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Abstract—An unprecedented process of reforms has shaken the
power industry during the last two decades. In order to sell the en-
ergy produced by their plants, many generation companies are now
forced to prepare and submit daily offers to an electricity market
under uncertainty about the offers submitted by their rivals. In
this paper, we describe a methodology to prepare optimal offers
for a generation company operating in a day-ahead market orga-
nized as a series of 24 hourly uniform-price multiunit double auc-
tions. We explicitly consider the ability of the company to affect
the price of electricity as well as the company’s uncertainty about
rivals’ behavior.

Index Terms—Electricity competition, market models, offering
strategies, power generation scheduling.

1. INTRODUCTION

HE power industry of an increasing number of countries

is suffering an intense process of reforms oriented to the
introduction of competition both at the wholesale and at the
retail level [12]. Regulatory authorities in different regions
have adopted a variety of approaches to introduce competition
at the wholesale level. In general, energy can be traded through
a number of market mechanisms with time scopes ranging
from several years to a few hours prior to physical delivery.
Although long- and medium-term markets are expected to gain
importance, electricity spot markets, in which energy is traded
for immediate delivery, have played the most relevant role
and will continue to do so, given that they are considered as a
reference for the rest of transactions.

In a significant number of cases the spot market is organized
as a sequence of market mechanisms, typically including
a day-ahead market, a congestion management procedure,
an adjustment market and a market for ancillary services.
Day-ahead markets, even if not mandatory, usually present
large transaction volumes when compared to other spot market
mechanisms. We focus on the problem that a generation com-
pany faces when preparing its offers for a day-ahead market,
although we explicitly consider the flexibility provided by an
adjustment market and the possibility of saving power for a
reserves’ market (Fig. 1).

‘We therefore assume that there are no significant transmission
constraints, which simplifies the analysis and leads to results
that can be generalized in a subsequent stage.
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Fig. 1. Electricity spot market as a sequence of market mechanisms.

Spot market mechanisms are frequently organized as a series
of hourly or semi-hourly auctions (e.g., the day-ahead market
in the Spanish wholesale electricity market is organized as a
set of twenty-four simultaneous hourly auctions). We assume
that each spot market mechanism (i.e., the day-ahead market,
the adjustment market and the reserves’ market) is constituted
by twenty-four hourly auctions. Each of these hourly auctions
has the following characteristics:

e Uniform priced: All transactions are remunerated at the
price given by the intersection of the aggregate offer curve
and the aggregate demand curve.

* Double: Both offers from selling agents (e.g., generation
companies) and bids from buying agents (e.g., distribution
companies or retailers) can be submitted to each auction.

* Multiunit: Each seller can submit several sell offers and
each buyer can submit several buy bids.

* Sealed-bid: Each agent is unaware of the offers or bids
submitted by the rest of agents.

Each offer (bid) is defined by a quantity ¢ and a price p, in-
dicating the amount of energy ¢ that the agent is willing to sell
(purchase) at price p. Portfolio offering is permitted, so gener-
ation companies are not required to specify the particular unit
corresponding to each offer. To derive the aggregate offer (de-
mand) curve, offers (bids) are sorted by increasing (decreasing)
prices and their quantities are accumulated.

We also assume that, after the clearing of each market mech-
anism, information about the submitted aggregate offer and de-
mand curves is made publicly available.

In this paper, we present a decision-support tool for a gener-
ation company operating in an electricity spot market with the
abovementioned characteristics. This tool provides optimal of-
fers given a discrete probability distribution for the behavior of
the rest of agents.

The paper is organized as follows. Section II provides a
survey of recent modeling approaches adopted to represent
competition in electricity markets and justifies our particular
approach based on the idea of residual demand, which we fully
describe in Section III. Section IV presents the manner in which
we model the portfolio of the generation company, including
not only its generation assets but also its position in long-term
contracts and other strategic aspects. Section V explains how
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we solve the resulting large-scale two-stage stochastic program
using Benders’ decomposition. Section VI illustrates the per-
formance of our approach with a numerical example. Finally,
Section VII summarizes the main conclusions of our research.

