.

Example
UPDATE FILE=MAILIST /FILE=NEWLIST /BY=ID.

Overview

UPDATE replaces values in a master file with updated values recorded in one or more files
called transaction files. Cases in the master file and transaction file are matched according
to a key variable.

The master file and the transaction files must be SPSS-format data files created with the
SAVE or XSAVE commands or the working data file. UPDATE replaces values and creates a
new working data file, which replaces the original working file. Use the SAVE or XSAVE
commands to save the updated file on disk as an SPSS-format data file.

UPDATE is designed to update values of existing variables for existing cases. Use MATCH
FILES to add new variables to an SPSS-format data file and ADD FILES to add new cases.

Options

Variable Selection. You can specify which variables from each input file are included in the
new working file using the DROP and KEEP subcommands.

Variable Names. You can rename variables in each input file before combining the files
using the RENAME subcommand. This permits you to combine variables that are the same
but whose names differ in different input files, or to separate variables that are different but
have the same name.

UPDATE 1623

Variable Flag. You can create a variable that indicates whether a case came from a particular
input file using IN. You can use the FIRST or LAST subcommand to create a variable that flags
the first or last case of a group of cases with the same value for the key variable.

Variable Map. You can request a map showing all variables in the new working file, their
order, and the input files from which they came using the MAP subcommand.

Basic Specification

The basic specification is two or more FILE subcommands and a BY subcommand.

• The first FILE subcommand must specify the master file. All other FILE subcommands
identify the transaction files.

• BY specifies the key variables.

• All files must be sorted in ascending order by the key variables.

• By default, all variables from all input files are included in the new working file.

Subcommand Order

• The master file must be specified first.

• RENAME and IN must immediately follow the FILE subcommand to which they apply.

• BY must follow the FILE subcommands and any associated RENAME and IN subcommands.
• MAP, DROP, and KEEP must be specified after all FILE and RENAME subcommands.

Syntax Rules

• BY can be specified only once. However, multiple variables can be specified on BY. All
files must be sorted in ascending order by the key variables named on BY.

• The master file cannot contain duplicate values for the key variables.

• RENAME can be repeated after each FILE subcommand and applies only to variables in the
file named on the immediately preceding FILE subcommand.

• MAP can be repeated as often as needed.

Operations

• UPDATE reads all input files named on FILE and builds a new working data file that
replaces any working file created earlier in the session. The new working data file is built
when the data are read by one of the procedure commands or the EXECUTE, SAVE, or
SORT CASES command.

• The new working data file contains complete dictionary information from the input files,
including variable names, labels, print and write formats, and missing-value indicators.
The new working data file also contains the documents from each input file, unless the
DROP DOCUMENTS command is used.

1624 UPDATE

• UPDATE copies all variables in order from the master file, then all variables in order from
the first transaction file, then all variables in order from the second transaction file, and
so on.

• Cases are updated when they are matched on the BY variable(s). If the master and trans-
action files contain common variables for matched cases, the values for those variables
are taken from the transaction file, provided the values are not missing or blanks. Missing
or blank values in the transaction files are not used to update values in the master file.

• When UPDATE encounters duplicate keys within a transaction file, it applies each trans-
action sequentially to that case to produce one case per key value in the resulting file. If
more than one transaction file is specified, the value for a variable comes from the last
transaction file with a nonmissing value for that variable.

• Variables that are in the transaction files but not in the master file are added to the master
file. Cases that do not contain those variables are assigned the system-missing value (for
numerics) or blanks (for strings).

• Cases that are in the transaction files but not in the master file are added to the master file
and are interleaved according to their values for the key variables.

• If the working data file is named as an input file, any N and SAMPLE commands that have
been specified are applied to the working data file before files are combined.

• The TEMPORARY command cannot be in effect if the working data file is used as an input
file.

Limitations

• Maximum 1 BY subcommand. However, BY can specify multiple variables.

Example

UPDATE FILE=MAILIST /FILE=NEWLIST /BY=ID.

• MAILIST is specified as the master file. NEWLIST is the transaction file. ID is the key variable.

• Both MAILIST and NEWLIST must be sorted in ascending order of ID.
• If NEWLIST has cases or nonmissing variables that are not in MAILIST, the new cases or

variables are added to the resulting file.

Example

SORT CASES BY LOCATN DEPT.
UPDATE FILE=MASTER /FILE=* /BY LOCATN DEPT

/KEEP AVGHOUR AVGRAISE LOCATN DEPT SEX HOURLY RAISE /MAP.
SAVE OUTFILE=PRSNNL.

• SORT CASES sorts the working data file in ascending order of the variables to be named
as key variables on UPDATE.

• UPDATE specifies MASTER as the master file and the sorted working data file as the trans-
action file. File MASTER must also be sorted by LOCATN and DEPT.

UPDATE 1625

• BY specifies the key variables LOCATN and DEPT.

• KEEP specifies the subset and order of variables to be retained in the resulting file.

• MAP provides a list of the variables in the resulting file and the two input files.

• SAVE saves the resulting file as an SPSS-format data file.

FILE Subcommand

FILE identifies each input file. At least two FILE subcommands are required on UPDATE: one
specifies the master file and the other a transaction file. A separate FILE subcommand must
be used to specify each transaction file.
• The first FILE subcommand must specify the master file.

• An asterisk on FILE refers to the working data file.

• All files must be sorted in ascending order according to the variables specified on BY.

• The master file cannot contain duplicate values for the key variables. However, transac-
tion files can and often do contain cases with duplicate keys (see “Operations” on p.
1623).

Raw Data Files

To update the master file with cases from a raw data file, use DATA LIST first to define the
raw data file as the working data file. UPDATE can then use the working data file to update
the master file.

Example
DATA LIST FILE=RAWDATA
 ID 1-3 NAME 5-17 (A) ADDRESS 19-28 (A) ZIP 30-34.
SORT CASES BY ID.
UPDATE FILE=MAILIST1 /RENAME=(STREET=ADDRESS) /FILE=* /BY=ID /MAP.
SAVE OUTFILE=MAILIST2.

• DATA LIST defines the variables in the raw data file RAWDATA, which will be used to
update values in the master file.

• SORT CASES sorts the working data file in ascending order of the key variable ID. Cases
in the master file were previously sorted in this manner.

• The first FILE subcommand on UPDATE refers to the master file, MAILIST1. The RENAME
subcommand renames the variable STREET to ADDRESS in file MAILIST1.

• The second FILE subcommand refers to the working data file defined on DATA LIST.

• BY indicates that cases in MAILIST1 and the working data file are to be matched by the key
variable ID.

• MAP requests a map of the resulting file.

• SAVE saves the resulting file as an SPSS-format data file named MAILIST2.

1626 UPDATE

BY Subcommand

BY specifies one or more identification, or key, variables that are used to match cases
between files.

• BY must follow the FILE subcommands and any associated RENAME and IN subcommands.

• BY specifies the names of one or more key variables. The key variables must exist in all
input files and have the same names in all the files. The key variables can be string vari-
ables (long strings are allowed).

• All input files must be sorted in ascending order of the key variables. If necessary, use
SORT CASES before UPDATE.

• Missing values for key variables are handled like any other values.

• The key variables in the master file must identify unique cases. If duplicate cases are
found, the program issues an error and UPDATE is not executed. The system-missing
value is treated as one single value.

RENAME Subcommand

RENAME renames variables on the input files before they are processed by UPDATE.
RENAME must follow the FILE subcommand that contains the variables to be renamed.

• RENAME applies only to the immediately preceding FILE subcommand. To rename vari-
ables from more than one input file, specify a RENAME subcommand after each FILE
subcommand.

• Specifications for RENAME consist of a left parenthesis, a list of old variable names, an
equals sign, a list of new variable names, and a right parenthesis. The two variable lists
must name or imply the same number of variables. If only one variable is renamed, the
parentheses are optional.

• More than one rename specification can be specified on a single RENAME subcommand,
each enclosed in parentheses.

• The TO keyword can be used to refer to consecutive variables in the file and to generate
new variable names (see the TO keyword on p. 23 in Volume I).

• RENAME takes effect immediately. Any KEEP and DROP subcommands entered prior to
a RENAME must use the old names, while KEEP and DROP subcommands entered after a
RENAME must use the new names.

• All specifications within a single set of parentheses take effect simultaneously. For
example, the specification RENAME (A,B = B,A) swaps the names of the two variables.

• Variables cannot be renamed to scratch variables.

• Input SPSS-format data files are not changed on disk; only the copy of the file being
combined is affected.

UPDATE 1627

Example
UPDATE FILE=MASTER /FILE=CLIENTS

/RENAME=(TEL_NO, ID_NO = PHONE, ID)
/BY ID.

• UPDATE updates the master phone list by using current information from file CLIENTS.

• Two variables on CLIENTS are renamed prior to the match. TEL_NO is renamed PHONE
to match the name used for phone numbers in the master file. ID_NO is renamed ID so that
it will have the same name as the identification variable in the master file and can be used
on the BY subcommand.

• The old variable names are listed before the equals sign, and the new variable names are
listed in the same order after the equals sign. The parentheses are required.

• The BY subcommand matches cases according to client ID numbers.

DROP and KEEP Subcommands

DROP and KEEP are used to include a subset of variables in the resulting file. DROP specifies
a set of variables to exclude, and KEEP specifies a set of variables to retain.

• DROP and KEEP do not affect the input files on disk.

• DROP and KEEP must follow all FILE and RENAME subcommands.

• DROP and KEEP must specify one or more variables. If RENAME is used to rename vari-
ables, specify the new names on DROP and KEEP.

• DROP cannot be used with variables created by the IN subcommand.

• Keyword ALL can be specified on KEEP. ALL must be the last specification on KEEP, and
it refers to all variables not previously named on KEEP.

• KEEP can be used to change the order of variables in the resulting file. With KEEP, vari-
ables are kept in the order they are listed on the subcommand. If a variable is named more
than once on KEEP, only the first mention of the variable is in effect; all subsequent refer-
ences to that variable name are ignored.

• Multiple DROP and KEEP subcommands are allowed. Specifying a variable that is not in
the working data file or that has been dropped because of a previous DROP or KEEP
subcommand results in an error and the UPDATE command is not executed.

Example
UPDATE FILE=MAILIST /FILE=NEWLIST /RENAME=(STREET=ADDRESS) /BY ID

/KEEP=NAME ADDRESS CITY STATE ZIP ID.

• KEEP specifies the variables to keep in the result file. The variables are stored in the order
specified on KEEP.

IN Subcommand

IN creates a new variable in the resulting file that indicates whether a case came from the
input file named on the preceding FILE subcommand. IN applies only to the file specified on
the immediately preceding FILE subcommand.

1628 UPDATE

• IN has only one specification, the name of the flag variable.

• The variable created by IN has value 1 for every case that came from the associated input
file and value 0 if the case came from a different input file.

• Variables created by IN are automatically attached to the end of the resulting file and
cannot be dropped.

Example
UPDATE FILE=WEEK10 /FILE=WEEK11 /IN=INWEEK11 /BY=EMPID.

• IN creates the variable INWEEK11, which has the value 1 for all cases in the resulting file
that came from the input file WEEK11 and the value 0 for those cases that were not in file
WEEK11.

MAP Subcommand

MAP produces a list of the variables are in the new working file and the file or files from
which they came. Variables are listed in the order in which they appear in the resulting file.
MAP has no specifications and must be placed after all FILE, RENAME, and IN subcommands.

• Multiple MAP subcommands can be used. Each MAP shows the current status of the
working data file and reflects only the subcommands that precede the MAP subcommand.

• To obtain a map of the resulting file in its final state, specify MAP last.

• If a variable is renamed, its original and new names are listed. Variables created by IN are
not included in the map, since they are automatically attached to the end of the file and
cannot be dropped.

1629

USE

USE [{start date }] [THRU [{end date }]]
 {start case number} {end case number}
 {FIRST } {LAST }

 [ALL]

Example
USE Y 1960.

Overview

USE designates a range of observations to be used with time series procedures.

Basic Specification

The basic specification is either the start of the range, the end of the range, or both. You can
also simply specify keyword THRU or ALL.

• The default start is the first observation in the file, and the default end is the last observation.

• Keyword THRU is required if the end of the range is specified.

• Keyword ALL defines a USE range starting with the first observation and ending with
the last observation in the series. It can be specified to restore processing to the entire
series.

• Keyword THRU by itself is the same as specifying keyword ALL.

Syntax Rules

• The start and end can be specified as either DATE specifications or case (observation)
numbers.

• DATE specifications and case numbers cannot be mixed on a USE command.

• Any observation within the file can be used as the start or end, as long as the starting
observation comes before the end observation.

DATE Specifications

• A DATE specification consists of DATE keywords and values (see DATE). These spec-
ifications must correspond to existing DATE variables.

• If more than one DATE variable exists, the highest-order one must be used in the
specification.

1630 USE

• Values on keyword YEAR must have the same format (2 or 4 digits) as the YEAR spec-
ifications on the DATE command.

Case Specifications

• The case number specification is the sequence number of the case (observation) as it
is read by the program.

Keywords FIRST and LAST

• The start can also be specified with keyword FIRST, and the end with keyword LAST.
These keywords designate the first and last cases in the file, respectively.

• Keywords FIRST and LAST can be used along with either DATE or case specifications.

Operations

• USE is ignored by the utility procedures CREATE and RMV. These procedures process
all the available data.

• The DATE command turns off all existing USE and PREDICT specifications.

• FILTER and USE are mutually exclusive. USE automatically turns off any previous FILTER
command, and FILTER automatically turns off any previous USE command.

• USE remains in effect in a session until it is changed by another USE command or until
a new DATE or FILTER command is issued.

• Any data selection specified on USE is in effect until the next USE command, the next
DATE command, or the end of the session. SPSS-format data files are not affected by
the USE command.

Limitations

• Maximum 1 range (one start and/or one end) can be specified.

Examples

USE ALL.

• This command includes all observations in the file in the USE range.

• This specification is the same as USE THRU or USE FIRST THRU LAST.

USE Y 1960.

USE 1631

• This command selects observations starting with YEAR_ value 1960 through the last
observation in the file. It is equivalent to USE Y 1960 THRU LAST.

USE THRU D 5.

• This command selects all cases from the first case in the file to the last one with a
DAY_ value of 5. It is equivalent to USE FIRST THRU D 5.

1632 USE

USE THRU 5.

• This command selects cases starting with the first case and ending with the fifth case.

USE Y 1955 M 6 THRU Y 1960 M 6.

• This selects cases from June 1955 through June 1960.

USE W 16 D 3 THRU W 48 D 3.

• This example selects cases from day 3 of week 16 through day 3 of week 48.

USE CYCLE 2 OBS 4 THRU CYCLE 2 OBS 17.

• This example selects observations 4 through 17 of the second cycle.

1633

VALUE LABELS

VALUE LABELS varlist value ’label’ value ’label’... [/varlist...]
 [/datevarlist ’value’ ’label’...]

Example
VALUE LABELS JOBGRADE ’P’ ’Parttime Employee’ ’C’ ’Customer Support’.

Overview

VALUE LABELS deletes all existing value labels for the specified variable(s) and assigns new
value labels. ADD VALUE LABELS can be used to add new labels or alter labels for specified
values without deleting other existing labels.

Basic Specification

The basic specification is a variable name and the individual values with their assigned labels.

Syntax Rules

• Labels can be assigned to any previously defined variables except long string variables.

• It is not necessary to enter value labels for all values for a variable.

• Each value label must be enclosed in apostrophes or quotation marks. For short string
variables, the values themselves must also be enclosed in apostrophes or quotation
marks.

• For date format variables (for example, DATE, ADATE), values expressed in date formats
must be enclosed in apostrophes or quotation marks, and values must be expressed in the
same date format as the defined date format for the variable.

• Value labels can contain any characters, including blanks. To enter an apostrophe as part
of a label, enclose the label in quotation marks or enter a double apostrophe.

• Each value label can be up to 60 characters long.

• The same labels can be assigned to the values of different variables by specifying a list
of variable names. For string variables, the variables specified must be of equal length.

• Multiple sets of variable names and value labels can be specified on one VALUE LABELS
command as long as the sets are separated by slashes.

• To continue a label from one command line to the next, specify a plus (+) sign before
the continuation of the label. Each string segment of the label must be enclosed in apos-
trophes or quotation marks. To insert a blank between the strings, the blank must be in-
cluded in the label specification.

1634 VALUE LABELS

• To control line wrapping of labels in pivot tables and charts, insert \n as part of the label
wherever you want a line break. The \n is not displayed in output; it is interpretd as a line
break character. (Note: Labels will always wrap wherever \n appears in the defined label,
even if there is enough space to display the label without wrapping.)

Operations

• Unlike most transformations, VALUE LABELS takes effect as soon as it is encountered in
the command sequence. Thus, special attention should be paid to its position among com-
mands (see “Command Order” on p. 8 in Volume I).

• VALUE LABELS deletes all previously assigned value labels for the specified variables.

• The value labels assigned are stored in the dictionary of the working file and are automat-
ically displayed on the output from many procedures.

• If a specified value is longer than the format of the variable, the program will be unable
to read the full value and may not be able to assign the value label correctly.

• If the value specified for a string variable is shorter than the format of the variable, the
value specification is right-padded without warning.

Example

VALUE LABELS V1 TO V3 1 ’Officials & Managers’
6 ’Service Workers’

/V4 ’N’ ’New Employee’.

• Labels are assigned to the values 1 and 6 for the variables between and including V1 and
V3 in the working data file.

• Following the required slash, a label for value N of V4 is specified. N is a string value and
must be enclosed in apostrophes or quotation marks.

• If labels exist for values 1 and 6 on V1 to V3 and value N on V4, they are changed in the
dictionary of the working file. If labels do not exist for these values, new labels are added
to the dictionary.

• Existing labels for values other than 1 and 6 on V1 to V3 and value N on V4 are deleted.

Example

VALUE LABELS OFFICE88 1 "EMPLOYEE’S OFFICE ASSIGNMENT PRIOR"
+ " TO 1988".

• The label for OFFICE88 is created by combining two strings with the plus sign. The blank
between PRIOR and TO must be included in the first or second string to be included in the
label.

Example

VALUE LABELS=STATE REGION ’U’ "UNKNOWN".

VALUE LABELS 1635

• Label UNKNOWN is assigned to value U for both STATE and REGION.

• STATE and REGION must be string variables of equal length. If STATE and REGION have
unequal lengths, a separate specification must be made for each, as in

VALUE LABELS STATE ’U’ "UNKNOWN" / REGION ’U’ "UNKNOWN".

Example

DATA LIST / CITY 1-8(A) STATE 10-12(A).
VALUE LABELS STATE ’TEX’ "TEXAS" ’TEN’ "TENNESSEE"

’MIN’ "MINNESOTA".
BEGIN DATA
AUSTIN TEX
MEMPHIS TEN
ST. PAUL MIN
END DATA.
FREQUENCIES VARIABLES=STATE.

• The DATA LIST command defines two variables. CITY is eight characters wide and
STATE is three characters. The values are included between the BEGIN DATA and END
DATA commands.

• The VALUE LABELS command assigns labels to three values of variable STATE. Each
value and each label is specified in either apostrophes or quotation marks.

• The format for variable STATE must be at least three characters wide, because the speci-
fied values, TEX, TEN, and MIN, are three characters. If the format for STATE were two
characters, the program would issue a warning. This would occur even though the values
named on VALUE LABELS and the values after BEGIN DATA agree.

Example

VALUE LABELS myvar 1 "A long value label \n that always wraps".
FREQUENCIES myvar.

Figure 1 Using \n to Wrap Value Labels

A Fairly Long Label
That Always Wraps

1 100.0 100.0 100.0
A long value label
that always wraps

Valid
Frequency Percent Valid Percent

Cumulative
Percent

1636

VARCOMP

VARCOMP is available in the Advanced Models option.

VARCOMP dependent variable BY factor list [WITH covariate list]

 /RANDOM = factor [factor ...]

 [/METHOD = {MINQUE({1})**}]
 {0}
 {ML }
 {REML }
 {SSTYPE({3}) }
 {1}

 [/INTERCEPT = {INCLUDE**}]
 {EXCLUDE }

 [/MISSING = {EXCLUDE**}]
 {INCLUDE }

 [/REGWGT = varname]

 [/CRITERIA = [CONVERGE({1.0E-8**})] [EPS({1.0E-8**})] [ITERATE({50**})]
 {n } {n } {n }

 [/PRINT = [EMS] [HISTORY({1**})] [SS]]
 {n }

 [/OUTFILE = [VAREST] [{COVB}] (filename)]
 {CORB}

 [/DESIGN = {[INTERCEPT] [effect effect ...]}]

** Default if subcommand or keyword is omitted.

Example
VARCOMP Y1 BY B C WITH X1 X2
 /RANDOM = C
 /DESIGN.

Overview

The VARCOMP procedure estimates variance components for mixed models. Following the
general linear model approach, VARCOMP uses indicator variable coding to construct a
design matrix and then uses one of the four available methods to estimate the contribution
of each random effect to the variance of the dependent variable.

Options

Regression Weights. You can specify regression weights for the model with the REGWGT
subcommand.

Estimation Methods. You can use one of the four methods available for estimating variance
components using the METHOD subcommand.

VARCOMP 1637

Tuning the Algorithm. You can control the values of algorithm-tuning parameters with the
CRITERIA subcommand.

Optional Output. You can request additional output using the PRINT subcommand.

Saving the Results. You can save the variance component estimates and their asymptotic
covariance matrix (if produced) to an external data file.

Basic Specification

The basic specification is one dependent variable and one or more factor variables that define
the crosstabulation and one or more factor variables on the RANDOM subcommand to classify
factors into either fixed or random factors. By default, VARCOMP uses the minimum norm
quadratic unbiased estimator with unit prior weights to estimate variance components. Default
output includes a factor-level information table and a variance component estimates table.

Subcommand Order

• The variable specification must come first.

• Other subcommands can be specified in any order.

Syntax Rules

• Only one dependent variable can be specified.

• At least one factor must be specified after BY.

• At least one factor must be specified on the RANDOM subcommand.

Variable List

The variable list specifies the dependent variable and the factors in the model.
• The dependent variable must be the first specification on VARCOMP.

• The factors follow the dependent variable and are separated from it by the keyword BY.

• The covariates, if any, follow the factors and are separated from the dependent variable
and the factors by the keyword WITH.

• The dependent variable and the covariates must be numeric, but the factor variables can
be either numeric or string. If a factor is a long string variable, only the first eight charac-
ters of each value are used.

RANDOM Subcommand

The RANDOM subcommand allows you to specify random factors.
• You must specify at least one RANDOM subcommand with one random factor.

1638 VARCOMP

• You can specify multiple random factors on a RANDOM subcommand. You can also use
multiple RANDOM subcommands. Specifications are accumulative.

• Only factors listed after the keyword BY in the variable list are allowed on the RANDOM
subcommand.

• If you specify a factor on RANDOM, all effects containing the factor are automatically
declared as random effects.

Example
VARCOM Y BY DRUG SUBJECT
 /RANDOM = SUBJECT
 /DESIGN = DRUG DRUG*SUBJECT.

• This example specifies a mixed model where DRUG is the fixed factor and SUBJECT is a
random factor.

• The default method MINQUE(1) is used to estimate the contribution of the random effect
DRUG*SUBJECT to the variance of the dependent variable.

METHOD Subcommand

The METHOD subcommand offers four different methods for estimating the variances of the
random effects. If more than one METHOD subcommand is specified, only the last one is in
effect. If the subcommand is not specified, the default method MINQUE(1) is used. METHOD
cannot be specified without a keyword.

MINQUE(n) Minimum norm quadratic unbiased estimator. This is the default method.
When n = 0, zero weight is assigned to the random effects and unit weight is
assigned to the residual term. When n = 1, unit weight is assigned to both the
random effects and the residual term. By default, n = 1.

ML Maximum likelihood method. Parameters of the fixed effects and variances
of the random effects are estimated simultaneously. However, only the vari-
ances are reported.

REML Restricted maximum likelihood method. Variances of the random effects are
estimated based on residuals of the model after adjusting for the fixed effects.

SSTYPE(n) ANOVA method. The ANOVA method equates the expected mean squares
of the random effects to their observed mean squares. Their variances are
then estimated by solving a system of linear equations. The expected mean
squares are computed based on the type of sum of squares chosen. Two types
are available in VARCOMP: Type I (n = 1) and Type III (n = 3). Type III is
the default option for this method.

INTERCEPT Subcommand

The INTERCEPT subcommand controls whether an intercept term is included in the model.
If more than one INTERCEPT subcommand is specified, only the last one is in effect.

VARCOMP 1639

INCLUDE Include the intercept term. The intercept (constant) term is included in the
model. This is the default when INTERCEPT is not specified.

EXCLUDE Exclude the intercept term. The intercept (constant) term is excluded from
the model. EXCLUDE is ignored if you specify the keyword INTERCEPT on
the DESIGN subcommand.

MISSING Subcommand

By default, cases with missing values for any of the variables on the VARCOMP variable list
are excluded from the analyses. The MISSING subcommand allows you to include cases with
user-missing values.

• Pairwise deletion of missing data is not available in VARCOMP.

• If more than one MISSING subcommand is specified, only the last one is in effect.

EXCLUDE Exclude both user-missing and system-missing values. This is the default
when MISSING is not specified.

INCLUDE User-missing values are treated as valid. System-missing values cannot be
included in the analysis.

REGWGT Subcommand

REGWGT specifies the weight variable. Values of this variable are used as regression weights
in a weighted least squares model.

• Specify one numeric variable name on the REGWGT subcommand.

• Cases with nonpositive values in the regression weight variable are excluded from the
analyses.

• If more than one variable is specified on the same REGWGT subcommand, only the last
variable is in effect.

• If more than one REGWGT subcommand is specified, only the last one is in effect.

CRITERIA Subcommand

The CRITERIA subcommand specifies numerical tolerance for checking singularity and
offers control of the iterative algorithm used for ML or REML estimation.

• Multiple CRITERIA subcommands are allowed.

• The last specified value for any keyword takes effect. If none is specified, the default is
used.

EPS(n) Epsilon value used as tolerance in checking singularity. n must be a positive
value. The default is 1.0E-8.

CONVERGE(n) Convergence criterion. Convergence is assumed if the relative change in the
objective function is less than the specified value. n must be a positive value.

1640 VARCOMP

The default is 1.0E-8. Available only if you specify ML or REML on the
METHOD subcommand.

ITERATE(n) Maximum number of iterations. n must be a positive integer. The default is 50.
Available only if you specify ML or REML on the METHOD subcommand.

PRINT Subcommand

The PRINT subcommand controls the display of optional output. If PRINT is not specified, the
default output includes a factor information table and a variance component estimates table.

• For the maximum likelihood (ML) and restricted maximum likelihood (REML) methods,
an asymptotic covariance matrix of the variance estimates table is also displayed.

• If more than one PRINT subcommand is specified, the specifications are accumulated.
However, if you specify the keyword HISTORY more than once but with different values
for n, the last specification is in effect

EMS Expected mean squares. Expected mean squares of all of the effects. Avail-
able only if you specify SSTYPE(n) on the METHOD subcommand.

HISTORY(n) Iteration history. The table contains the objective function value and variance
component estimates at every n iteration. n must be a positive integer. The de-
fault is 1. The last iteration is always printed if HISTORY is specified on PRINT.
Available only if you specify ML or REML on the METHOD subcommand.

SS Sums of squares. The table contains sums of squares, degrees of freedom,
and mean squares for each source of variation. Available only if you specify
SSTYPE(n) on the METHOD subcommand.

OUTFILE Subcommand

The OUTFILE subcommand writes the variance component estimates to a data file that can
be used in other procedures. For the ML and REML methods, OUTFILE can also write the as-
ymptotic covariance or correlation matrix to a data file. If more than one OUTFILE subcom-
mand is specified, the last specification is in effect.
• OUTFILE writes an external file. You must specify a valid filename in parentheses.

• COVB and CORB are available only if you specify ML or REML on the METHOD
subcommand.

• COVB and CORB are mutually exclusive; only one of them can be specified on an
OUTFILE subcommand.

VAREST Variance component estimates. A variable will be created to contain the es-
timates, and another variable will be created to hold the labels of the variance
components.

COVB Covariance matrix. The asymptotic covariance matrix of the variance
component estimates. One variable is created for each variance component.

VARCOMP 1641

CORB Correlation matrix. The asymptotic correlation matrix of the variance
component estimates. One variable is created for each variance component.

(filename) Output filename. Specify one valid filename. The variance component esti-
mates and the asymptotic covariance or correlation matrix (if requested) are
written to the same file.

DESIGN Subcommand

The DESIGN subcommand specifies the effects in a model. DESIGN can be specified any-
where after the variable list. If more than one DESIGN subcommand is specified, only the last
one is in effect.

• Specify a list of effect terms to be included in the design. Each term must be separated
from the next by a comma or a space. Valid specifications include the keyword
INTERCEPT, factors, covariates, and interaction or nested terms.

• The factors and covariates must have been specified on the variable list.

• If a factor is specified on the RANDOM subcommand, all effects that include that factor
are random effects.

• If the DESIGN subcommand is omitted or specified without any term, the default design
is generated. The default design includes the intercept term (if INTERCEPT=EXCLUDE is
not specified), the covariates (if any) in the order in which they are specified on the vari-
able list, the main factorial effects, and all orders of factor-by-factor interaction.

INTERCEPT Include the intercept term. Specifying INTERCEPT on DESIGN explicitly in-
cludes the intercept term regardless of the specification on the INTERCEPT
subcommand.

BY Interaction. You can also use the asterisk (*). Interaction terms can be formed
among factors, among covariates, and between factors and covariates.

Factors inside an interaction effect must be distinct. For factors A, B, and C,
expressions like A*C*A or A*A are invalid.

Covariates inside an interaction effect do not have to be distinct. For covari-
ate X, X*X is the product of X and itself. This is equivalent to a covariate
whose values are the square of those of X.

WITHIN Nesting. You can also use a pair of parentheses. Factors and covariates can
be nested within factors but no effects can be nested within covariates. Sup-
pose that A and B are factors and X and Y are covariates. Both A(B) and X(B)
are valid, but X(Y) is not.

Factors inside a nested effect must be distinct. Expressions like A(A) are
invalid.

Multiple-level nesting is supported. For example, A(B(C)) or A WITHIN B
WITHIN C means that factor B is nested within factor C, and factor A is nested
within B(C). The expression A(B)(C) is invalid.

1642 VARCOMP

Nesting within an interaction effect is valid. For example, A(B*C) means that fac-
tor A is nested within B*C while X(A*B) means covariate X is nested within A*B.

Interactions among nested effects are allowed. For example, A*B(C) means
interaction between A and B within levels of C. X*Y(A) means the product of
X and Y nested within levels of C. The expression A(C)*B(C) is invalid.

Example
VARCOM Y BY DRUG SUBJECT WITH X
 /RANDOM = SUBJECT
 /DESIGN = DRUG SUBJECT DRUG*SUBJECT X*SUBECT.

• The DESIGN subcommand specifies two main effects and two interaction terms.

• All effects that involve the factor SUBJECT are assumed to be random.

1643

VARIABLE ALIGNMENT

VARIABLE ALIGNMENT varlist ({LEFT }) ... [/varlist...]
 {CENTER}
 {RIGHT }

Example

VARIABLE ALIGNMENT sales95 sales96 (LEFT)
 /id gender (RIGHT).

Overview

VARIABLE ALIGNMENT specifies the alignment of data values in the Data Editor. It has no
effect on the format of the variables or the display of the variables or values in other windows
or printed results.

Basic Specification

The basic specification is a variable name and the keyword LEFT, RIGHT, or CENTER in
parentheses.

1644

VARIABLE LABELS

VARIABLE LABELS varname ’label’ [/varname...]

Example
VARIABLE LABELS YRHIRED ’YEAR OF FIRST HIRING’.

Overview

VARIABLE LABELS assigns descriptive labels to variables in the working data file.

Basic Specification

The basic specification is a variable name and the associated label in apostrophes or quota-
tion marks.

Syntax Rules

• Labels can be added to any previously defined variable. It is not necessary to enter labels
for all variables in the working data file.

• Each variable label must be enclosed in apostrophes or quotation marks.

• Variable labels can contain any characters, including blanks. To enter an apostrophe as
part of a label, enclose the label in quotation marks or enter a double apostrophe.

• Each variable label can be up to 255 characters long, although some procedures print
fewer than the 255 characters. All statistical procedures display at least 40 characters.

• Multiple variables can be assigned labels on a single VARIABLE LABELS command. Only
one label can be assigned to each variable, and each label can apply to only one variable.

• To continue a label from one command line to the next, specify a plus (+) sign before
the continuation of the label. Each string segment of the label must be enclosed in apos-
trophes or quotation marks. To insert a blank between the strings, the blank must be in-
cluded in the label specification.

• To control line wrapping of labels in pivot tables and charts, insert \n as part of the label
wherever you want a line break. The \n is not displayed in output; it is interpretd as a line
break character. (Note: Labels will always wrap wherever \n appears in the defined label,
even if there is enough space to display the label without wrapping.)

VARIABLE LABELS 1645

Operations

• Unlike most transformations, VARIABLE LABELS takes effect as soon as it is encountered
in the command sequence. Thus, special attention should be paid to its position among
commands (see “Command Order” on p. 8 in Volume I).

• Variable labels are automatically displayed in the output from many procedures and are
stored in the dictionary of the working data file.

• VARIABLE LABELS can be used for variables that have no previously assigned variable
labels. If a variable has a previously assigned variable label, the new label replaces the
old label.

Example

VARIABLE LABELS YRHIRED ’YEAR OF FIRST HIRING’
DEPT88 ’DEPARTMENT OF EMPLOYMENT IN 1988’
SALARY88 ’YEARLY SALARY IN 1988’
JOBCAT ’JOB CATEGORIES’.

• Variable labels are assigned to the variables YRHIRED, DEPT88, SALARY88, and JOBCAT.

Example

VARIABLE LABELS OLDSAL "EMPLOYEE’S GROSS SALARY PRIOR"
+ " TO 1988".

• The label for OLDSAL is created by combining two strings with the plus sign. The blank
between PRIOR and TO must be included in the first or second string to be included in the
label.

Example

VARIABLE LABELS myvar "A Fairly Long Label \n That Always Wraps".
FREQUENCIES myvar.

Figure 2 Using \n to Wrap Variable Labels

A Fairly Long Label
That Always Wraps

1 100.0 100.0 100.01.00Valid
Frequency Percent Valid Percent

Cumulative
Percent

1646

VARIABLE LEVEL

VARIABLE LEVEL varlist ({SCALE** }) ... [/varlist...]
 {ORDINAL}
 {NOMINAL}

**Default.

Example
VARIABLE LEVEL sales95 sales96 (SCALE)
 /region division (NOMINAL)
 /expense (ORDINAL).

Overview

VARIABLE LEVEL specifies the level of measurement for variables. Measurement specifica-
tion is only relevant for:
• Charts created by the IGRAPH command. Nominal and ordinal are both treated as

categorical.

• SPSS-format data files used with AnswerTree.

Basic Specification

The basic specification is a variable name and the measurement level.

1647

VARIABLE WIDTH

VARIABLE WIDTH varlist (n) ... [/varlist...]

Example

VARIABLE WIDTH sales95 sales96 (10)
 /id gender (2).

Overview

VARIABLE WIDTH specifies column width for display of variables in the Data Editor. It has
no effect on the format of the variable or the display of the variable or values in other win-
dows or printed results.

Basic Specification

The basic specification is a variable name and a positive integer in parentheses for the column
width.

1648

VARSTOCASES

VARSTOCASES

/MAKE new variable ["label"] [FROM] varlist [/MAKE ...]

[/INDEX = {new variable ["label"] }]
{new variable ["label"] (make variable name) }
{new variable ["label"] (n) new variable ["label"](n) ...}

[/ID = new variable ["label"]]

[/NULL = {DROP**}]
{KEEP }

[/COUNT=new variable ["label"]]

[/KEEP={ALL** }] [/DROP=varlist]
{varlist}

**Default if the subcommand is omitted.

Example
VARSTOCASES /MAKE newvar FROM var1 TO var4.

Overview

A variable contains information that you want to analyze, such as a measurement or a test
score. A case is an observation, such as an individual or an institution. In a simple data
structure, each variable is a single column in your data. So if you are measuring test scores,
for example, all test score values would appear in only one column. In a simple data struc-
ture, each case is a single row in your data. So if you were measuring scores for all students
in a class, there would be a row for each student.

VARSTOCASES restructures complex data structures (in which information about a
variable is stored in more than one column) into a data file in which those measurements
are organized into separate rows of a single column. It replaces the working data file.

You can use VARSTOCASES to restructure data files in which repeated measurements of
a single case were recorded in one row into a new data file in which each measurement for
a case appears in a new row.

Options

Creating new variables. You can create an identification variable that identifies the row in
the original data file that was used to create a group of new rows, a count variable that
contains the number of new rows generated by a row in the original data, and one or more
index variables that identify the original variable from which the new row was created.

Variable Selection. You can use the DROP and KEEP subcommands to specify which
variables from the original data file are included in the new data file.

VARSTOCASES 1649

Basic Specification

The basic specification is one or more MAKE subcommands, each of which specifies a list of
variables to be combined into a single variable in which each value is displayed on a separate
row.

Subcommand Order

Subcommands can be specified in any order.

Syntax Rules

• The MAKE subcommand is required and can be specified as many times as needed.

• The rest of the subcommands can be specified only once.

Operations

• Row order. New rows are created in the order in which the variables are specified on the
FROM list.

• Propagated variables. Variables that are not named on the MAKE or DROP subcommands
are kept in the new data file. Their values are propagated for each new row.

• Split file processing. The SPLIT FILE command does not affect the results of VARSTOCASES.
If split file processing is in effect, it will remain in effect in the new data file unless a variable
that is used to split the file is named on the MAKE or DROP subcommands.

• Weighted files. The WEIGHT command does not affect the results of VARSTOCASES. If
original data are weighted, the new data will be weighted unless the variable that is used
to split the file is named on the MAKE or DROP subcommands.

• Selected cases. The FILTER and USE commands do not affect the results of VARSTOCASES.
It processes all cases.

Limitations

The TEMPORARY command cannot be in effect when VARSTOCASES is executed.

Example

The following is the LIST output for a data file where repeated measurements for the same
case are stored in variables on a single row:
caseid var1 var2 var3 var4

001 .00 .05 5.00 3.00
002 7.00 1.00 5.00 4.00
003 6.00 3.00 6.00 2.00

1650 VARSTOCASES

The command:

VARSTOCASES
/MAKE newvar FROM var1 TO var4.

creates a new variable, newvar, using the values of var1 through var4. The LIST output for
the new working file is as follows:
caseid newvar

001 .00
001 .05
001 5.00
001 3.00
002 7.00
002 1.00
002 5.00
002 4.00
003 6.00
003 3.00
003 6.00
003 2.00

The values for the new variable newvar are the values from var1 through var4 from the
original data. There are now four rows for each case—one row for each variable that was
named on the FROM list.

MAKE Subcommand

The MAKE subcommand names, and optionally labels, the new variable to be created from
the variables on the FROM list.

• One new variable is required on each MAKE subcommand. It must have a unique name.

• The label for the new variable is optional and, if specified, must be delimited by
apostrophes or quotation marks.

• The new variable will have the values of the variables listed on the FROM list. For each
case in the original data, one new row will be created for each variable on the FROM list.

• All of the variables on the FROM list are required to be of the same type. For example,
they must all be numeric or they must all be string.

• The dictionary information for the new variable (for example, value labels and format) is
taken from the first variable in the FROM list. If string variables of different lengths are
specified, the longest length is used.

• Rows are created in the order in which variables appear on the FROM list.

• Variables that appear on the FROM list will not appear in the new data file.

• Variables that are kept in the new data file and not named on the FROM list will have their
values propagated for each new row.

• When multiple MAKE subcommands are used, a variable may not appear on more than one
FROM list.

• A variable may be listed more than once on a FROM list. Its values are repeated.

• When multiple MAKE subcommands are used, the FROM lists must all contain the same
number of variables (variables that are listed more than once must be included in the
count).

VARSTOCASES 1651

ID Subcommand

The ID subcommand creates a new variable that identifies the permanent case sequence
number ($casenum) of the original row that was used to create the new rows. Use the ID
subcommand when the original data file does not contain a variable that identifies cases.

• One new variable is named on the ID subcommand. It must have a unique name.

• The label for the new variable is optional and, if specified, must be delimited by
apostrophes or quotation marks.

• The format of the new variable is F8.0.

INDEX Subcommand

In the original data file, a case appears on a single row. In the new data file, that case will
appear on multiple rows. The INDEX subcommand creates a new variable that sequentially
identifies a group of new rows based on the original variables from which it was created.

• You can choose among three types of indices—a simple numeric index, an index that lists
the variables on a FROM list, or multiple numeric indices.

• New variable(s) are named on the INDEX subcommand. A new variable must have a
unique name.

• The label for the new variable is optional and, if specified, must be delimited by
apostrophes or quotation marks.

Simple Numeric Index

A simple numeric index numbers the rows sequentially within a new group.

• The basic specification is /INDEX=ivar, where ivar is a name for the new index variable.
• The new index variable starts with 1 and increments each time a FROM variable is encoun-

tered in a row in the original file. After the last FROM variable is encountered, the index
restarts at 1.

• Gaps in the index sequence can occur if null data are dropped.

1652 VARSTOCASES

Example
VARSTOCASES
/MAKE newvar FROM var1 TO var4
/INDEX=ivar.

caseid ivar newvar

001 1 .00
001 2 .05
001 3 5.00
001 4 3.00
002 1 7.00
002 2 1.00
002 3 5.00
002 4 4.00
003 1 6.00
003 2 3.00
003 3 6.00
003 4 2.00

Variable Name Index

A variable name index works like the simple numeric index, except that it lists the name of
the original FROM variable instead of a sequential number.

• The basic specification is /INDEX=ivar (make variable name), where ivar is the name for
the new index variable and make variable name the name of a variable on the MAKE
subcommand from which the index is to be constructed.

• The new index variable is a string that lists the name of the FROM variable from which
the new row was created.

Example
VARSTOCASES
/MAKE newvar FROM var1 TO var4
/INDEX=ivar (newvar).

caseid ivar newvar

001 VAR1 .00
001 VAR2 .05
001 VAR3 5.00
001 VAR4 3.00
002 VAR1 7.00
002 VAR2 1.00
002 VAR3 5.00
002 VAR4 4.00
003 VAR1 6.00
003 VAR2 3.00
003 VAR3 6.00
003 VAR4 2.00

Multiple Numeric Indices

Multiple numeric indices are used to identify groups of new rows that share a particular
combination of factors. You can create multiple numeric indices if the original variables are
ordered so that levels of a given factor are grouped together.

VARSTOCASES 1653

• The basic specification is /INDEX=ivar(n) ivar(n) ..., where ivar is the name of the new
index for a factor and n is the number of factor levels represented in the variable group
for which the index is being constructed.

• The last index specified varies the fastest.

Example

 B1 B2

A1 .00 .05

A2 5.00 3.00

• Data were collected for a designed experiment with two levels of factor A and two levels
of factor B. The table shows the data for the first case.

caseid v_a1b1 v_a1b2 v_a2b1 v_a2b2
001 .00 .05 5.00 3.00

• The original data file is structured so that each case has one variable for each combination
of factors. Note that factor B varies fastest.

VARSTOCASES
/MAKE newvar FROM v_a1b1 TO v_a2b2
/INDEX=a(2) b(2).

caseid a b newvar

001 1 1 .00
001 1 2 .05
001 2 1 5.00
001 2 2 3.00

• The command restructures the data file and creates two indices, A and B.

NULL Subcommand

The NULL subcommand checks each potential new row for null values. A null value is a
system-missing or blank value. By default, VARSTOCASES does not add a new row that
contains null values for all variables created by MAKE subcommands. You can change the
default null-value treatment with the NULL subcommand.

DROP Do not include a new row when all MAKE variables are null. A potential new row
with null values for all of the variables created by MAKE subcommands is excluded
from the new data file. This is the default.
With this option, you may want to create a count variable to keep track of new rows,
because cases in the original data file are not guaranteed to appear in the new data
file.

KEEP Include a new row when all MAKE variables are null. A potential new row with
null values for all of the variables created by the MAKE subcommand is included in
the new data.
With this option, you may not need a count variable to keep track of cases because
each row in the original data will result in a consistent number of rows in the new
data file.

1654 VARSTOCASES

COUNT Subcommand

When there are no null data, VARSTOCASES generates n new rows for each row in the orig-
inal data file, where n is the number of variables on the FROM list(s). When the original data
file contains null values and you drop them, it is possible to generate a different number of
rows for a given subject in the original data file. The COUNT subcommand creates a new
variable that contains the number of new rows generated by the original subject.
• One new variable is named on the COUNT subcommand. It must have a unique name.

• The label for the new variable is optional and, if specified, must be delimited by
apostrophes or quotation marks.

• The format of the new variable is F4.0.

DROP and KEEP Subcommands

The DROP and KEEP subcommands are used to include only a subset of variables in the new
working file. The DROP subcommand specifies a set of variables to exclude and the KEEP
subcommand specifies a set of variables to retain. Variables not specified on the KEEP
subcommand are dropped.

• DROP and KEEP cannot be used with variables that appear on a FROM list.

• DROP and KEEP are mutually exclusive. Only one DROP or one KEEP subcommand can
be used on the VARSTOCASES command.

• KEEP affects the order of variables in the new data file. The order of the variables kept in
the new data file is the order in which they are named on the KEEP subcommand.

Example
VARSTOCASES
/MAKE newvar FROM var1 to var4
/DROP caseid.

• Caseid is dropped from the new data file. The new data file contains one variable,
newvar.

1655

VECTOR

VECTOR {vector name=varlist } [/vector name...]
 {vector name(n [format])}

Example
VECTOR V=V1 TO V6.

STRING SELECT(A1).
COMPUTE SELECT=’V’.

LOOP #I=1 TO 6.
IF MISSING(V(#I)) SELECT=’M’.
END LOOP.

Overview

VECTOR associates a vector name with a set of existing variables or defines a vector of new
variables. A vector is a set of variables that can be referred to using an index. The vector can
refer to either string or numeric variables, and the variables can be permanent or temporary.

For each variable in the reference list, VECTOR generates an element. Element names are
formed by adding a subscript in parentheses to the end of the vector name. For example, if
vector AGES has three elements, the element names are AGES(1), AGES(2), and AGES(3).
Although the VECTOR command has other uses within the transformation language, it is
most often used with LOOP structures because the indexing variable on LOOP can be used
to refer to successive vector elements.

Options

File Structures. VECTOR can be used with the END CASE command to restructure data files.
You can build a single case from several cases or, conversely, you can build several cases
from a single case (see pp. 509 and 510 in Volume I for examples).

Short-Form Vectors. VECTOR can be used to create a list of new variables and the vector that
refers to them simultaneously. VECTOR in the short form can be used to establish the dictio-
nary order of a group of variables before they are defined on a DATA LIST command. (See
“VECTOR: Short Form” on p. 1657.)

Basic Specification

• The basic specification is VECTOR, a vector name, a required equals sign, and the list of
variables that the vector refers to. The TO keyword must be used to specify the variable list.

• For the short form of VECTOR, the basic specification is VECTOR, an alphabetical prefix,
and, in parentheses, the number of variables to be created.

1656 VECTOR

Syntax Rules

• Multiple vectors can be created on the same command by using a slash to separate each
set of specifications.

• Variables specified on VECTOR must already be defined unless the short form of VECTOR
is used to create variables (see “VECTOR: Short Form” on p. 1657).

• The TO convention must be used to specify the variable list. Thus, variables specified
must be consecutive and must be from the same dictionary, permanent or scratch.

• A single vector must comprise all numeric variables or all string variables. The string
variables must have the same length.

• A scalar (a variable named on NUMERIC), a function, and a vector can all have the same
name, for example MINI. The scalar can be identified by the lack of a left parenthesis
following the name. Where a vector has the same name as a function (or the abbreviation
of a function), the vector name takes precedence. (See p. 1658 for an example.)

• Vector element names must always be specified with a subscript in parentheses.

Operations

• VECTOR takes effect as soon as it is encountered in the command sequence, unlike most
transformations, which do not take effect until the data are read. Thus, special attention
should be paid to its position among commands (see “Command Order” on p. 8 in
Volume I).

• VECTOR is in effect only until the first procedure that follows it. The vector must be rede-
clared to be reused.

• Vectors can be used in transformations but not in procedures.

Examples

* Replace a case’s missing values with the mean of all
 nonmissing values for that case.

DATA LIST FREE /V1 V2 V3 V4 V5 V6 V7 V8.
MISSING VALUES V1 TO V8 (99).
COMPUTE MEANSUB=MEAN(V1 TO V8).

VECTOR V=V1 TO V8.
LOOP #I=1 TO 8.
+ DO IF MISSING (V(#I)).
+ COMPUTE V(#I)=MEANSUB.
+ END IF.
END LOOP.

BEGIN DATA
1 99 2 3 5 6 7 8
2 3 4 5 6 7 8 9
2 3 5 5 6 7 8 99
END DATA.
LIST.

VECTOR 1657

• The first COMPUTE command calculates variable MEANSUB as the mean of all
nonmissing values for each case.

• VECTOR defines vector V with the original variables as its elements.

• For each case, the loop is executed once for each variable. The COMPUTE command
within the loop is executed only when the variable has a missing value for that case.
COMPUTE replaces the missing value with the value of MEANSUB.

• For the first case, the missing value for variable V2 is changed to the value of MEANSUB
for that case. The missing value for variable V8 for the third case is changed to the value
of MEANSUB for that case.

More Examples

For additional examples of VECTOR, see pp. 509, 510, and 740.

VECTOR: Short Form

VECTOR can be used to create a list of new variables and the vector that refers to them simul-
taneously. The short form of VECTOR specifies a prefix of alphanumeric characters followed,
in parentheses, by the length of the vector (the number of variables to be created).

• The new variable names must not conflict with existing variables. If the prefix starts with
the # character, the new variables are created according to the rules for scratch variables.

• More than one vector of the same length can be created by naming two or more prefixes
before the length specification.

• By default, variables created with VECTOR receive F8.2 formats. Alternative formats for
the variables can be specified by including a format specification with the length specifi-
cation within the parentheses. The format and length can be specified in either order and
must be separated by at least one space or comma. If multiple vectors are created, the
assigned format applies to all of them unless you specify otherwise.

Example
VECTOR #WORK(10).

• The program creates vector #WORK, which refers to 10 scratch variables: #WORK1,
#WORK2, and so on, through #WORK10. Thus, element #WORK(5) of the vector is variable
#WORK5.

Example
VECTOR X,Y(5).

• VECTOR creates vectors X and Y, which refer to the new variables X1 through X5 and Y1
through Y5, respectively.

Example
VECTOR X(6,A5).

• VECTOR assigns an A5 format to variables X1 through X6.

1658 VECTOR

Example
VECTOR X,Y(A5,6) Z(3,F2).

• VECTOR assigns A5 formats to variables X1 to X6 and Y1 to Y6, and F2 formats to variables
Z1 to Z3. It doesn’t matter whether the format or the length is specified first within the
parentheses.

Example
* Predetermine variable order with the short form of VECTOR.

INPUT PROGRAM.
VECTOR X Y (4,F8.2).
DATA LIST / X4 Y4 X3 Y3 X2 Y2 X1 Y1 1-8.
END INPUT PROGRAM.

PRINT /X1 TO X4 Y1 TO Y4.
BEGIN DATA
49382716
49382716
49382716
END DATA.

• The short form of VECTOR is used to establish the dictionary order of a group of variables
before they are defined on a DATA LIST command. To predetermine variable order, both
VECTOR and DATA LIST must be enclosed within the INPUT PROGRAM and END INPUT
PROGRAM commands.

• The order of the variables in the working data file will be X1, X2, X3, and X4, and Y1, Y2,
Y3, and Y4, even though they are defined in a different order on DATA LIST.

• The program reads the variables with the F1 format specified on DATA LIST. It writes the
variables with the output format assigned on VECTOR (F8.2).

• Another method for predetermining variable order is to use NUMERIC (or STRING if the
variables are string variables) before the DATA LIST command (see p. 1103 for an
example). The advantage of using NUMERIC or STRING is that you can assign mnemonic
names to the variables.

Example
* Name conflicts.

INPUT PROGRAM.
NUMERIC MIN MINI_A MINI_B MINIM(F2).
COMPUTE MINI_A = MINI(2). /*MINI is function MINIMUM.
VECTOR MINI(3,F2).
DO REPEAT I = 1 TO 3.
+ COMPUTE MINI(I) = -I.
END REPEAT.
COMPUTE MIN = MIN(1). /*The second MIN is function MINIMUM.
COMPUTE MINI_B = MINI(2). /*MINI now references vector MINI
COMPUTE MINIM = MINIM(3). /*The second MINIM is function MINIMUM.
END CASE.
END FILE.
END INPUT PROGRAM.

VECTOR 1659

• In this example, there are potential name conflicts between the scalars (the variables
named on NUMERIC), the vectors (named on VECTOR), and the statistical function
MINIMUM.

• A name that is not followed by a left parenthesis is treated as a scalar.

• When a name followed by a left parenthesis may refer to a vector element or a function,
precedence is given to the vector.

VECTOR outside a Loop Structure

VECTOR is most commonly associated with the loop structure, since the index variable for
LOOP can be used as the subscript. However, the subscript can come from elsewhere,
including from the data.

Example
* Create a single case for each of students 1, 2, and 3.

DATA LIST /STUDENT 1 SCORE 3-4 TESTNUM 6.
BEGIN DATA
1 10 1
1 20 2
1 30 3
1 40 4
2 15 2
2 25 3
3 40 1
3 55 3
3 60 4
END DATA.

VECTOR RESULT(4).
COMPUTE RESULT(TESTNUM)=SCORE.

AGGREGATE OUTFILE=*/BREAK=STUDENT
/RESULT1 TO RESULT4=MAX(RESULT1 TO RESULT4).

PRINT FORMATS RESULT1 TO RESULT4 (F2.0).
PRINT /STUDENT RESULT1 TO RESULT4.
EXECUTE.

• Data are scores on tests recorded in separate cases along with a student identification
number and a test number. In this example, there are four possible tests for three students.
Not all students took every test.

• Vector RESULT creates variables RESULT1 through RESULT4.

• For each case, COMPUTE assigns the SCORE value to one of the four vector variables,
depending on the value of TESTNUM. The other three vector variables for each case keep
the system-missing value they were initialized to.

1660 VECTOR

• Aggregating by variable STUDENT creates new cases, as shown by the output from the
PRINT command (see Figure 1). The MAX function in AGGREGATE returns the
maximum value across cases with the same value for STUDENT. If a student has taken
a particular test, the one valid value is returned as the value for variable RESULT1,
RESULT2, RESULT3, or RESULT4.

Figure 1 PRINT output after aggregating
1 10 20 30 40
2 . 15 25 .
3 40 . 55 60

1661

VERIFY

VERIFY [VARIABLES=series name]

Example
VERIFY VARIABLE=STOCK.

Overview

VERIFY produces a report on the status of the most current DATE, USE, and PREDICT
specifications. The report lists the first and last observations in the working data file,
the current USE and PREDICT ranges, and any anomalies in the DATE variables. The
number of missing values and the values of the first and last observations in the file and
in the USE and PREDICT ranges can also be displayed for a specified series.

VERIFY should be used before a time series procedure whenever there is a possibility that
DATE variables or USE and PREDICT ranges have been invalidated. In particular, the work-
ing data file should be verified after you have modified the file structure with commands
such as SELECT IF, SORT CASES, and AGGREGATE.

Options

If a series is specified after VERIFY, the values of the first and last observations in the file
and in the USE and PREDICT periods are reported for that series. In addition, the number of
observations in the working data file that have missing values for that series is displayed.
This can be useful for determining the USE ranges that do not include any missing values.

Basic Specification

The basic specification is the command keyword VERIFY.
• VERIFY displays the first and last observations in the working data file and in the USE

and PREDICT ranges. This information is presented by case number and by the values of
the DATE variables.

• For DATE variables, VERIFY reports the number of missing or invalid values. In addition,
DATE variables that are not properly nested within the next higher-level DATE variable,
that have start or end values other than those expected at the beginning or end of a cycle,
or that increment by more than the expected increment are flagged with an asterisk next
to the problem. An explanation of the problem is given.

1662 VERIFY

Operations

• VERIFY reports on cases remaining after any preceding SELECT IF commands.

• The USE and PREDICT ranges are defined by the last USE and PREDICT commands spec-
ified before the VERIFY command. If USE and PREDICT have not been specified, the USE
range is the entire series, and the PREDICT range does not exist.

Limitations

• Maximum 1 VARIABLES subcommand. Only 1 series can be specified on VARIABLES.

VARIABLES Subcommand

VARIABLES names a series to include in the report and is optional. The actual keyword
VARIABLES can be omitted.
• The series named on VARIABLES must be numeric. The DATE_ series is non-numeric and

cannot be specified.

• Only one VARIABLES subcommand can be specified, and it can name only one series.

Examples

VERIFY.

• This command produces a report on the status of the most recent DATE, USE, and
PREDICT specifications, as well as the first and last valid cases in the file.

VERIFY VARIABLE=STOCK.

• In addition to the default VERIFY information, this command displays information on
series STOCK, including the values of the first and last cases and how many values in that
series are missing.

1663

WEIGHT

WEIGHT {BY varname}
 {OFF }

Example
WEIGHT BY V1.
FREQUENCIES VAR=V2.

Overview

WEIGHT gives cases different weights (by simulated replication) for statistical analysis.
WEIGHT can be used to weight a sample up to population size for reporting purposes or to
replicate an example from a table or other aggregated data (see p. 328 for an example). With
WEIGHT, you can arithmetically alter the sample size or its distribution.

To apply weights resulting from your sampling design, see the Complex Samples option.

Basic Specification

The basic specification is keyword BY followed by the name of the weight variable. Cases
are weighted according to the values of the specified variable.

Syntax Rules

• Only one numeric variable can be specified. The variable can be a precoded weighting
variable, or it can be computed with the transformation language.

• WEIGHT cannot be placed within a FILE TYPE—END FILE TYPE or INPUT PROGRAM—
END INPUT PROGRAM structure. It can be placed nearly anywhere following these
commands in a transformation program. See Appendix A for a discussion of the program
states and the placement of commands.

Operations

• Unlike most transformations, WEIGHT takes effect as soon as it is encountered in the
command sequence. Thus, special attention should be paid to its position among
commands (see “Command Order” on p. 8 in Volume I).

• Weighting is permanent during a session unless it is preceded by a TEMPORARY
command, changed by another WEIGHT command, or turned off with the WEIGHT OFF
specification.

1664 WEIGHT

• Each WEIGHT command overrides the previous one.

• WEIGHT uses the value of the specified variable to arithmetically replicate cases for
subsequent procedures. Cases are not physically replicated.

• Weight values do not need to be integer.
• Cases with missing or nonpositive values for the weighting variable are treated as having

a weight of 0 and are thus invisible to statistical procedures. They are not used in calcu-
lations even where unweighted counts are specified. These cases do remain in the file,
however, and are included in case listings and saved when the file is saved.

• A file saved when weighting is in effect maintains the weighting.

• If the weighted number of cases exceeds the sample size, tests of significance are inflated;
if it is smaller, they are deflated.

Example

WEIGHT BY V1.
FREQ VAR=V2.

• The frequency counts for the values of variable V2 will be weighted by the values of
variable V1.

Example

COMPUTE WVAR=1.
IF (GROUP EQ 1) WVAR=.5.
WEIGHT BY WVAR.

• Variable WVAR is initialized to 1 with the COMPUTE command. The IF command changes
the value of WVAR to 0.5 for cases where GROUP equals 1.

• Subsequent procedures will use a case base in which cases from group 1 count only half
as much as other cases.

1665

WLS

WLS is available in the Regression Models option.

WLS [VARIABLES=]dependent varname WITH independent varnames

 [/SOURCE=varname]

 [/DELTA=[{1.0** }]]
 {value list }
 {value TO value BY value}

 [/WEIGHT=varname]

 [/{CONSTANT**}
 {NOCONSTANT}

 [/PRINT={BEST}]
 {ALL }

 [/SAVE = WEIGHT]

 [/APPLY[=’model name’]]

**Default if the subcommand or keyword is omitted.

Example
WLS VARY WITH VARX VARZ
 /SOURCE=VARZ
 /DELTA=2.

Overview

WLS (weighted least squares) estimates regression models with different weights for
different cases. Weighted least squares should be used when errors from an ordinary regres-
sion are heteroscedastic—that is, when the size of the residual is a function of the magnitude
of some variable, termed the source.

The WLS model is a simple regression model in which the residual variance is a function
of the source variable, up to some power transform indicated by a delta value. For fuller
regression results, save the weights produced by WLS and specify that weight variable on
the REGWGT subcommand in REGRESSION.

Options

Calculated and Specified Weights. WLS can calculate the weights based on a source variable
and delta values (subcommands SOURCE and DELTA), or it can apply existing weights
contained in a series (subcommand WEIGHT). If weights are calculated, each weight value
is calculated as the source series value raised to the negative delta value.

New Variables. You can change NEWVAR settings on the TSET command prior to WLS to
evaluate the regression coefficients and log-likelihood function without saving the weight
variable, or save the new values to replace the values saved earlier, or save the new values

1666 WLS

without erasing values saved earlier (see the TSET command). You can also use the SAVE
subcommand on WLS to override the NONE or the default CURRENT settings on NEWVAR for
the current procedure.

Statistical Output. You can change the PRINT setting on the TSET command prior to WLS to
display regression coefficients or the list of log-likelihood functions at each delta value, or to
limit the output to only the regression statistics for the delta value at which the log-likelihood
function is maximized (see the TSET command). You can also use the PRINT subcommand to
override the PRINT setting on the TSET command for the current procedure and obtain regres-
sion coefficients at each value of delta in addition to the default output.

Basic Specification

• The basic specification is the VARIABLES subcommand specifying one dependent vari-
able, the keyword WITH, and one or more independent variables. Weights are calculated
using the first independent variable as the source variable and a default delta value of 1.

• The default output for calculated weights displays the log-likelihood function for each
value of delta. For the value of delta at which the log-likelihood function is maximized,
the displayed summary regression statistics include R, , adjusted , standard errors,
analysis of variance, and t tests of the individual coefficients. A variable named WGT#1
containing the calculated weights is automatically created, labeled, and added to the
working data file.

Syntax Rules

• VARIABLES can be specified only once.

• DELTA can be specified more than once. Each specification will be executed.

• If other subcommands are specified more than once, only the last specification of each
one is executed.

• You can specify either SOURCE and DELTA, or just the WEIGHT subcommand. You
cannot specify all three, and you cannot specify WEIGHT with SOURCE or with DELTA.

Subcommand Order

• Subcommands can be specified in any order.

Operations

• If neither the WEIGHT subcommand nor the SOURCE and DELTA subcommands are
specified, a warning is issued and weights are calculated using the default source and
delta value.

• Only one WGT#1 variable is created per procedure. If more than one delta value is speci-
fied, the weights used when the log-likelihood function is maximized are the ones saved
as WGT#1.

R2 R2

WLS 1667

• WGT#1 is not created when the WEIGHT subcommand is used.

• The SPSS WEIGHT command specifies case replication weights, which are not the same
as the weights used in weighted least squares. If the WEIGHT command and WLS WEIGHT
subcommand are both specified, both types of weights are incorporated in WLS.

• WLS uses listwise deletion of missing values. Whenever one variable is missing a value
for a particular observation, that observation will not be included in any computations.

Limitations

• Maximum one VARIABLES subcommand.
• Maximum one dependent variable on the VARIABLES subcommand. There is no limit on

the number of independent variables.

• Maximum 150 values specified on the DELTA subcommand.

Example

WLS VARY WITH VARX VARZ
 /SOURCE=VARZ
 /DELTA=2.

• This command specifies a weighted least-squares regression in which VARY is the depen-
dent variable and VARX and VARZ are the independent variables.

• VARZ is identified as the source of heteroscedasticity.

• Weights will be calculated using a delta value of 2. Thus, the weights will equal VARZ −2.

VARIABLES Subcommand

VARIABLES specifies the variable list and is the only required subcommand. The actual
keyword VARIABLES can be omitted.

SOURCE Subcommand

SOURCE is used in conjunction with the DELTA subcommand to compute weights. SOURCE
names the variable that is the source of heteroscedasticity.

• The only specification on SOURCE is the name of a variable to be used as the source of
heteroscedasticity.

• Only one source variable can be specified.

• If neither SOURCE nor WEIGHT is specified, the first independent variable specified on
the VARIABLES subcommand is assumed to be the source variable.

1668 WLS

DELTA Subcommand

DELTA, alias POWER, is used in conjunction with the SOURCE subcommand to compute
weights. DELTA specifies the values to use in computing weights. The weights are equal to
1/(SOURCE raised to the DELTA power).

• The specification on DELTA is a list of possible delta values and/or value grids.

• Multiple values and grids can be specified on one DELTA subcommand.
• Delta values can be any value in the range of –6.5 to +7.5. Values below this range are

assigned the minimum (–6.5), and values above are assigned the maximum (7.5).

• A grid is specified by naming the starting value, the keyword TO, an ending value, the
keyword BY, and an increment value. Alternatively, the keyword BY and the increment
value can be specified after the starting value.

• More than one DELTA subcommand can be specified; each subcommand will be executed.
• If DELTA is not specified, the delta value defaults to 1.0.

Example
WLS X1 WITH Y1 Z1
 /SOURCE=Z1
 /DELTA=0.5.

• In this example, weights are calculated using the source variable Z1 and a delta value of
0.5. Thus, the weights are 1/(SQRT (Z1)).

Example
WLS SHARES WITH PRICE
 /DELTA=0.5 TO 2.5 BY 0.5.

• In this example, several regression equations will be fit, one for each value of delta.

• Weights are calculated using the source variable PRICE (the default).

• The delta values start at 0.5 and go up to 2.5, incrementing by 0.5. This specification is
equivalent to 0.5 BY 0.5 TO 2.5.

• The weights that maximize the log-likelihood function will be saved as variable WGT#1.

WEIGHT Subcommand

WEIGHT specifies the variable containing the weights to be used in weighting the cases.
WEIGHT is an alternative to computing the weights using the SOURCE and DELTA subcom-
mands. If a variable containing weights is specified, the output includes the regression coef-
ficients, log-likelihood function, and summary regression statistics such as R, , adjusted

, standard errors, analysis of variance, and t tests of the coefficients. Since no new weights
are computed, no new variable is created. For a description of the output when weights are
calculated by WLS, see “Basic Specification” on p. 1666.

• The only specification on WEIGHT is the name of the variable containing the weights.
Typically, WGT variables from previous WLS procedures are used.

• Only one variable can be specified.

R2

R2

WLS 1669

Example
WLS SHARES WITH PRICE
 /WEIGHT=WGT_1.

• This WLS command uses the weights contained in variable WGT_1 to weight cases.

CONSTANT and NOCONSTANT Subcommands

Specify CONSTANT or NOCONSTANT to indicate whether a constant term should be estimated
in the regression equation. The specification of either subcommand overrides the CONSTANT
setting on the TSET command for the current procedure.

• CONSTANT is the default and specifies that the constant term is used as an instrument.

• NOCONSTANT eliminates the constant term.

SAVE Subcommand

SAVE saves the weight variable generated during the current session to the end of the working
data file. The default name WGT_n will be generated, where n increments to make the vari-
able name unique. The only specification on SAVE is WEIGHT. The specification overrides
the NONE or the default CURRENT setting on NEWVAR for the current procedure.

PRINT Subcommand

PRINT can be used to override the PRINT setting on the TSET command for the current proce-
dure. Two keywords are available.

BEST Display coefficients for the best weight only. This is the default.

ALL Display coefficients for all weights.

APPLY Subcommand

• The APPLY subcommand allows you to use a previously defined WLS model without
having to repeat the specifications.

