
 

 

Title:  A multi-objective approach to infrastructure planning in 
the early stages of EV introduction 

 
Author: Andina Rosalya Brown  
 
Advisor: F. Javier Heredia, Cristina Corchero 
 
Department: Statistics and Operations Research 
 

Academic year: 2013/2014 

MSc in Statistics and 
Operations Research 



Universitat Politècnica de Catalunya 

Facultat de Matemàtiques i Estadística 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Advisors: F. Javier Heredia, Cristina Corchero (IREC) 

 

Department of Statistics and Operations Research 

Master Thesis 
 

A multi-objective approach to  
infrastructure planning in the 
early stages of EV introduction 
Andina Rosalya Brown 

January 2014 
 



i 
 

 

 

 

  



ii 
 

Preface 

The work for this project was carried out at the Catalonia Institute for Energy Research (Catalan: 

Institut de Reserca de Energia de Catalunya or IREC) as part of the Energy Economics Research 

Group (EERG) in the area of Electrical Engineering.  

 

  



iii 
 

Acknowledgements 

I would like to express my deepest gratitude to everyone who has helped to make completing this 

Masters and final project a reality. Particular thanks go out to the following:    

Dr. Javier Heredia, who was not only my academic supervisor for this project, but also my 

academic tutor throughout my time at the UPC. I am especially grateful for his help when I first 

arrived in Barcelona, and for making sure our meetings were always entertaining! Without his 

guidance and teaching, this project would not have been possible.  

Everybody in the Electric Engineering area at IREC, for making me feel welcome during my four 

month invasion, for offering help and advice, and for urging me to join in social activities in the last 

days of writing. Special thanks go to Lucía Igualada for her patience and help using GAMS; to 

Miguel Cruz-Zambrano for his relentless advice and encouragement; and to Dra. Cristina Corchero 

for agreeing to supervise this project, being a fantastic teacher, and putting up with my endless 

questions. 

Everybody who has helped make Barcelona my second home: Catalina Girlado and Alex Sarachaga 

for taking me in and showing me the ropes when I first arrived; Diana Buitrago for her friendship 

and sharing her statistical knowhow; and all the girls at Gotics Rugby Club for giving me a second 

family, dominating my entire social life, and allowing me to escape the stresses of my Masters by 

physically destroying me week after week!  

All my course mates at the UPC who helped make my studies enjoyable. Particular thanks go to Pau 

Ferrer and Ondrej Kolafa who were always willing to help and made me laugh in the process; and 

Leire Citores for her constant positivity and offering a personal courier service during my time at 

IREC. 

The Economics Department at Sussex, without whom I would never have made it to Barcelona. 

Special thanks to Julie Litchfield, whose words of wisdom and encouragement when writing my 

undergraduate dissertation have stayed with me ever since, and enabled me approach this project 

in a much calmer and more organised fashion.  

All my friends and family all over the world for their endless support and encouragement, and for 

getting me where I am today. Special thanks go to Aileen Herman who encouraged me to pursue a 

career in OR and offered me help and advice; Tom Morris for his patience, love, and ‘otterly’ 

wonderful reviewing skills; to my grandmother Kathleen who has always supported my studies; to 

my mum for inspiring me to be a ‘berraca’; and to my dad who is totally amazing in so many ways, 

who has always urged me on and offered me guidance, and without whom I would be totally lost.  



iv 
 

 

  



v 
 

Abstract 

The aim of this study is to address the problem of locating fast charging stations for electric 

vehicles (EVs) in the early stages of infrastructure implementation. While electric vehicles are not a 

new phenomenon, their development, and the development of their infrastructure, has attracted 

increasing attention in recent years. With growing concerns over climate change, the quality of air 

in urban areas, and trade imbalances associated with the EU’s dependence on imported oil, there is 

a drive towards alternative fuel sources for transport in Europe, championed by the European 

Commission. 

Despite existence of successful trials and pilot projects, there are barriers preventing the successful 

development of a private EV market in its present state; investors are reluctant to invest in 

infrastructure due to the relatively small number of EV users, and conversely consumers are 

hesitant about purchasing EVs due high prices and a lack of charging infrastructure. Consequently, 

it is considered that public sector intervention is necessary for the large scale uptake of electric 

vehicles to become a reality. It has been identified that introducing fast charging stations can aid 

this process, in particular by easing users’ concerns about running out of charge before reaching 

their destination (range anxiety). 

 This study approaches the problem from the perspective of a central planner wishing to install fast 

charging stations. A multi-objective approach is used to simultaneously consider two conflicting 

objectives in the optimisation problem. The first objective is to minimise the distance that potential 

consumers would need to deviate from their normal journeys in order to reach their nearest fast 

charging station, and thus minimise the associated inconvenience. The second objective is to 

minimise the set up costs associated with the installation of the stations, which differ according to 

the number of facilities installed and their location. These objectives are normalised using a 

function transformation and then combined into a single objective function.  

A mathematical model is formulated and implemented using GAMS to obtain results for the case 

study of Barcelona, building on the existing literature. Using the weighted sums method, multiple 

Pareto optimal solutions are found by solving for different relative weights combinations applied to 

the two objectives. These solutions are used to depict the Pareto front, offering insight into the 

nature of the trade-offs between the objectives and aiding the decision making process. This study 

develops the existing methodology used for the EV infrastructure problem, and shows how the 

application of a multi-objective formulation can offer useful insight to decision makers, particularly 

when preferences are unclear a priori. 

Keywords: Multi-objective Optimisation, Facility Location, Electric Vehicle, Fast Charging Stations, 

Weighted Sums 
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1. Introduction 

This study addresses the problem of locating fast charging stations for electric vehicles in the early 

stages of infrastructure implementation. The primary objectives are to contextualise the electric 

vehicle infrastructure problem and to subsequently develop the existing methodology found in the 

literature.  In particular, this study aims to design an optimal location model for the infrastructure 

of fast charging stations for electric vehicles, using the city of Barcelona as a case study.   

The most notable contribution is the implementation of a multi-objective model, applying the 

weighted sums methodology. Whereas previous authors have focussed on a single objective for 

optimisation, this study combines two separate objectives in a single objective function. Using this 

approach, multiple solutions can be obtained and used to observe the trade-offs between 

conflicting objectives, providing valuable information to decision makers.  

In addition, an alternative outlook is taken with regards to electric vehicle user behaviour. Previous 

studies have assumed users to take fixed paths for their journeys, and have therefore optimised 

the capture of flow along these. Here, however, it is considered that drivers would be willing to 

deviate from their normal paths in order to make use of recharging facilities. With this in mind, the 

concept of minimising deviations is introduced into the optimisation problem with an aim to better 

reflect driver behaviour, and account for all users in the model.  

The model is first formulated mathematically and then implemented using the General Algebraic 

Modelling System (GAMS) to obtain results for a single case study. Data for Barcelona is used to 

develop the methodology, which could then be applied to other cities or regions.   

1.1 Structure 

Beyond this initial introduction, the study is organised in the following manner:  

Section 2 outlines the context in which the study is undertaken. The notion of electric vehicles is 

introduced along with a brief history of their development, followed by a discussion of the factors 

that are currently driving the growth of the electric vehicle market. Both the need for fast charging 

stations and the need for public sector intervention are explained, with considerable reference to 

the existing literature on the topic.  

The context of the study is expanded in Section 3 by identifying some of the existing infrastructure 

systems for electric vehicle in place across the globe, and introducing the city of Barcelona as a case 
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study. The existing approaches and methodologies that have been applied to the facility location 

problem are also discussed here.  

Section 4 introduces the multiple objective approach to optimisation, and outlines the 

mathematical model that is later implemented to obtain results, along with an explanation of all 

relevant notation used.  

The data used to implement the model for the case study of Barcelona are discussed in Section 5, 

along with a discussion of methods applied for the manipulation of this data and assumptions 

made.  

Section 6 presents the results obtained using the case study data, and discusses the implications.  

Limitations to the study are addressed in Section 7 and improvements are suggested.  

Finally, Section 8 provides the conclusions of the study with suggestions for further research.  
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2. Background Context 

2.1 EV Background 

Electric vehicles (EVs), and in particular electric cars, have been in existence since the 19th century. 

Indeed, in the early 20th century EVs were more popular than their petrol fuelled counterparts. 

Over time however, with vast improvements in the combustion engine and other components,  the 

petrol fuelled car took over the market and private electric vehicles were largely forgotten (Nichols, 

2011).  In recent decades, the reintroduction of the EV to the domestic market has been a 

phenomenon of increasing momentum for a number or reasons, notably rising fuel costs, energy 

sustainability and environmental concerns. In the USA, for example, electric car sales rose “from 

near zero in 1999 to a high of about 350,000 units in 2007” (Hamilton, 2011).   

For the purpose of this study, the terms electric vehicle and EV will be used interchangeably to 

describe vehicles that run at least partially on battery power and are recharged by plugging into the 

electrical grid.  These include both battery electric vehicles (BEVs), with electric motors running 

entirely on energy stored in rechargeable batteries, and plug-in hybrid electric vehicles (PHEVs) 

which combine an electric engine powered by a rechargeable battery with petrol fuelled 

combustion engine (Union of Concerned Scientists, 2013).  

