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Abstract. One of the main drawbacks of the augmented Lagrangian
relaxation method is that the quadratic term introduced by the aug-
mented Lagrangian is not separable. We compare empirically and
theoretically two methods designed to cope with the nonseparability of
the Lagrangian function: the auxiliary problem principle method and
the block coordinated descent method. Also, we use the so-called unit
commitment problem to test both methods. The objective of the unit
commitment problem is to optimize the electricity production and dis-
tribution, considering a short-term planning horizon.
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1. Introduction

The problem dealt with here is called the unit commitment (UC) prob-
lem. The objective of the UC problem is to optimize electricity production
and distribution, considering a short-term planning horizon (from one day
to one week). Hydroelectric and thermal plants must be coordinated in
order to satisfy the customer demand of electricity at minimum cost and
with a reliable service. Some examples are Refs. 1–5.
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Catalunya, Barcelona, Spain.

295
0022-3239�02�0200-0295�0  2002 Plenum Publishing Corporation



JOTA: VOL. 112, NO. 2, FEBRUARY 2002296

Nowadays, the Lagrangian relaxation (LR) method is the most wide-
spread procedure for solving the UC problem. Within the LR method, there
are two main approaches: the classical Lagrangian relaxation (CLR)
method (Refs. 1, 6, 7) and the augmented Lagrangian relaxation (ALR)
method (Refs. 5, 8, 9). The solution of the UC problem by the CLR method
yields usually an infeasible primal solution due to the duality gap. One
advantage of the ALR method over the CLR method is that the augmented
Lagrangian may obtain a feasible primal solution in cases where the classical
Lagrangian presents a duality gap; see page 279 in Ref. 10 or page 733 in
Ref. 4.

Another advantage of the ALR method is that the dual function associ-
ated to the augmented Lagrangian is differentiable in cases where the CLR
method presents a nondifferentiable dual function; see Ref. 11 or page 352
in Ref. 12. However, when solving nonconvex problems, as it is the case
with the UC problem, the ALR method may obtain a local optimizer (see
page 409 in Ref. 13 or page 228 in Ref. 14) without measure of its quality.
In this case, the dual bound given by the CLR method can be used as a
quality measure of a UC solution. Lai and Baldick (Ref. 15) compared
both methods computationally, finding that in general ALR was slower, but
providing feasible solutions, while CLR needed as usual a heuristic post-
process to achieve primal feasibility.

Although almost all the LR procedures used to solve the UC problem
are based on either the CLR method or the ALR method, in Ref. 4 we find
a two-phase approach. In the first phase, the authors use the CLR method
to obtain the dual optimum. In the second phase, the authors use the ALR
method to obtain a (local) optimal solution whose quality is assessed by the
dual optimum obtained in the first phase. We also believe that this two-
phase approach is advantageous; therefore, we see the ALR method as an
approach to be used together with the CLR method within a two-phase
frame.

One of the main drawbacks of the ALR method, apart from obtaining
a local optimizer, is that the quadratic term introduced by the augmented
Lagrangian is not separable. The most widely used method to overcome this
problem is the auxiliary problem principle (APP) method (Ref. 16). In this
work, we propose the block coordinate descent (BCD) method (Ref. 12,
page 246) as an alternative decomposition approach for ALR. The aim of
this paper is to compare, theoretically and practically, these two decompo-
sition approaches when solving the UC problem.

Our starting point is the paper by Batut and Renaud (Ref. 8); therefore,
we use variable duplication plus the augmented Lagrangian relaxation
(ALR) method. However, the conservative APP method used in Ref. 8 is
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replaced by the BCD method, which proves to be faster, without any sig-
nificant loss of accuracy. Several large-scale instances of the UC problem
have been solved, showing the applicability of the proposed procedure.

This paper is divided into two parts. In the first part, a simple example is
used to introduce the UC problem, the solution methodology, and the theor-
etical foundation. In the second part, a large-scale realistic UC problem is
presented and solved in order to compare the APP method and BCD method.