• The only specification on APPLY is the name of a previous model in quotes. If a model
name is not specified, the model specified on the previous WLS command is used.

• To change one or more model specifications, specify the subcommands of only those
portions you want to change after the APPLY subcommand.

• If no variables are specified on the command, the variables that were originally specified
with the model being reapplied are used.

1670 WLS

Example
WLS X1 WITH Y1
 /SOURCE=Y1
 /DELTA=1.5.
WLS APPLY
 /DELTA=2.

• The first command produces a weighted least-squares regression of X1, with Y1 as the
source variable and delta equal to 1.5.

• The second command uses the same variable and source but changes the delta value to 2.

Example
WLS X1 WITH Y1 Z1
 /SOURCE=Z1
 /DELTA=1 TO 3 BY 0.5
WLS APPLY
 /WEIGHT=WGT#1.

• The first command regresses X1 on Y1 and Z1, using Z1 as the source variable. The delta
values range from 1 to 3, incrementing by 0.5.

• The second command again regresses X1 on Y1 and Z1, but this time applies the values of
WGT#1 as the weights.

1671

WRITE

WRITE [OUTFILE=file] [RECORDS={1}] [{NOTABLE}]
 {n} {TABLE }

 /{1 } varlist [{col location [(format)]}] [varlist...]
 {rec #} {(format list) }
 {* }

 [/{2 }...]
 {rec #}

Example
WRITE OUTFILE=PRSNNL / MOHIRED YRHIRED DEPT SALARY NAME.
EXECUTE.

Overview

WRITE writes files in a machine-readable format that can be used by other software appli-
cations. When used for this purpose, the OUTFILE subcommand is required. If OUTFILE is
not specified, the output from WRITE that can be displayed is included with the output from
your session in a format similar to that used by the PRINT command.

Options

Formats. You can specify formats for the variables. (See “Formats” on p. 1673.)

Strings. You can include strings within the variable specifications. The strings can be used
to label values or to add extra space between values. (See “Strings” on p. 1674.)

Multiple Lines per Case. You can write variables on more than one line for each case. See the
RECORDS subcommand on p. 1674.

Output File. You can direct the output to a specified file using the OUTFILE subcommand.

Summary Table. You can display a table that summarizes the variable formats with the TABLE
subcommand.

Subcommand Order

Subcommands can be specified in any order. However, all subcommands must be used
before the slash that precedes the first variable list.

1672 WRITE

Basic Specification

The basic specification is a slash followed by a variable list. The values for all of the vari-
ables specified on the list are included with the rest of the output from your session.

Syntax Rules

• A slash must precede the variable specifications. The first slash begins the definition of
the first (and possibly only) line per case of the WRITE output.

• Specified variables must already exist, but they can be numeric, string, scratch, tempo-
rary, or system variables. Subscripted variable names, such as X(1) for the first element in
vector X, cannot be used.

• Keyword ALL can be used to write the values of all user-defined variables in the working
data file.

Operations

• WRITE is executed once for each case constructed from the data file.

• Values are written to the file as the data are read.

• WRITE is a transformation and will not be executed unless it is followed by a procedure
or the EXECUTE command.

• Lines longer than 132 columns can be written. However, if the record width of the lines
to be written exceeds the default output width or the width specified with SET WIDTH, the
program issues an error message and terminates processing.

• There are no carriage control characters in the output file generated by WRITE.

• User-missing values are written just like valid values. System-missing values are repre-
sented by blanks.

• If you are writing a file to be used on another system, you should take into account that
some data types cannot be read all computers.

• If long records are less convenient than short records with multiple records per case, you
can write out a case identifier and insert a string as a record identification number. The
receiving system can then check for missing record numbers (see “Strings” on p. 1674 for
an example).

WRITE 1673

Example

WRITE OUTFILE=PRSNNL / MOHIRED YRHIRED DEPT SALARY NAME.
FREQUENCIES VARIABLES=DEPT.

• WRITE writes values for each variable on the variable list to file PRSNNL. The FREQUENCIES
procedure reads the data and causes WRITE to be executed.

• All variables are written with their dictionary formats.

Example

WRITE OUTFILE=PRSNNL /ALL.
EXECUTE.

• WRITE writes values for all user-defined variables in the working data file to file PRSNNL.
The EXECUTE command executes WRITE.

Formats

By default, WRITE uses the dictionary write formats. You can specify formats for some or all
variables specified on WRITE. For a string variable, the specified format must have the same
width as that of the dictionary format.

• Format specifications can be either column-style or FORTRAN-like (see DATA LIST). The
column location specified with column-style formats or implied with FORTRAN-like
formats refers to the column in which the variable will be written.

• A format specification following a list of variables applies to all the variables in the list.
Use an asterisk to prevent the specified format from applying to variables preceding the
asterisk. The specification of column locations implies a default print format, and that for-
mat will apply to all previous variables if no asterisk is used.

• All available formats can be specified on WRITE. Note that hex and binary formats use
different widths. For example, the AHEX format must have a width twice that of the cor-
responding A format. For more information on specifying formats and on the formats
available, see DATA LIST and “Variable Formats” on p. 25 in Volume I.

• Format specifications are in effect only for the WRITE command. They do not change the
dictionary write formats.

• To specify a blank between variables in the output, use a string (see “Strings” on p. 1674),
specify blank columns in the format, or use an X or T format element in the WRITE spec-
ifications (see DATA LIST for information on X and T).

Example
WRITE OUTFILE=PRSNNL / TENURE (F2.0) ’ ’ MOHIRED YRHIRED DEPT *

SALARY85 TO SALARY88 (4(DOLLAR8,1X)) NAME.
EXECUTE.

• Format F2.0 is specified for TENURE. A blank between apostrophes is specified as a string
after TENURE to separate values of TENURE from those of MOHIRED.

1674 WRITE

• MOHIRED, YRHIRED, and DEPT are written with default formats because the asterisk pre-
vents them from receiving the DOLLAR8 format specified for SALARY85 to SALARY88.
The 1X format element is specified with DOLLAR8 to add one blank after each value of
SALARY85 to SALARY88.

• NAME uses the default dictionary format.

Strings

You can specify strings within the variable list. Strings must be enclosed in apostrophes or
quotation marks.

• If a format is specified for a variable list, the application of the format is interrupted by a
specified string. Thus, the string has the same effect within a variable list as an asterisk.

Example
WRITE OUTFILE=PRSNNL

/EMPLOYID ’1’ MOHIRED YRHIRED SEX AGE JOBCAT NAME
/EMPLOYID ’2’ DEPT86 TO DEPT88 SALARY86 TO SALARY88.

EXECUTE.

• Strings are used to assign the constant 1 to record 1 of each case, and 2 to record 2 to pro-
vide record identifiers in addition to the case identifier EMPLOYID.

RECORDS Subcommand

RECORDS indicates the total number of lines written per case. The number specified on
RECORDS is informational only. The actual specification that causes variables to be written
on a new line is a slash within the variable specifications. Each new line is requested by
another slash.

• RECORDS must be specified before the slash that precedes the start of the variable
specifications.

• The only specification on RECORDS is an integer to indicate the number of records for
the output. If the number does not agree with the actual number of records indicated by
slashes, the program issues a warning and ignores the specification on RECORDS.

• Specifications for each line of output must begin with a slash. An integer can follow the
slash, indicating the line on which values are to be written. The integer is informational
only. It cannot be used to rearrange the order of records in the output. If the integer does
not agree with the actual record number indicated by the number of slashes in the variable
specifications, the integer is ignored.

• A slash that is not followed by a variable list generates a blank line in the output.

Examples
WRITE OUTFILE=PRSNNL RECORDS=2

/EMPLOYID NAME DEPT
/EMPLOYID TENURE SALARY.

EXECUTE.

WRITE 1675

• WRITE writes the values of an individual’s name and department on one line, tenure and
salary on the next line, and the employee identification number on both lines.

Example
WRITE OUTFILE=PRSNNL RECORDS=2

/1 EMPLOYID NAME DEPT
/2 EMPLOYID TENURE SALARY.

EXECUTE.

• This command is equivalent to the command in the preceding example.

Example
WRITE OUTFILE=PRSNNL / EMPLOYID NAME DEPT / EMPLOYID TENURE SALARY.
EXECUTE.

• This command is equivalent to the commands in both preceding examples.

OUTFILE Subcommand

OUTFILE specifies the target file for the output from the WRITE command. By default, the
output is included with the rest of the output from the session.

• OUTFILE must be specified before the slash that precedes the start of the variable
specifications.

• The output from WRITE can exceed 132 characters.

Example
WRITE OUTFILE=WRITEOUT

/1 EMPLOYID DEPT SALARY /2 NAME.
EXECUTE.

• OUTFILE specifies WRITEOUT as the file that receives the WRITE output.

TABLE Subcommand

TABLE requests a table showing how the variable information is formatted. NOTABLE is the
default.

• TABLE must be specified before the slash that precedes the start of the variable specifications.

Example
WRITE OUTFILE=PRSNNL TABLE /1 EMPLOYID DEPT SALARY /2 NAME.
EXECUTE.

• TABLE requests a summary table describing the WRITE specifications.

1676

WRITE FORMATS

WRITE FORMATS varlist (format) [varlist...]

Example
WRITE FORMATS SALARY (DOLLAR8)

/ HOURLY (DOLLAR7.2)
/ RAISE BONUS (PCT2).

Overview

WRITE FORMATS changes variable write formats. Write formats are output formats and
control the form in which values are written by the WRITE command.

WRITE FORMATS changes only write formats. To change print formats, use the PRINT
FORMATS command. To change both the print and write formats with a single specification,
use the FORMATS command. For information on assigning input formats during data defi-
nition, see DATA LIST. For a more detailed discussion of input and output formats, see “Vari-
able Formats” on p. 25 in Volume I.

Basic Specification

The basic specification is a variable list followed by the new format specification in paren-
theses. All specified variables receive the new format.

Syntax Rules

• You can specify more than one variable or variable list, followed by a format in paren-
theses. Only one format can be specified after each variable list. For clarity, each set of
specifications can be separated by a slash.

• You can use keyword TO to refer to consecutive variables in the working data file.

• The specified width of a format must include enough positions to accommodate any
punctuation characters such as decimal points, commas, dollar signs, or date and time
delimiters. (This differs from assigning an input format on DATA LIST, where the
program automatically expands the input format to accommodate punctuation characters
in output.)

• Custom currency formats (CCw, CCw.d) must first be defined on the SET command
before they can be used on WRITE FORMATS.

• WRITE FORMATS cannot be used with string variables. To change the length of a string
variable, declare a new variable of the desired length with the STRING command and
then use COMPUTE to copy values from the existing string into the new string.

WRITE FORMATS 1677

Operations

• Unlike most transformations, WRITE FORMATS takes effect as soon as it is encountered
in the command sequence. Special attention should be paid to its position among
commands. For more information, see “Command Order” on p. 8 in Volume I.

• Variables not specified on WRITE FORMATS retain their current formats in the working
data file. To see the current formats, use the DISPLAY command.

• The new write formats are changed only in the working file and are in effect for the dura-
tion of the session or until changed again with a WRITE FORMATS or FORMATS command.
Write formats in the original data file (if one exists) are not changed, unless the file is
resaved with the SAVE or XSAVE command.

• New numeric variables created with transformation commands are assigned default print
and write formats of F8.2 (or the format specified on the FORMAT subcommand of SET).
The WRITE FORMATS command can be used to change the new variable’s write formats.

• New string variables created with transformation commands are assigned the format
specified on the STRING command that declares the variable. WRITE FORMATS cannot be
used to change the format of a new string variable.

• Date and time formats are effective only with the LIST and TABLES procedures and the
PRINT and WRITE transformation commands. All other procedures use F format regard-
less of the date and time formats specified. See “Date and Time Formats” on p. 55 in
Volume I.

• If a numeric data value exceeds its width specification, the program attempts to write
some value nevertheless. First the program rounds decimal values, then removes punctu-
ation characters, then tries scientific notation, and finally, if there is still not enough space,
produces asterisks indicating that a value is present but cannot be written in the assigned
width.

Example

WRITE FORMATS SALARY (DOLLAR8)
/ HOURLY (DOLLAR7.2)
/ RAISE BONUS (PCT2).

• The write format for SALARY is changed to DOLLAR with eight positions, including the
dollar sign and comma when appropriate. An eight-digit number would require a DOLLAR11
format specification: eight characters for the digits, two characters for commas, and one
character for the dollar sign.

• The write format for HOURLY is changed to DOLLAR with seven positions, including the
dollar sign, decimal point, and two decimal places.

• The write format for both RAISE and BONUS is changed to PCT with two positions: one
for the percentage and one for the percent sign.

1678 WRITE FORMATS

Example

COMPUTE V3=V1 + V2.
WRITE FORMATS V3 (F3.1).

• COMPUTE creates the new numeric variable V3. By default, V3 is assigned an F8.2 format.

• WRITE FORMATS changes the write format for V3 to F3.1.

Example

SET CCA=’-/-.Dfl ..-’.
WRITE FORMATS COST (CCA14.2).

• SET defines a European currency format for the custom currency format type CCA.

• WRITE FORMATS assigns the write format CCA to variable COST. See the SET command
for more information on custom currency formats.

1679

XSAVE

XSAVE OUTFILE=’filespec’

 [/KEEP={ALL** }] [/DROP=varlist]
 {varlist}

 [/RENAME=(old varlist=new varlist)...]

 [/MAP] [/{COMPRESSED }]
 {UNCOMPRESSED}

 [/PERMISSIONS={READONLY }
 {WRITEABLE}

**Default if the subcommand is omitted.

Example
XSAVE OUTFILE=EMPL /RENAME=(AGE=AGE88) (JOBCAT=JOBCAT88).
MEANS RAISE88 BY DEPT88.

Overview

XSAVE produces an SPSS-format data file. An SPSS-format data file contains data plus a
dictionary. The dictionary contains a name for each variable in the data file plus any
assigned variable and value labels, missing-value flags, and variable print and write
formats. The dictionary also contains document text created with the DOCUMENTS
command.

SAVE also creates SPSS-format data files. The principal difference is that XSAVE is not
executed until data are read for the next procedure, while SAVE is executed by itself. Thus,
XSAVE can reduce processing time by consolidating two data passes into one.

See SAVE TRANSLATE and SAVE SCSS for information on saving data files that can be
used by other programs.

Options

Variable Subsets and Order. You can save a subset of variables and reorder the variables that
are saved using the DROP and KEEP subcommands.

Variable Names. You can rename variables as they are copied into the SPSS-format data file
using the RENAME subcommand.

Variable Map. To confirm the names and order of the variables saved in the SPSS-format
data file, use the MAP subcommand. MAP displays the variables saved in the SPSS-format
data file next to their corresponding names in the working data file.

Data Compression. You can write the data file in compressed or uncompressed form using
the COMPRESSED or UNCOMPRESSED subcommand.

1680 XSAVE

Basic Specification

The basic specification is the OUTFILE subcommand, which specifies a name for the SPSS-
format data file to be saved.

Subcommand Order

• Subcommands can be specified in any order.

Syntax Rules

• OUTFILE is required and can be specified only once. If OUTFILE is specified more than
once, only the last OUTFILE specification is in effect.

• KEEP, DROP, RENAME, and MAP can be used as many times as needed.

• Only one of the subcommands COMPRESSED or UNCOMPRESSED can be specified per
XSAVE command.

• Documentary text can be dropped from the working data file with the DROP DOCUMENTS
command.

• XSAVE cannot appear within a DO REPEAT—END REPEAT structure.

• Multiple XSAVE commands writing to the same file are not permitted.

Operations

• Unlike the SAVE command, XSAVE is a transformation command and is executed when
the data are read for the next procedure.

• The new SPSS-format data file dictionary is arranged in the same order as the working file
dictionary unless variables are reordered with the KEEP subcommand. Documentary text
from the working file dictionary is always saved unless it is dropped with the DROP DOCU-
MENTS command before XSAVE.

• New variables created by transformations and procedures previous to the XSAVE
command are included in the new SPSS-format data file, and variables altered by trans-
formations are saved in their modified form. Results of any temporary transformations
immediately preceding the XSAVE command are included in the file; scratch variables
are not.

• SPSS-format data files are binary files designed to be read and written by SPSS only.
SPSS-format data files can be edited only with the UPDATE command. Use the MATCH
FILES and ADD FILES commands to merge SPSS-format data files.

• The working data file is still available for transformations and procedures after XSAVE is
executed.

• XSAVE processes the dictionary first and displays a message that indicates how many vari-
ables will be saved. Once the data are written, XSAVE indicates how many cases were
saved. If the second message does not appear, the file was probably not completely written.

XSAVE 1681

Limitations

• Maximum 10 XSAVE commands are allowed in a session.

Example

GET FILE=HUBEMPL.
XSAVE OUTFILE=EMPL88 /RENAME=(AGE=AGE88) (JOBCAT=JOBCAT88).
MEANS RAISE88 BY DEPT88.

• The GET command retrieves the SPSS-format data file HUBEMPL.

• The RENAME subcommand renames variable AGE to AGE88 and variable JOBCAT to
JOBCAT88.

• XSAVE is not executed until the program reads the data for procedure MEANS. The
program saves file EMPL88 and generates a MEANS table in a single data pass.

• After MEANS is executed, the HUBEMPL file is still the working data file. Variables AGE
and JOBCAT retain their original names in the working file.

Example

GET FILE=HUBEMPL.
TEMPORARY.
RECODE DEPT85 TO DEPT88 (1,2=1) (3,4=2) (ELSE=9).
VALUE LABELS DEPT85 TO DEPT88 1 ’MANAGEMENT’ 2 ’OPERATIONS’ 3 ’UNKNOWN’.
XSAVE OUTFILE=HUBTEMP.
CROSSTABS DEPT85 TO DEPT88 BY JOBCAT.

• Both the saved data file and the CROSSTABS output will reflect the temporary recoding
and labeling of the department variables.

• If SAVE were specified instead of XSAVE, the data would be read twice instead of once
and the CROSSTABS output would not reflect the recoding.

OUTFILE Subcommand

OUTFILE specifies the SPSS-format data file to be saved. OUTFILE is required and can be
specified only once. If OUTFILE is specified more than once, only the last OUTFILE is in
effect.

DROP and KEEP Subcommands

DROP and KEEP are used to save a subset of variables. DROP specifies the variables not to
save in the new data file, while KEEP specifies the variables to save in the new data file; vari-
ables not named on KEEP are dropped.

• Variables can be specified in any order. The order of variables on KEEP determines the
order of variables in the SPSS-format data file. The order on DROP does not affect the
order of variables in the SPSS-format data file.

1682 XSAVE

• Keyword ALL on KEEP refers to all remaining variables not previously specified on KEEP.
ALL must be the last specification on KEEP.

• If a variable is specified twice on the same subcommand, only the first mention is recognized.

• Multiple DROP and KEEP subcommands are allowed. Specifying a variable that is not in
the working data file or that has been dropped because of a previous DROP or KEEP
subcommand results in an error, and the XSAVE command is not executed.

• Keyword TO can be used to specify a group of consecutive variables in the SPSS-format
data file.

Example
XSAVE OUTFILE=HUBTEMP /DROP=DEPT79 TO DEPT84 SALARY79.
CROSSTABS DEPT85 TO DEPT88 BY JOBCAT.

• The SPSS-format data file is saved as HUBTEMP. All variables between and including
DEPT79 and DEPT84, as well as SALARY79, are excluded from the SPSS-format data file.
All other variables are saved.

Example
GET FILE=PRSNL.
COMPUTE TENURE=(12-CMONTH +(12*(88-CYEAR)))/12.
COMPUTE JTENURE=(12-JMONTH +(12*(88-JYEAR)))/12.
VARIABLE LABELS TENURE ’Tenure in Company’

JTENURE ’Tenure in Grade’.
XSAVE OUTFILE=PRSNL88 /DROP=GRADE STORE
/KEEP=LNAME NAME TENURE JTENURE ALL.
REPORT FORMAT=AUTO /VARS=AGE TENURE JTENURE SALARY
/BREAK=DIVISION /SUMMARY=MEAN.

• Variables TENURE and JTENURE are created by COMPUTE commands and assigned
variable labels by the VARIABLE LABELS command. TENURE and JTENURE are added to
the end of the working data file.

• DROP excludes variables GRADE and STORE from file PRSNL88. KEEP specifies that
LNAME, NAME, TENURE, and JTENURE are the first four variables in file PRSNL88,
followed by all remaining variables not specified on DROP. These remaining variables are
saved in the same sequence as they appear in the original file.

RENAME Subcommand

RENAME changes the names of variables as they are copied into the new SPSS-format data
file.

• The specification on RENAME is a list of old variable names followed by an equals sign
and a list of new variable names. The same number of variables must be specified on both
lists. Keyword TO can be used on the first list to refer to consecutive variables in the
working data file and on the second list to generate new variable names (see the TO
keyword on p. 23). The entire specification must be enclosed in parentheses.

• Alternatively, you can specify each old variable name individually, followed by an equals
sign and the new variable name. Multiple sets of variable specifications are allowed. The
parentheses around each set of specifications are optional.

XSAVE 1683

• RENAME does not affect the working data file. However, if RENAME precedes DROP or
KEEP, variables must be referred to by their new names on DROP or KEEP.

• Old variable names do not need to be specified according to their order in the working
data file.

• Name changes take place in one operation. Therefore, variable names can be exchanged
between two variables.

• Multiple RENAME subcommands are allowed.

Example
XSAVE OUTFILE=EMPL88 /RENAME AGE=AGE88 JOBCAT=JOBCAT88.
CROSSTABS DEPT85 TO DEPT88 BY JOBCAT.

• RENAME specifies two name changes for file EMPL88: AGE is renamed to AGE88 and
JOBCAT is renamed to JOBCAT88.

Example
XSAVE OUTFILE=EMPL88 /RENAME (AGE JOBCAT=AGE88 JOBCAT88).
CROSSTABS DEPT85 TO DEPT88 BY JOBCAT.

• The name changes are identical to those in the previous example: AGE is renamed to
AGE88 and JOBCAT is renamed to JOBCAT88. The parentheses are required with this
method.

MAP Subcommand

MAP displays a list of the variables in the SPSS-format data file and their corresponding
names in the working data file.

• The only specification is keyword MAP. There are no additional specifications.
• Multiple MAP subcommands are allowed. Each MAP subcommand maps the results of

subcommands that precede it, but not results of subcommands that follow it.

Example
GET FILE=HUBEMPL.
XSAVE OUTFILE=EMPL88 /RENAME=(AGE=AGE88) (JOBCAT=JOBCAT88)
/KEEP=LNAME NAME JOBCAT88 ALL /MAP.
MEANS RAISE88 BY DEPT88.

• MAP is used to confirm the new names for AGE and JOBCAT and the order of variables in
the EMPL88 file (LNAME, NAME, and JOBCAT88, followed by all remaining variables from
the working data file).

COMPRESSED and UNCOMPRESSED Subcommands

COMPRESSED saves the file in compressed form. UNCOMPRESSED saves the file in uncom-
pressed form. In a compressed file, small integers (from −99 to 155) are stored in one byte
instead of the eight bytes used in an uncompressed file.

1684 XSAVE

• The only specification is the keyword COMPRESSED or UNCOMPRESSED. There are no
additional specifications.

• Compressed data files occupy less disk space than do uncompressed data files.

• Compressed data files take longer to read than do uncompressed data files.
• The GET command, which reads SPSS-format data files, does not need to specify whether

the files it reads are compressed or uncompressed.

Only one COMPRESSED or UNCOMPRESSED subcommand can be specified per XSAVE
command. COMPRESSED is usually the default, though UNCOMPRESSED may be the
default on some systems.

PERMISSIONS Subcommand

The PERMISSIONS subcommand sets the operating system read/write permissions for the
file.

READONLY File permissions are set to read-only for all users. The file cannot be saved
using the same file name with subsequent changes unless the read/write per-
missions are changed in the operating system or the subsequent XSAVE com-
mand specifies PERMISSIONS=WRITEABLE.

WRITEABLE File permissions are set to allow writing for the file owner. If file permis-
sions were set to read-only for other users, the file remains read-only for
them.

Your ability to change the read/write permissions may be restricted by the operating system.

1686 XSAVE

1687

Appendix A
Commands and Program States

Command order is determined only by the system’s need to know and do certain
things in logical sequence. You cannot label a variable before the variable exists in
the file. Similarly, you cannot transform or analyze data before a working data file is
defined. This appendix briefly describes how the program handles various tasks in a
logical sequence. It is not necessary to understand the program states in order to
construct a command file, but some knowledge of how the program works will help
you considerably when you encounter a problem or try to determine why the program
doesn’t seem to want to accept your commands or seems to be carrying out your
instructions incorrectly.

Program States
To run a program session, you need to define your working data file, transform the data,
and then analyze it. This order conforms very closely to the order the program must
follow as it processes your commands. Specifically, the program checks command order
according to the program state through which it passes. The program state is a charac-
teristic of the program before and after a command is encountered. There are four
program states. Each session starts in the initial state, followed by the input program
state, the transformation state, and the procedure state. The four program states in
turn enable the program to set up the environment, read data, modify data, and execute
a procedure. Figure A.1 shows how the program moves through these states. The
program determines the current state from the commands that it has already encountered
and then identifies which commands are allowed in that state.

Figure A.1 Program states

Initial
Setup

Input
Program

Transformation
Program Procedure Finish

1688 Appendix A

A session must go through initial, input program, and procedure states to be a complete
session. Since all sessions start in the initial state, you need to be concerned primarily
with what commands you need to define your working data file and to analyze the data.
The following commands define a very minimal session:

GET FILE=DATAIN.
FREQUENCIES VARIABLES=ALL.

The GET command defines the working data file and the FREQUENCIES command
reads the data file and analyzes it. Thus, the program goes through the required three
states: initial, input, and procedure.

Typically, a session also goes through the transformation state, but it can be skipped
as shown in the example above and in the diagram in Figure A.1. Consider the following
example:

TITLE ’PLOT FOR COLLEGE SURVEY’.

DATA LIST FILE=TESTDATA
 /AGE 1-3 ITEM1 TO ITEM3 5-10.

VARIABLE LABELS ITEM1 ’Opinion on level of defense spending’
 ITEM2 ’Opinion on level of welfare spending’
 ITEM3 ’Opinion on level of health spending’.
VALUE LABELS ITEM1 TO ITEM3 -1 ’Disagree’ 0 ’No opinion’ 1
’Agree’.
MISSING VALUES AGE(-99,-98) ITEM1 TO ITEM3 (9).
RECODE ITEM1 TO ITEM3 (0=1) (1=0) (2=-1) (9=9) (ELSE=SYSMIS).
RECODE AGE (MISSING=9) (18 THRU HI=1) (LO THRU 18=0) INTO VOTER.
PRINT /$CASENUM 1-2 AGE 4-6 VOTER 8-10.
VALUE LABELS VOTER 0 ’Under 18’ 1 ’18 or over’.
MISSING VALUES VOTER (9).
PRINT FORMATS VOTER (F1.0).

FREQUENCIES VARIABLES=VOTER, ITEM1 TO ITEM3.

The program starts in the initial state, where it processes the TITLE command. It then
moves into the input state upon encountering the DATA LIST command. The program
can then move into either the transformation or procedure state once the DATA LIST
command has been processed.

In this example, the program remains in the transformation state after processing
each of the commands from VARIABLE LABELS through PRINT FORMATS. The
program then moves into the procedure state to process the FREQUENCIES command.
As shown in Figure A.1, the program can repeat the procedure state if it encounters a
second procedure. The program can return to the transformation state if it encounters
additional transformation commands following the first procedure. Finally, in some
sessions the program can return to the input program state when it encounters
commands such as FILE TYPE or MATCH FILES.

Commands and Program States 1689

Determining Command Order
Table A.1 shows where specific commands can be placed in the command file in terms
of program states and what happens when the program encounters a command in each of
the four program states. If a column contains a dash, the command is accepted in that
program state and it leaves the program in that state. If one of the words INIT, INPUT,
TRANS, or PROC appears in the column, the command is accepted in the program state
indicated by the column heading, but it moves the program into the state indicated by
INIT, INPUT, TRANS, or PROC. Asterisks in a column indicate errors when the program
encounters the command in that program state. Commands marked with the dagger (†)
in the column for the procedure state clear the working data file.

The table shows six groups of commands: utility, file definition, input program, data
transformation, restricted transformation, and procedure commands. These groups are
discussed in the following sections.

To read the table, first locate the command. If you simply want to know where in the
command stream it can go, look for columns without asterisks. For example, the
COMPUTE command can be used when the program is in the input program state, the
transformation state, or the procedure state, but it will cause an error if you try to use it
in the initial state. If you want to know what can follow a command, look at each of the
four columns next to the command. If the column is dashed, any commands not showing
asterisks in the column for that program state can follow the command. If the column
contains one of the words INIT, INPUT, TRANS, or PROC, any command not showing
asterisks in the column for the program state indicated by that word can follow the
command.

For example, if you want to know what commands can follow the INPUT PROGRAM
command, note first that it is allowed only in the initial or procedure states. Then note
that INPUT PROGRAM puts the program into the input program state wherever it occurs
legally. This means that commands with dashes or words in the INPUT column can
follow the INPUT PROGRAM command. This includes all the utility commands, the
DATA LIST command, input program commands, and transformation commands like
COMPUTE. Commands that are not allowed after the INPUT PROGRAM command are
most of the file definition commands that are their own input program (such as GET),
restricted transformations (such as SELECT IF), and procedures.

1690 Appendix A

Table A.1 Commands and program states

INIT INPUT TRANS PROC

Utility commands

CLEAR TRANSFORMATIONS ** PROC PROC —
COMMENT — — — —
DISPLAY ** — — —
DOCUMENT ** — — —
DROP DOCUMENTS ** — — —
END DATA — — — —
ERASE — — — —
FILE HANDLE — — — —
FILE LABEL — — — —
FINISH — — — —
INCLUDE — — — —
INFO — — — —
DEFINE—!ENDDEFINE — — — —
N OF CASES — — — TRANS
NEW FILE — INIT INIT INIT†
PROCEDURE OUTPUT — — — —
SET, SHOW — — — —
TITLE, SUBTITLE — — — —

File definition commands

ADD FILES TRANS ** — TRANS
DATA LIST TRANS — INPUT TRANS†
FILE TYPE INPUT ** INPUT INPUT†
GET TRANS ** — TRANS†
GET BMDP TRANS ** — TRANS†
GET CAPTURE TRANS ** — TRANS†
GET OSIRIS TRANS ** — TRANS†
GET SAS TRANS ** — TRANS†
GET SCSS TRANS ** — TRANS†
GET TRANSLATE TRANS ** — TRANS†
IMPORT TRANS ** — TRANS†
INPUT PROGRAM TRANS ** — TRANS†
KEYED DATA LIST TRANS — — TRANS
MATCH FILES TRANS ** — TRANS
MATRIX DATA TRANS ** — TRANS†
RENAME VARIABLES ** — — TRANS
UPDATE TRANS ** — TRANS

Commands and Program States 1691

Input program commands

END CASE ** — ** **
END FILE ** — ** **
END FILE TYPE ** TRANS ** **
END INPUT PROGRAM ** TRANS ** **
POINT ** — ** **
RECORD TYPE ** — ** **
REPEATING DATA ** — ** **
REREAD ** — ** **

Transformation commands

ADD VALUE LABELS ** — — TRANS
APPLY DICTIONARY ** — — TRANS
COMPUTE ** — — TRANS
COUNT ** — — TRANS
DO IF—END IF ** — — TRANS
DO REPEAT—END REPEAT ** — — TRANS
ELSE ** — — TRANS
ELSE IF ** — — TRANS
FORMATS ** — — TRANS
IF ** — — TRANS
LEAVE ** — — TRANS
LOOP—END LOOP, BREAK ** — — TRANS
MISSING VALUES ** — — TRANS
NUMERIC ** — — TRANS
PRINT ** — — TRANS
PRINT EJECT ** — — TRANS
PRINT FORMATS ** — — TRANS
PRINT SPACE ** — — TRANS
RECODE ** — — TRANS
SPLIT FILE ** — — TRANS
STRING ** — — TRANS
VALUE LABELS ** — — TRANS
VARIABLE LABELS ** — — TRANS
VECTOR ** — — TRANS
WEIGHT ** — — TRANS
WRITE ** — — TRANS
WRITE FPR,ATS ** — — TRANS
XSAVE ** — — TRANS

Table A.1 Commands and program states (Continued)

INIT INPUT TRANS PROC

1692 Appendix A

Unrestricted Utility Commands
Most utility commands can appear in any state. Table A.1 shows this by the absence of
asterisks in the columns.

The dashed lines indicate that after a utility command is processed, the program
remains in the same state it was in before the command execution. INIT, TRANS, or
PROC indicates that the command moves the program to that state. For example, if the
program is in the procedure state, N OF CASES moves the program to the transformation
state. The FINISH command terminates command processing wherever it appears. Any
commands appearing after FINISH will not be read and therefore will not cause an error.

File Definition Commands
You can use most of the file definition commands in the initial state, the transformation
state, and the procedure state. Most of these commands cause errors if you try to use them
in the input program state. However, DATA LIST and KEYED DATA LIST can be and often
are used in input programs.

After they are used in the initial state, most file definition commands move the
program directly to the transformation state, since these commands are the entire input
program. FILE TYPE and INPUT PROGRAM move the program into the input program
state and require input program commands to complete the input program. Commands
in Table A.1 marked with a dagger (†) clear the working data file.

Restricted transformations

FILTER ** ** — TRANS
REFORMAT ** ** — TRANS
SAMPLE ** ** — TRANS
SELECT IF ** ** — TRANS
TEMPORARY ** ** — TRANS

Procedures

BEGIN DATA ** ** PROC —
EXECUTE ** ** PROC —
EXPORT ** ** PROC —
GRAPH ** ** PROC —
LIST ** ** PROC —
SAVE ** ** PROC —
SAVE TRANSLATE ** ** PROC —
SORT CASES ** ** PROC —
other procedures ** ** PROC —

Table A.1 Commands and program states (Continued)

INIT INPUT TRANS PROC

Commands and Program States 1693

Input Program Commands
The commands associated with the complex file facility (FILE TYPE, RECORD TYPE,
and REPEATING DATA) and commands associated with the INPUT PROGRAM command
are allowed only in the input program state.

The END CASE, END FILE, POINT, RECORD TYPE, REPEATING DATA, and REREAD
leave the program in the input program state. The two that move the program on to the
transformation state are END FILE TYPE for input programs initiated with FILE TYPE and
END INPUT PROGRAM for those initiated with INPUT PROGRAM.

Transformation Commands
The entire set of transformation commands from ADD VALUE LABELS to XSAVE can
appear in the input program state as part of an input program, in the transformation state,
or in the procedure state. When you use transformation commands in the input program
state or the transformation state, the program remains in the same state it was in before
the command. When the program is in the procedure state, these commands move the
program back to the transformation state.

Transformation commands and some file definition and input program commands
can be categorized according to whether they are declarative, status-switching, or
executable. Declarative commands alter the working data file dictionary but do not
affect the data. Status-switching commands change the program state but do not affect
the data. Executable commands alter the data. Table A.2 lists these commands and indi-
cates which of the three categories applies.

Table A.2 Taxonomy of transformation commands

Command Type Command Type

ADD FILES Exec* LEAVE Decl
ADD VALUE LABELS Decl LOOP Exec
APPLY DICTIONARY Decl MATCH FILES Exec*
BREAK Exec MISSING VALUES Decl
COMPUTE Exec N OF CASES Decl
COUNT Exec NUMERIC Decl
DATA LIST Exec* POINT Exec
DO IF Exec PRINT, PRINT EJECT Exec
DO REPEAT Decl† PRINT FORMATS Decl

1694 Appendix A

* This command is also declarative.
**This command is also executable and declarative.
†This command does not fit into these categories; however, it is neither executable nor status-switching,
so it is classified as declarative.

Restricted Transformations
Commands REFORMAT, SAMPLE, SELECT IF, and TEMPORARY are restricted transfor-
mation commands because they are allowed in either the transformation state or the
procedure state but cannot be used in the input program state.

If you use restricted transformation commands in the transformation state, the
program remains in the transformation state. If you use them in the procedure state, they
move the program back to the transformation state.

Procedures
The procedures and the BEGIN DATA, EXECUTE, EXPORT, LIST, SAVE, SAVE SCSS,
SAVE TRANSLATE, and SORT CASES commands cause the data to be read. These
commands are allowed in either the transformation state or the procedure state.

When the program is in the transformation state, these commands move the program
to the procedure state. When you use these commands in the procedure state, the
program remains in that state.

ELSE Exec PRINT SPACE Exec
ELSE IF Exec RECODE Exec
END CASE Exec RECORD TYPE Exec
END FILE Exec REFORMAT Exec
END FILE TYPE Stat REPEATING DATA Exec*
END IF Exec REREAD Exec
END INPUT PROGRAM Stat SAMPLE Exec
END LOOP Exec SELECT IF Exec
END REPEAT Decl† SPLIT FILE Decl
FILE TYPE Stat** STRING Decl
FILTER Exec TEMPORARY Stat
FORMATS Decl VALUE LABELS Decl
GET Exec* VARIABLE LABELS Decl
GET CAPTURE Exec* VECTOR Decl
GET OSIRIS Exec* WEIGHT Decl
IF Exec WRITE Exec
INPUT PROGRAM Stat WRITE FORMATS Decl
KEYED DATA LIST Exec* XSAVE Exec

Table A.2 Taxonomy of transformation commands (Continued)

Command Type Command Type

1695

Appendix B
IMPORT/EXPORT Character Sets

Communication-formatted portable files do not use positions 1–63 in the following table.
Tape-formatted portable files use the complete table. (See the EXPORT command for a
description of the two types of files.)

Position Graphic Macintosh
Microsoft

Code Page 850
ANSI/ISO

Latin 1
IBM

EBCDIC
ASCII
7-BIT

0 NUL 0 0 0 0 0
1 SOH 1 1 1 1 1
2 STX 2 2 2 2 2
3 ETX 3 3 3 3 3
4 SEL 156 4
5 HT 9 9 9 5 9
6 RNL 134 6
7 DEL 127 127 127 7 127
8 GE 151 8
9 SPS 141 9
10 RPT 142 10
11 VT 11 11 11 11 11
12 FF 12 12 12 12 12
13 CR 13 13 13 13 13
14 SO 14 14 14 14 14
15 SI 15 15 15 15 15
16 DLE 16 16 16 16 16
17 DC1 17 17 17 17 17
18 DC2 18 18 18 18 18
19 DC3 19 19 19 19 19
20 DC4 20 20 20 60 20
21 NL 133 21
22 BS 8 8 8 22 8
23 DOC 135 23
24 CAN 24 24 24 24 24
25 EM 25 25 25 25 25

1696 Appendix B

26 UBS 146 26
27 CU1 143 27
28 (I)FS1 28 28 28 28 28
29 (I)GS 29 29 29 29 29
30 (I)RS 30 30 30 30 30
31 SM,SW 138 42
32 DS 128 32
33 SOS 129 33
34 FS2 130 34
35 WUS 131 35
36 CSP 139 43
37 LF 10 10 10 37 10
38 ETB 23 23 23 38 23
39 ESC 27 27 27 39 27
40 (I)US 31 31 31 31 31
41 BYP 132 36
42 RES 157 20
43 ENQ 5 5 5 45 5
44 ACK 6 6 6 46 6
45 BEL 7 7 7 47 7
46 SYN 22 22 22 50 22
47 IR 147 51
48 PP 148 52
49 TRN 149 53
50 NBS 150 54
51 EOT 4 4 4 55 4
52 SBS 152 56
53 IT 153 57
54 RFF 154 58
55 CU3 155 59
56 NAK 21 21 21 61 21
57 SUB 26 26 26 63 26
58 SA 136 40
59 SFE 137 41
60 MFA 140 44
61 reserved
62 reserved
63 reserved
64 0 48 48 48 240 48

Position Graphic Macintosh
Microsoft

Code Page 850
ANSI/ISO

Latin 1
IBM

EBCDIC
ASCII
7-BIT

IMPORT/EXPORT Character Sets 1697

65 1 49 49 49 241 49
66 2 50 50 50 242 50
67 3 51 51 51 243 51
68 4 52 52 52 244 52
69 5 53 53 53 245 53
70 6 54 54 54 246 54
71 7 55 55 55 247 55
72 8 56 56 56 248 56
73 9 57 57 57 249 57
74 A 65 65 65 193 65
75 B 66 66 66 194 66
76 C 67 67 67 195 67
77 D 68 68 68 196 68
78 E 69 69 69 197 69
79 F 98 98 70 198 98
80 G 71 71 71 199 71
81 H 72 72 72 200 72
82 I 73 73 73 201 73
83 J 74 74 74 209 74
84 K 75 75 75 210 75
85 L 76 76 76 211 76
86 M 77 77 77 212 77
87 N 78 78 78 213 78
88 O 79 79 79 214 79
89 P 80 80 80 215 80
90 Q 81 81 81 216 81
91 R 82 82 82 217 82
92 S 83 83 83 226 83
93 T 84 84 84 227 84
94 U 85 85 85 228 85
95 V 86 86 86 229 86
96 W 87 87 87 230 87
97 X 88 88 88 231 88
98 Y 89 89 89 232 89
99 Z 90 90 90 233 90

100 a 97 97 97 129 97
101 b 98 98 98 130 98
102 c 99 99 99 131 99
103 d 100 100 100 132 100
104 e 101 101 101 133 101

Position Graphic Macintosh
Microsoft

Code Page 850
ANSI/ISO

Latin 1
IBM

EBCDIC
ASCII
7-BIT

1698 Appendix B

105 f 102 102 102 134 102
106 g 103 103 103 135 103
107 h 104 104 104 136 104
108 i 105 105 105 137 105
109 j 106 106 106 145 106
110 k 107 107 107 146 107
111 l 108 108 108 147 108
112 m 109 109 109 148 109
113 n 110 110 110 149 110
114 o 111 111 111 150 111
115 p 112 112 112 151 112
116 q 113 113 113 152 113
117 r 114 114 114 153 114
118 s 115 115 115 162 115
119 t 116 116 116 163 116
120 u 117 117 117 164 117
121 v 118 118 118 165 118
122 w 119 119 119 166 119
123 x 120 120 120 167 120
124 y 121 121 121 168 121
125 z 122 122 122 169 122
126 space 32 32 32 64 32
127 . 46 46 46 75 46
128 < 60 60 60 76 60
129 (40 40 40 77 40
130 + 43 43 43 78 43
131 | 79
132 & 38 38 38 80 38
133 [91 91 91 173 91
134] 93 93 93 189 93
135 ! 33 33 33 90 33
136 $ 36 36 36 91 36
137 * 42 42 42 92 42
138) 41 41 41 93 41
139 ; 59 59 59 94 59
140 ¬ or ∧ or ↑ 94 94 94 95 94
141 - 45 45 45 96 45
142 / 47 47 47 97 47
143 = 124 124 124 106 124

Position Graphic Macintosh
Microsoft

Code Page 850
ANSI/ISO

Latin 1
IBM

EBCDIC
ASCII
7-BIT

IMPORT/EXPORT Character Sets 1699

144 , 44 44 44 107 44
145 % 37 37 37 108 37
146 __ 95 95 95 109 95
147 > 62 62 62 110 62
148 ? 63 63 63 111 63
149 ‘ 96 96 96 121 96
150 : 58 58 58 122 58
151 # 35 35 35 123 35
152 @ 64 64 64 124 64
153 ´ 39 39 39 125 39
154 = 61 61 61 126 61
155 “ 34 34 34 127 34
156 ≤ 178 140

157 255 156
158 ± 177 241 177 158

159 n 159

160 Â 251 248 176
161 † 143
162 ˜ 126 126 126 161 126
163 _ 209 196 160
164 192 171

165 218 172
166 ≥ 179 174

167 0 176
168 1 251 185 177
169 2 253 178 178
170 3 252 179 179
171 4 180
172 5 181
173 6 182
174 7 183
175 8 184
176 9 185
177 217 187
178 191 188
179 ≠ 173 190

180 — 191
181 (141
182) 157

Position Graphic Macintosh
Microsoft

Code Page 850
ANSI/ISO

Latin 1
IBM

EBCDIC
ASCII
7-BIT

1700 Appendix B

183 +3 142
184 { 123 123 123 192 123
185 } 125 125 125 208 125
186 \ 92 92 92 224 92
187 ¢ 162 189 162 74
188 • 165 183 175
189 À 203 183 192
190 Á 231 181 193
191 Â 229 182 194
192 Ã 204 199 195
193 Ä 128 142 196
194 Å 129 143 197
195 Æ 174 198
196 Ç 130 128 199
197 È 233 212 200
198 É 131 144 201
199 Ê 230 210 202
200 Ë 232 211 203
201 Ì 237 222 204
202 Í 234 214 205
203 Î 235 215 206
204 Ï 236 216 207
205 209 208
206 Ñ 132 165 209
207 Ò 241 227 210
208 Ó 238 224 211
209 Ô 239 226 212
210 Õ 205 229 213
211 Ö 133 153 214
212 Ø 175 157 216
213 Ù 244 235 217
214 Ú 242 233 218
215 Û 243 234 219
216 Ü 134 154 220
217 237 221
218 232 222
219 ß 167 225 223
220 à 136 133 224
221 á 135 160 225

Position Graphic Macintosh
Microsoft

Code Page 850
ANSI/ISO

Latin 1
IBM

EBCDIC
ASCII
7-BIT

IMPORT/EXPORT Character Sets 1701

1 file separator
2 field separator
3 not the plus sign

222 â 137 131 226
223 ã 139 198 227
224 ä 138 132 228
225 å 140 134 229
226 190 145 230
227 ç 141 135 231
228 è 143 138 232
229 é 142 130 233
230 ê 144 136 234
231 ë 145 137 235
232 ì 147 141 236
233 í 146 161 237
234 î 148 140 238
235 ï 149 139 239
236 208 240
237 ñ 150 164 241
238 ò 152 149 242
239 ó 151 162 243
240 ô 153 147 244
241 õ 155 228 245
242 ö 154 148 246
243 ø 191 155 248
244 ù 157 151 249
245 ú 156 163 250
246 û 158 150 251
247 ü 159 129 252
248 236 253
249 ÿ 216 152 255
250 231 254
251 ¡ 193 173 161
252 ¿ 192 168 191
253 199 174 171
254 200 175 187
255 reserved

Position Graphic Macintosh
Microsoft

Code Page 850
ANSI/ISO

Latin 1
IBM

EBCDIC
ASCII
7-BIT

1703

Appendix C
Defining Complex Files

Most data files have a rectangular, case-ordered structure and can be read with the
DATA LIST command. This chapter illustrates the use of commands for defining
complex, nonrectangular files.

• Nested files contain several types of records with a hierarchical relationship
among the record types. You can define nested files with the FILE TYPE NESTED
command.

• Grouped files have several records per case, and a case’s records are grouped
together in a file. You can use DATA LIST and FILE TYPE GROUPED to define
grouped files.

• In a mixed file, different types of cases have different kinds of records. You can
define mixed files with the FILE TYPE MIXED command.

• A record in a repeating data file contains information for several cases. You can
use the REPEATING DATA command to define files with repeating data.

It is a good idea to read the descriptions of the FILE TYPE and REPEATING DATA
commands before proceeding.

 Rectangular File
Figure C.1 shows contents of data file RECTANG.DAT, which contains 1988 sales data
for salespeople working in different territories. Year, region, and unit sales are recorded
for each salesperson. Like most data files, the sales data file has a rectangular format,
since information on a record applies only to one case.

1704 Appendix C

Since the sales data are rectangular, you can use the DATA LIST command to define these
data:

DATA LIST FILE=’RECTANG.DAT’
 / YEAR 1-4
 REGION 6-16(A)
 SALESPER 18-26(A)
 SALES 29-31.

• DATA LIST defines the variable YEAR in columns 1 through 4 and string variable
REGION in columns 6 through 16 in file RECTANG.DAT. The program also reads
variables SALESPER and SALES on each record.

• The LIST output in Figure C.2 shows the contents of each variable.

Nested Files
In a nested file, information on some records applies to several cases. The 1988 sales
data are arranged in nested format in Figure C.3. The data contain three kinds of records.
A code in the first column indicates whether a record is a year (Y), region (R), or person
record (P).

Figure C.1 File RECTANG.DAT

1988 CHICAGO JONES 900
1988 CHICAGO GREGORY 400
1988 BATON ROUGE RODRIGUEZ 300
1988 BATON ROUGE SMITH 333
1988 BATON ROUGE GRAU 100

Figure C.2 LIST output for RECTANG.DAT
YEAR REGION SALESPER SALES

1988 CHICAGO JONES 900
1988 CHICAGO GREGORY 400
1988 BATON ROUGE RODRIGUEZ 300
1988 BATON ROUGE SMITH 333
1988 BATON ROUGE GRAU 100

Defining Complex Files 1705

The record types are related to each other hierarchically. Year records represent the
highest level in the hierarchy, since the year value 1988 applies to each salesperson in
the file (only one year record is used in this example). Region records are intermediate-
level records; region names apply to salesperson records that occur before the next
region record in the file. For example, Chicago applies to salespersons Jones and
Gregory. Baton Rouge applies to Rodriguez, Smith, and Grau. Person records represent
the lowest level in the hierarchy. The information they contain—salesperson and unit
sales—defines a case. Nested file structures minimize redundant information in a data
file. For example, 1988 and Baton Rouge appear several times in Figure C.1, but only
once in Figure C.3.

Since each record in the nested file has a code that indicates record type, you can use
the FILE TYPE and RECORD TYPE commands to define the nested sales data:

FILE TYPE NESTED FILE=’NESTED.DAT’ RECORD=#TYPE 1 (A)

RECORD TYPE ’Y’.
DATA LIST / YEAR 5-8.

RECORD TYPE ’R’.
DATA LIST / REGION 5-15 (A).

RECORD TYPE ’P’.
DATA LIST / SALESPER 5-15 (A) SALES 20-23

END FILE TYPE.

• FILE TYPE indicates that data are in nested form in the file NESTED.DAT.

• RECORD defines the record type variable as string variable #TYPE in column 1.
#TYPE is defined as scratch variable so it won’t be saved in the working data file.

• One pair of RECORD TYPE and DATA LIST statements is specified for each record
type in the file. The first pair of RECORD TYPE and DATA LIST statements defines the
variable YEAR in columns 5 through 8 on every year record. The second pair defines
the string variable REGION on region records. The final pair defines SALESPER and
SALES on person records.

Figure C.3 File NESTED.DAT

Y 1988
R CHICAGO
P JONES 900
P GREGORY 400
R BATON ROUGE
P RODRIGUEZ 300
P SMITH 333
P GRAU 100

1706 Appendix C

• The order of RECORD TYPE statements defines the hierarchical relationship among
the records. The first RECORD TYPE defines the highest-level record type. The next
RECORD TYPE defines the next highest level, and so forth. The last RECORD TYPE
defines a case in the working data file.

• END FILE TYPE signals the end of file definition.

• In processing nested data, the program reads each record type you define. Information
on the highest and intermediate-level records is spread to cases to which the informa-
tion applies. The output from the LIST command is identical to that in Figure C.2.

Nested Files with Missing Records
In a nested file, some cases may be missing one or more record types defined in
RECORD TYPE commands. For example, in Figure C.4 the region record for salesper-
sons Jones and Gregory is missing.

The program assigns missing values to variables that are not present for a case. Using
the modified NESTED.DAT file in Figure C.4, the commands in the previous example
produce the output shown in Figure C.5. You can see that the program assigned missing
values to REGION for Jones and Gregory.

You may want to examine cases with missing records, since these cases may indicate
data errors. If you add the MISSING=WARN subcommand to your FILE TYPE command,
the program prints a warning message when a case is missing a defined record type. For
example, the program would print two warnings when processing data in Figure C.4.
When MISSING is set to WARN, cases are built in the same way as when the default
setting (NOWARN) is in effect.

Figure C.4 NESTED.DAT file with missing records

Y 1988
P JONES 900
P GREGORY 400
R BATON ROUGE
P RODRIGUEZ 300
P SMITH 333
P GRAU 100

Figure C.5 LIST output for nested data with missing records
YEAR REGION SALESPER SALES

1988 JONES 900
1988 GREGORY 400
1988 BATON ROUGE RODRIGUEZ 300
1988 BATON ROUGE SMITH 333
1988 BATON ROUGE GRAU 100

Defining Complex Files 1707

Grouped Data
In a grouped file, a case has several records that are grouped together in the file. You can
use DATA LIST to define a grouped file if each case has the same number of records and
records appear in the same order for each case. You can use FILE TYPE GROUPED
whether the number of records per case and record order are fixed or vary. However,
FILE TYPE GROUPED requires that each record have a case identifier and a record code.

Using DATA LIST
Table C.1 shows the organization of a grouped data file containing school subject scores
for three students. Each student has three data records, and each record contains a score.
The first record for each student also contains a case identifier. Records for each case
are grouped together. Student 1 records appear first, followed by records for student 2
and student 3.

Record order determines whether a score is a reading, math, or science score. The
reading score appears on the first record for a case, the math score appears on the second
record, and the science score appears on the third record.

Since each case has the same number of records and record order is fixed across cases,
you can use DATA LIST to define the student data:

DATA LIST FILE=’GROUPED.DAT’ RECORDS=3
 /STUDENT 1 READING 5-6
 /MATH 5-6
 /SCIENCE 5-6.

LIST.

• DATA LIST indicates that data are in file GROUPED.DAT.

• RECORDS defines three records per case. The program reads student ID number
(STUDENT) and reading score (READING) in the first record for a case. Math and
science scores are read in the second and third records.

Table C.1 Data for GROUPED.DAT

Student Score

1 58
59
97

2 43
88
45

3 67
75
90

1708 Appendix C

• The output from the LIST command is shown in Figure C.6.

Using FILE TYPE GROUPED
To use FILE TYPE GROUPED to define a grouped file, each record must have a case
identifier and a record code. In the following commands, each data record contains a
student ID number coded 1, 2, or 3 and a code indicating whether the score on that
record is a reading (R), math (M), or science (S) score:

FILE TYPE GROUPED RECORD=#REC 3(A) CASE=STUDENT 1.

RECORD TYPE ’R’.
DATA LIST / READING 5-6.

RECORD TYPE ’M’.
DATA LIST / MATH 5-6.

RECORD TYPE ’S’.
DATA LIST / SCIENCE 5-6.

END FILE TYPE.

BEGIN DATA
1 R 58
1 M 59
1 S 97
2 R 43
2 M 88
2 S 45
3 R 67
3 M 75
3 S 90
END DATA.

LIST.

• FILE TYPE indicates that data are in grouped format. RECORD defines the variable
containing record codes as string variable #REC in column 3. CASE defines the case
identifier variable STUDENT in the first column of each record.

• One pair of RECORD TYPE and DATA LIST statements appears for each record type
in the file. The program reads reading score in every R record, math score in M
records, and science score in S records.

Figure C.6 LIST output for GROUPED.DAT
STUDENT READING MATH SCIENCE

 1 58 59 97
 2 43 88 45
 3 67 75 90

Defining Complex Files 1709

• END FILE TYPE signals the end of file definition.

• BEGIN DATA and END DATA indicate that data are inline.

• The output from LIST is identical to the output in Figure C.6.

FILE TYPE GROUPED is most useful when record order varies across cases and when
cases have missing or duplicate records. In the modified data shown in Table C.2, only
case 1 has all three record types. Also, record order varies across cases. For example, the
first record for case 1 is a science record, whereas the first record for cases 2 and 3 is a
reading record.

You can use the same FILE TYPE commands as above to read the modified file. As
shown in the output from LIST in Figure C.7, the program assigns missing values to vari-
ables that are missing for a case.

By default, the program generates a warning message when a case is missing a defined
record type in a grouped file or when a record is not in the same order as in RECORD
TYPE commands. Thus, four warnings are generated when the commands for the
previous example are used to read the modified GROUPED.DAT file. You can suppress
these warnings if you add the optional specifications MISSING=NOWARN and
ORDERED=NO on your FILE TYPE command.

In the modified GROUPED.DAT file, the case identifier STUDENT appears in the
same column position in each record. When the location of the case identifier varies for
different types of records, you can use the CASE option of the RECORD TYPE command
to specify different column positions for different records. For example, suppose the
case identifier appears in first column position on reading and science records and in col-
umn 2 in math records. You could use the following commands to define the data:

Table C.2 Modified grouped data file

Student Subject Score

1 S 97
1 R 58
1 M 59
2 R 43
3 R 67
3 M 75

Figure C.7 LIST output for modified GROUPED.DAT file
STUDENT READING MATH SCIENCE

 1 58 59 97
 2 43 . .
 3 67 75 .

1710 Appendix C

FILE TYPE GROUPED RECORD=#REC 3(A) CASE=STUDENT 1.

RECORD TYPE ’R’.
DATA LIST / READING 5-6.

RECORD TYPE ’M’ CASE=2.
DATA LIST / MATH 5-6.

RECORD TYPE ’S’.
DATA LIST / SCIENCE 5-6.

END FILE TYPE.

BEGIN DATA
1 S 97
1 R 58
 1M 59
2 R 43
3 R 67
 3M 75
END DATA.

LIST.

• FILE TYPE indicates that the data are in grouped format. RECORD defines the vari-
able containing record codes as string variable #REC. CASE defines the case identi-
fier variable as STUDENT in the first column of each record.

• One pair of RECORD TYPE and DATA LIST statements is coded for each record type
in the file.

• The CASE specification on the RECORD TYPE statement for math records overrides
the CASE value defined on FILE TYPE. Thus, the program reads STUDENT in
column 2 in math records and column 1 in other records.

• END FILE TYPE signals the end of file definition.

• BEGIN DATA and END DATA indicate that data are inline.

• The output from LIST is identical to that in Figure C.7.

Mixed Files
In a mixed file, different types of cases have different kinds of records. You can use FILE
TYPE MIXED to read each record or a subset of records in a mixed file.

Reading Each Record in a Mixed File
Table C.3 shows test data for two hypothetical elementary school students referred to a
remedial education teacher. Student 1, who was thought to need special reading atten-

Defining Complex Files 1711

tion, took reading tests (word identification and comprehension tests). The second
student completed writing tests (handwriting, spelling, vocabulary, and grammar tests).
Test code (READING or WRITING) indicates whether the record contains reading or
writing scores.

The following commands define the test data:

FILE TYPE MIXED RECORD=TEST 1-7(A).

RECORD TYPE ’READING’.
DATA LIST / ID 9-10 GRADE 12-13 WORD 15-16 COMPRE 18-19.

RECORD TYPE ’WRITING’.
DATA LIST / ID 9-10 GRADE 12-13 HANDWRIT 15-16 SPELLING 18-19
 VOCAB 21-22 GRAMMAR 24-25.
END FILE TYPE.

BEGIN DATA
READING 1 04 65 35
WRITING 2 03 50 55 30 25
END DATA.

LIST.

• FILE TYPE specifies that the data contain mixed record types. RECORD reads the
record identifier (variable TEST) in columns 1 through 7.

• One pair of RECORD TYPE and DATA LIST statements is coded for each record type in
the file. The program reads variables ID, GRADE, WORD, and COMPRE in the record
in which the value of TEST is READING, and ID, GRADE, HANDWRIT, SPELLING,
VOCAB, and GRAMMAR in the WRITING record.

• END FILE TYPE signals the end of file definition.

• BEGIN DATA and END DATA indicate that data are inline. Data are mixed, since some
column positions contain different variables for the two cases. For example, word
identification score is recorded in columns 15 and 16 for student 1. For student 2,
handwriting score is recorded in these columns.

Table C.3 Academic test data for two students

Student 1

Test ID Grade Word Compre

READING 1 04 65 35

Student 2

Test ID Grade Handwrit Spelling Vocab Grammar

WRITING 2 03 50 55 30 25

1712 Appendix C

• Figure C.8 shows the output from LIST. Missing values are assigned for variables that
are not recorded for a case.

Reading a Subset of Records in a Mixed File
You may want to process a subset of records in a mixed file. The following commands
read only the data for the student who took reading tests:

FILE TYPE MIXED RECORD=TEST 1-7(A).

RECORD TYPE ’READING’.
DATA LIST / ID 9-10
 GRADE 12-13
 WORD 15-16
 COMPRE 18-19.

RECORD TYPE ’WRITING’.
DATA LIST / ID 9-10
 GRADE 12-13
 HANDWRIT 15-16
 SPELLING 18-19
 VOCAB 21-22
 GRAMMAR 24-25.

END FILE TYPE.

BEGIN DATA
READING 1 04 65 35
WRITING 2 03 50 55 30 25
END DATA.

LIST.

• FILE TYPE specifies that data contain mixed record types. RECORD defines the
record identification variable as TEST in columns 1 through 7.

• RECORD TYPE defines variables on reading records. Since the program skips all
record types that are not defined by default, the case with writing scores is not read.

• END FILE TYPE signals the end of file definition.

• BEGIN DATA and END DATA indicate that data are inline. Data are identical to those
in the previous example.

• Figure C.9 shows the output from LIST.

Figure C.8 LIST output for mixed file
TEST ID GRADE WORD COMPRE HANDWRIT SPELLING VOCAB GRAMMAR

READING 1 4 65 35
WRITING 2 3 . . 50 55 30 25

Defining Complex Files 1713

Repeating Data
You can use the REPEATING DATA command to read files in which each record contains
repeating groups of variables that define several cases. Command syntax depends on
whether the number of repeating groups is fixed across records.

Fixed Number of Repeating Groups
Table C.4 shows test score data for students in three classrooms. Each record contains a
classroom number and two pairs of student ID and test score variables. For example, in
class 101, student 182 has a score of 12 and student 134 has a score of 53. In class 103,
student 15 has a score of 87 and student 203 has a score of 69. Each pair of ID and score
variables is a repeating group, since these variables appear twice on each record.

The following commands generate a working data file in which one case is built for each
occurrence of SCORE and ID, and classroom number is spread to each case on a record.

INPUT PROGRAM.
DATA LIST / CLASS 3-5.
REPEATING DATA STARTS=6 / OCCURS=2
 /DATA STUDENT 1-4 SCORE 5-8.
END INPUT PROGRAM.

BEGIN DATA
 101 182 12 134 53
 102 99 112 200 150
 103 15 87 203 69
END DATA.

LIST.

• INPUT PROGRAM signals the beginning of data definition.

• DATA LIST defines variable CLASS, which is spread to each student on a classroom
record.

Table C.4 Data in REPEAT.DAT file

Class ID Score ID Score

101 182 12 134 53
102 99 112 200 150
103 15 87 203 69

Figure C.9 LIST output for reading record
TEST ID GRADE WORD COMPRE

READING 1 4 65 35

1714 Appendix C

• REPEATING DATA specifies that the input file contains repeating data. STARTS indi-
cates that repeating data begin in column 6. OCCURS specifies that the repeating data
group occurs twice in each record.

• DATA defines variables that are repeated (STUDENT and SCORE). The program
begins reading the first repeating data group in column 6 (the value of STARTS).
Since the value of OCCURS is 2, the program reads the repeating variables a second
time, beginning in the next available column (column 14).

• END INPUT PROGRAM signals the end of data definition.

• BEGIN DATA and END DATA specify that data are inline.

• The output from LIST is shown in Figure C.10. Each student is a separate case.

Varying Number of Repeating Groups
To use REPEATING DATA to define a file in which the number of repeating data groups
varies across records, your data must contain a variable indicating the number of
repeating data groups on a record. The following commands define such a file:

INPUT PROGRAM.
DATA LIST / #NUM 1 CLASS 3-5.
REPEATING DATA STARTS=6 / OCCURS=#NUM
 /DATA STUDENT 1-4 SCORE 5-8.
END INPUT PROGRAM.

BEGIN DATA
3 101 182 12 134 53 199 30
2 102 99 112 200 150
1 103 15 87
END DATA.

LIST.

• INPUT PROGRAM signals the beginning of data definition.

• DATA LIST defines variables CLASS in columns 3 through 5 and #NUM, a scratch
variable in column 1 that contains the number of repeating data groups in a record.

• REPEATING DATA specifies that the input file contains repeating data. STARTS indi-
cates that repeating data begin in column 6. OCCURS sets the number of repeating
groups on a record equal to the value of #NUM.

Figure C.10 LIST output for repeating data
CLASS STUDENT SCORE

 101 182 12
 101 134 53
 102 99 112
 102 200 150
 103 15 87
 103 203 69

Defining Complex Files 1715

• DATA defines variables that are repeated. Since #NUM is 3 in the first and third
records, the program reads three sets of STUDENT and SCORE variables in these
records. STUDENT and SCORE are read twice in record 2.

• END INPUT PROGRAM signals the end of data definition.

• Data appear between BEGIN DATA and END DATA.

• Figure C.11 shows the output from LIST.

If your data file does not have a variable indicating the number of repeating data groups
per record, you can use the LOOP and REREAD commands to read the data, as in:

INPUT PROGRAM.
DATA LIST / CLASS 3-5 #ALL 6-29 (A).
LEAVE CLASS.

LOOP #I = 1 TO 17 BY 8 IF SUBSTR(#ALL, #I, 8) NE ’’.
- REREAD COLUMN = #I + 5.
- DATA LIST / STUDENT 1-4 SCORE 5-8.
- END CASE.
END LOOP.
END INPUT PROGRAM.

BEGIN DATA
 101 182 12 134 53 199 30
 102 99 112 200 150
 103 15 87
END DATA.

LIST.

• INPUT PROGRAM signals the beginning of data definition.

• DATA LIST reads CLASS and #ALL, a temporary string variable that contains all of
the repeating data groups for a classroom record. The column specifications for #ALL
(6 through 29) are wide enough to accommodate the classroom record with the most
repeating data groups (record 1).

• LOOP and END LOOP define an index loop. As the loop iterates, the program succes-
sively reads eight-character segments of #ALL, each of which contains a repeating
data group or an empty field. The program reads the first eight characters of #ALL in
the first iteration, the second eight characters in the second iteration, and so forth.

Figure C.11 LIST output
CLASS STUDENT SCORE

 101 182 12
 101 134 53
 101 199 30
 102 99 112
 103 15 87

1716 Appendix C

The loop terminates when the program encounters an empty segment, which means
that there are no more repeating data groups on a record.

• In each iteration of the loop in which an #ALL segment is not empty, DATA LIST reads
STUDENT and SCORE in a classroom record. The program begins reading these
variables in the first record, in the starting column specified by REREAD COLUMN.
For example, in the first iteration, the program reads STUDENT and SCORE begin-
ning in column 6. In the second iteration, the program reads STUDENT and SCORE
starting in column 14 of the same record. When all repeating groups have been read
for a record, loop processing begins on the following record.

• END CASE creates a new case for each repeating group.

• REREAD causes DATA LIST to read repeating data groups in the same record in which
it last read CLASS. Without REREAD, each execution of DATA LIST would begin on
a different record.

• LEAVE preserves the value of CLASS across the repeating data groups on a record.
Thus, the same class number is read for each student on a classroom record.

• INPUT PROGRAM signals the beginning of data definition.

• BEGIN DATA and END DATA indicate that the data are inline. The data are identical
to those in the previous example except that they do not contain a variable indicating
the number of repeating groups per record.

• These commands generate the same output as shown in Figure C.11.

1717

Appendix D
Using the Macro Facility

A macro is a set of commands that generates customized command syntax. Using
macros can reduce the time and effort needed to perform complex and repetitive data
analysis tasks.

Macros have two parts: a macro definition, which indicates the beginning and end
of the macro and gives a name to the macro, and a macro body, which contains regular
commands or macro commands that build command syntax. When a macro is invoked
by the macro call, syntax is generated in a process called macro expansion. Then the
generated syntax is executed as part of the normal command sequence.