2.2 Driving Factors 

Reducing carbon dependency and emissions has had increasing global attention, in particular with 

growing concerns over climate change. In 2010, CO2 emissions from the transport sector made up 

22% of global emissions, with an overwhelming majority attributable to road transport. Given that 

the World Economic Outlook (WEO) 2012 projects transport fuel demand to grow by nearly 40% by 

2035, one of the policy options to limit the emission from this sector is to encourage the use of 

low-carbon fuels such as electricity (OECD/IEA, 2012). Indeed, a European Commission 

communication states that “Low-CO2 alternatives to oil are ... indispensable for a gradual 

decarbonisation of transport, a key objective of the Europe 2020 strategy for smart, sustainable 

and inclusive growth” (European Commission, 2013c). The Expert Group of Future Transport Fuels 

reports that if powered by the EU electricity mix (of 2011), replacing an internal combustion engine 

vehicle with an electric vehicle would reduce C02 emissions by approximately 30%, implying a 

saving of 1 Mt CO2/year for each 1 million cars (European Commission, 2011a).  Note that these 

figures could be greater yet if a greener electricity mix were employed.  
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Furthermore, the EU is concerned with the threat that poor air quality imposes on human health 

and the environment. Since much of the air pollution experienced in the EU is attributable to petrol 

and diesel burning motor vehicles, a switch to electric vehicles would contribute to the 

improvement of air quality, as well as reducing noise pollution, particularly in urban areas 

(European Commission, 2013a).  

In addition to environmental concerns, the EU's dependence on imported oil, and resulting trade 

imbalances associated with “high and rising import bill”, motivates the diversification of energy 

sources for EU transport (ibid). In 2012, European transport was 94% dependent on oil, of which 

84.3% was imported.  A particular cause for concern has been the increasing insecurity of fuel 

supply, resulting from instabilities in oil producing regions (ibid). A transition towards transport run 

on alternative fuels such as electricity, which is less dependent on foreign imports, could help ease 

these concerns. Accordingly, one of the goals outlined in the Commission's 2050 Transport 

Strategy, for a competitive and resource-efficient transport system, is to “halve the use of 

'conventionally fuelled' cars in urban transport by 2030; phase them out in cities by 2050” 

(European Commission, 2011b).  

Taking the above concerns into consideration, mandatory minimum infrastructure coverage for 

electricity, hydrogen and natural gas has been proposed for each EU member state; infrastructure 

is considered essential for consumer acceptance and further investments and developments from 

industry. In particular, “member States should ensure that recharging points for electric vehicles 

are built up with sufficient coverage, at least twice the number of vehicles, and 10% of them 

publicly accessible, focussing in particular on urban agglomerations”, (European Commission, 

2013c). Electricity as an alternative fuel is particularly attractive as the infrastructure of electricity 

distribution is already in place.  Key EU objectives on this front include stimulating the market 

uptake and ensuring interoperability and reliability for the convenience of European consumers, 

this justifying intervention on a European level (European Commission, 2012).  

2.3 The Need for Fast Charging Stations  

Two types of current characterise the main types of charging stations used for EV charging: 

Alternating Current (AC) and Direct Current (DC). The most common form of AC charging station is 

the standard (“Level 2”) type, taking approximately 8 hours to recharge an Electric Vehicle.  Fast 

“Level 3” DC charging stations “can add 60 to 80 miles of range to a light-duty PHEV or EV in 20 

minutes” (US Department of Energy, 2013), but with a far greater demand on the electricity 

system.  
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It is assumed that the main source of charging for EVs, particularly in urban transport, will be from 

“slow” AC charging installations in homes and workplaces, since fast charging is not necessary in 

most travel scenarios; for example, 95% of trips in Great Britain are less than 40 kilometres (Office 

for Low Emission Vehicles, 2011).  In addition to these private installations, there is a need for 

publicly available charging points. Slow charging stations must be available for those without the 

necessary conditions for home charging, for example due to the absence of off-street parking. 

Nevertheless, a network of publicly available fast charging points is also needed to increase the 

potential range of EVs, combat range anxiety1 experienced by existing and potential EV users and 

encourage uptake; it is said that “consumer's purchasing decisions are influenced by the potential 

to travel further” (ibid). Indeed, Van Deventer et al.  (2011) report how the installation of fast 

chargers in Japan is associated with more kilometres travelled in EVs, despite the users rarely 

needing to use them. That said, the utilisation of Fast EV chargers installed in the US exceeded 

expectations  based on the range anxiety premise, and “appears to dispel the contention that the 

purpose of … [Direct Current Fast Chargers]... is just a 'confidence builder'” (The EV Project, 2013b).  

Furthermore, a network of rapid chargers may prove to be essential for recharging taxis, service 

vehicles, as well as for users facing unexpected travel. This necessary network of fast charging 

stations will be the focus of this study.  

2.4 The Need for Intervention 

Unlike in many other emerging markets, in which governments take on a merely regulatory role, it 

is considered that state intervention is necessary for the EV market's successful development. 

Experiences to date, in particular successful pilot projects, indicate that electric vehicles are a 

“viable technological and market option”, (European Commission, 2012). However, it is also a 

reported “lack of alternative fuel infrastructure and of the common technical specifications for the 

vehicle- infrastructure interface [that] is considered a major obstacle to the market introduction of 

alternative fuels and consumer acceptance” (European Commission, 2013c).  

The state of the EV market at present can be described as a “chicken and egg” scenario. Private 

investors are on the whole unwilling to invest large sums of money in EV charging infrastructure, 

since there are currently too few users to make it a profitable endeavour. This is turn inhibits 

uptake, since consumers are not willing to purchase EVs without a sufficient infrastructure in place 

                                                             
1 Range anxiety is a term used to describe EV users' concern that they may run out of charge 

before reaching their destination, thus leaving them stranded.  
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to combat range anxiety. In addition, the lack of widespread demand inflates the prices of EVs, 

creating a further barrier to acquisition.  

Consequently, investors are faced with a dilemma: Early movers in the market could gain “first 

mover advantage” and set standards in the industry. Van Deventer et al. (2011) describe this 

phenomenon using the analogy of TomTom in the mobile navigation market who, having been 

among the first on the market in the EU, have managed to almost monopolise it. In addition, first 

movers can often benefit from extra government subsidies which tend to subside as markets 

develop. On the other hand, acting early also poses greater risks. Early investment implies a 

commitment to technologies that may become obsolete in the near future, and inhibits a firm's 

ability to respond to changing demand. In some cases, allowing competitors to enter the market 

first allows one to learn from their experiences without incurring the attached costs.  

EV manufacturers such as Nissan and Tesla, are taking measures to stimulate the market. For 

instance, the Nissan EV Advantage Program offers a grant of $15,000 to companies or organisations 

that install publicly available fast charging stations in the USA before January 2014 (Nissan, 2013). 

Note, however, that Nissan are promoting the installation of charging stations with the ChaDeMo 

Standard, which, due to a lack of standardisation, are compatible with many, but not all, current 

electric vehicles. This incompatibility between connection standards creates a yet another barrier 

to EV market development.  

To conclude, although there have been successful demonstrations of how an EV market would 

function, and the private sector is starting to move, there remains a gap between these trials and a 

fully developed market, which necessitates intervention from the public sector (European 

Commission, 2013a). On a European level,   the CARS 21 (Competitive Automotive Regulatory 

System for the 21st century) group stress the importance of a “Union-wide harmonised alternative 

fuel infrastructure” to take advantage of the potential environmental benefits (European 

Commission, 2012). For a deeper understanding of the nature of the EV market and the barriers 

therein, Van Deventer et al (2011) provide a useful discussion.  
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3. Existing Systems and Approaches.  

Many cities and regions around the world have demonstrated a commitment to facilitating electric 

mobility. Ambitious goals and targets are actively pursued using a variety of different policies and 

programs, each one tailored to its particular region. Although there are differences in their nature, 

and thus differences in the tools implemented by local authorities, common practices have been 

observed across regions. Many cities combine financial and non-financial incentives to encourage 

the expansion of charging infrastructure and EV uptake (International Energy Agency, 2012).  

Financial incentives include subsidies, tax credits and discounts for tolls and city parking, etc. Non-

financial incentives on the other hand include measures such as preferential parking spaces, special 

access zones or lanes for EV users, and installation of EV charging infrastructure.  

3.1 Global Perspective 

While many cities are beginning to introduce fast charging stations, Estonia is the first country to 

have a nationwide system of fast charging stations for electric vehicles (Vaughan, 2013), and the 

Netherlands are in the process of installing the “world’s largest nationwide fast-charging system to-

date” (Tweed, 2013).  

In Holland, the private sector takes on a leading role in charging infrastructure, with preconditions 

set by the national government. In the Dutch city of Eindhoven, public and private institutions have 

worked in conjunction to develop public charging infrastructure. The Japanese region of Kanagawa, 

has taken the approach of subsidising companies that install DC fast chargers at service stations, 

shopping centres, etc.; their target is to have 100 charging sites within the next year (International 

Energy Agency, 2012).  

Berlin on the other hand, contemplated a call for tender system for the infrastructure of charging 

points, with the aim to find high-performance companies who would develop and operate the 

infrastructure quickly and efficiently at minimal cost to public services. There is a focus on stepwise 

implementation and an iterative feedback process that allows for adjustments alongside expanding 

knowledge and experience (Kunst, 2013). Currently in Berlin, there are two simultaneous test cases 

in progress, both looking to better understand the nature of the electric vehicle ecosystem. These 

are both private initiatives, supported by big players in the German utility and automotive industry. 

