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CURS 16-17 Q1 – FINAL EXAM  
Anàlisi de Dades de Transport i Logística (ADTL) . 

(Data: 20/1/2017 17:00-21:00 h    Lloc: Aula H9.1 
Professor responsable: Lídia Montero Mercadé  - Edifici C5  D217 CAMPUS NORD UPC   
Normativa de l’examen:  NO APUNTS TEORIA, NI COMANDES DE R. SI - TAULES ESTADÍSTIQUES  
       ES POT DUR CALCULADORA  
Durada :  3h  
Sortida de notes:  Abans  25 /1/17 al WEB de l’assignatura. 
Revisió:   El    25 /1/17 a les 13 hores (C5-217).  
 

Problem 1: Gross Revenue of Hollywood films  
IMDB dataset  contents data about 470 Hollywood films from the last decade (www.imdb.com) and includes 
variables (data provided by JA Sánchez): 
movie_title: Name of the film 
gross: Gross revenue (million de $) - Target 
budget: Budget (million $) 
duration: Duration (minutes) 
title_year: Year 
actor1_fl: Popularity of the first actor (number of “Likes“ in Facebook) 
actor2_fl: Popularity of the second actor (number of “Likes“ in Facebook) 
actor3_fl: Popularity of the third actor (number of “Likes“ in Facebook) 
cast_fl: Average casting popularity (number of “Likes“ in Facebook) 
faces_poster: Number of actors appearing in promotion card 
Genre:  Film category (Comedy, Drama, Action, Horror) 

 
1. Describe the profile for the gross revenue target using the tools available in FactoMineR package 

> condes(imdb[,2:12],1) 
$quanti 
          correlation      p.value 
budget      0.6835283 5.555625e-66 
duration    0.4335185 5.881788e-23 
actor3_fl   0.3716480 7.676382e-17 
cast_fl     0.3584781 1.066289e-15 
actor2_fl   0.3504406 5.008197e-15 
actor1_fl   0.2192484 1.594224e-06 
… 

$quali 
            R2      p.value 
Genre 0.256727 8.352179e-30 
 
$category 
        Estimate      p.value 
Action  85.80388 1.623827e-29 
Horror -40.48026 1.370002e-04 
Drama  -36.00226 1.587742e-07

Budget, duration, actor3_fl, cas_fl, actor2_fl and 

actor1_fl are numeric variables positively related 

to the target (gross revenue), in decreasing 

order, for all of them, the Pearson correlation is 

different to 0. Genre is globally related to the 

target also. The mean gross revenue for Genre-

Average Action film revenues are 85. 8 unit 

significantly over the global mean revenue, while 

Genre-Horror and Genre-Drama average 

revenues are significantly less than the overall 

mean revenue, 40.5 and 36 million $ below. 

 
 

2. Can the gross revenue target assumed to be normally distributed? Justify your answer. 
Clearly, the profile does not belong to normally 

distributed data. Additionally, the Shapiro-Wilk 

normality test shows a pvlue very low, thus 

rejecting the normality hypothesis. Consistent 

with the visual assessment. 

 

 

> shapiro.test(imdb$gross) 

Shapiro-Wilk normality test data:  gross 
W = 0.76822, p-value < 2.2e-16 

http://www.imdb.com/
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> Boxplot(imdb$gross~imdb$Genre,col=heat.colors(4),labels=row.names(imdb)) 
 [1] "How the Grinch Stole Christmas " "The Hangover Part II "           
 [3] "Despicable Me "                  "Meet the Fockers "               
 [5] "The Hangover "                   "My Big Fat Greek Wedding "       
 [7] "Cinderella "                     "Twilight "                       
 [9] "The Blind Side "                 "Avatar "                         
[11] "The Avengers "                   "The Da Vinci Code "              
[13] "Ocean's Eleven "                 
>  
> kruskal.test(imdb$gross~imdb$Genre) 
 
 Kruskal-Wallis rank sum test data:  imdb$gross by imdb$Genre 
Kruskal-Wallis chi-squared = 87.427, df = 3, p-value < 2.2e-16 
 
> pairwise.wilcox.test(imdb$gross,imdb$Genre) 
 
 Pairwise comparisons using Wilcoxon rank sum test data:  imdb$gross and imdb$Genre  
 
       Comedy  Drama   Action  
Drama  2.1e-05 -       -       
Action 1.9e-07 1.3e-14 -       
Horror 5.8e-05 0.88    6.6e-12 
 
P value adjustment method: holm  

 
3. Are all the average gross revenue per Genre equal to the global gross revenue? If it is not the case, 

indicate those pairs of levels that produce different average revenues. 
According to Kruskal Wallis test on means for gross revenues on gemre, there exists any category with 

a different gross mean. In fact, the pairwise test indicates that mean revenue for Drama and Horror 

films are not significantly different, but any other pair of categories have different mean revenues. 
 