This chapter shows how to construct macros that perform three data analysis tasks. In
the first example, macros facilitate a file-matching task. In Example 2, macros automate
a specialized statistical operation (testing a sample correlation coefficient against a non-
zero population correlation coefficient). Macros in Example 3 generate random data. As
shown in Table D.1, each example demonstrates various features of the macro facility.
For information on specific macro commands, see the DEFINE command.

Table D.1 Macro features

Example 1 Example 2 Example 3

Macro argument

 Keyword x x x

 Default values x x

 None x x

String manipulation x x

Looping

 Index x x

 List processing x

Direct assignment x x

1718 Appendix D

Example 1: Automating a File-Matching Task
Figure D.1 shows a listing of 1988 sales data for salespeople working in different
regions. The listing shows that salesperson Jones sold 900 units in the Chicago sales
territory, while Rodriguez sold 300 units in Baton Rouge.

You can use command syntax shown in Figure D.2 to obtain each salesperson’s percent-
age of total sales for their region.

• The GET command opens SALES88.SAV, an SPSS-format data file. This file
becomes the working data file.

• SORT CASES sorts the working data file in ascending alphabetical order by REGION.

• The AGGREGATE command saves total sales (variable TOTAL@) for each region in
file TOTALS.SAV.

• MATCH FILES appends the regional totals to each salesperson’s record in the working
data file. (See the MATCH FILES command for more information on matching files.)

• COMPUTE obtains the percentage of regional sales (PCT) for each salesperson.

Figure D.1 Listing of data file SALES88.SAV
YEAR REGION SALESPER SALES

1988 CHICAGO JONES 900
1988 CHICAGO GREGORY 400
1988 BATON ROUGE RODRIGUEZ 300
1988 BATON ROUGE SMITH 333
1988 BATON ROUGE GRAU 100

Figure D.2 Commands for obtaining sales percentages

GET FILE = ’SALES88.SAV’.

SORT CASES BY REGION.

AGGREGATE OUTFILE = ’TOTALS.SAV’
 /PRESORTED
 /BREAK = REGION
 /TOTAL@ = SUM(SALES).

MATCH FILES FILE=*
 /TABLE = ’TOTALS.SAV’
 /BY REGION.

COMPUTE PCT = 100 * SALES / TOTAL@.

TITLE 1988 DATA.
LIST.

Using the Macro Facility 1719

• The LIST command output displayed in Figure D.3 shows that Rodriguez sold 41% of
the products sold in Baton Rouge. Gregory accounted for 31% of sales in the Chicago
area.

Figure D.4 shows a macro that issues the commands in Figure D.2. The macro consists
of the commands that produce sales percentages imbedded between macro definition
commands DEFINE and !ENDDEFINE.

• In Figure D.4, macro definition commands DEFINE and !ENDDEFINE signal the begin-
ning and end of macro processing. DEFINE also assigns the name !TOTMAC to the
macro (the parentheses following the name of the macro are required). The macro name
begins with an exclamation point so that the macro does not conflict with that of an
existing variable or command. Otherwise, if the macro name matched a variable name,
the variable name would invoke the macro whenever the variable name appeared in the
command stream.

Figure D.3 Regional sales percentages for 1988
YEAR REGION SALESPER SALES TOTAL@ PCT

1988 BATON ROUGE RODRIGUEZ 300 733.00 41.00
1988 BATON ROUGE SMITH 333 733.00 45.00
1988 BATON ROUGE GRAU 100 733.00 14.00
1988 CHICAGO JONES 900 1300.00 69.00
1988 CHICAGO GREGORY 400 1300.00 31.00

Figure D.4 !TOTMAC macro

DEFINE !TOTMAC ().

GET FILE = ’SALES88.SAV’.

SORT CASES BY REGION.

AGGREGATE OUTFILE = ’TOTALS.SAV’
 /PRESORTED
 /BREAK = REGION
 /TOTAL@ = SUM(SALES).

MATCH FILES FILE = *
 /TABLE = ’TOTALS.SAV’
 /BY REGION.

COMPUTE PCT = 100 * SALES / TOTAL@.

TITLE 1988 DATA.
LIST.

!ENDDEFINE.

!TOTMAC.

1720 Appendix D

• Commands between DEFINE and !ENDDEFINE constitute the macro body. These
commands, which produce sales percentages, are identical to the commands in
Figure D.2.

• The final statement in Figure D.4 (!TOTMAC) is the macro call, which invokes the
macro. When the program reads the macro call, it issues the commands in the macro
body. Then these commands are executed, generating output that is identical to that in
Figure D.3.

While the macro in Figure D.4 shows you how to construct a simple macro, it doesn’t
reduce the number of commands needed to calculate regional percentages. However,
you can use macro features such as looping to minimize coding in more complicated
tasks. For example, let’s say that in addition to the 1988 data, you have sales data for
1989 (SALES89.SAV), and each file contains the variables REGION, SALESPER, and
SALES. The modified !TOTMAC macro in Figure D.5 calculates regional sales percent-
ages for each salesperson for 1988 and 1989.

• In Figure D.5, DEFINE and !ENDDEFINE signal the beginning and end of macro
processing.

• Commands !DO and !DOEND define an index loop. Commands between !DO and
!DOEND are issued once in each iteration of the loop. The value of index variable !I,
which changes in each iteration, is 88 in the first iteration and 89 in the second (final)
iteration.

Figure D.5 !TOTMAC macro with index loop

DEFINE !TOTMAC ().

!DO !I = 88 !TO 89.

- GET FILE = !CONCAT(’SALES’, !I, ’.SAV’).
- SORT CASES BY REGION.
- AGGREGATE OUTFILE = ’TOTALS.SAV’
 /PRESORTED
 /BREAK = REGION
 /TOTAL@ = SUM(SALES).
- MATCH FILES FILE = *
 /TABLE = ’TOTALS.SAV’
 /BY REGION.
- COMPUTE PCT= 100 * SALES / TOTAL@.

- !LET !YEAR = !CONCAT(’19’,!I).
- TITLE !YEAR DATA.
- LIST.
!DOEND.

!ENDDEFINE.

!TOTMAC.

Using the Macro Facility 1721

• In each iteration of the loop, the GET command opens an SPSS-format data file. The
name of the file is constructed using the string manipulation function !CONCAT,
which creates a string that is the concatenation of SALES, the value of the index vari-
able, and .SAV. Thus the file SALES88.SAV is opened in the first iteration.

• Commands between AGGREGATE and COMPUTE calculate percentages on the
working data file. These commands are identical to those in Figure D.4.

• Next, a customized title is created. In the first iteration, the direct assignment
command !LET assigns a value of 1988 to the macro variable !YEAR. This variable is
used in the TITLE command on the following line to specify a title of 1988 DATA.

• The LIST command displays the contents of each variable.

• In the second iteration of the loop, commands display percentages for the 1989 data
file. The output from the !TOTMAC macro is shown in Figure D.6. Note that the listing
for 1988 data is the same as in Figure D.3.

Let’s look at another application of the !TOTMAC macro, one that uses keyword arguments
to make the application more flexible. Figure D.7 shows the number of absences for students
in two classrooms. Let’s say you want to calculate deviation scores indicating how many
more (or fewer) times a student was absent than the average student in his or her classroom.
The first step in obtaining deviation scores is to compute the average number of absences per
classroom. We can use the !TOTMAC macro to compute classroom means by modifying the
macro so that it computes means and uses the absences data file (SCHOOL.SAV) as input.

Figure D.6 Regional sales percentages for 1988 and 1989
1988 DATA

YEAR REGION SALESPER SALES TOTAL@ PCT

1988 BATON ROUGE RODRIGUEZ 300 733.00 41.00
1988 BATON ROUGE SMITH 333 733.00 45.00
1988 BATON ROUGE GRAU 100 733.00 14.00
1988 CHICAGO JONES 900 1300.00 69.00
1988 CHICAGO GREGORY 400 1300.00 31.00

1989 DATA

YEAR REGION SALESPER SALES TOTAL@ PCT
1989 BATON ROUGE GRAU 320 1459.00 22.00
1989 BATON ROUGE SMITH 800 1459.00 55.00
1989 BATON ROUGE RODRIGUEZ 339 1459.00 23.00
1989 CHICAGO JONES 300 1439.00 21.00
1989 CHICAGO STEEL 899 1439.00 62.00
1989 CHICAGO GREGORY 240 1439.00 17.00

1722 Appendix D

The !TOTMAC macro in Figure D.8 can produce a variety of group summary statistics
such as sum, mean, and standard deviation for any SPSS-format data file. In the macro
call you specify values of keyword arguments indicating the data file (FILE), the break
(grouping) variable (BREAKVR), the summary function (FUNC), and the variable to be
used as input to the summary function (INVAR). For example, to obtain mean absences
for each classroom, we specify SCHOOL.SAV as the data file, CLASS as the break vari-
able, MEAN as the summary function, and ABSENT as the variable whose values are to
be averaged.

Figure D.7 Listing of file SCHOOL.SAV
CLASS STUDENT ABSENT

 101 BARRY G 3
 101 JENNI W 1
 101 ED F 2
 101 JOHN 0 8
 102 PAUL Y 2
 102 AMY G 3
 102 JOHN D 12
 102 RICH H 4

Figure D.8 !TOTMAC macro with keyword arguments

DEFINE !TOTMAC (BREAKVR = !TOKENS(1)
 /FUNC = !TOKENS(1)
 /INVAR = !TOKENS(1)
 /TEMP = !TOKENS(1) !DEFAULT(TOTALS.SAV)
 /FILE = !CMDEND).
GET FILE = !FILE.
SORT CASES BY !BREAKVR.
AGGREGATE OUTFILE = ’!TEMP’
 /PRESORTED
 /BREAK = !BREAKVR
 /!CONCAT(!FUNC,’@’) = !FUNC(!INVAR).

MATCH FILES FILE = *
 /TABLE = ’!TEMP’
 /BY !BREAKVR.

!ENDDEFINE.

!TOTMAC BREAKVR=CLASS FUNC=MEAN INVAR=ABSENT FILE=SCHOOL.SAV.

COMPUTE DIFF = ABSENT-MEAN@.

LIST.

!TOTMAC BREAKVR=REGION FUNC=SUM INVAR=SALES FILE=SALES89.SAV.

COMPUTE PCT = 100 * SALES / SUM@.

LIST.

Using the Macro Facility 1723

• In Figure D.8, the syntax for declaring keyword arguments follows the name of the
macro in DEFINE.

• !TOKENS(1) specifies that the value of an argument is a string following the name of
the argument in the macro call. Thus the first macro call specifies CLASS as the value
of BREAKVR, MEAN as the value of FUNC, and ABSENT as the value of INVAR.

• !CMDEND indicates that the value for FILE is the remaining text in the macro call
(SCHOOL.SAV).

• TEMP is an optional argument that names an intermediate file to contain the summary
statistics. Since TEMP is not assigned a value in the macro call, summary statistics are
written to the default intermediate file (TOTALS.SAV).

• In the body of the macro, GET FILE opens SCHOOL.SAV.

• SORT CASES sorts the file by CLASS.

• AGGREGATE computes the mean number of absences for each class. The name of the
variable containing the means (MEAN@) is constructed using the !CONCAT function,
which concatenates the value of FUNC and the @ symbol.

• MATCH FILES appends the means to student records.

• COMPUTE calculates the deviation from the classroom mean for each student (variable
DIFF).

• LIST displays the deviation scores, as shown in Figure D.9. For example, John D., who
was absent 12 times, had 6.75 more absences than the average student in classroom
102. Rich H., who was absent 4 times, had 1.25 fewer absences than the average student
in classroom 102.

• The second macro call and remaining commands in Figure D.8 generate regional sales
percentages for the 1989 sales data. As shown in Figure D.9, percentages are identical
to those displayed in the bottom half of Figure D.6.

Figure D.9 Student absences and 1989 sales percentages
CLASS STUDENT ABSENT MEAN@ DIFF

 101 BARRY G 3 3.50 -.50
 101 JENNI W 1 3.50 -2.50
 101 ED F 2 3.50 -1.50
 101 JOHN 0 8 3.50 4.50
 102 PAUL Y 2 5.25 -3.25
 102 AMY G 3 5.25 -2.25
 102 JOHN D 12 5.25 6.75
 102 RICH H 4 5.25 -1.25

 YEAR REGION SALESPER SALES SUM@ PCT

 1989 BATON ROUGE GRAU 320 1459.00 22.00
 1989 BATON ROUGE SMITH 800 1459.00 55.00
 1989 BATON ROUGE RODRIGUEZ 339 1459.00 23.00
 1989 CHICAGO JONES 300 1439.00 21.00
 1989 CHICAGO STEEL 899 1439.00 62.00
 1989 CHICAGO GREGORY 240 1439.00 17.00

1724 Appendix D

You can modify the macro call in Figure D.8 to specify a different data file, input vari-
able, break variable, or summary statistic. To get a different summary statistic (such as
standard deviation), change the value of FUNC (see the AGGREGATE command for
more information on summary functions available in the AGGREGATE procedure).

Example 2: Testing Correlation Coefficients
While the program provides a large variety of statistical procedures, some specialized
operations require the use of COMPUTE statements. For example, you may want to test
a sample correlation coefficient against a population correlation coefficient. When the
population coefficient is nonzero, you can compute a Z statistic to test the hypothesis
that the sample and population values are equal (Morrison, 1976). The formula for Z is

where r is the sample correlation coefficient, p0 is the population coefficient, n is the size
of the sample from which r is obtained, and ln signifies the natural logarithm function.
Z has approximately the standard normal distribution.

Let’s say you want to test an r of 0.66 obtained from a sample of 30 cases against a
population coefficient of 0.85. Figure D.10 shows commands for displaying Z and its
two-tailed probability.

• DATA LIST defines variables containing the sample correlation coefficient (R), sample
size (N), and population correlation coefficient (P).

• BEGIN DATA and END DATA indicate that data are inline.

Z

0.5 1 r+()
1 r–()

----------------ln 0.5
1 p0+()
1 p0–()

-------------------ln–

1 n 3–()⁄
---=

Figure D.10 Commands for computing Z statistic

DATA LIST FREE / R N P.

BEGIN DATA
.66 30 .85
END DATA.

COMPUTE #ZR = .5* (LN ((1 + R) / (1 - R))).
COMPUTE #ZP = .5* (LN ((1 + P) / (1 - P))).

COMPUTE Z = (#ZR-#ZP)/(1/(SQRT(N-3))).
COMPUTE PROB = 2*(1-CDFNORM(ABS(Z))).

FORMAT PROB (F8.3).
LIST.

Using the Macro Facility 1725

• COMPUTE statements calculate Z and its probability. Variables #ZR and #ZP are
scratch variables used in the intermediate steps of the calculation.

• The LIST command output is shown in Figure D.11. Since the absolute value of Z is
large and the probability is small, we reject the hypothesis that the sample was drawn
from a population having a correlation coefficient of 0.85.

If you use the Z test frequently, you may want to construct a macro like that shown in
Figure D.12. The !CORRTST macro computes Z and probability values for a sample
correlation coefficient, sample size, and population coefficient specified as values of
keyword arguments.

• DEFINE names the macro as !CORRTST and declares arguments for the sample corre-
lation coefficient (R), the sample size (N), and the population correlation coefficient (P).

Figure D.11 Z statistic and its probability
 R N P Z PROB

 .66 30.00 .85 -2.41 .016

Figure D.12 !CORRTST macro

DEFINE !CORRTST (R = !TOKENS(1)
 /N = !TOKENS(1)
 /P = !TOKENS(1)).

INPUT PROGRAM.
- END CASE.
- END FILE.
END INPUT PROGRAM.

COMPUTE #ZR = .5* (LN ((1 + !R) / (1 - !R))).
COMPUTE #ZP = .5* (LN ((1 + !P) / (1 - !P))).

COMPUTE Z = (#ZR-#ZP) / (1/(SQRT(!N-3))).
COMPUTE PROB = 2*(1-CDFNORM(ABS(Z))).
FORMAT PROB(F8.3).

TITLE SAMPLE R=!R, N=!N, POPULATION COEFFICIENT=!P.

LIST.

!ENDDEFINE.

!CORRTST R=.66 N=30 P=.85.
!CORRTST R=.50 N=50 P=.85.

1726 Appendix D

• !TOKENS(1) specifies that the value of an argument is a string that follows the name of
the argument in the macro call. Thus the first macro call specifies values of 0.66, 30,
and 0.85 for R, N, and P.

• Commands between INPUT PROGRAM and END INPUT PROGRAM create a working
data file with one case. COMPUTE statements calculate the Z statistic and its proba-
bility using the values of macro arguments R, N, and P. (INPUT PROGRAM commands
would not be needed if COMPUTE statements operated on values in an existing file or
inline data, rather than macro arguments.)

• A customized TITLE shows displays the values of macro arguments used in
computing Z.

• The LIST command displays Z and its probability.

• The !CORRTST macro is called twice in Figure D.12. The first invocation tests an r of
0.66 from a sample of 30 cases against a population coefficient of 0.85 (this generates
the same Z value and probability as in Figure D.11). The second macro call tests an r
of 0.50 from a sample of 50 cases against the same population correlation coefficient.
The output from these macro calls is shown in Figure D.13.

Figure D.14 shows a modified !CORRTST macro that you can use to test a sample r
against each coefficient in a list of population coefficients.

Figure D.13 Output from !CORRTST
SAMPLE R= .66 , N= 30 , POPULATION COEFFICIENT= .85

 Z PROB

 -2.41 .016

SAMPLE R= .50 , N= 50 , POPULATION COEFFICIENT= .85

 Z PROB

 -4.85 .000

Using the Macro Facility 1727

• As in Figure D.12, DEFINE names the macro as !CORRTST and declares arguments for
the sample correlation coefficient (R), the sample size (N), and the population correla-
tion coefficient (P).

• !TOKENS(1) specifies that the value of an argument is a string that follows the name of
the argument in the macro call. Thus, the macro call specifies the value of R as 0.66 and
N as 0.30.

• !CMDEND indicates that the value for P is the remaining text in the macro call. Thus
the value of P is a list containing the elements 0.20, 0.40, 0.60, 0.80, 0.85, and 0.90.

• Commands !DO !IN and !DOEND define a list-processing loop. Commands in the loop
compute one Z statistic for each element in the list of population coefficients. For
example, in the first iteration Z is computed using 0.20 as the population coefficient. In
the second iteration 0.40 is used. The same sample size (30) and r value (0.66) are used
for each Z statistic.

• The output from the macro call is shown in Figure D.15. One Z statistic is displayed for
each population coefficient.

Figure D.14 !CORRTST macro with list-processing loop

DEFINE !CORRTST (R = !TOKENS(1)
 /N = !TOKENS(1)
 /P = !CMDEND).
- INPUT PROGRAM.
- END CASE.
- END FILE.
- END INPUT PROGRAM.

!DO !I !IN (!P).
- COMPUTE #ZR = .5* (LN ((1 + !R) / (1 - !R))).
- COMPUTE #ZP = .5* (LN ((1 + !I) / (1 - !I))).

- COMPUTE Z = (#ZR-#ZP)/(1/(SQRT(!N-3))).

- COMPUTE PROB=2*(1-CDFNORM(ABS(Z))).
- FORMAT PROB(F8.3).
- TITLE SAMPLE R=!R, N=!N, POPULATION COEFFICIENT=!I.
- LIST.
!DOEND.

!ENDDEFINE.

!CORRTST R=.66 N=30 P=.20 .40 .60 .80 .85 .90.

1728 Appendix D

Example 3: Generating Random Data
You can use command syntax to generate variables that have approximately a normal
distribution. Commands for generating five standard normal variables (X1 through X5)
for 1000 cases are shown in Figure D.16. As shown in the output in Figure D.17, each
variable has a mean of approximately 0 and a standard deviation of approximately 1.

Figure D.15 Output from modified !CORRTST macro
SAMPLE R= .66 , N= 30 , POPULATION COEFFICIENT= .20

 Z PROB
 3.07 .002

SAMPLE R= .66 , N= 30 , POPULATION COEFFICIENT= .40

 Z PROB
 1.92 .055

SAMPLE R= .66 , N= 30 , POPULATION COEFFICIENT= .60

 Z PROB
 .52 .605

SAMPLE R= .66 , N= 30 , POPULATION COEFFICIENT= .80

 Z PROB
 -1.59 .112

SAMPLE R= .66 , N= 30 , POPULATION COEFFICIENT= .85

 Z PROB
 -2.41 .016

SAMPLE R= .66 , N= 30 , POPULATION COEFFICIENT= .90

 Z PROB
 -3.53 .000

Figure D.16 Data-generating commands

INPUT PROGRAM.
- VECTOR X(5).
- LOOP #I = 1 TO 1000.
- LOOP #J = 1 TO 5.
- COMPUTE X(#J) = NORMAL(1).
- END LOOP.
- END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.

DESCRIPTIVES VARIABLES X1 TO X5.

Using the Macro Facility 1729

The !DATAGEN macro in Figure D.18 issues the data-generating commands shown in
Figure D.16.

In Figure D.18, data-generating commands are imbedded between macro definition
commands. The macro produces the same data and descriptive statistics as shown in
Figure D.17.

You can tailor the generation of normally distributed variables if you modify the
!DATAGEN macro so it will accept keyword arguments, as in Figure D.19. The macro
allows you to specify the number of variables and cases to be generated and the approx-
imate standard deviation.

Figure D.17 Descriptive statistics for generated data
 Valid
Variable Mean Std Dev Minimum Maximum N Label

X1 -.01 1.02 -3.11 4.15 1000
X2 .08 1.03 -3.19 3.22 1000
X3 .02 1.00 -3.01 3.51 1000
X4 .03 1.00 -3.35 3.19 1000
X5 -.01 .96 -3.34 2.91 1000

Figure D.18 !DATAGEN macro

DEFINE !DATAGEN ().

INPUT PROGRAM.
- VECTOR X(5).
- LOOP #I = 1 TO 1000.
- LOOP #J = 1 TO 5.
- COMPUTE X(#J) = NORMAL(1).
- END LOOP.
- END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.

DESCRIPTIVES VARIABLES X1 TO X5.

!ENDDEFINE.

!DATAGEN.

1730 Appendix D

• The DEFINE statement in Figure D.19 declares arguments that specify the number of
cases (OBS), variables (VARS), and standard deviation (SD). By default, the macro
creates 1000 cases with 5 variables that have a standard deviation of 1.

• Commands between INPUT PROGRAM and END INPUT PROGRAM generate the new
data using values of the macro arguments.

• Commands !LET and !DO/!DOEND construct a variable list (!LIST) that is used in
DESCRIPTIVES. The first !LET command initializes the list to a null (blank) string
value. For each new variable, the index loop adds to the list a string of the form X1,
X2, X3, and so forth. Thus, DESCRIPTIVES requests means and standard deviations
for each new variable.

• The first macro call generates 500 cases with two standard normal variables. The
second call requests the default number of variables, cases, and standard deviation.
Descriptive statistics (not shown) are also computed for each variable.

As shown in Figure D.20, you can declare additional keyword arguments that allow you
to specify the distribution (normal or uniform) of the generated data and a parameter val-
ue that is used as the standard deviation (for normally distributed data) or a range (for
uniformly distributed data).

Figure D.19 !DATAGEN macro with keyword arguments

DEFINE !DATAGEN (OBS =!TOKENS(1) !DEFAULT(1000)
 /VARS =!TOKENS(1) !DEFAULT(5)
 /SD =!CMDEND !DEFAULT(1)).
INPUT PROGRAM.
- VECTOR X(!VARS).
- LOOP #I = 1 TO !OBS.
- LOOP #J = 1 TO !VARS.
- COMPUTE X(#J) = NORMAL(!SD).
- END LOOP.
- END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.

!LET !LIST = !NULL.
!DO !I = 1 !TO !VARS.
- !LET !LIST = !CONCAT(!LIST, ‘ ‘, X, !I).
!DOEND.

DESCRIPTIVES VARIABLES !LIST.

!ENDDEFINE.

!DATAGEN OBS=500 VARS=2 SD=1.
!DATAGEN.

Using the Macro Facility 1731

• The DEFINE statement in Figure D.20 declares arguments OBS, VARS, DIST, and
PARAM. As in Figure D.19, OBS and VARS represent the number of observations and
cases to be generated. Arguments DIST and PARAM specify the shape and parameter of
the distribution of generated data. By default, the macro generates 1000 observations
with 5 standard normal variables.

• Statements between INPUT PROGRAM and END INPUT PROGRAM generate the new
data using values of macro arguments.

• Remaining commands in the body of the macro obtain descriptive statistics for gener-
ated variables, as in Figure D.19.

• The macro call in Figure D.20 creates two approximately uniformly distributed vari-
ables with a range of 2. The output from the macro call is shown in Figure D.21.

Figure D.20 !DATAGEN macro with additional keyword arguments

DEFINE !DATAGEN (OBS =!TOKENS(1) !DEFAULT(1000)
 /VARS =!TOKENS(1) !DEFAULT(5)
 /DIST =!TOKENS(1) !DEFAULT(NORMAL)
 /PARAM =!TOKENS(1) !DEFAULT(1)).
INPUT PROGRAM.
- VECTOR X(!VARS).
- LOOP #I = 1 TO !OBS.
- LOOP #J = 1 TO !VARS.
- COMPUTE X(#J) = !DIST(!PARAM).
- END LOOP.
- END CASE.
- END LOOP.
- END FILE.
END INPUT PROGRAM.

!LET !LIST = !NULL.
!DO !I = 1 !TO !VARS.
- !LET !LIST = !CONCAT(!LIST, ’ ’, X, !I).
!DOEND.

DESCRIPTIVES VARIABLES !LIST.
!ENDDEFINE.

!DATAGEN OBS=500 VARS=2 DIST=UNIFORM PARAM=2.

Figure D.21 Descriptive statistics for uniform variables
 Valid
Variable Mean Std Dev Minimum Maximum N Label

X1 .99 .57 .00 2.00 500
X2 1.00 .57 .00 2.00 500

1733

Appendix A
Trends Options: Special
Considerations

Most of the rules described in the Universals section apply to Trends. This section
explains some areas that are unique to working with Trends. The topics are divided into
five sections:

• Operations discusses general operating rules, missing values in Trends, and how to
control the quantity of output using TSET.

• New Variables describes the types of series generated by Trends procedures and their
naming conventions.

• Periodicity describes the facilities for specifying the periodicity of your series.

• APPLY Subcommand discusses the models generated by Trends procedures and how
to use the APPLY subcommand as a shorthand method for developing and modifying
models.

Operations
There are a few general operating rules you should be aware of when working with
Trends:

• A pass of the data is caused by every Trends command except the following: MODEL
NAME, READ MODEL, SAVE MODEL, and TDISPLAY.

• Except when you apply a previous model with the APPLY subcommand, subcom-
mands are in effect only for the current procedure.

• Whenever a subcommand of a procedure performs the same function as a TSET
setting, the procedure subcommand, if specified, overrides TSET.

1734 Appendix A

Missing Values

Since time series observations occur at equally spaced intervals and are thus sequen-
tially related in the data file, missing values in a series can present unique problems.
There are several ways missing values are handled in Trends.

• In procedures AREG (method ML) and ARIMA, missing values are allowed anywhere
in the series and present no problems in estimating parameters but do require extra
processing time. AREG methods CO and PW can handle series that have missing values
at the beginning or end of the series by dropping those observations but cannot handle
series with imbedded missing values.

• Procedures EXSMOOTH, SEASON, and SPECTRA cannot handle missing values
anywhere in the series. To use one of these procedures when you have missing data,
you must first specify either TSET MISSING=INCLUDE to include user-missing values,
the RMV procedure to replace missing values, or the USE command to specify a range
of nonmissing observations.

• The TSET MISSING command allows you to include or exclude user-missing values in
Trends procedures. EXCLUDE is the default.

• RMV allows you to replace user-missing and system-missing values with estimates
computed from existing values in the series using one of several methods.

Statistical Output

For some Trends procedures, the amount of output displayed can be controlled by the
TSET PRINT setting. TSET PRINT can be set to BRIEF, DEFAULT, or DETAILED. The
following are some general guidelines used by procedures with multiple iterations.

• For TSET PRINT=BRIEF, no iteration history is shown. Only the final statistics and the
number of iterations required are reported.

• For TSET PRINT=DEFAULT, a one-line statistical summary at each iteration plus the
final statistics are reported.

• For TSET PRINT=DETAILED, a complete statistical summary at each iteration plus the
final statistics are reported.

For details, refer to the individual procedures.

New Variables
Trends procedures AREG, ARIMA, EXSMOOTH, and SEASON automatically create,
name, and label new variables each time the procedure is executed. These new variables
are added to the working data file and can be used or saved like any other variable. The
names of these variables consist of the following prefixes, followed by an identifying
numeric extension:

Trends Options: Special Considerations 1735

FIT Predicted values. When the predictions are for existing observations, the val-
ues are called “fitted” values. When the predicted values extend into the fore-
cast period (see PREDICT in the SPSS Syntax Reference Guide), they are
forecasts. Procedures AREG and ARIMA produce one FIT variable for each se-
ries list (equation); procedure EXSMOOTH produces one FIT variable for each
series specified.

ERR Residual or “error” values. For procedures AREG, ARIMA, and EXSMOOTH,
these values are the observed value minus the predicted value. These proce-
dures produce one ERR variable for each FIT variable. Since FIT variables are
always reported in the original raw score metric and ERR might be reported in
the natural log metric if such a transformation was part of the model, the report-
ed ERR variable will not always equal the observed variable minus the FIT
variable. (The discussion under each individual procedure will tell you if this
is the case.) The ERR variable is assigned the system-missing value for any ob-
servations in the forecast period that extend beyond the original series.

For procedure SEASON, the ERR values are what remain after the seasonal,
trend, and cycle components have been removed from the series. This proce-
dure produces one ERR variable for each series.

LCL Lower confidence limits. These are the lowerbound values of an estimated con-
fidence interval for the predictions. A 95% confidence interval is estimated un-
less another interval is specified on a subcommand or on a previous TSET CIN
command. Procedures AREG and ARIMA produce confidence intervals.

UCL Upper confidence limits. These are the upperbound values of an estimated con-
fidence interval for the predictions. The interval is 95%, unless it is changed on
a subcommand or on a previous TSET CIN command.

SEP Standard errors of the predicted values. Procedures AREG and ARIMA produce
one SEP variable for every FIT variable.

SAS Seasonally adjusted series. These are the values obtained after removing the
seasonal variation of a series. Procedure SEASON produces one SAS variable
for each series specified.

SAF Seasonal adjustment factors. These values indicate the effect of each period on
the level of the series. Procedure SEASON produces one SAF variable for each
series specified.

STC Smoothed trend-cycle components. These values show the trend and cyclical
behavior present in the series. Procedure SEASON produces one STC variable
for each series specified.

• If TSET NEWVAR=CURRENT (the default) is in effect, only variables from the current
procedure are saved in the working data file, and the suffix #n is used to distinguish vari-
ables that are generated by different series on one procedure. For example, if two series

1736 Appendix A

are specified on an ARIMA command, the variables automatically generated are FIT#1,
ERR#1, LCL#1, UCL#1, SEP#1, FIT#2, ERR#2, LCL#2, UCL#2, and SEP#2. If these
variables already exist from a previous procedure, their values are replaced.

• If TSET NEWVAR=ALL is in effect, all variables generated during the session are saved
in the working data file. Variables are named using the extension _n, where n incre-
ments by 1 for each new variable of a given type. For example, if two series are speci-
fied on an EXSMOOTH command, the FIT variables generated would be FIT_1 and
FIT_2. If an AREG command with one series followed, the FIT variable would be
FIT_3.

• A third TSET NEWVAR option, NONE, allows you to display statistical results from a
procedure without creating any new variables. This option can result in faster
processing time.

TO Keyword

The order in which new variables are added to the working data file dictionary is ERR,
SAS, SAF, and STC for SEASON, and FIT, ERR, LCL, UCL, and SEP for the other
procedures. For this reason, the TO keyword should be used with caution for specifying
lists of these generated variables. For example, the specification ERR#1 TO ERR#3 indi-
cates more than just ERR#1, ERR#2, and ERR#3. If the residuals are from an ARIMA
procedure, ERR#1 TO ERR#3 indicates ERR#1, LCL#1, UCL#1, SEP#1, FIT#2,
ERR#2, LCL#2, UCL#2, SEP#2, FIT#3, and ERR#3.

Maximum Number of New Variables

TSET MXNEWVAR specifies the maximum number of new variables that can be gener-
ated by a procedure. The default is 60.

Periodicity
Trends provides several ways to specify the periodicity of your series.

• Many Trends commands have a subcommand such as PERIOD that can set the period-
icity for that specific procedure.

• TSET PERIOD can be used to set the periodicity to be used globally. This specification
can be changed by another TSET PERIOD command.

• The DATE command assigns date variables to the observations. Most of these variables
have periodicities associated with them.

If more than one of these periodicities are in effect when a procedure that uses period-
icity is executed, the following precedence determines which periodicity is used:

• First, the procedure uses any periodicity specified within the procedure.

Trends Options: Special Considerations 1737

• Second, if the periodicity has not been specified within the command, the procedure
uses the periodicity established on TSET PERIOD.

• Third, if periodicity is not defined within the procedure or on TSET PERIOD, the peri-
odicity established by the DATE variables is used.

If periodicity is required for execution of the procedure (SEASON) or a subcommand of
a procedure (SDIFF) and the periodicity has not been established anywhere, the proce-
dure or subcommand will not be executed.

APPLY Subcommand
On most Trends procedures (and on some Base system and Regression Models proce-
dures) you can specify the APPLY subcommand. APPLY allows you to use specifications
from a previous execution of the same procedure. This provides a convenient shorthand
for developing and modifying models. Specific rules and examples on how to use
APPLY with a given procedure are described under the individual procedures. The
following are some general rules about using the APPLY subcommand:

• In general, the only specification on APPLY is the name of the model to be reapplied in
quotes. If no model is specified, the model and series from the previous specification
of that procedure is used.

• For procedures AREG and ARIMA, three additional keywords, INITIAL, SPECIFICA-
TIONS, and FIT, can be specified on APPLY. These keywords are discussed under those
procedures.

• To change the series used with the model, enter new series names before or after
APPLY. If series names are specified before APPLY, a slash is required to separate the
series names and the APPLY subcommand.

• To change one or more specifications of the model, enter the subcommands of only
those portions you want to change before or after the keyword APPLY.

• Model names are either the default MOD_n names assigned by Trends or the names
assigned on the MODEL NAME command.

• Models can be applied only to the same type of procedure that generated them. For
example, you cannot apply a model generated by ARIMA to the AREG procedure.

• The following procedures can generate models and apply models: AREG, ARIMA,
EXSMOOTH, SEASON, and SPECTRA in SPSS Trends; ACF, CASEPLOT, CCF,
CURVEFIT, NPPLOT, PACF, and TSPLOT in the SPSS Base system; and WLS and
2SLS in SPSS Regression Models.

1738 Appendix A

Models

The models specified on the APPLY subcommand are automatically generated by Trends
procedures. Models created within a Trends session remain active until the end of the
session or until the READ MODEL command is specified.

Each model includes information such as the procedure that created it, the model
name assigned to it, the series names specified, the subcommands and specifications
used, parameter estimates, and TSET settings.

Four Trends commands are available for use with models:

• TDISPLAY displays information about the active models, including model name, model
label, the procedure that created each model, and so on.

• MODEL NAME allows you to specify names for models.

• SAVE MODEL allows you to save any or all of the models created in a session in a
model file.

• READ MODEL reads in any or all of the models contained in a previously saved model
file. These models replace currently active models.

Default Model Names

The default model name is MOD_n, where n increments by 1 each time an unnamed
model is created in the session.

• MOD_n reinitializes at the start of every session or when the READ MODEL subcom-
mand is specified.

• If any MOD_n names already exist (for example, if they are read in using READ
MODEL), those numbers are skipped when new names are assigned.

• Alternatively, you can assign model names on the MODEL NAME command.

1739

Subject Index

active data file
caching, 1495

active system file, 13
Add Cases procedure, 80

case source variable, 85
dictionary information, 82
key variables, 84
limitations, 82
removing variables, 84
renaming variables, 83
selecting variables, 84
unpaired variables, 82
variables in the new file, 86

Add Variables procedure, 905
case source variable, 911
dictionary information, 906
duplicate cases, 909
excluded variables, 910
file sort order, 907, 908
key variables, 908
keyed tables, 909
limitations, 907
renaming variables, 910
variables in the new file, 912

additive model
in Seasonal Decomposition procedure, 1475

adjusted residuals
in loglinear analysis procedures, 612

agglomeration schedule
in Hierarchical Cluster Analysis procedure, 238

aggregated data
in Life Tables procedure, 1554

aggregating data, 90
aggregate functions, 95
aggregate variables, 96
break variables, 90, 93
saving files, 93
variable labels, 95
variable names, 94

AINDS model. See asymmetric individual

differences Euclidean distance model
Akaike information criterion

in Linear Regression procedure, 1358
alpha coefficient

in Reliability Analysis procedure, 1378
alpha factoring

in Factor Analysis procedure, 556
alpha level, 657, 1607
alpha value

for post hoc tests, 665, 1615
alternative hypothesis, 657, 1607
Ameniya’s prediction criterion

in Linear Regression procedure, 1358
analysis of covariance

general linear model, 644
analysis of variance, 127, 843

general linear model, 644
in Curve Estimation procedure, 410
in Discriminant Analysis procedure, 479
in K-Means Cluster procedure, 1317
in Linear Regression procedure, 1358
in Means procedure, 983
in Reliability Analysis procedure, 1379
in Summarize procedure, 1545
See also One-Way ANOVA procedure; Simple

Factorial ANOVA procedure
analyzing aggregated data

in Correspondence Analysis, 289
analyzing table data

in Correspondence Analysis, 282
ANCOVA model

syntax, 647
Anderberg’s D

in Distances procedure, 1285
in Hierarchical Cluster Analysis procedure, 234

Anderson-Rubin factor scores
in Factor Analysis procedure, 558

ANOVA. See analysis of variance; UNIANOVA
anti-image matrix

in Factor Analysis procedure, 553
arcsine function, 39

1740 Subject Index

arctangent function, 39
area charts

in Interactive Charts procedure, 754
sequence, 176, 1577

arguments
complex, 38
defined, 38

ARIMA procedure, 152– 160
and missing values, 1734
confidence intervals, 159
difference transformation, 155– 156, 156– 158
initial parameter values, 158
iterations, 159
log transformation (base 10), 155– 156
model parameters, 155– 156, 156– 158
natural log transformation, 155– 156
seasonal difference transformation, 155– 156,

156– 158
single or nonsequential parameters, 156– 158
specifying periodicity, 155– 156
termination criteria, 159
using a previously defined model, 159– 160

arithmetic functions, 255
arithmetic operators, 37, 255

in matrix language, 921
arrays. See vectors
ASCAL model. See asymmetric Euclidean distance

model
ASCII text data files, 624

See also raw data files
assignment expression

computing values, 252
asymmetric Euclidean distance model

in Multidimensional Scaling procedure, 107
asymmetric individual differences Euclidean distance

model
in Multidimensional Scaling procedure, 107

asymmetric matrix
in Multidimensional Scaling procedure, 104

autocorrelation, 71
partial, 1185

Autocorrelations procedure, 71, 1185
partial autocorrelation, 76, 1185
periodic lags, 75, 1188
specifying periodicity, 74, 1188
standard error method, 76
transforming values, 73, 1187
using a previously defined model, 76, 1189

Autoregression procedure, 144– 150
and missing values, 1734
Cochrane-Orcutt method, 148
including constant, 148
maximum iterations, 148– 149
maximum-likelihood estimation, 148
Prais-Winsten method, 148
rho value, 148
using a previously defined model, 149– 150

average absolute deviation
in Ratio Statistics procedure, 1328, 1329

average linkage between groups
in Hierarchical Cluster Analysis procedure, 236

average linkage within groups
in Hierarchical Cluster Analysis procedure, 236

backward elimination
in Cox Regression procedure, 301
in Hierarchical Loglinear Analysis procedure, 720
in Linear Regression procedure, 1356
in Logistic Regression procedure, 809

balanced, 1620
balanced designs

in GLM, 671
in GLM Univariate, 1620

bar charts, 691
in Crosstabs procedure, 325
in Frequencies procedure, 600
in Interactive Charts procedure, 755
in TwoStep Cluster Analysis, 1598
interval width, 600
scale, 600

Bartlett factor scores
in Factor Analysis procedure, 558

Bartlett window
in Spectral Plots procedure, 1528

Bartlett’s approximation
in Autocorrelations procedure, 76

Bartlett’s test of sphericity
in Factor Analysis procedure, 553
in MANOVA, 876

Bernoulli distribution function, 43
beta distribution function, 41
binary Euclidean distance

in Distances procedure, 1286
in Hierarchical Cluster Analysis procedure, 235

Subject Index 1741

binary shape difference
in Distances procedure, 1286
in Hierarchical Cluster Analysis procedure, 236

binary squared Euclidean distance
in Distances procedure, 1286
in Hierarchical Cluster Analysis procedure, 235

binary variance measure
in Distances procedure, 1286
in Hierarchical Cluster Analysis procedure, 236

binomial distribution function, 43
binomial test

in Binomial Test procedure, 1085
Binomial Test procedure, 1085

expected proportions, 1085
observed proportions, 1085

biplots
in Categorical Principal Components Analysis,

202
in Correspondence Analysis, 287

Bivariate Correlations procedure, 272, 1076, 1191
case count, 1078
control variables, 1193
correlation coefficients, 272
format, 1195
limitations, 273, 1077, 1192
matrix input, 1196
matrix output, 275, 1076, 1079, 1196
missing values, 275, 1079, 1195, 1197
order values, 1193
random sampling, 1076, 1078
rank-order coefficients, 1076
significance levels, 274, 1076, 1078, 1194
statistics, 274, 1078, 1194

bivariate normal distribution function, 41
bivariate spectral analysis

in Spectral Plots procedure, 1529– 1530
blank

delimiter, 8
blank data fields

treatment of, 1491
blank lines

displaying, 1261
See also printing cases

Blom’s transformation, 1324
in normal probability plots, 1228

BMDP files
conversion to SPSS, 1349

format specification, 1349
numeric variables, 1349
string variables, 1349

Bonferroni correction
custom tables comparisons, 401

Bonferroni intervals
in MANOVA, 880

Bonferroni test, 666, 667, 1164, 1616, 1617
bootstrap estimates

in Nonlinear Regression procedure, 1059
Box’s M test

in Discriminant Analysis procedure, 479
in MANOVA, 877

box-and-whiskers plots. See boxplots
Box-Ljung statistic

in Autocorrelations procedure, 72
boxplots

comparing factor levels, 521
comparing variables, 521
identifying outliers, 522
in Explore procedure, 523
in Interactive Charts procedure, 758

Breslow test
in Kaplan-Meier procedure, 793

Breslow-Day statistic
in Crosstabs procedure, 323

c charts, 1515
data organization, 1516
sigma, 1521
subgroup identifier, 1517

caching
active data file, 1495

captions
custom tables, 398

case identification variable, 1345
case processing summary

in Linear Mixed Models procedure, 1003
case selection, 1061
cases

excluding from Homogeneity Analysis, 730
excluding from Nonlinear Canonical Correlation

Analysis, 1179
limiting, 1061
listing, 798

1742 Subject Index

sampling, 1446
selecting, 1061, 1478
sorting, 1503
weighting, 1663

Cases to Variables procedure, 180– 188
limitations, 182
overview, 180

CASESTOVARS, 180
Categorical Principal Components Analysis, 189–

206
limitations, 191
options, 190
syntax rules, 191

Categorical Regression, 207– 218
categories

showing and hiding empty categories, 747
category labels

positioning in custom tables, 392
category order

interactive charts, 747
category points plots

in Categorical Principal Components Analysis,
202

category quantifications
in Categorical Principal Components Analysis,

200
category specification

explicit, in custom tables, 394
implicit, in custom tables, 395

category variables
custom tables, 380

Cauchit link
in Ordinal Regression, 1214

Cauchy distribution function, 41
censored cases

in Kaplan-Meier procedure, 790
centered moving average function, 312
centered running median function, 313
centering transformation

in Spectral Plots procedure, 1527
centroid method

in Hierarchical Cluster Analysis procedure, 236
centroid plots

in Nonlinear Canonical Correlation Analysis, 1181
change

arithmetic and percentage change between groups

and variables, 1107
character sets, 1695
charts, 686

bar, 691
control, 1505
count functions, 688
difference line, 697
drop-line, 697
error bar, 707
high-low, 704
histograms, 711
line, 697
normal probability, 1224
Pareto, 712
pie, 703
P-P normal probability, 1229
Q-Q normal probability, 1229
range bar, 692
ROC Curve, 1445
scatterplots, 708
sequence, 171, 1572
summary functions, 688
templates, 714

Chebychev distance
in Distances procedure, 1280
in Hierarchical Cluster Analysis procedure, 230

chi-square
Cochran, 1379
distance measure, 230, 1280
Friedman, 1379
in Chi-Square Test procedure, 1086
in Crosstabs procedure, 322

chi-square distance
in Correspondence Analysis, 284

chi-square distribution function, 41
chi-square test

custom tables, 400
Chi-Square Test procedure, 1086

expected proportions, 1086
observed proportions, 1086

city-block distance
in Distances procedure, 1280
in Hierarchical Cluster Analysis procedure, 230

classification plots
in Logistic Regression procedure, 813

classification table
in Discriminant Analysis procedure, 480

classification tables

Subject Index 1743

in Logistic Regression procedure, 811
cluster membership

in Hierarchical Cluster Analysis procedure, 238
cluster model update

in TwoStep Cluster Analysis, 1596
Cochran’s Q

in Tests for Several Related Samples procedure,
1087

Cochran’s statistic
in Crosstabs procedure, 323

Cochrane-Orcutt method
in Autoregression procedure, 148

coefficient of concentration
in Ratio Statistics procedure, 1328, 1329, 1330

coefficient of dispersion
in Ratio Statistics procedure, 1328, 1329

coefficient of variation, 39
in Ratio Statistics procedure, 1328, 1329, 1330

Cohen’s kappa. See kappa
Cohen’s kappa. See kappa
column headings, 1255

See also page ejection
column percentages

in Crosstabs procedure, 321
column width

custom tables, 402
column-style format specifications, 426
comma

delimiter, 8
command files, 11, 771
command order, 8, 1687
command syntax, 5
commands

processed through your operating system, 6
run interactively, 5

comments
in commands, 245

common space
in Multidimensional Scaling, 1309

common space plots
in Multidimensional Scaling, 1310

communality
in Factor Analysis procedure, 552

complementary log-log link
in Ordinal Regression, 1214

complex data files, 1340
case identification variable, 1345
defining, 1340
duplicate records, 1347
grouped files, 1340
missing records, 1346
mixed files, 1340
nested files, 1340
repeating groups, 1340
skipping records, 1344
spreading values across cases, 1347
undefined records, 1343

complex files
defining, 499, 509, 512

complex raw data files, 1703
defining, 567
grouped, 573
mixed, 572
nested, 573

component loadings
in Categorical Principal Components Analysis,

200
component loadings plots

in Categorical Principal Components Analysis,
202

compound model
in Curve Estimation procedure, 407, 408

computing values, 246
arithmetic functions, 255
arithmetic operators, 255
assignment expression, 252
conditional expressions, 493, 736
cross-case functions, 257
date and time functions, 258
formats of new variables, 254
functions, 246
if case satisfies condition, 492, 736
logical expressions, 493, 736
logical functions, 257
logical operators, 492, 736
loop structures, 830
missing values, 254
missing-value functions, 256
random-number functions, 257
relational operators, 492, 736
statistical functions, 256
string data, 253, 254
string functions, 259
syntax rules, 253

1744 Subject Index

target variable, 252
concatenation

custom tables, 381
condition index

in Linear Regression procedure, 1358
conditional expressions. See logical expressions
conditional independence test

in Crosstabs procedure, 323
conditional probability

in Distances procedure, 1284
in Hierarchical Cluster Analysis procedure, 233

conditional statistic
in Cox Regression procedure, 301
in Logistic Regression procedure, 809

conditional transformations, 492, 736
conditional expressions, 493, 736
formats of new variables, 494, 738
logical expressions, 493, 736
logical operators, 492, 736
missing values, 495, 738
nested, 499
relational operators, 492, 736
string data, 493, 494, 737, 738

conditionality
matrix, 105
row, 105
unconditional data, 105

confidence intervals, 657, 1607
in ARIMA procedure, 159
in Cox Regression procedure, 302
in Curve Estimation procedure, 410
in Explore procedure, 525
in Interactive Charts procedure, 761
in Linear Mixed Models procedure, 998
in Linear Regression procedure, 1358, 1360, 1369
in loglinear analysis procedures, 612
in MANOVA, 879
in Probit Analysis procedure, 1271
in Ratio Statistics procedure, 1328, 1329
in ROC Curve procedure, 1445

confusion matrix
in Discriminant Analysis procedure, 480

consecutive integers
converting numeric data, 162
converting string data, 162

constants, 37
constrained nonlinear regression, 1044

See also Nonlinear Regression procedure
contained effects

in GLM, 656
in GLM Univariate, 1606

contingency coefficient
in Crosstabs procedure, 322

contrast coefficients
in GLM, 659
in GLM Univariate, 1608

contrast coefficients matrix, 648
See also L matrix

contrast results matrix, 648
See also K matrix

contrasts
analysis of variance, 1162
custom, 650
deviation, 663, 1613
difference, 664, 682, 1613
for within-subjects factors, 886
Helmert, 664, 682, 1614
in GLM, 663
in GLM Univariate, 1613
in MANOVA, 872
orthogonal, 664, 1614
polynomial, 663, 682, 1613
repeated, 664, 682, 1614
reverse Helmert, 664, 1613
simple, 664, 682, 1614
special, 664, 682, 1614
within-subjects factor, 680
WSFACTOR, 681

control charts, 1505
c charts, 1515
individuals charts, 1511
missing values, 1522
moving range charts, 1511
np charts, 1513
p charts, 1513
R charts, 1508
s charts, 1508
sigma, 1521
u charts, 1515
X-bar charts, 1508

control variables
in Crosstabs procedure, 320

convergence criterion
in Factor Analysis procedure, 555
in K-Means Cluster procedure, 1316

Subject Index 1745

in Multidimensional Scaling procedure, 108
converting data files. See data files
Cook, 1620
Cook’s D

in Logistic Regression procedure, 814
Cook’s distance

in GLM Univariate, 1620
in Linear Regression procedure, 1369

copying variable definition attributes from other
variables in current or external data file, 141

corner text
custom tables, 399

correlation, 272
in Linear Regression procedure, 1358, 1362
See also Bivariate Correlations procedure

correlation matrices
in Categorical Principal Components Analysis,

200
in Linear Mixed Models procedure, 1003
in Logistic Regression procedure, 811
in loglinear analysis procedures, 613, 826
pooled within-groups, 479

correlations
in Multidimensional Scaling, 1309

correlations plots
in Multidimensional Scaling, 1311

Correspondence Analysis, 279– 290
dimensions, 283
distance measure, 284
equality constraints, 284
normalization, 285
plots, 287
standardization, 285
supplementary points, 283

cosine
in Distances procedure, 1280
in Hierarchical Cluster Analysis procedure, 229

cosine function values
saving in Spectral Plots procedure, 1530

cospectral density estimate plot
in Spectral Plots procedure, 1529

cospectral density estimates
saving in Spectral Plots procedure, 1531

counting occurrences, 291
defining values, 291
missing values, 292

counts

in Report Summaries in Rows procedure, 1422,
1423

covariance
in Linear Regression procedure, 1358, 1363
in Reliability Analysis procedure, 1379, 1380

covariance matrices
in Linear Mixed Models procedure, 1003
in loglinear analysis procedures, 613
in 2-Stage Least-Squares procedure, 1589
pooled within-groups, 479, 481
separate-groups, 479, 481
total, 479

covariance method
in Reliability Analysis procedure, 1381

covariance ratio
in Linear Regression procedure, 1369

Cox regression, 293
See also Cox Regression procedure;Time-

Dependent Cox Regression procedure
Cox Regression procedure, 293

baseline functions, 302
categorical covariates, 298
confidence intervals, 302
contrasts, 298
correlation matrix, 302
covariates, 297
display options, 302
entry probability, 303
interaction terms, 297
iteration criteria, 303
limitations, 295
maximum iterations, 303
method, 300
missing values, 301
parameter estimates, 302
plots, 304
removal probability, 303
saving coefficients, 304
saving new variables, 305
saving survival table, 305
split-file processing, 306
stratification variable, 298
survival status variable, 297
survival time variable, 297

Cp. See Mallow’s Cp
Cramér’s V

in Crosstabs procedure, 322
cross-amplitude plot

1746 Subject Index

in Spectral Plots procedure, 1529
cross-amplitude values

saving in Spectral Plots procedure, 1531
cross-case functions, 257
cross-correlation, 219
Cross-Correlations procedure, 219

periodic lags, 223
specifiying periodicity, 222
transforming values, 221
using a previously defined model, 224

cross-periodogram values
saving in Spectral Plots procedure, 1531

cross-product deviation
in Linear Regression procedure, 1363

Crosstabs procedure, 316
column percentages, 321
control variables, 320
expected count, 321
general mode, 320
integer mode, 320
layers, 320
missing values, 324
observed count, 321
reproducing tables, 327
residuals, 321
row order, 325
row percentages, 321
statistics, 322
suppressing tables, 325
table format, 325
total percentage, 321
writing tables, 325

crosstabulation, 316
multiple response, 1024
See also Crosstabs procedure
writing to a file, 1273

crosstabulations
in Missing Value Analysis, 1035

cubic model
in Curve Estimation procedure, 407, 408

cumulative sum function, 309
curve estimation, 405
Curve Estimation procedure, 405

analysis of variance, 410
confidence intervals, 410
forecasting, 406, 407
including constant, 409

models, 408
saving predicted values, 410
saving prediction intervals, 410
saving residuals, 410
using a previously defined model, 411

curve fitting. See curve estimation
custom currency formats

creating, 1494
custom models

in Hierarchical Loglinear Analysis procedure, 725
in loglinear analysis procedures, 615, 827

custom tables
category label positioning, 392
category variables, 380
column width, 402
concatenation, 381
counting duplicate responses, 404
empty cells, 403
excluding valid values, 394
listwise deletion, 403
missing summaries, 403
missing values, 403
multiple response functions, 388
multiple response sets, 380, 404
nesting, 381
overview, 377
percentage functions, 385
scale variable functions, 386
scale variables, 383
stacking, 381
summary functions, 385
summary label positioning, 391
syntax conventions, 378
table expression, 380
variable labels, 403
variable types, 380

customized distance measures
in Distances procedure, 1280
in Hierarchical Cluster Analysis procedure, 230

d. See Somers’ d
damped model

in Exponential Smoothing procedure, 538
data, 1620

inline, 167, 414, 416
invalid, 1491

data compression

Subject Index 1747

scratch files, 1492
data dictionary

applying from another file, 136
data files

aggregating, 90
appending orthogonal designs, 1173–??
BMDP, 1349
caching, 1495
complex, 509, 567, 1340, 1703
converting, 1459
databases, 621, 624
dBASE, 638, 1459
default file extension, 1492
direct access, 781
documents, 78, 490, 506
Excel, 624, 636, 1459
file information, 487, 1559
grouped, 1340
keyed, 781, 1220
labels, 566
Lotus 1-2-3, 636, 1459
master files, 1622
merging, 80, 905
mixed, 1340
Multiplan, 636
nested, 1340
opening, 617
raw, 624
reading, 413, 617, 767, 781
repeating data groups, 1340
SAS, 631
saving, 1448, 1679
saving output as data files, 1110, 1123
saving profiles in Display Design procedure,

1207–??
split-file processing, 1533
spreadsheet, 636, 1462
SPSS, 617
SPSS portable, 529, 767
SPSS/PC+, 767
subsets of cases, 582, 1478, 1629
SYLK, 636, 1459
tab-delimited, 638, 1463
text, 412, 624
transaction files, 1622
updating, 1622

data formats. See data types; display formats; input
formats; output formats

data records
defining, 418, 1340

data transformations

arithmetic functions, 255
arithmetic operators, 255
clearing, 225
computing values, 246
conditional expressions, 492, 493, 736
consecutive integers, 162
converting strings to numeric, 162, 1338
counting occurrences, 291
counting the same value across variables, 291
cross-case functions, 257
date and time functions, 258
functions, 246
if case satisfies condition, 492, 736
logical expressions, 493, 736
logical functions, 257
logical operators, 492, 736
loop structures, 830
missing-value functions, 256
random-number functions, 257
recoding values, 162, 1334
relational operators, 492, 736
repeating, 501
statistical functions, 256
string functions, 259
time series, 307, 431, 1438

data types, 412
custom currency, 1494

database files, 624, 1462
databases

reading, 621
date and time functions, 258
date format variables

missing values, 986
value labels, 1633

date functions, 55
date variables

creating, 431
current status, 1661

dates, 55
custom tables titles, 399

dBASE files
reading, 635
saving, 1466

decimal places
implied, 427

decomposition of Stress
in Multidimensional Scaling, 1309

Define Multiple Response Sets procedure, 1021
categories, 1021

1748 Subject Index

dichotomies, 1021
set labels, 1021
set names, 1021

defining variables
copying variable attributes from another file, 136
copying variable definition attributes from other

variables in current or external data file, 141
creating new variables with variable definition

attributes of existing variables, 138
deleted residuals

in GLM, 670
in GLM Univariate, 1619

delimiter, 8
blank, 8
comma, 8
special, 8

delta
in Hierarchical Loglinear Analysis procedure, 721
in loglinear analysis procedures, 612, 825

dendrograms
in Hierarchical Cluster Analysis procedure, 239

density function plots
in Life Tables procedure, 1552

descriptive statistics, 461
for residuals, 586
in Explore procedure, 525
in Linear Mixed Models procedure, 1003
See also Descriptives procedure

Descriptives procedure, 461
display order, 465
missing values, 466
saving z scores, 463
statistics, 464

determinant
in Factor Analysis procedure, 553

detrended normal plots, 1229
in Explore procedure, 524

deviance residuals
in loglinear analysis procedures, 612

deviation contrasts, 663, 1613
in Cox Regression procedure, 299
in loglinear analysis procedures, 823
in MANOVA, 873

deviations from the mean
repeated measures, 681

DfBeta
in Linear Regression procedure, 1369

in Logistic Regression procedure, 814
DfFit

in Linear Regression procedure, 1369
diagonal values

in Factor Analysis procedure, 554
Dice measure

in Distances procedure, 1283
in Hierarchical Cluster Analysis procedure, 233

difference
arithmetic and percentage differences between

groups and variables, 1107
difference contrasts, 664, 1613

in Cox Regression procedure, 299
in loglinear analysis procedures, 823
in MANOVA, 873
repeated measures, 682

difference function, 309
difference line charts, 697
difference transformation

in ARIMA procedure, 155– 156, 156– 158
in Autocorrelations procedure, 73, 1187
in Cross-Correlations procedure, 221
in normal probability plots, 1230
in sequence charts, 174, 1575

dimension reduction analysis
in MANOVA, 876

dimensions
in Correspondence Analysis, 283
in Homogeneity Analysis, 733
in Nonlinear Canonical Correlation Analysis,

1181– 1182
saving in Nonlinear Canonical Correlation

Analysis, 1182– 1183
direct-access files

reading, 781
discriminant analysis

in MANOVA, 878
Discriminant Analysis procedure, 467

casewise results, 477
classification phase, 480
classification summary, 480
cross-validation, 480
defining categories of grouping variable, 470
exporting model information, 474
function coefficients, 480, 481
grouping variable, 470
inclusion levels, 472
limitations, 470

Subject Index 1749

matrices, 479
matrix input, 482
matrix output, 482
maximum number of steps, 475
missing values, 482, 484
multiple analyses, 471
number of functions, 475
plots, 481
predictor variables, 470
prior probabilities, 476
rotation of matrices, 480
saving classification variables, 477
selecting a subset of cases, 471
statistics, 479
stepwise methods, 471
stepwise output, 480
tolerance, 474
variable selection methods, 473

discriminant function coefficients
standardized, 479
unstandardized, 480

discriminant scores
in Discriminant Analysis procedure, 477, 481

dispersion
in Distances procedure, 1286
in Hierarchical Cluster Analysis procedure, 236

dispersion accounted for
in Multidimensional Scaling, 1309

Display Design procedure
saving profiles in data files, 1207–??

display formats, 593, 1258
dissimilarity measures, 1275

See also Distances procedure
distance matrix

in Hierarchical Cluster Analysis procedure, 238
in Multidimensional Scaling procedure, 103

distance measure
in TwoStep Cluster Analysis, 1595

distance measures
in Correspondence Analysis, 284

Distances procedure, 1275
computing distances between cases, 1278
computing distances between variables, 1278
displaying distance matrix, 1287
labeling cases, 1287
limitations, 1277
matrix input, 1288
matrix output, 1288

measures for binary data, 1281
measures for frequency-count data, 1280
measures for interval data, 1279
missing values, 1288
standardization, 1277
transforming measures, 1278
transforming values, 1277
variable list, 1277

distribution functions, 40
Bernoulli, 43
beta, 41
binomial, 43
bivariate normal, 41
Cauchy, 41
chi-square, 41
exponential, 41
F, 41
gamma, 41
geometric, 43
half-normal, 42
hypergeometric, 44
inverse Gaussian, 42
Laplace, 42
logistic, 42
lognormal, 42
negative binomial, 44
normal, 42
Pareto, 42
Poisson, 44
Studentized maximum modulus, 42
Studentized range, 43
t, 43
uniform, 43
Weibull, 43

documentation
online, 773

documents
copying documents from another data file, 140
dropping, 506
for SPSS data files, 78, 490
retaining in aggregated files, 94

domain errors
defined, 45
numeric expressions, 45

dot charts
in Interactive Charts procedure, 759

doubly multivariate repeated measures
analysis, 684
syntax, 647

1750 Subject Index

drop-line charts, 697
Duncan’s multiple range test, 666, 667, 1164, 1616,

 1617
Dunnett’s C, 666, 668, 1165, 1616, 1618
Dunnett’s one-tailed t test, 666, 667, 1164
Dunnett’s one-tailed t test, 666, 667, 1164, 1616,

1617
DUNNETTL, 666
duplicate cases

in Generate Orthogonal Design procedure,
1171–??

duplicate responses
counting in custom tables, 404

Durbin-Watson statistic
in Linear Regression procedure, 1371

EBCDIC data, 565
effects

random, 654, 1604
eigenvalues

in Discriminant Analysis procedure, 479
in Factor Analysis procedure, 552, 554, 555
in Linear Regression procedure, 1358
in MANOVA, 876

EM estimates
in Missing Value Analysis, 1039

empty categories
excluding in custom tables, 398
including in custom tables, 398
showing and hiding in interactive charts, 747

empty cells
display format in custom tables, 403

end-of-file control
in input programs, 420

endogenous variables
in 2-Stage Least-Squares procedure, 1588

epsilon
in loglinear analysis procedures, 612

equality constraints
in Correspondence Analysis, 281, 284

equality of variance. See homogeneity of variance
equal-weight window

in Spectral Plots procedure, 1528
equamax rotation

in Factor Analysis procedure, 557

erasing files, 518
err variable, 1735
error bar charts, 707
error bars

in Interactive Charts procedure, 761
errors

displaying, 1489
maximum number, 1491– 1492

ESSCP matrices
in GLM Multivariate, 674

estimable functions
in GLM, 658
in GLM Univariate, 1608
intercept, 662, 1612

estimated marginal means
in GLM, 668
in GLM Univariate, 1618
in Linear Mixed Models procedure, 999
repeated measures, 685

estimated means plots, 660, 1609
eta

in Crosstabs procedure, 322
in Means procedure, 983
in Summarize procedure, 1545

eta-squared
partial, 658, 1608

Euclidean distance
in Correspondence Analysis, 285
in Distances procedure, 1279
in Hierarchical Cluster Analysis procedure, 229
in TwoStep Cluster Analysis, 1595

Euclidean model
in Multidimensional Scaling procedure, 107

exact-size sample, 1446
examining data, 519

See also Explore procedure
Excel files, 624

read range, 640
read variable names, 640
reading, 635
saving, 1466

expectation maximization
see EM estimates

expected count
in Crosstabs procedure, 321

expected frequency

Subject Index 1751

in Hierarchical Loglinear Analysis procedure, 724
in loglinear analysis procedures, 612, 826
in Probit Analysis procedure, 1271

explicit category specification
custom tables, 394

Explore procedure, 519
factor variable, 521
limitations, 520
missing values, 526
plots, 523
statistics, 522, 525

exploring data, 519
See also Explore procedure

exponential distribution function, 41
exponential model

in Curve Estimation procedure, 407, 408
in Exponential Smoothing procedure, 538

Exponential Smoothing procedure, 535– 545
and missing values, 1734
initial parameter values, 543
models, 538– 540
seasonal factor estimates, 540– 541
smoothing parameters, 541– 543
specifying periodicity, 540
using a previously defined model, 544– 545

exporting output, 1110
HTML format, 1117
SAV format, 1117, 1123
text format, 1117
XML format, 1117, 1132

extreme values
in Explore procedure, 525
in Missing Value Analysis, 1032

F distribution function, 41
F ratio

in Linear Regression procedure, 1358, 1359
in Means procedure, 984
in Summarize procedure, 1545

F test
in MANOVA, 876, 890

factor analysis, 546
See also Factor Analysis procedure

Factor Analysis procedure, 546
analysis variables, 551
coefficient display format, 551

convergence, 555
correlation matrices, 552
covariance matrices, 552
descriptive statistics, 552
diagonal values, 554
extraction criteria, 555
extraction methods, 556
factor score computation, 558
initial solution, 552
iterations, 555
matrix input, 559
matrix output, 559
missing values, 549
plots, 553
rotated solution, 552
rotation criteria, 555
rotation methods, 557
saving factor scores, 557
selecting a subset of cases, 550
statistics, 552
unrotated solution, 552
variable list, 549

factor loading plots
in Factor Analysis procedure, 554

factor pattern matrix
in Factor Analysis procedure, 552

factor score coefficient matrix
in Factor Analysis procedure, 553

factor structure matrix
in Factor Analysis procedure, 552

factor transformation matrix
in Factor Analysis procedure, 552

file handle, 564
file information

copying file information from another data file,
140

SPSS data files, 1559
working data file, 487

file label
copying file label from another data file, 140

file specifications, 564
file transformations, 1622

aggregating, 90
merging files, 80, 905
subsets of cases, 1478

files, 11
final cluster centers

in K-Means Cluster procedure, 1318

1752 Subject Index

Fisher’s classification function coefficients
in Discriminant Analysis procedure, 480

Fisher’s exact test
in Crosstabs procedure, 322

fit variable, 1735
fixed format, 414, 415, 416, 423
fixed-effects model

in Linear Mixed Models procedure, 1001
syntax, 647

flattened weights
in Multidimensional Scaling procedure, 111

forced entry
in Discriminant Analysis procedure, 473
in Linear Regression procedure, 1356

forced removal
in Linear Regression procedure, 1356

forced-entry method
in Cox Regression procedure, 300
in Logistic Regression procedure, 808

forecasting
current forecast period, 1661
in Curve Estimation procedure, 406, 407

formats, 25
of new variables, 254, 494, 738
See also data types; display formats; input formats;

output formats
formats for summary functions

custom tables, 390
FORTRAN-like format specifications, 426
forward entry

in Linear Regression procedure, 1356
forward selection

in Cox Regression procedure, 300
in Logistic Regression procedure, 808

Fourier frequencies
saving in Spectral Plots procedure, 1530

Fourier periods
saving in Spectral Plots procedure, 1530

Fourier transformation function, 310
inverse, 310

freefield format, 414, 415, 416, 425
Frequencies procedure, 597

charts, 325, 600
display order, 599
limitations, 598
missing values, 605

statistics, 604
suppressing tables, 599

frequency tables, 598
format, 599
writing to a file, 1273

Friedman test
in Tests for Several Related Samples procedure,

1087
F-to-enter

in Discriminant Analysis procedure, 474
in Linear Regression procedure, 1360

F-to-remove
in Discriminant Analysis procedure, 474
in Linear Regression procedure, 1360

functions, 246
distribution, 40
examples, 255
missing values in, 254
numeric variables, 38
string variables, 45
time series, 309

furthest neighbor method
in Hierarchical Cluster Analysis procedure, 236

Gabriel’s pairwise comparisons test, 667, 1165,
1616, 1617

gain plot
in Spectral Plots procedure, 1529

gain values
saving in Spectral Plots procedure, 1531

Games and Howell’s pairwise comparisons test, 666,
 668, 1165, 1616, 1618

gamma
in Crosstabs procedure, 322

gamma distribution function, 39, 41
GEMSCAL model. See generalized multidimensional

scaling
general estimable function, 658, 1608
general linear model

sample models, 646
syntax overview, 644

General Loglinear Analysis procedure, 606, 816
adjusted residuals, 612
categorical variables, 608, 820
cell covariates, 608, 820
cell structure, 610