The state's role in this case is limited to administrative support and regulation; it mandates, in 

particular, the interoperability of networks to avoid the monopolisation of charging infrastructure 

(Philip & Wiederer, 2010).  
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The guiding principles in London are to provide an equitable base coverage (ensuring all inhabitants 

have reasonable access to charging facilities) and to target infrastructure in key locations, 

encouraging EV uptake and providing value for money. The approach has been to first provide a 

“pan-London coverage”, followed by the targeting of potential “hotspots” in which consumers with 

a high propensity for EV adoption are likely to concentrate. Partner organisations are to play an 

“important role in the roll-out of fast, and ultimately rapid, charging infrastructure” (Source 

London, 2009). 

 Among US initiatives, the private firm ECOtality received government grants to deploy chargers in 

major cities and metropolitan areas across the United States, working alongside EV manufacturers 

as part of The EV Project (The EV Project, 2013a). There is a focus on installing fast charging 

stations at locations where consumers are expected to park for relatively short periods of time, 

whilst allowing for appreciable recharge, such as convenience stores, service stations, fast food 

restaurants, etc. (eTEC, 2010). This is found to be justified given the early experiences, which found 

DC fast charging to be a short time event, with a modal charging duration of 20-25 minutes (The EV 

Project, 2013b). A separate initiative is the “West Coast Electric Highway”, providing fast charging 

stations along major roadways in the Pacific Northwest of the USA, provided by private companies 

with the help of state funding. This set up encourages “range confidence” and facilitates intercity 

travel for EV users (West Coast Green Highway, 2013).  

3.2 Barcelona as a Case Study 

As we have seen thus far, there is a clear need for some form of public sector intervention to 

stimulate the EV market, and different regions have taken on different approaches. For this study, 

the city of Barcelona will be used as a case study, to help better understand the issues and develop 

a mathematical optimisation model. Currently in Barcelona, there are only two fast charging points.  

In principle, companies that fulfil  the requirements to be “load managers”, who are granted the 

permission of resale of electricity for EV recharging (Boletín Oficial Del Estado , 2011), will be 

allowed to install fast charging points at any feasible location, so long as they meet regulatory 

requirements. This follows the EU Commission (2013c) recommendation that “the establishment 

and operation of recharging points for electric vehicles should be developed as a competitive 

market with open access to all parties interested in rolling out or operating recharging 

infrastructures.” 

We consider that EV infrastructure will be rolled out in two main phases. In the first phase, the 

state will ensure a minimum level of coverage for city dwellers. This could, for example, take the 



10 
 

form of subsidies to private firms looking to install charging points. In phase two, as EV usage and 

thus charging demand increases, a competitive market for charging infrastructure is expected to 

develop. At this stage, the state role will switch to a regulatory one, monitoring for fair competition 

and interoperability between systems or firms. Since most regions are still in the first phase of EV 

market development, as is the case of Barcelona, we will focus on the initial coverage problem 

(phase 1). 

As well as ensuring a minimum coverage for inhabitants and commuters, it is also in the interest of 

planners to consider the associated set up costs. Minimising these costs will reduce the necessary 

financial contribution of the public sector, as well as encourage involvement of private firms, 

should their involvement include private capital investment. Although charging points can be 

installed at any location, costs associated with grid reinforcement are likely to prioritise existing 

service stations, as was found by Cruz-Zambrano et al. (2013); this work is discussed later in the 

chapter.  

Furthermore, taking into account characteristics of locations could also contribute to encouraging 

EV demand, enhancing future business prospects as well as social welfare. That is, if a charging 

station is located near facilities that EV users can take advantage of whilst charging, it expected to 

attract more consumers, as well as enhance the experience of customers and reduce the 

opportunity cost of time spent charging.  

In developing a strategy for optimal locations, it is worth taking into account the conflicting 

interests of different stakeholders outlined in Kunst (2013), as shown in Figure 1.  

 

 

 

 

FIGURE 1: Diverging interests of different stakeholders in EV infrastructure 
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3.3 Existing Methodologies 

The optimal location of fast charging stations comes under the umbrella of Facility Location Models 

within network optimisation. Location models have been studied and implemented for a vast range 

of applications over the years; a sample of more than 3400 references can be found in Hale (2013).  

In traditional location theory, consumer demand is considered to be fixed in space. That is, demand 

is considered to be at nodes within a network. Regarding facility location, this fixed demand is 

applied based on the assumption that consumers will travel to facilities from a fixed location such 

as the home or workplace. With this in mind, Hakimi (1964) and ReVelle & Swain (1970) developed 

the p-median model, which is often seen in the literature for the allocation of fuelling facilities. In 

this model, “p” optimal locations are found by minimising the overall time or distance travelled by 

consumers in order to reach facilities.  The p-median model can be seen applied to the location of 

hydrogen refuelling stations in Nicholas and Ogden (2007).  

However, in many cases this fixed demand assumption does not correctly reflect consumer 

behaviour. For some services, including vehicle refuelling, consumers do not make specific trips but 

consume “on their way”. To account for this type of behaviour, Hodgson (1990) and Berman et al. 

(1992) independently developed mathematical models denoted the Flow Capturing Location Model 

(FCLM) and Flow Intercepting Location Model (FILM), respectively. In these models, demand is 

considered to be along a path rather than at a fixed node, and facilities are located in a way that 

maximises the amount of flow captured; demand is considered “captured” or “intercepted” when 

at least one facility is located anywhere on the consumer's path. This model is applied to the 

optimisation of fast charging stations in Barcelona by Cruz-Zambrano et al. (2013), and also 

modified to consider set-up costs.  

A criticism of the FILM, however, is that it considers fixed paths for consumers (for example, based 

on mobility surveys), and does not allow them to deviate from these. In many applications 

(including that of EV charging) it seems reasonable to consider that consumers would be willing to 

venture away from their otherwise pre-determined paths in order to obtain services if no facilities 

are directly on their way. Zeng et al (2010) developed the Generalized Flow-Interception Location–

Allocation Model (GFIM) to allow for adjustments in the original FILM, depending on characteristics 

of the problem under consideration. Among these adjustments, one can use the GFIM to allow 

consumers to deviate from their paths.  

A noteworthy alternative approach to the problem of locating fast charging stations in the city of 

Barcelona is taken by Bernardo et al. (2013). They apply a game of strategic interaction to simulate 
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the entry of fast charging stations for EVs. Although this may be a useful approach for a self-

developing market, it is considered here that the barriers discussed above would interfere with 

such a strategy.  
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4. Model Formulation 

4.1 Considering Multiple Objectives 

As discussed in section 3.2, the nature of the fast charging station problem involves the 

consideration of more than one objective, as is a common for many real life problems. A central 

planner, such as the municipality in this case, is concerned with minimising set up costs whilst also 

covering EV drivers’ needs. The latter can be targeted by minimising the extra distance EV users 

must travel in order to use the fast charging station nearest to their routine journeys, denoted the 

deviation distance. This deviation distance is explained in detail in Section 4.3. In order to account 

for these potentially (and likely) conflicting objectives, a multi-objective function can be used.  

A general multiple-objective optimisation (MOO) problem can be defined as follows (Marler & 

Arora, 2005):  

                          ( )  [  ( )   ( )     ( )]
   (1) 

subject to:    ( )                           

        ( )                          

where k is the number of objective functions, m is the number of inequality constraints, e is the 

number of equality constraints, and      is a vector of n decision variables.  

The feasible design space   , defined as the set  {  |   ( )                and    ( )    

          } is the set of decision variables that satisfy the constraints of the problem. The 

feasible criterion space    { ( )|    } is the associated set of objective function values, also 

known as the attainable set. 

In addition to considering a single objective as in the FILM or the adjustable GFIM, one can 

therefore include additional objectives within a single objective function, as described in general 

terms above. Since a single point that optimises all the objectives simultaneously does not usually 

exist, different methods have been developed to combine conflicting objectives. Among these is 

the widely used weighted sum or scalarisation method (as described in Caramia & Dell'Olmo, 

2008), in which a weighted function is used to aggregate the objectives in the following manner: 

 

   
 
       ∑    ( )

 

   

 (2) 
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where       objectives are considered and       is the weight assigned to the ith objective 

function. For the case presented here,  ∑   
 
      , and the value assigned to each    reflects the 

relative importance assigned to each objective function    ( ).  

 If one has information about the decision maker's (DM) preferences (in this case the planner's), 

one can assign appropriate weights to the different components of the overall objective function, 

resulting in a single optimal solution. However, a common feature of multi-objective problems is 

that these preferences are not known a priori; multi-objective programming can be used to help 

decision makers better understand their options and potentially their priorities in light of solutions 

presented to them.  

Without preference information, one can consider a series of different weights assigned to the 

multiple objectives, to estimate a set of “Pareto optimal solutions”. A solution is considered Pareto 

optimal (also known as “non-dominated”) if and only if one cannot improve the value of any of the 

individual objectives in the aggregated objective function without negatively affecting another 

(Marler & Arora, 2005).  

Formally, a point      is Pareto optimal iff there exists no other point     , such that 

  ( )   (  ) , and   ( )    ( 
 ) for at least one function (Marler & Arora, 2004).  