II. MODELING COMPETITION IN ELECTRICITY MARKETS

The reform of the power industry has triggered the develop-
ment of new conceptual models oriented to represent the inter-
action of agents in electricity markets [13]. Most of these models
can be categorized into two main groups.

A. Models That Represent All the Generation Companies
Participating in the Market of Study

Models in this first group can again be classified into two big
families: equilibrium and simulation models.

Models based on the economic theory of equilibrium fre-
quently represent generation companies as Cournot agents and
are commonly formulated as mixed complementarity problems
(or as systems of variational inequalities) thus benefiting from
the existence of specific powerful commercial solvers [11], [18],
[21]. Other equilibrium models assume that agents express their
decisions in terms of offer curves and are based on the theory of
supply function equilibrium (SFE) [15]. They are more sophis-
ticated but significantly more difficult to solve [3], [9], [19]. Re-
cently, models including conjectural variations have been pro-
posed that are halfway between Cournot and SFE models [7],
[8].

Simulation models are not based on the general theory of
oligopoly but rather provide an ad hoc representation of the
behavior of agents in a certain electricity marketplace, which
limits the possibility of reaching general conclusions [17].

B. Models That Focus on a Particular Generation Company

Models in this second group can be categorized according to
three aspects:

1) The manner in which they represent the spot market
Two approaches can be adopted to represent the spot
market auctions when only one company is considered:
* If the company is unable to affect prices then each
auction can be represented by its estimated clearing
price [20].
* In other case, the influence of the company on the
clearing price must be explicitly considered [10].
This requires estimating the behavior of the rest of
agents.
2) Their treatment of uncertainty
A spot market model can be deterministic or proba-
bilistic.
3) The detail with which they represent generation units
Three different levels of detail can be adopted:
* An aggregate model of the company’s portfolio
consisting of a unique cost curve and a maximum
power output [22].
* A model that distinguishes individual generation
units but ignores intertemporal constraints such as

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 19, NO. 2, MAY 2004

ramp-rate limits or the evolution of hydro reserves
[14].

* A model that considers units’ intertemporal con-
straints.

C. The Model Adopted in This Paper

In this paper, we only represent in detail the operation of the
company of interest, including each of the company’s genera-
tion units and other aspects of its portfolio, such as long-term
contracts or specific long-term strategic decisions.

Our model of the spot market explicitly takes into account the
influence that the company exerts on the price of electricity but
also the uncertainty it faces. Uncertainty is an essential ingre-
dient for the development of optimal offers [1].

III. REPRESENTING THE SPOT MARKET
A. A Representation Based on the Idea of Residual Demand

In each hourly auction, n, the amount of energy that a gener-
ation company is able to sell, g,,, depends on the clearing price,
Prn. This is due to the combined effect of the demand at that
price, Dy, (pr ), and the supply of the rest of generation compa-
nies at that price, S5 (p,,)

n = Dn(pn) - S:LOSt(pn) = Rn(pn) (H

where R, (-) is the residual demand faced by the company in
auction n. To obtain R, (p, ), the company only needs to know
the demand, D,,(p., ), and the aggregate offer, S,,(p» ), as it can
obtain S7¢*t(p,,) by subtracting its own offer

S;eSt(pn> = Sn(pn> - Sgwn(pn)' )

Conversely, the clearing price can be expressed as a function
of the company’s sales

pn = Ry (an)- )

A function can also be derived for its revenue, p.,

Given our hypotheses concerning information disclosure, the
company can obtain its residual demand and its revenue function
for each past hourly auction.

In order to represent these functions in our model, let us di-
vide the range of quantities that the company can sell in auc-
tion n into .J segments. These segments yield a piecewise linear
representation for the inverse residual demand curve and for the
revenue function, as shown in Fig. 2. It should be noticed that,
in general, the revenue function is not convex.