Subject Index 1753

cell weights, 610, 821
contrasts, 823
convergence criteria, 611, 825
correlation matrices, 613, 826
covariance matrices, 613
criteria, 611
custom models, 615, 827
delta, 612, 825
design matrix, 613, 826
deviance residuals, 612
display options, 612, 825
expected frequency, 612, 826
factors, 608, 820
generalized residuals, 610, 822
interaction terms, 615, 827
limitations, 607, 818
log-odds ratio, 611
maximum iterations, 612, 825
missing values, 614, 827
model specification, 615, 827
multinomial distribution, 611
normal probability plots, 613, 826
observed frequency, 612, 826
parameter estimates, 613, 826
plots, 613, 826
Poisson distribution, 611
residual plots, 613, 826
residuals, 612, 826
saving variables, 614
standardized residuals, 612

general mode
Crosstabs procedure, 320
Means procedure, 980

general smoothing parameter
in Exponential Smoothing procedure, 541

generalized log-odds ratio, 611
generalized multidimensional scaling

in Multidimensional Scaling procedure, 108
generalized weights

in Multidimensional Scaling procedure, 111
Generate Orthogonal Design procedure

appending to working data files, 1173–??
duplicate cases, 1171–??

generating class
in Hierarchical Loglinear Analysis procedure, 725

GENLOG command
compared to LOGLINEAR, 817

geometric distribution function, 43

GLM, 648
alpha level, 657
alternative hypothesis, 657
confidence interval, 657
contained effects, 656
contrast coefficients, 659
contrasts, 663
deleted residuals, 670
estimable functions, 658
estimated marginal means, 668
estimated means plots, 660
homogeneity of variance, 658
K matrix, 662
L matrix, 659, 661
Levene’s test, 658
multiple comparisons, 665
multivariate syntax, 672
parameter estimates, 658
post hoc tests, 665
power, 657
profile plots, 659
repeated measures syntax, 677
residual plots, 659
spread-versus-level plots, 659
standardized residuals, 670
Studentized residuals, 670
syntax overview, 643
Type I sum-of-squares method, 655
Type II sum-of-squares method, 656
Type III sum-of-squares method, 656
Type IV sum-of-squares method, 656
univariate syntax, 651
unstandardized predicted residuals, 670
unstandardized residuals, 670
weighted unstandardized predicted values, 670
weighted unstandardized residuals, 670

GLM Multivariate, 672
ESSCP matrices, 674
homogeneity of variance, 674
HSSCP matrices, 674
Levene’s test, 674
M matrix, 674, 675
residual correlation matrix, 675
residual covariance matrix, 675
residual SSCP matrix, 674
RSSCP matrices, 674
sums-of-squares and cross-product matrices, 674
sums-of-squares and cross-products of residuals,

674
GLM Repeated Measures, 678

1754 Subject Index

GLM Univariate, 651, 1601
alpha level, 1607
alternative hypothesis, 1607
confidence interval, 1607
contained effects, 1606
contrast coefficients, 1608
contrasts, 1613
data files, 1620
deleted residuals, 1619
estimable functions, 1608
estimated marginal means, 1618
estimated means plots, 1609
homogeneity of variance, 1608
interactions, 1621
K matrix, 1612
L matrix, 1608, 1611
lack of fit, 1608
Levene’s test, 1608
multiple comparisons, 1615
nested designs, 1621
parameter estimates, 1608
post hoc tests, 1615
power, 1607
profile plots, 1609
residual plots, 1609
spread-versus-level plots, 1609
standard errors of predicted value, 1620
standardized residuals, 1619
Studentized residuals, 1620
Type I sum-of-squares method, 1605
Type II sum-of-squares method, 1605
Type III sum-of-squares method, 1606
Type IV sum-of-squares method, 1606
unstandardized predicted residuals, 1619
unstandardized residuals, 1619
weighted unstandardized predicted values, 1619
weighted unstandardized residuals, 1619

GLOR, 611
Goodman and Kruskal’s gamma. See gamma
Goodman and Kruskal’s lambda. See lambda
Goodman and Kruskal’s tau

in Crosstabs procedure, 322
goodness of fit, 586

in Hierarchical Loglinear Analysis procedure, 718
Greenhouse-Geiser epsilon, 883
grid search

in Exponential Smoothing procedure, 542– 543
group membership

predicted, 477
probabilities, 476

grouped files, 573, 1340
growth model

in Curve Estimation procedure, 407, 408
Guttman’s lower bounds

in Reliability Analysis procedure, 1379

H. See Kruskal-Wallis H
half-normal distribution function, 42
Hamann measure

in Distances procedure, 1284
in Hierarchical Cluster Analysis procedure, 234

hazard plots
in Cox Regression procedure, 304
in Kaplan-Meier procedure, 791
in Life Tables procedure, 1552

Helmert contrasts, 664, 682, 1614
in Cox Regression procedure, 299
in loglinear analysis procedures, 823
in MANOVA, 873
reverse, 682

heterogeneity factor
in Probit Analysis procedure, 1270

heteroscedasticity
in Weight Estimation procedure, 1667

hiding keys
in interactive charts, 753

Hierarchical Cluster Analysis procedure, 226
algorithm, 228
cluster membership, 238
distance measures, 229
labeling cases, 238
limitations, 228
matrix input, 240
matrix output, 240
measures for binary data, 231
measures for frequency-count data, 230
measures for interval data, 229
methods, 236
missing values, 240, 242
plots, 239
saving cluster memberships, 237
statistics, 238
variable list, 228

hierarchical files. See nested files

Subject Index 1755

hierarchical loglinear analysis, 717
See also Hierarchical Loglinear Analysis

procedure
Hierarchical Loglinear Analysis procedure, 717

backward elimination, 720
cell weights, 721
criteria, 721
custom models, 725
display options, 724
expected frequency, 724
interaction terms, 725
limitations, 719
maximum iterations, 721
maximum order of terms, 720
method, 720
missing values, 725
model specification, 725
normal probability plots, 724
observed frequency, 724
parameter estimates, 724
partial associations, 724
residual plots, 724
residuals, 724
variables, 720
weighted models, 721

high-low-close charts
clustered, 705
simple, 704

histograms, 711
in Explore procedure, 524
in Frequencies procedure, 601
in Interactive Charts procedure, 762
in Linear Regression procedure, 1370
interval width, 601
scale, 601
with normal curve, 601

Hochberg’s GT2, 666, 667, 1165, 1616, 1617
Homogeneity Analysis, 727– 735

dimensions, 733
excluding cases, 730
labeling plots, 732
matrix output, 734
saving object scores, 734
value labels, 732
variable labels, 732

homogeneity of variance
in GLM, 658
in GLM Multivariate, 674
in GLM Univariate, 1608

homogeneity tests
in Crosstabs procedure, 323
in MANOVA, 876

Hosmer-Lemeshow goodness-of-fit statistic
in Logistic Regression procedure, 811

Hotelling’s T2

in Reliability Analysis procedure, 1379
Hotelling’s trace

in MANOVA, 880
HSSCP matrices

in GLM Multivariate, 674
HTML

exporting output as HTML, 1117
Huynh-Feldt epsilon, 883
hypergeometric distribution function, 44
hypotheses

custom, 648, 678

icicle plots
in Hierarchical Cluster Analysis procedure, 239

image factoring
in Factor Analysis procedure, 556

implicit category specification
custom tables, 395

implied decimal format, 427
increment value

in matrix loop structures, 939
independence model

in Autocorrelations procedure, 76
Independent-Samples T Test procedure, 1581

dependent variables, 1583
grouping variables, 1583
limitations, 1582
missing values, 1584

independent-samples t test. See t test
index of regressivity

in Ratio Statistics procedure, 1329, 1330
indexing clause

in loop structures, 832
in matrix loop structures, 939

indexing strings, 48
indexing variable

in matrix loop structures, 939
individual space weights

1756 Subject Index

in Multidimensional Scaling, 1309
individual space weights plots

in Multidimensional Scaling, 1310
individual spaces

in Multidimensional Scaling, 1309
individual spaces plots

in Multidimensional Scaling, 1310
individuals charts, 1511

control limits, 1521
sigma, 1521
span, 1521
subgroup labels, 1513

initial cluster centers
in K-Means Cluster procedure, 1316

initial parameter values
in ARIMA procedure, 158
in Exponential Smoothing procedure, 543

initial value
in matrix loop structures, 939

initialization
suppressing, 796

initializing variables, 1102, 1536
formats, 1102, 1103, 1536
numeric variables, 1102
scratch variables, 1102
string variables, 1536

inline data, 167, 414, 416
input data, 12

file, 12
input formats, 412, 425

column-style specifications, 426
FORTRAN-like specifications, 426
numeric, 427
string, 429

input programs, 777
end-case control, 508
end-of-file control, 420, 516
examples, 421, 500, 503, 509, 517, 779, 834,

837, 838, 1103, 1221, 1658
input state, 778
instrumental variables

in 2-Stage Least-Squares procedure, 1588
integer mode

Crosstabs procedure, 320
interaction effects

analysis of variance, 130
interaction plots. See profile plots

interaction terms
in Cox Regression procedure, 297
in Hierarchical Loglinear Analysis procedure, 725
in loglinear analysis procedures, 615, 827

interactions
in GLM, 671
in GLM Univariate, 1621
in Variance Components Analysis, 1641

Interactive Charts procedure, 742
area charts, 754
bar charts, 755
boxplots, 758
confidence intervals, 761
dot charts, 759
error bars, 761
histograms, 762
legends, 748
line charts, 759
pie charts, 756
prediction intervals, 763
regression lines, 762
ribbon charts, 759
scatterplots, 753
smoothers, 762

intercept
in estimable function, 662, 1612
include or exclude, 657, 1606, 1638

interval data
in Multidimensional Scaling procedure, 104

invalid data
treatment of, 1491

inverse correlation matrix
in Factor Analysis procedure, 553

inverse Fourier transformation function, 310
inverse Gaussian distribution function, 42
inverse model

in Curve Estimation procedure, 408
item statistics

in Reliability Analysis procedure, 1380
item-total statistics

in Reliability Analysis procedure, 1380
iteration history

in Categorical Principal Components Analysis,
200

in Linear Mixed Models procedure, 1003
in Multidimensional Scaling, 1308

iterations
in ARIMA procedure, 159

Subject Index 1757

in Autoregression procedure, 148– 149

Jaccard measure
in Distances procedure, 1283
in Hierarchical Cluster Analysis procedure, 232

joint category points plots
in Categorical Principal Components Analysis,

203
Jonckheere-Terpstra test

in Tests for Several Independent Samples
procedure, 1088

journal file, 11, 12, 1490

K matrix, 648
in GLM, 662
in GLM Univariate, 1612

Kaiser normalization
in Factor Analysis procedure, 555

Kaiser-Meyer-Olkin measure
in Factor Analysis procedure, 553

Kaplan-Meier procedure, 787
case-identification variable, 792
censored cases, 790
comparing factor levels, 793
defining event, 790
factor variable, 789
labeling cases, 792
mean survival time, 792
median survival time, 792
percentiles, 792
plots, 791
quartiles, 792
saving new variables, 795
status variable, 790
strata variable, 791
survival tables, 792
survival time variable, 789
trends for factor levels, 794

kappa
in Crosstabs procedure, 323

Kendall’s coefficient of concordance
in Reliability Analysis procedure, 1379

Kendall’s tau-b
in Bivariate Correlations procedure, 1078
in Crosstabs procedure, 322

Kendall’s tau-c
in Crosstabs procedure, 322

Kendall’s W
in Tests for Several Related Samples procedure,

1091
key variables, 1622
keyed data files, 1220

defining, 1220
file handle, 1222
file key, 1220, 1221, 1222
reading, 781

keyed tables, 909
keys

showing and hiding in interactive charts, 753
keywords

reserved, 21
syntax, 7

k-means cluster analysis
See also K-Means Cluster procedure

k-means cluster analysis, 1313
K-Means Cluster procedure, 1313

cluster distances, 1317, 1318
cluster membership, 1317, 1318
clustering method, 1314, 1316
convergence criteria, 1316
iterations, 1316
labeling cases, 1317
missing values, 1319
reading initial centers, 1316, 1317
saving cluster information, 1318
specifying number of clusters, 1315
statistics, 1317
variable list, 1315
writing final centers, 1318

Kolmogorov-Smirnov Z
in One-Sample Kolmogorov-Smirnov Test

procedure, 1089
in Two-Independent-Samples Tests procedure,

1090
KR20 coefficient

in Reliability Analysis procedure, 1378
Kronecker product, 681
Kruskal-Wallis H

in Tests for Several Independent Samples
procedure, 1091

Kulczynski measures
in Distances procedure, 1284
in Hierarchical Cluster Analysis procedure, 233

1758 Subject Index

kurtosis
in Descriptives procedure, 464
in Explore procedure, 525
in Frequencies procedure, 604
in Report Summaries in Rows procedure, 1423

L matrix, 648, 661, 1611
in GLM, 659
in GLM Univariate, 1608

labels
positioning category labels in custom tables, 392
positioning summary labels in custom tables, 391

lack of fit
in GLM Univariate, 1608

lag function, 311
lambda

Goodman and Kruskal’s, 234, 1284
in Crosstabs procedure, 322
Wilks’, 473

Lance-and-Williams measure
in Distances procedure, 1287
in Hierarchical Cluster Analysis procedure, 236

language
changing output language, 1496

Laplace distribution function, 42
lcl variable, 1735
lead function, 311
least significant difference test, 666, 667, 1164,

1616, 1617
least-squares method

generalized, 556
unweighted, 556

legends
in Interactive Charts procedure, 748

level of measurement
copying from other variables in current or external

data file, 142
specifying, 1646

levels
within-subjects factors, 681

Levenberg-Marquardt method
in Nonlinear Regression procedure, 1056

Levene test
in Explore procedure, 524
in GLM, 658

in GLM Multivariate, 674
in GLM Univariate, 1608

leverage
in Logistic Regression procedure, 814

leverage values
in Linear Regression procedure, 1369

Life Tables procedure, 1546
aggregated data, 1554
approximate comparisons, 1554
comparing factor levels, 1552
control variables, 1548
exact comparisons, 1553
factor variables, 1548
limitations, 1548
missing values, 1555
pairwise comparisons, 1554
plots, 1551
saving survival table data, 1556
survival status variable, 1550
survival time variable, 1548
time intervals, 1549

likelihood ratio
in Cox Regression procedure, 301
in Logistic Regression procedure, 809

likelihood-ratio chi-square
in Crosstabs procedure, 322

Lilliefors test
in Explore procedure, 524

limitations. See individual procedures
line breaks

in value labels, 1634
in variable labels, 1644

line charts, 697
in Interactive Charts procedure, 759
sequence, 176, 1577

Linear Mixed Models procedure, 988– 1011
algorithm criteria, 998
covariance structure, 993
estimated marginal means, 999
fixed effects, 1001
missing values, 1002
model examples, 990
output, 1003
overview, 989

linear model
in Curve Estimation procedure, 408
in Exponential Smoothing procedure, 538

linear regression, 1351

Subject Index 1759

See also Linear Regression procedure
Linear Regression procedure, 1351, 1367

case selection, 1363
casewise plots, 1371
constant term, 1360
dependent variables, 1355
histograms, 1370
matrix input, 1364
matrix output, 1364
missing values, 1365
model criteria, 1359
normal probability plots, 1370
partial residual plots, 1372
residuals, 1367
saving files, 1373
saving new variables, 1374
scatterplots, 1372
statistics, 1357, 1362
tolerance, 1358, 1359, 1360
variable selection methods, 1355
weights, 1361

linearity test
in Means procedure, 984
in Summarize procedure, 1545

List Cases procedure, 798
listwise deletion

custom tables, 403
local documentation, 773, 775
local linear regression

in Interactive Charts procedure, 763
log rank test

in Kaplan-Meier procedure, 793
log transformation

in Probit Analysis procedure, 1269
log transformation (base 10)

in ARIMA procedure, 155– 156
logarithmic model

in Curve Estimation procedure, 408
logical expressions, 48, 493, 736

defined, 48
in END LOOP, 49
in LOOP, 49
in loop structures, 832
in SELECT IF, 49
missing values, 52, 53
order of evaluation, 52
selecting cases, 1478
string variables, 45

logical functions, 49, 257
logical operators, 51, 492, 736, 1478

defined, 51
in matrix language, 923
missing values, 52, 495, 738

logical variables
defined, 48

logistic distribution function, 42
logistic model

in Curve Estimation procedure, 408
logistic regression, 802

See also Logistic Regression procedure
Logistic Regression procedure, 802

casewise listings, 813
categorical covariates, 806
classification plots, 813
classification tables, 811
contrasts, 806
correlation matrix, 811
dependent variable, 805
Hosmer-Lemeshow goodness-of-fit statistic, 811
include constant, 810
interaction terms, 805
iteration history, 811
label casewise listings, 811
method, 808
missing values, 814
saving new variables, 814
subsets of cases, 810

logit
in Probit Analysis procedure, 1268

logit link
in Ordinal Regression, 1214

Logit Loglinear Analysis procedure, 606, 816
adjusted residuals, 612
categorical variables, 608, 820
cell covariates, 608, 820
cell weights, 610, 821
contrasts, 823
convergence criteria, 611, 825
correlation matrices, 613, 826
covariance matrices, 613
custom models, 615, 827
delta, 612, 825
dependent variables, 609, 820
design matrix, 613, 826
deviance residuals, 612
display options, 612, 825

1760 Subject Index

expected frequency, 612, 826
factors, 608, 820
generalized residuals, 610, 822
interaction terms, 615, 827
limitations, 607, 818
log-odds ratio, 611
maximum iterations, 612, 825
missing values, 614, 827
model specification, 615, 827
normal probability plots, 613, 826
observed frequency, 612, 826
parameter estimates, 613, 826
plots, 613, 826
residual plots, 613, 826
residuals, 612, 826
standardized residuals, 612

logit residuals
in Logistic Regression procedure, 813

log-likelihood distance measure
in TwoStep Cluster Analysis, 1595

loglinear analysis, 606, 816
generalized log-odds ratios, 611
GLOR, 611
See also General Loglinear Analysis procedure;

Logit Loglinear Analysis procedure
LOGLINEAR command

compared to GENLOG, 817
log-minus-log plots

in Cox Regression procedure, 304
lognormal distribution function, 42
log-odds ratio

in General Loglinear Analysis procedure, 611
in Logit Loglinear Analysis procedure, 611

long string variables, 33
loop structures, 830

increment value, 836
indexing variable, 832
initial value, 833
logical expression, 832
macro facility, 456
terminal value, 833
terminating, 169

loops
maximum number, 1492

loss function
in Nonlinear Regression procedure, 1058

Lotus 1-2-3 files, 1466
read range, 640

read variable names, 640
reading, 635

M matrix, 648
displaying, 681
in GLM Multivariate, 674, 675

macro facility, 440
assigning defaults, 450
conditional processing, 455
display macro commands, 1490
examples, 1717
keyword arguments, 445
loop structures, 456
macro call, 442
macro definition, 441
macro expansion, 1490
positional arguments, 446
string functions, 451
tokens, 447
with matrix language, 957

Mahalanobis distance
in Discriminant Analysis procedure, 473
in Linear Regression procedure, 1369

Mallow’s Cp
in Linear Regression procedure, 1358

Mann-Whitney U
in Two-Independent-Samples Tests procedure,

1092
MANOVA, 869, 882

analysis groups, 880
between-subjects factors, 883
compared with GLM, 645, 841
confidence intervals, 879
contrasts, 872, 886
covariates, 871
cross-products matrix, 876
dependent variable, 871
discriminant analysis, 878
display options, 875, 890
doubly multivariate designs, 882
error correlation matrix, 876
error matrices, 875
error sum of squares, 876
error variance-covariance matrix, 876
factors, 871
homogeneity tests, 876
limitations, 871, 883

Subject Index 1761

linear transformations, 871
naming transformed variables, 874
power estimates, 879
principal components analysis, 877
renaming transformed variables, 889
See also multivariate analysis of variance
significance tests, 875, 876
simple effects, 888
transformation matrix, 876
within-subjects factors, 882, 885, 887

Mantel-Haenszel chi-square
in Crosstabs procedure, 322

Mantel-Haenszel statistic
in Crosstabs procedure, 323

marginal homogeneity test
in Two-Related-Samples Tests procedure, 1095

master files, 1622
matching coefficients

in Distances procedure, 1282
in Hierarchical Cluster Analysis procedure, 231

matrices
correlation, 272, 1076, 1191
covariance, 274
ESSCP, 674
HSSCP, 674
K, 662, 1612
L, 659, 661, 1608, 1611
M, 674
RSSCP, 674
split-file processing, 1534
sums-of-squares and cross-product, 674

matrix data files
converting correlation to covariance, 977
converting covariance to correlation, 977
raw, 958
See also raw matrix data files
variable names, 20, 22

matrix input
in Discriminant Analysis procedure, 482
in Distances procedure, 1288
in Factor Analysis procedure, 559
in Hierarchical Cluster Analysis procedure, 240
in Multidimensional Scaling procedure, 113
in Reliability Analysis procedure, 1381

matrix language, 913
arithmetic operators, 921
column vector, 915
conformable matrices, 920

constructing a matrix from other matrices, 919
control structures, 938
displaying results, 935
extracting elements, 918
functions, 927
logical operators, 923
main diagonal, 915
matrix notation, 917
reading SPSS data files, 924, 946
reading SPSS matrix data files, 951
reading text files, 941
relational operators, 922
row vector, 915
saving SPSS data files, 924, 949
saving SPSS matrix data files, 953
scalar, 915
scalar expansion, 921
string variables, 916
symmetric matrix, 916
transpose, 915
variables, 916
with case weighting, 925
with macro facility, 957
with split-file processing, 925
with subsets of cases, 925
with temporary transformations, 925
writing text files, 944

matrix output
in Discriminant Analysis procedure, 482
in Distances procedure, 1288
in Factor Analysis procedure, 559
in Hierarchical Cluster Analysis procedure, 240
in Homogeneity Analysis, 734
in Nonlinear Canonical Correlation Analysis, 1183
in Reliability Analysis procedure, 1381

matrix system files, 15, 16, 18
format, 18
matrix input, 16

matrix weights
in Multidimensional Scaling procedure, 110

Mauchly’s test of sphericity, 680
in MANOVA, 883

maximum
in Descriptives procedure, 465
in Explore procedure, 525
in Frequencies procedure, 604
in Ratio Statistics procedure, 1328, 1329
in Report Summaries in Rows procedure, 1422

maximum-likelihood estimation

1762 Subject Index

in Autoregression procedure, 148
in Factor Analysis procedure, 556
in Reliability Analysis procedure, 1379

maximum-likelihood method
in Variance Components Analysis, 1638

MCA. See multiple classification analysis
McNemar test

in Crosstabs procedure, 323
in Two-Related-Samples Tests procedure, 1093

mean
in Descriptives procedure, 464
in Discriminant Analysis procedure, 479
in Explore procedure, 525
in Factor Analysis procedure, 552
in Frequencies procedure, 604
in Linear Regression procedure, 1362
in Means procedure, 982
in OLAP Cube procedure, 1106
in Ratio Statistics procedure, 1328, 1330
in Reliability Analysis procedure, 1379, 1380
in Report Summaries in Rows procedure, 1423
in Summarize procedure, 1543

mean substitution
in Discriminant Analysis procedure, 481
in Factor Analysis procedure, 550
in Linear Regression procedure, 1366

mean-centered coefficient of variation
in Ratio Statistics procedure, 1328, 1330

means
pairwise comparisons in custom tables, 401

means model
syntax, 647

Means procedure, 980
layers, 982
missing values, 984
statistics, 982

measurement level
copying from other variables in current or external

data file, 142
specifying, 1646

median
in Explore procedure, 525
in Frequencies procedure, 604
in Ratio Statistics procedure, 1328, 1330
in Report Summaries in Rows procedure, 1423

median method
in Hierarchical Cluster Analysis procedure, 237

median test

in Tests for Several Independent Samples
procedure, 1094

median-centered coefficient of variation
in Ratio Statistics procedure, 1328, 1329

memory allocation
in TwoStep Cluster Analysis, 1596

merging data files
files with different cases, 80
files with different variables, 905
raw data files, 83, 908
See also Add Cases procedure; Add Variables

procedure
M-estimators

in Explore procedure, 525
minimum

in Descriptives procedure, 464
in Explore procedure, 525
in Frequencies procedure, 604
in Ratio Statistics procedure, 1328, 1330
in Report Summaries in Rows procedure, 1422

minimum norm quadratic unbiased estimator
in Variance Components Analysis, 1638

Minkowski measure
in Distances procedure, 1280
in Hierarchical Cluster Analysis procedure, 230

mismatch
in Missing Value Analysis, 1036

missing indicator variables
in Missing Value Analysis, 1032

missing summary
custom tables, 403

Missing Value Analysis, 1029– 1042
extreme values, 1032
missing indicator variables, 1032
saving imputed data, 1040
summary tables, 1031
symbols, 1032

missing value handling
in TwoStep Cluster Analysis, 1596

missing value patterns
in Missing Value Analysis, 1036– 1038

missing values, 1734
and aggregated data, 97
and logical operators, 495, 738
copying from other variables in current or external

data file, 142
counting occurrences, 292
custom tables, 391, 395, 403

Subject Index 1763

date format variables, 986
defining, 985
functions, 52, 53
in Categorical Principal Components Analysis,

196
in control charts, 1522
in Cox Regression procedure, 301
in functions, 254
in Hierarchical Loglinear Analysis procedure, 725
in Life Tables procedure, 1555
in logical expressions, 52, 53
in Logistic Regression procedure, 814
in loglinear analysis procedures, 614, 827
in loop structures, 837
in Multiple Response Crosstabs procedure, 1026
in Multiple Response Frequencies procedure, 1026
in Nominal Regression procedure, 1067
in numeric expressions, 44
in Probit Analysis procedure, 1272
in ROC Curve procedure, 1444
MISSING function, 53
NMISS function, 53
replacing, 1438
SYSMIS function, 53
system-missing, 985
time series settings, 1569
user-missing, 985
VALUE function, 53
with logical operators, 52
See also individual procedures

missing-value functions, 256
mixed files, 572, 1340
mixed models

syntax, 647
variance components analysis, 1636

MOD_n model names, 1013– 1014, 1738
mode

in Frequencies procedure, 604
in Report Summaries in Rows procedure, 1423

model file
displaying information, 1561– 1562
reading, 1331– 1333
saving, 1456– 1458

model files, 1738
model information

exporting from Discriminant Analysis procedure,
474

model names, 1013– 1014, 1738

monotone spline
in Multidimensional Scaling, 1304

Moses test
in Two-Independent-Samples Tests procedure,

1096
moving averages, 312

in Seasonal Decomposition procedure, 1475
See also centered moving average function; prior

moving average function
moving range charts, 1511

control limits, 1521
sigma, 1521
span, 1521
subgroup labels, 1513

Multidimensional Scaling, 1295– 1312
limitations, 1297
options, 1296

Multidimensional Scaling procedure, 100
analysis criteria, 108
analysis specification, 114
analysis summary, 109
conditionality, 105
convergence, 108
defining data shape, 103
dimensionality of solution, 109
displaying input data, 109
input files, 105
iterations, 108
level of measurement, 104
limitations, 102
matrix input, 113
missing values, 108
models, 107, 115
output files, 111
plots, 110
specifying input rows, 103
variable list, 103

multinomial distribution
in General Loglinear Analysis procedure, 611

Multiplan files
read range, 640
read variable names, 640
reading, 635
saving, 1466

multiple category group, defined, 1016
multiple classification analysis

analysis of variance, 135
multiple comparisons

1764 Subject Index

analysis of variance, 1163
in GLM, 665
in GLM Univariate, 1615

multiple dichotomy group, defined, 1015
multiple R

in Linear Regression procedure, 1358
multiple regression, 1351

See also Linear Regression procedure
multiple response analysis, 1019

defining sets, 1019
multiple category, 1019
multiple dichotomy, 1019
See also Define Multiple Response Sets procedure;

Multiple Response Crosstabs procedure;
Multiple Response Frequencies procedure

Multiple Response Crosstabs procedure, 1024
cell percentages, 1025
defining value ranges, 1022
matching variables across response sets, 1025
missing values, 1026
percentages based on cases, 1026
percentages based on responses, 1026
value labels, 1027

Multiple Response Frequencies procedure, 1023
missing values, 1026
table format, 1028
value labels, 1027

multiple response sets
copying sets from another data file, 140
custom tables, 383, 404
functions in custom tables, 388

multiplicative model
in Seasonal Decomposition procedure, 1475

multipunch data, 565
multivariate analysis of variance, 869

See also MANOVA

natural log transformation
in ARIMA procedure, 155– 156
in Autocorrelations procedure, 74, 1188
in Cross-Correlations procedure, 222
in normal probability plots, 1231
in sequence charts, 175, 1576

natural response rate
in Probit Analysis procedure, 1270

nearest neighbor method

in Hierarchical Cluster Analysis procedure, 236
negative binomial distribution function, 44
negative log-log link

in Ordinal Regression, 1214
nested conditions, 499
nested design

in GLM, 671
in GLM Univariate, 1621
in Variance Components Analysis, 1641

nested files, 573, 1340
nesting

custom tables, 381
multiple, 671, 1621

no trend model
in Exponential Smoothing procedure, 538

noise handling
in TwoStep Cluster Analysis, 1595

nominal data
in Multidimensional Scaling procedure, 104

Nominal Regression procedure, 1063
missing values, 1067
output, 1072
variable list, 1064

Nonlinear Canonical Correlation Analysis, 1175–
1183

centroid plots, 1181
dimensions, 1181– 1182
excluding cases, 1179
matrix output, 1183
optimal scaling level, 1178
saving dimensions, 1182– 1183
saving object scores, 1182
transformation plots, 1181
value labels, 1181– 1182
variable labels, 1181– 1182

nonlinear constraints, 1050
nonlinear regression, 1044

See also Nonlinear Regression procedure
Nonlinear Regression procedure, 1044

bootstrap estimates, 1059
constrained functions, 1050
constraints, 1057
crash tolerance, 1055
critical value for derivative checking, 1054
dependent variable, 1051
derivatives, 1049
feasibility tolerance, 1055

Subject Index 1765

function precision, 1056
infinite step size, 1056
Levenberg-Marquardt method, 1056
linear constraints, 1057
linear feasibility tolerance, 1055
line-search tolerance, 1055
loss function, 1058
major iterations, 1055
maximum iterations, 1055, 1056
minor iterations, 1055
model expression, 1048
model program, 1048
nonlinear constraints, 1057
nonlinear feasibility tolerance, 1055
optimality tolerance, 1056
parameter constraints, 1057
parameter convergence, 1057
parameters, 1048
residual and derivative correlation convergence,

1057
saving new variables, 1053
saving parameter estimates, 1051
sequential quadratic programming, 1055
step limit, 1055
sum-of-squares convergence, 1056
using parameter estimates from previous analysis,

1051
normal distribution function, 42
normal probability plots, 1224

detrended, 1229
in Explore procedure, 524
in Hierarchical Loglinear Analysis procedure, 724
in Linear Regression procedure, 1370
in loglinear analysis procedures, 613, 826
specifying periodicity, 1231
transforming values, 1230
using a previously defined model, 1232

normalization
in Correspondence Analysis, 285

normalized raw Stress
in Multidimensional Scaling, 1309

np charts, 1513
conforming values, 1521
data organization, 1514
nonconforming values, 1521
sigma, 1521
subgroup identifier, 1515

numeric data
input formats, 412, 427

output formats, 593, 1258, 1676
numeric expressions, 37

missing values, 44
numerical scaling level

in Multidimensional Scaling, 1303

object points plots
in Categorical Principal Components Analysis,

201
object scores

in Categorical Principal Components Analysis,
200

saving in Homogeneity Analysis, 734
saving in Nonlinear Canonical Correlation

Analysis, 1182
oblimin rotation

in Factor Analysis procedure, 557
oblique rotation

in Factor Analysis procedure, 557
observed count

in Crosstabs procedure, 321
in Linear Regression procedure, 1363

observed frequency
in Hierarchical Loglinear Analysis procedure, 724
in loglinear analysis procedures, 612, 826
in Probit Analysis procedure, 1271

observed power, 657
in GLM Univariate, 1608

Ochiai measure
in Distances procedure, 1285
in Hierarchical Cluster Analysis procedure, 235

ODBC, 1466
OLAP Cube procedure

statistics, 1106
one-minus-survival plots

in Cox Regression procedure, 304
in Kaplan-Meier procedure, 791
in Life Tables procedure, 1552

One-Sample Kolmogorov-Smirnov Test procedure,
1089

test distribution, 1089
One-Sample T Test procedure

dependent variables, 1583
limitations, 1582
missing values, 1584
test value, 1583

1766 Subject Index

one-sample t test. See t test
One-Way ANOVA

post hoc tests, 1163
One-Way ANOVA procedure, 1160

contrasts, 1162
defining factor ranges, 1162
factor variables, 1162
limitations, 1161
matrix input, 1167
matrix output, 1167
missing values, 1166, 1168
multiple comparisons, 1163
orthogonal polynomials, 1162
statistics, 1166

online documentation, 773
opening files

data files, 617
operating rules, 1733
optimal scaling level

in Categorical Principal Components Analysis,
194

in Nonlinear Canonical Correlation Analysis, 1178
numerical, 1303
ordinal, 1303

optimality tolerance
in Probit Analysis procedure, 1269

options, 1483
displaying, 1498
See also preferences

order of commands, 8
order of operations

numeric expressions, 37
ordering categories

interactive charts, 747
ordinal data

in Multidimensional Scaling procedure, 104
ordinal regression

saving statistics, 1216
scale model, 1217

ordinal scaling level
in Multidimensional Scaling, 1303

orthogonal contrasts, 664, 1614
orthogonal polynomials

analysis of variance, 1162
orthogonal rotation

in Factor Analysis procedure, 557
outliers

identifying, 522
in Linear Regression procedure, 1370, 1371

output
changing output language, 1496
exporting, 1110
quantity of, 1734
saving as data files, 1110

output files
borders for tables, 1493
chart characters, 1493
destination of, 1489
display command syntax, 1489
display output page titles, 1494
page size, 1493

output formats, 414, 1258, 1676
custom currency, 593, 1258, 1676
displaying, 1259, 1677
format specification, 1258, 1676
print (display), 593
string data, 593
write, 593, 1676

p charts, 1513
conforming values, 1521
data organization, 1514
nonconforming values, 1521
sigma, 1521
subgroup identifier, 1515

padding strings, 48, 49
page ejection, 1255

missing values, 1256
variable list, 1256

page size, 1493
Paired-Samples T Test procedure, 1581

missing values, 1584
variable list, 1584

paired-samples t test. See t test
pairwise comparisons

comparison of means in custom tables, 401
comparison of proportions in custom tables, 401
custom tables, 401

parallel model
in Reliability Analysis procedure, 1379

parallelism test
in Probit Analysis procedure, 1272

parameter estimates

Subject Index 1767

in Cox Regression procedure, 302
in GLM, 658
in GLM Univariate, 1608
in Hierarchical Loglinear Analysis procedure, 724
in Linear Mixed Models procedure, 1004
in loglinear analysis procedures, 613, 826

parameter-order subcommands
in ARIMA procedure, 156– 158

Pareto charts, 712
simple, 712
stacked, 712

Pareto distribution function, 42
part correlation

in Linear Regression procedure, 1358
partial associations

in Hierarchical Loglinear Analysis procedure, 724
partial autocorrelation, 1185

See also Autocorrelations procedure
partial correlation, 1191

in Linear Regression procedure, 1358
See also Bivariate Correlations procedure

partial eta-squared, 658, 1608
Parzen window

in Spectral Plots procedure, 1528
pattern difference measure

in Distances procedure, 1286
in Hierarchical Cluster Analysis procedure, 235

pattern matrix
in Discriminant Analysis procedure, 480

Pearson chi-square
in Crosstabs procedure, 322

Pearson correlation coefficient
in Bivariate Correlations procedure, 272
in Crosstabs procedure, 323
in Distances procedure, 1279
in Factor Analysis procedure, 552
in Hierarchical Cluster Analysis procedure, 229
in Reliability Analysis procedure, 1379, 1380

Pearson’s r. See Pearson correlation coefficient
percentage change

between groups and variables, 1107
percentage functions

custom tables, 385
percentages

in Crosstabs procedure, 321
in Report Summaries in Rows procedure, 1423

percentiles
break points, 522
custom tables, 387
estimating from grouped data, 602
in Explore procedure, 522
in Frequencies procedure, 603
in Kaplan-Meier procedure, 792
methods, 522

periodic lags
in Autocorrelations procedure, 1188

periodicity, 1736– 1737
in ARIMA procedure, 155– 156
in Autocorrelations procedure, 74, 1188
in Cross-Correlations procedure, 222
in Exponential Smoothing procedure, 540
in normal probability plots, 1231
in Seasonal Decomposition procedure, 1476
in sequence charts, 174, 1575
time series settings, 1570

periodogram
in Spectral Plots procedure, 1528– 1529

periodogram values
saving in Spectral Plots procedure, 1531

phase spectrum estimates
saving in Spectral Plots procedure, 1531

phase spectrum plot
in Spectral Plots procedure, 1529

phi
in Crosstabs procedure, 322

phi four-point correlation
in Distances procedure, 1286
in Hierarchical Cluster Analysis procedure, 235

phi-square measure
in Distances procedure, 1281
in Hierarchical Cluster Analysis procedure, 230

pie charts, 703
in Interactive Charts procedure, 756
in TwoStep Cluster Analysis, 1598

Pillai’s trace
in MANOVA, 879

plots
in Correspondence Analysis, 287

Poisson distribution
in General Loglinear Analysis procedure, 611

Poisson distribution function, 44
polynomial contrasts, 663, 1613

in Cox Regression procedure, 299

1768 Subject Index

in loglinear analysis procedures, 823
in MANOVA, 873
repeated measures, 682

portable files. See SPSS portable files
position of totals

custom tables, 397
post hoc tests

alpha value, 665, 1615
Bonferroni test, 666, 667, 1164, 1616, 1617
Duncan’s multiple comparison procedure, 666,

667, 1164, 1616, 1617
Dunnett’s C, 666, 668, 1165, 1616, 1618
Dunnett’s one-tailed t test, 666
Dunnett’s one-tailed t test, 666, 1616
Gabriel test, 1616
Gabriel’s pairwise comparisons test, 667, 1165,

1617
Games and Howell’s pairwise comparisons test,

666, 668, 1165, 1616, 1618
GLM, 665
GLM Univariate, 1615
Hochberg’s GT2, 666, 667, 1165, 1616, 1617
in GLM, 665
in GLM Univariate, 1615
in One-Way ANOVA, 1163
least significant difference, 666, 667, 1164, 1616,

 1617
One-Way ANOVA, 1163
Ryan-Einot-Gabriel-Welsch multiple stepdown

procedure, 666, 667, 668, 1165, 1616, 1617,
 1618

Ryan-Einot-Gabriel-Welsch’s multiple stepdown
procedure, 666, 1165

Scheffe test, 666, 667, 1164, 1616, 1617
See alsomultiple comparisons;individual test

names
Sidak test, 666, 667, 1165, 1616, 1617
statistical purpose, 666, 1616
Student-Newman-Keuls test, 666, 667, 1164,

1616, 1617
Tamhane’s T2, 666, 668, 1165, 1616, 1618
Tamhane’s T3, 666, 668, 1165, 1616, 1618
Tukey’s b, 666, 667, 1164
Tukey’s b, 1616, 1617
Tukey’s honestly significant difference, 666, 667,

 1164, 1616, 1617
Waller-Duncan test, 666, 668, 1165, 1616, 1618

post hoc tests. See also multiple
comparisons;individual test names

posterior probability

in Discriminant Analysis procedure, 477
power, 657, 1607

observed, 657
power estimates

in MANOVA, 879
power model

in Curve Estimation procedure, 407, 408
power range

in Weight Estimation procedure, 1668
P-P normal probability plots, 1229
Prais-Winsten method

in Autoregression procedure, 148
predictability measures

in Distances procedure, 1284
in Hierarchical Cluster Analysis procedure, 234

predicted group
in Logistic Regression procedure, 813

predicted probabilities
in Logistic Regression procedure, 813

predicted values
adjusted, 1369
saving in 2-Stage Least-Squares procedure, 1589
saving in Curve Estimation procedure, 410
standard errors, 1369
standardized, 1369
unstandardized, 1368

prediction intervals
in Interactive Charts procedure, 763
saving in Curve Estimation procedure, 410

preferences, 1483
blank data fields, 1491
borders for tables, 1493
charts, 1493
custom currency formats, 1494
data compression, 1492
default file extension, 1492
default variable format, 1486
display errors, 1489
display macro commands, 1490
display resource messages, 1489
display statistical results, 1489
display warnings, 1489
displaying, 1498
errors, 1491– 1492
invalid data, 1491
journal file, 1490
macro expansion, 1490
maximum loops, 1492

Subject Index 1769

output, 1489, 1494
output page size, 1493
preserving, 1238, 1437
random-number seed, 1488
restoring, 1238, 1437
time series, 1568
warnings, 1491– 1492

price-related differential
in Ratio Statistics procedure, 1329, 1330

principal components
in Factor Analysis procedure, 556

principal components analysis
in MANOVA, 877

principal directions
in Multidimensional Scaling procedure, 109

principal-axis factoring
in Factor Analysis procedure, 556

print formats. See output formats
printing cases, 1249, 1261

column headings, 1255
displaying blank lines, 1261
formats, 1249, 1251, 1673
missing values, 1250
number of records, 1253
output file, 1249, 1253, 1261
page ejection, 1255
strings, 1249, 1252
summary table, 1249, 1254

prior moving average function, 313
prior probability

in Discriminant Analysis procedure, 476
probability of F-to-enter

in Discriminant Analysis procedure, 474
in Linear Regression procedure, 1360

probability of F-to-remove
in Discriminant Analysis procedure, 474
in Linear Regression procedure, 1360

probit analysis, 1264
See also Probit Analysis procedure

Probit Analysis procedure, 1264
confidence intervals, 1271
covariates, 1267
expected frequency, 1271
factors, 1267
grouping variable, 1267
log transformation, 1269
maximum iterations, 1270
missing values, 1272
model specification, 1268

natural response rate, 1270
observation frequency variable, 1267
observed frequency, 1271
predictor variables, 1267
residuals, 1271
response frequency variable, 1267
step limit, 1270

probit link
in Ordinal Regression, 1214

procedure output
output file, 1273
writing to a file, 1273

procedures
update documentation, 775

process capability indices
in Control Charts, 1518

profile plots, 659, 1609
profiles

saving in data files, 1207–??

program states, 1687
projected centroids plots

in Categorical Principal Components Analysis,
203

promax rotation
in Factor Analysis procedure, 557

proportional sample, 1446
proportions

pairwise comparisons in custom tables, 401
proximity measures, 1275

See also Distances procedure

Q. See Cochran’s Q
Q-Q normal probability plots, 1229
quadratic model

in Curve Estimation procedure, 407, 408
quadratic spectrum estimate plot

in Spectral Plots procedure, 1529
quadrature spectrum estimates

saving in Spectral Plots procedure, 1531
quartiles

in Kaplan-Meier procedure, 792
quartimax rotation

in Factor Analysis procedure, 557

1770 Subject Index

r
in Means procedure, 984
in Summarize procedure, 1545
See also Pearson correlation coefficient

R charts, 1508
control limits, 1521
data organization, 1510
minimum sample size, 1521
sigma, 1521
subgroup identifier, 1511

R2

in Linear Regression procedure, 1358
random effects, 654, 1604, 1637

variance components analysis, 1636
random sample

in nonparametric tests, 1100
random-effects model

in Linear Mixed Models procedure, 1004
syntax, 647

random-number functions, 257
random-number seed

specifying, 1488
range

in Descriptives procedure, 464
in Explore procedure, 525
in Frequencies procedure, 604
in Ratio Statistics procedure, 1329, 1330

range bar charts, 692
ranking data, 1320

method, 1322
missing values, 1325
new variable names, 1323
order, 1321
proportion estimates, 1324
tied values, 1228, 1324
within subgroups, 1321

Rankit method
in normal probability plots, 1228

rank-order correlation coefficients
in Bivariate Correlations procedure, 1076

Rao’s V
in Discriminant Analysis procedure, 473, 475

ratio data
in Multidimensional Scaling procedure, 104

Ratio Statistics, 1330

Ratio Statistics procedure, 1326–??
missing values, 1327
output, 1329
overview, 1326
saving to external file, 1328

raw data files
variable definition, 1340

raw matrix data files, 958
factors, 970, 974
format, 958, 961
record types, 972
split files, 968
within-cells records, 971, 974

raw text data files, 624
receiver operating characteristic curve. See ROC

Curve procedure
recoding values, 1334

converting strings to numeric, 162, 1338
missing values, 1335
numeric variables, 1335
string variables, 1336
target variable, 1337

records
defining, 418, 1340
duplicate, 1347
missing, 1346
skipping, 1344
types, 1340

rectangular matrix
in Multidimensional Scaling procedure, 104

reference lines
in sequence charts, 176, 1577, 1579

regression
syntax, 646

regression coefficients
in Linear Regression procedure, 1358

regression estimates
in Missing Value Analysis, 1041

regression factor scores
in Factor Analysis procedure, 558

regression lines
in Interactive Charts procedure, 762

relational operators, 50, 492, 736, 1478
defined, 50
in matrix language, 922

relative median potency
in Probit Analysis procedure, 1272

Subject Index 1771

relative risk ratio
in Crosstabs procedure, 323

reliability analysis, 1376
See also Reliability Analysis procedure

Reliability Analysis procedure, 1376
computational method, 1381
limitations, 1377
matrix input, 1381
matrix output, 1381
missing values, 1381, 1383
models, 1378
scale definition, 1378
statistics, 1379
variable list, 1378

repeated contrasts, 664, 1614
in Cox Regression procedure, 299
in loglinear analysis procedures, 823
in MANOVA, 873
repeated measures, 682

repeated measures analysis
in Reliability Analysis procedure, 1379

repeated measures analysis of variance, 678
limitations, 679

repeated measures models
syntax, 647

repeating data, 1388
case identification, 1400
defining variables, 1396
input file, 1396
repeating groups, 1395
starting column, 1394
summary table, 1401

repeating data groups, 1340
repeating fields. See repeating data
replacing missing values, 1438, 1734

linear interpolation, 1439
linear trend, 1441
mean of nearby points, 1440
median of nearby points, 1440
series mean, 1441

Report Summaries in Rows procedure, 1402
column contents, 1414, 1418
column headings, 1403, 1415, 1419
column spacing, 1404
column width, 1404, 1416, 1419
defining subgroups, 1418
footnotes, 1428
format, 1408

limitations, 1407
missing values, 1406, 1430
output file, 1406, 1411
page layout, 1411
print formats, 1426
report types, 1406
string variables, 1416
summary statistics, 1406, 1421
summary titles, 1425
titles, 1428
variable list, 1414

reports, 1402
See also Report Summaries in Rows procedure

reproduced correlation matrix
in Factor Analysis procedure, 553

rereading records, 1431
input file, 1434
starting column, 1435

residual correlation matrix
in GLM Multivariate, 675

residual covariance matrix
in GLM Multivariate, 675

residual plots
in GLM, 659
in GLM Univariate, 1609
in Hierarchical Loglinear Analysis procedure, 724
in loglinear analysis procedures, 613, 826

residual SSCP
in GLM Multivariate, 674

residuals
degrees of freedom, 588
deleted, 1369
descriptive statistics, 586
goodness of fit, 586
in Crosstabs procedure, 321
in Hierarchical Loglinear Analysis procedure, 724
in Logistic Regression procedure, 813
in loglinear analysis procedures, 612, 826
in Probit Analysis procedure, 1271
saving in 2-Stage Least-Squares procedure, 1589
saving in Curve Estimation procedure, 410
saving in Linear Regression procedure, 1374
standardized, 1369
Studentized, 1369
Studentized deleted, 1369
unstandardized, 1368

residuals plots
in Categorical Principal Components Analysis,

202

1772 Subject Index

in Multidimensional Scaling, 1310
response frequency variable

in Probit Analysis procedure, 1267
restricted maximum-likelihood method

in Variance Components Analysis, 1638
restructuring data files. See Cases to Variables

procedure; Variables to Cases procedure
reverse Helmert contrasts, 664, 1613
rho value

in Autoregression procedure, 148
ribbon charts

in Interactive Charts procedure, 759
ROC Curve procedure, 1442

charts, 1445
limitations, 1443
missing values, 1444
output, 1445

Rogers and Tanimoto measure
in Distances procedure, 1283
in Hierarchical Cluster Analysis procedure, 233

row percentages
in Crosstabs procedure, 321

Roy’s largest root
in MANOVA, 879

Roy-Bargmann stepdown F
in MANOVA, 876

RSSCP matrices
in GLM Multivariate, 674

running commands
batch mode, 6
interactive mode, 5

running median function, 313
runs test

in Runs Test procedure, 1097
Runs Test procedure, 1097

cutting point, 1097
Russell and Rao measure

in Distances procedure, 1283
in Hierarchical Cluster Analysis procedure, 232

Ryan-Einot-Gabriel-Welsch multiple stepdown
procedure, 666, 667, 668, 1165, 1616, 1617,
 1618

Ryan-Einot-Gabriel-Welsch’s multiple stepdown
procedure, 666, 1165

s charts, 1508

control limits, 1521
data organization, 1510
minimum sample size, 1521
sigma, 1521
subgroup identifier, 1511

saf variable, 1735
sample

exact-size, 1446
proportional, 1446

sampling cases, 1446
See also subsets of cases

SAS files
conversion to SPSS, 633
reading, 631
value labels, 632

sas variable, 1735
saturated models

in Hierarchical Loglinear Analysis procedure, 725
saving files

aggregated data files, 93
data compression, 1453, 1683
data files, 1448, 1679
dBASE format, 1459
dropping variables, 1451, 1681
Excel format, 1459
keeping variables, 1451, 1681
Lotus 1-2-3, 1459
renaming variables, 1452, 1682
spreadsheet format, 1459
SPSS portable files, 529
SYLK format, 1459
tab-delimited data files, 1459
variable map, 1683

scale model
in ordinal regression, 1217

scale statistics
in Reliability Analysis procedure, 1379

scale variables
custom tables, 383
functions in custom tables, 386
totaling in custom tables, 397

scatterplots, 708
all-groups, 481
in Interactive Charts procedure, 753
separate-groups, 482

Scheffe test, 666, 667, 1164, 1616, 1617
Schwarz Bayesian criterion

in Linear Regression procedure, 1358

Subject Index 1773

scientific notation
controlling display in output, 1495

scratch variables
defined, 24

scree plots
in Factor Analysis procedure, 554

Seasonal Decomposition procedure, 1473– 1477
and missing values, 1734
computing moving averages, 1475
models, 1475
specifying periodicity, 1476
using a previously defined model, 1476– 1477

seasonal difference function, 314
seasonal difference transformation

in ARIMA procedure, 155– 156, 156– 158
in Autocorrelations procedure, 74, 1187
in Cross-Correlations procedure, 221
in normal probability plots, 1231
in sequence charts, 174

seasonal factor estimates, 1473– 1477
in Exponential Smoothing procedure, 540– 541

seasonal smoothing parameter
in Exponential Smoothing procedure, 541

seasonality
in Exponential Smoothing procedure, 538

seed, 1488
 See also random-number seed

selecting cases, 1629
semipartial correlation. See part correlation
sep variable, 1735
sequence charts, 171, 1572

area charts, 176, 1577
connecting cases between variables, 177, 1578
line charts, 176, 1577
multiple variables, 177, 1578
plotting highest and lowest values, 177, 1578
scale axis reference line, 176, 1577
specifying periodicity, 174, 1575
split-file scaling, 178, 1579
time axis reference lines, 178, 1579
transforming values, 174, 1575
using previously defined specifications, 179, 1580

sequential quadratic programming
in Nonlinear Regression procedure, 1055

settings, 1483
displaying, 1498
See also preferences

Shapiro-Wilk’s test
in Explore procedure, 524

short string variables, 33
Sidak test, 666, 667, 1165, 1616, 1617
sign test

in Two-Related-Samples Tests procedure, 1097
significance level

in Linear Regression procedure, 1363
significance levels

in Factor Analysis procedure, 552
similarity measures, 1275

See also Distances procedure
simple contrasts, 664, 1614

in Cox Regression procedure, 299
in loglinear analysis procedures, 823
in MANOVA, 873
repeated measures, 682

simple effects
in MANOVA, 888

Simple Factorial ANOVA procedure
covariates, 129, 130
defining factor ranges, 129
factor variables, 129
interaction effects, 130
limitations, 128
methods, 130
missing values, 135
multiple classification analysis, 135
statistics, 134
sums of squares, 130, 133

simple matching measure
in Distances procedure, 1283
in Hierarchical Cluster Analysis procedure, 232

sine function values
saving in Spectral Plots procedure, 1530

size difference measure
in Distances procedure, 1286
in Hierarchical Cluster Analysis procedure, 235

skewness
in Descriptives procedure, 464
in Explore procedure, 525
in Frequencies procedure, 604
in Report Summaries in Rows procedure, 1423

smallest F-ratio criterion
in Discriminant Analysis procedure, 473

smoothers
in Interactive Charts procedure, 762

1774 Subject Index

smoothing function, 315
smoothing parameters

in Exponential Smoothing procedure, 541– 543
Sokal and Sneath measures

in Distances procedure, 1283
in Hierarchical Cluster Analysis procedure, 233

Somers’ d
in Crosstabs procedure, 322

sorting
custom tables, 395

sorting cases, 1503
sort keys, 1503
sort order, 1503

sorting categories
interactive charts, 747

Spearman correlation coefficient
in Bivariate Correlations procedure, 1078
in Crosstabs procedure, 323

special contrasts, 664, 1614
repeated measures, 682

spectral analysis, 1524– 1532
spectral density estimate plot

in Spectral Plots procedure, 1529
spectral density estimates

saving in Spectral Plots procedure, 1531
Spectral Plots procedure, 1524– 1532

and missing values, 1734
bivariate spectral analysis, 1529– 1530
centering transformation, 1527
plots, 1528– 1529
saving spectral variables, 1530– 1531
using a previously defined model, 1531– 1532
windows, 1527– 1528

spikes
in interactive charts, 752

spline
in Multidimensional Scaling, 1304

split-file processing, 1533
break variables, 1533
matrices, 1534
scratch variables, 1533
system variables, 1533
temporary, 1563
with matrix system files, 17

split-half model
in Reliability Analysis procedure, 1378

spreadsheet files

read ranges, 640
read variable names, 640
reading, 635
saving, 1459

spread-versus-level plots
in Explore procedure, 524
in GLM, 659
in GLM Univariate, 1609

SPSS data files
documents, 78, 490, 506
reading, 617

SPSS portable files, 13
reading, 767
saving, 529

SPSS/PC+ files
reading, 767
saving, 1466

SQL queries, 621
square root function, 38
squared coherency plot

in Spectral Plots procedure, 1529
squared coherency values

saving in Spectral Plots procedure, 1531
squared Euclidean distance

in Distances procedure, 1279
in Hierarchical Cluster Analysis procedure, 229

S-stress
in Multidimensional Scaling procedure, 108

stacking
custom tables, 381

standard deviation
in Descriptives procedure, 464
in Discriminant Analysis procedure, 479
in Explore procedure, 525
in Factor Analysis procedure, 552
in Frequencies procedure, 604
in Linear Regression procedure, 1362
in Means procedure, 982
in OLAP Cube procedure, 1106
in Ratio Statistics procedure, 1329, 1330
in Reliability Analysis procedure, 1379
in Report Summaries in Rows procedure, 1423
in Summarize procedure, 1543

standard deviation function, 39
standard error

in Explore procedure, 525
in Linear Regression procedure, 1358

Subject Index 1775

in ROC Curve procedure, 1445
standard error of the mean

in Descriptives procedure, 464
in Frequencies procedure, 604

standard errors
in GLM, 670
in GLM Univariate, 1620

standardization
in Correspondence Analysis, 285
in Distances procedure, 1277

standardized residuals
in GLM, 670
in GLM Univariate, 1619
in Hierarchical Loglinear Analysis procedure, 724
in loglinear analysis procedures, 612

standardized values
in normal probability plots, 1230

standardizing variables
in TwoStep Cluster Analysis, 1597

stand-in variable, 501
statistical functions, 256
stc variable, 1735
stem-and-leaf plots

in Explore procedure, 523
stepwise selection

in Discriminant Analysis procedure, 472
in Linear Regression procedure, 1356

stimulus configuration coordinates
in Multidimensional Scaling procedure, 106, 110,

 111
stimulus weights

in Multidimensional Scaling procedure, 106, 111
stratification variable

in Kaplan-Meier procedure, 791
Stress measures

in Multidimensional Scaling, 1309
Stress plots

in Multidimensional Scaling, 1310
strictly parallel model

in Reliability Analysis procedure, 1379
string data

computing values, 253, 254, 259
conditional transformations, 493, 494, 737, 738
converting to numeric, 162
input formats, 412, 429
missing values, 985
output formats, 593, 1258, 1676
value labels, 88, 1633

string expressions
defined, 45

string functions, 45, 259
macro facility, 451

string variables
in logical expressions, 45
in matrix language, 916

structure matrix
in Discriminant Analysis procedure, 479, 480

Studentized maximum modulus distribution function,
 42

Studentized range distribution function, 43
Studentized residuals

in GLM, 670
in GLM Univariate, 1620
in Logistic Regression procedure, 813

Student-Newman-Keuls test, 666, 667, 1164, 1616,
 1617

subcommand
syntax, 6

subgroups
splitting data files into, 1533

subject weights
in Multidimensional Scaling procedure, 106, 108,

 110, 111
subsets of cases

based on dates and times, 1629
conditional expressions, 1478
exact-size sample, 1446
filter status, 582
filtering unselected cases, 582
if condition is satisfied, 1478
proportional sample, 1446
selecting, 1478, 1629
temporary sample, 1446

substrings, 48
subtitles, 1538

apostrophes in, 1538
length, 1538
quotation marks in, 1538
suppressing, 1538
with inline data, 1538

subtotals
custom tables, 395

sum
in Descriptives procedure, 465
in Frequencies procedure, 604
in Report Summaries in Rows procedure, 1422

1776 Subject Index

sum of squares
Type I, 655, 1605, 1638
Type II, 656, 1605
Type III, 656, 1606, 1638
Type IV, 656, 1606

summaries
custom tables, 383

Summarize procedure
statistics, 1543

summary labels
custom tables, 391

sums-of-squares and cross-product matrices
in GLM Multivariate, 674

sums-of-squares and cross-products of residuals
in GLM Multivariate, 674

supplementary points
in Correspondence Analysis, 283

survival analysis, 787, 1546
See also Kaplan-Meier procedure; Life Tables

procedure
survival plots

in Cox Regression procedure, 304
in Kaplan-Meier procedure, 791
in Life Tables procedure, 1551

survival tables
in Kaplan-Meier procedure, 792
writing to a file, 1273

sweep matrix
in Linear Regression procedure, 1358

SYLK files
read ranges, 640
read variable names, 640
reading, 635
saving, 1466

symmetric matrix
in Multidimensional Scaling procedure, 103

syntax, 3
syntax charts, 3
system variables, 23
system-missing values, 985

t distribution function, 43
t test

in Independent-Samples T Test procedure, 1581
in MANOVA, 890

in Missing Value Analysis, 1034
in One-Sample T Test procedure, 1581
in Paired-Samples T Test procedure, 1581

T4253H smoothing, 315
tab-delimited files

reading, 635
saving, 1463, 1466

table description
custom tables titles, 399

table lookup files, 909
table specifications

in GLM, 668
in GLM Univariate, 1618

Tamhane’s T2, 666, 668, 1165, 1616, 1618
Tamhane’s T3, 666, 668, 1165, 1616, 1618
target variables

computing values, 252
counting values, 291, 292
formats, 254
in COMPUTE command, 45

Taron’s statistic
in Crosstabs procedure, 323

Tarone-Ware test
in Kaplan-Meier procedure, 793

tau. See Goodman and Kruskal’s tau
tau-b. See Kendall’s tau-b
tau-c. See Kendall’s tau-c
templates

in charts, 714
temporary transformations, 1563
temporary variables, 1563

See also scratch variables, 1563
termination criteria

in ARIMA procedure, 159
territorial map

in Discriminant Analysis procedure, 481
Tests for Several Independent Samples procedure,

1091, 1094
grouping variables, 1088, 1091, 1094

Tests for Several Related Samples procedure, 1087,
1091

text
exporting output as text, 1117

text data files, 624
blanks, 415
data types, 412

Subject Index 1777

fixed format, 414, 415, 416, 423
freefield format, 414, 415, 416, 425
reading, 412
skipping the first n records, 420
variable definition, 422

time functions, 55
time intervals, 55
time series analysis

autocorrelation, 71
cross-correlation, 219
data transformations, 307, 431, 1438
date variables, 431
partial autocorrelation, 1185
preferences, 1568
sequence charts, 171, 1572

time series functions, 309
time series variables

creating, 307
time stamp

custom tables titles, 399
time-dependent covariates

in Time-Dependent Cox Regression procedure,
296

Time-Dependent Cox Regression procedure, 293
baseline functions, 302
categorical covariates, 298
confidence intervals, 302
contrasts, 298
correlation matrix, 302
covariates, 297
display options, 302
entry probability, 303
interaction terms, 297
iteration criteria, 303
limitations, 295
maximum iterations, 303
method, 300
missing values, 301
parameter estimates, 302
plots, 304
removal probability, 303
saving coefficients, 304
saving new variables, 305
saving survival table, 305
split-file processing, 306
stratification variable, 298
survival status variable, 297
survival time variable, 297
time-dependent covariates, 296

titles, 1566
apostrophes in, 1566
custom tables, 398
displaying, 1494
length, 1566
quotation marks in, 1566
See also subtitles
with inline data, 1566

tolerance
in Discriminant Analysis procedure, 474
in Linear Regression procedure, 1358, 1359, 1360

tolerance level, 657, 1607
total percentage

in Crosstabs procedure, 321
totals

custom tables, 397
transaction files, 1622
transformation coefficients matrix, 648, 674
transformation matrix, 681

displaying, 678
in MANOVA, 876

transformation plots
in Categorical Principal Components Analysis,

202
in Multidimensional Scaling, 1310
in Nonlinear Canonical Correlation Analysis, 1181

transformations
temporary, 1563

transformed proximities
in Multidimensional Scaling, 1309

translating data files. See data files
transposing cases and variables, 589, 592
trend modification parameter

in Exponential Smoothing procedure, 541
trend smoothing parameter

in Exponential Smoothing procedure, 541
trimmed mean

in Explore procedure, 525
triplots

in Categorical Principal Components Analysis,
203

Tucker’s coefficient of congruence
in Multidimensional Scaling, 1309

Tukey’s b, 666, 667, 1164
Tukey’s b, 1616, 1617
Tukey’s honestly significant difference, 666, 667,

1778 Subject Index

1164, 1616, 1617
Tukey’s test of additivity

in Reliability Analysis procedure, 1379
Tukey’s transformation, 1324

in normal probability plots, 1228
Tukey-Hamming window

in Spectral Plots procedure, 1527
Tukey-Hanning window

in Spectral Plots procedure, 1528
Two-Independent-Samples Tests procedure, 1090,

1092, 1096, 1098
grouping variables, 1090, 1092, 1096, 1098
outlier trimming, 1096

Two-Related-Samples Tests procedure, 1093, 1095,
1097, 1099

2-Stage Least-Squares procedure, 1586
covariance matrix, 1589
endogenous variables, 1588
including constant, 1589
instrumental variables, 1588
saving predicted values, 1589
saving residuals, 1589
using a previous model, 1589

TwoStep Cluster Analysis, 1592– 1600
automatic cluster selection, 1597
cluster model update, 1596
distance measure, 1595
memory allocation, 1596
missing value handling, 1596
noise handling, 1595
plots, 1598
variable standardization, 1597

Type I sum-of-squares method
in Variance Components Analysis, 1638

Type III sum-of-squares method
in Variance Components Analysis, 1638

u charts, 1515
data organization, 1516
sigma, 1521
subgroup identifier, 1517

U. See Mann-Whitney U
ucl variable, 1735
uncentered leverage values

in GLM Univariate, 1620
uncertainty coefficient

in Crosstabs procedure, 322
unexplained variance criterion

in Discriminant Analysis procedure, 473
UNIANOVA, 1601

Levene’s test, 1608
univariate syntax, 1601
unstandardized residuals, 1619

uniform distribution function, 43
unstandardized predicted values

in GLM, 670
in GLM Univariate, 1619

unstandardized residuals
in GLM, 670
in GLM Univariate, 1619

unweighted functions
custom tables, 384

update documentation, 773
updating data files, 1622

dropping variables, 1627
flag variables, 1627
input files, 1625
keeping variables, 1627
key variables, 1622
limitations, 1624
master files, 1622
raw data files, 1625
renaming variables, 1626
transaction files, 1622
variable map, 1628

user-missing values, 985, 1734

V. See Cramér’s V
valid values

excluding in custom tables, 394
value

syntax, 7
value labels, 87, 1633

adding, 1633
apostrophes in, 1633
as point labels in Homogeneity Analysis, 732
as point labels in Nonlinear Canonical Correlation

Analysis, 1181– 1182
concatenating strings, 1633, 1634
controlling wrapping, 1634
copying from other variables in current or external

data file, 142

Subject Index 1779

date format variables, 1633
in Homogeneity Analysis, 732
length, 1633
revising, 87
SAS files, 632
string data, 88, 1633

Van der Waerden’s transformation, 1324
in normal probability plots, 1228

VARIABLE, 1647
variable importance charts

in TwoStep Cluster Analysis, 1598
variable labels, 1644

apostrophes in, 1644
as plot labels in Homogeneity Analysis, 732
as plot labels in Nonlinear Canonical Correlation

Analysis, 1181– 1182
concatenating strings, 1644, 1645
controlling wrapping, 1644
custom tables, 403
in Homogeneity Analysis, 732

variable names
converting long names in earlier versions, 20, 22
in matrix data files, 20, 22
OMS command, 1131
special considerations for long variable names, 20,

 22
variable sets

copying sets from another data file, 141
variable types

custom tables, 380
variable weight

in Categorical Principal Components Analysis,
194

variables
controlling default format, 1486
created by Trends, 1734– 1736
creating new variables with variable definition

attributes of existing variables, 138
defining, 422, 1102, 1340, 1536
in matrix language, 916
naming rules, 423
scratch, 24
temporary, 1563

Variables to Cases procedure, 1648– 1654
limitations, 1649
overview, 1648

variance
in Descriptives procedure, 464

in Explore procedure, 525
in Frequencies procedure, 604
in Linear Regression procedure, 1358, 1362
in Means procedure, 983
in OLAP Cube procedure, 1106
in Reliability Analysis procedure, 1379, 1380
in Report Summaries in Rows procedure, 1423
in Summarize procedure, 1543

variance accounted for
in Categorical Principal Components Analysis,

200
Variance Components Analysis

interactions, 1641
maximum-likelihood method, 1638
miminum norm quadratic unbiased estimator,

