supply chain

Mathematical optimization for Industry 4.0

 This academic course started the third edition of the Master in Industry 4.0 of the UPC School. The main objective of the master's degree in Industry 4.0 is to train professionals to understand the complexities and challenges of Industry 4.0 in a transversal way. I participate in this master giving a course on mathematical optimization for industry 4.0. In the first part of the course, we review the role of mathemnatical optimization, operations research and analytics in Ind. 4.0, analyse some case studies on mathematical optimization models in supply chain and energy industry. In the second part, the theoretical and computational basis of mathematical optimization are presented and applied by the students to solve a complete optimization project in supply and distribution chain using mathematical optimization modeling software.

A multistage stochastic programming model for the strategic supply chain design

Publication TypeConference Paper
Year of Publication2018
AuthorsDaniel Ramón-Lumbierres; F.-Javier Heredia; Robert Gimeno Feu; Julio Consola; Román Buil Giné
Conference Name23th International Symposium on Mathematical Programming
Conference Date01-06/07/2018
Conference LocationBordeaux
EditorMathematical Optimization Society (MOS)
Type of Workcontributed presentation
Key Wordsresearch; supply chain; postponment; multistage stochastic programming
AbstractSupply chain management has been widely developed through the evolution of manufacturing, distribution, forecasting and customer behavior, encouraging the introduction of postponement strategies in its various forms. At these strategies, semi-finished goods are stored in certain operations of the chain, called decoupling points, waiting for the placement of demand orders, which trigger production flows from decoupling points to the remainder operations. Such a design problem facing the speculation/postponement paradigm must intrinsically include elements that "unveil" demand orders when they are placed, that is, the modelling approach should keep demand orders as random variables until their placement, when they are disclosed. This work proposes a multi-stage stochastic programming model that decides the optimal allocation of decoupling points, as well as a process selection among alternative designs for any general supply chain case, where the stochastic parameters, demands by period and product, are represented through a scenario tree, which is in turn generated using the forecasting. Both a risk-neutral model and a risk-aversion approach with stochastic dominance constraints are presented and solved with multi-stage instances of test cases based on real manufacturing problems defined in collaboration with the Accenture consultancy company.
URLClick Here
ExportTagged XML BibTex

Optimising data analytics for industry 4.0

Publication TypeConference Paper
Year of Publication2018
AuthorsF.-Javier Heredia
Conference NameMaths for Industry 4.0
Conference Date19/02/2018
Conference LocationBarcelona
Type of WorkRound table
Key Wordsresearch,; industrial mathematics; industry 4.0; BGSMath
Abstract“Maths for Industry 4.0” will showcase how academic excellence at BGSMath is helping companies becoming digital. Join us to learn about successful collaborative initiatives, such as industrial doctoral theses, as well as the range of expertise you could benefit from. The workshop will be closed by a round table on Data Analytics. Our experts will discuss common challenges and trends across sectors, and how mathematical creativity enable solutions for supply chain, risk management, control and monitoring. This activity belongs to the Mobile Week Barcelona and it’s an open space for reflexion on digital transformation through art, science and technology.
URLClick Here
ExportTagged XML BibTex

New website for the research project "Strategical Models in Supply Chain Design"

 A new website for the research project Strategical Models in Supply Chain Design has been deployed at

https://gnom.upc.edu/en/projects/supply-chain/smscd-2017

This site is intended to improve the comunication between the different partners of the project (UPC-Accenture Analytics Barcelona - Accenture Labs Silicon Valley) and to show the progress of this project. All the documentacion related with the project is going to be available at this site (meetings, reports, papers, conference contributions), although some of them will be secured. If you would like to acess to some protected document please send an e-mail to f.javier.heredia@upc.edu

A new contribution on incorporating additive manufacturing to product supply chains

 A new result of the research project Digitalizing Supply Chain Strategy with 3D Printing with Accenture TechLabs and Center for Analytics has been presented in the Manufacturing Engineering Society International Conference 2017 , MESIC 2017. The study compares different possible production strategies for a product (via conventional technologies and Additive Manufacturing) and assesses the degree of postponement that it would be recommended in order to meet a certain demand distribution. The problem solving is calculated by a program containing a stochastic mathematical model which incorporates extensive information on costs and lead times for the required manufacturing operations. This study was published in Procedia Manufacturing.  

Comparison of production strategies and degree of postponement when incorporating additive manufacturing to product supply chains