Each segment j is defined by its lower bound, ¢;,, and its
upper bound, g;11,. We assign a binary variable u;,, to each
segment j, such that u;,, = 1 if the company’s sales in hour n
are higher than ¢;,, and u;,, = 0 in other case. We also define
a continuous variable v, to represent the portion of segment j
that is filled. Segment j can only be used if segment 7 — 1 is full.
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Fig. 2. Piecewise linear representation of residual demand and revenues.

Making use of the slopes of these piecewise linear functions,
the following expressions provide the clearing price and the
company’s revenues for each level of sales ¢,

Pn =Pin + D jntjn )

i<J
Pn = P1n + Z VinVjin (6)

i<J
I =Y Ujn @)

i<J

uj-l—ln(qj-l—ln_an) S Ujn S ujn(qj+ln_an)7 j< J (8)
Ujn SUj_1n, 1<5<T. 9

B. Representing Uncertainty in Each Market Mechanism

The generation company does not know its residual demand
prior to submitting its offers to each auction. Therefore it must
decide its offers based on historic information about the be-
havior of the rest of agents. We have assumed this historic in-
formation to be readily available.

If we focus on the twenty-four auctions that constitute the
day-ahead market, the generation company must prepare its
offers considering the probability distribution of the corre-
sponding twenty-four residual demand curves. Although the
problem of constructing this probability distribution exceeds
the purpose of this paper, we suggest the following simplified
approach. The company can look for recent days similar to the
day of study by comparing the hourly demand of electricity
expected for the day of study with that observed in recent
days. Once a group of K similar days has been identified,
the company can assume that the probability distribution for
the market session of study is completely defined by these
past K market sessions. This is equivalent to saying that the
day-ahead market session has at most K equiprobable possible
realizations (finite support).

Hence, we assume that in each of the spot market mech-
anisms, the generation company faces K possible series of
twenty-four residual demand curves (Fig. 3).

Considering only one of the possible realizations, £, it is not
difficult to determine the amount of energy that the company
should sell in each of the twenty-four auctions so as to maxi-
mize its profit [2]. This would result in a vector of quantities,
(qky-- -+ Qnks - - -, G2ar ) for each realization k.

Given the vector of quantities for each realization k, a vector
of clearing prices results from the corresponding twenty-four
residual demand curves, as shown in Fig. 4. Each pair (gnk, pnk)
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Fig. 3. Representing uncertainty in the spot market mechanisms.
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Fig. 5. Uncertainty in a particular hourly auction 7.

can be considered as the offer decided by the company for auc-
tion n and realization k.

If we now focus on a particular auction, m, it is easy to
understand that the K quantities and K prices decided by the
company for that hour, although corresponding to different
market outcomes, constitute the offer curve that the company
must submit to that auction. Fig. 5 illustrates this idea for
K = 3 and shows that the shape of the offer curve between
each pair of contiguous residual demand curves is irrelevant. It
also reveals that the decisions made by the company for the K
different realizations of uncertainty are not independent, given
that they must constitute nondecreasing offer curves.

To guarantee that the offer curves decided by the model are
nondecreasing, the following condition must hold for each pair
of offers (k, k") submitted for auction n:

(an - an’)(pnk - pnk’) Z 07 V’I’L,Vk‘,Vk)l > k (10)

These nonlinear constraints can also be formulated using
linear expressions and binary variables

nk — Gui > — T M, ¥, Yk, V' > kb (11)
Gt — Qi > — (1 = T Y MY, ¥, VE, VK >k (12)
Pk — Pkt > — Togr MP, Y0,V VE > k (13)
Pk — Pk > — (1= @y )MP, ¥, Ve, VE' >k (14)
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where M1 is a big quantity, M? is a big price and z,x is a
binary variable. If z .y = 1 then qnr > gni and ppr > Dk
Conversely, if prrr = 0 then ¢ < @nir and ppr < Prk-
These constraints establish a link between the offers decided
for the different realizations and complicate the search for an
optimal strategy. They can be summarized in the following com-
pact formulation, expressing that the quantities offered in each
hour n must belong to the set of feasible offer curves, @

{an7Vk} € Q7 vn.