2. Unit Commitment: Simple Example

As we mentioned above, the unit commitment (UC) problem arises in
the electrical engineering field. However, the techniques developed in this
paper can be used to solve many other problems. First, we start with the
following simple UC problem:

min 2x2CCon(x)C2y2CCon(y), (1a)

s.t. xCyG2, (1b)

x ∈ {0} ∪ [1, 2], (1c)

y ∈ {0} ∪ [1, 2]. (1d)

In this example, there are two thermal units: x stands for the production of
the first thermal unit and y for the production of the second thermal unit.
We must produce 2 MW of electrical power [see Eq. (1b)] at the lowest cost.
The production cost increases quadratically, and we must also pay an extra
starting cost whenever a unit is turned on

Con(x)_�1, if x ∈ [1, 2],

0, if xG0,
(2)

Con(y)_�2, if y ∈ [1, 2],

0, if yG0.
(3)

The feasible set of problem (1) is represented in Fig. 1. This disconnected
feasible set is usually modeled by means of binary variables which represent
the on�off state of the thermal units; see for example Ref. 2. An equivalent
binary variable formulation of problem (1) would be

min 2x2C1uxC2y2C2uy , (4a)

s.t. xCyG2, (4b)

ux1⁄x⁄ux2, (4c)

uy1⁄y⁄uy2, (4d)

ux, uy ∈ {0, 1}. (4e)
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Fig. 1. Disconnected domain of the UC problem.

Following Ref. 8, we duplicate each variable in order to account, on
the one hand, for the coupling constraint xCyG2 (a constraint that pre-
vents the decomposition of the problem) and, on the other hand, for the
disconnected set ({0} ∪ [1, 2])2 ⊂ R2. Obviously, problems (1) and (5) are
equivalent regarding the optimal solution. We have

min x2Cy2Cx̃2CCon(x̃)Cỹ2CCon(ỹ), (5a)

s.t. xCyG2, (5b)

x̃ ∈ {0} ∪ [1, 2], (5c)

ỹ ∈ {0} ∪ [1, 2], (5d)

xGx̃, yGỹ. (5e)

The previous duplicated variables problem can be recast in a more general
form [(x, y) ∈ R2],

min f (x, y)Cf̃ (x̃, ỹ), (6a)

s.t. (x, y) ∈ D , (6b)

(x̃, ỹ) ∈ D̃, (6c)

(x, y)G(x̃, ỹ), (6d)

where D is the connected domain defined by the coupling constraints and
D̃ represents the disconnected domain. This is the primal problem to be
solved.
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2.1. Augmented Lagrangian Relaxation Method Our aim is to solve
the following primal problem (x ∈ Rn, x̃ ∈ Rn):

min f (x)Cf̃ (x̃), (7a)

s.t. x ∈ D , x̃ ∈ D̃, (7b)

xAx̃G0. (7c)

In order to decompose this problem into two subproblems, one in D and
the other in D̃, we relax the coupling constraint xAx̃G0 in an augmented
Lagrangian fashion.

This means adding the Lagrangian term λ ′(xAx̃) and the penalty term
(c�2) ��xAx̃ ��2 to the objective function f (x)Cf̃ (x̃). The resulting max–min
problem is called the dual problem, that is,

max
λ ∈ Rn �min

x ∈ D

x̃ ∈ D̃

f (x)Cf̃ (x̃)Cλ ′(xAx̃)C(c�2) ��xAx̃��2� . (8)

As usual, the augmented Lagrangian is defined as

Lc(x, x̃, λ )_ f (x)Cf̃ (x̃)Cλ ′(xAx̃)C(c�2) ��xAx̃ ��2 , (9)

and the associated dual function as

qc (λ )_�min
x ∈ D

x̃∈ D̃

Lc(x, x̃, λ)� . (10)

Then, the dual problem can be recast as

max
λ ∈ Rn

qc(λ ). (11)

Note that the augmented Lagrangian (9), unlike the plain Lagrangian, can-
not be decomposed due to the quadratic penalty term (c�2) ��xAx̃��2.

2.2. Alternative Decomposition Methods. The focus of this paper is on
the step at which the nonseparable augmented Lagrangian is minimized and
how we decompose this problem into smaller subproblems,

min
x ∈ D

x̃ ∈ D̃

f (x)Cf̃ (x̃)Cλ ′(xAx̃)C(c�2) ��xAx̃��2. (12)

The method used in Ref. 8 is the so-called auxiliary problem principle (APP)
method. Roughly speaking, the APP method linearizes the quadratic term
(c�2) ��xAx̃��2 of the augmented Lagrangian at the current iterate (xn , x̃n)
and adds a quadratic separable term

