proximal bundle methods

Parallel Proximal Bundle Methods for Stochastic Electricity Market Problems

Publication TypeConference Paper
Year of Publication2015
AuthorsF.-Javier Heredia; Antonio Rengifo
Conference Name27th European Conference on Operational Research
Conference Date12-15/07/2015
Conference LocationGlasgow, UK.
Type of Workinvited
Key Wordsresearch; MTM2013-48462-C2-1; mixed-integer nonlinear programming; proximal bundle methods; multimarket electricity problems; parallelism
AbstractThe use of stochastic programming to solve real instances of optimal bid problems in electricity market usually implies the solution of large scale mixed integer nonlinear optimization problems that can't be tackled with the available general purpose commercial optimisation software. In this work we show the potential of proximal bundle methods to solve large scale stochastic programming problems arising in electricity markets. Proximal bundle methods was used in the past to solve deterministic unit commitment problems and are extended in this work to solve real instances of stochastic optimal bid problems to the day-ahead market (with embedded unit commitment) with thousands of scenarios. A parallel implementation of the proximal bundle method has been developed to take profit of the separability of the lagrangean problem in as many subproblems as generation bid units. The parallel proximal bundle method (PPBM) is compared against general purpose commercial optimization software as well as against the perspective cuts algorithm, a method specially conceived to deal with quadratic objective function over semi-continuous domains. The reported numerical results obtained with a workstation with 32 threads show that the commercial software can’t find a solution beyond 50 scenarios and that the execution times of the proposed PPBM are as low as a 15% of the execution time of the perspective cut approach for problems beyond 800 scenarios.
URLClick Here
ExportTagged XML BibTex

Solving electricity market quadratic problems by Branch and Fix Coordination methods

Publication TypeConference Paper
Year of Publication2011
AuthorsF.-Javier Heredia; Cristina Corchero; Eugenio Mijangos
Conference Name25th IFIP TC7 Conference on System Modeling and Optimization
Conference Date12-16/09/2011
Conference LocationBerlin
Type of Workcontributed presentation
Key Wordsresearch; optimal bid; day-ahead electricity market; branch and fix coordination; perspective cuts; bilateral contracts; futures contracts; stochastic programming
AbstractThe electric market regulation in Spain (MIBEL) establishes the rules for bilateral contracts in the day-ahead optimal bid problem. Our model allows a price-taker generation company to decide the unit commitment of the thermal units, the economic dispatch of the bilateral contracts between the thermal units and the optimal sale bids for the thermal units observing the MIBEL regulation. The uncertainty of the spot prices is represented through scenario sets. We solve this model on the framework of the Branch and Fix Coordination metodology as a quadratic, two-stage stochastic problem. Numerical results are reported.
URLClick Here
ExportTagged XML BibTex

Treball final de màster sobre mètodes duals aplicats a la l'optimització de problemes estocàstics de mercats elèctrics.

 El passat dimecres 16 de març es va presenta a la Facultat de Matemàtiques i estadística el treball de final de màster titulat Optimización de modelos estocásticos de mercado eléctrico múltiple mediante métodos duales realitzat per l'alumne Unai Aldasoro, del Màster d'Estadística i Investigació Operativa UPC-UB, sota la meva direcció. En aquest treball s'estudia l'aplicació del mètode d'optimització dual conegut com a proximal bundle method, descrit a [1] a la resolució del problema estocàstic d'optimització de l'oferta a mercats elèctrics múltiples desenvolupat a [2].

Aquest treball, que forma part del projecte de recerca del MICINN DPI2008-02153 i va ser sel·leccionat en la 4a convocatòria d'ajuts CERMET de la FME a la realització de treballs finals de màster, li ha estat concedida la menció "Matrícula d'Honor" per la Comissió de d'Avaluació  de Treballs Fí de Màster del MEIO, a proposta del tribunal que el va jutjar.

 
[1]  J. B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Algorithms II – Advanced Theory and Bundle Methods. Springer-Verlag, 1993.