In this context, calculating the company’s expected revenues
or the expected clearing price for a certain auction n is straight-

forward
Elp] = > 7Y pur(anr)
k n

Elpn] = > mkpnk(ank)

(15)

(16)
A7)

where 7, is the probability of the k-th market realization.

C. Representing the Sequence of Spot Market Mechanisms

According to our assumptions, the company must make its
decisions in several stages. In the first stage, the company de-
cides its offers for the day-ahead market. After the clearing of
the day-ahead market, in the second stage, the company can cor-
rect its schedule with its offers for the adjustment market. Sub-
sequently, the company determines the reserve that its units can
provide and offers it to the ancillary services’ market. A final
generation schedule results from this sequence of market mech-
anisms.

In practice, the volumes traded in the spot market mecha-
nisms diminish as the moment of physical delivery gets nearer.
For example, in the Spanish spot market, the volume of energy
traded in the adjustment market is usually between a 10 and a
20% of the volume traded in the day-ahead market. Similarly,
the reserve market is less relevant than the adjustment market.
This suggests simplifying the representation of the adjustment
market and the reserves’ market when deciding the offers for the
day-ahead market. Specifically, we assume that each realization
of the day-ahead market is accompanied by a single possible
realization of the adjustment market and the reserves’ market
(Fig. 6).

We therefore represent the participation of a generation com-
pany in the spot market from the point of view of the day-ahead
market as a two-stage stochastic decision process. Uncertainty
is only present in the first stage, where the company decides its
offers for the day-ahead market. Given the possible outcomes
of the day-ahead market, in the second stage the company eval-
uates its possible sales in the adjustment market and the re-
serves’ market and derives a final schedule for its generating
units. It must be noticed that, while the decisions taken for the
day-ahead market take the form of offer curves that can be di-
rectly submitted to the market operator, the decisions for the ad-
justment market and the reserves’ market as well as the genera-
tion schedule are only preliminary and will have to be revised in
further detail once the day-ahead market has been cleared. Con-
sequently, the revenue functions used to estimate the company’s
revenues in the adjustment market and in the reserves’ market
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Fig. 6. Decision process in the spot market assumed in this paper.

can be modeled in a simplified manner. A convenient approach
is to estimate them using piecewise linear convex functions.

IV. REPRESENTING THE COMPANY’S PORTFOLIO

A. Generating Units

In this paper, we represent the operation of the company’s
generating units avoiding the use of nonconvex expressions (e.g.
we do not make commitment decisions). Equations are formu-
lated for each scenario, k, to obtain a feasible schedule that sup-
ports the company’s sales in the spot market.

We approximate the production costs of thermal unit ¢ in each
hour n and each market situation & as a linear function

t
ok =0 Qi + [ < "uy + aﬁ;‘—f) . VLYRLYE  (18)

where o’ are unit ¢’s variable O&M costs, in Euro/MWh, ¢’
is the net output of unit ¢, in megawatts, f* is the fuel cost, in
Euro/Tcal, 3 is the independent term of the heat rate function,
in Tcal/h, u!,, € {0,1} is the commitment state (on/off) for unit
t in hour n and situation k, ! is the linear term of the heat rate
function, in Tcal/MWh, and k? is the self-consumption coeffi-
cient of unit ¢, in p.u. We assume that commitment decisions
have already been made with a one-week time scope and that
u!,. enters as input data [2]. Thermal units also have a gross
maximum capacity g, in MW, a gross minimum stable output
qt, in megawatts, and a ramp-rate limit, /;, in megawatt hours

19)
(20)

@K uny <y + o ST R ugy, VY0, VE

_lt < q:zk - quflk < lt; Vt/V’IL?Vk
where 7!, is the amount of reserve provided by unit ¢, in MW.
All these constraints can be summarized by expressing that

the schedule decided for unit ¢ under market scenario £ must
belong to its set of feasible schedules, Q¢:

{gbyrip,Vn} € Q') Vt,Vk.