(b�2)(��xAxn��2C��x̃Ax̃n��2).
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That is, we have

min
x ∈ D

x̃ ∈ D̃

f (x)Cf̃ (x̃)Cλ ′(xAx̃)

Cc(xnAx̃n)′ (xAx̃)C(b�2) (��xAxn��2C��x̃Ax̃n��2). (13)

The chief utility of the added quadratic term,

(b�2) (��xAxn��2C��x̃Ax̃n��2)G(b�2) �� (x, x̃)′A(xn , x̃n)′��2,

is that it regularizes the problem (13) in the sense that it makes the (partially
linearized) augmented Lagrangian strictly convex (Ref. 12, page 475). In the
convex case, convergence of the APP method is guaranteed when b¤2c
(Ref. 16).

Then, the minimization of this approximation to Lc decomposes into
two subproblems [(xnC1, x̃nC1) is the new iterate],

xnC1_arg min
x ∈ D

f (x)Cλ ′nxCc(xnAx̃n)′xC(b�2) ��xAxn��2, (14)

x̃nC1_arg min
x̃ ∈ D̃

f̃ (x̃)Aλ ′nx̃Ac(xnAx̃n)′ x̃C(b�2) ��x̃Ax̃n��2. (15)

An alternative is to use the block coordinate descent (BCD) method, also
called the nonlinear Gauss–Seidel method (Ref. 12, page 247). Unlike the
APP method, which uses an approximation to Lc , the BCD method directly
minimizes Lc . When minimizing in the domain D, the variables in the
domain D̃ are frozen at their best known value, say x̃n; analogously, when
minimizing in D̃, the variables in D are frozen at their best known value,
say xnC1; and so on. In the convex case, convergence is guaranteed; see
Ref 12, page 246. Then, the minimization of Lc decomposes into two sub-
problems [(xnC1, x̃nC1) is the new iterate],

xnC1_arg min
x ∈ D

f (x)Cλ ′nxC(c�2) ��xAx̃n��2, (16)

x̃nC1_arg min
x̃ ∈ D̃

f̃ (x̃)Aλ ′nx̃C(c�2) ��xnC1Ax̃��2. (17)

As we will see in Section 3.2, our modeling of subproblems (14) and (16)
belongs to the class of nonlinear network flow problems with side con-
straints, which can be solved through specialized codes (Refs. 17–18). Sub-
problems (15) and (17), having a disconnected domain, are of combinatorial
nature. We solve them by means of the dynamic programming. Full details
on the solution of subproblems (14)–(17) can be found in Ref. 19.

2.3. Alternative Decomposition Algorithms. This section uses the well-
known fact that the gradient of the dual function at the current dual iterate
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is equal to the relaxed constraint evaluated at the current primal iterate, i.e.,

∇ qcn (λ n)G(xnAx̃n);

see Ref. 12, page 352.
The augmented Lagrangian relaxation (ALR) method combined with

the auxiliary problem principle (APP) is summarized in the following
ALRCAPP algorithm [the ALR algorithm is also called the multiplier
method (Ref. 12, page 340)].

ALRCAPP Algorithm.

Step 1. Check the Stopping Criterion. If the norm of the gradient
of the dual function ��xnAx̃n��F(, then stop. (xn , x̃n , λ n) is a
primal–dual solution.

Step 2. Compute

xnC1_arg min
x ∈ D

f (x)Cλ ′nxCcn(xnAx̃n)′xC(bn�2) ��xAxn��2.

Step 3. Compute

x̃nC1_arg min
x̃ ∈ D̃

f̃(x̃)Aλ ′n x̃Acn(xnAx̃n)′x̃C(bn�2) ��x̃Ax̃n��2.

Step 4. Dual Variable Updating. Set

λ nC1Gλ nCcn(xnC1Ax̃nC1).

Step 5. Penalty Parameter Updating. If

��xnC1Ax̃nC1��Hα · ��xnAx̃n��,

then set

cnC1_βcn , bnC1_γcnC1.

A suitable choice is α_1.10, β_2, γ _2.

Analogously, the ALR method combined with the block coordinate
descent (BCD) method is summarized in the following ALRCBCD
algorithm.

ALRCBCD Algorithm.
Step 1. Check the Stopping Criterion. If the norm of the gradient

of the dual function ��xnAx̃n��F(, then stop. (xn , x̃n , λ n ) is a
primal–dual solution.