Modelling of gross revenue target is intended using the available variables. A subset of films premiered 
after 2005 is selected. Firstly, the linear association between the gross revenue (target) and the budget is 
analyzed. Two models are calculated, one with the original variables and a second one using logarithmic 
transformation for both variables. 

  
Model_1 
lm(formula = gross ~ budget, data = imdb) 
  
Residuals: 
     Min      1Q  Median      3Q     Max  
 -225.86  -31.38  -11.62   23.75  488.97  
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
 (Intercept) 28.50249    5.58396   5.104 5.71e-07 *** 
 budget       1.02546    0.05914  17.341  < 2e-16 *** 
   
 Residual standard error: 70.91 on 320 degrees of freedom 
 Multiple R-squared:  0.4844, Adjusted R-squared:  0.4828  
 F-statistic: 300.7 on 1 and 320 DF,  p-value: < 2.2e-16 

Model_2 
 lm(formula = log(gross) ~ log(budget), data = imdb) 
  
 Residuals: 
      Min       1Q   Median       3Q      Max  
 -2.27501 -0.47714  0.00278  0.47987  1.72540  
  
 Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
 (Intercept)  2.10093    0.13268   15.83   <2e-16 *** 
 log(budget)  0.55831    0.03466   16.11   <2e-16 *** 
   
Residual standard error: 0.7232 on 320 degrees of freedom 
Multiple R-squared:  0.4478, Adjusted R-squared:  0.4461  
F-statistic: 259.5 on 1 and 320 DF,  p-value: < 2.2e-16 
 

4. Discuss pros and cons for both modelling options. Which model is suitable to your data? Justify the 
answer. Calculate the additional gross revenue to be expected for a 100 million dollar film, when 
increasing the budget by 20%. Make the estimation using both models.  
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The model with untransformed variables allows a simpler interpretation. The predictor coefficient can 

be interpreted directly as the absolute change in response for each $ 1 million increase in the movie 

budget. However, the graph shows a clear increase in the variance of the residuals, as the explanatory 

variable increases, and consequently the predictions. This would invalidate the model and, in case of not 

applying the transformations, would force to adjust a model with heteroscedasticity (GLS) instead of 

OLS model. 

E (Gross | Budget) = 28.5 + 1.025 * Budget 

On the other hand, the adjusted model with both transformed variables presents better characteristics 

to validate the premises, since the conditional variance seems more constant. However, the 

interpretation is more complicated. The coefficient acquires the role of a budget power. 

E (Gross | Budget) = exp (2.1) * Budget ^ 0.558 

In the absence of checking other premises for which other graphs / tests are needed (such as the 

normality of residues), the second model would be the one with the best validation. The comparison of 

two models with different variable response can not be done either with R2 or with R2-adj, since they 

are not comparable since the variability of the response is measured even in different units (the first in 

millions Of dollars and the second in logarithm of millions of dollars). 

In the first case: 

E (Gross | Budget = 100) = 28.5 + 1.025 * 100 = 131 

E (Gross | Budget = 120) = 28.5 + 1.025 * 120 = 151.5 

Increase = 151.5-131 = 20.5 million dollars 

For the second model: 

E (Gross | Budget = 100) = exp (2.1) * 100 ^ 0.558 = 106.6 

E (Gross | Budget = 120) = exp (2.1) * 120 ^ 0.558 = 118.1 

Increase = 118.1-106.6 = 11.5 million dollars 

 

(In this last calculation, assuming the log-normal model, the effect of the residual variance in the 

calculation of the expected value should be included) 

Irrespective of the answer to the first question, it is 
decided to work with the logarithmic scale of both 
variables. Next, the relationship between the gross 
revenue and the duration according to film categories is 
studied.  
 