Publication TypeProceedings Article
Year of Publication2017
AuthorsJ. Minguella-Canela; A. Muguruza; D.R. Lumbierres: F.-Javier Heredia; R. Gimeno; P. Guo; M. Hamilton; K.Shastry, S.Webb
Conference NameManufacturing Engineering Society International Conference 2017, MESIC 201
Series TitleProcedia Manufacturing
Volume13
Pagination754-761
Conference Start Date18/06/2017
PublisherElsevier
Conference LocationVigo, Spain
EditorJorge Salguero, Enrique Ares
ISSN Number2351-9789
Key WordsAdditive Manufacturing; Ultra-postponement; Supply Chain; research; paper
AbstractThe best-selling products manufactured nowadays are made in long series along rigid product value chains. Product repetition and continuous/stable manufacturing is seen as a chance for achieving economies of scale. Nevertheless, these speculative strategies fail to meet special customer demands, thus reducing the effective market share of a product in a range. Additive Manufacturing technologies open promising product customization opportunities; however, to achieve it, it is necessary to delay the production operations in order to incorporate the customer’s inputs in the product materialization. The study offered in the present paper compares different possible production strategies for a product (via conventional technologies and Additive Manufacturing) and assesses the degree of postponement that it would be recommended in order to meet a certain demand distribution. The problem solving is calculated by a program containing a stochastic mathematical model which incorporates extensive information on costs and lead times for the required manufacturing operations.
URLClick Here
DOIhttps://doi.org/10.1016/j.promfg.2017.09.181
ExportTagged XML BibTex

Comparison of production strategies and degree of postponement when incorporating additive manufacturing to product supply chains

Publication TypeConference Paper
Year of Publication2017
AuthorsJ. Minguella-Canela; A. Muguruza; D.R. Lumbierres; F.-Javier Heredia; R. Gimeno; P. Guo; M. Hamilton; K. Shastry; S. Webb
Conference NameManufacturing Engineering Society International Conference 2017, MESIC 2017, 28-30
Conference Date28-30/07/2017
PublisherElsevier
Conference LocationVigo, Spain
Type of WorkContributed presentation
Key Wordsresearch; Additive Manufacturing; Ultra-postponement; Supply Chain; stochastic programming
AbstractThe best-selling products manufactured nowadays are made in long series along rigid product value chains. Product repetition and continuous/stable manufacturing is seen as a chance for achieving economies of scale. Nevertheless, these speculative strategies fail to meet special customer demands, thus reducing the effective market share of a product in a range. Additive Manufacturing technologies open promising product customization opportunities; however, to achieve it, it is necessary to delay the production operations in order to incorporate the customer’s inputs in the product materialization. The study offered in the present paper compares different possible production strategies for a product (via conventional technologies and Additive Manufacturing) and assesses the degree of postponement that it would be recommended in order to meet a certain demand distribution. The problem solving is calculated by a program containing a stochastic mathematical model which incorporates extensive information on costs and lead times for the required manufacturing operations.
URLClick Here
ExportTagged XML BibTex

Strategical models in supply chain design through mathematical optimization.

Publication TypeFunded research projects
Year of Publication2016
AuthorsF.-Javier Heredia
Type of participationLeader
Duration11/2016-11/2019
Funding organizationAccenture Technology Labs
PartnersAccenture Technology Labs (Silicon Valley), Accenture Analytics Innovation Center (Barcelona)
Full time researchers2
Budget132.532,43€
Project codeI-01507, I-01508
Key Wordsresearch; supply chain; manufacturing; private; project; Accenture
ExportTagged XML BibTex

Optimización de costos logísticos: Un caso de estudio de una empresa de plásticos

Publication TypeProceedings Article
Year of Publication2016
AuthorsMiguel Mata Perez; F.-Javier Heredia; Claudia Morales Carreon
Conference NameCongreso Internacional de Logística y Cadena de Suministro 2016 CILOG2016
Series TitleSesiones técnicas
Volume2
Pagination38-46
Conference Start Date3-7/09/2016
PublisherAsociación Mexicana de Logística y Cadena de Suministro A.C.
Conference LocationYucatán, México
Key Wordsresearch; supply chain; distribution chain; logistics; paper
AbstractHoy en día los costos logísticos representan una gran oportunidad de mejora para las empresas siendo los costos de transporte y los costos de inventario los más representativos. En este trabajo se presenta un estudio de una empresa ubicada en la región, la cual incurre actualmente en altos costos logísticos en su proceso de importación de materia prima desde Asia hasta su filial en Monterrey, N.L. Por medio de un modelo matemático entero mixto se consigue minimizar los costos antes mencionados. El modelo tiene las siguientes características: es de ubicación de facilidades en cuatro etapas, multiproducto, multiperiodo y multitransporte.
ExportTagged XML BibTex

Optimización de costos logísticos: Un caso de estudio de una empresa de plásticos.

Publication TypeConference Paper
Year of Publication2016
AuthorsClaudia Morales Carreon; F.-Javier Heredia; Miguel Mata Perez
Conference NameCongreso Internacional de Logística y Cadena de Suministro 2016
Conference Date3-7/09/2016
Conference LocationYucatán, Máxico
Type of Workcontributed
Key Wordsresearch; supply chain; distribution chain; logistics
AbstractHoy en día los costos logísticos representan una gran oportunidad de mejora para las empresas siendo los costos de transporte y los costos de inventario los más representativos. En este trabajo se presenta un estudio de una empresa ubicada en la región, la cual incurre actualmente en altos costos logísticos en su proceso de importación de materia prima desde Asia hasta su filial en Monterrey, N.L. Por medio de un modelo matemático entero mixto se consigue minimizar los costos antes mencionados. El modelo tiene las siguientes características: es de ubicación de facilidades en cuatro etapas, multiproducto, multiperiodo y multitransporte.
ExportTagged XML BibTex
Syndicate content