Step 2. Compute

xnC1_arg min
x ∈ D

f (x)Cλ ′nxC(cn�2) ��xAx̃n��2.
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Step 3. Compute

x̃nC1_arg min
x̃ ∈ D̃

f̃ (x̃)Aλ ′n x̃C(cn�2) ��xnC1Ax̃��2.

Step 4. Dual Variable Updating. Set

λ nC1Gλ nCcn(xnC1Ax̃nC1).

Step 5. Penalty Parameter Updating. If

��xnC1Ax̃nC1��Hα ��xnAx̃n��,

then set

cnC1_βcn .

A suitable choice is α_1.10, β_2.

2.4. First Computational Test. In this first test, we use an n-dimen-
sional version of the simple unit commitment (UC) problem presented
above. The notation employed is as follows: n is the number of thermal
units; xi is the output of thermal unit i ; Coni is the starting cost, i.e., the
cost of turning a unit on; d is the demand of electrical power; and li and ui

are lower and upper bounds for xi . The UC problem is given below,

min ∑
n

iG1

[2x2
iCConi (xi)], (18a)

s.t. ∑
n

iG1

xiGd, (18b)

xi ∈ {0}∪ [li , ui ], iG1, . . . , n, (18c)

where arbitrarily we choose

Coni (xi)_�10C[10�(nA1)](iA1), if xi ∈ [li , ui ],

0, if xiG0.
(19)

Given that the starting cost function Coni is monotone on i and that the
generating cost is the same for all the units (2x2

i , iG1, . . . , n), this problem
can be solved exactly (algebraic method). For example, let us solve problem
(18) for the particular case of 3 thermal units (nG3), demand dG6, lower
bound liG1, and upper bound uiG6, with iG1, 2, 3. That is,

min ∑
3

iG1

[2x2
iCConi (xi )], (20a)

s.t. x1Cx2Cx3G6, (20b)

xi ∈ {0}∪ [1, 6], iG1, 2, 3, (20c)
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with

Coni (xi)_�ki_10C[10�(3A1)] (iA1), if xi ∈ [1, 6],

0, if xiG0.
(21)

Note that

k1G10, k2G15, k3G20;

i.e., the starting cost is monotone on i as we have already pointed out. If n*
is defined as the optimal number of thermal units, then a priori there are
three possibilities: n*G1, 2, or 3.

If n*G1, given that unit 1 has the cheapest starting cost (k1G10) and
that the generating cost (2x2

i , iG1, 2, 3) is the same for the three units, then
the optimal solution would be x*G(6, 0, 0), with an optimal cost of
2B62C10G82. Analogously, if n*G2, then it is easy to see that
x*G(3, 3, 0) (units 1 and 2 are the cheaper ones), and in that case, the
optimal cost would be 2B32C10C2B32C15G61. Finally, if n*G3, then
it is also easy to see that x*G(2, 2, 2) and the optimal cost would be
2B22C10C2B22C15C2B22C20G69. Thus, the optimal solutions is
n*G2, x*G(3, 3, 0) with optimal cost 61. Note that we have computed a
global optimizer.

The parameters used in this first computational test are

nG10, 20, 30, . . . , 100,

dGn,

liG1,

uiGn.

Regarding the tuning parameters for both the ALRCAPP algorithm and
the ALRCBCD algorithm, the initial penalty c0 has been set equal to 1,
0.1, 0.05 for each method in three different trials. The parameter b0 has
been set equal to 2c0 , and the scalars α , β, γ have been set equal to 1.1, 2,
2 respectively. The reported results in this paper correspond to the best trial
(lowest local optimum). Table 1 displays the best c0 for each method and
each case.

This first test was performed in three steps.

Step 1. In the first step, we solve exactly the UC problem for 10 cases
(nG10, 20, 30, . . . , 100) by the above algebraic method in
order to know its global optimizer. The optimal number of
thermal units and the optimal cost, both obtained with the
algebraic method, are displayed in Table 2 and Table 3
respectively (label ALG).
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Table 1. Initial penalty parameter
c0 for Test 1.

c0

Thermal units APP BCD

10 0.10 0.10
20 0.05 0.05
30 0.10 0.10
40 1.00 0.10
50 1.00 0.10
60 0.10 0.05
70 0.10 0.10
80 0.10 0.05
90 0.10 0.10

100 0.10 0.10

Step 2. In the second step we solve the same 10 problems using the
augmented Lagrangian relaxation (ALR) methodCblock
coordinate descent (BCD) method, and the ALR
methodCthe auxiliary problem principle (APP) method
to check the quality of the computed optimizers: are they
local or global optimizers?. The relative error 100 ∗
( fcomputedAf*)�f * of the computed solution is displayed for
the BCD and the APP methods in Table 3. For example, in
case nG70, neither method reaches the global optimizer.
Table 3 shows that these methods obtain either the global

Table 2. Optimal number of thermal units,
Test 1.