 
 
 
 
 
 
 
 
 
 
 
The following models are calculated and will be discussed: 
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Model_3 
lm(formula = log(gross) ~ log(budget) + duration + Genre, 
data = imdb) 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.398664   0.246849   5.666 3.29e-08 *** 
log(budget)  0.464433   0.051939   8.942  < 2e-16 *** 
duration     0.010588   0.002404   4.404 1.45e-05 *** 
GenreDrama  -0.413373   0.114972  -3.595 0.000376 *** 
GenreAction -0.212875   0.130559  -1.630 0.103995     
GenreHorror -0.051585   0.130003  -0.397 0.691783     
 
Residual standard error: 0.7015 on 316 degrees of freedom 
Multiple R-squared:  0.4869, Adjusted R-squared:  0.4788  
F-statistic: 59.98 on 5 and 316 DF,  p-value: < 2.2e-16 
 
 

Model_4 
lm(formula = log(gross) ~ log(budget) + duration * Genre, data 
= imdb) 
 
Coefficients: 
                      Estimate Std. Error t value Pr(>|t|)     
(Intercept)           2.148385   0.591499   3.632 0.000328 *** 
log(budget)           0.487804   0.053100   9.187  < 2e-16 *** 
duration              0.002599   0.005488   0.474 0.636144     
GenreDrama           -0.639919   0.760384  -0.842 0.400669     
GenreAction          -2.118841   0.730155  -2.902 0.003972 **  
GenreHorror          -0.210090   0.870846  -0.241 0.809520     
duration:GenreDrama   0.003129   0.006741   0.464 0.642821     
duration:GenreAction  0.016022   0.006450   2.484 0.013514 *   
duration:GenreHorror  0.001842   0.008085   0.228 0.819909     
 
Residual standard error: 0.6936 on 313 degrees of freedom 
Multiple R-squared:  0.5031, Adjusted R-squared:  0.4904  
F-statistic: 39.62 on 8 and 313 DF,  p-value: < 2.2e-16 
 

A Fisher test comparing Model_3 and Model_4 is also shown.  
Analysis of Variance Table 
 
Model 1: log(gross) ~ log(budget) + duration + Genre 
Model 2: log(gross) ~ log(budget) + duration * Genre 
     Res.Df     RSS       Df    Sum of Sq        F        Pr(>F)   
1    --(1)--  --(2)--                             
2      313    --(3)--   --(4)--   --(5)--     --(6)--    0.01806 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

5.  Fill in the blanks --(1)-- to --(6)--  in the output above. A description of the calculation procedure has to 
be included for each value. 

 

(1) Degrees of freedom from model 1: (N-p) = 322-6 = 316 

(2) Residual sum of squares of model 1: RSS1 = (N-p) S12 = 316 * 0.70152 = 155.5043 

(3) Residual sum of squares of model 2: RSS2 = (N-p) S22 = 313 * 0.69362 = 150.5783 

(4) Degrees of freedom of the deviance test: df = df1-df2 = 316-313 = 3 

(5) Sum of squares of the deviance test: RS = RSS1-RSS2 = 155.5043-10.5783 = 4.9260 

(6) Statistic F of the deviance test: F = ((RSS1-RSS2) / q) / (RSS2 / df2) = (4,926 / 3) / (150.5783 

/ 313) = 3.41 

 

The p-value of the test is 0.018 which is below the significance level of 5%, which indicates that there is 

significant statistical evidence that the second model is different from the first and that therefore the 

interaction in model 2 is Significant. It means that the effect on the revenue depending on the length 

of the film depends on the genre of the film. The representation of the models segmented by gender 

indicate that the slope of the adjusted line in each graph can be considered as not the same in the 

different cases. 
 

6. Does the relationship between gross revenue and duration depend on film category? Justify the answer.  
The comparison between the additive ancova model and the complete ancova model has a p.value of 

0.018 < 0.05, thus it provides evidence for rejecting the null hypothesis of equivalence between both 

models, then the relationship between the revenue and the duration depends on film category. 