The weighted sums method always provides Pareto optimal solutions if the objective function 

increases monotonically with respect to each criterion (Stadler (1988) cited in Athan and 

Papalambros, 2006). The image of all possible Pareto optimal solutions in the criterion space is 

denoted the Pareto front or Pareto curve, and the shape of this curve indicates the nature of the 

trade-off between the different objectives. An example is given in Figure 2, where all points 

between  (  ( ̂)   ( ̂))  and (  ( ̃)   ( ̃)) are Pareto optimal solutions and define the Pareto 

front (Caramia & Dell'Olmo, 2008).   { ( ) ∣    } represents the feasible criterion space. 
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The set of Pareto optimal solutions found using the weighted sums method can therefore be used 

to estimate this Pareto front, and be presented to a DM, allowing them to directly observe the 

trade-offs implied when changing the priorities assigned to the different objectives, helping them 

gain a better picture of the problem they are facing. This approach will be applied for this case 

study since preference information is not known at the time of implementation.  

In this case, we have two measureable objectives: the minimisation of consumer deviations 

(    ( )  ) and the minimisation of set up costs (   ( ) ).  Thus, we have a bi-objective problem 

with     .  

4.2 Useful Concepts 

In order to address the optimisation problem, a graph of the road network for the city or region in 

question is used. The arcs in the graph represent the main roads, and the nodes are the 

intersections between them. It is assumed that private vehicle mobility (and thus the mobility of 

potential or existing EV users) can be modelled using a set of representative journeys that are 

made on a normal day; information about these journeys is obtained from a mobility survey, as is 

standard practice. Each different journey within this set is characterised by a fixed origin and 

destination; using these, a  path q traversing different nodes in the road network is estimated for 

each journey.  The set of normal (also denoted “pre-determined”) paths taken by potential EV 

(𝑓 (𝑥) 𝑓 (𝑥)) 

(𝑓 (𝑥) 𝑓 (𝑥)) 

C 

𝑓 (𝑥) 

𝑓 (𝑥) 

FIGURE 2: Example of Pareto Front 
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users is entered into the problem as input data, as is the expected flow for each one. The flow 

 (  )  in the model represents the number of people in the survey that took the journey covered by 

path q. It is assumed that mobility survey data is representative of the entire population’s travel 

behaviour on a normal day. Since the optimal location of fast charging stations does not depend on 

the total population size, and the mobility survey is considered representative, the original flow 

data from the survey is used directly in the model. That is, it would be possible to estimate the 

flows for each path for the entire population by taking into account the sample rate used by the 

survey, but since the optimal location of facilities depends only on the relative flows along the 

different paths, rescaling the volume of flows is unnecessary. The acquisition of these data and the 

estimation methods for paths in Barcelona is discussed in Section 5.1.  

For this case study, it is assumed that each node (or intersection) in the graph serves as a feasible 

location for a fast charging station to be installed. 

4.3    ( ) : Minimising Deviations 

4.3.1 Estimating Deviation Distances 

The first objective (    ( ) ) under consideration is the minimisation of deviations. Deviation 

distances are defined as “the extra distance incurred when customers deviate from their pre-

determined path”, as in Zeng et al. (2010).  

It is assumed throughout this work that potential EV users take the shortest possible route 

between the origin and destination of their journeys. In line with this, it is assumed that consumers 

needing to divert from their normal path to reach a fast charging station would choose the shortest 

possible route from their origin to the facility, and from there the shortest route to their 

destination.  The deviation distance between a given pre-determined path and a potential facility 

location is therefore calculated as the difference between the sum of the two diversion journeys’ 

distances and original origin-destination distance. Shown graphically in Figure 3: 
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FIGURE 3: Diagrammatic example of deviation distance calculation 

Deviation distances are calculated for each path-node pair, denoted     in the optimisation model, 

where q is a pre-determined path used by consumers and j is a potential facility location. If q is the 

Origin-Destination path shown above,                  

4.3.2 Mathematical Formulation 

The mathematical formulation for   ( ) is based on the Generalised Flow Interception Model 

introduced in Zeng et al. (2010). Applying the GFIM to the minimisation of deviation distances, the 

model takes the following form:  

 

                 ( )  ∑∑   ∙    ⋅ 𝑋  
 𝜖𝑁𝑞 𝜖𝑄

 

   

s.t.  

∑ 𝑋   𝜖𝑁𝑞           ∀𝑞𝜖𝑄      (4) 

𝑋   𝑌                   ∀𝑞𝜖𝑄  𝜖       (5) 

  𝑋               ∀𝑞𝜖𝑄  𝜖        (6) 

𝑌 𝜖{   }                   ∀ 𝜖𝐽      (7) 

  

Origin Destination 

Potential Facility node j 

a 

 

b 

c 

= Shortest path between origin node and node j, a = associated distance 

= Shortest path between node j and destination node, b = associated distance 

= Original route: Shortest path between origin and destination, c = associated distance 

(3) 
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 where 

𝑄    the set of non-zero flow paths indexed by q 

𝐽    the set of potential facility sites containing all nodes in the graph, indexed by j 

     the subset of nodes j capable of intercepting the flow along path q,  𝑞  𝑄 

 

     the flow volume along path q,  𝑞  𝑄 

      the deviation distance between path q and node j, 𝑞  𝑄   𝐽 

 

𝑋     the proportion of flows on path q intercepted by a facility at node j,  𝑞  𝑄   𝐽 

𝑌 {
            if there is a facility located at node        𝐽    
            otherwise                                                                  

     

  [𝑋𝑞𝑗
𝑌𝑗
]  the vector of decision variables,  𝑞  𝑄   𝐽 

 

  ( )    the objective function, the total deviation distance travelled by all consumers 

In this formulation, the objective function (3) is aimed at minimising the total deviation distance 

necessary for all consumers to reach a charging point. The first set of constraints (4) ensures that 

100% of flows along each path q are captured by facilities in    . Constraint (5) ensures if a path q is 

served by a facility located at node       , this facility must be open. Constraint set (6) represents 

the bounds on variable 𝑋   and (7) defines the decision variable 𝑌  as binary. Note that decision 

variables 𝑋   will behave as a binary variable in all cases except where there are two open facilities 

are equidistant from a path q, in which case the flow could potentially split. Note also that the 

upper bound enforced on these variables in (6) is not strictly necessary since it is already covered 

by constraint set (4) but has been included here for clarity. 

A subset of candidate nodes      is defined for each path  𝑞  𝑄 . This set contains the nodes    

from the set of all nodes in the graph (𝐽)  that are considered capable of capturing the flow along 

path q. In the FILM,    is essentially the set of nodes on path q, since flow is only captured if a 

facility directly intercepts a path. In the GFIM however, one can choose how to define    according 

to the characteristics of the problem (Zeng et al., 2010). For this problem, one could consider 

allowing all nodes to be candidates for all paths, since we are assuming there are no restrictions on 

the locations at which facilities can be placed. In this case there would be no need for the subset 

   since the set 𝐽 could be used directly. However, one of the main motivations for installing fast 

charging stations is to tackle the problem of range anxiety; this would not be achieved if solutions 

that require some EV users to travel far out of their way in order to reach their nearest facility are 



19 
 

allowed. The nodes in 𝐽 that are allowed to service each path  𝑞  𝑄  are therefore restricted for 

this problem, taking into account the extra distance      needed to reach them from the different 

paths. Figure 4 shows a simple example of a road graph with an example path q to help visualise 

this restriction.  

 

FIGURE 4: Example road graph demonstrating generic restriction of     

In Figure 4, a path q is shown between the origin and destination of a journey within the road 

graph. The black nodes are those that are allowed to serve path q and thus belong to the 

subset    . The red nodes are the nodes that belong to the entire set of nodes  𝐽 , but that are 

considered too far from path q to serve it. This sketch is provided in order to help the reader 

understand the mathematical formulation; the explicit deviation distance criteria that have been 

chosen to restrict     for this problem are discussed at length in Section 5.2. 

In the original formulation presented by Zeng et al. (2010) there is an additional constraint setting  

∑ 𝑌  𝜖𝐽  𝑝, ensuring that exactly p facilities are located. For our application, however, we do not fix 

p, since we are interested in seeing how changing priorities affects not only the location of facilities, 

but also the number of facilities opened. Omitting this original constraint set out by Zeng et al. 

(2010) means that this problem has a trivial solution when presented alone as it is above; one can 

ignore the 𝑌  variables and separate the problem by paths.  

Origin 
Destination 

Path q, the shortest path between the origin and destination 

Nodes allowed to serve path q 

Nodes that are not allowed to serve path q since the deviation distance  𝑑𝑞𝑗   exceeds the chosen criteria for 

the restriction of 𝑁𝑞 
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In this case, for each path 𝑞  𝑄 : 

 𝑋  {
           for the index 𝑞  with the minimum deviation     

           otherwise                                                                           
   

That is, each path is served by the facility that offers the minimum deviation distance. If this 

minimum deviation distance is observed for more than node j, the optimal solution would be to 

assign the flows of path q to any of these nodes, or to distribute the flows between them. Since we 

do not restrict the number of facilities that can be opened here, it is always possible to open at 

least one facility at a node j that lies on each path q, with a zero deviation distance     . Therefore, 

the optimal solution with   ( )    would be obtained by ensuring that at least one fast charging 

station is installed on each path q. Having obtained the optimal values for all  𝑋   , one can then 

obtain the values of 𝑌  directly. For each node    𝐽: 

𝑌 {
                                                         if 𝑋  >   for some q  Q                                                                       

     𝑜𝑟     𝑡 𝑟         𝑦         if 𝑋     for all q  Q                                                                            
   

Although this problem appears trivial here, it is no longer the case when incorporated into the 

multi-objective model, since the consideration of set up costs limits the number of facilities that are 

opened. The deviation minimisation problem has nevertheless been presented firstly in isolation in 

order to get a clear picture of the separate components of the final multi-objective model.  