Our model manages hydro reserves in an aggregate manner
by integrating hydro plants located in the same river basin into

21
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an equivalent hydro unit, h. The detail of the hydro network
can be considered in a subsequent decision stage in order to de-
rive a more precise hydro schedule. We consider a constant en-
ergy/flow ratio for each equivalent hydro unit and express hydro
reserves in terms of stored energy, in MWh. Equivalent units
can also operate in pumping mode. The state of each equivalent
reservoir h is evaluated as follows:

h
why = wh_, — qg‘—,f it —sh bbb VRV, VE (22)

where w!, is the energy stored by unit A at the end of hour n
in market situation k, in MWh, qﬁk is its net output in hour n
and situation k, in MW, k" is its self consumption coefficient,
in p.u., zﬁ are the net inflows it receives in hour n, in MWh, SZ k
is the energy spilt in hour n and situation &, in MWh, b, is the
energy pumped in hour 2 and situation &, in MWh and 7" is the
performance of the pump-turbine cycle, in p.u.

Each unit has gross maximum generation and pumping ca-
pacities, qh, Eh, both in MW. Its reservoir has a maximum and
a minimum operating level, w", w", in MWh

0<q", +rh, <k"g", Vh,Vn,Vk (23)
0<bl, <", Vh,Vn,Vk (24)
0<s"., Yh,Vn,Vk (25)
wh <wh, <w", Vh,Vn,Vk (26)

where ", is the amount of reserve provided by unit /, in MW.
In this paper, we assume that unit h has a certain amount of
energy, w{', available for the planning horizon. A medium-term
hydrothermal model can determine this energy.

All these constraints can be summarized by expressing that
the schedule decided for unit A under market scenario & must
belong to its set of feasible schedules, Q":

{qZkvakvrzmSZkvwzmvn} € th Vh7Vk (27)

B. Forward Contracts

In many cases, a generation company has the possibility of
selling part of its production through long-term contracts. These
contracts, in their most basic form, consist of an agreement to
sell a certain amount of energy for a fixed price at certain hours
and at a certain node of the network. Before entering into one of
these contracts, the company must certainly evaluate the profit
it expects to obtain from it. In the short term, however, the com-
pany must evaluate the influence that its portfolio of long-term
contracts exerts on the profit it expects to obtain in the spot
market. From this perspective it is important to consider whether
the settlement of these contracts is physical or financial.

A long-term contract that has to be physically settled implies
the obligation to supply a certain amount of energy during a
number of hours. The company must take this into account when
scheduling its generating units. These are commonly known as
physical bilateral contracts (PBC’s). Let CF be the set of PBC’s
signed by the generation company and let ¢ be one of them. The
amount of energy that the company has agreed to serve in hour n
as aresult of this contract is g;, MWh and the price that the com-
pany will be paid is pS, Euro/MWh. With this contract, the com-
pany’s revenue increases in p5, s, Euro. This payment cannot be

modified by the company in the spot market. In contrast, in a
financial contract, one party pays to the other the difference be-
tween a fixed price and the spot price for a certain hour n. These
are commonly known as contracts for differences (CfDs). Let
CP be the set of CfDs signed by the generation company. A CfD,
¢, for a quantity ¢;, and a price p{, does not affect the company’s
generation schedule. However, its net revenue, (p%, — pnk)qs,
depends on the spot price expected for situation &, p,, and on
the company’s strategy in the spot market.

C. Energy and Reserve Balance Equations

As has been mentioned, in each scenario k the company de-
cides to sell an amount of energy qz & 1n the n-th hourly auction
of day-ahead market and a net amount ¢, in the n-th hourly
auction of the adjustment market. The company has also sold
an amount ¢¢ through each physical bilateral contract ¢ € CF.
In order to guarantee that the company is able to produce this
energy with its generating units, the following energy balance
equation must be formulated:

G+ o+ Z G = Z G + Z Gy — by, Vn, V. (28)
ceCP t h

The company has also sold an amount of reserve ¢, in each
hourly auction of the reserve market and has the obligation of
providing this reserve. A reserve balance equation must then be
formulated:

r o t h
G =D Thi+ D rh, Vn,VE.
teT heH

(29)

D. Long-Term Guidelines

Traditional short-term planning tools such as unit-commit-
ment or economic-dispatch models include constraints that
orient their results toward medium-term objectives. For ex-
ample, a volume of available hydro resources (or alternatively,
a water-value curve) is typically specified according to the
results of a medium-term hydrothermal-coordination model.
This prevents short-term models from suggesting the naive
decision of using all hydro resources.