 

Model 1: log(gross) ~ log(budget) + duration + Genre 



Student  Name: 
DNI or PASSPORT: 

5 
 

Model 2: log(gross) ~ log(budget) + duration * Genre 

     Res.Df     RSS       Df    Sum of Sq        F        Pr(>F)   

1    --(1)--  --(2)--                             

2      313    --(3)--   --(4)--   --(5)--     --(6)--    0.01806 * 

7. Write the equations for gross revenue according to Model_4. 
For Genre = Comedy 

LogGross = 2.148 + 0.00260 * duration + 0.4878 * log (Budget) 

For Genre = Drama 

LogGross = (2.148-0.640) + (0.00260 + 0.00313) * duration + 0.4878 * log (Budget) 

LogGross = 1.508 + 0.00573 * duration + 0.4878 * log (Budget) 

For Genre = Action 

LogGross = (2.148-2.119) + (0.00260 + 0.01602) * duration + 0.4878 * log (Budget) 

LogGross = 0.029 + 0.01861 * duration + 0.4878 * log (Budget) 

For Genre = Horror 

LogGross = (2.148 + 0.210) + (0.00260 + 0.00184) * duration + 0.4878 * log (Budget) 

LogGross = 2.358 + 0.00444 * duration + 0.4878 * log (Budget) 

Taking into account that the active contrast is Baseline type with the first category as a reference 

("contr.treatment"), the coefficients of the categorical variable Genre are interpreted as the change in 

the coefficient of the ordinate at the origin between a film of the generus Comedy and each of the 

other genres. In the same way, the interaction is interpreted in term of change in the slope of the 

different genres with respect to the comedies. Of all the p-values associated with these two terms, only 

the intercept and slope associated with the action films are significant. Thus, in the case of action films, 

the difference in the intercept with respect to a comedy is -2.119 significant, and in the slope there is 

a significant increase of 0.016. For the rest of genres the significance of the difference in any 

parameter of the model with respect to the comedies has not been established. 

Popularity of the main actors is included once duration and film category are already in the model for 
gross revenue. Model_5 and Model_6 below are discussed. 
Model_5 
lm(formula = log(gross) ~ log(budget) + actor1_fl + 
actor2_fl + actor3_fl + cast_fl, data = imdb) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-2.15719 -0.44343  0.03302  0.47068  1.68968  
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.174e+00  1.333e-01  16.311  < 2e-16 *** 
log(budget)  5.157e-01  3.641e-02  14.163  < 2e-16 *** 
actor1_fl   -6.606e-05  2.520e-05  -2.621  0.00919 **  
actor2_fl   -4.703e-05  2.787e-05  -1.688  0.09248 .   
actor3_fl   -6.456e-05  4.312e-05  -1.497  0.13529     
cast_fl      6.129e-05  2.473e-05   2.478  0.01373 *   
   
Residual standard error: 0.708 on 316 degrees of freedom 
Multiple R-squared:  0.4773,Adjusted R-squared:  0.4691  
F-statistic: 57.72 on 5 and 316 DF,  p-value: < 2.2e-16 
 
> vif(Model_5) 
log(budget)   actor1_fl   actor2_fl   actor3_fl     cast_fl  
   1.151489   47.399810   14.493582   10.336643  122.549023 

Model_6 
lm(formula = log(gross) ~ log(budget) + actor1_fl + 
actor2_fl + actor3_fl, data = imdb) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-2.19689 -0.44671  0.02993  0.47326  1.67544  
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.179e+00  1.343e-01  16.217   <2e-16 *** 
log(budget)  5.251e-01  3.651e-02  14.382   <2e-16 *** 
actor1_fl   -4.646e-06  4.623e-06  -1.005    0.316     
actor2_fl    1.487e-05  1.246e-05   1.194    0.233     
actor3_fl    3.104e-05  1.941e-05   1.599    0.111     
 
 
Residual standard error: 0.7137 on 317 degrees of 
freedom 
Multiple R-squared:  0.4672,Adjusted R-squared:  0.4604  
F-statistic: 69.48 on 4 and 317 DF,  p-value: < 2.2e-16 
 
> vif(Model_6) 
log(budget)   actor1_fl   actor2_fl   actor3_fl  
   1.139089    1.569572    2.849449    2.061186  
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8. According to vif() method output, what model would you use to interpret the popularity of actors 
appearing in the film? Justify the answer. According to Model_6 is there a significant relationship between the popularity of 
the actors and the revenue?  
 

Variance Inflation Factors (VIFs) are statistics that allow the diagnosis of the presence of 

multicollinearity in the model. This phenomenon implies that the predictor variables can have a high 

correlation that prevents a simple interpretation of each coefficient of the model, keeping the rest of 

the predictors fixed (ceteris paribus). Likewise, the estimation in the presence of multicollinearity is no 

longer efficient. For each coefficient, the calculated VIF is a measure of how correlated this predictor is 

with the rest of predictors (If R2 is the coefficient of determination in terms of both 1 of the model 

that fits with each variable as if it were the answer based on the rest Of predictors, then VIF = 1 / (1-

R2)). In the case where the predictors are independent (and there is no multicollinearity) the value of 

the VIFs will be 1. The further away from 1 indicates a greater presence of multicollinearity. A VIF of 

approximately 8 indicates that the multicollinearity problem may be important. 