 

4.4    ( ) : Minimising Set up Costs: 

The second objective function minimises the cost of setting up charging stations, including grid 

reinforcement where necessary (costs are described in more detail in Section 5.3).  

The minimisation of this objective takes the following form:   

                 ( )  ∑  ⋅ 𝑌  

 𝜖𝐽

 

      

s.t.  constraints (4) to (7)  

where 

      the cost of setting up a facility at node j,     𝐽 

    ( )     the objective function, the total cost of setting up facilities in all chosen locations.  

Note here that the number of installed facilities will depend on the definition of    , the set of 

(8) 
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(11) 

(10) 

nodes allowed to service path q. For instance, should    𝐽, when considering set up costs alone 

the optimal solution would be to open a single facility to serve all paths, in the cheapest possible 

location.  

4.5 Multi-objective Model 

Combining the two objectives outlined by applying the formulation in (1) to the case study 

results in the following model: 

                       ⋅    ( )      ⋅    ( )    (9) 

 

    [∑∑   ∙    ⋅ 𝑋  
 𝜖𝑁𝑞 𝜖𝑄

]     [∑  ⋅ Yj 

 𝜖𝐽

] 

 s.t.   constraints (4) to (7)  

where 

      the weight factor for the consumer deviations  

      the weight factor for set up costs 

4.6 Function Transformation 

As is common for multi-objective problems,   ( ) and   ( ) are measured in different units and 

have significantly different orders of magnitude. This can be problematic for depicting the Pareto 

optimal set, since the aggregated function may be dominated by one or more objectives within it. A 

function transformation can be used to normalise the different objective functions. Different 

approaches to this transformation have been applied in the literature, a selection of which have 

been evaluated in detail by Marler & Arora (2005). Of those assessed, the upper-lower-bound 

approach, is found to be the most effective and robust transformation method. This method has 

therefore been chosen to transform the two previously described objective functions.     
       is 

the term used to describe the ith transformed function and is defined in the following manner: 

 

  
      

  ( )    
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 where   
  min   {  ( ) |  𝜖   }  is the minimum feasible value of the ith objective function, 

obtained by minimising    ( ) subject to the problem’s constraints without taking into account the 

other objectives.    
    represents the ‘maximum’ value of    ( ). For the  application to multi-

objective optimisation, it is not the absolute maximum of   ( ) that is of interest, but the 

maximum value attainable within the Pareto optimal space, otherwise known as the Pareto 

maximum. In general terms,    
     is defined as  max

     
  (  

 ) , where   
  is the point that 

minimises the jth objective function. That is,   
     is the maximum value of    ( )  obtained for 

solutions that minimise all functions    ( ) where     . For the bi-objective case therefore,    
    

is obtained by minimising   ( ) subject to constraints (4) to (7) or, equivalently, setting    

        and minimising the weighted sum formulation outlined in (9). This can be directly 

applied to the original untransformed objective functions, since the solution found is unaffected by 

transformations for the 0-1 weights case. The value of   ( ) found for this solution also 

provides   
  . The same process is used to obtain   

    and   
  , reversing the values of    and   . 

Using the type of transformation outlined in (11) will yield a value between 0 and 1 for    
     . For 

some applications of this function transformation it may not be possible to obtain accurate values 

for   
    and   

 , and thus values calculated for   
      may lie outside the 0-1 bounds.  However, 

this does not apply here since these parameters can be accurately obtained using the methods 

outlined above. Marler & Arora (2005) found the application of (11) using the Pareto maximum for 

  
    to be a relatively robust approach to function transformation. In particular, unlike in other 

approaches, the denominator is guaranteed to be positive, and therefore does not face the 

potential problem of division by zero. Furthermore, the lower-upper bound approach is the only 

transformation method that constrains both the upper and lower limits of    
     ; alternative 

approaches focus on the upper bound or lower bound only. Using this method therefore effectively 

mitigates the problem of differing orders of magnitude, impeding any single objective from 

dominating the aggregated weighted sum function.  
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4.7 Final Model 

The function transformation outlined in (11) is applied to multi-objective function 

formulated in (9). The resultant model to be implemented in GAMS therefore becomes: 

 

                     [
∑ ∑   ∙    ⋅ 𝑋   𝜖𝑁𝑞 𝜖𝑄    

       
]     [

∑   ⋅ Yj    𝜖𝐽   

       
] 

Subject to 

 ∑ 𝑋   𝜖𝑁𝑞           ∀𝑞𝜖𝑄           (13) 

    𝑋   𝑌                   ∀𝑞𝜖𝑄  𝜖         (14) 

      𝑋               ∀𝑞𝜖𝑄  𝜖        (15) 

    𝑌 𝜖{   }                   ∀ 𝜖𝐽       (16) 

where 

𝑄    the set of non-zero flow paths indexed by q 

𝐽    the set of potential facility sites indexed by j 

     the set of nodes capable of intercepting the flow along path q,   𝑞  𝑄 

 

     the flow volume along path q, 𝑞  𝑄 

       the cost of setting up a facility at node j,    𝐽   

      the deviation distance between path q and node j,   𝑞  𝑄      𝐽 

      the weight factor for the consumer deviations  

      the weight factor for set up costs 

 

 

𝑋     the proportion of flows on path q intercepted by a facility at node j,  𝑞  𝑄      𝐽   

𝑌 {
         if there is a facility located at node                𝐽
         otherwise                                                                      

  

 

         the Pareto maximum value of the total deviation distance travelled by consumers 

to reach their nearest charging point 

      the minimum feasible value of the total deviation distance travelled by consumers 

to reach their nearest charging point 

        the Pareto maximum value of total set up costs 

      the minimum feasible value of set up costs 

(12) 
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5. Data 

As in Cruz-Zambrano et al. (2013), mobility data was taken from the 2006 “Encuesta de Movilidad 

Cotidiana” (EMQ, 2006), a quinquennial everyday mobility survey conducted by the Barcelona 

Metropolitan Transport Authority. Within the survey, the city of Barcelona is broken down into 63 

different zones.  

Although the greater Metropolitan Area of Barcelona is considered in the survey, this study looks 

only at the city. Taking into account the entire metropolitan area would lead to more precise 

results, since traffic flows would be better observed for both the inner city and its surroundings. 

However, this study’s primary concern is the development of methodology, and expanding the area 

covered would not result in additional insights to this effect. As this expansion would require 

considerably greater computational resource, the area is limited in in order to relieve the 

computational burden. It is worth noting that despite this limitation, the journey data does 

incorporate commuters who make their journeys within the city but enter from the greater 

metropolitan area. The zones in which these commuters enter the city are used as the origin zones 

for their journeys.   

Respondents of the survey are asked to outline the origin, destination, time and transport mode for 

all journeys made during the day prior to questioning; in this work, only journeys made by private 

vehicle are considered. Rather than appointing a unique node to each origin or destination, journey 

beginnings and ends are aggregated by zones and assigned to a centroid point, again easing the 

computational strain of the problem. Centroid points were assigned by Cruz-Zambrano et al. (2013) 

to the node that best represented the set of journeys that originated and/or terminated in each 

zone in a centralised manner, making use of urban characteristics. 

 

5.1 Consumer Paths 

In order to implement the optimisation model, we need to define a set of paths taken by the 

potential consumers, i.e. the population of Barcelona. A simplified roads graph with 940 nodes and 

2552 edges is used, originally published by the Generalitat de Catalunya. 

Given the origin and destination of the trips recorded in the mobility survey, we are able to 

estimate each path taken using information on distances contained within this graph, as well the 

amount of flow (or number of consumers) that uses each path.  It is assumed that potential 

consumers will take the path with the shortest distance between their origin and destination. Thus 
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for each Origin-Destination pair a path 𝑞  𝑄, defined by the set of nodes it passes, is estimated 

using Dijkstra’s shortest path algorithm, implemented using MATLAB. Using this information, the 

length of each path q can be calculated.  

As previously discussed, it is considered that consumers will deviate from their pre-determined 

path in order to access fast charging services. Since one of the main goals of the infrastructure 

planning is to make fast charging as convenient to users as possible, we minimise the average 

necessary deviation distance. The calculation of the deviation distances between paths  𝑞  𝑄 and 

nodes    𝐽 also makes use of Dijkstra’s shortest path algorithm. For each path-node pair (qj) the 

algorithm is used to estimate the shortest path between path q’s origin and the node j, as well as 

the shortest path between node j and path q’s destination.  Having obtained these shortest paths, 

their distances are determined and used in conjunction with the length of path q to compute the 

deviation distance     , as described in Section 4.3.1.  

5.2 Calculating    

As introduced in the model formulation, a set    containing candidate nodes is defined for each 

path 𝑞𝜖𝑄.  One might consider allowing all nodes to be candidates for all paths, in which case the 

set up costs could be minimised by opening only one fast charging station, but at great expense to 

the convenience of EV users. In Section 4 it was established that such a solution would be 

unsatisfactory, since many EV users would have to go far out of their way to use fast charging 

stations, and thus range anxiety would not be effectively targeted. Furthermore, the computational 

size of the problem is large, involving the calculation of 940 binary decision variables related to the 

940 nodes in the network, as well as over 2 million continuous variables; restricting the nodes able 

to service each path reduces the number of feasible solutions to the problem and can therefore 

ease the computational strain.  The candidate nodes    𝐽  that can service each path   𝑞  𝑄   are 

therefore restricted here using the deviation distance        to establish the restriction criteria.  