1638
nested design, 1641
restricted maximum-likelihood method, 1638
sum-of-squares method, 1638

Variance Components Analysis procedure, 1636
variance inflation factor

in Linear Regression procedure, 1358
varimax rotation

in Factor Analysis procedure, 557
VARSTOCASES, 1648
vectors, 1655

index, 1655, 1659
variable list, 1655

V-to-enter
in Discriminant Analysis procedure, 475

W. See Kendall’s W
Wald statistic

in Cox Regression procedure, 301
in Logistic Regression procedure, 809

Wald-Wolfowitz test
in Two-Independent-Samples Tests procedure,

1098
Waller-Duncan t test, 666, 668, 1165, 1616, 1618
Ward’s method

in Hierarchical Cluster Analysis procedure, 237
warnings

displaying, 1489
maximum number, 1491– 1492

Weibull distribution function, 43
Weight Estimation procedure, 1665

1780 Subject Index

including constant, 1669
power range, 1668
saving weight variables, 1669
using previous model, 1669

weight variables
saving in Weight Estimation procedure, 1669

weighted least-squares
in Linear Regression procedure, 1361

weighted mean
in Ratio Statistics procedure, 1329, 1330

weighted multidimensional scaling
in Multidimensional Scaling procedure, 107

weighted unstandardized predicted values
in GLM, 670
in GLM Univariate, 1619

weighted unstandardized residuals
in GLM, 670
in GLM Univariate, 1619

weighting cases, 1663
weights

in Weight Estimation procedure, 1668
Wilcoxon test

in Two-Related-Samples Tests procedure, 1099
Wilks’ lambda

in MANOVA, 880
windows

in Spectral Plots procedure, 1527– 1528
within-subjects factors, 678

in MANOVA, 885, 887
within-subjects model, 683
working data file

caching, 1495
working data files

appending orthogonal designs, 1173–??

wrapping
value labels, 1634
variable labels, 1644

write formats, 1676
writing cases, 1671

X-bar charts, 1508
control limits, 1521
data organization, 1510
minimum sample size, 1521
sigma, 1521

subgroup identifier, 1511
XML

saving output as XML, 1117, 1132

Yates’ correction for continuity
in Crosstabs procedure, 322

Yule’s Q
in Distances procedure, 1285
in Hierarchical Cluster Analysis procedure, 235

Yule’s Y
in Distances procedure, 1285
in Hierarchical Cluster Analysis procedure, 234

z scores
in Descriptives procedure, 463
in Distances procedure, 1277
saving as variables, 463

1781

Syntax Index

!BLANKS (function)
DEFINE command, 453

!BREAK (command)
DEFINE command, 456

!BY (keyword)
DEFINE command, 456

!CHAREND (keyword)
DEFINE command, 447

!CMDEND (keyword)
DEFINE command, 447

!CONCAT (function)
DEFINE command, 452

!DEFAULT (keyword)
DEFINE command, 450

!DO (command)
DEFINE command, 456

!DOEND (command)
DEFINE command, 456

!ELSE (keyword)
DEFINE command, 455

!ENCLOSE (keyword)
DEFINE command, 447

!ENDDEFINE (command), 440
See also DEFINE command

!EVAL (function)
DEFINE command, 453

!HEAD (function)
DEFINE command, 453

!IF (command)
DEFINE command, 455

!IFEND (command)
DEFINE command, 455

!IN (keyword)
DEFINE command, 457

!INDEX (function)
DEFINE command, 452

!LENGTH (function)
DEFINE command, 452

!LET (command)
DEFINE command, 458

!NOEXPAND (keyword)
DEFINE command, 451

!NULL (function)
DEFINE command, 453

!OFFEXPAND (keyword)
DEFINE command, 451

!ONEXPAND (keyword)
DEFINE command, 451

!POSITIONAL (keyword)
DEFINE command, 444

!QUOTE (function)
DEFINE command, 453

!SUBSTRING (function)
DEFINE command, 452

!TAIL (function)
DEFINE command, 453

!THEN (keyword)
DEFINE command, 455

!TO (keyword)
DEFINE command, 456

!TOKENS (keyword)
DEFINE command, 447

!UNQUOTE (function)
DEFINE command, 453

!UPCASE (function)
DEFINE command, 453

$CASE (keyword)
IGRAPH command, 746

1782 Syntax Index

$COUNT (keyword)
IGRAPH command, 746, 749, 754, 755, 756, 759,

762

$PCT (keyword)
IGRAPH command, 746, 749, 754, 755, 756, 759,

762

$VARS (subcommand)
SHOW command, 1502

)DATE (keyword)
CTABLES command, 399

)TABLE (keyword)
CTABLES command, 399

)TIME (keyword)
CTABLES command, 399

Symbols
A (keyword)

DESCRIPTIVES command, 465
SORT CASES command, 1503
SPECTRA command, 1529, 1531

AAD (keyword)
RATIO STATISTICS command, 1328, 1329

ABS (function)
MATRIX command, 927

ABSOLUTE (keyword)
MIXED command, 998
PROXIMITIES command, 1278

ACCELERATION (subcommand)
PROXSCAL command, 1307

ACF (command), 71, 80
APPLY subcommand, 76
DIFF subcommand, 73
LN/NOLOG subcommands, 74
MXAUTO subcommand, 75
PACF subcommand, 76
PERIOD subcommand, 74
SDIFF subcommand, 74
SEASONAL subcommand, 75
SERROR subcommand, 76
VARIABLES subcommand, 73

ACPROB (keyword)
NOMREG command, 1073

PLUM command, 1217

ACTIVE (keyword)
CATPCA command, 196, 197

AD1 (keyword)
MIXED command, 993

ADD (function)
REPORT command, 1425

ADD DOCUMENT (command), 78

ADD FILES (command)
BY subcommand, 84
DROP subcommand, 84
FILE subcommand, 83
FIRST subcommand, 86
IN subcommand, 85
KEEP subcommand, 84
key variables, 84
LAST subcommand, 86
limitations, 82
MAP subcommand, 86
RENAME subcommand, 83
with DATA LIST command, 83
with SORT CASES command, 82, 1504
working data file, 83

ADD VALUE LABELS (command), 87
compared with VALUE LABELS command, 1633
limitations, 88
string variables, 88

ADDITIVE (keyword)
SEASON command, 1475

ADDTYPE (keyword)
MVA command, 1042

ADJ (keyword)
MIXED command, 1000

ADJPRED (keyword)
REGRESSION command, 1369

AEMPIRICAL (keyword)
EXAMINE command, 523

AFREQ (keyword)
FREQUENCIES command, 599

AFTER (keyword)
ANOVA command, 130

Syntax Index 1783

AGGREGATE (command), 90
BREAK subcommand, 93
DOCUMENT subcommand, 94
functions, 95
MISSING subcommand, 97
OUTFILE subcommand, 93
PRESORTED subcommand, 94
variable definitions, 94
with MATCH FILES command, 92
with SORT CASES command, 1504
with SPLIT FILE command, 92, 1534

aggregate data
ANACOR command, 124–125

AIC (keyword)
FACTOR command, 553
TWOSTEP CLUSTER command, 1597

AINDS (keyword)
ALSCAL command, 107

ALIGN (keyword)
REPORT command, 1409

ALIGNMENT (keyword)
APPLY DICTIONARY command, 141

ALL (function)
MATRIX command, 927

ALL (keyword)
ALSCAL command, 110
ANACOR command, 119–120, 123
ANOVA command, 130, 134
CONJOINT command, 270
CORRELATIONS command, 274
CORRESPONDENCE command, 282
CROSSTABS command, 322, 323, 326
DESCRIPTIVES command, 465
DISCRIMINANT command, 480, 482
EXAMINE command, 524, 525, 526
FREQUENCIES command, 604
HOMALS command, 731, 732
IGRAPH command, 749
in variable lists, 23
INFO command, 775
LOGISTIC REGRESSION command, 811
MEANS command, 983, 984
MULT RESPONSE command, 1026

NPAR TESTS command, 1084, 1100
OVERALS command, 1181–1182
PARTIAL CORR command, 1194
PRINCALS command, 1244
PRINT command, 1250
RELIABILITY command, 1379
SUMMARIZE command, 1544
USE command, 1629
WRITE command, 1672

ALPHA (keyword)
FACTOR command, 556
GLM command, 657
MANOVA command, 879
RELIABILITY command, 1378
UNIANOVA command, 1607

ALPHA (subcommand)
EXSMOOTH command, 541
REFORMAT command, 1349

ALSCAL (command), 100
analysis specification, 114
CONDITION subcommand, 105
CRITERIA subcommand, 108
FILE subcommand, 105
INPUT subcommand, 103
LEVEL subcommand, 104
limitations, 102
matrix input, 103, 113
matrix output, 111, 113
MATRIX subcommand, 113
METHOD subcommand, 107
missing values, 102
MODEL subcommand, 107
model types, 107
OUTFILE subcommand, 111
PLOT subcommand, 110
PRINT subcommand, 109
SHAPE subcommand, 103
VARIABLES subcommand, 103

ANACOR (command), 117–125
aggregate data, 124–125
DIMENSION subcommand, 120
MATRIX subcommand, 123–124
NORMALIZATION subcommand, 120–121
PLOT subcommand, 122–123

1784 Syntax Index

PRINT subcommand, 121–122
TABLE subcommand, 118–120
value labels, 122
VARIANCES subcommand, 121
with WEIGHT command, 124–125

ANALYSIS (keyword)
CONJOINT command, 269
CSDESCRIPTIVES command, 335
CSPLAN command, 356
NPAR TESTS command, 1100
ONEWAY command, 1167
PARTIAL CORR command, 1195
T-TEST command, 1585

ANALYSIS (subcommand)
CATPCA command, 193
CATREG command, 211
DISCRIMINANT command, 471
FACTOR command, 551
HOMALS command, 730
MANOVA command, 850, 871
OVERALS command, 1177–1178
PRINCALS command, 1242–1243
with SETS subcommand, 1178
with VARIABLES subcommand, 730, 1177–1178

ANALYSISWEIGHT (keyword)
CSPLAN command, 356

ANDREW (keyword)
EXAMINE command, 526

ANOVA (command), 127
cell means, 134
covariates, 134
COVARIATES subcommand, 130
interaction effects, 130
limitations, 128
MAXORDERS subcommand, 130
METHOD subcommand, 130
MISSING subcommand, 135
multiple classification analysis, 135
sums of squares, 130
VARIABLES subcommand, 129
with AUTORECODE command, 164

ANOVA (keyword)
CATREG command, 215

CURVEFIT command, 410
MEANS command, 983
QUICK CLUSTER command, 1317
REGRESSION command, 1358
RELIABILITY command, 1379
SUMMARIZE command, 1545

ANTIIDEAL (keyword)
CONJOINT command, 268

ANY (function)
MATRIX command, 927

APPEND (subcommand)
MCONVERT command, 979
SAVE TRANSLATE command, 1465

APPLY (subcommand), 1737
2SLS command, 1589
ACF command, 76
AREG command, 149–150
ARIMA command, 159–160
CCF command, 224
CURVEFIT command, 411
EXSMOOTH command, 544–545
FIT keyword, 149, 160, 411
INITIAL keyword, 149, 160
PACF command, 1189
PPLOT command, 1232
SEASON command, 1476–1477
SPECIFICATIONS keyword, 149, 160, 411
SPECTRA command, 1531–1532
TSPLOT command, 1580
WLS command, 1669

APPLY DICTIONARY (command), 136
FILEINFO subcommand, 140
FROM subcommand, 137
NEWVARS subcommand, 138
SOURCE subcommand, 138
TARGET subcommand, 138

APPROX (keyword)
CATPCA command, 204, 206

APPROXIMATE (keyword)
MANOVA command, 857, 879
SURVIVAL command, 1554

AR (keyword)
FACTOR command, 558

Syntax Index 1785

AR (subcommand)
ARIMA command, 158

AR1 (keyword)
MIXED command, 993

AREA (keyword)
GRAPH command, 697

AREALABEL (keyword)
IGRAPH command, 754

AREG (command), 144–150
APPLY subcommand, 149–150
CONSTANT subcommand, 148
METHOD subcommand, 146–148
MXITER subcommand, 148–149
NOCONSTANT subcommand, 148
RHO subcommand, 148
VARIABLES subcommand, 146

ARH1 (keyword)
MIXED command, 993

ARIMA (command), 152–160
APPLY subcommand, 159–160
AR subcommand, 158
CINPCT subcommand, 159
CON subcommand, 158
D subcommand, 156–158
FORECAST subcommand, 160
MA subcommand, 158
MODEL subcommand, 155–156
MXITER subcommand, 159
MXLAMB subcommand, 159
P subcommand, 156–158
parameter-order subcommands, 156–158
PAREPS subcommand, 159
Q subcommand, 156–158
REG subcommand, 158
SAR subcommand, 158
SD subcommand, 156–158
SMA subcommand, 158
SP subcommand, 156–158
SQ subcommand, 156–158
SSQPCT subcommand, 159
VARIABLES subcommand, 155

ARMA1 (keyword)
MIXED command, 994

ARRANGEMENT (subcommand)
GET DATA command, 627

ARSIN (function)
MATRIX command, 927

ARTAN (function)
MATRIX command, 927

ASCAL (keyword)
ALSCAL command, 107

ASCENDING (keyword)
RATIO STATISTICS command, 1327

ASIS (keyword)
CROSSTABS command, 325

ASRESID (keyword)
CROSSTABS command, 321
CSTABULATE command, 374

ASSOCIATION (keyword)
HILOGLINEAR command, 724

asterisk (filename)
in ADD FILES command, 83
in MATCH FILES command, 908

ASYMMETRIC (keyword)
ALSCAL command, 104

AUTO (keyword)
TWOSTEP CLUSTER command, 1597

AUTOFIX (subcommand)
CASESTOVARS command, 186

AUTOINIT (keyword)
ARIMA command, 160

AUTOMATIC (keyword)
REPORT command, 1409

AUTORECODE (command), 162
compared with RECODE command, 162, 1334
DESCENDING subcommand, 166
INTO subcommand, 165
missing values, 163
PRINT subcommand, 166
VARIABLES subcommand, 165
with ANOVA command, 164
with HOMALS command, 728, 729
with MANOVA command, 165

1786 Syntax Index

with OVERALS command, 1176–1177
with PRINCALS command, 1240–1241,

1241–1242
with TABLES command, 164

AVALUE (keyword)
CROSSTABS command, 325
FREQUENCIES command, 599

AVERAGE (function)
REPORT command, 1425

AVERF (keyword)
MANOVA command, 890

AVONLY (keyword)
MANOVA command, 890

AZOUT (keyword)
SPCHART command, 1519

Symbols
BACKWARD (keyword)

HILOGLINEAR command, 720
NOMREG (subcommand), 1068
REGRESSION command, 1356

BADCORR (keyword)
PARTIAL CORR command, 1194
REGRESSION command, 1363

BANDWIDTH (keyword)
IGRAPH command, 763

BAR (subcommand)
GRAPH command, 691
IGRAPH command, 755

BARBASE (keyword)
IGRAPH command, 755

BARCHART (subcommand)
CROSSTABS command, 325
FREQUENCIES command, 600

BARFREQ (keyword)
TWOSTEP CLUSTER command, 1598

BARMAP (subcommand)
MAPS command, 900

BART (keyword)
FACTOR command, 558

BARTLETT (keyword)
SPECTRA command, 1528

BASE (subcommand)
MULT RESPONSE command, 1026

BASELINE (keyword)
COXREG command, 302
IGRAPH command, 754, 755, 761

BASIS (keyword)
MANOVA command, 872

BAVERAGE (keyword)
CLUSTER command, 236

BCOC (keyword)
RATIO STATISTICS command, 1328, 1329

BCON (keyword)
COXREG command, 303
LOGISTIC REGRESSION command, 812

BCOV (keyword)
REGRESSION command, 1358

BEGIN DATA (command), 167
in a prompted session, 168
with INCLUDE command, 168
with SUBTITLE command, 1538
with TITLE command, 1566

BEUCLID (keyword)
CLUSTER command, 235
PROXIMITIES command, 1286

BIAS (keyword)
NOMREG command, 1066
PLUM command, 1213

BIC (keyword)
TWOSTEP CLUSTER command, 1597

BINOMIAL (subcommand)
NPAR TESTS command, 1085

BIPLOT (keyword)
CATPCA command, 202, 203
CORRESPONDENCE command, 287

BIVARIATE (keyword)
GRAPH command, 708

BLANK (keyword)
FACTOR command, 551

Syntax Index 1787

REPORT command, 1417

BLANKS (subcommand)
SET command, 1491
SHOW command, 1499

BLKSIZE (subcommand)
SHOW command, 1499

BLOCK (function)
MATRIX command, 927

BLOCK (keyword)
CLUSTER command, 230
PROXIMITIES command, 1280

BLOCK (subcommand)
SET command, 1493
SHOW command, 1499

BLOM (keyword)
PPLOT command, 1228
RANK command, 1324

BLWMN (keyword)
CLUSTER command, 236
PROXIMITIES command, 1287

BONFERRONI (keyword)
CTABLES command, 401
GLM command, 667
MIXED command, 1000
ONEWAY command, 1164
UNIANOVA command, 1617

BOOTSTRAP (subcommand)
CNLR command, 1059

BOTH (keyword)
IGRAPH command, 761
NONPAR CORR command, 1078
PLANCARDS command, 1206
PPLOT command, 1229
PROXSCAL command, 1301
SURVIVAL command, 1556

BOTTOM (keyword)
TSPLOT command, 1577

BOUNDS (subcommand)
CNLR command, 1057

BOX (subcommand)
IGRAPH command, 758

SET command, 1493
SHOW command, 1499

BOXBASE (keyword)
IGRAPH command, 758

BOXM (keyword)
DISCRIMINANT command, 479
MANOVA command, 877

BOXPLOT (keyword)
EXAMINE command, 523

BREAK (command), 169
with DO IF command, 169
with LOOP command, 169

BREAK (keyword)
IGRAPH command, 754, 759

BREAK (statement)
MATRIX command, 940

BREAK (subcommand)
AGGREGATE command, 93
REPORT command, 1418

BREAKDOWN (command). See MEANS

BRESLOW (keyword)
KM command, 793

BRIEF (keyword)
MANOVA command, 876
TSET command, 1570

BRKSPACE (keyword)
REPORT command, 1410

BROWNFORSYTHE (keyword)
ONEWAY command, 1166

BSEUCLID (keyword)
CLUSTER command, 235
PROXIMITIES command, 1286

BSHAPE (keyword)
CLUSTER command, 236
PROXIMITIES command, 1286

BSTEP (keyword)
COXREG command, 301
LOGISTIC REGRESSION command, 809
NOMREG (subcommand), 1069

1788 Syntax Index

BTAU (keyword)
CROSSTABS command, 322

BTUKEY (keyword)
GLM command, 667
ONEWAY command, 1164
UNIANOVA command, 1617

BUFFNO (subcommand)
SHOW command, 1499

BY (keyword)
ANOVA command, 129
CROSSTABS command, 320
DATE command, 433
GENLOG command, 608
LIST command, 801
LOGISTIC REGRESSION command, 805
LOGLINEAR command, 820
LOOP command, 836
MEANS command, 982
MULT RESPONSE command, 1024
NOMREG command, 1065
NOMREG subcommand, 1067
NPAR TESTS command, 1084, 1088
PARTIAL CORR command, 1192
PROBIT command, 1267
RANK command, 1321
ROC command, 1443
SORT CASES command, 1503
SPECTRA command, 1529
SPLIT FILE command, 1533
SUMMARIZE command, 1542
SURVIVAL command, 1548
VARCOMP command, 1641
WEIGHT command, 1663

BY (subcommand)
ADD FILES command, 84
MATCH FILES command, 908
UPDATE command, 1626

Symbols
C (keyword)

GLM command, 668
ONEWAY command, 1165
UNIANOVA command, 1618

C (subcommand)
data organization, 1516
SPCHART command, 1515
variable specification, 1517

CACHE (command), 170

CACHE (subcommand)
SET command, 1495
SHOW command, 1499

CALCULATE (keyword)
EXSMOOTH command, 543

CALCULATE (subcommand)
SURVIVAL command, 1553

CALL (statement)
MATRIX command, 934

CANONICAL (keyword)
ANACOR command, 120–121

CAPSIGMA (subcommand)
SPCHART command, 1520

CAPSTYLE (keyword)
IGRAPH command, 761

CAPTION (keyword)
CTABLES command, 398

CAPTION (subcommand)
IGRAPH command, 750

CAPWIDTH (keyword)
IGRAPH command, 758, 761

)CARD (keyword)
PLANCARDS command, 1207

CARD (keyword)
PLANCARDS command, 1206

CASE (keyword)
CROSSTABS command, 325
FILE TYPE command, 577
PROXIMITIES command, 1277, 1278

CASE (subcommand)
FILE TYPE command, 574
RECORD TYPE command, 1345

CASENUM (keyword)
SUMMARIZE command, 1544

Syntax Index 1789

CASENUM$ (system variable)
in PRINT EJECT command, 1257
with SELECT IF command, 1479

CASES (keyword)
DISCRIMINANT command, 481
MULT RESPONSE command, 1026

CASES (subcommand)
LIST command, 800

CASESTOVARS (command)
AUTOFIX subcommand, 186
COUNT subcommand, 185
DROP subcommand, 188
FIXED subcommand, 185
GROUPBY subcommand, 187
ID subcommand, 183
INDEX subcommand, 184
limitations, 182
RENAME subcommand, 186
SEPARATOR subcommand, 187
VIND subcommand, 184
with SORT CASES command, 182

CASEWISE (subcommand)
LOGISTIC REGRESSION command, 813
REGRESSION command, 1371

CAT (keyword)
IGRAPH command, 754, 759

CATEGORICAL (keyword)
IGRAPH command, 746

CATEGORICAL (subcommand)
COXREG command, 298
LOGISTIC REGRESSION command, 806
MVA command, 1032
TWOSTEP CLUSTER command, 1594

CATEGORIES subcommand
CTABLES command, 394

CATEGORY (keyword)
CATPCA command, 202

CATORDER (subcommand)
IGRAPH command, 747

CATPCA (command), 189
ANALYSIS subcommand, 193
CONFIGURATION subcommand, 197

CRITITER subcommand, 199
DIMENSION subcommand, 198
DISCRETIZATION subcommand, 195
MAXITER subcommand, 199
MISSING subcommand, 196
NORMALIZATION subcommand, 198
OUTFILE subcommand, 205
PLOT subcommand, 201
PRINT subcommand, 199
SAVE subcommand, 204
SUPPLEMENTARY subcommand, 197
VARIABLES subcommand, 193

CATREG (command), 207–218
ANALYSIS subcommand, 211
CRITITER subcommand, 214
DISCRETIZATION subcommand, 212
INITIAL subcommand, 214
MAXITER subcommand, 214
MISSING subcommand, 213
OUTFILE subcommand, 217
PLOT subcommand, 216
PRINT subcommand, 215
SUPPLEMENTARY subcommand, 214
VARIABLES subcommand, 210, 217

CAUCHIT (keyword)
PLUM command, 1214

CC (keyword)
CROSSTABS command, 322

CC (subcommand)
SET command, 1494
SHOW command, 1499

CCF (command), 219
APPLY subcommand, 224
DIFF subcommand, 221
LN/NOLOG subcommands, 222
MXCROSS subcommand, 223
PERIOD subcommand, 222
SDIFF subcommand, 221
SEASONAL subcommand, 223
VARIABLES subcommand, 221

CCONF (keyword)
CORRESPONDENCE command, 286

1790 Syntax Index

CCW (keyword)
IGRAPH command, 757

CDFNORM (function)
MATRIX command, 928

CELL (keyword)
CROSSTABS command, 325

CELLINFO (keyword)
MANOVA command, 852
PLUM command, 1216

CELLPROB (keyword)
NOMREG command, 1072

CELLRANGE (subcommand)
GET DATA command, 626

CELLS (keyword)
CROSSTABS command, 326

CELLS (subcommand)
CROSSTABS command, 321
CSTABULATE command, 373
MATRIX DATA command, 971
MEANS command, 982
MULT RESPONSE command, 1025
OLAP CUBES command, 1106
SUMMARIZE command, 1543

CENTER (keyword)
REPORT command, 1415, 1419, 1428

CENTER (subcommand)
SPECTRA command, 1527

CENTERED (keyword)
SEASON command, 1475

CENTR(keyword)
CATPCA command, 203
with BIPLOT keyword, 203

CENTROID (keyword)
CLUSTER command, 236
OVERALS command, 1180, 1180–1182

CHA (keyword)
REGRESSION command, 1358

CHALIGN (keyword)
REPORT command, 1409

CHARTLOOK (subcommand)
IGRAPH command, 751

CHDSPACE (keyword)
REPORT command, 1410

CHEBYCHEV (keyword)
CLUSTER command, 230
PROXIMITIES command, 1280

CHICDF (function)
MATRIX command, 928

CHISQ (keyword)
CLUSTER command, 230
CORRESPONDENCE command, 284
CROSSTABS command, 322
PROXIMITIES command, 1280

CHISQUARE (keyword)
CTABLES command, 400

CHISQUARE (subcommand)
NPAR TESTS command, 1086

CHKSEP (keyword)
NOMREG command, 1066

CHOL (function)
MATRIX command, 928

CHWRAP (keyword)
REPORT command, 1411

CI (keyword)
COXREG command, 302
GRAPH command, 707
IGRAPH command, 761
LOGISTIC REGRESSION command, 811
PROBIT command, 1271
REGRESSION command, 1358

CIN (keyword)
CROSSTABS command, 323
CSDESCRIPTIVES command, 334
CSTABULATE command, 374
CURVEFIT command, 410
GENLOG command, 612
MIXED command, 998
NOMREG command, 1066
NPAR TESTS command, 1101
PLUM command, 1213
RATIO STATISTICS command, 1328, 1329

Syntax Index 1791

REGRESSION command, 1360

CIN (subcommand)
CURVEFIT command, 410

CINPCT (subcommand)
ARIMA command, 159

CINTERVAL (subcommand)
EXAMINE command, 525
MANOVA command, 858, 879

CJUMP (keyword)
IGRAPH command, 760

CKDER (keyword)
CNLR/NLR command, 1054

CLABELS (command)
CATEGORIES subcommand, 394

CLABELS (keyword)
MATRIX command, 937

CLABELS (subcommand)
CTABLES command, 392

CLASS (keyword)
DISCRIMINANT command, 477

CLASSIFY (keyword)
QUICK CLUSTER command, 1316

CLASSIFY (subcommand)
DISCRIMINANT command, 480

CLASSMISSING (keyword)
CSDESCRIPTIVES command, 335

CLASSMISSING (subcommand)
CSSELECT command, 342

CLASSPLOT (subcommand)
LOGISTIC REGRESSION command, 813

CLASSTABLE (keyword)
NOMREG command, 1072

CLEAR TIME PROGRAM (command)
with COXREG command, 296

CLEAR TRANSFORMATIONS (command), 225

CLOGLOG (keyword)
PLUM command, 1214

CLS (keyword)
ARIMA command, 160

CLUSTER (command), 226
compared with QUICK CLUSTER command,

1313
ID subcommand, 238
limitations, 228
matrix input, 240
matrix output, 240
MATRIX subcommand, 240
MEASURE subcommand, 229
MISSING subcommand, 240
missing values, 240, 242
PLOT subcommand, 239
PRINT subcommand, 238
SAVE subcommand, 237
variable list, 228
with SET command, 228

CLUSTER (keyword)
CLUSTER command, 238
CSPLAN command, 358
IGRAPH command, 748, 757
QUICK CLUSTER command, 1315, 1317
TWOSTEP CLUSTER command, 1600

CLUSTER (subcommand)
IGRAPH command, 749

CMAX (function)
MATRIX command, 929

CMEAN (keyword)
CORRESPONDENCE command, 285

CMH (keyword)
CROSSTABS command, 323

CMIN (function)
MATRIX command, 929

CNAMES (keyword)
MATRIX command, 937

CNLR (command), 1044
BOOTSTRAP subcommand, 1059
BOUNDS subcommand, 1057
CRITERIA subcommand, 1054
DERIVATIVES command, 1046, 1049
FILE subcommand, 1051
iteration criteria, 1055
linear constraint, 1057
LOSS subcommand, 1058

1792 Syntax Index

nonlinear constraint, 1058
OUTFILE subcommand, 1051
PRED subcommand, 1052
SAVE subcommand, 1053
simple bounds, 1057
weighting cases, 1047
with CONSTRAINED FUNCTIONS command,

1046, 1050
with MODEL PROGRAM command, 1046, 1048

CO (keyword)
AREG command, 148

COCHRAN (keyword)
RELIABILITY command, 1379

COCHRAN (subcommand)
NPAR TESTS command, 1087

COD (keyword)
RATIO STATISTICS command, 1328, 1329

COEFF (keyword)
CATREG command, 215
COXREG command, 304
DISCRIMINANT command, 480
REGRESSION command, 1358

COINCIDENT (keyword)
IGRAPH command, 754

COLCONF (keyword)
ALSCAL command, 106, 111

COLLECT (keyword)
REGRESSION command, 1355

COLLIN (keyword)
REGRESSION command, 1358

COLLINEARITY (keyword)
MANOVA command, 854

COLOR (subcommand)
IGRAPH command, 748

COLPCT (keyword)
CSTABULATE command, 373

COLSPACE (keyword)
REPORT command, 1409

COLUMN (keyword)
CROSSTABS command, 321

MULT RESPONSE command, 1026

COLUMN (subcommand)
REREAD command, 1435

COLUMNS (keyword)
ANACOR command, 121, 122–123

COLUMNS (subcommand)
OMS command, 1120

COLUMNWISE (keyword)
AGGREGATE command, 97, 98

COMBINED (keyword)
DISCRIMINANT command, 481

COMM (keyword)
EXPORT command, 532
IMPORT command, 768

COMMAND (keyword)
READ MODEL command, 1333
SAVE MODEL command, 1458
TDISPLAY command, 1562

COMMENT (command), 245

COMMON (keyword)
PROXSCAL command, 1309, 1310, 1311

COMPARE (keyword)
MIXED command, 1000
SURVIVAL command, 1554
TWOSTEP CLUSTER command, 1598

COMPARE (subcommand)
EXAMINE command, 521
KM command, 793
SURVIVAL command, 1552

COMPARETEST (subcommand)
CTABLES command, 401

COMPLETE (keyword)
CLUSTER command, 236

COMPOUND (keyword)
CURVEFIT command, 408

COMPRESSED (subcommand)
SAVE command, 1453
XSAVE command, 1683

COMPRESSION (subcommand)
SET command, 1492

Syntax Index 1793

SHOW command, 1499

COMPUTE (command), 246
functions, 246
missing values, 254
with DO IF command, 255
with STRING command, 254, 259

COMPUTE (statement)
MATRIX command, 926

CON (subcommand)
ARIMA command, 158

CONDENSE (keyword)
MULT RESPONSE command, 1028
RANK command, 1324

CONDENSED (keyword)
PARTIAL CORR command, 1195

CONDITION (subcommand)
ALSCAL command, 105
PROXSCAL command, 1303

CONDITIONAL (keyword)
COXREG command, 301
MANOVA command, 880
SURVIVAL command, 1554

CONFIDENCE (keyword)
TWOSTEP CLUSTER command, 1598

CONFIG (keyword)
ALSCAL command, 106, 111

CONFIGURATION (subcommand)
CATPCA command, 197

CONFORM (subcommand)
SPCHART command, 1521

CONJOINT (command), 261
DATA subcommand, 265
FACTOR subcommand, 267
PLAN subcommand, 264
PRINT subcommand, 269
RANK subcommand, 266
SCORE subcommand, 266
SEQUENCE subcommand, 266
SUBJECT subcommand, 267
UTILITY subcommand, 270
with ORTHOPLAN command, 261, 264

CONNECT (subcommand)
GET CAPTURE command, 622
GET DATA command, 625
SAVE TRANSLATE command, 1465

CONSTANT (keyword)
ARIMA command, 156
MANOVA command, 867

CONSTANT (subcommand)
2SLS command, 1589
AREG command, 148
CURVEFIT command, 409
WLS command, 1669

CONSTRAIN (keyword)
ALSCAL command, 109

CONSTRAINED FUNCTIONS (command)
with CNLR command, 1046, 1050

CONTENTS (subcommand)
MATRIX DATA command, 972

CONTINUED (subcommand)
REPEATING DATA command, 1398

CONTINUOUS (subcommand)
TWOSTEP CLUSTER command, 1594

CONTRAST (keyword)
MANOVA command, 872

CONTRAST (subcommand)
COXREG command, 298
GLM command, 650, 663
LOGISTIC REGRESSION command, 806
LOGLINEAR command, 823
MANOVA command, 847, 886
ONEWAY command, 1162
UNIANOVA command, 1613

CONTRIBUTIONS (keyword)
ANACOR command, 122

CONVERGE (keyword)
ALSCAL command, 108
HILOGLINEAR command, 721
MVA command, 1040
PROBIT command, 1269
QUICK CLUSTER command, 1316
VARCOMP command, 1639

1794 Syntax Index

CONVERGENCE (subcommand)
HOMALS command, 731
OVERALS command, 1180
PRINCALS command, 1244

CONVERT (keyword)
RECODE command, 1338

COOK (keyword)
GLM command, 670
LOGISTIC REGRESSION command, 814
REGRESSION command, 1369
UNIANOVA command, 1620

COORDINATE (subcommand)
IGRAPH command, 750

COORDINATES (keyword)
PROXSCAL command, 1305
ROC command, 1445

COR (keyword)
MANOVA command, 876

CORB (keyword)
MIXED command, 1003
NOMREG command, 1072
PLUM command, 1216
VARCOMP command, 1641

CORNER (keyword)
CTABLES command, 399

corner text
CTABLES command, 399

CORR (keyword)
CATPCA command, 200
CATREG command, 215
COXREG command, 302
CROSSTABS command, 323
DISCRIMINANT command, 479
LOGISTIC REGRESSION command, 811
MATRIX DATA command, 972
PARTIAL CORR command, 1194

CORRELATION (keyword)
CLUSTER command, 229
FACTOR command, 552
PRINCALS command, 1244
PROXIMITIES command, 1279
REGRESSION command, 1362

CORRELATIONS (command), 272
limitations, 273
matrix output, 18, 275
MATRIX subcommand, 275
MISSING subcommand, 275
PRINT subcommand, 274
significance tests, 274
STATISTICS subcommand, 274
with REGRESSION command, 1364

CORRELATIONS (keyword)
PROXSCAL command, 1309, 1311
RELIABILITY command, 1379, 1380

CORRESPONDENCE (command), 279–290
DIMENSION subcommand, 283
EQUAL subcommand, 284
MEASURE subcommand, 284
NORMALIZATION subcommand, 285
OUTFILE subcommand, 288
PLOT subcommand, 287
PRINT subcommand, 286
STANDARDIZE subcommand, 285
SUPPLEMENTARY subcommand, 283
TABLE subcommand, 281

COS (function)
MATRIX command, 929

COS (keyword)
SPECTRA command, 1530

COSINE (keyword)
CLUSTER command, 229
PROXIMITIES command, 1280

COUNT (command), 291
missing values, 292

COUNT (function)
GRAPH command, 688

COUNT (keyword)
CROSSTABS command, 321
CSDESCRIPTIVES command, 334
CSTABULATE command, 374
MATRIX DATA command, 973
MEANS command, 982
MULT RESPONSE command, 1025
OLAP CUBES command, 1106
SUMMARIZE command, 1543

Syntax Index 1795

TWOSTEP CLUSTER command, 1600

COUNT (subcommand)
CASESTOVARS command, 185
VARSTOCASES command, 1654

COUNTDUPLICATES (keyword)
CTABLES command, 404

COUNTS (keyword)
MVA command, 1035

COV (keyword)
DISCRIMINANT command, 479
MANOVA command, 876
MATRIX DATA command, 972
REGRESSION command, 1363

COVARIANCE (keyword)
FACTOR command, 552
RELIABILITY command, 1381

COVARIANCES (keyword)
RELIABILITY command, 1379, 1380

COVARIATES (subcommand)
ANOVA command, 130

COVB (keyword)
MIXED command, 1003
NOMREG command, 1072
PLUM command, 1216
VARCOMP command, 1640

COVRATIO (keyword)
REGRESSION command, 1369

COVTYPE (keyword)
MIXED command, 1005, 1006

COXREG (command), 293
BASELINE keyword, 302
BCON keyword, 303
BSTEP keyword, 301
CATEGORICAL subcommand, 298
CI keyword, 302
COEFF keyword, 304
CONDITIONAL keyword, 301
CONTRAST subcommand, 298
CORR keyword, 302
CRITERIA subcommand, 303
DEFAULT keyword, 302
DEVIATION keyword, 299

DFBETA keyword, 305
DIFFERENCE keyword, 299
ENTER keyword, 300
EXCLUDE keyword, 302
EXTERNAL subcommand, 306
FSTEP keyword, 300
HAZARD keyword, 304, 305
HELMERT keyword, 299
INCLUDE keyword, 302
INDICATOR keyword, 300
ITER keyword, 303
LCON keyword, 303
limitations, 295
LM keyword, 304
LML keyword, 305
LR keyword, 301
METHOD subcommand, 300
MISSING subcommand, 301
NONE keyword, 304
OMS keyword, 304
OUTFILE subcommand, 304
PATTERN subcommand, 304
PIN keyword, 303
PLOT subcommand, 304
POLYNOMIAL keyword, 299
POUT keyword, 303
PRESID keyword, 305
PRINT subcommand, 302
REPEATED keyword, 299
SAVE subcommand, 305
SE keyword, 305
SIMPLE keyword, 299
SPECIAL keyword, 299
STATUS subcommand, 297
STRATA subcommand, 298
SUMMARY keyword, 302
SURVIVAL keyword, 304, 305
TABLE keyword, 305
VARIABLES subcommand, 297
WALD keyword, 301
with CLEAR TIME PROGRAM command, 296
with TIME PROGRAM command, 296
XBETA keyword, 305

CP (keyword)
SPCHART command, 1518

1796 Syntax Index

CPL (keyword)
SPCHART command, 1518

CPM (keyword)
SPCHART command, 1518

CPN (keyword)
SPCHART command, 1518

CPOINTS (keyword)
CORRESPONDENCE command, 286, 287

CPRINCIPAL (keyword)
ANACOR command, 121
CORRESPONDENCE command, 286

CPROFILES (keyword)
CORRESPONDENCE command, 286

CPS (keyword)
CSSELECT command, 344
MIXED command, 1003
NOMREG command, 1073

CPU (keyword)
SPCHART command, 1518

CR (keyword)
SPCHART command, 1518

CREATE (command), 307
CSUM function, 309
DIFF function, 309
FFT function, 310
IFFT function, 310
LAG function, 311
LEAD function, 311
MA function, 312
PMA function, 313
RMED function, 313
SDIFF function, 314
T4253H function, 315

CREATE (subcommand)
OLAP CUBES command, 1107

CRITERIA (subcommand)
ALSCAL command, 108
CNLR command, 1054
COXREG command, 303
CSSELECT command, 341
FACTOR command, 555
GENLOG command, 611

GLM command, 657
HILOGLINEAR command, 721
LOGISTIC REGRESSION command, 812
LOGLINEAR command, 825
MIXED command, 998
NLR command, 1054, 1056
NOMREG command, 1066
PLUM command, 1213
PROBIT command, 1269
PROXSCAL command, 1307
QUICK CLUSTER command, 1315
REGRESSION command, 1359
ROC command, 1444
TWOSTEP CLUSTER command, 1595
UNIANOVA command, 1607
VARCOMP command, 1639

CRITITER (subcommand)
CATPCA command, 199
CATREG command, 214

CROSS (subcommand)
SPECTRA command, 1529–1530

CROSSTAB (subcommand)
MVA command, 1035

CROSSTABS (command), 316
BARCHART subcommand, 325
cell percentages, 321
CELLS subcommand, 321
CMH keyword, 323
COUNT subcommand, 325
exact tests, 323
expected count, 321
FORMAT subcommand, 325
general mode, 320
integer mode, 320
limitations, 318
METHOD subcommand, 323
MISSING subcommand, 324
residuals, 321
STATISTICS subcommand, 322
TABLES subcommand, 319
VARIABLES subcommand, 319
with PROCEDURE OUTPUT command, 326,

327, 1273
with WEIGHT command, 327

Syntax Index 1797

WRITE subcommand, 325

CROSSVALID (keyword)
DISCRIMINANT command, 480

CRSHTOL (keyword)
CNLR command, 1055

CS (keyword)
MIXED command, 994
SPECTRA command, 1529, 1531

CSDESCRIPTIVES (command), 330–336
JOINTPROB subcommand, 332
MEAN subcommand, 333
MISSING subcommand, 335
PLAN subcommand, 332
RATIO subcommand, 333
STATISTICS subcommand, 334
SUBPOP subcommand, 334
SUM subcommand, 333
SUMMARY subcommand, 332

CSH (keyword)
MIXED command, 994

CSPLAN (command), 346–368
DESIGN subcommand, 358
ESTIMATOR subcommand, 365
INCLPROB subcommand, 367
METHOD subcommand, 359
MOS subcommand, 363
PLAN subcommand, 356
PLANVARS subcommand, 356
POPSIZE subcommand, 366
PRINT subcommand, 358
RATE subcommand, 362
SIZE subcommand, 361
STAGEVARS subcommand, 364

CSR (keyword)
MIXED command, 994

CSSELECT (command), 338–344
CLASSMISSING subcommand, 342
CRITERIA subcommand, 341
DATA subcommand, 342
JOINTPROB subcommand, 344
PLAN subcommand, 341
PRINT subcommand, 344
SAMPLEFILE subcommand, 343

SELECTRULE subcommand, 344

CSSQ (function)
MATRIX command, 929

CSTABULATE (command), 370–375
CELLS subcommand, 373
JOINTPROB subcommand, 372
MISSING subcommand, 375
PLAN subcommand, 372
STATISTICS subcommand, 373
SUBPOP subcommand, 374
TABLES subcommand, 372
TEST subcommand, 374

CSTEP (keyword)
IGRAPH command, 755, 760

CSTRUCTURE (subcommand)
GENLOG command, 610

CSUM (function)
CREATE command, 309
MATRIX command, 929

CSUM (keyword)
CORRESPONDENCE command, 285

CTABLES (command), 376
)DATE keyword, 399
)TABLE keyword, 399
)TIME keyword, 399
CAPTION keyword, 398
caption lines, 398
CHISQUARE keyword, 400
CLABELS subcommand, 392
COMPARETEST subcommand, 401
CORNER keyword, 399
corner text, 399
COUNTDUPLICATES keyword, 404
dates in titles, 399
empty categories, 398
empty cell format, 402
EMPTY keyword, 398, 402
explicit category specification, 394
FORMAT subcommand, 402
formats for summaries, 390
implicit category specification, 395
MISSING keyword, 395, 403
missing values, 391, 395

1798 Syntax Index

MRSETS subcommand, 404
ORDER keyword, 395
overview, 377
position of totals, 397
scale variable totals, 397
SIGTEST subcommand, 400
SLABELS subcommand, 391
SMISSING subcommand, 403
sorting categories, 395
split file processing, 378
subtotals, 395
summary functions, 386
summary functions for multiple response sets, 388
summary functions for scale variables, 386
summary specifications, 383
syntax conventions, 378
table description in titles, 399
TABLE subcommand, 380
TITLE keyword, 399
TITLES subcommand, 398
TOTAL keyword, 397
totals, 397
unweighted functions, 384
variable types, 380
VLABELS subcommand, 403

CTAU (keyword)
CROSSTABS command, 322

CTEMPLATE (subcommand)
SET command, 1487
SHOW command, 1499

CUBIC (keyword)
CURVEFIT command, 408

CUFREQ (function)
GRAPH command, 688

CUM (keyword)
GRAPH command, 712
IGRAPH command, 762

CUMEVENT (keyword)
KM command, 795

CUMULATIVE (keyword)
CSTABULATE command, 374

CUMWEIGHT (keyword)
CSPLAN command, 365

CUPCT (function)
GRAPH command, 688

CURVE (keyword)
IGRAPH command, 762
ROC command, 1445

CURVEFIT (command), 405
APPLY subcommand, 411
CIN subcommand, 410
CONSTANT/NOCONSTANT subcommands, 409
ID subcommand, 410
MODEL subcommand, 408
PLOT subcommand, 410
PRINT subcommand, 410
SAVE subcommand, 410
UPPERBOUND subcommand, 409
VARIABLES subcommand, 408

CUSUM (function)
GRAPH command, 688

CUT (keyword)
LOGISTIC REGRESSION command, 812

CUTOFF (keyword)
ALSCAL command, 108
ROC command, 1444

CV (keyword)
CSDESCRIPTIVES command, 334
CSTABULATE command, 373

CW (keyword)
IGRAPH command, 757

CWEIGHT (subcommand)
HILOGLINEAR command, 721
LOGLINEAR command, 821

CYCLE (keyword)
DATE command, 431

CZL (keyword)
SPCHART command, 1518

CZMAX (keyword)
SPCHART command, 1518

CZMIN (keyword)
SPCHART command, 1518

CZU (keyword)
SPCHART command, 1518

Syntax Index 1799

Symbols
D (keyword)

CLUSTER command, 234
CROSSTABS command, 322
DESCRIPTIVES command, 465
PROXIMITIES command, 1285
SORT CASES command, 1503

D (subcommand)
ARIMA command, 156–158

DA (keyword)
EXSMOOTH command, 538–539

DANIELL (keyword)
SPECTRA command, 1528

DATA (keyword)
ALSCAL command, 109

DATA (subcommand)
CONJOINT command, 265
CSSELECT command, 342
GET SAS command, 632
REPEATING DATA command, 1396
with PLAN subcommand, 265

DATA LIST (command), 412
column-style formats, 426
END subcommand, 420
FILE subcommand, 416
FIXED keyword, 416
fixed-format data, 414, 415, 416, 423
FORTRAN-like formats, 426
FREE keyword, 416
freefield data, 414, 415, 415, 416, 425
inline data, 414, 416
LIST keyword, 416
NOTABLE subcommand, 418
RECORDS subcommand, 418
SKIP subcommand, 420
TABLE subcommand, 418
variable definition, 422
variable formats, 412, 425
variable names, 423
with ADD FILES command, 83
with INPUT PROGRAM command, 420, 499
with MATCH FILES command, 908
with NUMERIC command, 1103

with POINT command, 1220
with RECORD TYPE command, 1340
with REPEATING DATA command, 1388, 1389,

1391
with REREAD command, 1431
with UPDATE command, 1625
with VECTOR command, 1659

DATE (argument)
REPORT command, 1429

DATE (command), 431
BY keyword, 433
examples, 434
keywords, 431
starting value, 432

DAY (keyword)
DATE command, 431

DB2 (keyword)
SAVE TRANSLATE command, 1466

DB3 (keyword)
SAVE TRANSLATE command, 1466

DB4 (keyword)
SAVE TRANSLATE command, 1466

DECOMPOSITION (keyword)
PROXSCAL command, 1309

DEFAULT (keyword)
ANACOR command, 122, 122–123
CORRESPONDENCE command, 287
COXREG command, 302
DESCRIPTIVES command, 465
FREQUENCIES command, 604
HOMALS command, 731, 732
LOGISTIC REGRESSION command, 811
MEANS command, 982
OVERALS command, 1180, 1181–1182
PRINCALS command, 1244, 1245–1246
SUMMARIZE command, 1543
TSET command, 1570

DEFAULT (subcommand)
TSET command, 1569

DEFF (keyword)
CSDESCRIPTIVES command, 334
CSTABULATE command, 374

1800 Syntax Index

DEFFSQRT (keyword)
CSDESCRIPTIVES command, 334
CSTABULATE command, 374

DEFINE (command), 440
!BREAK command, 456
!BY keyword, 456
!CHAREND keyword, 447
!CMDEND keyword, 447
!DEFAULT keyword, 450
!DO command, 456
!DOEND command, 456
!ELSE keyword, 455
!ENCLOSE keyword, 447
!IF command, 455
!IFEND command, 455
!IN keyword, 457
!LET command, 458
!NOEXPAND keyword, 451
!OFFEXPAND keyword, 451
!ONEXPAND keyword, 451
!POSITIONAL keyword, 444
!THEN keyword, 455
!TO keyword, 456
!TOKENS keyword, 447
limitations, 442
macro arguments, 444
string functions, 451
tokens, 447
with SET command, 453

DEFOLANG (subcommand)
SET command, 1496
SHOW command, 1499

DEGREE (keyword)
CATPCA command, 195
CATREG command, 212
PROXSCAL command, 1304, 1306
with SPLINE keyword, 1304, 1306

DELCASE (subcommand)
GET DATA command, 627

DELETE VARIABLES (command), 460

DELIMITED (keyword)
GET DATA command, 627

DELIMITERS (subcommand)
GET DATA command, 628

DELTA (keyword)
HILOGLINEAR command, 721
NOMREG command, 1066
PLUM command, 1213

DELTA (subcommand)
EXSMOOTH command, 541
WLS command, 1668

DENDROGRAM (keyword)
CLUSTER command, 239

DENSITY (keyword)
SURVIVAL command, 1552

DEPENDENT (keyword)
MEANS command, 984
SUMMARIZE command, 1544

DEPENDENT (subcommand)
REGRESSION command, 1355

DERIVATIVES (command)
CNLR/NLR command, 1046, 1049

DESCENDING (keyword)
RATIO STATISTICS command, 1327

DESCENDING (subcommand)
AUTORECODE command, 166

DESCRIBE (keyword)
MVA command, 1036, 1037, 1038

DESCRIP (keyword)
CATPCA command, 199
CATREG command, 215

DESCRIPTIVES (command), 461
MISSING subcommand, 466
SAVE subcommand, 463
SORT subcommand, 465
STATISTICS subcommand, 464
VARIABLES subcommand, 462
Z scores, 463

DESCRIPTIVES (keyword)
CORRELATIONS command, 274
EXAMINE command, 525
GLM command, 658
MIXED command, 1003

Syntax Index 1801

NPAR TESTS command, 1100
ONEWAY command, 1166
PARTIAL CORR command, 1194
RELIABILITY command, 1379
UNIANOVA command, 1608

DESCRIPTIVES (subcommand)
REGRESSION command, 1362

DESIGN (function)
MATRIX command, 929

DESIGN (keyword)
MANOVA command, 854

DESIGN (subcommand)
CSPLAN command, 358
GENLOG command, 615
HILOGLINEAR command, 725
LOGLINEAR command, 827
MANOVA command, 846
VARCOMP command, 1641

DESTINATION (subcommand)
OMS command, 1117

DET (function)
MATRIX command, 930

DET (keyword)
FACTOR command, 553

DETAILED (keyword)
TSET command, 1570

DETRENDED (keyword)
PPLOT command, 1229

DEV (keyword)
LOGISTIC REGRESSION command, 813

DEVIANCE (keyword)
NOMREG command, 1074

DEVIATION (keyword)
COXREG command, 299
GLM command, 663, 681
LOGISTIC REGRESSION command, 807
MANOVA command, 848, 872
UNIANOVA command, 1613

DF (keyword)
MVA command, 1034

DFBETA (keyword)
COXREG command, 305
LOGISTIC REGRESSION command, 814
REGRESSION command, 1369

DFE (keyword)
MATRIX DATA command, 972

DFE (subcommand)
FIT command, 588

DFFIT (keyword)
REGRESSION command, 1369

DFFIXP (keyword)
MIXED command, 1007

DFH (subcommand)
FIT command, 588

DFPRED (keyword)
MIXED command, 1007

DFREQ (keyword)
FREQUENCIES command, 599

DIAG (function)
MATRIX command, 930

DIAG (keyword)
MIXED command, 995

DIAGONAL (keyword)
MATRIX DATA command, 967

DIAGONAL (subcommand)
FACTOR command, 554

DICE (keyword)
CLUSTER command, 233
PROXIMITIES command, 1283

DICTIONARY (keyword)
DISPLAY command, 487

DIFF (function)
CREATE command, 309

DIFF (subcommand)
ACF command, 73
CCF command, 221
PACF command, 1187
PPLOT command, 1230
TSPLOT command, 1575

1802 Syntax Index

DIFFERENCE (keyword)
COXREG command, 299
GLM command, 664, 682
GRAPH command, 697
LOGISTIC REGRESSION command, 807
MANOVA command, 848, 873, 886
UNIANOVA command, 1613

DIFFSTRESS (keyword)
PROXSCAL command, 1308

DIGITS (subcommand)
EXPORT command, 534

DIM variable
ANACOR command, 124
HOMALS command, 735
OVERALS command, 1183
PRINCALS command, 1248

DIMENR (keyword)
MANOVA command, 876

DIMENS (keyword)
ALSCAL command, 109

DIMENSION (subcommand)
ANACOR command, 120
CATPCA command, 198
CORRESPONDENCE command, 283
HOMALS command, 730
OVERALS command, 1179
PRINCALS command, 1243
with SAVE subcommand, 734, 1182, 1246–1247

DIMENSIONS (keyword)
PROXSCAL command, 1307

DIMn variable
CORRESPONDENCE command, 289

DIRECT (keyword)
DISCRIMINANT command, 473

DIRECTION (keyword)
IGRAPH command, 761

DIRECTIONS (keyword)
ALSCAL command, 109

DISCRDATA (keyword)
CATREG command, 218

DISCRDATA(keyword)
CATPCA command, 205

DISCRETE (keyword)
CONJOINT command, 268

DISCRETIZATION (subcommand)
CATPCA command, 195
CATREG command, 212

DISCRIM (keyword)
HOMALS command, 731, 732

DISCRIM (subcommand)
MANOVA command, 878

DISCRIMINANT (command), 467
analysis block, 469
ANALYSIS subcommand, 471
CLASSIFY subcommand, 480
FIN subcommand, 474
FOUT subcommand, 474
FUNCTIONS subcommand, 475
GROUPS subcommand, 470
HISTORY subcommand, 480
inclusion levels, 472
limitations, 470
matrix input, 482
matrix output, 482
MATRIX subcommand, 482
MAXSTEPS subcommand, 475
METHOD subcommand, 473
MISSING subcommand, 482
missing values, 482, 484
OUTFILE subcommand, 474
PIN subcommand, 474
PLOT subcommand, 481
POUT subcommand, 474
PRIORS subcommand, 476
ROTATE subcommand, 480
SAVE subcommand, 477
SELECT subcommand, 471
STATISTICS subcommand, 479
TOLERANCE subcommand, 474
VARIABLES subcommand, 470
VIN subcommand, 475
with MATRIX DATA command, 962

Syntax Index 1803

DISPER (keyword)
CLUSTER command, 236
PROXIMITIES command, 1286

DISPLAY (command), 487
VARIABLES subcommand, 488
with PRINT FORMATS command, 1259
with WRITE FORMATS command, 1677

DISPLAY (keyword)
CSDESCRIPTIVES command, 335

DISPLAY (statement)
MATRIX command, 956

DISSIMILARITIES (keyword)
PROXSCAL command, 1304

DISTANCE (keyword)
CLUSTER command, 238
QUICK CLUSTER command, 1317

DISTANCE (subcommand)
TWOSTEP CLUSTER command, 1595

DISTANCES (keyword)
PROXSCAL command, 1309, 1311

DISTR (keyword)
CATPCA command, 196
CATREG command, 213

DISTRIBUTION (keyword)
ROC command, 1444

DISTRIBUTION (subcommand)
PPLOT command, 1226

DIVIDE (function)
REPORT command, 1424

DIVISOR (keyword)
MIXED command, 1008

DM (keyword)
EXSMOOTH command, 538–539

DN (keyword)
EXSMOOTH command, 538–539

DO IF (command), 492
logical expressions, 493
missing values, 495
nested, 499
string data, 493, 494
with ELSE command, 496

with ELSE IF command, 497
with INPUT PROGRAM command, 500
with PRINT command, 1252
with PRINT EJECT command, 1255
with PRINT SPACE command, 1261
with SAMPLE command, 1447
with SELECT IF command, 1482

DO IF (statement)
MATRIX command, 938

DO REPEAT (command), 501
PRINT subcommand, 504
stand-in variable, 501
with INPUT PROGRAM command, 503
with LOOP command, 503

DO REPEAT command
with XSAVE command, 1680

DOCUMENT (subcommand)
AGGREGATE command, 94

DOCUMENTS (keyword)
APPLY DICTIONARY command, 140
DISPLAY command, 487

DOT (keyword)
IGRAPH command, 759

DOTLINE (keyword)
IGRAPH command, 759

DOTMAP (subcommand)
MAPS command, 898

DOUBLE (keyword)
MULT RESPONSE command, 1028

DOWN (keyword)
IGRAPH command, 761
SORT CASES command, 1503

DPATTERN (subcommand)
MVA command, 1036

DRESID (keyword)
GLM command, 670
REGRESSION command, 1369
UNIANOVA command, 1619

DROP (keyword)
CSSELECT command, 343
GRAPH command, 697
VARSTOCASES command, 1653

1804 Syntax Index

DROP (subcommand)
ADD FILES command, 84
CASESTOVARS command, 188
EXPORT command, 533
GET command, 618
GET TRANSLATE command, 641
IMPORT command, 768
MATCH FILES command, 910
READ MODEL command, 1332–1333
SAVE command, 1451
SAVE MODEL command, 1457–1458
SAVE TRANSLATE command, 1469
UPDATE command, 1627
VARSTOCASES command, 1654
XSAVE command, 1681

DROP DOCUMENTS (command), 506
with MATCH FILES command, 907
with UPDATE command, 1623

DROPLINE (keyword)
IGRAPH command, 759

DUMMY (keyword)
REPORT command, 1414

DUNCAN (keyword)
GLM command, 667
ONEWAY command, 1164
UNIANOVA command, 1617

DUNNETT (keyword)
GLM command, 667
ONEWAY command, 1164
UNIANOVA command, 1617

DUNNETTL (keyword)
GLM command, 667
ONEWAY command, 1164
UNIANOVA command, 1617

DUNNETTR (keyword)
GLM command, 667
ONEWAY command, 1164
UNIANOVA command, 1617

DUPLICATE (subcommand)
FILE TYPE command, 577
RECORD TYPE command, 1347

DURBIN (keyword)
REGRESSION command, 1371

DVALUE (keyword)
CROSSTABS command, 325
FREQUENCIES command, 599

Symbols
EA (keyword)

EXSMOOTH command, 538–539

ECHO (command), 507

ECONVERGE (keyword)
FACTOR command, 555

EFFECT (subcommand)
IGRAPH command, 750

EFFECTS (keyword)
ONEWAY command, 1166

EFSIZE (keyword)
GLM command, 658
MANOVA command, 853, 890
UNIANOVA command, 1608

EIGEN (keyword)
FACTOR command, 554
HOMALS command, 731
MANOVA command, 876
MATRIX command, 934
PRINCALS command, 1244

ELSE (command). See DO IF command

ELSE (keyword)
RECODE command, 1335

ELSE (statement)
MATRIX command, 938

ELSE IF (command). See DO IF command

ELSE IF (statement)
MATRIX command, 938

EM (keyword)
EXSMOOTH command, 538–539

EM (subcommand)
MVA command, 1039

EMMEANS (subcommand)
GLM command, 668, 685

Syntax Index 1805

MIXED command, 999
UNIANOVA command, 1618

EMPIRICAL (keyword)
EXAMINE command, 523

EMPTY (keyword)
CTABLES command, 402

EMS (keyword)
VARCOMP command, 1640

EN (keyword)
EXSMOOTH command, 538–539

END (keyword)
DISCRIMINANT command, 480

END (subcommand)
DATA LIST command, 420

END CASE (command), 508
with LOOP command, 838
with VECTOR command, 509, 514

END DATA (command), 167

END FILE (command), 516
with END CASE command, 517
with LOOP command, 838

END FILE TYPE (command). See FILE TYPE com-
mand

END IF (command). See DO IF command

END IF (statement)
MATRIX command, 938

END INPUT PROGRAM (command). See INPUT
PROGRAM command

END LOOP (command), 830
See also LOOP command

END LOOP (statement)
MATRIX command, 939

END MATRIX (command). See MATRIX command

END REPEAT (command). See DO REPEAT com-
mand

ENDOGENOUS (subcommand)
2SLS command, 1588

ENTER (keyword)
COXREG command, 300

LOGISTIC REGRESSION command, 808
REGRESSION command, 1356

EOF (function)
MATRIX command, 930

EPANECHNIKOV (keyword)
IGRAPH command, 763

EPOCH (subcommand), 1488

EPS (keyword)
GENLOG command, 612
GLM command, 657
LOGISTIC REGRESSION command, 812
UNIANOVA command, 1607
VARCOMP command, 1639

EQINTV (keyword)
CATPCA command, 195
CATREG command, 213
with GROUPING keyword, 195

EQUAL (keyword)
DISCRIMINANT command, 476
SEASON command, 1475

EQUAL (subcommand)
CORRESPONDENCE command, 284

EQUAL_WOR (keyword)
CSPLAN command, 366

EQUAMAX (keyword)
FACTOR command, 557
MANOVA command, 878

EQUATION (subcommand)
2SLS command, 1587

ERASE (command), 518

ERROR (keyword)
MANOVA command, 855, 876

ERROR (subcommand)
MANOVA command, 846

ERRORBAR (subcommand)
GRAPH command, 707
IGRAPH command, 761

ERRORS (keyword)
INFO command, 775

1806 Syntax Index

ERRORS (subcommand)
FIT command, 587
SET command, 1489
SHOW command, 1500

ESTIM (keyword)
HILOGLINEAR command, 724
MANOVA command, 878

ESTIMATION (keyword)
CSPLAN command, 360

ESTIMATOR (subcommand)
CSPLAN command, 365

ESTPROB (keyword)
NOMREG command, 1073
PLUM command, 1216

ETA (keyword)
CROSSTABS command, 322

ETASQ (keyword)
GLM command, 658
UNIANOVA command, 1608

EUCLID (keyword)
ALSCAL command, 107
CLUSTER command, 229
CORRESPONDENCE command, 285
PROXIMITIES command, 1279

EUCLIDEAN (keyword)
TWOSTEP CLUSTER command, 1595

EVAL (function)
MATRIX command, 930

EXACT (keyword)
ARIMA command, 160
CROSSTABS command, 324
MANOVA command, 857, 879
NPAR TESTS command, 1101
SURVIVAL command, 1553

EXAMINE (command), 519
CINTERVAL subcommand, 525
COMPARE subcommand, 521
ID subcommand, 522
limitations, 520
MESTIMATORS subcommand, 525
MISSING subcommand, 526
NOTOTAL subcommand, 522

PERCENTILES subcommand, 522
PLOT subcommand, 523
STATISTICS subcommand, 525
TOTAL subcommand, 522
VARIABLES subcommand, 521

EXCEPTIF (subcommand)
OMS command, 1116

EXCLUDE (keyword)
ANOVA command, 135
CLUSTER command, 240
CORRELATIONS command, 275
COXREG command, 302
CSDESCRIPTIVES command, 335
CSSELECT command, 342
CSTABULATE command, 375
DISCRIMINANT command, 482
EXAMINE command, 527
GLM command, 657
GRAPH command, 716
MANOVA command, 859
MIXED command, 1003
NOMREG command, 1067
ONEWAY command, 1167
PARTIAL CORR command, 1195
PLUM command, 1215
PROXIMITIES command, 1288
RANK command, 1325
RATIO STATISTICS command, 1328
RELIABILITY command, 1381
ROC command, 1444
SUMMARIZE command, 1544
TSET command, 1569
TWOSTEP CLUSTER command, 1596
UNIANOVA command, 1607
VARCOMP command, 1639

EXECUTE (command), 528

EXP (function)
MATRIX command, 930

EXPECTED (keyword)
CROSSTABS command, 321
CSTABULATE command, 374

EXPECTED (subcommand)
NPAR TESTS command, 1086

Syntax Index 1807

EXPERIMENTAL (keyword)
ANOVA command, 130

explicit category specification
in CTABLES command, 394

EXPONENTIAL (keyword)
CURVEFIT command, 408
NPAR TESTS command, 1089

EXPORT (command), 529
DIGITS subcommand, 534
DROP subcommand, 533
KEEP subcommand, 533
MAP subcommand, 534
OUTFILE subcommand, 532
RENAME subcommand, 533
TYPE subcommand, 532
UNSELECTED subcommand, 532

EXSMOOTH (command), 535–545
ALPHA subcommand, 541
APPLY subcommand, 544–545
DELTA subcommand, 541
GAMMA subcommand, 541
INITIAL subcommand, 543
MODEL subcommand, 538–540
PERIOD subcommand, 540
PHI subcommand, 541
SEASFACT subcommand, 540–541
smoothing parameter subcommands, 541–543
VARIABLES subcommand, 538

EXTENSIONS (subcommand)
SET command, 1492
SHOW command, 1500

EXTERNAL (subcommand)
COXREG command, 306
LOGISTIC REGRESSION command, 815

EXTRACAT (keyword)
CATPCA command, 196, 197
CATREG command, 213
with ACTIVE keyword, 197
with PASSIVE keyword, 196

EXTRACTION (keyword)
FACTOR command, 552

EXTRACTION (subcommand)
FACTOR command, 556

EXTREME (keyword)
EXAMINE command, 525
IGRAPH command, 758

Symbols
F (keyword)

MANOVA command, 857
REGRESSION command, 1359

FA1 (keyword)
MIXED command, 995

FACILITIES (keyword)
INFO command, 775

FACTOR (command), 546
analysis block, 548
ANALYSIS subcommand, 551
CRITERIA subcommand, 555
DIAGONAL subcommand, 554
extraction block, 548
EXTRACTION subcommand, 556
FORMAT subcommand, 551
matrix input, 559
matrix output, 18, 559
MATRIX subcommand, 559
MISSING subcommand, 549
missing values, 549
PLOT subcommand, 553
PRINT subcommand, 552
rotation block, 548
ROTATION subcommand, 557
SAVE subcommand, 557
SELECT subcommand, 550
VARIABLES subcommand, 549
with PROXIMITIES command, 1292

FACTOR (subcommand)
CONJOINT command, 267
with UTILITY subcommand, 270

FACTORS (keyword)
FACTOR command, 555
MATRIX command, 955

FACTORS (subcommand)
MATRIX DATA command, 970

1808 Syntax Index

ORTHOPLAN command, 1172
PLANCARDS command, 1205
with REPLACE subcommand, 1173

FAH1 (keyword)
MIXED command, 995

FANCY (keyword)
IGRAPH command, 758, 761

FCDF (function)
MATRIX command, 930

FFT (function)
CREATE command, 310

FGT (function)
AGGREGATE command, 95

FIELD (keyword)
MATRIX command, 942

FIELDNAMES (subcommand)
GET TRANSLATE command, 640
SAVE TRANSLATE command, 1468

FILE (keyword)
CSDESCRIPTIVES command, 332, 333
CSPLAN command, 356
CSTABULATE command, 372
MATRIX command, 942, 951
SYSFILE INFO command, 1559

FILE (subcommand)
ADD FILES command, 83
ALSCAL command, 105
CNLR/NLR command, 1051
DATA LIST command, 416
FILE TYPE command, 574
GET command, 618
GET DATA command, 625
GET TRANSLATE command, 639
IMPORT command, 768
INCLUDE command, 772
KEYED DATA LIST command, 785
MATCH FILES command, 907
MATRIX DATA command, 966
POINT command, 1222
QUICK CLUSTER command, 1317
READ MODEL command, 1332
REPEATING DATA command, 1396

REREAD command, 1434
UPDATE command, 1625

FILE HANDLE (command), 564
LRECL subcommand, 565
MODE subcommand, 564
RECFORM subcommand, 565
with POINT command, 1222

