Publication Type | Tesis de Grau i Màster // BSc and MSc Thesis |
Year of Publication | 2016 |
Authors | Daniel Ramon Lumbierres |
Director | F.-Javier Heredia |
Tipus de tesi | MSc Thesis |
Titulació | Master in Statistics and Operations Research |
Centre | Faculty of Mathematics and Statistics |
Data defensa | 27/07/2016 |
Nota // mark | 9.5 Excel·lent MH (A+ with Honors) |
Key Words | teaching; supply chain; 3D printing; Postponment; stochastic programming; Accenture; MSc Thesis |
Abstract | In this project, a new two-stage stochastic programming decision model has been developed to assess: (a) the convenience of introducing 3D printing into any generic manufacturing process, both single and multi-product; and (b) the optimal degree of postponement known as the customer order decoupling point (CODP) while also assuming uncertainty in demand for multiple markets. To this end, we propose the formulation of a generic supply chain through an oriented graph that represents all the deployable alternative technologies. These are defined through a set of operations for manufacturing, assembly and distribution, each of which is characterized by a lead time and cost parameters. Based on this graph, we develop a mixed integer two-stage stochastic program that finds the optimal manufacturing technology to meet the demand of each market, the optimal production quantity for each operation, and the optimal CODP for each technology. The results obtained from several case studies in real manufacturing companies are presented and analyzed. The work presented in this master’s thesis is part of an ongoing research project between UPC and Accenture. |
DOI / handle | http://hdl.handle.net/2117/88818 |
URL | Click Here |
Export | Tagged XML BibTex |
Publication Type | Conference Paper |
Year of Publication | 2016 |
Authors | Daniel Ramon Lumbierres; Asier Muguruza; Robert Gimeno Feu; Ping Guo; Mary Hamilton; Kiron Shastry; Sunny Webb; Joaquim Minguella; F.-Javier Heredia |
Conference Name | 28th European Conference on Operational Research |
Series Title | Conference Handbook |
Pagination | 330 |
Conference Date | 3-6/07/2016 |
Conference Location | Poznan, Poland |
Type of Work | contributed presentation. |
Key Words | research; supply chain; 3D printing; stochastic programming; postponment; modeling; additive manufacturing |
Abstract | In this contribution we would like to present the results of a research project developed by Accenture and BarcelonaTech aiming at studying the advantages of ultra-postponement with 3D printing using the analytical tools of operational research. In this project a new two-stage stochastic programming decision model has been developed to assess (a) the convenience of the introduction of 3D printing in any generic supply chain and (b) the optimal degree of postponement, the so called Customer Order Decoupling Point (CODP), assuming uncertainty in demand for multiple markets. To this end we propose the formulation of a generic supply chain through an oriented graph that represents all the alternative technologies that can be deployed, defined through a set of operations for manufacturing, assembly and distribution, each one characterized by a lead time and cost parameters. Based on this graph we develop a mixed integer two-stage stochastic program that finds the optimal manufacturing technology to meet the demand of each market, the optimal production quantity for each operation and the optimal CODP for each technology. The results obtained with several case studies from real manufacturing companies are presented and analyzed. |
URL | Click Here |
Export | Tagged XML BibTex |