 A first approach considered was to restrict the allowed deviation distance as a function of the path 

length. Using this approach     would be defined in the following manner: 

   {  |         𝑡 (𝑞)}  𝑞  𝑄 

where      𝑡 (𝑞) is the shortest path distance between path q’s origin and destination.  

That is, if the deviation required to access node j from path q is greater than the distance normally 

travelled to traverse path q, node j is too far from path q to be considered as a candidate. The 
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reasoning behind this approach is that consumers making longer journeys will be willing to deviate 

further to recharge their EV. The result of restricting    in this way is that no consumer would have 

to more than double their normal journey distance in order to recharge.  

However, this restriction means that greater importance is given to consumers making short 

journeys when calculating a solution. For example, if a path q of 500 metres exists, say, in order to 

satisfy the constraints of the model, the solution would be forced to place a charging station within 

500 metres deviation distance from q, regardless of its flow, or the flow of neighbouring paths.  

Note that if one were to enforce a limit on the number of facilities to be opened (as is done in the 

original GFIM where exactly p facilities are opened) an over restrictive definition of    could yield 

the optimisation problem infeasible.  

In order to account for the problem caused by short paths (and also ensure that very large 

deviations are not allowed), upper and lower bounds can be set to allow more elements j in    for 

short paths, and fewer for the longest paths. In early stages of this study, this approach was tested, 

using the 10th and 90th percentiles of all the path lengths as limits. In this case,    was constructed 

in the following manner: 

 𝑜𝑟   𝑦 𝑞  𝑄  𝑜 

     

 𝑜𝑟   𝑦   𝐽  𝑜 

        𝑡 (𝑞)        𝑝 𝑟   𝑡        𝑡  𝑡     

           
   𝑝 𝑟   𝑡        𝑡              { }  

              𝑝 𝑟   𝑡        𝑡       𝑡 (𝑞)        𝑝 𝑟   𝑡        𝑡  𝑡     

             𝑡 (𝑞)             { }    

              𝑡 (𝑞) >      𝑝 𝑟   𝑡        𝑡  𝑡     

           
   𝑝 𝑟   𝑡        𝑡              { }   

     𝑜 

     𝑜 

Here, if the length of a path q is smaller than the 10th percentile of path lengths, membership of    

is no longer determined by the length of q; a node j is allowed in     if      is smaller than the 10th 

percentile length. Similarly, if the length of a path q is greater than the 90th percentile of path 

distances, a node j belongs to    only if      is smaller than the 90th percentile distance.  
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 Although applying these limits mitigates the problem of consumers with extreme path lengths, for 

those who have paths lengths lying between the 10th and 90th percentiles, the ones with shorter 

paths are still in effect given more importance when solving the optimisation problem; again, 

limiting     according to path lengths effectively enforces stricter constraints on the locations that 

are allowed to serve shorter paths.  It is therefore considered that a more equitable methodology is 

to apply a fixed permissible deviation distance as the     membership criterion for all paths, 

regardless of their length. Using this membership criterion ensures that all potential users will have 

a fast charging station within the same fixed deviation distance from their paths.  

To apply the multi-objective optimisation problem, a distance limit of 3km, approximately equal to 

the 25th percentile path length, was chosen to determine     . That is,    {  |        }. Using 

this restriction ensures that for any solution found, at least 75 percent of consumers would not 

have to deviate further than the length of their normal path, and no consumers would have to 

deviate more than 3km. Using this value reduces the computational requirements of the problem, 

while still allowing sufficient flexibility to effectively optimise the objectives. A second      with a 

deviation distance limit of 2km was also tested for some values of    and      to explore the 

sensibility of the results with respect to the definition of    .  

It should be noted that should the decision maker wish to enforce a specific maximum deviation 

distance for all consumers, and it was known a priori, this could be achieved by limiting    , 

without needing to add an extra constraint in the mathematical model. 
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5.3 Estimation of Set up Costs 

The costs used for the optimisation problem use estimates for costs with and without the need for 

grid reinforcement, associated with the presence of service stations and their existing facilities. 

These costs are taken from Cruz-Zambrano et al. (2013), who adapted costs found in Schroeder & 

Traber (2012).  The cost estimates categorise the 940 candidate locations into four types, each with 

differing characteristics and estimated set up costs; these can be seen in Table 1 with their 

associated cost estimates.  

TABLE 1 

 Set up costs by type of candidate location 

 

Type I Type II Type III Type IV 

Petrol station 

with car wash 

Petrol station 

with more than 

10 pumps 

Petrol station with 

less than 10 pumps, 

Hypermarket or Mall 

Other 

Material cost (€) 40,000 40,000 40,000 40,000 

Grid Reinforcement 

(€) 
- 25,000 50,000 50,000 

Cost of Land (€) -  - -     13,484 

Total (€) 40,000 65,000 90,000 103,484 

 

The material costs are assumed to be the same for all candidate locations. No grid reinforcement is 

needed in the presence of a car wash at a petrol station, and reduced grid reinforcement is needed 

where a petrol station has more than 10 pumps.  The cost estimates by Cruz-Zambrano et al. (2013) 

assume no land cost for existing petrol stations and malls. The assumption here is that the fast 

charging stations at this type of location would be installed by, or in collaboration with, the existing 

facility providers. For nodes without existing facilities, the cost of land was calculated using average 

land prices for Barcelona. Cruz-Zambrano et al. (2013) sourced information regarding the location 

of petrol stations, hypermarkets and malls online from the Spanish Ministry of Industry, Tourism 

and Commerce.  
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6. Results 

Each Mixed Integer Linear Program (MILP) tested solves for 2,244,720 continuous variables and 940 

binary variables with 2,245,660 constraints; there are 4,489,440 bounds associated with the 

     variables.  All MILPs were formulated using the General Algebraic Modelling System (GAMS), 

and executed using the CPLEX solver with default options. The execution time depended on the 

values of    and     used and the limits used when defining the set    , varying between 33 

minutes and 24 hours; all executions were run in Microsoft Windows on standard desktop PCs. In 

total, the final model was executed 48 times to obtain the results presented here. 

First, the objective function outlined in (10) is minimised subject to constraints (4) to (7), without 

applying the transformations found in (12).  This is applied for            in order to find 

values for       and    and for           , to obtain       and   . Equivalently, one could 

say the problem (3) – (7) is minimized to find       and    , and the objective function (8) is 

minimised subject to constraints (4) – (7) to find       and   . Having calculated these parameters, 

the model outlined in (12) – (16) (in which the objective functions are transformed) is solved for 

different weights, varying between zero and one, subject to the condition          . 

6.1 Primary Results 

Table 2 shows the optimal values    ( 
 ) (Total Deviations) and   ( 

 ) (Total Set up Costs) for each 

of the weights combinations tested, for    using a fixed deviation limit of 3km as defined in Section 

5.2. Only    (the weight associated with set up costs) is shown (in column 1) for ease of reading, 

where    is the complement weight.  

The value of total deviations represents the extra travel distance required for all consumers to 

reach their nearest fast charging station once. For a more intuitive representation, this value has 

been divided by the total volume of flows (i.e. the total number of responses in the survey sample), 

to find the Average Deviation Distance, in the following manner: 

   𝑟         𝑡 𝑜     𝑡      
∑ ∑   ∙    ⋅ 𝑋   𝜖𝑁𝑞 𝜖𝑄

∑    𝜖𝑄
 

This average deviation represents the average deviation distance that each consumer must travel 

every time they wish to recharge their EV at a fast charging facility.  

The final column of Table 2 shows the total number of facilities opened for each solution found. 

This is defined as follows: 
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     𝑟 𝑜       𝑡     𝑝      ∑𝑌 
  𝐽

 

The value of the collective objective function is not presented here, since applying the function 

transformation described in section 4.6, as well as the different weights, means that it does not 

have a meaningful interpretation. In addition, it is worth noting that the values presented in Table 

2 reflect the values of   ( 
 )  and   ( 

 )  without transformation; although their orders of 

magnitude appear significantly different here, the transformation applied deals with this difference 

before the problem is optimised, and therefore curbs potential computational problems.  

TABLE 2 

Solution Values for    limit fixed at 3km 

   Total Set up Costs 
(EUR) 

Total Deviations 
(m) 

Average Deviation 
Distance (m) 

Number of Facilities 
Opened 

0 87,448,424 0.00E+00 0.00 865 

0.1 4,424,972 3.85E+07 0.15 47 

0.2 3,714,520 1.30E+08 0.51 39 

0.3 3,998,004 3.27E+08 1.29 42 

0.4 3,170,132 1.04E+09 4.1 34 

0.45 2,886,196 1.83E+09 7.21 32 

0.5 2,913,164 1.95E+09 7.68 32 

0.55 2,719,228 2.49E+09 9.83 31 

0.6 2,719,228 2.61E+09 10.32 31 

0.65 2,619,228 3.88E+09 15.30 31 

0.7 2,550,744 4.41E+09 17.41 29 

0.75 2,318,776 5.52E+09 21.76 27 

0.8 2,048,776 9.55E+09 37.68 24 

0.85 1,908,776 1.08E+10 42.66 23 

0.9 1,661,808 1.63E+10 64.24 20 

0.91 1,481,356 2.34E+10 92.42 19 

0.92 1,183,936 3.41E+10 134.53 17 

0.93 1,183,936 3.41E+10 134.53 17 

0.94 1,183,936 3.41E+10 134.53 17 

0.95 1,080,452 4.09E+10 161.31 16 

0.96 1,080,452 4.09E+10 161.31 16 

0.97 990,452 5.05E+10 199.41 15 

0.98 770,000 8.29E+10 327.21 13 

0.99 666,968 1.08E+11 426.83 11 

0.999 653,484 1.32E+11 522.25 11 

0.9999 653,484 1.39E+11 549.19 11 

1 653,484 3.26E+11 1288.02 11 
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Note that for the two cases in which a zero weight is allowed (in the first and final row), there is no 

guarantee that the solution found is Pareto optimal, since the model ignores the value of the 

objective function i with      outright; this phenomenon is discussed in Steuer (1986, p.167).  