Optimal number of
thermal units

Thermal units ALG APP BCD

10 4 4 4
20 8 7 8
30 11 11 11
40 15 16 15
50 19 20 19
60 23 23 22
70 27 26 29
80 30 30 31
90 34 33 33

100 38 38 37

Average 20.9 20.8 20.9
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Table 3. Quality of the computed optimizers, Test 1.

Optimum cost Relative error (%)

Thermal units ALG APP BCD APP BCD

10 96.67 96.70 96.67 0.03 0.00
20 194.74 195.38 194.74 0.33 0.00
30 292.60 292.60 292.60 0.00 0.00
40 390.36 390.91 390.60 0.08 0.00
50 488.06 488.84 488.10 0.16 0.01
60 585.92 585.92 586.41 0.00 0.08
70 683.83 684.02 686.82 0.03 0.44
80 781.73 781.73 781.76 0.00 0.00
90 879.50 880.20 880.20 0.08 0.08

100 977.33 977.33 977.85 0.00 0.05

Average 537.10 537.36 537.58 0.07 0.07

optimizer or a high-quality local optimizer (relative error
always under 0.5%). On average, the relative error of the com-
puted optima is 0.07% for both the APP method and the BCD
method.

Step 3. Once we know that the quality of the solutions is similar for
the two methods, we investigate their performance. The CPU
time for the two methods can be found in Table 4 as well as
the time ratio between the APP method versus the BCD
method. In most cases, the BCD method is the fastest one.
Thus, for example, in the first case (nG10), the APP time is
17% greater than the BCD time (see time ratio column). On

Table 4. APP method versus BCD method, Test 1.

Time (sec) Time ratio

Thermal units APP BCD APP�BCD

10 2.7 2.3 1.17
20 6.8 7.9 0.86
30 9.6 5.4 1.78
40 18.0 11.1 1.62
50 29.3 19.5 1.50
60 38.0 36.4 1.04
70 49.0 68.0 0.72
80 66.6 89.3 0.75
90 91.3 49.9 1.83

100 149.3 74.5 2.00

Average 46.1 36.4 1.33
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average, the APP method needs 33% more time than the BCD
method.

The result obtained in this section encouraged us to compare these methods
theoretically.

2.5. Theoretical Insight In the last section, the BCD method has
shown to be the fastest one from an empirical point of view. In this section,
we compare the BCD method to the APP method from a theoretical point
of view.

Proposition 2.1. A single iteration of the auxiliary problem principle
(APP) method is equivalent to

xnC1_arg min
x ∈ D

f (x)Cλ ′nxC(c�2) ��xAx̃n��2

C[(bAc)�2]��xAxn��2, (22)

x̃nC1_arg min
x̃ ∈ D̃

f̃ (x̃)Aλ ′nx̃C(c�2) ��xnAx̃��2

C[(bAc)�2]��x̃nAx̃��2, (23)

where (xn, x̃n) is the input current iterate and (xnC1, x̃nC1) is the output next
iterate.

Proof. Given that

c(xnAx̃n)′xC(b�2) ��xAxn��2 (24)

Gcx′nxAcx̃′nxC(b�2) ��x��2C(b�2) ��xn��2

Abx′xnJ(c�2) ��x��2J(c�2) ��xn��2J(c�2) ��x̃n��2 (25)

G(c�2) ��x��2C(c�2) ��x̃n��2Acx̃ ′nxC[(bAc)�2]��x��2

C[(bAc)�2]��xn ��2A(bAc)x′nxC(c�2) ��xn��2A(c�2) ��x̃n��2 (26)