Similarly, short-term models used to decide the amount of
energy that a company must sell in a certain auction, typically
suggest reducing the company’s output in order to increase the
clearing price well above its marginal costs. This effect can be
justified with a simplified expression of the company’s profit:

P =p(q)q — c(q) (30)

where ¢(q) is the cost of the energy sold by the company, ¢, and
p(q) is the clearing price. The profit-maximizing output must
fulfill the following first-order optimality condition:

opP Ip(q) /
— = ——q— =0.
9 p(q) 9 17 ° (q)
Hence, the optimal difference between the clearing price,

p(q), and the company’s marginal costs, ¢(¢) increases with
the absolute value of the slope of the residual demand

) - o) = - 250 | 2D

This difference is usually known as price markup.

3D

(32)
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In an auction in which the residual demand is very steep and
the company’s output is expected to be high (a typical situation
in on-peak hours) the model would blindly tend to reduce the
company’s production so as to increase the difference between
the clearing price and the company’s marginal costs. However,
this allows its rivals to sell more quantity at a higher price. If the
company repeatedly gives up its position during on-peak hours,
its rivals will tend to increase their market shares, so that in the
long run prices will return to their original level and the com-
pany will have lost its market position. The possibility of suf-
fering market-power mitigation measures from the regulator is
another adverse consequence of this myopic behavior. A simple
approach to avoid these undesirable effects is to take into con-
sideration the future value of the company’s current market po-
sition by adding a new term to the expression of the company’s
profit

q

P =p(q)q—c(q) + s (33)

where o is the value of the company’s market share, expressed
in Euro per unit, and ¢7 is the total expected trading volume, in
MWh. o can be obtained from a medium-term strategic model
including a minimum market share constraint.

E. Expected Profit

The final expression of the company’s expected profit in-
cluding all the abovementioned contributions is

Pl = Zﬂk Z {pix (ane) + Pior (a) + prr ()
k

n

+ > v+ Y (v — i) 4,
ceCP ceCP
d
ron =D e (au) f| 69
n t

where p?,, p2, and pI, are the revenues obtained by the com-
pany in the day-ahead market, in the adjustment market and in
the reserves’ market, respectively, in hour n and scenario k. We
have only considered the value of the company’s share in the
day-ahead market.

V. SOLUTION STRATEGY: BENDERS DECOMPOSITION

The following is a compact formulation for the problem de-
scribed in previous sections:

Max

d a7
Dt Ik Ik’

E[P]

ot h .k
ke " nk Tnk "k Tnk

st {q?. . Vk} € QY Vn,

{q;k Tflk Vn} €Q', Vk,Vt,
{qnlm k> Tnk SZk wnk Vn} €Q", VkVh,
q'nk+an+ Z Qn ank—i_z Ank — hk7 \V/TL,Vk,
ceCP
q;k=2rnk+2rnk, Vi, Vk.
teT heH
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Fig. 7. Benders decomposition applied to our problem.

We have formulated this problem using linear expressions ex-
cept for the binary variables used to evaluate the company’s
revenue in the day-ahead market and to guarantee that the deci-
sions made for the day-ahead market constitute nondecreasing
offer curves. Hence, complicating variables only appear in the
day-ahead market.

Benders decomposition is particularly amenable to this
problem structure. It decomposes the problem into a master
problem (MP) that can take any form (including binary vari-
ables) and a subproblem (SP) that must be convex [4]. When
dealing with two-stage stochastic programs [5], a natural
approach is to include first-stage decisions in the MP and
second-stage decisions in the SP, as shown in Fig. 7.