Thus, although the solution in the final row of Table 2 finds the best possible value for set up costs, 

it may be that for this same level of set up costs, it is possible to improve the value of the 

deviations. This would imply finding an alternative solution for which   ( 
 )          and that 

yields a value of   ( 
 )             which is feasible since CPLEX terminates after finding the 

first solution that minimises the global objective function, and when     , the value of   ( ) is 

ignored. Such points can be described as weakly Pareto optimal, since it is not possible to move 

from one of these points to another that improves all objective functions simultaneously (Marler 

and Arora, 2010). It may be that there is a different combination of facilities with the same set up 

cost that is better distributed in space; i.e. yielding the same value for   ( 
 )  but different values 

for one or more  𝑌  , in such a way that the total deviation distance for all consumers is reduced. 

Changing the values for 𝑌   inherently changes the values of the path-facility allocation decision 

variables 𝑋  , and in doing so could improve the optimal value   ( 
 ). Alternatively, it may be a 

better value of   ( 
 ) can be found for the same set of 𝑌   decision variables, but with different 

values for one or more 𝑋  .   

In addition to the extreme points, there are some solutions in Table 2 that are not strictly Pareto 

optimal. For example, the solutions found for          and      give the same value of set up 

costs, but different deviation distances. This can be explained by the fact that not all solutions were 

found using an optimality gap set strictly equal to zero. For some cases where this was observed, 

the results were re-computed with a zero optimality gap and the solutions found no longer 

contradicted the notion of Pareto optimality. This was not however repeated for all weights 

combinations since it would imply a significant computational burden, and it is considered that the 

results obtained are satisfactory for demonstration purposes.  

Since the collective function minimised in (12) is a linear combination of two convex functions, with 

non-negative coefficients, it is itself convex. This is used to find Pareto optimal points using weights 

combinations as described previously. The solutions found are used to depict the trade-off 

between the contrasting objectives, shown in Figure 5. Here the average deviation distance, as 

defined above, is plotted against the value of    ( 
 ), the total set up costs. Note that although the 

convention is to plot the values of the objective functions against one another, it is considered that 

the interpretation of the average deviation per consumer is more intuitive. Should the total 

deviation distance   ( 
 )  be on the x-axis however, the shape of the graph would not change. 

Note also that the solution found for            (represented in the first row of Table 2) is 
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not included on the graph; in this solution 865 facilities are opened, resulting in total set up costs 

almost 20 times greater than for the next solution found, where              . Including this 

point on the graph would not add a great deal to the interpretation, but would however inhibit a 

clear representation of the remaining results.  Figure 6 provides the same results as figure 5, but 

omitting the solution found for           , to allow a closer look. Some solution points have 

been labelled with the value of    for viewing clarity.  

 

FIGURE 5: Trade-off curve for Set up Costs and Average Deviations 

 

Initially, solutions were found for                  with the complementary values for   . It 

was found that for higher values of   , i.e. where a greater weight was applied to deviation 

distance minimisation, the difference in the average deviation distances for the different solutions 

was relatively small. As can be seen in Table 2, even for            the average deviation 

distance is below 10 metres. This can be explained by the fact that in this solution, 32 facilities are 

opened, and thus many consumers may have facilities directly on their pre-determined path. As 

   decreases, fewer facilities are opened and thus more consumers will have to deviate from their 

path.  

In Figure 5 it can be seen that until    reaches 0.8, the solution points appear close to one another 
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on the deviations scale. That is, small sacrifices in deviations can achieve large reductions in set up 

costs. In order to observe the nature of the trade-off implied as deviation distances increase, 

solutions were found for additional values of    and     at 0.05 intervals for    >     , and yet 

more weights combinations for    >     ; 11 solutions are found for     between 0.9 and 1. In 

total, 27 solutions were found for this definition of   . Using these weights combinations has 

enabled the picture depicted in Figure 5. This demonstrates that even having applied the function 

transformation described in Section 4.6, using uniformly distributed weights does not necessarily 

lead to a clear depiction of the trade-off curve;  Marler and Arora (2004) describe this phenomenon 

as one of the shortcomings of the weighted sums approach, stating that “varying the weights 

consistently and continuously may not necessarily result in an even distribution of Pareto optimal 

points and an accurate complete representation of the Pareto optimal set”. This problem has been 

addressed here by solving for more weights combinations within certain intervals.  

 

FIGURE 6: Trade-off curve—Pareto Optimal Solutions Only 
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As expected, and as could be deduced from Table 2, there is a negative trade-off between total set 

up costs and the amount consumers must deviate from their pre-determined paths: set up costs 

are depicted as a monotonic decreasing function of deviation distances. Figures 5 and 6 allow the 

decision maker to observe the shape of this trade off, and see how much they would need to 

sacrifice one objective in order to improve the other. It can be seen that this trade-off relationship 

is non-linear, with the trade-off represented by a steep collection of points on the left hand side of 

Figures 5 and 6, gradually becoming shallower as     approaches 1. 

 Depending on the decision maker’s preferences, any point on these graphs (or any point found as 

a solution of other weight combinations) could reasonably be chosen as the optimal solution, since 

every point is efficient in terms of simultaneously optimising the two contrasting objectives. 

However, the purpose of producing these results is to help a DM observe their options and better 

understand their preferences. For example, from Figure 6 it can be seen that for any weight     

     , the average deviation distance in the solution found is less than 50 metres, and limiting the 

average deviation distance below 50 metres implies a significant increase in set up costs. Similarly, 

the solution found for          , gives a total set up costs value of €1,015,452; attempts to 

reduce the set up costs to values bellows €1 million imply an increasingly large sacrifice in terms of 

deviations. The red dotted lines have been drawn to help the reader observe these results; the 

vertical line marks an average deviation distance of 50 metres, and the horizontal line marks €1 

million set up costs.  

From looking at the results in Figure 5, it seems reasonable to suggest that the most cost effective 

solutions, in terms of deviation distance to set up costs trade-offs are found for values of 

     between  0.7 and 0.98 (outlined by the red dotted line). It could be suggested that a solution 

should be chosen from this region since these solutions represent the best “value for money” in 

terms of deviation reductions. However, it may be the case that the DM’s preferences are reflected 

in solutions outside this region, in which case the choice of an alternative solution would be equally 

valid.  

In addition to the information already provided, solving the MILP for each combination of weights 

returns not only the number of facilities to be opened but the location of these facilities. Using the 

roads graph described in section 5.1, the solutions can be presented on a map of Barcelona, 

implemented using MATLAB graphing software. The blue lines on each of the maps that follow 

represent the main roads that are used as arcs in the calculation of paths.  

Figures 7 and 8 show the solutions found when         and          , respectively.   
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Total Set up Costs: € 87,448,424 Average Deviation Distance: 0.00 m 

FIGURE 7: Optimal location of Fast Charging Stations when                

 
Total Set up Costs: € 4,424,972  Average Deviation Distance: 0.15 m 

FIGURE 8: Optimal location of Fast Charging Stations when                    
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While it is clear that no central planner would choose to employ the solution found in Figure 7, the 

difference between these two figures highlights the usefulness of the multi objective approach. 

Even if a DM’s most pressing priority were to ensure that deviations were as small as possible, it is 

shown here that applying even a small weight to the set up costs objective vastly changes the 

solution, at minimal expense to the average deviations value. For the solution represented in 

Figure 8, the Average Deviation Distance has only increased from 0 to 0.15 metres, whilst set up 

costs have fallen from approximately €90 million to approximately €4.5 million.   

At the other end of the spectrum, Figures 9 and 10 show the solutions found when         

and             , respectively.   

 
Total Set up Costs: € 653,484  Average Deviation Distance: 1288.02 m  

FIGURE 9: Optimal location of Fast Charging Stations when                
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fact that making seemingly subtle changes in the EV fast charging stations infrastructure can have a 

sizeable effect on the deviations the average consumer would have to travel.  

 

Total Set up Costs: € 653,484  Average Deviation Distance: 549.19 m 

FIGURE 10: Optimal location of Fast Charging Stations when                         
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Total Set up Costs: €1,183,936 Average Deviation Distance: 134.53m 

FIGURE 11: Optimal location of Fast Charging Stations when                      

 

 

Total Set up Costs: €1,080,452 Average Deviation Distance: 161.31 m 

FIGURE 12: Optimal location of Fast Charging Stations when                      
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At more extreme ends of the trade-off curve this type of judgement may be easier to make, since 

the sacrifices one has to make for one objective to achieve improvements for the other get 

relatively larger. For example, moving from            to            implies a cost saving of 

€220,452 (approximately twice that of the previous case), and an increase in average deviation 

distance of 128 metres (five times the increase for            and     ). 