G(c�2) ��xAx̃n��2C[(bAc)�2]��xAxn��2C(c�2)[��xn��2A��x̃n��2], (27)

then the minimization over D,

min
x ∈ D

f (x)Cλ ′nxCc(xnAx̃n)′xC(b�2) ��xAxn��2, (28)

can be rewritten as

min
x ∈ D

f (x)Cλ ′nxC(c�2) ��xAx̃n��2

C[(bAc)�2]��xAxn��2C(c�2)[��xn��2A��x̃n��2]. (29)
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Analogously the minimization over D̃,

min
x ∈ D̃

f̃ (x̃)Aλ ′n x̃Ac(xnAx̃n)′x̃C(b�2) ��x̃Ax̃n��2, (30)

can be rewritten as

min
x ∈ D̃

f̃ (x̃)Aλ ′n x̃

C(c�2) ��xnAx̃��2C[(bAc)�2]��x̃Ax̃n��2C(c�2)[��x̃n��2A��xn��2]. (31)

Now, the constant terms (c�2)[��xn��A��x̃n��] and (c�2)[��x̃n��A��xn��] of the
objective functions in (29) and (31) can be removed without changing the
optimal iterate. Therefore, a single iteration of the APP method is equival-
ent to

xnC1_arg min
x ∈ D

f (x)Cλ ′nxC(c�2) ��xAx̃n��2

C[(bAc)�2]��xAxn��2, (32)

x̃nC1_arg min
x̃ ∈ D̃

f̃ (x̃)Aλ ′n x̃C(c�2) ��xnAx̃��2

C[(bAc)�2]��x̃nAx̃��2, (33)

as we wanted to prove. �

Corollary 2.1. For bGc, the APP method is nothing but the Jacobi
version of the nonlinear Gauss–Seidel or BCD method.

Proof. This is shown directly comparing Proposition 2.5 with the
BCD method below (nonlinear Gauss–Seidel method),

xnC1_arg min
x ∈ D

f (x)Cλ ′nxC(c�2) ��xAx̃n��2, (34)

x̃nC1_arg min
x̃ ∈ D̃

f̃ (x̃)Aλ ′n x̃C(c�2) ��xnC1Ax̃��2. (35)

Note that, for bGc, the last term in (22)–(23) vanishes. Therefore, the differ-
ence between both methods is only that, in (23), the APP method uses the
old iterate xn (Jacobi method) whereas in (35) the BCD method uses the
new iterate xnC1 computed in (34) (nonlinear Gauss–Seidel method). �

It is well known in numerical analysis that the nonlinear Gauss–Seidel
method is likely to outperform the Jacobi method (Refs. 20–22). The main
reason is that the nonlinear Gauss–Seidel method incorporates immediately
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the new generated information xnC1 within the current iteration [like in
(17)], whereas the Jacobi method incorporates this new information at the
beginning of the next iteration and uses xn instead [like in (23)]. Thus, a first
consequence of the precedent corollary is that a faster convergence to the
optimum can be expected using the BCD method than using the APP
method for the particular case bGc.

Let us study now the APP method for the more general case bHc. In
Proposition 2.1, if we consider the minimization of the objective function

in D BD̃, the terms [(bAc)�2]��xAxn��2 and [(bAc)�2]��x̃nAx̃��2 of (22)–(23),
respectively, can be joined as

[(bAc)�2]�� (x, x̃)′A(xn , x̃n)′��2. (36)

For bGc, the term (36) vanishes, but for any bHc it penalizes the iterates
(xnC1, x̃nC1) that lie far from (xn, x̃n). Therefore, the greater is b, the closer
will be (xnC1, x̃nC1) to (xn, x̃n). Then, in general, it is likely that, for bHc,
the APP method will take more iterations to converge to a particular optim-
izer than for bGc, since bHc penalizes long steps from the current iterate.

For the reasons given above and considering that, in the APP method,
b must fulfill the condition b¤2c, then we can expect faster performance of
the BCD method when compared to the APP method.

3. Unit Commitment: Realistic Example

In Section 2.4, we presented the unit commitment (UC) problem for
one interval. In practical situations, one solves the UC problem for several
intervals (from 24 to 168 hours). This problem has been studied amply in
the past by many authors (Refs. 1–2). Researchers are now attempting to
solve enhanced versions of the UC problem in which, in addition to the
system of thermal units, one takes simultaneously into account other related
systems, such as hydroelectric plants and transmission networks (Refs. 4, 7,
8).

