CBRE

Enhancing Shopping Centre Profitability through Optimized Tenant Mix and Synergistic Placement

Publication TypeConference Paper
Year of Publication2024
AuthorsGrace Kelly Maureira; F.-Javier Heredia
Conference NameEURO24, 33rd European Conference on Operational Research
Conference Date30/06-3/07/2024
Conference LocationTechnical University of Denmark (DTU), Copenhagen, Denmark.
Type of WorkContributed presentation
Key Wordsresearch; real state; shopping centers; tenant mix; modeling; multi-objective optimization.
AbstractThe strategic allocation of tenants within shopping centers, known as "tenant mix," is crucial for enhancing profitability in the retail sector. This research delves into creating an ideal combination of retail categories and their placement to boost rental income, a primary financial source for mall operators. Utilizing integer linear programming, we propose a model that integrates the concept of tenant synergy at its core—a critical yet underexplored aspect in the literature. This model includes constraints based on the total leasable space available and the strategic distribution of store units. Drawing upon a dataset from 27 shopping centers in Spain, we construct a regression model to estimate base rent, positioning it as the critical component of our objective function to maximize rental income. Additionally, this objective function features a synergy-based scoring system as an extra component, designed to enhance sales revenues and create a balanced retail environment through strategic tenant placement. The e ectiveness of our model is demonstrated through several case studies, highlighting its potential to increase rental income and sales. Our findings o er mall operators a practical tool to optimize vacant spaces, facilitating strategic decision-making in the retail industry.
URLClick Here
ExportTagged XML BibTex

Modelos de optimización matemática en la gestión de centros comerciales (MOMGeCC)

Publication TypeFunded research projects
Year of Publication2020
AuthorsGrace Kelly Maureira; Jaume Masip; F.-Javier Heredia
Type of participationLeader
Duration09/2020-09/2023
CallIndustrial Doctorates Plan
Funding organization- CBRE (https:cbre.es) - Government of Catalonia (Generalitat de Catalunya).
PartnersCBRE
Budget33.960,00 €
Project code2019 DI 098
Key Wordsresearch; industrial doctorate; real state; service science; project; public; competitive
AbstractEl objetivo del proyecto es la realización de una tesis doctoral industrial para el desarrollo de una herramienta que determine y mejore la eficiencia operacional de las centros comerciales en Espana y Portugal. Des del punto de vista metodol6gico, esta tesis doctoral se enmarca en el ambito de la lnvestigaci6n Operativa (Operational Research). En particular, se deberan abordar los problemas planteados mas adelante (A) mediante el desarrollo de modelos estadfsticos que permitan formalizar la relaci6n existente entre diferentes inputs (parametros) y outputs (variables) del modelo y (B) mediante el uso de modelos y algoritmos de optimizaci6n matematica de diversa fndole, muy probablemente problemas de programaci6n estocastica mixta multiobjetivo.
URLClick Here
ExportTagged XML BibTex

Starting an industrial doctorate project with CBRE

Photo by Sunyu Kim on UnsplashOn April 2020 an agreement was settled between the UPC and CBRE Group Inc., the largest commercial real estate services company in the world, for the development of the project Modelos de optimización matematica en la gestión de centros comerciales (MOMGeCC) (Mathematical optimization Models for the Management of Shopping Malls). This project is going to be developped in the framework of the Industrial Doctorates Plan of the Government of Catalonia, through a Ph.D thesis of Ms. Grace Kelly Maureira under supervision of prof. F.-Javier Heredia (UPC) and Jaume Masip (CBRE). The purpose of this project is to develop stochastic mathematical optimization models to provide CBRE with a computational tool to optimize the strategical planning of the configuration and operation of shopping centers under uncertainty.
Syndicate content