Hence, problem MP is formulated as follows:

lt/fz’i.x Z’Nk [Z{Pik (QZk)
+2_

ceCP

q,
N zpnqmzﬁ}wk
ceCP

t :{quk?Vk}Ede V’I’L,
Hkgaky+z/\nkll(qzk_q2k’/)7 Vk,veV©

pnk (Iﬁk)) I,

MP

where 0}, is an approximation of the maximum profit that the
company obtains in the second-stage if situation k occurs. This
approximation is constructed as follows.

Given the level of sales ¢¢,” decided in iteration v by the
master problem for each auction n of the day-ahead market,
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the following linear program, SPy, provides the second-stage
maximum profit if market situation & occurs:

Max

an i
t ot ook
LR LN

- Z Chi (szk)
t

s.t. :{qzk} c Qd, Vn,
{ahn: T;kvvn} € Q' Vt,
SPk {q nk? nk7 nk‘7 :;kwvn} € Qh7 Vh/

_an+ Z qn+zan+

ceCP

Z nk —
Ink = ZTnk + Zﬁfk: vn.
t h

The dual variable of the energy balance equation, A", indi-
cates how the company’s maximum second-stage profit deviates
from 6" when slight changes are introduced in the first-stage
decisions, Aq?,” = ¢¢, —q?,”. This is the approximation pro-
vided by Benders’ cuts

(0) = Pk (@nk) + Pnk (Gnk)

nk - an V?’L.’

\

O < 0"+ 3 A (a —aii”), VR eVO  (3)

where VO is the set of cuts currently available. It is evident that
this is an outer linearization of the second-stage profit function
(also known as recourse function.) Therefore, it suggests higher
profits than those that are obtained when SPy, is solved. How-
ever, after a certain number of iterations, the number of cuts is
large enough to provide an exact approximation of the recourse
function for situation k in the region of interest. When this hap-
pens, the solution provided by MP coincides with that of the
original problem.
Benders algorithm is then summarized as follows:

Step 1: Set v =0.
Step 2: If v=0 then set 0, =0.
Set v=v+1.

Solve MP: ¢?,” and #), are obtained.
Step 3: Loop in k:
Solve SPi: 6,Y and \,;.” are ob-
tained.
Add a new cut to MP.
End loop.
Step 4: Check for convergence. If 6,” <

0., go to step 2.

It must be noticed that in each iteration K cuts are generated.
This is the multicut version of Benders decomposition applied
to a two-stage stochastic program.

An interesting feature of problem MP is that the offers chosen
for different hourly auctions of the day-ahead market are only
linked by the cuts approximating the recourse function for each

TABLE 1
GENERATION UNITS OWNED BY THE COMPANY OF STUDY

Gross Minimum  Maximum Hydro
Type Plants maximum stable output ~ pumping resources
output (MW) (MW)  capacity MW)  (MWh)
Nuclear 3 2940 2940
Coal 20 6169 2999
Oil/gas 15 1440 366
Hydro 16 4957 1614 12250

scenario, 6. This function can also be expressed as the sum of
hourly recourse functions, as follows:
d v
Ank )

b, = Z()nk < Z {Gnk" + Z Ank” (q;llk
n n b (36)

where 6,," is the value of the recourse function for hour n given
by subproblem SPj at iteration v.

It is because of the recourse function that problem MP is not
separable into hourly problems of the form

{
Max S [pzk@zm S (5ot (a))
. ceCb

MP,, ot +9nk]

and
b {qngk} ede

anSgnk’/'i')\nky(qzk_qgky), Vk‘,Z/EVO.

However, it is easy to see that any feasible solution for MP,,,
Vn, is also feasible for MP. Therefore, an initial feasible integer
solution for problem MP can be obtained in each iteration of
Benders algorithm by first solving MP,,, Vn.

VI. NUMERICAL EXAMPLE

The model formulated in this paper has been implemented in
GAMS, together with Benders algorithm [6].

We have solved the case of a large fictitious generation
company facing eleven scenarios in the Spanish electricity spot
market session that took place on October 24th, 2001. This
company owns the generation units indicated in Table 1.