In the first model, the variables corresponding to the measures of popularity of the first 3 actors and 

the complete casting, have very high VIFs, indicating a high correlation between these variables.  

In the second model, the casting variable has been suppressed, causing the multicollinearity produced by 

the presence of these variables to have disappeared. If the purpose of the model construction is to relate 

the collection to the popularity of the actors, with explanatory intention, it is important that the 

model does not have multicollinearity, and therefore, the second model would be used. 

If we interpret the first model directly, we would say that by increasing the popularity of the first 

actor, the collection would be significantly reduced (!) Since the coefficient is negative and significant (-

6.606e-05). What is not taken into account is that when increasing this variable and due to its 

correlation with the one of the casting, also it would increase this compensating the decrease in the 

collection. The second model clearly states that in reality the popularity of the first actor, despite 

having a negative sign, is not significant. 

The predictor variables included in Model_6 are not significant. The popularity of the actors does not 

seem to have a significant relationship with the film's revenue. 

The popularity of the actors does not seem to have a significant relationship with the film's revenue. 

Even so, to assert that none of them is significant presupposes that the elimination of each will not 

change the significance of those that remain in the model. If a sequential elimination procedure is 

performed, changing the residual standard deviation will change the standard errors of the coefficients, 

which in some cases is close to the significance level. 

Results for a stepwise procedure monitored by BIC are included. The resulting model is Model_7: 
Model_7 
lm(formula = log(gross) ~ log(budget) + duration + Genre + actor3_fl +  
    log(budget):Genre, data = imdb) 
Coefficients: 
                          Estimate Std. Error t value Pr(>|t|)     
(Intercept)              9.944e-01  4.014e-01   2.478 0.013758 *   
log(budget)              6.209e-01  9.140e-02   6.793 5.58e-11 *** 
duration                 8.717e-03  2.404e-03   3.626 0.000336 *** 
GenreDrama               8.574e-02  3.926e-01   0.218 0.827267     
GenreAction             -2.413e+00  9.414e-01  -2.563 0.010833 *   
GenreHorror              1.625e+00  4.277e-01   3.799 0.000175 *** 
actor3_fl                3.600e-05  1.312e-05   2.744 0.006428 **  
log(budget):GenreDrama  -1.265e-01  1.133e-01  -1.117 0.264719     
log(budget):GenreAction  3.898e-01  1.996e-01   1.954 0.051640 .   
log(budget):GenreHorror -5.486e-01  1.292e-01  -4.247 2.87e-05 *** 
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Residual standard error: 0.6619 on 312 degrees of freedom 
Multiple R-squared:  0.549, Adjusted R-squared:  0.536  
F-statistic: 42.19 on 9 and 312 DF,  p-value: < 2.2e-16            

 
9. Perform the validation of the model, indicating in each graph the premises that are analyzed.  
The first plot is that of the residuals against the predictions, it allows to see if the disposition of the 

residuals is random around the zero, without observing any pattern that indicate deviations of the 

linear relation. The local adjustment (red line) is practically horizontal, confirming in this case there do 

not seem to be any nonlinearity patterns. In this plot can also be verified descriptively if the variance 

can be considered constant, against the predictions. In this case, there is no increase in the variability of 

the residues as the prediction increases, indicating that homoscedasticity can be assumed. Also in this 

plot, the observations are labeled with standardized residuals greater than 2 (approx) in absolute value 

(atypical values). 

 

The second plot is the plot of normality, which allows us to determine if we can consider that the 

Normal distribution is adequate for the residues. If the points are aligned we can assume Normality of 

the residues. This plot would allow to see patterns of asymmetry or heavy queues in the residues that 

would go against the normality hypothesis. Also atypical are labeled. In this case, the arrangement of 

the points is clearly aligned allowing normality to be assumed in the residuals. 

 

The third plot represents the square root of the absolute values of the residuals versus the predictions. It 

is a plot that allows to determine more clearly the presence of heteroscedasticity. The local adjustment 

by the straight line does not indicate a clear descent of the values that constitute an estimate of the 

variance of the residues. It is not conclusive to confirm the presence of non-constant variance and can 

also be influenced by the low presence of observations that are related to high values of the predictions, 

which may imply a worse estimation of the variability. 
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The fourth graph allows identifying and characterizing influential data. 