As we said already, the objective of the UC problem is to optimize
electricity production and distribution, considering a short-term planning
horizon (from one day to one week). Hydroelectric and thermal plants must
be coordinated in order to satisfy the customer demand of electricity at
minimum cost and with a reliable service. The model for the UC problem
presented here considers the thermal system, hydroelectric system, and
distribution network.
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3.1. Formulation of the Unit Commitment Problem. The optimiz-
ation problem considered here is

min f (x)GChtd (x)CCm (x), (37a)

s.t. x ∈ D htd , (37b)

x ∈ D m . (37c)

Here, D htd represents the domain defined by the constraints that couple the
hydroelectric, thermal, and distribution systems (load constraints, spinning
reserve constraints, etc.); D m represents the domain of the management for
the thermal units (minimum up and down times, minimum and maximum
output levels, etc.); Chtd (x) represents the costs associated with D htd , and
Cm (x) represents the costs associated with Dm .

3.2. Modeling the Unit Commitment Problem. The general expression
of the UC problem (37a) could be developed in several different ways. The
approach adopted in this paper follows the so-called coupled model pre-
sented in Ref. 17. This model takes into account the hydroelectric energy
generation system together with the thermal system and transmission net-
work. The variable vector x of problem (37a) splits into three different vec-
tors; xH for the variables related with the hydroelectric system (volume,
discharges, and spillages of each reservoir), xT for the thermal variables
(power output and spinning reserve of each thermal unit), and xE for the
variables which account for the power flow through the electric transmission
network.

In the coupled model, the constraints relating all these variables
[domain D htd of problem (37a)] are expressed through a network flow model
with side constraints,

AHTT�
xH

xT

xE

�GbHTT , (38)

h(xH , xE)G0, (39)

TISRxT ¤bISR , (40)

TDSRxT ¤bDSR , (41)

TKVLxEG0, (42)

x¡H ⁄xH ⁄ x̄H , (43)

x¡T ⁄xT ⁄ x̄T , (44)

x¡E⁄xE ⁄ x̄E . (45)
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The following comments are pertinent.

Equations (38). These are the network constraints associated with the
so-called hydro-thermal-transmission extended network (HTTEN). The
HTTEN integrates the replicated hydro network (which accounts for the
time and space coupling between the reservoirs of the river basin), the ther-
mal equivalent network (which defines the relation between the power out-
put and the spinning reserve level of each thermal unit), and the
transmission network (which formulates the conservation of the power flow
at the busses of the transmission system).

Equations (39). These nonlinear equality constraints define the injec-
tion of the hydroelectric generation (a nonlinear function of the variables
xH) into the appropriate busses of the transmission network. The solution
procedure will be based on a successive linearization of these constraints.

Inequalities (40), (41). These two sets of linear side constraints impose
the satisfaction of the incremental and decremental spinning reserve require-
ments of the whole system.

Equation (42). This last set of linear equality constraints is the formu-
lation of the Kirchhoff voltage law. These constraints, together with the
power flow conservation equations formulated in (38), represent a dc
approach to the transmission network.

Inequalities (43)–(45). These are upper and lower bounds to the
variables.

The formulation of the domain D htd as a network flow problem with
equality and side constraints allows one the use of specialized network opti-
mization codes (Refs. 17–18). Also, the flexibility of this model is such that
any other relevant system constraints can be added easily, for instance,
security constraints and emission constraints (see Ref. 23).

The thermal management domain D m of problem (37a) deals with the
physical and economic constraints of the thermal units. First, the minimum
up and down times of each thermal unit must be respected, as too many
on�off switches will stress the system. Second, for economic reasons, each
unit has a minimum and maximum output level which bounds its
production level.

To be more precise, the management domain Dm takes into account
the disconnected domain of the variables pi

t (power output of the thermal
unit t at interval i), that is,

pi
t ∈ {0}∪ [p¡

i
t , p̄

i
t ], (46)

whereas in Dhtd the variables pi
t are allowed to oscillate between 0 and the

upper bound p̄i
t in order to have a connected domain Dhtd .

The domain Dm describes also the restrictions to the startup and shut-
down processes of the thermal generators. When a thermal generator t has
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been shut down, then for mechanical reasons, it must be off at least a given
time min_offt (minimum down time). Equivalently, when a thermal gener-
ator t is started-up, it must be on at least a given time min_ont (minimum
up time). Mathematically,

if piA1
t G0 and pi

tH0, then p j
tH0 ( jGi , . . . , iCmin_ontA1), (47)

if piA1
t H0 and pi

tG0, then p j
tG0 ( jGi, . . . , iCmin_offtA1). (48)

Therefore, Dm is defined by Eqs. (46)–(48). This kind of constraints are
difficult to handle with ready-to-use optimization packages. So far, dynamic
programming is the most common method used to deal with them within
the Lagrangian relaxation approach (Refs. 1–3).