The eleven possible realizations for the day-ahead market
have been obtained searching for similar spot market sessions
among the previous 23 days of October 2001. This search has
been carried out by grouping the 24 days into four clusters ac-
cording to their demand profile, as shown in Table II:

We have obtained residual-demand data from the Spanish
Market Operator [16]. Each curve is approximated by a 20-point
piecewise linear function ranging from 0O to 150 Euro/MWh.
Fig. 8 shows the eleven possible residual demand realizations
for the 5th and the 12th day-ahead market auctions.

We have obtained adjustment market data from the first of
the six sessions of the Spanish intraday market. We have not
considered the reserve market in this study case.

CPLEX 7.5 is unable to find a feasible integer solution for the
resulting problem whose size, together with those of problem
MP and problems SPy, is shown in Table III:
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TABLE 1I
CLUSTERING ANALYSIS TO SEARCH FOR SIMILAR HISTORIC DAYS

October 2001

Date 1|23 4 516 7 8{91011J12 13 14 15]16{17]18 19]20 21 2223-24-:
Day M|TWThF[SaSMTWThlF Sa S M|T|W|[Th F|Sa S M|T|W,
Cluster 2|4 4 4 4|3 1244 4]1 3 1 2|4]|2]|4 413 1 2[4]41

150
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0+ : : i i —LL i
0 2000 4000 6000 8000 10000 12000 14000 16000
Energy (MWh)
Fig. 8. Residual demand realizations for two hourly auctions.
TABLE III
PROBLEM SIZES IN THE FIRST ITERATION
Problem Constraints Variables Binary variables
P 99758 91043 10529
MP 30325 15813 10529
SP; (all) 69432 75240
wemmee \aster problem —— Original problem
50

40 et
30
20
10
0

Objective function (M€)

20 : : : : 7 8 9 10 11 12 13 14 15

12345678‘9101112131415
Iterations

Fig. 9. Evolution of the objective function in Benders’ algorithm.

Problem MP is still hard to solve. Hence, in each iteration we
first solve problems MP,, to obtain an initial feasible point.

15 iterations of Benders’ algorithm and 93 min in a PC
1.2 GHz 512 MB were required to solve this problem. Fig. 9
depicts the evolution of the objective function of problem MP,
which provides an upper bound for the original problem.

The solution yields the optimal offers that the company must
submit to each of the day-ahead market auctions. Fig. 10 shows
the offers corresponding to the 5th and the 12th auctions.

These results can be analyzed from a different perspective.
Fig. 11 represents the hourly quantities that the company would
sell in each of the day-ahead market realizations:

Similarly, Fig. 12 represents the clearing prices that would
result in each of the day-ahead market outcomes.
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Fig. 10. Offers for two of the day-ahead market auctions.
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Fig. 12. Clearing prices for each day-ahead market scenario.

An interesting link can be established between Figs. 10, 11,
and 12. Fig. 10 shows that the offer curve obtained for the 5th
hourly auction is quite flat, thus making the company rather
uncertain about the amount of energy that it will finally sell.
This is confirmed by Fig. 11, where the company’s eleven pos-
sible levels of sales for the 5th hour are very different. In con-
trast, the range of possible clearing prices for the 5th auction is
rather narrow (Fig. 12). A similar analysis can be performed for
the 12th auction, for which the company’s offer curve is rather
steep. This highlights the importance of the shape of offer curves
and suggests using risk measures to limit the lowest revenue that
the company can obtain.

VII. CONCLUSION

In this paper, we have presented a mathematical programming
approach to derive optimal offers for a generation company op-
erating in an electricity spot market consisting of a sequence of
market mechanisms.

We have specified the market design assumed for our devel-
opments as well as the competition model embedded in our ap-
proach to clarify its merits and limitations. Our aim has been
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to reach a tradeoff between the modeling effort dedicated to the
spot market and to the company’s portfolio.

The mixed linear-integer mathematical programs that result
when real study cases are addressed with this approach require
the use of decomposition techniques for their solution. In this
paper, we have explained a multicut version of Benders decom-
position for this particular problem. A realistic numerical ex-
ample in the context of the Spanish electricity market has been
solved to illustrate its performance.
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