Represents the standardized residuals versus the anchor / leverage factor. It also includes contours to 

indicate Cook's distance from observations. Values with a high Cook distance can be influential values 

and their effect on model setting must be analyzed. Cook's distance is a growing function of square and 

leverage residuals. Observations that have a high value of Cook's distance are labeled (they may be very 

leverage, or have a high residue in absolute value or a combination of both not so extreme situations). 

Observations labeled as influential seem to have a high leverage and at the same time have a residuals 

of high magnitude. One should analyze what effect they have on model estimation. 

 
 

10. Specify for observations 199, 389 and 392 that are indicated in the graphs whether atypical and / or 
influential data are. 

Observation 199 has a standardized residual slightly higher than 2 that does not allow to characterize 

it as atypical. Nor does it present a very high leverage (although it is one of those that has it higher). 

The combination of these two factors makes it closer to Cook's distance curves, making it one of the 

most influential observations on the model. 

Observation 389 is the observation with the highest leverage, well above the rest, making it an a priori 

influential observation. However, its standardized residual is close to 1, so the observation is adequately 

explained by the model. Even so, it would be necessary to check his distance from Cook to decide 

whether he is also influential a posteriori. 

Observation 392 has a standardized residue of less than -3 being the most extreme value of the 

residual. It would be an atypical data. Its leverage is very small, indicating that it is close to the center 

of gravity of individuals who describe the design matrix. Because of this, it is most probably not an 

influential piece of information. 
  



Student  Name: 
DNI or PASSPORT: 

9 
 

 
11. Those films in the list included in 100 films with large revenues in the history are marked in a binary 

factor A table relating the super-revenue binary target and the Genre is included below. Determine a 
binary logit model for super-revenue films that states that the probability of super-revenue is the same 
for all genre-categories.  

> table(imdb$Genre,imdb$superevenue)    

         Regular SuperRevenue 

  Comedy     152            5 

  Drama      143            1 

  Action      66           30 

  Horror      73            0 

 

Globally the probability of being a super-revenue film is 36/470=0.077, 36 into the total number of 

observations in the sample, 470. 
> 36/470 
[1] 0.07659574 
> 36/434 
[1] 0.08294931 
> log(36/434) 
[1] -2.489526 
> m0<-glm(superevenue~1,family=binomial,data=imdb) 
> summary(m0) 
 
Call: glm(formula = superevenue ~ 1, family = binomial, data = imdb) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.3992  -0.3992  -0.3992  -0.3992   2.2668   
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -2.4895     0.1734  -14.35   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 254.15  on 469  degrees of freedom 
Residual deviance: 254.15  on 469  degrees of freedom 
AIC: 256.15 

 
12. Calculate the logit model for a positive response being a super-revenue film according to Gemre. 
 
You have to calculate the model that states that the probability of being a large revenue film depends 

on the Genre level. Pay attention to the horror genre class that has 0 super-revenue films and instead 

of a 0 you have to use any small positive number to calculate de log-odds otherwise you are not 

allowed to get any finite number. 

 
> log(5/152) 
[1] -3.414443 
> log(1/143)-log(5/152) 
[1] -1.548402 
> log(30/66)-log(5/152) 
[1] 2.625985 
> log(0.0000001/73)-log(5/152) 
[1] -16.99411 
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> m1<-glm(superevenue~Genre,family=binomial,data=imdb) 
> summary(m1) 
 
Call: glm(formula = superevenue ~ Genre, family = binomial, data = imdb) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-0.8657  -0.2544  -0.1181  -0.1181   3.1527   
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)   -3.4144     0.4545  -7.512 5.81e-14 *** 
GenreDrama    -1.5484     1.1016  -1.406     0.16     
GenreAction    2.6260     0.5050   5.200 2.00e-07 *** 
GenreHorror  -16.1516  1258.6621  -0.013     0.99     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 254.15  on 469  degrees of freedom 
Residual deviance: 175.49  on 466  degrees of freedom 
AIC: 183.49 

 
 
 
 
 
13. Which is the deviance of Model calculated in point 12. 
 

The deviance of the saturated model, because this is the model calculated in Point 12 is 0. 


	ES POT DUR CALCULADORA