FILE LABEL (command), 566

FILE TYPE (command), 567
CASE subcommand, 574
DUPLICATE subcommand, 577
FILE subcommand, 574
GROUPED keyword, 572
MISSING subcommand, 578
MIXED keyword, 572
NESTED keyword, 572
ORDERED subcommand, 580
RECORD subcommand, 574
subcommand summary, 573
WILD subcommand, 577
with RECORD TYPE command, 1340
with REPEATING DATA command, 1388, 1389,

1392
with SAMPLE command, 1447

FILEINFO (subcommand)
APPLY DICTIONARY command, 140

FILELABEL (keyword)
APPLY DICTIONARY command, 140

FILTER (command), 582

FIN (function)
AGGREGATE command, 95

FIN (keyword)
REGRESSION command, 1360

FIN (subcommand)
DISCRIMINANT command, 474

FINISH (command), 584, 1471

FIRST (function)
AGGREGATE command, 96

FIRST (keyword)
ANOVA command, 130
IGRAPH command, 764

Syntax Index 1809

MEANS command, 983
PROXSCAL command, 1306
SUMMARIZE command, 1543
USE command, 1629
with VARIABLES keyword, 1306

FIRST (subcommand)
ADD FILES command, 86
MATCH FILES command, 911

FIRSTCASE (subcommand)
GET DATA command, 627

FIT (command), 586
DFE/DFH subcommands, 588
ERRORS subcommand, 587
OBS subcommand, 587

FIT (keyword)
APPLY subcommand, 149
ARIMA command, 160
CURVEFIT command, 410, 411
NOMREG command, 1072
OVERALS command, 1180
PLUM command, 1216

FITLINE (subcommand)
IGRAPH command, 762

FITS (keyword)
REGRESSION command, 1374

FIXCASE (subcommand)
GET DATA command, 628

FIXED (keyword)
CATPCA command, 197
DATA LIST command, 416
GET DATA command, 627
TWOSTEP CLUSTER command, 1597

FIXED (subcommand)
CASESTOVARS command, 185
MIXED command, 1001

FIXPRED (keyword)
MIXED command, 1007

FLATWGHT (keyword)
ALSCAL command, 111

FLIMIT (keyword)
MVA command, 1041

FLIP (command), 589–592
NEWNAMES subcommand, 591–592
VARIABLES subcommand, 590–591

FLT (function)
AGGREGATE command, 95

FNAMES (keyword)
MATRIX command, 956

FOOTER (subcommand)
PLANCARDS command, 1208

FOOTNOTE (subcommand)
GRAPH command, 691
OLAP CUBES command, 1106
REPORT command, 1428
SPCHART command, 1508
SUMMARIZE command, 1542

FOR (keyword)
SURVIVAL command, 1550

FORECAST (subcommand)
ARIMA command, 160

FORMAT (keyword)
MATRIX command, 936, 944

FORMAT (subcommand)
CROSSTABS command, 325
CTABLES command, 402
FACTOR command, 551
FREQUENCIES command, 599
IGRAPH command, 753
LIST command, 800
MATRIX DATA command, 967
MULT RESPONSE command, 1027
PARTIAL CORR command, 1195
PLANCARDS command, 1206
REPORT command, 1408
SET command, 1486
SHOW command, 1500
SUMMARIZE command, 1544
TSPLOT command, 1577

FORMATS (command), 593
with REFORMAT command, 1349

FORMATS (keyword)
APPLY DICTIONARY command, 142

1810 Syntax Index

FORMATS (subcommand)
GET SAS command, 632

FORWARD (keyword)
NOMREG (subcommand), 1069
REGRESSION command, 1356

FOUT (function)
AGGREGATE command, 96

FOUT (keyword)
REGRESSION command, 1360

FPAIR (keyword)
DISCRIMINANT command, 479

FPRECISION (keyword)
CNLR command, 1056

FRACTION (subcommand)
PPLOT command, 1228
RANK command, 1324

FREE (keyword)
DATA LIST command, 416
MATRIX DATA command, 967

FREGW (keyword)
GLM command, 667
ONEWAY command, 1165
UNIANOVA command, 1617

FREQ (keyword)
FREQUENCIES command, 600, 601
HILOGLINEAR command, 724
HOMALS command, 731
OVERALS command, 1180
PRINCALS command, 1244
PROBIT command, 1271
SPECTRA command, 1530

FREQUENCIES (command), 597
BARCHART subcommand, 600
FORMAT subcommand, 599
GROUPED subcommand, 602
HISTOGRAM subcommand, 601
limitations, 598
MISSING subcommand, 605
NTILES subcommand, 603
PERCENTILES subcommand, 603
STATISTICS subcommand, 604
VARIABLES subcommand, 599

FREQUENCIES (subcommand)
MULT RESPONSE command, 1023

FREQUENCY (function)
REPORT command, 1423

FRIEDMAN (keyword)
RELIABILITY command, 1379

FRIEDMAN (subcommand)
NPAR TESTS command, 1087

FROM (keyword)
LIST command, 801
SAMPLE command, 1446

FROM (subcommand)
APPLY DICTIONARY command, 137

FSCORE (keyword)
FACTOR command, 553

FSTEP (keyword)
COXREG command, 300
LOGISTIC REGRESSION command, 808
NOMREG (subcommand), 1069

FTOLERANCE (keyword)
CNLR command, 1055

FTSPACE (keyword)
REPORT command, 1410

FULL (keyword)
MATRIX DATA command, 967

FULLFACTORIAL (subcommand)
NOMREG command, 1066

functions
MATRIX command, 927

FUNCTIONS (subcommand)
DISCRIMINANT command, 475

Symbols
G (keyword)

MIXED command, 1003
SPECTRA command, 1529, 1531

GABRIEL (keyword)
GLM command, 667
ONEWAY command, 1165
UNIANOVA command, 1617

Syntax Index 1811

GAC (keyword)
OLAP CUBES command, 1107

GAMMA (keyword)
CROSSTABS command, 322

GAMMA (subcommand)
EXSMOOTH command, 541

GCOV (keyword)
DISCRIMINANT command, 479

GEF (keyword)
GLM command, 658
UNIANOVA command, 1608

GEMSCAL (keyword)
ALSCAL command, 108

GEMWGHT (keyword)
ALSCAL command, 111

GENERALIZED (keyword)
PROXSCAL command, 1305

GENLOG (command), 606
cell covariates, 609, 615
cell structure, 610
cell weights, 610
CIN keyword, 612
CRITERIA subcommand, 611
CSTRUCTURE subcommand, 610
data distribution, 611
DESIGN subcommand, 615
EPS keyword, 612
general loglinear model, 608
GLOR subcommand, 611
GRESID subcommand, 610
interaction terms, 615
logit model, 608
main-effects model, 615
measures of association, 609
MISSING subcommand, 614
MODEL subcommand, 611
PLOT subcommand, 613
PRINT subcommand, 612
SAVE subcommand, 614
simultaneous linear logit model, 616
single-degree-of-freedom partitions, 615
statistics, 612
structural zeros, 610

variable list, 608
WITH keyword, 615

GEOMETRIC (keyword)
MEANS command, 983
OLAP CUBES command, 1107
SUMMARIZE command, 1544

GET (command), 617
DROP subcommand, 618
FILE subcommand, 618
KEEP subcommand, 618
MAP subcommand, 620
RENAME subcommand, 619

GET (statement)
MATRIX command, 946

GET CAPTURE (command), 621
CONNECT subcommand, 622
SQL subcommand, 622

GET DATA (command), 624
ARRANGEMENT subcommand, 627
CELLRANGE subcommand, 626
CONNECT subcommand, 625
DELCASE subcommand, 627
DELIMITED keyword, 627
DELIMITERS subcommand, 628
FILE subcommand, 625
FIRSTCASE subcommand, 627
FIXCASE subcommand, 628
FIXED keyword, 627
IMPORTCASES subcommand, 628
ODBC keyword, 625
QUALIFIER subcommand, 629
READNAMES subcommand, 627
SHEET subcommand, 626
SQL subcommand, 626
TXT keyword, 625
TYPE subcommand, 625
UNENCRYPTED subcommand, 626
VARIABLES subcommand, 629
XLS keyword, 625

GET SAS (command), 631
DATA subcommand, 632
FORMATS subcommand, 632

1812 Syntax Index

GET TRANSLATE (command), 635
database files, 638
DROP subcommand, 641
FIELDNAMES subcommand, 640
FILE subcommand, 639
KEEP subcommand, 641
limitation, 639
MAP subcommand, 642
RANGE subcommand, 640
spreadsheet files, 636
tab-delimited files, 638
TYPE subcommand, 639

GG (keyword)
MANOVA command, 890

GH (keyword)
GLM command, 668
ONEWAY command, 1165
UNIANOVA command, 1618

GINV (function)
MATRIX command, 930

GLM (command), 651, 672
ALPHA keyword, 657
BONFERRONI keyword, 667
BTUKEY keyword, 667
C keyword, 668
CONTRAST subcommand, 650, 663
COOK keyword, 670
CRITERIA subcommand, 657
DESCRIPTIVES keyword, 658
DEVIATION keyword, 663, 681
DIFFERENCE keyword, 664, 682
DRESID keyword, 670
DUNCAN keyword, 667
DUNNETT keyword, 667
DUNNETTL keyword, 667
DUNNETTR keyword, 667
EFSIZE keyword, 658
EMMEANS subcommand, 668, 685
EPS keyword, 657
ETASQ keyword, 658
EXCLUDE keyword, 657
FREGW keyword, 667
GABRIEL keyword, 667
GEF keyword, 658

GH keyword, 668
GT2 keyword, 667
HELMERT keyword, 664, 682
HOMOGENEITY keyword, 658, 674
INCLUDE keyword, 657
INTERCEPT subcommand, 657
KMATRIX subcommand, 648, 662
LEVER keyword, 670
LMATRIX subcommand, 648, 661
LOF keyword, 659
LSD keyword, 667
MEASURE subcommand, 684
METHOD subcommand, 655
MISSING subcommand, 657
MMATRIX subcommand, 648, 675
OPOWER keyword, 659
OUTFILE subcommand, 670
PARAMETER keyword, 658
PLOT subcommand, 659
POLYNOMIAL keyword, 663, 682
POSTHOC subcommand, 665
PRED keyword, 670
PRINT subcommand, 658, 674
PROFILE keyword, 659
QREGW, 668
RANDOM subcommand, 654
REGWGT subcommand, 655
REPEATED keyword, 664, 682
RESID keyword, 670
RESIDUALS keyword, 659
RSSCP keyword, 674
SAVE subcommand, 669
SCHEFFE keyword, 667
SEPRED keyword, 670
SIDAK keyword, 667
SIMPLE keyword, 664, 682
SNK keyword, 667
SPECIAL keyword, 664, 682
SPREADLEVEL keyword, 659
SSTYPE keyword, 655
T2 keyword, 668
T3 keyword, 668
TABLES keyword, 668
TEST(ESTIMABLE) keyword, 659
TEST(LMATRIX) keyword, 659
TEST(MMATRIX) keyword, 674

Syntax Index 1813

TEST(SSCP) keyword, 674
TUKEY keyword, 667
univariate, 651
WALLER keyword, 668
WPRED keyword, 670
WRESID keyword, 670
WSDESIGN subcommand, 683
WSFACTOR subcommand, 680
ZRESID keyword, 670

GLOR (subcommand)
GENLOG command, 611

GLS (keyword)
FACTOR command, 556

GMEDIAN (keyword)
MEANS command, 982
OLAP CUBES command, 1106

GMEIDAN (keyword)
SUMMARIZE command, 1543

GOODFIT (keyword)
LOGISTIC REGRESSION command, 811

GPC (keyword)
OLAP CUBES command, 1107

GRAPH (command)
BAR subcommand, 691
BIVARIATE keyword, 708
CI keyword, 707
count functions, 688
CUM keyword, 712
DROP keyword, 697
ERRORBAR subcommand, 707
FOOTNOTE subcommand, 691
GROUPED keyword, 705
HILO subcommand, 704
HISTOGRAM subcommand, 711
INCLUDE keyword, 716
LINE subcommand, 697
LISTWISE keyword, 716
MATRIX keyword, 709
MISSING subcommand, 715
NOCUM keyword, 712
NOREPORT keyword, 716
OVERLAY keyword, 708
PARETO subcommand, 712

PIE subcommand, 703
RANGE keyword, 692
REPORT keyword, 716
SCATTERPLOT subcommand, 708
SIMPLE keyword, 691, 697, 704, 712
STACKED keyword, 712
STDDEV keyword, 707
STERROR keyword, 707
SUBTITLE subcommand, 691
summary functions, 688
TITLE subcommand, 691
VARIABLE keyword, 716
XYZ keyword, 709

GREAT (function)
REPORT command, 1425

GRESID (subcommand)
GENLOG command, 610
LOGLINEAR command, 822

GRID (keyword)
EXSMOOTH command, 541–543

GROUPBY (subcommand)
CASESTOVARS command, 187

GROUPED (keyword)
FILE TYPE command, 572
GRAPH command, 691, 705

GROUPED (subcommand)
FREQUENCIES command, 602

GROUPING (keyword)
CATPCA command, 195
CATREG command, 212

GROUPS (keyword)
EXAMINE command, 521

GROUPS (subcommand)
DISCRIMINANT command, 470
MULT RESPONSE command, 1021
T-TEST command, 1583

GROUPWISE (keyword)
SURVIVAL command, 1555

GROWTH (keyword)
CURVEFIT command, 408

1814 Syntax Index

GSCH (function)
MATRIX command, 930

GSET (subcommand)
MAPS command, 895

GT2 (keyword)
GLM command, 667
ONEWAY command, 1165
UNIANOVA command, 1617

GUTTMAN (keyword)
RELIABILITY command, 1379

GVAR (subcommand)
MAPS command, 893

GVMISMATCH (subcommand)
MAPS command, 896

Symbols
HAMANN (keyword)

CLUSTER command, 234
PROXIMITIES command, 1284

HAMMING (keyword)
SPECTRA command, 1527

HAMPEL (keyword)
EXAMINE command, 526

HANDLENOISE (subcommand)
TWOSTEP CLUSTER command, 1595

HARMONIC (keyword)
MEANS command, 983
OLAP CUBES command, 1107
SUMMARIZE command, 1543

HAVERAGE (keyword)
EXAMINE command, 523

HAZARD (keyword)
COXREG command, 304, 305
KM command, 791, 795
SURVIVAL command, 1552

HEADER (keyword)
ALSCAL command, 109

HEADER (subcommand)
SET command, 1494
SHOW command, 1500

HELMERT (keyword)
COXREG command, 299
GLM command, 664, 682
LOGISTIC REGRESSION command, 807
MANOVA command, 848, 873, 886
UNIANOVA command, 1614

HF (keyword)
MANOVA command, 890
MIXED command, 995

HICICLE (keyword)
CLUSTER command, 239

HIERARCHICAL (keyword)
ANOVA command, 130, 131

HIGH (keyword)
RANK command, 1228, 1324

HIGHEST (keyword)
COUNT command, 291
MISSING VALUES command, 987
RECODE command, 1335

HILO (keyword)
TSPLOT command, 1577

HILO (subcommand)
GRAPH command, 704

HILOGLINEAR (command), 717
CRITERIA subcommand, 721
CWEIGHT subcommand, 721
DESIGN subcommand, 725
limitations, 719
MAXORDER subcommand, 720
METHOD subcommand, 720
MISSING subcommand, 725
PLOT subcommand, 724
PRINT subcommand, 724
variable list, 720

HISTOGRAM (keyword)
EXAMINE command, 524
REGRESSION command, 1370

HISTOGRAM (subcommand)
FREQUENCIES command, 601
GRAPH command, 711
IGRAPH command, 762

Syntax Index 1815

HISTORY (keyword)
CATPCA command, 200
CATREG command, 215
HOMALS command, 731
MIXED command, 1003
NOMREG command, 1072
OVERALS command, 1180
PLUM command, 1216
PRINCALS command, 1244
PROXSCAL command, 1308
VARCOMP command, 1640

HISTORY (subcommand)
DISCRIMINANT command, 480

HOLD (keyword)
MATRIX command, 946

HOLDOUT (subcommand)
ORTHOPLAN command, 1174
with MIXHOLD subcommand, 1174

HOLT (keyword)
EXSMOOTH command, 538

HOMALS (command), 727–735
ANALYSIS subcommand, 730
compared to OVERALS, 1178
CONVERGENCE subcommand, 731
DIMENSION subcommand, 730
MATRIX subcommand, 734
MAXITER subcommand, 731
NOBSERVATIONS subcommand, 730
PLOT subcommand, 732
PRINT subcommand, 731
SAVE subcommand, 734
value labels, 732
variable labels, 732
VARIABLES subcommand, 729
with AUTORECODE command, 728, 729
with RECODE command, 728

HOMOGENEITY (keyword)
CSTABULATE command, 374
GLM command, 658, 674
MANOVA command, 853, 877
ONEWAY command, 1166
UNIANOVA command, 1608

HORIZONTAL (keyword)
IGRAPH command, 750

HOTELLING (keyword)
RELIABILITY command, 1379

HOUR (keyword)
DATE command, 431

HUBER (keyword)
EXAMINE command, 526

HYPOTH (keyword)
MANOVA command, 876

Symbols
I (subcommand)

data organization, 1512
SPCHART command, 1511
variable specification, 1512

IC (keyword)
SPECTRA command, 1531
TWOSTEP CLUSTER command, 1599

ICC (subcommand)
RELIABILITY command, 1380

ICIN (keyword)
REGRESSION command, 1369

ID (keyword)
MIXED command, 996
QUICK CLUSTER command, 1317
REGRESSION command, 1371

ID (subcommand)
CASESTOVARS command, 183
CLUSTER command, 238
CURVEFIT command, 410
EXAMINE command, 522
KM command, 792
LOGISTIC REGRESSION command, 811
MVA command, 1033
PROXIMITIES command, 1287
REPEATING DATA command, 1400
TSET command, 1569
TSPLOT command, 1576
VARSTOCASES command, 1651

IDEAL (keyword)
CONJOINT command, 268

1816 Syntax Index

IDENT (function)
MATRIX command, 931

IDENTITY (keyword)
PROXSCAL command, 1305

IF (command), 736
compared to RECODE command, 1334
logical expressions, 736
missing values, 737, 738
string data, 737, 738
with LOOP command, 740

IF (keyword)
LOOP command, 832

IF (subcommand)
OMS command, 1113

IFFT (function)
CREATE command, 310

IGRAPH (command), 742–766
AREA subcommand, 754
BAR subcommand, 755
BOX subcommand, 758
CAPTION subcommand, 750
CATORDER subcommand, 747
CHARTLOOK subcommand, 751
CLUSTER subcommand, 749
COLOR subcommand, 748
COORDINATE subcommand, 750
EFFECT subcommand, 750
ERRORBAR subcommand, 761
FITLINE subcommand, 762
FORMAT subcommand, 753
HISTOGRAM subcommand, 762
KEY keyword, 753
LINE subcommand, 759
PANEL subcommand, 749
PIE subcommand, 756
POINTLABEL subcommand, 749
SCATTER subcommand, 753
SIZE subcommand, 748
SPIKE subcommand, 752
STYLE subcommand, 748
SUBTITLE subcommand, 750
summary functions, 764
SUMMARYVAR subcommand, 749

TITLE subcommand, 750
VIEWNAME subcommand, 750
X1 subcommand, 746
X1LENGTH subcommand, 747
X2 subcommand, 746
X2LENGTH subcommand, 747
Y subcommand, 746
YLENGTH subcommand, 747

IMAGE (keyword)
FACTOR command, 556

implicit category specification
CTABLES command, 395

IMPORT (command), 767
DROP subcommand, 768
FILE subcommand, 768
KEEP subcommand, 768
MAP subcommand, 770
RENAME subcommand, 769
TYPE subcommand, 768

IMPORTCASES (subcommand)
GET DATA command, 628

IN (keyword)
ALSCAL command, 113
CLUSTER command, 240
DISCRIMINANT command, 482
FACTOR command, 559
MANOVA command, 859
ONEWAY command, 1167, 1364
PARTIAL CORR command, 1196
PROXIMITIES command, 1288
PROXSCAL command, 1312
REGRESSION command, 1364
RELIABILITY command, 1381

IN (subcommand)
ADD FILES command, 85
KEYED DATA LIST command, 786
MATCH FILES command, 911
UPDATE command, 1627

INCLPROB (keyword)
CSPLAN command, 365

INCLPROB (subcommand)
CSPLAN command, 367

Syntax Index 1817

INCLUDE (command), 771
FILE subcommand, 772

INCLUDE (keyword)
ANOVA command, 135
CLUSTER command, 240
CORRELATIONS command, 275
COXREG command, 302
CROSSTABS command, 324
CSDESCRIPTIVES command, 335
CSSELECT command, 342
CSTABULATE command, 375
DESCRIPTIVES command, 466
DISCRIMINANT command, 482
EXAMINE command, 527
FACTOR command, 550
FREQUENCIES command, 605
GLM command, 657
GRAPH command, 716
HILOGLINEAR command, 725
MEANS command, 984
MIXED command, 1003
MULT RESPONSE command, 1027
NOMREG command, 1067
NONPAR CORR command, 1079
NPAR TESTS command, 1100
ONEWAY command, 1167
PARTIAL CORR command, 1195
PLUM command, 1215
PROBIT command, 1272
PROXIMITIES command, 1288
RANK command, 1325
RATIO STATISTICS command, 1328
REGRESSION command, 1366
RELIABILITY command, 1381
ROC command, 1444
SUMMARIZE command, 1544
SURVIVAL command, 1555
TSET command, 1569
T-TEST command, 1585
TWOSTEP CLUSTER command, 1596
UNIANOVA command, 1607
VARCOMP command, 1639

INDENT (keyword)
REPORT command, 1410

INDEPENDENCE (keyword)
CSTABULATE command, 374

INDEPENDENT (keyword)
CATPCA command, 198

INDEX (keyword)
CASESTOVARS command, 187
CSPLAN command, 365
DISPLAY command, 487

INDEX (subcommand)
CASESTOVARS command, 184
VARSTOCASES command, 1651

INDICATOR (keyword)
COXREG command, 300
LOGISTIC REGRESSION command, 806

INDIVIDUAL (keyword)
IGRAPH command, 763
MANOVA command, 858
PROXSCAL command, 1309, 1310

INDSCAL (keyword)
ALSCAL command, 107

INFILE (subcommand)
TWOSTEP CLUSTER command, 1596

INFO (command), 773
known errors, 775
local documentation, 773, 775
new releases, 775
OUTFILE (subcommand), 776
procedures, 775
update documentation, 773, 775

INITIAL (keyword)
APPLY subcommand, 149
ARIMA command, 160
CATPCA command, 197
FACTOR command, 552
QUICK CLUSTER command, 1317

INITIAL (subcommand)
CATREG command, 214
EXSMOOTH command, 543
OVERALS command, 1179
PROXSCAL command, 1301
QUICK CLUSTER command, 1316

1818 Syntax Index

INITTHRESHOLD (keyword)
TWOSTEP CLUSTER command, 1595

INKNOT (keyword)
CATPCA command, 195
CATREG command, 212
PROXSCAL command, 1304, 1306
with SPLINE keyword, 1304, 1306

INLINE (keyword)
MATRIX DATA command, 966

INPUT (keyword)
PROXSCAL command, 1308

INPUT (subcommand)
ALSCAL command, 103

INPUT PROGRAM (command), 777
examples, 421, 500, 503, 509, 517
with DATA LIST command, 499
with END subcommand on DATA LIST, 420
with NUMERIC command, 1102
with REPEATING DATA command, 1388, 1389,

1391
with REREAD command, 1431
with SAMPLE command, 1447
with STRING command, 1536
with VECTOR command, 1658

INSIDE (keyword)
IGRAPH command, 755, 757

INSTRUMENTS (subcommand)
2SLS command, 1588

INTERCEPT (keyword)
VARCOMP command, 1641

INTERCEPT (subcommand)
GLM command, 657
NOMREG command, 1067
UNIANOVA command, 1606
VARCOMP command, 1638

INTERPOLATE (keyword)
IGRAPH command, 755, 760

INTERVAL (keyword)
ALSCAL command, 104
IGRAPH command, 763
PROXSCAL command, 1303, 1306
with VARIABLES keyword, 1306

INTERVALS (subcommand)
SURVIVAL command, 1549

INTO (keyword)
RANK command, 1323
RECODE command, 1337

INTO (subcommand)
AUTORECODE command, 165

INV (function)
MATRIX command, 931

INV (keyword)
FACTOR command, 553

INVERSE (keyword)
CURVEFIT command, 408

IR (subcommand)
data organization, 1512
SPCHART command, 1511
variable specification, 1512

ISTEP (keyword)
CNLR command, 1056

ITER (keyword)
ALSCAL command, 108
CNLR command, 1055
COXREG command, 303
LOGISTIC REGRESSION command, 811
NLR command, 1056

ITERATE (keyword)
FACTOR command, 555
HILOGLINEAR command, 721
LOGISTIC REGRESSION command, 812
PROBIT command, 1270
VARCOMP command, 1640

ITERATIONS (keyword)
MVA command, 1040

IVMAP (subcommand)
MAPS command, 899

Symbols
JACCARD (keyword)

CLUSTER command, 232
PROXIMITIES command, 1283

Syntax Index 1819

JITTER (keyword)
IGRAPH command, 754

JOIN (keyword)
TSPLOT command, 1577

JOINT (keyword)
ANACOR command, 122–123
MANOVA command, 858

JOINTCAT(keyword)
CATPCA command, 203

JOINTPROB (subcommand)
CSDESCRIPTIVES command, 332
CSSELECT command, 344
CSTABULATE command, 372

JOURNAL (subcommand)
SET command, 1490
SHOW command, 1500

J-T (subcommand)
NPAR TESTS command, 1088

Symbols
K (keyword)

SPECTRA command, 1529, 1531

K1 (keyword)
CLUSTER command, 233
PROXIMITIES command, 1284

K2 (keyword)
CLUSTER command, 233
PROXIMITIES command, 1284

KAISER (keyword)
FACTOR command, 555

KAPPA (keyword)
CROSSTABS command, 323

KEEP (keyword)
CSSELECT command, 343
VARSTOCASES command, 1653

KEEP (subcommand)
ADD FILES command, 84
EXPORT command, 533
GET command, 618
GET TRANSLATE command, 641
IMPORT command, 768
MATCH FILES command, 910

READ MODEL command, 1332–1333
SAVE command, 1451
SAVE MODEL command, 1457–1458
SAVE TRANSLATE command, 1469
UPDATE command, 1627
VARSTOCASES command, 1654
XSAVE command, 1681

KEEPTIES (keyword)
PROXSCAL command, 1306
with ORDINAL keyword, 1306

KENDALL (keyword)
NONPAR CORR command, 1078

KENDALL (subcommand)
NPAR TESTS command, 1091

KERNEL (keyword)
NOMREG command, 1072
PLUM command, 1216

KEY (keyword)
IGRAPH command, 753

KEY (subcommand)
KEYED DATA LIST command, 785
POINT command, 1222

KEYED DATA LIST (command), 781
direct-access files, 781
FILE subcommand, 785
IN subcommand, 786
KEY subcommand, 785
keyed files, 781, 782
NOTABLE subcommand, 786
TABLE subcommand, 786

KM (command), 787
BRESLOW keyword, 793
COMPARE subcommand, 793
CUMEVENT keyword, 795
HAZARD keyword, 791, 795
ID subcommand, 792
LOGRANK keyword, 793
LOGSURV keyword, 791
MEAN keyword, 792
OMS keyword, 791
OVERALL keyword, 793
PAIRWISE keyword, 793
PERCENTILES subcommand, 792

1820 Syntax Index

PLOT subcommand, 791
POOLED keyword, 793
PRINT subcommand, 792
SAVE subcommand, 795
SE keyword, 795
STATUS subcommand, 790
STRATA keyword, 793
STRATA subcommand, 791
SURVIVAL keyword, 791, 795
TABLE keyword, 792
TARONE keyword, 793
TEST subcommand, 793
TREND subcommand, 794

KMATRIX (subcommand)
GLM command, 648, 662
UNIANOVA command, 1612

KMEANS (keyword)
QUICK CLUSTER command, 1316

KMO (keyword)
FACTOR command, 553

KRONEKER (function)
MATRIX command, 931

K-S (subcommand)
NPAR TESTS command, 1089

KURT (keyword)
MEANS command, 983
SUMMARIZE command, 1543

KURTOSIS (function)
REPORT command, 1423

KURTOSIS (keyword)
DESCRIPTIVES command, 464, 465
FREQUENCIES command, 604
IGRAPH command, 764

K-W (subcommand)
NPAR TESTS command, 1091

Symbols
LA (keyword)

EXSMOOTH command, 538–539

LABEL (keyword)
IGRAPH command, 754, 755, 757, 758, 759, 761
REPORT command, 1414, 1418

LABELS (keyword)
DISPLAY command, 488
MULT RESPONSE command, 1027

LAG (function)
CREATE command, 311

LAGRANGE3 (keyword)
IGRAPH command, 760

LAGRANGE5 (keyword)
IGRAPH command, 760

LAMBDA (keyword)
CLUSTER command, 234
CROSSTABS command, 322
MVA command, 1040
PROXIMITIES command, 1284

LAST (function)
AGGREGATE command, 96

LAST (keyword)
IGRAPH command, 764
MEANS command, 983
SUMMARIZE command, 1543
USE command, 1629

LAST (subcommand)
ADD FILES command, 86
MATCH FILES command, 911

LAYER (keyword)
MAPS command, 895

LAYERED (keyword)
CSDESCRIPTIVES command, 335
CSTABULATE command, 375

LCON (keyword)
COXREG command, 303
LOGISTIC REGRESSION command, 812

LCONVERGE (keyword)
MIXED command, 998
NOMREG command, 1066
PLUM command, 1213

LEAD (function)
CREATE command, 311

LEAST (function)
REPORT command, 1425

Syntax Index 1821

LEAVE (command), 796

LEFT (keyword)
REPORT command, 1415, 1419, 1428

LEGEND (keyword)
IGRAPH command, 748

LENGTH (keyword)
REPORT command, 1409

LENGTH (subcommand)
REPEATING DATA command, 1397
SET command, 1493
SHOW command, 1500

LESS (keyword)
CONJOINT command, 268

LEVEL (keyword)
APPLY DICTIONARY command, 142
CATPCA command, 194
CATREG command, 211

LEVEL (subcommand)
ALSCAL command, 104

LEVEL variable
ANACOR command, 123–124
HOMALS command, 735
OVERALS command, 1183
PRINCALS command, 1247

LEVEL_ variable
CORRESPONDENCE command, 288, 289

LEVER (keyword)
GLM command, 670
LOGISTIC REGRESSION command, 814
REGRESSION command, 1369
UNIANOVA command, 1620

LFTOLERANCE (keyword)
CNLR command, 1055

LG10 (function)
MATRIX command, 931

LG10 (keyword)
ARIMA command, 156

LGSTIC (keyword)
CURVEFIT command, 408

LIKELIHOOD (keyword)
TWOSTEP CLUSTER command, 1595

LIMIT (keyword)
FREQUENCIES command, 599

limitations. See individual procedures

LINE (keyword)
IGRAPH command, 758, 759, 763

LINE (subcommand)
GRAPH command, 697
IGRAPH command, 759

LINEAR (keyword)
CONJOINT command, 268
CURVEFIT command, 408
IGRAPH command, 763

LINEARITY (keyword)
MEANS command, 984
SUMMARIZE command, 1545

LINELABEL (keyword)
IGRAPH command, 759

LINK (subcommand)
PLUM command, 1214

LINT (function)
RMV command, 1439

LIST (command), 798
CASES subcommand, 800
FORMAT subcommand, 800
VARIABLES subcommand, 799
with SAMPLE command, 800
with SELECT IF command, 800
with SPLIT FILE command, 801

LIST (keyword)
DATA LIST command, 416
MATRIX DATA command, 967
PLANCARDS command, 1206
REPORT command, 1409, 1430

LIST (subcommand)
SUMMARIZE command, 1544

LISTING (keyword)
SET command, 1489

LISTWISE (keyword)
CATPCA command, 196
CATREG command, 213
CORRELATIONS command, 275
CSDESCRIPTIVES command, 335

1822 Syntax Index

CSTABULATE command, 375
DESCRIPTIVES command, 466
EXAMINE command, 526
FACTOR command, 549
GRAPH command, 716
HILOGLINEAR command, 725
NONPAR CORR command, 1079
NPAR TESTS command, 1100
ONEWAY command, 1167
PARTIAL CORR command, 1195
PROBIT command, 1272
REGRESSION command, 1366
SURVIVAL command, 1555
T-TEST command, 1585

LISTWISE (subcommand)
MVA command, 1038

LJUMP (keyword)
IGRAPH command, 760

LLEFT (keyword)
IGRAPH command, 757

LLR (keyword)
IGRAPH command, 763

LM (keyword)
COXREG command, 304
EXSMOOTH command, 538–539

LMATRIX (keyword)
MIXED command, 1003

LMATRIX (subcommand)
GLM command, 648, 661
UNIANOVA command, 1610

LML (keyword)
COXREG command, 305

LN (function)
MATRIX command, 931

LN (keyword)
ARIMA command, 156
EXSMOOTH command, 538–539

LN (subcommand)
ACF command, 74
CCF command, 222
PACF command, 1188
PPLOT command, 1231

TSPLOT command, 1576

LOADING (keyword)
CATPCA command, 200, 202, 203
with BIPLOT keyword, 203

LOADINGS (keyword)
OVERALS command, 1180–1182
PRINCALS command, 1244, 1244–1246

LOCAL (keyword)
INFO command, 775

LOCATION (subcommand)
PLUM command, 1214

LOF (keyword)
GLM command, 659
UNIANOVA command, 1608

LOG (subcommand)
PROBIT command, 1269

LOGARITHMIC (keyword)
CURVEFIT command, 408

LOGISTIC REGRESSION (command), 802
CASEWISE subcommand, 813
CATEGORICAL subcommand, 806
CLASSPLOT subcommand, 813
CONTRAST subcommand, 806
CRITERIA subcommand, 812
EXTERNAL subcommand, 815
ID subcommand, 811
METHOD subcommand, 808
MISSING subcommand, 814
NOORIGIN subcommand, 810
ORIGIN subcommand, 810
PRINT subcommand, 811
SAVE subcommand, 814
SELECT subcommand, 810
VARIABLES subcommand, 805

LOGIT (keyword)
PLUM command, 1214
PROBIT command, 1269

LOGLINEAR (command), 816
cell weights, 821
CONTRAST subcommand, 823
covariates, 827
CRITERIA subcommand, 825

Syntax Index 1823

CWEIGHT subcommand, 821
DESIGN subcommand, 827
equiprobability model, 827
general loglinear model, 820
GRESID subcommand, 822
interaction terms, 827
logit model, 820, 824
main-effects model, 827
measures of association, 820
MISSING subcommand, 827
NOPRINT subcommand, 825
PLOT subcommand, 826
PRINT subcommand, 825
simultaneous linear logit model, 828
single-degree-of-freedom partitions, 827
statistics, 825
structural zeros, 821
variable list, 820

LOGRANK (keyword)
KM command, 793

LOGSURV (keyword)
KM command, 791
SURVIVAL command, 1551

LOOKUP (subcommand)
MAPS command, 894

LOOP (command), 830
examples, 509
increment value, 836
indexing clause, 832
initial value, 833
logical expressions, 832
missing values, 837
nested, 831, 834
terminal value, 833
with END CASE command, 838
with END FILE command, 838
with SET command, 1492
with SET MXLOOPS command, 830, 831, 833
with VECTOR command, 1655, 1656

LOOP (statement)
MATRIX command, 939

LOSS (keyword)
CNLR command, 1053

LOSS (subcommand)
CNLR command, 1058

LOW (keyword)
RANK command, 1228, 1324

LOWER (keyword)
MATRIX DATA command, 967
PROXSCAL command, 1301

LOWEST (keyword)
COUNT command, 291
MISSING VALUES command, 987
RECODE command, 1335

LR (keyword)
COXREG command, 301

LRECL (subcommand)
FILE HANDLE command, 565

LRESID (keyword)
LOGISTIC REGRESSION command, 813

LRIGHT (keyword)
IGRAPH command, 757

LRT (keyword)
NOMREG command, 1072

LSD (keyword)
GLM command, 667
MIXED command, 1000
ONEWAY command, 1164
UNIANOVA command, 1617

LSL (subcommand)
SPCHART command, 1521

LSTEP (keyword)
IGRAPH command, 755, 760

LSTOLERANCE (keyword)
CNLR command, 1055

Symbols
MA (function)

CREATE command, 312

MA (subcommand)
ARIMA command, 158
SEASON command, 1475

macro facility
with MATRIX command, 957

1824 Syntax Index

MACROS (keyword)
DISPLAY command, 488

MAGIC (function)
MATRIX command, 931

MAHAL (keyword)
DISCRIMINANT command, 473
REGRESSION command, 1369

MAKE (function)
MATRIX command, 931

MAKE (subcommand)
VARSTOCASES command, 1650

MANOVA (command), 839
ANALYSIS subcommand, 850, 871
CELLINFO keyword, 852
CINTERVAL subcommand, 858, 879
constant covariate, 884
CONSTANT keyword, 867
CONTRAST subcommand, 847, 886
DESIGN keyword, 854
DESIGN subcommand, 846
DEVIATION keyword, 848
DIFFERENCE keyword, 848, 886
DISCRIM subcommand, 878
doubly multivariate repeated measures, 882
ERROR keyword, 855
ERROR subcommand, 846
HELMERT keyword, 848, 886
HOMOGENEITY keyword, 853
MATRIX subcommand, 859
MEASURE subcommand, 888
METHOD subcommand, 850
MISSING subcommand, 858
multivariate syntax, 870
MUPLUS keyword, 865
MWITHIN keyword, 865, 888
NOPRINT subcommand, 851, 875
OMEANS subcommand, 855, 871
PARAMETERS keyword, 852
PARTITION subcommand, 849
PCOMPS subcommand, 877
PLOT subcommand, 877
PMEANS subcommand, 856
POLYNOMIAL keyword, 886
POOL keyword, 866

POWER subcommand, 857, 879
PRINT subcommand, 851, 875
RENAME subcommand, 871, 874, 889
REPEATED keyword, 848
RESIDUAL keyword, 846
RESIDUALS subcommand, 857
SIGNIF keyword, 853
SIMPLE keyword, 848
SPECIAL keyword, 849
TRANSFORM subcommand, 874
variables specification, 871
VS keyword, 867
with AUTORECODE command, 165
WITHIN keyword, 846, 863
within-subjects factors, 882
WSDESIGN subcommand, 886
WSFACTORS subcommand, 884

MANOVA (command)
variable list, 884

MANUAL (keyword)
REPORT command, 1409

MAP (keyword)
DISCRIMINANT command, 481

MAP (subcommand)
ADD FILES command, 86
EXPORT command, 534
GET command, 620
GET TRANSLATE command, 642
IMPORT command, 770
MATCH FILES command, 912
SAVE command, 1453
SAVE TRANSLATE command, 1470
UPDATE command, 1628
XSAVE command, 1683

MAPS (command), 891
BARMAP subcommand, 900
DOTMAP subcommand, 898
GSET subcommand, 895
GVAR subcommand, 893
GVMISMATCH subcommand, 896
IVMAP subcommand, 899
LAYER keyword, 895
LOOKUP subcommand, 894
PIEMAP subcommand, 901

Syntax Index 1825

ROVMAP subcommand, 896
SHOWLABEL subcommand, 895
summary functions, 902
SYMBOLMAP subcommand, 897
TITLE subcommand, 895
XY subcommand, 893

MARGINS (keyword)
REPORT command, 1409

MARK (subcommand)
TSPLOT command, 1579

MAT (keyword)
MATRIX DATA command, 972

MATCH FILES (command), 905
BY subcommand, 908
DROP subcommand, 910
duplicate cases, 909
FILE subcommand, 907
FIRST subcommand, 911
IN subcommand, 911
KEEP subcommand, 910
LAST subcommand, 911
limitations, 907
MAP subcommand, 912
RENAME subcommand, 910
table lookup files, 909
TABLE subcommand, 909
with DATA LIST command, 908
with DROP DOCUMENTS command, 907
with SORT CASES command, 1504
working data file, 908

MATRIX (command), 913
BREAK statement, 940
CALL statement, 934
COMPUTE statement, 926
DISPLAY statement, 956
DO IF statement, 938
ELSE IF statement, 938
ELSE statement, 938
END IF statement, 938
END LOOP statement, 939
GET statement, 946
LOOP statement, 939
MGET statement, 951
MSAVE statement, 953

PRINT statement, 935
READ statement, 941
RELEASE statement, 957
SAVE statement, 949
with macro facility, 957
WRITE statement, 944

MATRIX (keyword)
ALSCAL command, 105
CSPLAN command, 358, 361, 362, 366, 367
GRAPH command, 709
PARTIAL CORR command, 1195
PROXSCAL command, 1303

MATRIX (subcommand)
ALSCAL command, 113
ANACOR command, 123–124
CLUSTER command, 240
CORRELATIONS command, 275
DISCRIMINANT command, 482
FACTOR command, 559
HOMALS command, 734
MANOVA command, 859
MCONVERT command, 978
NONPAR CORR command, 1079
ONEWAY command, 1167
OVERALS command, 1183
PARTIAL CORR command, 1196
PRINCALS command, 1247–1248
PROXIMITIES command, 1288
PROXSCAL command, 1312
REGRESSION command, 1364
RELIABILITY command, 1381
with SAVE subcommand, 734, 1182, 1247

MATRIX DATA (command), 958
CELLS subcommand, 971
CONTENTS subcommand, 972
data-entry format, 967
entering data, 961
FACTORS subcommand, 970
field separators, 961
FILE subcommand, 966
FORMAT subcommand, 967
matrix shape, 967
N subcommand, 976
ROWTYPE_ variable, 959, 965

1826 Syntax Index

scientific notation, 961
SPLIT subcommand, 968
VARIABLES subcommand, 964
VARNAME_ variable, 965
with DISCRIMINANT command, 962
with ONEWAY command, 964
with REGRESSION command, 963

MATRIX functions, 927

MAX (function)
AGGREGATE command, 95
REPORT command, 1422

MAX (keyword)
ANACOR command, 123
CORRESPONDENCE command, 288
CSPLAN command, 363
DESCRIPTIVES command, 465
HOMALS command, 733
IGRAPH command, 748
MEANS command, 983
OVERALS command, 1181–1182
PRINCALS command, 1246
PROXIMITIES command, 1278
RATIO STATISTICS command, 1328, 1329
SUMMARIZE command, 1543

MAXCAT (subcommmand)
MVA command, 1033

MAXEFFECT (keyword)
NOMREG (subcommand), 1070

MAXIMUM (function)
GRAPH command, 688

MAXIMUM (keyword)
FREQUENCIES command, 600, 601, 604
IGRAPH command, 764

MAXITER (keyword)
PROXSCAL command, 1307

MAXITER (subcommand)
CATPCA command, 199
CATREG command, 214
HOMALS command, 731
OVERALS command, 1179
PRINCALS command, 1243

MAXMINF (keyword)
DISCRIMINANT command, 473

MAXORDER (subcommand)
HILOGLINEAR command, 720

MAXORDERS (subcommand)
ANOVA command, 130

MAXSIZE (keyword)
CSPLAN command, 363

MAXSTEPS (keyword)
HILOGLINEAR command, 721
REGRESSION command, 1360

MAXSTEPS (subcommand)
DISCRIMINANT command, 475

MC (keyword)
CROSSTABS command, 323
NPAR TESTS command, 1101

MCA (keyword)
ANOVA command, 134

MCGROUP (subcommand)
MRSETS command, 1017

MCIN (keyword)
REGRESSION command, 1369

MCNEMAR (subcommand)
NPAR TESTS command, 1093

MCONVERT (command), 977
APPEND subcommand, 979
MATRIX subcommand, 978
REPLACE subcommand, 979

MDCOV (keyword)
RATIO STATISTICS command, 1328, 1329

MDGROUP (keyword)
MULT RESPONSE command, 1027

MDGROUP (subcommand)
MRSETS command, 1016

MDIAG (function)
MATRIX command, 931

MEAN (function)
AGGREGATE command, 95
GRAPH command, 688
REPORT command, 1423

Syntax Index 1827

RMV command, 1440

MEAN (keyword)
ANOVA command, 134
DESCRIPTIVES command, 464, 465
DISCRIMINANT command, 479
FREQUENCIES command, 604
IGRAPH command, 763, 764
KM command, 792
MATRIX DATA command, 972
MEANS command, 982
MIXED command, 1000
NPAR TESTS command, 1097
OLAP CUBES command, 1106
PROXIMITIES command, 1278
RANK command, 1228, 1324
RATIO STATISTICS command, 1328, 1330
REGRESSION command, 1362
SUMMARIZE command, 1543

MEAN (subcommand)
CSDESCRIPTIVES command, 333

MEANS (command), 980
CELLS subcommand, 982
limitations, 981
MISSING subcommand, 984
STATISTICS subcommand, 983
TABLES subcommand, 982

MEANS (keyword)
MVA command, 1035
RELIABILITY command, 1380

MEANSUBSTITUTION (keyword)
DISCRIMINANT command, 481
FACTOR command, 550
REGRESSION command, 1366

MEASURE (subcommand)
CLUSTER command, 229
CORRESPONDENCE command, 284
GLM command, 684
MANOVA command, 888
PROXIMITIES command, 1278

MEDIAN (function)
AGGREGATE command, 95
GRAPH command, 688
REPORT command, 1423

RMV command, 1440

MEDIAN (keyword)
CLUSTER command, 237
FREQUENCIES command, 604
IGRAPH command, 758, 764
MEANS command, 982
NPAR TESTS command, 1097
OLAP CUBES command, 1106
RATIO STATISTICS command, 1328, 1330
SUMMARIZE command, 1543

MEDIAN (subcommand)
NPAR TESTS command, 1094

MEFFECT (keyword)
IGRAPH command, 763

MEMALLOCATE (subcommand)
TWOSTEP CLUSTER command, 1596

MESSAGES (subcommand)
SET command, 1489
SHOW command, 1500

MESTIMATORS (subcommand)
EXAMINE command, 525

METHOD (subcommand)
ALSCAL command, 107
ANOVA command, 130
AREG command, 146–148
CLUSTER command, 236
COXREG command, 300
CROSSTABS command, 323
CSPLAN command, 359
DISCRIMINANT command, 473
GLM command, 655
HILOGLINEAR command, 720
LOGISTIC REGRESSION command, 808
MANOVA command, 850
MIXED command, 1002
NPAR TESTS command, 1088, 1101
QUICK CLUSTER command, 1316
REGRESSION command, 1355
RELIABILITY command, 1381
UNIANOVA command, 1605
VARCOMP command, 1638

MEXPAND (subcommand)
SET command, 453, 1497

1828 Syntax Index

SHOW command, 1500

MFI (keyword)
NOMREG command, 1073

MGET (statement)
MATRIX command, 951

MH (subcommand)
NPAR TESTS command, 1095

MIN (function)
AGGREGATE command, 95
REPORT command, 1422

MIN (keyword)
CSPLAN command, 363
DESCRIPTIVES command, 464, 465
IGRAPH command, 748
MEANS command, 983
OLAP CUBES command, 1106
RATIO STATISTICS command, 1328, 1330
SUMMARIZE command, 1543

MINEFFECT (keyword)
NOMREG (subcommand), 1070

MINEIGEN (keyword)
FACTOR command, 555
MANOVA command, 878

MINIMUM (function)
GRAPH command, 688

MINIMUM (keyword)
FREQUENCIES command, 600, 601, 604
IGRAPH command, 764

MINIMUM (subcommand)
ORTHOPLAN command, 1173

MINKOWSKI (keyword)
CLUSTER command, 230
PROXIMITIES command, 1280

MINORITERATION (keyword)
CNLR command, 1055

MINQUE (keyword)
VARCOMP command, 1638

MINRESID (keyword)
DISCRIMINANT command, 473

MINSAMPLE (subcommand)
SPCHART command, 1521

MINSIZE (keyword)
CSPLAN command, 363

MINSTRESS (keyword)
PROXSCAL command, 1308

MINUTE (keyword)
DATE command, 431

MISMATCH (subcommand)
MVA command, 1036

MISSING (keyword)
APPLY DICTIONARY command, 142
COUNT command, 291, 292
CTABLES command, 395, 403
IGRAPH command, 754, 759
MATRIX command, 948
RECODE command, 1335
REPORT command, 1410
ROC command, 1444
SUMMARIZE command, 1544

MISSING (subcommand)
AGGREGATE command, 97
ANOVA command, 135
CATPCA command, 196
CATREG command, 213
CLUSTER command, 240
CORRELATIONS command, 275
COXREG command, 301
CROSSTABS command, 324
CSDESCRIPTIVES command, 335
CSTABULATE command, 375
DESCRIPTIVES command, 466
DISCRIMINANT command, 482
EXAMINE command, 526
FACTOR command, 549
FILE TYPE command, 578
FREQUENCIES command, 605
GENLOG command, 614
GLM command, 657
GRAPH command, 715
HILOGLINEAR command, 725
LOGISTIC REGRESSION command, 814
LOGLINEAR command, 827

Syntax Index 1829

MANOVA command, 858
MEANS command, 984
MIXED command, 1002
MULT RESPONSE command, 1026
NOMREG command, 1067
NONPAR CORR command, 1079
NPAR TESTS command, 1100
ONEWAY command, 1166
PARTIAL CORR command, 1195
PLUM command, 1215
PROBIT command, 1272
PROXIMITIES command, 1288
QUICK CLUSTER command, 1319
RANK command, 1325
RATIO STATISTICS command, 1327
RECORD TYPE command, 1346
REGRESSION command, 1366
RELIABILITY command, 1381
REPORT command, 1430
SPCHART command, 1522
SUMMARIZE command, 1544
SURVIVAL command, 1555
TSET command, 1569
T-TEST command, 1584
TWOSTEP CLUSTER command, 1596
UNIANOVA command, 1607
VARCOMP command, 1639

missing values
with OVERALS command, 1177
with PRINCALS command, 1240

MISSING VALUES (command), 985
value range, 987
with RECODE command, 1336

MITERATE (subcommand)
SET command, 454, 1491
SHOW command, 1500

MIXED (command), 988–1011
CRITERIA subcommand, 998
EMMEANS subcommand, 999
FIXED subcommand, 1001
METHOD subcommand, 1002
MISSING subcommand, 1002
PRINT subcommand, 1003
RANDOM subcommand, 1004

REGWGT subcommand, 1006
REPEATED subcommand, 1006
SAVE subcommand, 1007
TEST subcommand, 1008

MIXED (keyword)
FILE TYPE command, 572

MIXHOLD (subcommand)
ORTHOPLAN command, 1174
with HOLDOUT subcommand, 1174

ML (keyword)
AREG command, 148
FACTOR command, 556
MIXED command, 1002
VARCOMP command, 1638

MMATRIX (subcommand)
GLM command, 648, 675

MMAX (function)
MATRIX command, 931

MMIN (function)
MATRIX command, 931

MNCOV (keyword)
RATIO STATISTICS command, 1328, 1330

MNEST (subcommand)
SET command, 453, 1491
SHOW command, 1500

MNOM (keyword)
CATPCA command, 194
OVERALS command, 1178
PRINCALS command, 1242

MOD (function)
MATRIX command, 932

MODE (function)
GRAPH command, 688
REPORT command, 1423

MODE (keyword)
FREQUENCIES command, 604
IGRAPH command, 754, 755, 759, 764
MATRIX command, 943
NPAR TESTS command, 1097

MODE (subcommand)
FILE HANDLE command, 564

1830 Syntax Index

MODEIMPU (keyword)
CATPCA command, 196, 197
CATREG command, 213
with ACTIVE keyword, 197
with PASSIVE keyword, 196

MODEL (keyword)
NOMREG (subcommand), 1072
READ MODEL command, 1333
SAVE MODEL command, 1458
TDISPLAY command, 1562
TWOSTEP CLUSTER command, 1597

MODEL (subcommand)
ALSCAL command, 107
ARIMA command, 155–156
CURVEFIT command, 408
EXSMOOTH command, 538–540
GENLOG command, 611
NOMREG command, 1067
PROBIT command, 1268
PROXSCAL command, 1305
RELIABILITY command, 1378
SEASON command, 1475

MODEL NAME (command), 1013–1014

MODEL PROGRAM (command)
with CNLR/NLR command, 1046, 1048

MONTH (keyword)
DATE command, 431

MORE (keyword)
CONJOINT command, 268

MOS (subcommand)
CSPLAN command, 363

MOSES (subcommand)
NPAR TESTS command, 1096

MPATTERN (subcommand)
MVA command, 1037

MPRINT (subcommand)
SET command, 453, 1497
SHOW command, 1500

MRBAR (keyword)
SPCHART command, 1520

MRGROUP (keyword)
MULT RESPONSE command, 1027

MRSETS (command), 1015
DELETE subcommand, 1017
DISPLAY subcommand, 1018
MCGROUP subcommand, 1017
MDGROUP subcommand, 1016
syntax conventions, 1016

MRSETS (keyword)
APPLY DICTIONARY command, 140

MRSETS (subcommand)
CTABLES command, 404

MSAVE (statement)
MATRIX command, 953

MSE (keyword)
MATRIX DATA command, 972

MSSQ (function)
MATRIX command, 932

MSUM (function)
MATRIX command, 932

MULT RESPONSE (command), 1019
BASE subcommand, 1026
CELLS subcommand, 1025
FORMAT subcommand, 1027
FREQUENCIES subcommand, 1023
GROUPS subcommand, 1021
limitations, 1021
MISSING subcommand, 1026
multiple-dichotomy groups, 1019
multiple-response groups, 1019
PAIRED keyword, 1025
TABLES subcommand, 1024
VARIABLES subcommand, 1022

MULTIPLE (keyword)
GRAPH command, 697

MULTIPLICATIVE (keyword)
SEASON command, 1475

MULTIPLY (function)
REPORT command, 1424

MULTIPLYING (keyword)
CATPCA command, 195

Syntax Index 1831

CATREG command, 212

MULTIPUNCH (keyword)
FILE HANDLE command, 565

MULTIV (keyword)
MANOVA command, 876

MUPLUS (keyword)
MANOVA command, 865

MVA (command), 1029
CATEGORICAL subcommand, 1032
CROSSTAB subcommand, 1035
DPATTERN subcommand, 1036
EM subcommand, 1039
ID subcommand, 1033
LISTWISE subcommand, 1038
MAXCAT subcommand, 1033
MISMATCH subcommand, 1036
missing indicator variables, 1032
MPATTERN subcommand, 1037
NOUNIVARIATE subcommand, 1033
PAIRWISE subcommand, 1039
REGRESSION subcommand, 1041
symbols, 1032
TPATTERN subcommand, 1038
TTEST subcommand, 1034
VARIABLES subcommand, 1032

M-W (subcommand)
NPAR TESTS command, 1092

MWITHIN (keyword)
MANOVA command, 865, 888

MXAUTO (subcommand)
ACF command, 75
PACF command, 1189

MXBRANCH (keyword)
TWOSTEP CLUSTER command, 1595

MXCELLS (subcommand)
SHOW command, 1486, 1500

MXCROSS (subcommand)
CCF command, 223

MXERRS (subcommand)
SET command, 1491–1492

MXITER (keyword)
MIXED command, 998
NOMREG command, 1066
PLUM command, 1213
QUICK CLUSTER command, 1316

MXITER (subcommand)
AREG command, 148–149
ARIMA command, 159

MXLAMB (subcommand)
ARIMA command, 159

MXLEVEL (keyword)
TWOSTEP CLUSTER command, 1595

MXLOOPS (subcommand)
SET command, 1492
SHOW command, 1500
with LOOP command, 830, 831, 833

MXMEMORY (subcommand)
SHOW command, 1486, 1501

MXNEWVAR (subcommand)
TSET command, 1569

MXPREDICT (subcommand)
TSET command, 1570

MXSTEP (keyword)
MIXED command, 998
NOMREG command, 1066
PLUM command, 1213

MXWARNS (subcommand)
SET command, 1491–1492
SHOW command, 1501

Symbols
N (function)

AGGREGATE command, 96
GRAPH command, 688

N (keyword)
IGRAPH command, 754, 755, 757, 758, 759, 761
MATRIX DATA command, 973
REGRESSION command, 1363
SPCHART command, 1518

N (subcommand)
MATRIX DATA command, 976
RANK command, 1322

1832 Syntax Index

SHOW command, 1501

N OF CASES (command), 1061
with SAMPLE command, 1061, 1447
with SELECT IF command, 1061, 1479
with TEMPORARY command, 1061

N_MATRIX (keyword)
MATRIX DATA command, 973

N_SCALAR (keyword)
MATRIX DATA command, 973

N_VECTOR (keyword)
MATRIX DATA command, 973

NA (keyword)
EXSMOOTH command, 538–539

NAME (keyword)
DESCRIPTIVES command, 465
REPORT command, 1420

NAMES (keyword)
DISPLAY command, 487
MATRIX command, 948

NAMES(subcommand)
SAVE command, 1453

NATRES (subcommand)
PROBIT command, 1270

NCAT (keyword)
CATPCA command, 195
CATREG command, 213
with GROUPING keyword, 195

NCOL (function)
MATRIX command, 932

NCOMP (keyword)
MANOVA command, 878

NDIM (keyword)
ANACOR command, 122–123
CORRESPONDENCE command, 287
HOMALS command, 733
OVERALS command, 1181–1182
PRINCALS command, 1246

NEGATIVE (keyword)
ALSCAL command, 108

NEQ (keyword)
IGRAPH command, 756, 764

NESTED (keyword)
FILE TYPE command, 572

NEW FILE (command), 1043

NEWNAMES (subcommand)
FLIP command, 591–592

NEWVARS (subcommand)
APPLY DICTIONARY command, 138

NFTOLERANCE (keyword)
CNLR command, 1055

NGE (keyword)
IGRAPH command, 756, 764

NGT (function)
GRAPH command, 688

NGT (keyword)
IGRAPH command, 756, 764

NIN (function)
GRAPH command, 689

NIN (keyword)
IGRAPH command, 756, 764

NLE (keyword)
IGRAPH command, 756, 765

NLOGLOG (keyword)
PLUM command, 1214

NLR (command), 1044
CRITERIA subcommand, 1054, 1056
DERIVATIVES command, 1046, 1049
FILE subcommand, 1051
iteration criteria, 1056
missing values, 1047
OUTFILE subcommand, 1051
PRED subcommand, 1052
SAVE subcommand, 1053
weighting cases, 1047
with MODEL PROGRAM command, 1046, 1048

NLT (function)
GRAPH command, 688

NLT (keyword)
IGRAPH command, 756, 764

NM (keyword)
EXSMOOTH command, 538–539

Syntax Index 1833

NMISS (function)
AGGREGATE command, 96

NN (keyword)
EXSMOOTH command, 538–539

NO (keyword)
CASESTOVARS command, 186
SET command, 1485

NOBSERVATIONS (subcommand)
HOMALS command, 730
OVERALS command, 1179
PRINCALS command, 1243

NOCASENUM (keyword)
SUMMARIZE command, 1544

NOCONFORM (subcommand)
SPCHART command, 1521

NOCONSTANT (keyword)
ARIMA command, 156

NOCONSTANT (subcommand)
AREG command, 148
CURVEFIT command, 409
WLS command, 1669

NOCONSTANT subcommand
2SLS command, 1589

NOCOUNTS (keyword)
MVA command, 1035

NOCUM (keyword)
GRAPH command, 712

NODF (keyword)
MVA command, 1034

NODIAGONAL (keyword)
MATRIX DATA command, 967

NOFILL (keyword)
TSPLOT command, 1577

NOINITIAL (keyword)
QUICK CLUSTER command, 1315

NOINT (keyword)
MIXED command, 1002

NOJOIN (keyword)
TSPLOT command, 1577

NOKAISER (keyword)
FACTOR command, 555

NOLABELS (keyword)
MULT RESPONSE command, 1027

NOLIST (keyword)
REPORT command, 1409
SUMMARIZE command, 1544

NOLOG (keyword)
ARIMA command, 156

NOLOG (subcommand)
ACF command, 74
CCF command, 222
PACF command, 1188
PPLOT command, 1231
TSPLOT command, 1576

NOMEANS (keyword)
MVA command, 1035

NOMI (keyword)
CATPCA command, 194
CATREG command, 211

NOMINAL (keyword)
ALSCAL command, 104
PROXSCAL command, 1306
with VARIABLES keyword, 1306

NOMREG (command), 1063
BIAS keyword, 1066
BY keyword, 1065
CELLPROB keyword, 1072
CHKSEP keyword, 1066
CIN keyword, 1066
CLASSTABLE keyword, 1072
CORB keyword, 1072
COVB keyword, 1072
CPS keyword, 1073
CRITERIA subcommand, 1066
DELTA keyword, 1066
DEVIANCE keyword, 1074
EXCLUDE keyword, 1067
FIT keyword, 1072
FULLFACTORIAL subcommand, 1066
HISTORY keyword, 1072
INCLUDE keyword, 1067
INTERCEPT subcommand, 1067
KERNEL keyword, 1072
LCONVERGE keyword, 1066
LRT keyword, 1072

1834 Syntax Index

MFI keyword, 1073
MISSING subcommand, 1067
MODEL subcommand, 1067
MXITER keyword, 1066
MXSTEP keyword, 1066
NONE keyword, 1073
OUTFILE subcommand, 1071
PARAMETER keyword, 1073
PCONVERGE keyword, 1066
PEARSON keyword, 1074
PRINT subcommand, 1072
SCALE subcommand, 1074
SINGULAR keyword, 1066
STEP keyword, 1073
SUBPOP subcommand, 1074
SUMMARY keyword, 1073
TEST subcommand, 1074
WITH keyword, 1065

NOMREG (subcommand)
BACKWARD keyword, 1068
BSTEP keyword, 1069
BY keyword, 1067
FORWARD keyword, 1069
FSTEP keyword, 1069
MAXEFFECT keyword, 1070
MINEFFECT keyword, 1070
MODEL keyword, 1072
PIN keyword, 1070
POUT keyword, 1070
RULE keyword, 1070
WITHIN keyword, 1067

NONAME (keyword)
REPORT command, 1420

NONE (keyword)
ANACOR command, 122, 122–123
ANOVA command, 130, 134
CATPCA command, 200, 203
CATREG command, 216
CLUSTER command, 238, 239
CONJOINT command, 270
CORRESPONDENCE command, 287
COXREG command, 304
CROSSTABS command, 322, 323, 326
CURVEFIT command, 410
DISCRIMINANT command, 480
EXAMINE command, 523, 524, 525, 526

FREQUENCIES command, 604
HILOGLINEAR command, 724
HOMALS command, 731, 732
IGRAPH command, 749, 754, 759, 761, 762
MEANS command, 984
NOMREG command, 1073
OVERALS command, 1180, 1181–1182
PARTIAL CORR command, 1194
PRINCALS command, 1244, 1245–1246
PROXSCAL command, 1307, 1308, 1310
QUICK CLUSTER command, 1318
REPORT command, 1430
ROC command, 1445
SET command, 1489
SPECTRA command, 1528
SUMMARIZE command, 1545
SURVIVAL command, 1556

NONMISSING (keyword)
DISCRIMINANT command, 481

NONORMAL (keyword)
FREQUENCIES command, 602

NONPAR CORR (command), 1076
limitations, 1077
matrix output, 1076
MATRIX subcommand, 1079
MISSING subcommand, 1079
missing values, 1080
PRINT subcommand, 1078
random sampling, 1076, 1078
SAMPLE subcommand, 1078
significance tests, 1076, 1078
VARIABLES subcommand, 1077
with RECODE command, 1079

NONPARAMETRIC (keyword)
TWOSTEP CLUSTER command, 1598

NOORIGIN (subcommand)
LOGISTIC REGRESSION command, 810
REGRESSION command, 1360

NOPRINT (subcommand)
LOGLINEAR command, 825
MANOVA command, 851, 875

NOPROB (keyword)
MVA command, 1035

Syntax Index 1835

NOREFERENCE (keyword)
TSPLOT command, 1577

NOREPORT (keyword)
EXAMINE command, 527
GRAPH command, 716

NORMAL (keyword)
CATPCA command, 196
CATREG command, 213
FREQUENCIES command, 601
IGRAPH command, 763
MVA command, 1042
NPAR TESTS command, 1089
PPLOT command, 1229
with DISTR keyword, 196

NORMAL (subcommand)
RANK command, 1322

NORMALIZATION (subcommand)
ANACOR command, 120–121
CATPCA command, 198
CORRESPONDENCE command, 285
with PLOT subcommand, 122

NORMPLOT (keyword)
HILOGLINEAR command, 724

NORMPROB (keyword)
REGRESSION command, 1370

NOROTATE (keyword)
FACTOR command, 557
MANOVA command, 878

NOSIG (keyword)
CORRELATIONS command, 274
NONPAR CORR command, 1078

NOSORT (keyword)
MVA command, 1036, 1037, 1038
RATIO STATISTICS command, 1327

NOSTANDARDIZE (subcommand)
PPLOT command, 1230
TWOSTEP CLUSTER command, 1597

NOT (keyword)
MVA command, 1034

NOTABLE (keyword)
FREQUENCIES command, 600

SURVIVAL command, 1552

NOTABLE (subcommand)
DATA LIST command, 418
KEYED DATA LIST command, 786
PRINT command, 1254
REPEATING DATA command, 1401
WRITE command, 1675

NOTABLES (keyword)
CROSSTABS command, 325

NOTOTAL (keyword)
SUMMARIZE command, 1544

NOTOTAL (subcommand)
EXAMINE command, 522

NOULB (keyword)
ALSCAL command, 109

NOUNIVARIATE (subcommand)
MVA command, 1033

NOWARN (keyword)
FILE TYPE command, 577
RECORD TYPE command, 1346
SET command, 1491

NOWARN (subcommand)
OMS command, 1123

NP (subcommand)
data organization, 1514
SPCHART command, 1513
variable specification, 1515

NPAR TESTS (command), 1082
BINOMIAL subcommand, 1085
CHISQUARE subcommand, 1086
COCHRAN subcommand, 1087
EXPECTED subcommand, 1086
FRIEDMAN subcommand, 1087
independent-samples test, 1083
J-T subcommand, 1088
KENDALL subcommand, 1091
K-S subcommand, 1089
K-W subcommand, 1091
limitations, 1084
MCNEMAR subcommand, 1093
MEDIAN subcommand, 1094
METHOD subcommand, 1101

1836 Syntax Index

MH subcommand, 1095
MISSING subcommand, 1100
MOSES subcommand, 1096
M-W subcommand, 1092
one-sample test, 1083
pairing variables, 1093, 1095
random sampling, 1100
related-samples test, 1083
RUNS subcommand, 1097
SAMPLE subcommand, 1100
SIGN subcommand, 1097
STATISTICS subcommand, 1100
WILCOXON subcommand, 1099
W-W subcommand, 1098

NPCT (keyword)
LAYERED REPORTS command, 1543
MEANS command, 983
OLAP CUBES command, 1107

NPCT(var) (keyword)
MEANS command, 983

NPPLOT (keyword)
EXAMINE command, 524

NPPLOT. See PPLOT

NPREDICTORS (keyword)
MVA command, 1041

NROW (function)
MATRIX command, 932

NTILES (subcommand)
FREQUENCIES command, 603

NTILES(k) (subcommand)
RANK command, 1323

NU (function)
AGGREGATE command, 96

NUM (keyword)
IGRAPH command, 762

NUMBERED (keyword)
LIST command, 800

NUMCLUSTERS (subcommand)
TWOSTEP CLUSTER command, 1597

NUME (keyword)
CATPCA command, 194

CATREG command, 212
OVERALS command, 1178
PRINCALS command, 1243

NUMERIC (command), 1102
formats, 1102, 1103
with DATA LIST command, 1103
with INPUT PROGRAM command, 1102, 1103
with SET command, 1102