The first term Chtd (x) of the objective function of (37a) represents 50%
of the cost of the fuel consumption of the thermal units, and it is modeled
as a quadratic function of the power output of each thermal unit. This term
includes also an estimation of the cost of the power losses through a quad-
ratic function of some of the variables xE . The second term Cm (x) includes
the remaining 50% of the fuel cost, the startup and shutdown costs of the
thermal units, and depends on only the thermal variables xT .

3.3. Second Computational Test. In this second test, seven instances
of the unit commitment (UC) problem are solved. In Table 5, we describe
their main features; they range from small size (2 intervals, 0 reservoirs, 2
thermal units, and 4 binary variables) up to medium size (168 intervals, 4
reservoirs, 7 thermal units, and 1176 binary variables). The UC problems
solved here consider the hydroelectric and thermal systems without the dis-
tribution network.

Unlike in the first test, obviously we cannot know a priori the
real optimizer for these large-scale nonlinear combinatorial problems.
Consequently, this second test consists of only two steps.

Table 5. Description of UC instances, Test 2.

Number of Number of Thermal Continuous Binary
Case intervals reservoirs units variables variables

1 2 0 2 16 4
2 6 2 4 138 24
3 48 2 4 1104 192
4 48 4 7 1920 336
5 48 2 7 1680 336
6 168 4 2 3360 336
7 168 4 7 6720 1176
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Table 6. Initial penalty parameter c0, Test 2.

Case 1 2 3 4 5 6 7

c0 10−1 10−2 10−3 10−4 10−4 10−4 10−4

Step 1. We solve the same seven problems using the augmented
Lagrangian relaxation (ALR) methodCblock coordinate
descent (BCD) method and the ALR methodCthe auxiliary
problem principle (APP) method to compare the quality of
the computed optimizers.

Step 2. We compare the efficiency of the ALRCBCD method and the
ALRCAPP method in terms of CPU time. The CPU times
correspond to a Sun�Ultra2 2200 workstation with 200 MHz
clock, 256 Mbytes of main memory.

The parameters used in both the ALRCAPP and the ALRCBCD
algorithms are: the stopping criterion with (G10−4, the initial penalty par-
ameter c0 is listed in Table 6, and the parameters used to update c0 are
αG1.10 and βG2. The ALRCAPP algorithm requires the additional par-
ameter bn , which has been set equal to 2cn in all cases. The results of this
second test are given below.

Results of Step 1. Comparing the cost columns in Table 7 we observe
that the quality of the computed optimizers is very similar for the two algo-
rithms, except for Case 2.

Results of Step 2. Now that we know the quality of the solutions is
very similar for both methods, we investigate their performance. The rela-
tive CPU time TimeAPP�TimeBCD is displayed in Table 7 (last column). For
example, in the first case, the APP method takes 56% more time than the
BCD method. On average, the APP method takes 84% more time than the

Table 7. Results using the APP and BCD algorithms, Test 2.

Iterations Cost (106 Pesetas) CPU Time (sec)

Case APP BCD APP BCD APP BCD Ratio

1 30 17 0.004 0.004 14 9 1.56
2 99 67 13.652 13.883 37 25 1.48
3 85 41 0.985 0.985 45 21 2.14
4 67 41 6.413 6.410 56 40 1.40
5 111 28 1.105 1.105 64 20 3.20
6 63 45 4.445 4.454 107 76 1.41
7 135 54 3.152 3.152 455 269 1.69

Average 84 42 4.251 4.285 111 66 1.84
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BCD method in this particular test, as expected from a theoretical point of
view (see Section 2.5).

4. Conclusions

The unit commitment problem has been solved successfully using vari-
able duplication plus the augmented Lagrangian relaxation (ALR) method.
Theoretically and practically, the block coordinate descent method is shown
to be faster than the auxiliary problem principle method to deal with the
nonseparable augmented Lagrangian.

With the above methodology (the ALR method), one obtains either a
local or a global optimizer. The quality of the computed solution is
unknown and therefore more research is needed. At present, the authors
are working toward an improvement of the solutions and the measure of
their quality.
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