[2] Cristina Corchero, F.-Javier Heredia, Optimal Day-Ahead Bidding in the MIBEL's Multimarket Energy Production System, Proceedings of the 7th Conference on European Energy Market EEM10, Madrid, IEEE, pp. 1 - 6 , DOI: 10.1109/EEM.2010.5558714

Optimización de modelos estocásticos de mercado eléctrico múltiple mediante métodos duales

Publication TypeTesis de Grau i Màster // BSc and MSc Thesis
Year of Publication2011
AuthorsUnai Aldasoro Marcellan
DirectorF. Javier Heredia
Tipus de tesiMSc Thesis
TitulacióMàster in Statistics and Operations Research
CentreFacultat de Matemàtiques i Estadística, departament d'Estadística i Investigació Operativa, UPC
Data defensa16/03/2011
Nota // markMatrícula d'Honor (10/10)
Key Wordsteaching; research; dual methods; electricity markets; DPI2008-02153; mixed integer nonlinear programming; proximal bundle method; optimal day-ahead bid; electricity multimarket; MSc Thesis
AbstractEl presente trabajo plantea la resolución computacional de un modelo de optimización de la oferta de generación eléctrica para compañías eléctricas que participan en el mercado eléctrico liberalizado MIBEL. Dicho mercado se circunscribe a España y Portugal y se compone de una serie de subastas energéticas consecutivas donde el operador de mercado realiza para cada una de ellas la casación entre la oferta y demanda. Así, el objetivo de la compañía generadora será maximizar los beneficios obtenidos en la participación del conjunto de mercados teniendo en cuenta el cumplimiento de las obligaciones contractuales ya establecidas. El modelo matemático propuesto para su caracterización corresponde a un modelo de programación estocástica multietapa cuyo equivalente determinista es un problema de optimización cuadrática con variable binaria. Con el objetivo de aprovechar la estructura del problema se procede a plantear la dualización de un grupo de restricciones que producen que el problema original pueda ser dividido en subproblemas. Para su resolución se deberá estudiar la idoneidad de diversos métodos duales (subgradiente, Bundle Methods, ACCPM) y seleccionar el más conveniente para el caso abordado. La decisión finalmente adoptada ha consistido en elegir como método de resolución el algoritmo Proximal Bundle Method descrito en [18] y adaptado satisfactoriamente a problemas de coordinación de la generación hidro-térmica [17]. El análisis de método Proximal Bundle Method corresponderá a su compresión e interpretación gráfica, a la resolución de un ejemplo de pequeña escala de manera analítica y a su resolución computacional. El objetivo de la fase de resolución será valorar el proceso iterativo y la convergencia del Proximal Bundle Method aplicado al problema multimercado de oferta óptima y la comparación de resultados respecto a otro método dual como el método del subgradiente. La implementación computacional se realizará mediante el lenguaje C++, específicamente se utilizará el metalenguaje Concert Techonolgy creado por IBM para el enlace entre el código C++ y el solver CPLEX. Se comprueba que dicho lenguaje tiene como ventajas principales su simplicidad estructural y el compacto código que produce. No obstante la implementación del Proximal Bundle Method manifiesta una serie de limitaciones prácticas de Concert Technology en cuanto al almacenado y actualización de problemas de optimización. Se propone como línea de futuro el análisis de lenguajes alternativos. En todo caso, los resultados obtenidos desprenden que el Proximal Bundle Method se adapta satisfactoriamente al problema multimercado de oferta óptima, además se concluye que en la aplicación numérica considerada un tamaño de Bundle ilimitado produce los mejores resultados. Además en trabajo propone una serie de líneas de investigación futuras en las que destacan la paralelización de la resolución de los subproblemas, y la definición del subproblema asociado a cada térmica como un problema de caminos mínimos
DOI / handlehttp://hdl.handle.net/2099.1/13917
URLClick Here
ExportTagged XML BibTex
Syndicate content