NUMERIC (subcommand)
REFORMAT command, 1349

NUMERICAL (keyword)
CATREG command, 214
OVERALS command, 1179

Symbols
NUMIN (keyword)

IGRAPH command, 757

NUMISS (function)
AGGREGATE command, 96

Symbols
OBELISK (keyword)

IGRAPH command, 755

OBJECT (keyword)
CATPCA command, 197, 200, 201, 204, 206
CATREG command, 214
HOMALS command, 731, 732
OVERALS command, 1180, 1180–1182
PRINCALS command, 1244, 1244–1246

OBLIMIN (keyword)
FACTOR command, 557

OBS (keyword)
DATE command, 431

OBS (subcommand)
FIT command, 587

OCCURS (subcommand)
REPEATING DATA command, 1395

OCHIAI (keyword)
CLUSTER command, 235
PROXIMITIES command, 1285

OCORR (keyword)
CATPCA command, 200

Syntax Index 1837

CATREG command, 215

ODBC (keyword)
GET DATA command, 625

ODDSRATIO (keyword)
CSTABULATE command, 374

OF (keyword)
PROBIT command, 1267

OFF (keyword)
SPLIT FILE command, 1533

OFFSET (keyword)
REPORT command, 1416, 1420

OLANG (subcommand)
SET command, 1496
SHOW command, 1501

OLAP CUBES (command), 1104
CELLS subcommand, 1106
CREATE subcommand, 1107
FOOTNOTE subcommand, 1106
TITLE subcommand, 1106

OMEANS (subcommand)
MANOVA command, 855, 871

OMIT (keyword)
TWOSTEP CLUSTER command, 1598

OMS (command), 1110
COLUMNS subcommand, 1120
DESTINATION subcommand, 1117
EXCEPTIF subcommand, 1116
IF subcommand, 1113
NOWARN subcommand, 1123
SELECT subcommand, 1112
TAG subcommand, 1122

OMS (keyword)
COXREG command, 304
KM command, 791
SURVIVAL command, 1552

OMSEND (command), 1156

OMSINFO (command), 1154

OMSLOG (command), 1158

ONEBREAKCOLUMN (keyword)
REPORT command, 1410

ONEPAGE (keyword)
MULT RESPONSE command, 1028

ONETAIL (keyword)
CORRELATIONS command, 274
NONPAR CORR command, 1078
PARTIAL CORR command, 1194

ONEWAY (command), 1160
analysis design, 1162
BONFERRONI keyword, 1164
BTUKEY keyword, 1164
C keyword, 1165
CONTRAST subcommand, 1162
DUNCAN keyword, 1164
DUNNETT keyword, 1164
DUNNETTL keyword, 1164
DUNNETTR keyword, 1164
FREGW keyword, 1165
GABRIEL keyword, 1165
GH keyword, 1165
GT2 keyword, 1165
limitations, 1161
LSD keyword, 1164
matrix input, 1167
matrix output, 1167
MATRIX subcommand, 1167
MISSING subcommand, 1166
PLOT MEANS subcommand, 1166
POLYNOMIAL subcommand, 1162
QREGW, 1165
RANGES subcommand, 1165
SCHEFFE keyword, 1164
SIDAK keyword, 1165
SNK keyword, 1164
STATISTICS subcommand, 1166
T2 keyword, 1165
T3 keyword, 1165
TUKEY keyword, 1164
WALLER keyword, 1165
with MATRIX DATA command, 964

ONUMBERS (subcommand)
SET command, 1487
SHOW command, 1501

OPOWER (keyword)
GLM command, 659

1838 Syntax Index

UNIANOVA command, 1608

OPRINCIPAL (keyword)
CATPCA command, 198

OPTIMAL (keyword)
MANOVA command, 853

OPTOL (keyword)
PROBIT command, 1269

OPTOLERANCE (keyword)
CNLR command, 1056

ORDER (keyword)
CTABLES command, 395

ORDERED (subcommand)
FILE TYPE command, 580

ORDI (keyword)
CATPCA command, 194
CATREG command, 211
OVERALS command, 1178
PRINCALS command, 1242

ORDINAL (keyword)
ALSCAL command, 104
PROXSCAL command, 1303, 1306
with VARIABLES keyword, 1306

ORIGIN (keyword)
IGRAPH command, 763

ORIGIN (subcommand)
LOGISTIC REGRESSION command, 810
REGRESSION command, 1360

ORTHONORM (keyword)
MANOVA command, 872

ORTHOPLAN (command), 1170
CARD_ variable, 1171
duplicate cases, 1171
FACTORS subcommand, 1172
holdout cases, 1171
HOLDOUT subcommand, 1174
minimum number of cases, 1173
MINIMUM subcommand, 1173
MIXHOLD subcommand, 1174
REPLACE subcommand, 1173
replacing active system file, 1173
STATUS_ variable, 1171

value labels, 1172
with CONJOINT command, 261, 264
with PLANCARDS command, 1204
with SET SEED command, 1171
with VALUE LABELS command, 1172

OTHER (keyword)
RECORD TYPE command, 1343

OUT (keyword)
ANACOR command, 123
CLUSTER command, 240
CORRELATIONS command, 275
DISCRIMINANT command, 482
FACTOR command, 559
HOMALS command, 734
MANOVA command, 859
NONPAR CORR command, 1079
ONEWAY command, 1167
PARTIAL CORR command, 1196
PROXIMITIES command, 1288
REGRESSION command, 1364
RELIABILITY command, 1381

OUTFILE (keyword)
CSSELECT command, 343
MATRIX command, 944, 949, 954
MVA command, 1040, 1042

OUTFILE (subcommand)
AGGREGATE command, 93
ALSCAL command, 111
CATPCA command, 205
CATREG command, 217
CNLR/NLR command, 1051
CORRESPONDENCE command, 288
COXREG command, 304
DISCRIMINANT command, 474
EXPORT command, 532
GLM command, 670
INFO command, 776
NOMREG command, 1071
PLANCARDS command, 1207
PRINT command, 1253
PRINT SPACE command, 1261
PROCEDURE OUTPUT command, 1273
PROXSCAL command, 1311
QUICK CLUSTER command, 1318

Syntax Index 1839

RATIO STATISTICS command, 1328
REGRESSION command, 1373
REPORT command, 1411
SAVE command, 1450
SAVE MODEL command, 1457
SAVE TRANSLATE command, 1464
TWOSTEP CLUSTER command, 1597
UNIANOVA command, 1620
VARCOMP command, 1640
WRITE command, 1675
XSAVE command, 1681

OUTLIERS (keyword)
IGRAPH command, 758
LOGISTIC REGRESSION command, 814
REGRESSION command, 1370, 1371

OUTS (keyword)
REGRESSION command, 1358

OUTSIDE (keyword)
IGRAPH command, 755, 757

OVARS (subcommand)
SET command, 1487
SHOW command, 1501

OVERALL (keyword)
KM command, 793
MIXED command, 999

OVERALS (command), 1175–1183
active variables, 1178
ANALYSIS subcommand, 1177–1178
compared to HOMALS, 1178
compared to PRINCALS, 1178
CONVERGENCE subcommand, 1180
DIMENSION subcommand, 1179
INITIAL subcommand, 1179
MATRIX subcommand, 1183
MAXITER subcommand, 1179
NOBSERVATIONS subcommand, 1179
passive variables, 1177–1178
PLOT subcommand, 1180–1182
PRINT subcommand, 1180
SAVE subcommand, 1182–1183
SETS subcommand, 1178
value labels, 1181–1182
variable labels, 1181–1182
VARIABLES subcommand, 1177
with AUTORECODE command, 1176–1177

with RECODE command, 1176–1177

OVERLAY (keyword)
GRAPH command, 708

OVERVIEW (keyword)
INFO command, 775

Symbols
P (keyword)

HILOGLINEAR command, 721
PROBIT command, 1270
SPECTRA command, 1529, 1531

P (subcommand)
ARIMA command, 156–158
data organization, 1514
SPCHART command, 1513
variable specification, 1515

PA1 (keyword)
FACTOR command, 556

PA2 (keyword)
FACTOR command, 556

PACF (command), 1185
APPLY subcommand, 1189
DIFF subcommand, 1187
LN/NOLOG subcommands, 1188
MXAUTO subcommand, 1189
PERIOD subcommand, 1188
SDIFF subcommand, 1187
SEASONAL subcommand, 1188
VARIABLES subcommand, 1187

PACF (subcommand)
ACF command, 76

PAF (keyword)
FACTOR command, 556

PAGE (argument)
REPORT command, 1429

PAGE (keyword)
REPORT command, 1409, 1420

PAGINATE (subcommand)
PLANCARDS command, 1209

PAIRED (keyword)
MULT RESPONSE command, 1025
NPAR TESTS command, 1084, 1093, 1095, 1098,

1099

1840 Syntax Index

T-TEST command, 1584

PAIRS (subcommand)
T-TEST command, 1584

PAIRWISE (keyword)
CORRELATIONS command, 275
EXAMINE command, 527
FACTOR command, 549
KM command, 793
NONPAR CORR command, 1079
REGRESSION command, 1366
SURVIVAL command, 1554

PAIRWISE (subcommand)
MVA command, 1039

PANEL (subcommand)
IGRAPH command, 749

PARALL (keyword)
PROBIT command, 1272

PARALLEL (keyword)
PLUM command, 1216
RELIABILITY command, 1379

PARAMETER (keyword)
GLM command, 658
NOMREG command, 1072, 1073
PLUM command, 1216
UNIANOVA command, 1608

PARAMETERS (keyword)
MANOVA command, 852

PAREPS (subcommand)
ARIMA command, 159

PARETO (subcommand)
GRAPH command, 712

PARTIAL CORR (command), 1191
control variables, 1193
correlation list, 1193
FORMAT subcommand, 1195
limitations, 1192
matrix input, 1196
matrix output, 1196
MATRIX subcommand, 1196
MISSING subcommand, 1195
order values, 1193
SIGNIFICANCE subcommand, 1194

STATISTICS subcommand, 1194
VARIABLES subcommand, 1193

PARTIALPLOT (subcommand)
REGRESSION command, 1372

PARTITION (subcommand)
MANOVA command, 849

PARZEN (keyword)
SPECTRA command, 1528

PASSIVE (keyword)
CATPCA command, 196

PATTERN (keyword)
CLUSTER command, 235
PROXIMITIES command, 1286

PATTERN (subcommand)
COXREG command, 304

PC (keyword)
FACTOR command, 556

PCOMPS (subcommand)
MANOVA command, 877

PCON (keyword)
NLR command, 1057

PCONVERGE (keyword)
MIXED command, 998
NOMREG command, 1066
PLUM command, 1213

PCPROB (keyword)
NOMREG command, 1073
PLUM command, 1216

PCT (function)
GRAPH command, 688
REPORT command, 1424

PCT (keyword)
IGRAPH command, 754, 757, 759

PEARSON (keyword)
NOMREG command, 1074

PEARSON CORR (command). See CORRELA-
TIONS

PEQ (keyword)
IGRAPH command, 765

Syntax Index 1841

PER (keyword)
SPECTRA command, 1530

PERCENT (function)
REPORT command, 1423

PERCENT (keyword)
FREQUENCIES command, 601
MVA command, 1034, 1036

PERCENT (subcommand)
RANK command, 1322

PERCENTILES (subcommand)
EXAMINE command, 522
FREQUENCIES command, 603
KM command, 792

PERIOD (subcommand)
ACF command, 74
CCF command, 222
EXSMOOTH command, 540
PACF command, 1188
PPLOT command, 1231
SEASON command, 1476
TSET command, 1570
TSPLOT command, 1575

PERMISSIONS (command), 1201

PERMISSIONS (subcommand), 1684
SAVE command, 1454

PERMUTATION (keyword)
ANACOR command, 122
CORRESPONDENCE command, 286

PERVIOUSWEIGHT (keyword)
CSPLAN command, 356

PGE (keyword)
IGRAPH command, 765

PGROUP (keyword)
LOGISTIC REGRESSION command, 813

PGT (function)
AGGREGATE command, 95
GRAPH command, 688
REPORT command, 1423

PGT (keyword)
IGRAPH command, 765

PH (keyword)
SPECTRA command, 1529, 1531

PH2 (keyword)
CLUSTER command, 230
PROXIMITIES command, 1281

PHI (keyword)
CLUSTER command, 235
CROSSTABS command, 322
PROXIMITIES command, 1286

PHI (subcommand)
EXSMOOTH command, 541

PIE (subcommand)
GRAPH command, 703
IGRAPH command, 756

PIEFREQ (keyword)
TWOSTEP CLUSTER command, 1598

PIEMAP (subcommand)
MAPS command, 901

PIN (function)
AGGREGATE command, 95
GRAPH command, 689
REPORT command, 1423

PIN (keyword)
COXREG command, 303
IGRAPH command, 765
LOGISTIC REGRESSION command, 812
NOMREG (subcommand), 1070
REGRESSION command, 1360

PIN (subcommand)
DISCRIMINANT command, 474

PLAIN (keyword)
REPORT command, 1427

PLAN (keyword)
CSPLAN command, 358

PLAN (subcommand)
CONJOINT command, 264
CSDESCRIPTIVES command, 332
CSPLAN command, 356
CSSELECT command, 341
CSTABULATE command, 372
with DATA subcommand, 265

1842 Syntax Index

PLANCARDS (command), 1203
FACTORS subcommand, 1205
FOOTER subcommand, 1208
FORMAT subcommand, 1206
OUTFILE subcommand, 1207
PAGINATE subcommand, 1209
sequential profile numbers, 1208
TITLE subcommand, 1207
with ORTHOPLAN command, 1204
with VALUE LABELS command, 1204
with VARIABLE LABELS command, 1204

PLANVARS (subcommand)
CSPLAN command, 356

PLE (keyword)
IGRAPH command, 765

PLOT (keyword)
REGRESSION command, 1371

PLOT (subcommand)
ALSCAL command, 110
ANACOR command, 122–123
CATPCA command, 201
CATREG command, 216
CLUSTER command, 239
CORRESPONDENCE command, 287
COXREG command, 304
CURVEFIT command, 410
DISCRIMINANT command, 481
EXAMINE command, 523
FACTOR command, 553
GENLOG command, 613
GLM command, 659
HILOGLINEAR command, 724
HOMALS command, 732
LOGLINEAR command, 826
MANOVA command, 877
OVERALS command, 1180–1182
PPLOT command, 1229
PRINCALS command, 1244–1246
PROXSCAL command, 1310
ROC command, 1445
SPECTRA command, 1528–1529
SURVIVAL command, 791, 1551
TWOSTEP CLUSTER command, 1598
UNIANOVA command, 1609

with NORMALIZATION subcommand, 122

PLOT MEANS (subcommand)
ONEWAY command, 1166

PLT (function)
AGGREGATE command, 95
GRAPH command, 688
REPORT command, 1423

PLT (keyword)
IGRAPH command, 765

PLUM (command), 1211
ACPROB keyword, 1217
BIAS keyword, 1213
CAUCHIT keyword, 1214
CELLINFO keyword, 1216
CIN keyword, 1213
CLOGLOG keyword, 1214
CORB keyword, 1216
COVB keyword, 1216
CRITERIA subcommand, 1213
DELTA keyword, 1213
ESTPROB keyword, 1216
EXCLUDE keyword, 1215
FIT keyword, 1216
HISTORY keyword, 1216
INCLUDE keyword, 1215
KERNEL keyword, 1216
LCONVERGE keyword, 1213
LINK subcommand, 1214
LOCATION subcommand, 1214
LOGIT keyword, 1214
MISSING subcommand, 1215
MXITER keyword, 1213
MXSTEP keyword, 1213
NLOGLOG keyword, 1214
PARALLEL keyword, 1216
PARAMETER keyword, 1216
PCONVERGE keyword, 1213
PCPROB keyword, 1216
PREDCAT keyword, 1216
PRINT subcommand, 1215
PROBIT keyword, 1214
SAVE subcommand, 1216
SCALE subcommand, 1217
SINGULAR keyword, 1214

Syntax Index 1843

SUMMARY keyword, 1216
TEST subcommand, 1218

PMA (function)
CREATE command, 313

PMEANS (subcommand)
MANOVA command, 856

POINT (command), 1220
FILE subcommand, 1222
KEY subcommand, 1222
with DATA LIST command, 1220
with FILE HANDLE command, 1222

POINTLABEL (subcommand)
IGRAPH command, 749

POISSON (keyword)
NPAR TESTS command, 1089

POLYNOMIAL (keyword)
COXREG command, 299
GLM command, 663, 682
LOGISTIC REGRESSION command, 807
MANOVA command, 873, 886
UNIANOVA command, 1613

POLYNOMIAL (subcommand)
ONEWAY command, 1162

POOL (keyword)
MANOVA command, 866

POOLED (keyword)
DISCRIMINANT command, 481
KM command, 793
REGRESSION command, 1371

POPSIZE (keyword)
CSDESCRIPTIVES command, 334
CSPLAN command, 365
CSTABULATE command, 373

POPSIZE (subcommand)
CSPLAN command, 366

POSTHOC (subcommand)
GLM command, 665
UNIANOVA command, 1615

POUT (function)
AGGREGATE command, 95

POUT (keyword)
COXREG command, 303
LOGISTIC REGRESSION command, 812
NOMREG (subcommand), 1070
REGRESSION command, 1360

POUT (subcommand)
DISCRIMINANT command, 474

POWER (keyword)
CLUSTER command, 230
CURVEFIT command, 408
PROXIMITIES command, 1280

POWER (subcommand)
MANOVA command, 857, 879
WLS command, 1668

PP (keyword)
SPCHART command, 1519

P-P (keyword)
PPLOT command, 1229

PPK (keyword)
SPCHART command, 1519

PPL (keyword)
SPCHART command, 1519

PPLOT (command), 1224
APPLY subcommand, 1232
DIFF subcommand, 1230
DISTRIBUTION subcommand, 1226
FRACTION subcommand, 1228
LN/NOLOG subcommands, 1231
PERIOD subcommand, 1231
PLOT subcommand, 1229
SDIFF subcommand, 1231
STANDARDIZE/NOSTANDARDIZE subcom-

mands, 1230
TYPE subcommand, 1228
VARIABLES subcommand, 1226

PPM (keyword)
SPCHART command, 1519

PPS_BREWER (keyword)
CSPLAN command, 360

PPS_CHROMY (keyword)
CSPLAN command, 360

1844 Syntax Index

PPS_MURTHY (keyword)
CSPLAN command, 360

PPS_SAMPFORD (keyword)
CSPLAN command, 360

PPS_SYSTEMATIC (keyword)
CSPLAN command, 360

PPS_WOR (keyword)
CSPLAN command, 360

PPS_WR (keyword)
CSPLAN command, 360

PPU (keyword)
SPCHART command, 1519

PR (keyword)
SPCHART command, 1519

PRD (keyword)
RATIO STATISTICS command, 1329, 1330

PRED (keyword)
CATREG command, 217
CURVEFIT command, 410
GLM command, 670
LOGISTIC REGRESSION command, 813
MIXED command, 1007
REGRESSION command, 1368
UNIANOVA command, 1619

PRED (subcommand)
CNLR/NLR command, 1052

PREDCAT (keyword)
NOMREG command, 1073
PLUM command, 1216

PRESERVE (command), 1238
macro facility, 454
with RESTORE command, 1437
with SET command, 1484

PRESID (keyword)
COXREG command, 305

PRESORTED (keyword)
CSSELECT command, 342

PRESORTED (subcommand)
AGGREGATE command, 94

PREVIEW (keyword)
REPORT command, 1411

PREVIOUS (keyword)
REPORT command, 1428

PRINCALS (command), 1239–1248
ANALYSIS subcommand, 1242–1243
compared to OVERALS, 1178
DIMENSION subcommand, 1243
MATRIX subcommand, 1247–1248
MAXITER subcommand, 1243
NOBSERVATIONS subcommand, 1243
PLOT subcommand, 1244–1246
PRINT subcommand, 1244
SAVE subcommand, 1246–1247
value labels, 1245–1246
variable labels, 1245–1246
VARIABLES subcommand, 1241–1242
with AUTORECODE command, 1240–1241,

1241–1242
with RECODE command, 1240–1241, 1241–1242

PRINCIPAL (keyword)
ANACOR command, 120–121
CORRESPONDENCE command, 285

PRINT (command), 1249
formats, 1249, 1251
missing values, 1250
NOTABLE subcommand, 1254
OUTFILE subcommand, 1253
RECORDS subcommand, 1253
strings, 1249, 1252
TABLE subcommand, 1254
variable list, 1250
with DO IF command, 1252
with PRINT EJECT command, 1255
with SET command, 1250
with SORT CASES command, 1504

PRINT (statement)
MATRIX command, 935

PRINT (subcommand)
ALSCAL command, 109
ANACOR command, 121–122
AUTORECODE command, 166
CATPCA command, 199

Syntax Index 1845

CATREG command, 215
CLUSTER command, 238
CONJOINT command, 269
CORRELATIONS command, 274
CORRESPONDENCE command, 286
COXREG command, 302
CSPLAN command, 358
CSSELECT command, 344
CURVEFIT command, 410
DO REPEAT command, 504
FACTOR command, 552
GENLOG command, 612
GLM command, 658, 674
HILOGLINEAR command, 724
HOMALS command, 731
KM command, 792
LOGISTIC REGRESSION command, 811
LOGLINEAR command, 825
MANOVA command, 851, 875
MIXED command, 1003
NOMREG command, 1072
NONPAR CORR command, 1078
OVERALS command, 1180
PLUM command, 1215
PRINCALS command, 1244
PROBIT command, 1271
PROXIMITIES command, 1287
PROXSCAL command, 1308
QUICK CLUSTER command, 1317
RANK command, 1325
RATIO STATISTICS command, 1329
ROC command, 1445
SURVIVAL command, 1552
TSET command, 1570
2SLS command, 1589
TWOSTEP CLUSTER command, 1599
UNIANOVA command, 1608
VARCOMP command, 1640
WLS command, 1669

PRINT EJECT (command), 1255
CASENUM$ system variable, 1257
missing values, 1256
with DO IF command, 1255
with PRINT command, 1255
with SET command, 1256

PRINT FORMATS (command), 1258
format specification, 1258
string variables, 1258
with DISPLAY command, 1259

PRINT SPACE (command), 1261
number of lines, 1261
OUTFILE subcommand, 1261
with DO IF command, 1261

PRINTBACK (subcommand)
SET command, 1489
SHOW command, 1501

PRIORS (subcommand)
DISCRIMINANT command, 476

PROB (keyword)
MVA command, 1035

PROBIT (command), 1264
case-by-case form, 1266
CRITERIA subcommand, 1269
limitations, 1266
LOG subcommand, 1269
MISSING subcommand, 1272
MODEL subcommand, 1268
NATRES subcommand, 1270
PRINT subcommand, 1271
response rate, 1270
variable specification, 1267

PROBIT (keyword)
PLUM command, 1214
PROBIT command, 1269

PROBS (keyword)
DISCRIMINANT command, 477

PROCEDURE OUTPUT (command), 1273
OUTFILE subcommand, 1273
with CROSSTABS, 326, 327
with CROSSTABS command, 1273
with SURVIVAL command, 1274

PROCEDURES (keyword)
INFO command, 775

PROFILE (keyword)
GLM command, 659
UNIANOVA command, 1609

1846 Syntax Index

PROFILES (keyword)
ANACOR command, 121

PROJCENTR(keyword)
CATPCA command, 203

PROMAX (keyword)
FACTOR command, 557

PROPORTION (keyword)
MVA command, 1040

PROPORTION (subcommand)
RANK command, 1322

PROX (keyword)
MATRIX DATA command, 973

PROXIMITIES (command), 1275
ID subcommand, 1287
limitations, 1277
matrix input, 1289
matrix output, 18, 1288
MATRIX subcommand, 1288
MEASURE subcommand, 1278
MISSING subcommand, 1288
PRINT subcommand, 1287
STANDARDIZE subcommand, 1277
variable list, 1277
VIEW subcommand, 1278
with FACTOR command, 1292

PROXIMITIES (keyword)
PROXIMITIES command, 1287

PROXIMITIES (subcommand)
PROXSCAL command, 1304

PROXSCAL (command), 1295–1312
ACCELERATION subcommand, 1307
CONDITION subcommand, 1303
CRITERIA subcommand, 1307
INITIAL subcommand, 1301
MATRIX subcommand, 1312
OUTFILE subcommand, 1311
PLOT subcommand, 1310
PRINT subcommand, 1308
PROXIMITIES subcommand, 1304
RESTRICTIONS subcommand, 1305
SHAPE subcommand, 1301
TABLE subcommand, 1298

TRANSFORMATION subcommand, 1303
WEIGHTS subcommand, 1302

PTILE (function)
GRAPH command, 688

PTILE (keyword)
IGRAPH command, 765

PW (keyword)
AREG command, 148

PYRAMID (keyword)
IGRAPH command, 755

PZL (keyword)
SPCHART command, 1519

PZMAX (keyword)
SPCHART command, 1519

PZMIN (keyword)
SPCHART command, 1519

PZOUT (keyword)
SPCHART command, 1519

PZU (keyword)
SPCHART command, 1519

Symbols
Q (keyword)

CLUSTER command, 235
PROXIMITIES command, 1285

Q (subcommand)
ARIMA command, 156–158

Q-Q (keyword)
PPLOT command, 1229

QREGW (keyword)
GLM command, 668
ONEWAY command, 1165
UNIANOVA command, 1618

QS (keyword)
SPECTRA command, 1529, 1531

QUADRATIC (keyword)
CURVEFIT command, 408

QUALIFIER (subcommand)
GET DATA command, 629

Syntax Index 1847

QUANT (keyword)
CATPCA command, 200
CATREG command, 215
HOMALS command, 731, 732
OVERALS command, 1180, 1180–1182
PRINCALS command, 1244, 1244–1246

QUARTILES (keyword)
NPAR TESTS command, 1100

QUARTIMAX (keyword)
FACTOR command, 557
MANOVA command, 878

QUICK CLUSTER (command), 1313
compared with CLUSTER command, 1313
CRITERIA subcommand, 1315
FILE subcommand, 1317
INITIAL subcommand, 1316
METHOD subcommand, 1316
MISSING subcommand, 1319
missing values, 1319
OUTFILE subcommand, 1318
PRINT subcommand, 1317
SAVE subcommand, 1318
variable list, 1315
with large number of cases, 1314

Symbols
R (keyword)

CATREG command, 215
MIXED command, 1003
REGRESSION command, 1358

RANDOM (keyword)
CATREG command, 214
CSSELECT command, 341
OVERALS command, 1179
PROXSCAL command, 1302, 1308
SET command, 1488

RANDOM (subcommand)
GLM command, 654
MIXED command, 1004
UNIANOVA command, 1604
VARCOMP command, 1637

RANGE (keyword)
DESCRIPTIVES command, 464, 465
FREQUENCIES command, 604

GRAPH command, 692
MEANS command, 983
PROXIMITIES command, 1278
RATIO STATISTICS command, 1329, 1330
SUMMARIZE command, 1543

RANGE (subcommand)
GET TRANSLATE command, 640

RANGES (subcommand)
ONEWAY command, 1165

RANK (command), 1320
FRACTION subcommand, 1324
handling of ties, 1228, 1324
MISSING subcommand, 1325
missing values, 1325
N subcommand, 1322
NORMAL subcommand, 1322
NTILES(k) subcommand, 1323
PERCENT subcommand, 1322
PRINT subcommand, 1325
PROPORTION subcommand, 1322
rank functions, 1322
RANK subcommand, 1322
ranking order, 1321
RFRACTION subcommand, 1322
SAVAGE subcommand, 1322
saving rank variables, 1323
TIES subcommand, 1324
VARIABLES subcommand, 1321

RANK (function)
MATRIX command, 932

RANK (subcommand)
RANK command, 1322

RANKING (keyword)
CATPCA command, 195
CATREG command, 212

RANKIT (keyword)
PPLOT command, 1228
RANK command, 1324

RAO (keyword)
DISCRIMINANT command, 473

RATE (keyword)
CSPLAN command, 365

1848 Syntax Index

RATE (subcommand)
CSPLAN command, 362

RATIO (keyword)
ALSCAL command, 104
PROXSCAL command, 1303

RATIO (subcommand)
CSDESCRIPTIVES command, 333

RATIO STATISTICS (command), 1326–1330
MISSING subcommand, 1327
OUTFILE subcommand, 1328
PRINT subcommand, 1329

RAW (keyword)
DISCRIMINANT command, 480
MANOVA command, 878

RBAR (keyword)
SPCHART command, 1520

RC (keyword)
SPECTRA command, 1531

RCMEAN (keyword)
CORRESPONDENCE command, 285

RCON (keyword)
NLR command, 1057

RCONF (keyword)
CORRESPONDENCE command, 286

RCONVERGE (keyword)
FACTOR command, 555

READ (statement)
MATRIX command, 941

READ MODEL (command), 1331–1333
DROP subcommand, 1332–1333
FILE subcommand, 1332
KEEP subcommand, 1332–1333
TSET subcommand, 1333
TYPE subcommand, 1333

READNAMES (subcommand)
GET DATA command, 627

RECFORM (subcommand)
FILE HANDLE command, 565

RECODE (command), 1334
compared with AUTORECODE command, 162,

1334
compared with IF command, 1334
missing values, 1335
numeric variables, 1335
string variables, 1336
target variable, 1337
with HOMALS command, 728
with MISSING VALUES command, 1336
with NONPAR CORR command, 1079
with OVERALS command, 1176–1177
with PRINCALS command, 1240–1241,

1241–1242

RECORD (subcommand)
FILE TYPE command, 574

RECORD TYPE (command), 1340
CASE subcommand, 1345
DUPLICATE subcommand, 1347
MISSING subcommand, 1346
SKIP subcommand, 1344
SPREAD subcommand, 1347
with DATA LIST command, 1340
with FILE TYPE command, 1340

RECORDS (subcommand)
DATA LIST command, 418
PRINT command, 1253
WRITE command, 1674

RECTANGLE (keyword)
IGRAPH command, 755

RECTANGULAR (keyword)
ALSCAL command, 104

REDUCED (keyword)
PROXSCAL command, 1305

REDUNDANCY (keyword)
MANOVA command, 854

REFCAT (keyword)
MIXED command, 1000

REFERENCE (keyword)
TSPLOT command, 1577

REFORMAT (command), 1349
ALPHA subcommand, 1349
missing values, 1349
NUMERIC subcommand, 1349

Syntax Index 1849

with FORMATS command, 1349

REG (keyword)
ANOVA command, 134
FACTOR command, 558

REG (subcommand)
ARIMA command, 158

REGRESSION (command), 1351, 1367
case selection, 1363
CASEWISE subcommand, 1371
CRITERIA subcommand, 1359
DEPENDENT subcommand, 1355
dependent variable, 1355
DESCRIPTIVES subcommand, 1362
diagnostic measures, 1352
diagnostic variables, 1368
matrix data, 1364
MATRIX subcommand, 1364
METHOD subcommand, 1355
MISSING subcommand, 1366
missing values, 1352, 1365, 1368
model criteria, 1359
NOORIGIN subcommand, 1360
ORIGIN subcommand, 1360
OUTFILE subcommand, 1373
PARTIALPLOT subcommand, 1372
REGWGT subcommand, 1361
RESIDUALS subcommand, 1370
SAVE subcommand, 1374
saving variables, 1374
SCATTERPLOT subcommand, 1372
SELECT subcommand, 1363
STATISTICS subcommand, 1357
variable selection, 1355, 1359
VARIABLES subcommand, 1354
weighted models, 1361
with CORRELATIONS command, 1364
with MATRIX DATA command, 963
with SAMPLE command, 1364, 1368
with SELECT IF command, 1364, 1368
with SET command, 1370
with TEMPORARY command, 1364

REGRESSION (keyword)
IGRAPH command, 763

REGRESSION (subcommand)
MVA command, 1041

REGWGT (subcommand)
GLM command, 655
MIXED command, 1006
REGRESSION command, 1361
UNIANOVA command, 1605
VARCOMP command, 1639

RELATIVE (keyword)
MIXED command, 998

RELEASE (statement)
MATRIX command, 957

RELIABILITY (command), 1376
ICC subcommand, 1380
limitations, 1377
matrix input, 1381
matrix output, 1381
MATRIX subcommand, 1381
METHOD subcommand, 1381
MISSING subcommand, 1381
missing values, 1381, 1383
MODEL subcommand, 1378
SCALE subcommand, 1378
STATISTICS subcommand, 1379
SUMMARY subcommand, 1380
VARIABLES subcommand, 1378

RELRISK (keyword)
CSTABULATE command, 374

REML (keyword)
MIXED command, 1002
VARCOMP command, 1638

REMOVE (keyword)
REGRESSION command, 1356

RENAME (command)
SAVE TRANSLATE command, 1469

RENAME (subcommand)
ADD FILES command, 83
CASESTOVARS command, 186
EXPORT command, 533
GET command, 619
IMPORT command, 769
MANOVA command, 871, 889

1850 Syntax Index

MATCH FILES command, 910
SAVE command, 1452
UPDATE command, 1626
XSAVE command, 1682

RENAME VARIABLES (command), 1386

RENAMEVARS (keyword)
CSSELECT command, 342

REPEATED (keyword)
COXREG command, 299
GLM command, 664, 682
LOGISTIC REGRESSION command, 807
MANOVA command, 848, 873
UNIANOVA command, 1614

REPEATED (subcommand)
MIXED command, 1006

REPEATING DATA (command), 1388
CONTINUED subcommand, 1398
DATA subcommand, 1396
FILE subcommand, 1396
ID subcommand, 1400
LENGTH subcommand, 1397
NOTABLE subcommand, 1401
OCCURS subcommand, 1395
STARTS subcommand, 1394
with DATA LIST command, 1388, 1389, 1391
with FILE TYPE command, 1388, 1389, 1392
with INPUT PROGRAM command, 1388, 1389,

1391

REPLACE (subcommand)
MCONVERT command, 979
ORTHOPLAN command, 1173
SAVE TRANSLATE command, 1465
with FACTORS subcommand, 1173

REPORT (command), 1402
BREAK subcommand, 1418
CHWRAP keyword, 1411
column contents, 1414, 1418
column headings, 1403, 1415, 1419
column spacing, 1404
column width, 1404, 1404, 1416, 1419
defining subgroups, 1418
footnotes, 1428
FORMAT subcommand, 1408

INDENT keyword, 1410
limitations, 1407
MISSING subcommand, 1430
missing values, 1406, 1430
ONEBREAKCOLUMN keyword, 1410
OUTFILE subcommand, 1411
output file, 1406, 1411
page layout, 1411
PREVIEW keyword, 1411
print formats, 1426
report types, 1406
STRING subcommand, 1416
string variables, 1416
summary statistics, 1406, 1421
SUMMARY subcommand, 1421
summary titles, 1425
titles, 1428
VARIABLES subcommand, 1414
with SET command, 1406
with SORT CASES command, 1504

REPORT (keyword)
CROSSTABS command, 324
EXAMINE command, 527
GRAPH command, 716

REPR (keyword)
FACTOR command, 553

REREAD (command), 1431
COLUMN subcommand, 1435
FILE subcommand, 1434
with DATA LIST command, 1431
with INPUT PROGRAM command, 1431

REREAD (keyword)
MATRIX command, 943

RES (keyword)
CATREG command, 217

RESCALE (keyword)
PROXIMITIES command, 1278, 1279

RESHAPE (function)
MATRIX command, 932

RESID (keyword)
CATPCA command, 202
CATREG command, 216
CROSSTABS command, 321

Syntax Index 1851

CSTABULATE command, 374
CURVEFIT command, 410
GLM command, 670
HILOGLINEAR command, 724
LOGISTIC REGRESSION command, 813
MIXED command, 1007
REGRESSION command, 1368
UNIANOVA command, 1619

RESIDUAL (keyword)
MANOVA command, 846
MVA command, 1042

RESIDUALS (keyword)
GLM command, 659
PROXSCAL command, 1310
UNIANOVA command, 1609

RESIDUALS (subcommand)
MANOVA command, 857
REGRESSION command, 1370

RESPONSES (keyword)
MULT RESPONSE command, 1026

RESTORE (command), 1238, 1437
macro facility, 454
with PRESERVE command, 1437
with SET command, 1437, 1484

RESTRICTIONS (subcommand)
PROXSCAL command, 1305

RESULTS (subcommand)
SET command, 1489
SHOW command, 1501

REVERSE (keyword)
PROXIMITIES command, 1278

RFRACTION (subcommand)
RANK command, 1322

RHO (subcommand)
AREG command, 148

RIGHT (keyword)
REPORT command, 1415, 1419, 1428

RISK (keyword)
CROSSTABS command, 323

RISKDIFF (keyword)
CSTABULATE command, 374

RJUMP (keyword)
IGRAPH command, 760

RLABELS (keyword)
MATRIX command, 936

RMAX (function)
MATRIX command, 932

RMEAN (keyword)
CORRESPONDENCE command, 285

RMED (function)
CREATE command, 313

RMIN (function)
MATRIX command, 932

RMP (keyword)
PROBIT command, 1271

RMV (command), 1438
LINT function, 1439
MEAN function, 1440
MEDIAN function, 1440
SMEAN function, 1441
TREND function, 1441

RNAMES (keyword)
MATRIX command, 936

RND (function)
MATRIX command, 932

RNKORDER (function)
MATRIX command, 932

ROC (command), 1442
BY keyword, 1443
COORDINATES keyword, 1445
CRITERIA subcommand, 1444
CURVE keyword, 1445
CUTOFF keyword, 1444
DISTRIBUTION keyword, 1444
EXCLUDE keyword, 1444
INCLUDE keyword, 1444
MISSING keyword, 1444
NONE keyword, 1445
PLOT subcommand, 1445
PRINT subcommand, 1445
SE keyword, 1445
TESTPOS keyword, 1444

1852 Syntax Index

ROTATE (keyword)
MANOVA command, 878

ROTATE (subcommand)
DISCRIMINANT command, 480

ROTATION (keyword)
FACTOR command, 552, 554

ROTATION (subcommand)
FACTOR command, 557

ROUND (keyword)
CROSSTABS command, 325
EXAMINE command, 523
IGRAPH command, 755, 758

ROVMAP (subcommand)
MAPS command, 896

ROW (keyword)
ALSCAL command, 105
CROSSTABS command, 321
MULT RESPONSE command, 1026

ROWCONF (keyword)
ALSCAL command, 106, 111

ROWPCT (keyword)
CSTABULATE command, 373

ROWS (keyword)
ALSCAL command, 103
ANACOR command, 121, 122–123

ROWTYPE_ (variable)
MATRIX DATA command, 959, 965

ROWTYPE_ variable
ANACOR command, 123–124
CORRESPONDENCE command, 288, 289
HOMALS command, 734
OVERALS command, 1183
PRINCALS command, 1247

RPOINTS (keyword)
CORRESPONDENCE command, 286, 287

RPRINCIPAL (keyword)
ANACOR command, 121
CORRESPONDENCE command, 285

RPROFILES (keyword)
CORRESPONDENCE command, 286

RR (keyword)
CLUSTER command, 232
PROXIMITIES command, 1283

RSSCP (keyword)
GLM command, 674

RSSQ (function)
MATRIX command, 933

RSTEP (keyword)
IGRAPH command, 755, 760

RSUM (function)
MATRIX command, 933

RSUM (keyword)
CORRESPONDENCE command, 285

RT (keyword)
CLUSTER command, 233
PROXIMITIES command, 1283

RULE (keyword)
NOMREG (subcommand), 1070

RUNS (subcommand)
NPAR TESTS command, 1097

Symbols
S (keyword)

CURVEFIT command, 408
SPECTRA command, 1529, 1531

SAMPLE (command), 1446
limitations, 1447
with DO IF command, 1447
with FILE TYPE command, 1447
with INPUT PROGRAM command, 1447
with N OF CASES command, 1061, 1447
with REGRESSION command, 1364, 1368
with SELECT IF command, 1446
with SET command, 1446
with TEMPORARY command, 1446

SAMPLE (keyword)
CSPLAN command, 356

SAMPLE (subcommand)
NONPAR CORR command, 1078
NPAR TESTS command, 1100

Syntax Index 1853

SAMPLEFILE (subcommand)
CSSELECT command, 343

SAMPLES (keyword)
CROSSTABS command, 323
NPAR TESTS command, 1101

SAMPLEWEIGHT (keyword)
CSPLAN command, 356

SAMPSIZE (keyword)
CSPLAN command, 365

SAR (subcommand)
ARIMA command, 158

SAS (keyword)
SAVE TRANSLATE command, 1466

SAVAGE (subcommand)
RANK command, 1322

SAVE (command), 1448
compared to XSAVE command, 1448, 1679
COMPRESSED subcommand, 1453
DROP command, 1451
KEEP subcommand, 1451
MAP subcommand, 1453
OUTFILE subcommand, 1450
PERMISSIONS subcommand, 1454
RENAME subcommand, 1452
UNCOMPRESSED subcommand, 1453
UNSELECTED subcommand, 1451
with TEMPORARY command, 1565

SAVE (statement)
MATRIX command, 949

SAVE (subcommand)
CATPCA command, 204
CLUSTER command, 237
CNLR/NLR command, 1053
COXREG command, 305
CURVEFIT command, 410
DESCRIPTIVES command, 463
DISCRIMINANT command, 477
FACTOR command, 557
GENLOG command, 614
GLM command, 669
HOMALS command, 734
KM command, 795

LOGISTIC REGRESSION command, 814
MIXED command, 1007
OVERALS command, 1182–1183
PLUM command, 1216
PRINCALS command, 1246–1247
QUICK CLUSTER command, 1318
SPECTRA command, 1530–1531
2SLS command, 1589
TWOSTEP CLUSTER command, 1600
UNIANOVA command, 1619
with DIMENSION subcommand, 734, 1182,

1246–1247
with MATRIX subcommand, 734, 1182, 1247
WLS command, 1669

SAVE MODEL (command), 1456–1458
DROP subcommand, 1457–1458
KEEP subcommand, 1457–1458
OUTFILE subcommand, 1457
TYPE subcommand, 1458

SAVE TRANSLATE (command), 1459
APPEND subcommand, 1465
CELLS subcommand, 1468
CONNECT subcommand, 1465
DROP subcommand, 1469
FIELDNAMES subcommand, 1468
KEEP subcommand, 1469
limitations, 1464
MAP subcommand, 1470
missing values, 1462
OUTFILE subcommand, 1464
PLATFORM subcommand, 1467
RENAME subcommand, 1469
REPLACE subcommand, 1465
TABLE subcommand, 1465
TYPE subcommand, 1465
UNSELECTED subcommand, 1468
VALFILE subcommand, 1468
VERSION subcommand, 1467

SAVE(command)
NAMES subcommand, 1453

SBAR (keyword)
SPCHART command, 1520

SCALE (keyword)
IGRAPH command, 746

1854 Syntax Index

RELIABILITY command, 1379

SCALE (subcommand)
NOMREG command, 1074
PLUM command, 1217
RELIABILITY command, 1378

SCALEMIN (subcommand)
SET command, 1496

SCATTER (subcommand)
IGRAPH command, 753

SCATTERPLOT (subcommand)
GRAPH command, 708
REGRESSION command, 1372

SCHEDULE (keyword)
CLUSTER command, 238

SCHEFFE (keyword)
GLM command, 667
ONEWAY command, 1164
UNIANOVA command, 1617

SCOMPRESSION (subcommand)
SHOW command, 1501

SCOPE (keyword)
CSDESCRIPTIVES command, 335

SCORE (keyword)
ANACOR command, 123–124
CORRESPONDENCE command, 288

SCORE variable
ANACOR command, 124

SCORE_ variable
CORRESPONDENCE command, 289

SCORES (keyword)
ANACOR command, 121
DISCRIMINANT command, 477

SCORING (keyword)
MIXED command, 998

SCRATCH (keyword)
DISPLAY command, 488

SCRIPT (command), 1471

SD (function)
AGGREGATE command, 95

SD (keyword)
IGRAPH command, 761
MATRIX DATA command, 972
PROXIMITIES command, 1278

SD (subcommand)
ARIMA command, 156–158

SDBETA (keyword)
REGRESSION command, 1369

SDFIT (keyword)
REGRESSION command, 1369

SDIFF (function)
CREATE command, 314

SDIFF (subcommand)
ACF command, 74
CCF command, 221
PACF command, 1187
PPLOT command, 1231
TSPLOT command, 1575

SDRESID (keyword)
REGRESSION command, 1369

SE (keyword)
COXREG command, 305
CSDESCRIPTIVES command, 334
CSTABULATE command, 373
IGRAPH command, 761
KM command, 795
ROC command, 1445

SEASFACT (subcommand)
EXSMOOTH command, 540–541

SEASON (command), 1473–1477
APPLY subcommand, 1476–1477
MA subcommand, 1475
MODEL subcommand, 1475
PERIOD subcommand, 1476
VARIABLES subcommand, 1475

SEASONAL (subcommand)
ACF command, 75
CCF command, 223
PACF command, 1188

SECOND (keyword)
DATE command, 431

Syntax Index 1855

SEED (keyword)
CSSELECT command, 341

SEED (subcommand)
SET command, 1488
SHOW command, 1501

SEFIXP (keyword)
MIXED command, 1007

SEKURT (keyword)
FREQUENCIES command, 604
IGRAPH command, 765
MEANS command, 983

SELECT (subcommand)
DISCRIMINANT command, 471
FACTOR command, 550
LOGISTIC REGRESSION command, 810
OMS command, 1112
REGRESSION command, 1363

SELECT IF (command), 1478
limitations, 1480
logical expressions, 1478
missing values, 1479, 1481
with CASENUM$ system variable, 1479
with DO IF command, 1482
with N OF CASES command, 1061, 1479
with REGRESSION command, 1364, 1368
with SAMPLE command, 1446
with TEMPORARY command, 1478

SELECTION (keyword)
CSSELECT command, 344
REGRESSION command, 1358

SELECTRULE (subcommand)
CSSELECT command, 344

SELIRT (keyword)
SUMMARIZE command, 1543

SEMEAN (keyword)
DESCRIPTIVES command, 464, 465
FREQUENCIES command, 604
IGRAPH command, 765
MEANS command, 983
OLAP CUBES command, 1106
SUMMARIZE command, 1543

SEPARATE (keyword)
CSDESCRIPTIVES command, 335
CSTABULATE command, 375
DISCRIMINANT command, 481
REGRESSION command, 1371

SEPARATOR (subcommand)
CASESTOVARS command, 187

SEPRED (keyword)
GLM command, 670
MIXED command, 1007
REGRESSION command, 1369
UNIANOVA command, 1620

SEQUENCE (subcommand)
CONJOINT command, 266

SERIAL (keyword)
PARTIAL CORR command, 1195

SERROR (subcommand)
ACF command, 76

SES (keyword)
REGRESSION command, 1358

SESKEW (keyword)
FREQUENCIES command, 604
IGRAPH command, 765
MEANS command, 983
SUMMARIZE command, 1543

SET (command), 1483, 1495
BLANKS subcommand, 1491
BLOCK subcommand, 1493
BOX subcommand, 1493
CC subcommand, 1494
COMPRESSION subcommand, 1492
CTEMPLATE subcommand, 1487
DEFOLANG subcommand, 1496
EPOCH subcommand, 1488
ERRORS subcommand, 1489
EXTENSIONS subcommand, 1492
FORMAT subcommand, 1486
HEADER subcommand, 1494
JOURNAL subcommand, 1490
LENGTH subcommand, 1493
MESSAGES subcommand, 1489
MEXPAND subcommand, 1497
MITERATE subcommand, 1491

1856 Syntax Index

MNEST subcommand, 1491
MPRINT subcommand, 1497
MXCELLS subcommand, 1486
MXERRS subcommand, 1491–1492
MXLOOPS subcommand, 1492
MXMEMORY subcommand, 1486
MXWARNS subcommand, 1491–1492
OLANG subcommand, 1496
ONUMBERS subcommand, 1487
OVARS subcommand, 1487
PRINTBACK subcommand, 1489
RANDOM keyword, 1488
RESULTS subcommand, 1489
SCALEMIN subcommand, 1496
SEED subcommand, 1488
SMALL subcommand, 1495
TLOOK subcommand, 1487
TNUMBERS subcommand, 1487
TVARS subcommand, 1487
UNDEFINED subcommand, 1491
WIDTH subcommand, 1493
with CLUSTER command, 228
with LOOP command, 1492
with NUMERIC command, 1102
with PRESERVE command, 1238, 1484
with PRINT command, 1250
with PRINT EJECT command, 1256
with REGRESSION command, 1370
with REPORT command, 1406
with RESTORE command, 1238, 1437, 1484
with SAMPLE command, 1446
with SHOW command, 1484
with SUBTITLE (command), 1538
with TITLE command, 1566
with WRITE command, 1672
with WRITE FORMATS command, 1678
WORKSPACE subcommand, 1486

SET command, 1488

SET_ variable
OVERALS command, 1183

SETDIAG (keyword)
MATRIX command, 935

SETS (subcommand)
OVERALS command, 1178

with ANALYSIS subcommand, 1178

SEUCLID (keyword)
CLUSTER command, 229
PROXIMITIES command, 1279

SHAPE (keyword)
IGRAPH command, 755, 762

SHAPE (subcommand)
ALSCAL command, 103
PROXSCAL command, 1301

SHEET (subcommand)
GET DATA command, 626

SHOW (command, 1498

SHOW (command)
$VARS subcommand, 1502
BLANKS subcommand, 1499
BLKSIZE subcommand, 1499
BLOCK subcommand, 1499
BOX subcommand, 1499
BUFFNO subcommand, 1499
CACHE subcommand, 1499
CC subcommand, 1499
COMPRESSION subcommand, 1499
CTEMPLATE subcommand, 1499
DEFOLANG subcommand, 1499
DIRECTORY subcommand, 1499
ENVIRONMENT subcommand, 1499
EPOCH subcommand, 1500
ERRORS subcommand, 1500
EXTENSIONS subcommand, 1500
FILTER subcommand, 1500
FORMAT subcommand, 1500
HEADER subcommand, 1500
JOURNAL subcommand, 1500
LENGTH subcommand, 1500
LICENSE subcommand, 1500
LOCALE subcommand, 1500
MESSAGES subcommand, 1500
MEXPAND subcommand, 1500
MITERATE subcommand, 1500
MNEST subcommand, 1500
MPRINT subcommand, 1500
MXCELLS subcommand, 1500
MXERRS subcommand, 1500

Syntax Index 1857

MXLOOPS subcommand, 1500
MXMEMORY subcommand, 1501
MXWARNS subcommand, 1501
N subcommand, 1501
ONLANG subcommand, 1501
ONUMBERS subcommand, 1501
OVARS subcommand, 1501
PRINTBACK subcommand, 1501
RESULTS subcommand, 1501
SCALEMIN subcommand, 1501
SCOMPRESSION subcommand, 1501
SEED subcommand, 1501
SMALL subcommand, 1501
SYSMIS subcommand, 1501
TFIT subcommand, 1501
TLOOK subcommand, 1501
TNUMBERS subcommand, 1501
TVARS subcommand, 1501
UNDEFINED subcommand, 1501
WEIGHT subcommand, 1502
WIDTH subcommand, 1502
with SET command, 1484
WORKSPACE subcommand, 1502

SHOWLABEL (subcommand)
MAPS command, 895

SIDAK (keyword)
GLM command, 667
MIXED command, 1000
ONEWAY command, 1165
UNIANOVA command, 1617

SIG (keyword)
CORRELATIONS command, 274
FACTOR command, 552
NONPAR CORR command, 1078
REGRESSION command, 1363

SIGMA (subcommand)
SPCHART command, 1521

SIGN (keyword)
IGRAPH command, 761

SIGN (subcommand)
NPAR TESTS command, 1097

SIGNIF (keyword)
MANOVA command, 853, 876, 890

SIGNIFICANCE (subcommand)
PARTIAL CORR command, 1194

SIGTEST (subcommand)
CTABLES command, 400

SIMILARITIES (keyword)
PROXSCAL command, 1304

SIMPLE (keyword)
COXREG command, 299
GLM command, 664, 682
GRAPH command, 691, 697, 704, 712
LOGISTIC REGRESSION command, 807
MANOVA command, 848, 873
UNIANOVA command, 1614

SIMPLE_CHROMY (keyword)
CSPLAN command, 360

SIMPLE_SYSTEMATIC (keyword)
CSPLAN command, 360

SIMPLE_WOR (keyword)
CSPLAN command, 360

SIMPLE_WR (keyword)
CSPLAN command, 360

SIMPLEX (keyword)
PROXSCAL command, 1301

SIMULATIONS (keyword)
CONJOINT command, 269

SIN (function)
MATRIX command, 933

SIN (keyword)
SPECTRA command, 1530

SINCE (keyword)
INFO command, 775

SINGLE (keyword)
CLUSTER command, 236
LIST command, 800

SINGLEDF (keyword)
MANOVA command, 853, 877

SINGULAR (keyword)
ANACOR command, 121
MIXED command, 999
NOMREG command, 1066

1858 Syntax Index

PLUM command, 1214

SIZE (keyword)
CLUSTER command, 235
DISCRIMINANT command, 476
MATRIX command, 943
PROXIMITIES command, 1286

SIZE (subcommand)
CSPLAN command, 361
IGRAPH command, 748

SKEW (keyword)
IGRAPH command, 765
MEANS command, 983
SUMMARIZE command, 1543

SKEWNESS (function)
REPORT command, 1423

SKEWNESS (keyword)
DESCRIPTIVES command, 464, 465
FREQUENCIES command, 604

SKIP (keyword)
REPORT command, 1420, 1428

SKIP (subcommand)
DATA LIST command, 420
RECORD TYPE command, 1344

SLABELS (subcommand)
CTABLES command, 391

SLICE (keyword)
IGRAPH command, 757

SLK (keyword)
SAVE TRANSLATE command, 1466

SM (keyword)
CLUSTER command, 232
PROXIMITIES command, 1283

SMA (subcommand)
ARIMA command, 158

SMALL (subcommand)
SET command, 1495
SHOW command, 1501

SMEAN (function)
RMV command, 1441

SMISSING (subcommand)
CTABLES command, 403

smoothing parameter subcommands
EXSMOOTH command, 541–543

SNAMES (keyword)
MATRIX command, 956

SNK (keyword)
GLM command, 667
ONEWAY command, 1164
UNIANOVA command, 1617

SNOM (keyword)
OVERALS command, 1178
PRINCALS command, 1242

SOLUTION (keyword)
MIXED command, 1004

SOLVE (function)
MATRIX command, 933

SORT (keyword)
FACTOR command, 551
MVA command, 1036

SORT (subcommand)
DESCRIPTIVES command, 465

SORT CASES (command), 1503
with ADD FILES command, 82, 182, 1504, 1649
with AGGREGATE command, 1504
with MATCH FILES command, 1504
with PRINT command, 1504
with REPORT command, 1504
with SPLIT FILE command, 1533
with UPDATE command, 1504, 1624

SORTED (keyword)
DISPLAY command, 488

sorting categories
CTABLES command, 395

SOURCE (keyword)
CSPLAN command, 363

SOURCE (subcommand)
APPLY DICTIONARY command, 138
WLS command, 1667

Syntax Index 1859

SP (subcommand)
ARIMA command, 156–158

SPACE (keyword)
MATRIX command, 936

SPAN (subcommand)
SPCHART command, 1521

SPCHART (command), 1505
C subcommand, 1515
CAPSIGMA subcommand, 1520
CONFORM subcommand, 1521
FOOTNOTE subcommand, 1508
I subcommand, 1511
IR subcommand, 1511
LSL subcommand, 1521
MINSAMPLE subcommand, 1521
MISSING subcommand, 1522
NOCONFORM subcommand, 1521
NP subcommand, 1513
P subcommand, 1513
SIGMA subcommand, 1521
SPAN subcommand, 1521
STATISTICS subcommand, 1517
SUBTITLE subcommand, 1508
TARGET subcommand, 1522
TITLE subcommand, 1508
U subcommand, 1515
USL subcommand, 1521
XR subcommand, 1508
XS subcommand, 1508

SPCT (keyword)
MEANS command, 983
OLAP CUBES command, 1107
SUMMARIZE command, 1543

SPCT(var) (keyword)
MEANS command, 983

SPEARMAN (keyword)
NONPAR CORR command, 1078

SPECIAL (keyword)
COXREG command, 299
GLM command, 664, 682
LOGISTIC REGRESSION command, 807
MANOVA command, 849, 874
UNIANOVA command, 1614

SPECIFICATIONS (keyword)
APPLY subcommand, 149
ARIMA command, 160
CURVEFIT command, 411

SPECTRA (command), 1524–1532
APPLY subcommand, 1531–1532
BY keyword, 1529
CENTER subcommand, 1527
CROSS subcommand, 1529–1530
PLOT subcommand, 1528–1529
SAVE subcommand, 1530–1531
VARIABLES subcommand, 1526–1527
WINDOW subcommand, 1527–1528

SPIKE (subcommand)
IGRAPH command, 752

SPLINE (keyword)
IGRAPH command, 760
PROXSCAL command, 1304, 1306
with VARIABLES keyword, 1306

SPLIT (keyword)
MATRIX command, 956
RELIABILITY command, 1378

SPLIT (subcommand)
MATRIX DATA command, 968
TSPLOT command, 1579

SPLIT FILE (command)
limitations, 1534
with AGGREGATE command, 92, 1534
with SORT CASES command, 1533
with TEMPORARY command, 1533, 1564

SPNOM (keyword)
CATPCA command, 194, 195
CATREG command, 211

SPORD (keyword)
CATPCA command, 194, 195
CATREG command, 211

SPREAD (subcommand)
RECORD TYPE command, 1347

SPREADLEVEL (keyword)
EXAMINE command, 524
GLM command, 659
UNIANOVA command, 1609

1860 Syntax Index

SQ (subcommand)
ARIMA command, 156–158

SQL (subcommand)
GET CAPTURE command, 622
GET DATA command, 626

SQRT (function)
MATRIX command, 933

SQUARE (keyword)
IGRAPH command, 755, 758

SRESID (keyword)
CROSSTABS command, 321
GLM command, 670
LOGISTIC REGRESSION command, 813
REGRESSION command, 1369
UNIANOVA command, 1620

SS (keyword)
VARCOMP command, 1640

SS1 through SS5 (keywords)
CLUSTER command, 233
PROXIMITIES command, 1283

SSCON (keyword)
NLR command, 1056

SSCP (function)
MATRIX command, 933

SSCP (keyword)
MANOVA command, 876

SSQPCT (subcommand)
ARIMA command, 159

SSTYPE (keyword)
GLM command, 655
MIXED command, 1002
UNIANOVA command, 1605
VARCOMP command, 1638

STACK (keyword)
IGRAPH command, 748

STACKED (keyword)
GRAPH command, 691, 712

STAGELABEL (keyword)
CSPLAN command, 358

STAGES (keyword)
CSSELECT command, 341

STAGEVARS (subcommand)
CSPLAN command, 364

STAN (keyword)
MANOVA command, 878

STANDARDIZE (subcommand)
CORRESPONDENCE command, 285
PPLOT command, 1230
PROXIMITIES command, 1277

START (keyword)
IGRAPH command, 757

STARTS (subcommand)
REPEATING DATA command, 1394

STATE (keyword)
TWOSTEP CLUSTER command, 1598

STATISTICS (subcommand)
CORRELATIONS command, 274
CROSSTABS command, 322
CSDESCRIPTIVES command, 334
CSTABULATE command, 373
DESCRIPTIVES command, 464
DISCRIMINANT command, 479
EXAMINE command, 525
FREQUENCIES command, 604
MEANS command, 983
NPAR TESTS command, 1100
ONEWAY command, 1166
PARTIAL CORR command, 1194
REGRESSION command, 1357
RELIABILITY command, 1379
SPCHART command, 1517
SUMMARIZE command, 1545

STATUS (subcommand)
COXREG command, 297
KM command, 790
SURVIVAL command, 1550

STDDEV (function)
GRAPH command, 688
REPORT command, 1423

STDDEV (keyword)
DESCRIPTIVES command, 464, 465

Syntax Index 1861

DISCRIMINANT command, 479
FREQUENCIES command, 604
GRAPH command, 707
IGRAPH command, 765
MATRIX DATA command, 972
MEANS command, 982
OLAP CUBES command, 1106
RATIO STATISTICS command, 1329, 1330
REGRESSION command, 1362
SUMMARIZE command, 1543

STEMLEAF (keyword)
EXAMINE command, 523

STEP (keyword)
DISCRIMINANT command, 480
NOMREG command, 1073

STEPDOWN (keyword)
MANOVA command, 876

STEPLIMIT (keyword)
CNLR command, 1055

STEPWISE (keyword)
REGRESSION command, 1356

STERROR (keyword)
GRAPH command, 707

STIMWGHT (keyword)
ALSCAL command, 106, 111

STRAIGHT (keyword)
IGRAPH command, 755, 760

STRATA (keyword)
CSPLAN command, 358
KM command, 793

STRATA (subcommand)
COXREG command, 298
KM command, 791

STRESS (keyword)
PROXSCAL command, 1309, 1310

STRESSMIN (keyword)
ALSCAL command, 108

STRICTPARALLEL (keyword)
RELIABILITY command, 1379

STRING (command), 1536
with INPUT PROGRAM command, 1536

STRING (subcommand)
REPORT command, 1416

STRINGS (keyword)
MATRIX command, 951

STRUCTURE (keyword)
DISCRIMINANT command, 480

STYLE (keyword)
IGRAPH command, 759

STYLE (subcommand)
IGRAPH command, 748

SUBJECT (keyword)
MIXED command, 1005, 1006

SUBJECT (subcommand)
CONJOINT command, 267

SUBJWGHT (keyword)
ALSCAL command, 106, 111

SUBPOP (subcommand)
CSDESCRIPTIVES command, 334
CSTABULATE command, 374
NOMREG command, 1074

SUBTITLE (command), 1538
with BEGIN DATA command, 1538
with SET command, 1538
with TITLE command, 1538, 1567

SUBTITLE (subcommand)
GRAPH command, 691
IGRAPH command, 750
SPCHART command, 1508

SUBTRACT (function)
REPORT command, 1424

SUM (function)
AGGREGATE command, 95
GRAPH command, 688
REPORT command, 1422

SUM (keyword)
DESCRIPTIVES command, 465
FREQUENCIES command, 604
IGRAPH command, 756, 765

1862 Syntax Index

MEANS command, 983
OLAP CUBES command, 1106
SUMMARIZE command, 1543

SUM (subcommand)
CSDESCRIPTIVES command, 333

SUMAV (keyword)
IGRAPH command, 756, 765

SUMMARIZE (command), 1540
CELLS subcommand, 1543
FOOTNOTE subcommand, 1542
FORMAT subcommand, 1544
MISSING subcommand, 1544
missing values, 1544
STATISTICS subcommand, 1545
TABLES subcommand, 1542
TITLE subcommand, 1542

SUMMARY (keyword)
COXREG command, 302
LOGISTIC REGRESSION command, 811
NOMREG command, 1073
PLUM command, 1216
TWOSTEP CLUSTER command, 1600

SUMMARY (subcommand)
CSDESCRIPTIVES command, 332
RELIABILITY command, 1380
REPORT command, 1421

summary functions, 902
GRAPH command, 688
IGRAPH command, 754, 755, 756, 759, 764

SUMMARYVAR (subcommand)
IGRAPH command, 749

SUMSPACE (keyword)
REPORT command, 1410

SUMSQ (keyword)
IGRAPH command, 756, 765

SUPPLEMENTARY (subcommand)
CATPCA command, 197
CATREG command, 214
CORRESPONDENCE command, 283

SURVIVAL (command), 1546
aggregated data, 1554
CALCULATE subcommand, 1553

COMPARE subcommand, 1552
INTERVALS subcommand, 1549
limitations, 1548
MISSING subcommand, 1555
OMS keyword, 1552
output file, 1556
PLOTS subcommand, 1551
PRINT subcommand, 1552
STATUS subcommand, 1550
TABLES subcommand, 1548
with PROCEDURE OUTPUT command, 1274
WRITE subcommand, 1556

SURVIVAL (keyword)
COXREG command, 304, 305
KM command, 791, 795
SURVIVAL command, 1551

SVAL (function)
MATRIX command, 933

SVD (keyword)
MATRIX command, 935

SWEEP (function)
MATRIX command, 933

SYM (keyword)
SAVE TRANSLATE command, 1466

SYMBOL (keyword)
IGRAPH command, 761

SYMBOLMAP (subcommand)
MAPS command, 897

SYMMETRIC (keyword)
ALSCAL command, 103

SYMMETRICAL (keyword)
CATPCA command, 198
CORRESPONDENCE command, 285

SYSFILE INFO (command), 1559

SYSMIS (keyword)
COUNT command, 291, 292
MATRIX command, 948
RECODE command, 1336

SYSMIS (subcommand)
SHOW command, 1501

Syntax Index 1863

Symbols
T (function)

MATRIX command, 934

T (keyword)
IGRAPH command, 758, 761
MANOVA command, 857
MVA command, 1034, 1042

T2 (keyword)
GLM command, 668
ONEWAY command, 1165
UNIANOVA command, 1618

T3 (keyword)
GLM command, 668
ONEWAY command, 1165
UNIANOVA command, 1618

T4253H (function)
CREATE command, 315

TAB (keyword)
SAVE TRANSLATE command, 1466

TABLE (keyword)
ANACOR command, 121
CORRESPONDENCE command, 286
COXREG command, 305
CROSSTABS command, 324
CSTABULATE command, 375
DISCRIMINANT command, 480
KM command, 792
MEANS command, 984
MULT RESPONSE command, 1027, 1028
SUMMARIZE command, 1544
SURVIVAL command, 1552

TABLE (subcommand)
ANACOR command, 118–120
casewise data, 119
CORRESPONDENCE command, 281
CTABLES command, 380
DATA LIST command, 418
KEYED DATA LIST command, 786
MATCH FILES command, 909
PRINT command, 1254
PROXSCAL command, 1298
SAVE TRANSLATE command, 1465

table data, 119–120
WRITE command, 1675

TABLEPCT (keyword)
CSTABULATE command, 373

TABLES (keyword)
CROSSTABS command, 325
GLM command, 668
MIXED command, 999
SURVIVAL command, 1556
UNIANOVA command, 1618

TABLES (subcommand)
CROSSTABS command, 319
CSTABULATE command, 372
MEANS command, 982
MULT RESPONSE command, 1024
SUMMARIZE command, 1542
SURVIVAL command, 1548

TAG (subcommand)
OMS command, 1122

TAPE (keyword)
EXPORT command, 532
IMPORT command, 768

TARGET (subcommand)
APPLY DICTIONARY command, 138
SPCHART command, 1522

TARONE (keyword)
KM command, 793

TCDF (function)
MATRIX command, 934

TCOV (keyword)
DISCRIMINANT command, 479

TDF (keyword)
MVA command, 1040

TDISPLAY (command), 1561–1562
TYPE subcommand, 1562

TEMPORARY (command), 1563
with N OF CASES command, 1061
with REGRESSION command, 1364
with SAMPLE command, 1446
with SAVE command, 1565
with SELECT IF command, 1478

1864 Syntax Index

with SPLIT FILE command, 1533, 1564
with WEIGHT command, 1663
with XSAVE command, 1565

TEST (keyword)
REGRESSION command, 1356

TEST (subcommand)
CSTABULATE command, 374
KM command, 793
MIXED command, 1008
NOMREG command, 1074
PLUM command, 1218

TEST(ESTIMABLE) (keyword)
GLM command, 659
UNIANOVA command, 1608

TEST(LMATRIX) (keyword)
GLM command, 659
UNIANOVA command, 1608

TEST(MMATRIX) (keyword)
GLM command, 674

TEST(SSCP) (keyword)
GLM command, 674

TEST(TRANSFORM) (keyword)
GLM command, 674

TESTCOV (keyword)
MIXED command, 1004

TESTPOS (keyword)
ROC command, 1444

TESTVAL (subcommand)
T-TEST command, 1583

TEXTIN (keyword)
IGRAPH command, 757

THRU (keyword)
COUNT command, 291
MISSING VALUES command, 987
RECODE command, 1335
SURVIVAL command, 1549
USE command, 1629

TIES (subcommand)
RANK command, 1324

TIESTORE (keyword)
ALSCAL command, 109

TIFT (subcommand)
SHOW command, 1501

TIME PROGRAM (command)
with COXREG command, 296

TIMER (keyword)
CROSSTABS command, 324
NPAR TESTS command, 1101

TITLE (command), 1566
with BEGIN DATA command, 1566
with SET command, 1566
with SUBTITLE command, 1538, 1567

TITLE (keyword)
IGRAPH command, 746, 748
MATRIX command, 936

TITLE (subcommand)
GRAPH command, 691
IGRAPH command, 750
MAPS command, 895
OLAP CUBES command, 1106
PLANCARDS command, 1207
REPORT command, 1428
SPCHART command, 1508
SUMMARIZE command, 1542

TITLES (subcommand)
CTABLES command, 398

TLOOK (subcommand)
SET command, 1487
SHOW command, 1501

TNUMBERS (subcommand)
SET command, 1487
SHOW command, 1501

TO (keyword), 1736
LIST command, 801
REGRESSION command, 1354, 1356
RENAME VARIABLES command, 1386
STRING command, 1536
VECTOR command, 1655

TOLERANCE (keyword)
MVA command, 1039, 1041
REGRESSION command, 1358, 1360

Syntax Index 1865

TOLERANCE (subcommand)
DISCRIMINANT command, 474

TOP (keyword)
TSPLOT command, 1577

TORGERSON (keyword)
PROXSCAL command, 1302

TOTAL (keyword)
CROSSTABS command, 321
CTABLES command, 397
IGRAPH command, 763
MULT RESPONSE command, 1026
RELIABILITY command, 1380
REPORT command, 1420
SUMMARIZE command, 1544

TOTAL (subcommand)
EXAMINE command, 522

TP (keyword)
MIXED command, 996

TPATTERN (subcommand)
MVA command, 1038

TPH (keyword)
MIXED command, 997

TRACE (function)
MATRIX command, 934

TRANS (keyword)
CATPCA command, 202
CATREG command, 216
OVERALS command, 1180–1182

TRANSFORM (keyword)
MANOVA command, 877

TRANSFORM (subcommand)
MANOVA command, 874

TRANSFORMATION (keyword)
PROXSCAL command, 1309, 1311

TRANSFORMATION (subcommand)
PROXSCAL command, 1303

TRANSFORMATIONS (keyword)
PROXSCAL command, 1310

TRANSPOS (function)
MATRIX command, 934

TRCOLUMNS (keyword)
ANACOR command, 122–123
CORRESPONDENCE command, 287

TRDATA (keyword)
CATPCA command, 204, 206
CATREG command, 217, 218

TREND (function)
RMV command, 1441

TREND (subcommand)
KM command, 794

TRIPLOT(keyword)
CATPCA command, 203

TRROWS (keyword)
ANACOR command, 122–123
CORRESPONDENCE command, 287

TRUNC (function)
MATRIX command, 934

TRUNCATE (keyword)
CROSSTABS command, 325

TSET (command), 1568, 1733
DEFAULT subcommand, 1569
ID subcommand, 1569
MISSING subcommand, 1569
MXNEWVAR subcommand, 1569
MXPREDICT subcommand, 1570
PERIOD subcommand, 1570
PRINT subcommand, 1570

TSET (subcommand)
READ MODEL command, 1333

TSHOW (command), 1571

TSPACE (keyword)
REPORT command, 1410

TSPLOT (command), 1572
APPLY subcommand, 1580
DIFF subcommand, 1575
FORMAT subcommand, 1577
ID subcommand, 1576
LN/NOLOG subcommands, 1576
MARK subcommand, 1579
PERIOD subcommand, 1575
SDIFF subcommand, 1575

1866 Syntax Index

SPLIT subcommand, 1579
VARIABLES subcommand, 1575

T-TEST (command), 1581
GROUPS subcommand, 1583
independent samples, 1582, 1583
limitations, 1582
MISSING subcommand, 1584
one sample, 1582, 1583
paired samples, 1582, 1584
PAIRS subcommand, 1584
TESTVAL subcommand, 1583
VARIABLES subcommand, 1583

TTEST (keyword)
CSDESCRIPTIVES command, 333, 334

TTEST (subcommand)
MVA command, 1034

TUKEY (keyword)
EXAMINE command, 526
GLM command, 667
ONEWAY command, 1164
PPLOT command, 1228
RANK command, 1324
RELIABILITY command, 1379
SPECTRA command, 1528
UNIANOVA command, 1617

TVARS (subcommand)
SET command, 1487
SHOW command, 1501

2SLS (command), 1586
APPLY subcommand, 1589
CONSTANT subcommand, 1589
ENDOGENOUS subcommand, 1588
EQUATION subcommand, 1587
INSTRUMENTS subcommand, 1588
NOCONSTANT subcommand, 1589
PRINT subcommand, 1589
SAVE subcommand, 1589

TWOSTEP CLUSTER (command), 1592–1600
CATEGORICAL subcommand, 1594
CONTINUOUS subcommand, 1594
CRITERIA subcommand, 1595
DISTANCE subcommand, 1595
HANDLENOISE subcommand, 1595

INFILE subcommand, 1596
MEMALLOCATE subcommand, 1596
MISSING subcommand, 1596
NOSTANDARDIZE subcommand, 1597
NUMCLUSTERS subcommand, 1597
OUTFILE subcommand, 1597
PLOT subcommand, 1598
PRINT subcommand, 1599
SAVE subcommand, 1600

TWOTAIL (keyword)
CORRELATIONS command, 274
NONPAR CORR command, 1078
PARTIAL CORR command, 1194

TXT (keyword)
GET DATA command, 625

TYPE (keyword)
MATRIX command, 951

TYPE (subcommand)
EXPORT command, 532
GET DATA command, 625
GET TRANSLATE command, 639
IMPORT command, 768
PPLOT command, 1228
READ MODEL command, 1333
SAVE MODEL command, 1458
SAVE TRANSLATE command, 1465
TDISPLAY command, 1562

Symbols
U (subcommand)

data organization, 1516
SPCHART command, 1515
variable specification, 1517

UC (keyword)
CROSSTABS command, 322

ULEFT (keyword)
IGRAPH command, 757

ULS (keyword)
FACTOR command, 556

UN (keyword)
MIXED command, 997

Syntax Index 1867

UNCLASSIFIED (keyword)
DISCRIMINANT command, 481

UNCOMPRESSED (subcommand)
SAVE command, 1453
XSAVE command, 1683

UNCONDITIONAL (keyword)
ALSCAL command, 105
MANOVA command, 880
PROXSCAL command, 1303

UNDEFINED (subcommand)
SET command, 1491
SHOW command, 1501

UNDERSCORE (keyword)
REPORT command, 1410, 1420

UNENCRYPTED (subcommand)
GET DATA command, 626

UNEQUAL_WOR (keyword)
CSPLAN command, 366

UNIANOVA (command), 1601
ALPHA keyword, 1607
BONFERRONI keyword, 1617
BTUKEY keyword, 1617
C keyword, 1618
CONTRAST subcommand, 1613
COOK keyword, 1620
CRITERIA subcommand, 1607
DESCRIPTIVES keyword, 1608
DEVIATION keyword, 1613
DIFFERENCE keyword, 1613
DRESID keyword, 1619
DUNCAN keyword, 1617
DUNNETT keyword, 1617
DUNNETTL keyword, 1617
DUNNETTR keyword, 1617
EFSIZE keyword, 1608
EMMEANS subcommand, 1618
EPS keyword, 1607
ETASQ keyword, 1608
EXCLUDE keyword, 1607
FREGW keyword, 1617
GABRIEL keyword, 1617
GEF keyword, 1608
GH keyword, 1618

GT2 keyword, 1617
HELMERT keyword, 1614
HOMOGENEITY keyword, 1608
INCLUDE keyword, 1607
INTERCEPT subcommand, 1606
KMATRIX subcommand, 1612
LEVER keyword, 1620
LMATRIX subcommand, 1610
LOF keyword, 1608
LSD keyword, 1617
METHOD subcommand, 1605
MISSING subcommand, 1607
OPOWER keyword, 1608
OUTFILE subcommand, 1620
PARAMETER keyword, 1608
PLOT subcommand, 1609
POLYNOMIAL keyword, 1613
POSTHOC subcommand, 1615
PRED keyword, 1619
PRINT subcommand, 1608
PROFILE keyword, 1609
QREGW, 1618
RANDOM subcommand, 1604
REGWGT subcommand, 1605
REPEATED keyword, 1614
RESID keyword, 1619
RESIDUALS keyword, 1609
SAVE subcommand, 1619
SCHEFFE keyword, 1617
SEPRED keyword, 1620
SIDAK keyword, 1617
SIMPLE keyword, 1614
SNK keyword, 1617
SPECIAL keyword, 1614
SPREADLEVEL keyword, 1609
SSTYPE keyword, 1605
T2 keyword, 1618
T3 keyword, 1618
TABLES keyword, 1618
TEST(ESTIMABLE) keyword, 1608
TEST(LMATRIX) keyword, 1608
TUKEY keyword, 1617
univariate, 1601
WALLER keyword, 1618
WPRED keyword, 1619
WRESID keyword, 1619

1868 Syntax Index

ZRESID keyword, 1619

UNIFORM (function)
MATRIX command, 934

UNIFORM (keyword)
CATPCA command, 196
CATREG command, 213
IGRAPH command, 763
NPAR TESTS command, 1089
with DISTR keyword, 196

UNIQUE (keyword)
ANOVA command, 130

UNIT (keyword)
SPECTRA command, 1528

UNIV (keyword)
MANOVA command, 876

UNIVARIATE (keyword)
FACTOR command, 552
MANOVA command, 858

UNIVF (keyword)
DISCRIMINANT command, 479

UNNUMBERED (keyword)
LIST command, 800

UNR (keyword)
MIXED command, 997

UNSELECTED (keyword)
DISCRIMINANT command, 481

UNSELECTED (subcommand)
EXPORT command, 532
SAVE command, 1451
SAVE TRANSLATE command, 1468

UNTIE (keyword)
PROXSCAL command, 1306
with ORDINAL keyword, 1306

UP (keyword)
IGRAPH command, 761
SORT CASES command, 1503

UPDATE (command), 1622
BY subcommand, 1626
DROP subcommand, 1627
FILE subcommand, 1625

IN subcommand, 1627
KEEP subcommand, 1627
limitations, 1624
MAP subcommand, 1628
RENAME subcommand, 1626
with DATA LIST command, 1625
with DROP DOCUMENTS command, 1623
with SORT CASES command, 1504, 1624

UPPER (keyword)
MATRIX DATA command, 967
PROXSCAL command, 1301

UPPERBOUND (subcommand)
CURVEFIT command, 409

URIGHT (keyword)
IGRAPH command, 757

USE (command), 1629
case specifications, 1629
DATE specifications, 1629
examples, 1630
FIRST and LAST keywords, 1629

USL (subcommand)
SPCHART command, 1521

UTILITY (subcommand)
CONJOINT command, 270
with FACTOR subcommand, 270

Symbols
VAC (keyword)

OLAP CUBES command, 1108

VAF (keyword)
CATPCA command, 200

VAL (keyword)
IGRAPH command, 754, 755, 757, 759, 761

VALIDLIST (subcommand)
SUMMARIZE command, 1544

VALIDN (function)
REPORT command, 1422

VALLABELS (keyword)
APPLY DICTIONARY command, 142

VALUE (keyword)
CSPLAN command, 361, 362, 366, 367

Syntax Index 1869

REPORT command, 1414, 1418

value labels
ANACOR command, 122

VALUE LABELS (command), 1633
compared with ADD VALUE LABELS command,

1633
with ORTHOPLAN command, 1172
with PLANCARDS command, 1204

VAR (keyword)
IGRAPH command, 746
REPORT command, 1430

VARCHART (keyword)
TWOSTEP CLUSTER command, 1598

VARCOMP (command), 1636
BY keyword, 1641
CONVERGE keyword, 1639
CORB keyword, 1641
COVB keyword, 1640
CRITERIA subcommand, 1639
DESIGN subcommand, 1641
EMS keyword, 1640
EPS keyword, 1639
EXCLUDE keyword, 1639
HISTORY keyword, 1640
INCLUDE keyword, 1639
INTERCEPT keyword, 1641
INTERCEPT subcommand, 1638
ITERATE keyword, 1640
METHOD subcommand, 1638
MINQUE keyword, 1638
MISSING subcommand, 1639
ML keyword, 1638
OUTFILE subcommand, 1640
PRINT subcommand, 1640
RANDOM subcommand, 1637
REGWGT subcommand, 1639
REML keyword, 1638
SS keyword, 1640
SSTYPE keyword, 1638
VAREST keyword, 1640
WITHIN keyword, 1641

VAREST (keyword)
VARCOMP command, 1640

VARIABLE (keyword)
CASESTOVARS command, 187
CATPCA command, 197
CSPLAN command, 361, 362, 363, 367, 368
DESCRIPTIVES command, 466
GRAPH command, 716
PROXIMITIES command, 1277, 1278
SUMMARIZE command, 1544

VARIABLE ALIGNMENT command, 1643

VARIABLE LABELS (command), 1644
with PLANCARDS command, 1204

VARIABLE LEVEL (command), 1646

VARIABLE WIDTH (command), 1647

VARIABLES (keyword)
CSTABULATE command, 373
DISPLAY command, 488
EXAMINE command, 521
MATRIX command, 947
PROXSCAL command, 1306, 1309, 1310, 1312

VARIABLES (subcommand)
ACF command, 73
ALSCAL command, 103
ANOVA command, 129
AREG command, 146
ARIMA command, 155
AUTORECODE command, 165
CATPCA command, 193
CATREG command, 210, 217
CCF command, 221
COXREG command, 297
CROSSTABS command, 319
CURVEFIT command, 408
DESCRIPTIVES command, 462
DISCRIMINANT command, 470
DISPLAY command, 488
EXAMINE command, 521
EXSMOOTH command, 538
FACTOR command, 549
FLIP command, 590–591
FREQUENCIES command, 599
GET DATA command, 629
HOMALS command, 729
LIST command, 799

1870 Syntax Index

LOGISTIC REGRESSION command, 805
MATRIX DATA command, 964
MULT RESPONSE command, 1022
MVA command, 1032
NONPAR CORR command, 1077
OVERALS command, 1177
PACF command, 1187
PARTIAL CORR command, 1193
PPLOT command, 1226
PRINCALS command, 1241–1242
RANK command, 1321
REGRESSION command, 1354
RELIABILITY command, 1378
REPORT command, 1414
SEASON command, 1475
SPECTRA command, 1526–1527
TSPLOT command, 1575
T-TEST command, 1583
VERIFY command, 1662
with ANALYSIS subcommand, 730, 1177–1178
WLS command, 1667

VARIANCE (function)
GRAPH command, 688
REPORT command, 1423

VARIANCE (keyword)
ANACOR command, 124
CLUSTER command, 236
CORRESPONDENCE command, 288
DESCRIPTIVES command, 464, 465
FREQUENCIES command, 604
IGRAPH command, 766
MEANS command, 983
PROXIMITIES command, 1286
REGRESSION command, 1362
RELIABILITY command, 1380
SUMMARIZE command, 1543

VARIANCES (subcommand)
ANACOR command, 121

VARIMAX (keyword)
FACTOR command, 557
MANOVA command, 878

VARNAME_ variable
ANACOR command, 124
CORRESPONDENCE command, 288, 289

HOMALS command, 735
OVERALS command, 1183
PRINCALS command, 1248

VARSTOCASES (command)
COUNT subcommand, 1654
DROP subcommand, 1654
ID subcommand, 1651
INDEX subcommand, 1651
KEEP subcommand, 1654
limitations, 1649
MAKE subcommand, 1650
with SORT CASES command, 1649

VARTYPE_ variable
OVERALS command, 1183
PRINCALS command, 1248

VC (keyword)
MIXED command, 997

VECTOR (command), 1655
examples, 509, 514
index, 1655, 1659
short form, 1657
TO keyword, 1655
variable list, 1655
with DATA LIST command, 1659
with INPUT PROGRAM command, 1658
with LOOP command, 1655, 1656

VECTOR (keyword)
DISPLAY command, 488

VERIFY (command), 1661
VARIABLES subcommand, 1662

VERTICAL (keyword)
IGRAPH command, 750

VICICLE (keyword)
CLUSTER command, 239

VIEW (keyword)
CSPLAN command, 356

VIEW (subcommand)
PROXIMITIES command, 1278

VIEWNAME (subcommand)
IGRAPH command, 750

Syntax Index 1871

VIN (subcommand)
DISCRIMINANT command, 475

VIND (subcommand)
CASESTOVARS command, 184

VLABELS (subcommand)
CTABLES command, 403

VPC (keyword)
OLAP CUBES command, 1108

VPRINCIPAL (keyword)
CATPCA command, 198

VS (keyword)
MANOVA command, 867

VW (keyword)
PPLOT command, 1228
RANK command, 1324

Symbols
WALD (keyword)

COXREG command, 301

WALLER (keyword)
GLM command, 668
ONEWAY command, 1165
UNIANOVA command, 1618

WARD (keyword)
CLUSTER command, 237

WARN (keyword)
FILE TYPE command, 577
RECORD TYPE command, 1346
SET command, 1491

WAVERAGE (keyword)
CLUSTER command, 236
EXAMINE command, 523

WCOC (keyword)
RATIO STATISTICS command, 1329, 1330

WEEK (keyword)
DATE command, 431

WEIGHT (command), 1663
missing values, 1664
non-positive values, 1664
weight variable, 1663
with ANACOR command, 124–125

with CORRESPONDENCE command, 289
with CROSSTABS command, 327
with TEMPORARY command, 1663

WEIGHT (keyword)
APPLY DICTIONARY command, 141
CATPCA command, 194
CSPLAN command, 365

WEIGHT (subcommand)
SHOW command, 1502
WLS command, 1668

WEIGHTED (keyword)
PROXSCAL command, 1305

WEIGHTS (keyword)
OVERALS command, 1180
PROXSCAL command, 1309, 1310, 1311

WEIGHTS (subcommand)
PROXSCAL command, 1302

WELCH (keyword)
ONEWAY command, 1166

WGTMEAN (keyword)
RATIO STATISTICS command, 1329, 1330

WHISKER (keyword)
IGRAPH command, 758

WIDTH (keyword)
IGRAPH command, 762

WIDTH (subcommand)
REGRESSION command, 1366
SET command, 1493
SHOW command, 1502

WILCOXON (subcommand)
NPAR TESTS command, 1099

WILD (subcommand)
FILE TYPE command, 577

WILKS (keyword)
DISCRIMINANT command, 473

WINDOW (subcommand)
SPECTRA command, 1527–1528

WINTERS (keyword)
EXSMOOTH command, 538

1872 Syntax Index

WITH (keyword)
ANOVA command, 130
CORRELATIONS command, 275
CURVEFIT command, 408
GENLOG command, 615
LOGISTIC REGRESSION command, 805
LOGLINEAR command, 827
MIXED command, 1000
NOMREG command, 1065
NONPAR CORR command, 1077
NPAR TESTS command, 1084, 1093, 1095, 1098,

1099
PARTIAL CORR command, 1193
PROBIT command, 1267
T-TEST command, 1584

WITHIN (keyword)
MANOVA command, 846, 863
NOMREG subcommand, 1067
SPCHART command, 1520
VARCOMP command, 1641

WK1 (keyword)
SAVE TRANSLATE command, 1466

WKS (keyword)
SAVE TRANSLATE command, 1466

WLS (command), 1665
APPLY subcommand, 1669
CONSTANT subcommand, 1669
DELTA subcommand, 1668
limitations, 1667
NOCONSTANT subcommand, 1669
POWER subcommand, 1668
PRINT subcommand, 1669
SAVE subcommand, 1669
SOURCE subcommand, 1667
VARIABLES subcommand, 1667
WEIGHT subcommand, 1668

WORKSPACE (subcommand)
SHOW command, 1486, 1502

WPRED (keyword)
GLM command, 670
UNIANOVA command, 1619

WR (keyword)
CSPLAN command, 366

WRAP (keyword)
LIST command, 800

WRESID (keyword)
GLM command, 670
UNIANOVA command, 1619

WRITE (command), 1671
formats, 1673
missing values, 1672
NOTABLE subcommand, 1675
OUTFILE subcommand, 1675
RECORDS subcommand, 1674
strings, 1674
TABLE subcommand, 1675
variable list, 1672
with SET command, 1672

WRITE (statement)
MATRIX command, 944

WRITE (subcommand)
CROSSTABS command, 325
SURVIVAL command, 1556

WRITE FORMATS (command), 1676
format specification, 1676
string variables, 1676
with DISPLAY command, 1677
with SET command, 1678

WSDESIGN (subcommand)
GLM command, 683
MANOVA command, 886

WSFACTOR (subcommand)
GLM command, 680

WSFACTORS (subcommand)
MANOVA command, 884

W-W (subcommand)
NPAR TESTS command, 1098

Symbols
X1 (subcommand)

IGRAPH command, 746

X1INTERVAL (keyword)
IGRAPH command, 762

X1LENGTH (subcommand)
IGRAPH command, 747

Syntax Index 1873

X1MULTIPLIER (keyword)
IGRAPH command, 763

X1START (keyword)
IGRAPH command, 762

X2 (subcommand)
IGRAPH command, 746

X2INTERVAL (keyword)
IGRAPH command, 762

X2LENGTH (subcommand)
IGRAPH command, 747

X2MULTIPLIER (keyword)
IGRAPH command, 763

X2START (keyword)
IGRAPH command, 762

XBETA (keyword)
COXREG command, 305

XLS (keyword)
GET DATA command, 625
SAVE TRANSLATE command, 1466

XPROD (keyword)
CORRELATIONS command, 274
REGRESSION command, 1363

XR (subcommand)
data organization, 1510
SPCHART command, 1508
variable specification, 1511

XS (subcommand)
data organization, 1510
SPCHART command, 1508
variable specification, 1511

XSAVE (command), 1679
compared to SAVE command, 1448, 1679
COMPRESSED subcommand, 1683
DROP subcommand, 1681
KEEP subcommand, 1681
limitations, 1681
MAP subcommand, 1683
OUTFILE subcommand, 1681
PERMISSIONS subcommand, 1684
RENAME subcommand, 1682
UNCOMPRESSED subcommand, 1683

with DO REPEAT command, 1680
with TEMPORARY command, 1565

XSAVE command, 1684

XTX (keyword)
REGRESSION command, 1358

XY (subcommand)
MAPS command, 893

XYZ (keyword)
GRAPH command, 709

Symbols
Y (keyword)

CLUSTER command, 234
PROXIMITIES command, 1285

Y (subcommand)
IGRAPH command, 746

YEAR (keyword)
DATE command, 431

YES (keyword)
CASESTOVARS command, 186
SET command, 1485

YLENGTH (subcommand)
IGRAPH command, 747

Symbols
Z (keyword)

PROXIMITIES command, 1277

ZCORR (keyword)
MANOVA command, 877

ZPP (keyword)
REGRESSION command, 1358

ZPRED (keyword)
REGRESSION command, 1369

ZRESID (keyword)
GLM command, 670
LOGISTIC REGRESSION command, 814
REGRESSION command, 1369
UNIANOVA command, 1619

1874 Syntax Index

	Universals
	Commands
	Syntax Diagrams
	Command Specification
	Running Commands
	Subcommands
	Keywords
	Values in Command Specifications
	String Values in Command Specifications
	Delimiters
	Command Order

	Files
	Command File
	Journal File
	Data Files

	Variables
	Variable Names
	Variable Formats

	Transformation Expressions
	Numeric Expressions
	String Expressions
	Logical Expressions
	Other Functions
	Treatment of Missing Values in Arguments

	Date and Time
	Date and Time Formats
	Arithmetic Operations with Date and Time Variables
	Date and Time Functions
	Precautions with Date and Time Variables

	Commands
	ACF
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	DIFF Subcommand
	SDIFF Subcommand
	PERIOD Subcommand
	LN and NOLOG Subcommands
	SEASONAL Subcommand
	MXAUTO Subcommand
	SERROR Subcommand
	PACF Subcommand
	APPLY Subcommand
	References

	ADD DOCUMENT
	Overview
	Basic Specification
	Syntax Rules
	Operation

	ADD FILES
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Examples
	FILE Subcommand
	RENAME Subcommand
	BY Subcommand
	DROP and KEEP Subcommands
	IN Subcommand
	FIRST and LAST Subcommands
	MAP Subcommand

	ADD VALUE LABELS
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Example
	Example
	Value Labels for String Variables

	AGGREGATE
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	Example
	OUTFILE Subcommand
	BREAK Subcommand
	DOCUMENT Subcommand
	PRESORTED Subcommand
	Aggregate Functions
	MISSING Subcommand

	ALSCAL
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	INPUT Subcommand
	SHAPE Subcommand
	LEVEL Subcommand
	CONDITION Subcommand
	FILE Subcommand
	MODEL Subcommand
	CRITERIA Subcommand
	PRINT Subcommand
	PLOT Subcommand
	OUTFILE Subcommand
	MATRIX Subcommand
	Specification of Analyses
	References

	ANACOR
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	TABLE Subcommand
	DIMENSION Subcommand
	NORMALIZATION Subcommand
	VARIANCES Subcommand
	PRINT Subcommand
	PLOT Subcommand
	MATRIX Subcommand
	Analyzing Aggregated Data

	ANOVA
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	Example
	VARIABLES Subcommand
	COVARIATES Subcommand
	MAXORDERS Subcommand
	METHOD Subcommand
	Summary of Analysis Methods
	STATISTICS Subcommand
	MISSING Subcommand
	References

	APPLY DICTIONARY
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Matching Variable Type
	FROM Subcommand
	NEWVARS Subcommand
	SOURCE and TARGET Subcommands
	FILEINFO Subcommand
	VARINFO Subcommand

	AREG
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	METHOD Subcommand
	CONSTANT and NOCONSTANT Subcommands
	RHO Subcommand
	MXITER Subcommand
	APPLY Subcommand
	References

	ARIMA
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	MODEL Subcommand
	Parameter-Order Subcommands
	Initial Value Subcommands
	Termination Criteria Subcommands
	CINPCT Subcommand
	APPLY Subcommand
	FORECAST Subcommand
	References

	AUTORECODE
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	Example
	VARIABLES Subcommand
	INTO Subcommand
	PRINT Subcommand
	DESCENDING Subcommand

	BEGIN DATA-END DATA
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example

	BREAK
	Overview
	Basic Specification
	Operations
	Example

	CACHE
	CASEPLOT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	DIFF Subcommand
	SDIFF Subcommand
	PERIOD Subcommand
	LN and NOLOG Subcommands
	ID Subcommand
	FORMAT Subcommand
	MARK Subcommand
	SPLIT Subcommand
	APPLY Subcommand

	CASESTOVARS
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	ID Subcommand
	INDEX Subcommand
	VIND Subcommand
	COUNT Subcommand
	FIXED Subcommand
	AUTOFIX Subcommand
	RENAME Subcommand
	SEPARATOR Subcommand
	GROUPBY Subcommand
	DROP Subcommand

	CATPCA
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	ANALYSIS Subcommand
	DISCRETIZATION Subcommand
	MISSING Subcommand
	SUPPLEMENTARY Subcommand
	CONFIGURATION Subcommand
	DIMENSION Subcommand
	NORMALIZATION Subcommand
	MAXITER Subcommand
	CRITITER Subcommand
	PRINT Subcommand
	PLOT Subcommand
	SAVE Subcommand
	OUTFILE Subcommand

	CATREG
	Overview
	Options
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	VARIABLES Subcommand
	ANALYSIS Subcommand
	DISCRETIZATION Subcommand
	MISSING Subcommand
	SUPPLEMENTARY Subcommand
	INITIAL Subcommand
	MAXITER Subcommand
	CRITITER Subcommand
	PRINT Subcommand
	PLOT Subcommand
	SAVE Subcommand
	OUTFILE Subcommand

	CCF
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	DIFF Subcommand
	SDIFF Subcommand
	PERIOD Subcommand
	LN and NOLOG Subcommands
	SEASONAL Subcommand
	MXCROSS Subcommand
	APPLY Subcommand
	References

	CLEAR TRANSFORMATIONS
	Overview
	Basic Specification
	Operations
	Example

	CLUSTER
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	Variable List
	MEASURE Subcommand
	METHOD Subcommand
	SAVE Subcommand
	ID Subcommand
	PRINT Subcommand
	PLOT Subcommand
	MISSING Subcommand
	MATRIX Subcommand

	COMMENT
	Overview
	Syntax Rules
	Example
	Example

	COMPUTE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Examples

	CONJOINT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	PLAN Subcommand
	DATA Subcommand
	SEQUENCE, RANK, or SCORE Subcommand
	SUBJECT Subcommand
	FACTORS Subcommand
	PRINT Subcommand
	UTILITY Subcommand
	PLOT Subcommand

	CORRELATIONS
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	PRINT Subcommand
	STATISTICS Subcommand
	MISSING Subcommand
	MATRIX Subcommand

	CORRESPONDENCE
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	TABLE Subcommand
	DIMENSION Subcommand
	SUPPLEMENTARY Subcommand
	EQUAL Subcommand
	MEASURE Subcommand
	STANDARDIZE Subcommand
	NORMALIZATION Subcommand
	PRINT Subcommand
	PLOT Subcommand
	OUTFILE Subcommand
	Analyzing Aggregated Data

	COUNT
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example

	COXREG
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	TIME PROGRAM Command
	CLEAR TIME PROGRAM Command
	VARIABLES Subcommand
	STATUS Subcommand
	STRATA Subcommand
	CATEGORICAL Subcommand
	CONTRAST Subcommand
	METHOD Subcommand
	MISSING Subcommand
	PRINT Subcommand
	CRITERIA Subcommand
	PLOT Subcommand
	PATTERN Subcommand
	OUTFILE Subcommand
	SAVE Subcommand
	EXTERNAL Subcommand

	CREATE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Example
	CSUM Function
	DIFF Function
	FFT Function
	IFFT Function
	LAG Function
	LEAD Function
	MA Function
	PMA Function
	RMED Function
	SDIFF Function
	T4253H Function
	References

	CROSSTABS
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	Example
	VARIABLES Subcommand
	TABLES Subcommand
	CELLS Subcommand
	STATISTICS Subcommand
	METHOD Subcommand
	MISSING Subcommand
	FORMAT Subcommand
	COUNT Subcommand
	BARCHART Subcommand
	WRITE Subcommand
	References

	CSDESCRIPTIVES
	Overview
	Basic Specification
	Operations
	Syntax Rules
	Examples
	PLAN Subcommand
	JOINTPROB Subcommand
	SUMMARY Subcommand
	MEAN Subcommand
	SUM Subcommand
	RATIO Subcommand
	STATISTICS Subcommand
	SUBPOP Subcommand
	MISSING Subcommand

	CSSELECT
	Overview
	Basic Specification
	Operations
	Syntax Rules
	Limitations
	Examples
	Example
	PLAN Subcommand
	CRITERIA Subcommand
	CLASSMISSING Subcommand
	DATA Subcommand
	SAMPLEFILE Subcommand
	JOINTPROB Subcommand
	SELECTRULE Subcommand
	PRINT Subcommand

	CSPLAN
	Overview
	Basic Specification
	Operations
	Syntax Rules
	Subcommand Order
	Limitations
	Examples
	CSPLAN Command
	PLAN Subcommand
	PLANVARS Subcommand
	PRINT Subcommand
	DESIGN Subcommand
	METHOD Subcommand
	SIZE Subcommand
	RATE Subcommand
	MOS Subcommand
	STAGEVARS Subcommand
	ESTIMATOR Subcommand
	POPSIZE Subcommand
	INCLPROB Subcommand

	CSTABULATE
	Overview
	Basic Specification
	Operations
	Syntax Rules
	Example
	Example
	Example
	PLAN Subcommand
	JOINTPROB Subcommand
	TABLES Subcommand
	CELLS Subcommand
	STATISTICS Subcommand
	TEST Subcommand
	SUBPOP Subcommand
	MISSING Subcommand

	CTABLES
	Overview
	Syntax Conventions
	Example
	Example
	Example
	TABLE Subcommand
	SLABELS Subcommand
	CLABELS Subcommand
	CATEGORIES Subcommand
	TITLES Subcommand: Titles, Captions, and Corner Text
	Significance Testing
	FORMAT Subcommand
	VLABELS Subcommand
	SMISSING Subcommand
	MRSETS Subcommand

	CURVEFIT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	MODEL Subcommand
	UPPERBOUND Subcommand
	CONSTANT and NOCONSTANT Subcommands
	CIN Subcommand
	PLOT Subcommand
	ID Subcommand
	SAVE Subcommand
	PRINT Subcommand
	APPLY Subcommand
	References

	DATA LIST
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	FILE Subcommand
	FIXED, FREE, and LIST Keywords
	TABLE and NOTABLE Subcommands
	RECORDS Subcommand
	SKIP Subcommand
	END Subcommand
	Variable Definition
	Variable Names
	Variable Location
	Variable Formats

	DATE
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	DEFINE-!ENDDEFINE
	Overview
	Basic Specification
	Operations
	Limitations
	Example
	Example
	Example
	Macro Arguments
	Macro Directives
	String Manipulation Functions
	SET Subcommands for Use with Macro
	Restoring SET Specifications
	Conditional Processing
	Looping Constructs
	Direct Assignment of Macro Variables

	DELETE VARIABLES
	Overview
	Basic Specification
	Syntax Rules

	DESCRIPTIVES
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	Example
	VARIABLES Subcommand
	SAVE Subcommand
	STATISTICS Subcommand
	SORT Subcommand
	MISSING Subcommand

	DISCRIMINANT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	GROUPS Subcommand
	VARIABLES Subcommand
	SELECT Subcommand
	ANALYSIS Subcommand
	METHOD Subcommand
	OUTFILE Subcommand
	TOLERANCE Subcommand
	PIN and POUT Subcommands
	FIN and FOUT Subcommands
	VIN Subcommand
	MAXSTEPS Subcommand
	FUNCTIONS Subcommand
	PRIORS Subcommand
	SAVE Subcommand
	STATISTICS Subcommand
	ROTATE Subcommand
	HISTORY Subcommand
	CLASSIFY Subcommand
	PLOT Subcommand
	MISSING Subcommand
	MATRIX Subcommand

	DISPLAY
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	SORTED Keyword
	VARIABLES Subcommand

	DOCUMENT
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	DO IF
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	ELSE Command
	ELSE IF Command
	Nested DO IF Structures
	Complex File Structures

	DO REPEAT-END REPEAT
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	PRINT Subcommand

	DROP DOCUMENTS
	Overview
	Basic Specification
	Operations
	Example

	ECHO
	Overview
	Basic Specification
	Syntax Rules

	END CASE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example
	Example
	Example

	END FILE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	ERASE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example

	EXAMINE
	Overview
	Basic Specification
	Subcommand Order
	Limitations
	Example
	Example
	VARIABLES Subcommand
	COMPARE Subcommand
	TOTAL and NOTOTAL Subcommands
	ID Subcommand
	PERCENTILES Subcommand
	PLOT Subcommand
	STATISTICS Subcommand
	CINTERVAL Subcommand
	MESTIMATORS Subcommand
	MISSING Subcommand
	References

	EXECUTE
	Overview
	Basic Specification
	Operations
	Example

	EXPORT
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	Methods of Transporting Portable Files
	Character Translation
	OUTFILE Subcommand
	TYPE Subcommand
	UNSELECTED Subcommand
	DROP and KEEP Subcommands
	RENAME Subcommand
	MAP Subcommand
	DIGITS Subcommand

	EXSMOOTH
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	MODEL Subcommand
	PERIOD Subcommand
	SEASFACT Subcommand
	Smoothing Parameter Subcommands
	INITIAL Subcommand
	APPLY Subcommand
	References

	FACTOR
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	VARIABLES Subcommand
	MISSING Subcommand
	METHOD Subcommand
	SELECT Subcommand
	ANALYSIS Subcommand
	FORMAT Subcommand
	PRINT Subcommand
	PLOT Subcommand
	DIAGONAL Subcommand
	CRITERIA Subcommand
	EXTRACTION Subcommand
	ROTATION Subcommand
	SAVE Subcommand
	MATRIX Subcommand
	References

	FILE HANDLE
	Overview
	Syntax Rules
	Operations
	NAME Subcommand
	MODE Subcommand
	RECFORM Subcommand
	LRECL Subcommand

	FILE LABEL
	Overview
	Syntax Rules
	Operations
	Example

	FILE TYPE-END FILE TYPE
	Overview
	Basic Specification
	Specification Order
	Syntax Rules
	Operations
	Example
	Example
	Example
	Example
	Types of Files
	FILE Subcommand
	RECORD Subcommand
	CASE Subcommand
	WILD Subcommand
	DUPLICATE Subcommand
	MISSING Subcommand
	ORDERED Subcommand

	FILTER
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	FINISH
	Overview
	Basic Specification
	Operations
	Example
	Example

	FIT
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Example
	ERRORS Subcommand
	OBS Subcommand
	DFE and DFH Subcommands
	Output Considerations for SSE
	References

	FLIP
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	VARIABLES Subcommand
	NEWNAMES Subcommand

	FORMATS
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example

	FREQUENCIES
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	Example
	VARIABLES Subcommand
	FORMAT Subcommand
	BARCHART Subcommand
	PIECHART Subcommand
	HISTOGRAM Subcommand
	GROUPED Subcommand
	PERCENTILES Subcommand
	NTILES Subcommand
	STATISTICS Subcommand
	MISSING Subcommand
	ORDER Subcommand

	GENLOG
	Overview
	Basic Specification
	Limitations
	Subcommand Order
	Example
	Example
	Variable List
	CSTRUCTURE Subcommand
	GRESID Subcommand
	GLOR Subcommand
	MODEL Subcommand
	CRITERIA Subcommand
	PRINT Subcommand
	PLOT Subcommand
	MISSING Subcommand
	SAVE Subcommand
	DESIGN Subcommand
	References

	GET
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	FILE Subcommand
	DROP and KEEP Subcommands
	RENAME Subcommand
	MAP Subcommand

	GET CAPTURE
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	CONNECT Subcommand
	SQL Subcommand
	Data Conversion

	GET DATA
	Overview
	TYPE Subcommand
	FILE Subcommand
	CONNECT Subcommand
	UNENCRYPTED Subcommand
	SQL Subcommand
	SHEET Subcommand
	CELLRANGE Subcommand
	READNAMES Subcommand
	ARRANGEMENT Subcommand
	FIRSTCASE Subcommand
	DELCASE Subcommand
	FIXCASE Subcommand
	IMPORTCASES Subcommand
	DELIMITERS Subcommand
	QUALIFIER Subcommand
	VARIABLES Subcommand for ARRANGEMENT = DELIMITED
	VARIABLES Subcommand for ARRANGEMENT = FIXED

	GET SAS
	Overview
	Basic Specification
	Syntax Rules
	Operations
	DATA Subcommand
	FORMATS Subcommand
	SAS to SPSS Data Conversion

	GET TRANSLATE
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	FILE Subcommand
	TYPE Subcommand
	FIELDNAMES Subcommand
	RANGE Subcommand
	DROP and KEEP Subcommands
	MAP Subcommand

	GLM: Overview
	Overview
	General Linear Model (GLM) and MANOVA
	Models
	Custom Hypothesis Specifications

	GLM: Univariate
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Limitations
	Example
	GLM Variable List
	RANDOM Subcommand
	REGWGT Subcommand
	METHOD Subcommand
	INTERCEPT Subcommand
	MISSING Subcommand
	CRITERIA Subcommand
	PRINT Subcommand
	PLOT Subcommand
	TEST Subcommand
	LMATRIX Subcommand
	KMATRIX Subcommand
	CONTRAST Subcommand
	POSTHOC Subcommand
	EMMEANS Subcommand
	SAVE Subcommand
	OUTFILE Subcommand
	DESIGN Subcommand

	GLM: Multivariate
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Limitations
	GLM Variable List
	PRINT Subcommand
	MMATRIX Subcommand

	GLM: Repeated Measures
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Limitations
	Example
	GLM Variable List
	WSFACTOR Subcommand
	WSDESIGN Subcommand
	MEASURE Subcommand
	EMMEANS Subcommand

	GRAPH
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	TITLE, SUBTITLE, and FOOTNOTE Subcommands
	BAR Subcommand
	LINE Subcommand
	PIE Subcommand
	HILO Subcommand
	ERRORBAR Subcommand
	SCATTERPLOT Subcommand
	HISTOGRAM Subcommand
	PARETO Subcommand
	TEMPLATE Subcommand
	MISSING Subcommand

	HILOGLINEAR
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	Variable List
	METHOD Subcommand
	MAXORDER Subcommand
	CRITERIA Subcommand
	CWEIGHT Subcommand
	PRINT Subcommand
	PLOT Subcommand
	MISSING Subcommand
	DESIGN Subcommand
	References

	HOMALS
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	ANALYSIS Subcommand
	NOBSERVATIONS Subcommand
	DIMENSION Subcommand
	MAXITER Subcommand
	CONVERGENCE Subcommand
	PRINT Subcommand
	PLOT Subcommand
	SAVE Subcommand
	MATRIX Subcommand

	IF
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example

	IGRAPH
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	General Syntax
	Element Syntax
	Summary Functions

	IMPORT
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	FILE Subcommand
	TYPE Subcommand
	DROP and KEEP Subcommands
	RENAME Subcommand
	MAP Subcommand

	INCLUDE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	FILE Subcommand
	Example

	INFO
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Types of Information
	SINCE Keyword
	OUTFILE Subcommand

	INPUT PROGRAM-END INPUT PROGRAM
	Overview
	Input Programs
	Basic Specification
	Operations
	Example
	Example
	More Examples

	KEYED DATA LIST
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	Example
	FILE Subcommand
	KEY Subcommand
	IN Subcommand
	TABLE and NOTABLE Subcommands

	KM
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	Survival and Factor Variables
	STATUS Subcommand
	STRATA Subcommand
	PLOT Subcommand
	ID Subcommand
	PRINT Subcommand
	PERCENTILES Subcommand
	TEST Subcommand
	COMPARE Subcommand
	TREND Subcommand
	SAVE Subcommand

	LEAVE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	LIST
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	Example
	VARIABLES Subcommand
	FORMAT Subcommand
	CASES Subcommand

	LOGISTIC REGRESSION
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	CATEGORICAL Subcommand
	CONTRAST Subcommand
	METHOD Subcommand
	SELECT Subcommand
	ORIGIN and NOORIGIN Subcommands
	ID Subcommand
	PRINT Subcommand
	CRITERIA Subcommand
	CLASSPLOT Subcommand
	CASEWISE Subcommand
	MISSING Subcommand
	SAVE Subcommand
	EXTERNAL Subcommand
	References

	LOGLINEAR
	Overview
	Basic Specification
	Limitations
	Subcommand Order
	Example
	Example
	Example
	Example
	Variable List
	CWEIGHT Subcommand
	GRESID Subcommand
	CONTRAST Subcommand
	CRITERIA Subcommand
	PRINT Subcommand
	PLOT Subcommand
	MISSING Subcommand
	DESIGN Subcommand

	LOOP-END LOOP
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	IF Keyword
	Indexing Clause
	BY Keyword
	Missing Values
	Creating Data

	MANOVA: Overview
	Overview
	MANOVA and General Linear Model (GLM)

	MANOVA: Univariate
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Limitations
	Example
	MANOVA Variable List
	ERROR Subcommand
	CONTRAST Subcommand
	PARTITION Subcommand
	METHOD Subcommand
	PRINT and NOPRINT Subcommands
	OMEANS Subcommand
	PMEANS Subcommand
	RESIDUALS Subcommand
	POWER Subcommand
	CINTERVAL Subcommand
	PLOT Subcommand
	MISSING Subcommand
	MATRIX Subcommand
	ANALYSIS Subcommand
	DESIGN Subcommand
	References

	MANOVA: Multivariate
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Limitations
	MANOVA Variable List
	TRANSFORM Subcommand
	RENAME Subcommand
	PRINT and NOPRINT Subcommands
	PLOT Subcommand
	PCOMPS Subcommand
	DISCRIM Subcommand
	POWER Subcommand
	CINTERVAL Subcommand
	ANALYSIS Subcommand

	MANOVA: Repeated Measures
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Limitations
	Example
	MANOVA Variable List
	WSFACTORS Subcommand
	WSDESIGN Subcommand
	MEASURE Subcommand
	RENAME Subcommand
	PRINT Subcommand
	References

	MAPS
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	GVAR Subcommand
	XY Subcommand
	LOOKUP Subcommand
	GSET Subcommand
	SHOWLABEL Subcommand
	TITLE Subcommand
	GVMISMATCH Subcommand
	ROVMAP Subcommand
	SYMBOLMAP Subcommand
	DOTMAP Subcommand
	IVMAP Subcommand
	BARMAP Subcommand
	PIEMAP Subcommand
	Summary Functions

	MATCH FILES
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	FILE Subcommand
	BY Subcommand
	TABLE Subcommand
	RENAME Subcommand
	DROP and KEEP Subcommands
	IN Subcommand
	FIRST and LAST Subcommands
	MAP Subcommand

	MATRIX-END MATRIX
	Overview
	Terminology
	Matrix Variables
	Syntax of Matrix Language
	Matrix Operations
	MATRIX and Other SPSS Commands
	MATRIX and END MATRIX Commands
	COMPUTE Statement
	CALL Statement
	PRINT Statement
	Matrix Control Structures
	READ Statement: Reading Character Data
	WRITE Statement: Writing Character Data
	GET Statement: Reading SPSS Data Files
	SAVE Statement: Writing SPSS Data Files
	MGET Statement: Reading SPSS Matrix Data Files
	MSAVE Statement: Writing SPSS Matrix Data Files
	DISPLAY Statement
	RELEASE Statement
	Macros Using the Matrix Language

	MATRIX DATA
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	Example
	Example
	VARIABLES Subcommand
	FILE Subcommand
	FORMAT Subcommand
	SPLIT Subcommand
	FACTORS Subcommand
	CELLS Subcommand
	CONTENTS Subcommand
	N Subcommand

	MCONVERT
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Example
	MATRIX Subcommand
	REPLACE and APPEND Subcommands

	MEANS
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	Example
	TABLES Subcommand
	CELLS Subcommand
	STATISTICS Subcommand
	MISSING Subcommand
	References

	MISSING VALUES
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example
	Example
	Specifying Ranges of Missing Values

	MIXED
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Case Frequency
	Covariance Structure List
	Variable List
	CRITERIA Subcommand
	EMMEANS Subcommand
	FIXED Subcommand
	METHOD Subcommand
	MISSING Subcommand
	PRINT Subcommand
	RANDOM Subcommand
	REGWGT Subcommand
	REPEATED Subcommand
	SAVE Subcommand
	TEST Subcommand
	Interpretation of Random Effect Covariance Structures

	MODEL NAME
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Examples

	MRSETS
	Overview
	Syntax Conventions
	MDGROUP Subcommand
	MCGROUP Subcommand
	DELETE Subcommand
	DISPLAY Subcommand

	MULT RESPONSE
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	GROUPS Subcommand
	VARIABLES Subcommand
	FREQUENCIES Subcommand
	TABLES Subcommand
	CELLS Subcommand
	BASE Subcommand
	MISSING Subcommand
	FORMAT Subcommand

	MVA
	Overview
	Basic Specification
	Syntax Rules
	Missing Indicator Variables
	VARIABLES Subcommand
	CATEGORICAL Subcommand
	MAXCAT Subcommand
	ID Subcommand
	NOUNIVARIATE Subcommand
	TTEST Subcommand
	CROSSTAB Subcommand
	MISMATCH Subcommand
	DPATTERN Subcommand
	MPATTERN Subcommand
	TPATTERN Subcommand
	LISTWISE Subcommand
	PAIRWISE Subcommand
	EM Subcommand
	REGRESSION Subcommand

	NEW FILE
	Overview
	Basic Specification
	Operations

	NLR
	Overview
	Basic Specification
	Command Order
	Syntax Rules
	Operations
	Example
	MODEL PROGRAM Command
	DERIVATIVES Command
	CONSTRAINED FUNCTIONS Command
	CLEAR MODEL PROGRAMS Command
	CNLR/NLR Command
	OUTFILE Subcommand
	FILE Subcommand
	PRED Subcommand
	SAVE Subcommand
	CRITERIA Subcommand
	BOUNDS Subcommand
	LOSS Subcommand
	BOOTSTRAP Subcommand
	References

	N OF CASES
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example

	NOMREG
	Overview
	Basic Specification
	Syntax Rules
	Variable List
	CRITERIA Subcommand
	FULLFACTORIAL Subcommand
	INTERCEPT Subcommand
	MISSING Subcommand
	MODEL Subcommand
	STEPWISE Subcommand
	OUTFILE Subcommand
	PRINT Subcommand
	SAVE Subcommand
	SCALE Subcommand
	SUBPOP Subcommand
	TEST Subcommand

	NONPAR CORR
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	PRINT Subcommand
	SAMPLE Subcommand
	MISSING Subcommand
	MATRIX Subcommand

	NPAR TESTS
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	BINOMIAL Subcommand
	CHISQUARE Subcommand
	COCHRAN Subcommand
	FRIEDMAN Subcommand
	J-T Subcommand
	K-S Subcommand (One-Sample)
	K-S Subcommand (Two-Sample)
	K-W Subcommand
	KENDALL Subcommand
	M-W Subcommand
	MCNEMAR Subcommand
	MEDIAN Subcommand
	MH Subcommand
	MOSES Subcommand
	RUNS Subcommand
	SIGN Subcommand
	W-W Subcommand
	WILCOXON Subcommand
	STATISTICS Subcommand
	MISSING Subcommand
	SAMPLE Subcommand
	METHOD Subcommand
	References

	NUMERIC
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example
	Example

	OLAP CUBES
	Overview
	Options
	Basic Specification
	Syntax Rules
	Limitations
	Operations
	Example
	TITLE and FOOTNOTE Subcommands
	CELLS Subcommand
	CREATE Subcommand

	OMS
	Overview
	Basic Specification
	Syntax Rules
	Basic Operation
	SELECT Subcommand
	IF Subcommand
	EXCEPTIF Subcommand
	DESTINATION Subcommand
	COLUMNS Subcommand
	TAG Subcommand
	Routing Output to SAV Files
	OXML Table Structure
	Command and Subtype Identifiers

	OMSINFO
	Overview

	OMSEND
	Overview
	TAG Keyword
	FILE Keyword
	LOG Keyword

	OMSLOG
	Overview
	Basic Specification
	Syntax Rules
	FILE Subcommand
	APPEND Subcommand
	FORMAT Subcommand

	ONEWAY
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	Analysis List
	POLYNOMIAL Subcommand
	CONTRAST Subcommand
	POSTHOC Subcommand
	RANGES Subcommand
	PLOT MEANS Subcommand
	STATISTICS Subcommand
	MISSING Subcommand
	MATRIX Subcommand
	Missing Values
	References

	ORTHOPLAN
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	Example
	FACTORS Subcommand
	REPLACE Subcommand
	OUTFILE Subcommand
	MINIMUM Subcommand
	HOLDOUT Subcommand
	MIXHOLD Subcommand

	OVERALS
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	ANALYSIS Subcommand
	SETS Subcommand
	NOBSERVATIONS Subcommand
	DIMENSION Subcommand
	INITIAL Subcommand
	MAXITER Subcommand
	CONVERGENCE Subcommand
	PRINT Subcommand
	PLOT Subcommand
	SAVE Subcommand
	MATRIX Subcommand

	PACF
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	DIFF Subcommand
	SDIFF Subcommand
	PERIOD Subcommand
	LN and NOLOG Subcommands
	SEASONAL Subcommand
	MXAUTO Subcommand
	APPLY Subcommand
	References

	PARTIAL CORR
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	SIGNIFICANCE Subcommand
	STATISTICS Subcommand
	FORMAT Subcommand
	MISSING Subcommand
	MATRIX Subcommand

	PERMISSIONS
	Overview
	Syntax Rules
	PERMISSIONS Subcommand

	PLANCARDS
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	Example
	FACTORS Subcommand
	FORMAT Subcommand
	OUTFILE Subcommand
	TITLE Subcommand
	FOOTER Subcommand
	PAGINATE Subcommand

	PLUM
	Overview
	Basic Specification
	Syntax Rules
	Variable List
	Weight Variable
	Example
	CRITERIA Subcommand
	LINK Subcommand
	LOCATION Subcommand
	MISSING Subcommand
	PRINT Subcommand
	SAVE Subcommand
	SCALE Subcommand
	TEST Subcommand

	POINT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	FILE Subcommand
	KEY Subcommand

	PPLOT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	DISTRIBUTION Subcommand
	FRACTION Subcommand
	TIES Subcommand
	TYPE Subcommand
	PLOT Subcommand
	STANDARDIZE and NOSTANDARDIZE Subcommands
	DIFF Subcommand
	SDIFF Subcommand
	PERIOD Subcommand
	LN and NOLOG Subcommands
	APPLY Subcommand
	References

	PREDICT
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Example
	Example
	Example
	Example
	Example

	PRESERVE
	Overview
	Basic Specification
	Example

	PRINCALS
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	ANALYSIS Subcommand
	NOBSERVATIONS Subcommand
	DIMENSION Subcommand
	MAXITER Subcommand
	CONVERGENCE Subcommand
	PRINT Subcommand
	PLOT Subcommand
	SAVE Subcommand
	MATRIX Subcommand

	PRINT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	Formats
	Strings
	RECORDS Subcommand
	OUTFILE Subcommand
	TABLE Subcommand

	PRINT EJECT
	Overview
	Basic Specification
	Operations
	Example
	Example

	PRINT FORMATS
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example

	PRINT SPACE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example

	PROBIT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	Example
	Example
	Variable Specification
	MODEL Subcommand
	LOG Subcommand
	CRITERIA Subcommand
	NATRES Subcommand
	PRINT Subcommand
	MISSING Subcommand
	References

	PROCEDURE OUTPUT
	Overview
	Basic Specification
	Operations
	Example
	Example

	PROXIMITIES
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	Variable Specification
	STANDARDIZE Subcommand
	VIEW Subcommand
	MEASURE Subcommand
	PRINT Subcommand
	ID Subcommand
	MISSING Subcommand
	MATRIX Subcommand
	References

	PROXSCAL
	Overview
	Basic Specification
	Syntax Rules
	Limitations
	Variable List Subcommand
	TABLE Subcommand
	SHAPE Subcommand
	INITIAL Subcommand
	WEIGHTS Subcommand
	CONDITION Subcommand
	TRANSFORMATION Subcommand
	PROXIMITIES Subcommand
	MODEL Subcommand
	RESTRICTIONS Subcommand
	ACCELERATION Subcommand
	CRITERIA Subcommand
	PRINT Subcommand
	PLOT Subcommand
	OUTFILE Subcommand
	MATRIX Subcommand

	QUICK CLUSTER
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	Variable List
	CRITERIA Subcommand
	METHOD Subcommand
	INITIAL Subcommand
	FILE Subcommand
	PRINT Subcommand
	OUTFILE Subcommand
	SAVE Subcommand
	MISSING Subcommand

	RANK
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	VARIABLES Subcommand
	Function Subcommands
	TIES Subcommand
	FRACTION Subcommand
	PRINT Subcommand
	MISSING Subcommand
	References

	RATIO STATISTICS
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Case Frequency
	Variable List
	MISSING Subcommand
	OUTFILE Subcommand
	PRINT Subcommand

	READ MODEL
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	FILE Subcommand
	KEEP and DROP Subcommands
	TYPE Subcommand
	TSET Subcommand

	RECODE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	INTO Keyword
	CONVERT Keyword

	RECORD TYPE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example
	OTHER Keyword
	SKIP Subcommand
	CASE Subcommand
	MISSING Subcommand
	DUPLICATE Subcommand
	SPREAD Subcommand

	REFORMAT
	Overview
	Basic Specification
	Operations
	Example

	REGRESSION
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	VARIABLES Subcommand
	DEPENDENT Subcommand
	METHOD Subcommand
	STATISTICS Subcommand
	CRITERIA Subcommand
	ORIGIN and NOORIGIN Subcommands
	REGWGT Subcommand
	DESCRIPTIVES Subcommand
	SELECT Subcommand
	MATRIX Subcommand
	MISSING Subcommand
	References

	REGRESSION: Residuals
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Example
	RESIDUALS Subcommand
	CASEWISE Subcommand
	SCATTERPLOT Subcommand
	PARTIALPLOT Subcommand
	OUTFILE Subcommand
	SAVE Subcommand
	References

	RELIABILITY
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	SCALE Subcommand
	MODEL Subcommand
	STATISTICS Subcommand
	ICC Subcommand
	SUMMARY Subcommand
	METHOD Subcommand
	MISSING Subcommand
	MATRIX Subcommand

	RENAME VARIABLES
	Overview
	Basic Specification
	Syntax Rules
	Example
	Example
	Example
	Mixed Case Variable Names

	REPEATING DATA
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	Example
	STARTS Subcommand
	OCCURS Subcommand
	DATA Subcommand
	FILE Subcommand
	LENGTH Subcommand
	CONTINUED Subcommand
	ID Subcommand
	TABLE and NOTABLE Subcommands

	REPORT
	Overview
	Defaults
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	FORMAT Subcommand
	OUTFILE Subcommand
	VARIABLES Subcommand
	STRING Subcommand
	BREAK Subcommand
	SUMMARY Subcommand
	TITLE and FOOTNOTE Subcommands
	MISSING Subcommand

	REREAD
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	FILE Subcommand
	COLUMN Subcommand

	RESTORE
	Overview
	Basic Specification
	Example

	RMV
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	LINT Function
	MEAN Function
	MEDIAN Function
	SMEAN Function
	TREND Function

	ROC
	Overview
	Basic Specification
	Syntax Rules
	Limitations
	Example
	varlist BY varname(varvalue)
	MISSING Subcommand
	CRITERIA Subcommand
	PRINT Subcommand
	PLOT Subcommand

	SAMPLE
	Overview
	Basic Specification
	Operations
	Limitations
	Example
	Example
	Example

	SAVE
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	Example
	OUTFILE Subcommand
	VERSION Subcommand
	UNSELECTED Subcommand
	DROP and KEEP Subcommands
	RENAME Subcommand
	MAP Subcommand
	COMPRESSED and UNCOMPRESSED Subcommands
	NAMES Subcommand
	PERMISSIONS Subcommand

	SAVE MODEL
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	OUTFILE Subcommand
	KEEP and DROP Subcommands
	TYPE Subcommand

	SAVE TRANSLATE
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	OUTFILE Subcommand
	CONNECT Subcommand
	TABLE Subcommand
	REPLACE Subcommand
	APPEND Subcommand
	TYPE Subcommand
	VERSION Subcommand
	PLATFORM Subcommand
	CELLS Subcommand
	VALFILE Subcommand
	FIELDNAMES Subcommand
	UNSELECTED Subcommand
	DROP and KEEP Subcommands
	RENAME Subcommand
	MAP Subcommand

	SCRIPT
	Overview
	Basic Specification
	Operations
	Running Scripts that Contain SPSS Commands

	SEASON
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	MODEL Subcommand
	MA Subcommand
	PERIOD Subcommand
	APPLY Subcommand
	References

	SELECT IF
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example

	SET
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Example
	WORKSPACE and MXCELLS Subcommands
	FORMAT Subcommand
	TLOOK and CTEMPLATE Subcommands
	ONUMBERS, OVARS, TNUMBERS, and TVARS Subcommands
	TFIT Subcommand
	SEED Subcommand
	EPOCH Subcommand
	ERRORS, MESSAGES, RESULTS, and PRINTBACK Subcommands
	JOURNAL Subcommand
	MEXPAND and MPRINT Subcommands
	MITERATE and MNEST Subcommands
	BLANKS Subcommand
	UNDEFINED Subcommand
	MXERRS and MXWARNS Subcommands
	MXLOOPS Subcommand
	EXTENSIONS Subcommand
	COMPRESSION Subcommand
	BLOCK Subcommand
	BOX Subcommand
	LENGTH and WIDTH Subcommands
	HEADER Subcommand
	CCA, CCB, CCC, CCD, and CCE Subcommands
	CACHE Subcommand
	SMALL Subcommand
	OLANG Subcommand
	DEFOLANG Subcommand
	SCALEMIN Subcommand

	SHOW
	Overview
	Basic Specification
	Subcommand Order
	Syntax
	Example
	Subcommands

	SORT CASES
	Overview
	Basic Specification
	Syntax Rules
	Operations
	SORT CASES with Other Procedures
	Example
	Example

	SPCHART
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	TITLE, SUBTITLE, and FOOTNOTE Subcommands
	XR and XS Subcommands
	I and IR Subcommands
	P and NP Subcommands
	C and U Subcommands
	STATISTICS Subcommand
	CAPSIGMA Subcommand
	SPAN Subcommand
	CONFORM and NONCONFORM Subcommands
	SIGMA Subcommand
	MINSAMPLE Subcommand
	LSL and USL Subcommand
	TARGET Subcommand
	MISSING Subcommand

	SPECTRA
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	CENTER Subcommand
	WINDOW Subcommand
	PLOT Subcommand
	CROSS Subcommand
	SAVE Subcommand
	APPLY Subcommand
	References

	SPLIT FILE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	LAYERED and SEPARATE Subcommands
	Example
	Example
	Example
	Example

	STRING
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	SUBTITLE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	SUMMARIZE
	Overview
	Options
	Basic Specification
	Syntax Rules
	Limitations
	Operations
	Example
	TABLES Subcommand
	TITLE and FOOTNOTE Subcommands
	CELLS Subcommand
	MISSING Subcommand
	FORMAT Subcommand
	STATISTICS Subcommand

	SURVIVAL
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	TABLES Subcommand
	INTERVALS Subcommand
	STATUS Subcommand
	PLOT Subcommand
	PRINT Subcommand
	COMPARE Subcommand
	CALCULATE Subcommand
	Using Aggregated Data
	MISSING Subcommand
	WRITE Subcommand

	SYSFILE INFO
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example

	TDISPLAY
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	TYPE Subcommand

	TEMPORARY
	Overview
	Basic Specification
	Operations
	Example
	Example
	Example

	TITLE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	TSET
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	DEFAULT Subcommand
	ID Subcommand
	MISSING Subcommand
	MXNEWVARS Subcommand
	MXPREDICT Subcommand
	PERIOD Subcommand
	PRINT Subcommand

	TSHOW
	Overview
	Basic Specification
	Operations
	Example

	TSPLOT
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	DIFF Subcommand
	SDIFF Subcommand
	PERIOD Subcommand
	LN and NOLOG Subcommands
	ID Subcommand
	FORMAT Subcommand
	MARK Subcommand
	SPLIT Subcommand
	APPLY Subcommand

	T-TEST
	Overview
	Basic Specification
	Subcommand Order
	Operations
	Limitations
	Example
	Example
	Example
	VARIABLES Subcommand
	TESTVAL Subcommand
	GROUPS Subcommand
	PAIRS Subcommand
	CRITERIA Subcommand
	MISSING Subcommand

	2SLS
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	EQUATION Subcommand
	INSTRUMENTS Subcommand
	ENDOGENOUS Subcommand
	CONSTANT and NOCONSTANT Subcommands
	SAVE Subcommand
	PRINT Subcommand
	APPLY Subcommand

	TWOSTEP CLUSTER
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Example
	Variable List
	CATEGORICAL Subcommand
	CONTINUOUS Subcommand
	CRITERIA Subcommand
	DISTANCE Subcommand
	HANDLENOISE Subcommand
	INFILE Subcommand
	MEMALLOCATE Subcommand
	MISSING Subcommand
	NOSTANDARDIZE Subcommand
	NUMCLUSTERS Subcommand
	OUTFILE Subcommand
	PLOT Subcommand
	PRINT Subcommand
	SAVE Subcommand

	UNIANOVA
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Limitations
	Example
	UNIANOVA Variable List
	RANDOM Subcommand
	REGWGT Subcommand
	METHOD Subcommand
	INTERCEPT Subcommand
	MISSING Subcommand
	CRITERIA Subcommand
	PRINT Subcommand
	PLOT Subcommand
	TEST Subcommand
	LMATRIX Subcommand
	KMATRIX Subcommand
	CONTRAST Subcommand
	POSTHOC Subcommand
	EMMEANS Subcommand
	SAVE Subcommand
	OUTFILE Subcommand
	DESIGN Subcommand

	UPDATE
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	Example
	FILE Subcommand
	BY Subcommand
	RENAME Subcommand
	DROP and KEEP Subcommands
	IN Subcommand
	MAP Subcommand

	USE
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Limitations
	Examples

	VALUE LABELS
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example
	Example
	Example

	VARCOMP
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Variable List
	RANDOM Subcommand
	METHOD Subcommand
	INTERCEPT Subcommand
	MISSING Subcommand
	REGWGT Subcommand
	CRITERIA Subcommand
	PRINT Subcommand
	OUTFILE Subcommand
	DESIGN Subcommand

	VARIABLE ALIGNMENT
	Overview
	Basic Specification

	VARIABLE LABELS
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example

	VARIABLE LEVEL
	Overview
	Basic Specification

	VARIABLE WIDTH
	Overview
	Basic Specification

	VARSTOCASES
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	MAKE Subcommand
	ID Subcommand
	INDEX Subcommand
	NULL Subcommand
	COUNT Subcommand
	DROP and KEEP Subcommands

	VECTOR
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Examples
	More Examples
	VECTOR: Short Form
	VECTOR outside a Loop Structure

	VERIFY
	Overview
	Basic Specification
	Operations
	Limitations
	VARIABLES Subcommand
	Examples

	WEIGHT
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example

	WLS
	Overview
	Basic Specification
	Syntax Rules
	Subcommand Order
	Operations
	Limitations
	Example
	VARIABLES Subcommand
	SOURCE Subcommand
	DELTA Subcommand
	WEIGHT Subcommand
	CONSTANT and NOCONSTANT Subcommands
	SAVE Subcommand
	PRINT Subcommand
	APPLY Subcommand

	WRITE
	Overview
	Subcommand Order
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Formats
	Strings
	RECORDS Subcommand
	OUTFILE Subcommand
	TABLE Subcommand

	WRITE FORMATS
	Overview
	Basic Specification
	Syntax Rules
	Operations
	Example
	Example
	Example

	XSAVE
	Overview
	Basic Specification
	Subcommand Order
	Syntax Rules
	Operations
	Limitations
	Example
	Example
	OUTFILE Subcommand
	DROP and KEEP Subcommands
	RENAME Subcommand
	MAP Subcommand
	COMPRESSED and UNCOMPRESSED Subcommands
	PERMISSIONS Subcommand

	Appendix A Commands and Program States
	Program States
	Determining Command Order
	Unrestricted Utility Commands
	File Definition Commands
	Input Program Commands
	Transformation Commands
	Restricted Transformations
	Procedures

	Appendix B IMPORT/EXPORT Character Sets
	Appendix C Defining Complex Files
	Rectangular File
	Nested Files
	Nested Files with Missing Records

	Grouped Data
	Using DATA LIST
	Using FILE TYPE GROUPED

	Mixed Files
	Reading Each Record in a Mixed File
	Reading a Subset of Records in a Mixed File

	Repeating Data
	Fixed Number of Repeating Groups
	Varying Number of Repeating Groups

	Appendix D Using the Macro Facility
	Example 1: Automating a File-Matching Task
	Example 2: Testing Correlation Coefficients
	Example 3: Generating Random Data

	Appendix A Trends Options: Special Considerations
	Operations
	New Variables
	Periodicity
	APPLY Subcommand

	Subject Index
	Syntax Index