In addition, a DM may also wish to account for other factors that have not been considered for 

optimisation. For example, looking at the maps in Figures 11 and 12, somebody familiar with the 

city of Barcelona would notice that the former places an additional fast charging station on, or very 

near to, Avinguda Diagonal, one of the city’s broadest and most important avenues; this fact could 

affect a planner’s preference between these two solutions. Unaccounted for considerations such as 

these provide yet further justification for using a multi-objective approach that provides DM’s with 

a set of potential locations rather than a single solution with no alternative, based of preferences 

stated or assumed a priori.  
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6.2 Distribution of Deviations 

In addition to the average deviation distance, and the maximum possible deviation distance 

enforced through the definition of matrix    , a DM may also be interested in knowing how the 

total deviation distance is distributed between consumers. The path-facility allocation decision 

variables     are used in conjunction with     to calculate how far consumers on different paths 

must travel to reach their nearest fast charging facility. To demonstrate how this information can 

be used, Figure 13 shows the distribution of the necessary consumer deviations for the solution 

where                     .

 

FIGURE 13: Distribution of consumers’ deviations when                      
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FIGURE 14: Distribution of consumers’ non-zero deviations when                       

Should it be required, it would also be possible to observe this data in a more disaggregated 

format. For example, one could examine the deviation distribution depending on the district of 
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6.3 Changing    

In order to assess the effect of the definition of the candidate location matrix    , a second smaller 

set of results were found, changing    ’s deviation distance limit from 3km to 2km. 21 different 

weights combination implemented for this version of     ; the results are shown in Table 3.  As can 

be seen from the first and final rows, imposing a stricter limit on    reduces the range of solution 

values for the two objectives; i.e.  (       ) and  (       ) are both smaller than for the 

previous case. This is shown in Figure 14, in which the average deviation distances are plotted 

against the total set up costs for both definitions of    .  

TABLE 3 

Solution Values for    limit fixed at 2km 

   Total Set up Costs 
(EUR) 

Total Deviations 
(m) 

Average Deviation 
Distance (m) 

Number of Facilities 
Opened 

0 86,103,132 0 0.00 852 

0.1 3,894,972 4.10E+07 0.16 40 

0.2 3,778,004 8.66E+07 0.34 39 
0.3 3,570,584 3.35E+08 1.32 38 

0.4 3,287,100 7.08E+08 2.79 35 
0.5 3,455,584 8.64E+08 3.41 37 

0.6 2,796,196 2.25E+09 8.89 31 

0.7 2,669,228 3.05E+09 12.02 31 

0.8 2,232,260 6.61E+09 26.08 27 

0.85 2,192,260 7.19E+09 28.38 26 

0.9 1,741,808 1.55E+10 61.23 22 

0.93 1,561,356 2.04E+10 80.45 21 

0.94 1,432,872 2.52E+10 99.43 20 

0.95 1,302,420 3.08E+10 121.55 19 

0.96 1,145,452 4.01E+10 158.33 17 

0.97 1,145,452 4.02E+10 158.40 17 

0.98 1,145,452 4.02E+10 158.45 17 

0.985 1,095,452 4.72E+10 186.34 17 

0.99 1,013,936 6.63E+10 261.42 14 

0.999 1,013,936 7.18E+10 283.25 14 

1 1,013,936 2.25E+11 887.30 14 

On the left hand side of Figure 15, the solutions found for the two definitions of    appear to be on 

the same, Pareto curve, but divert as we move to the right with an increasing     . This can be 

explained by the fact that when more weight is given to the value of average deviations, the same 

optimising solutions can be found using either definition of   . However, as more weight is given 

to costs, the stricter limit on deviations inhibits solutions with a cost smaller than €1,013,936 
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(marked by the red dotted line), since they are no longer feasible. Figure 15 highlights one of the 

important features of using a limited    rather than setting all nodes as candidates to service all 

paths: not only does limiting    limit the deviation distances, but it also creates a lower bound for 

the set up costs. Thus, imposing a stricter limit on    reduces the size of the attainable set.  If there 

is no notion of cost constraints known in advance, it is therefore advisable to limit    as little as 

possible, whilst taking into account that greater    sets make the optimisation problem more 

computationally demanding 

 

FIGURE 15: Trade-off curve for Set up Costs and Average Deviations 

Notice that although many weights combinations are used for both    limits, when using the same 

weights the solution found for one definition does not correspond with that of the other. In order 

to demonstrate this solutions found for           for the two   ’s have been labelled.  
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terms; some central planners may prefer to assess the economic cost of different solutions. This 

0.52km 

0.53km 

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

3,000,000

3,500,000

4,000,000

4,500,000

5,000,000

0 200 400 600 800 1000 1200 1400

T
o

ta
l S

e
t 

u
p

 C
o

st
s 

(E
U

R
) 

Average Deviation Distance (m) 

Pareto Optimal Solutions for 2km limit

Pareto Optimal Solutions for 3km limit

Pareto Maximum Deviations for 2km limit

Pareto Maximum Deviations for 3km limit



44 
 

can be achieved by estimating the monetary cost implied for the average consumer to travel an 

extra metre in order to recharge their electric vehicle. Since the monetary cost is considered to be 

dependent on time, one must first calculate the cost in time of deviating. For a simple estimation, 

one can use the average speed travelled in Barcelona. The Barcelona City Council (Ajuntament de 

Barcelona, 2012), estimated the average speed travelled by private vehicles within the city of 

Barcelona in 2012 was 20.9 km (20,900 metres) per hour; using this one can convert the deviation 

distances into time. For example, a deviation distance of 500 metres would equate to 

approximately   0.02 hours (1.45 minutes) of travel time on average. A common approach to 

valuing time in monetary terms is to use a population’s average income, since this represents the 

opportunity cost of people’s time; i.e. how much they could be earning if they were engaging in 

economic activity rather than travelling to a charging point. This was the approach used by 

Gutiérrez-Domènech (2008) in a study for “la Caixa” investigating the cost of travelling to work. The 

most recent average hourly income in Catalonia published by the Catalan Institute of Statistics 

(IDESCAT, 2011), was €15.55 per hour.  

For the solution presented in Figure 12, the average cost per consumer of deviating to the nearest 

fast charging station could be estimated as  
      

     
            , associated with a deviation 

distance of 161.31 metres, which takes an average of approximately 28 seconds to travel. Using the 

total deviation distance   ( 
 ) for the same solution, one can also calculate the total monetary 

cost associated with the all respondents of the mobility survey deviating once to their nearest 

charging point. For this example, for this solution the cost would be  
              

      
       

           . 

Should it be in the interest of the decision maker, these monetary costs could be calculated in a 

more sophisticated way, for example adjusting average speeds depending on road types; the crude 

estimation used here has been made for demonstration purposes.  

It could be suggested that since deviations can be converted into monetary costs, one could 

combine the set up costs with deviation costs as a single objective, without having to split the 

objectives and applying different weights to them as has been done here. However, since the set 

up costs are a one-off fixed cost and deviation costs are ongoing in time, they are not considered to 

be equivalent. Furthermore, since the costs are felt by different agents (set up costs by local 

authorities and potentially firms, and deviation costs by EV users), and these may be given different 

levels of importance by the DM, the multi-objective approach is deemed more appropriate.  
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7. Discussion and Limitations 

As with any study of this kind there are a number of limitations that one must acknowledge, in 

particular with respect to the input data and methodologies used. Some of the limitations deemed 

noteworthy are outlined here.  

The journey distances and deviations used for the study are calculated using Dijkstra's shortest 

path algorithm, applied to distances between nodes in Barcelona. While these calculations provide 

a reasonable estimate of the journey lengths, they do not consider other factors that may 

considerably affect journey times, and thus chosen paths. Notably among these factors are traffic 

flows, road types (and thus differing transit speeds) and congestion. In particular, whilst our 

interpretation assumes each individual represented in the sample survey acts as an independent 

agent, the reality of congestion causes individuals’ route choices to be affected by those of others. 

In the presence of congestion therefore, factors such as travel time along each path become a 

factor of demand. In addition, roads used to calculate path distances are assumed to be bi-

directional, which is a substantial simplification of the Barcelona road network.  For future 

research, it would be interesting to see whether and to what extent these factors would affect the 

results, potentially by developing a more complex travel demand model.  

Additionally, it is assumed here that the information regarding journeys taken from the mobility 

survey is representative of the entire population of Barcelona on a normal day. Solutions have 

therefore been found under the assumption that what is best for this sample will be best for the 

population it represents. However, it may be the case that the mobility survey does not cover all 

journeys typically made within the city, particularly for less common routes; paths were not 

considered for Origin-Destination combinations that were not observed in the survey. As a result, 

those taking rarer routes might find themselves at a disadvantage if they were not represented in 

the mobility survey. A potential improvement for this input data would be to adjust the matrix of 

journeys between zones to account for the fact that it has been taken from a sample, in such a way 

that increases the likelihood of it accurately representing the whole of Barcelona.  

The costs data used, as estimated by Cruz-Zambrano et al (2013), account for costs associated with 

grid reinforcement and consider the average price of land in Barcelona. However, these costs do 

not account for differences in land and rent prices that may exist between different potential 

facility locations within the same city. Should this model be implemented for the real life 

application, a more detailed study of costs would be necessary to correctly assess the appeal of 

different potential sites. One would also need to consider the potential agreements or 
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arrangements necessary to install charging points in different types of location, for which one 

would need additional input from the local authorities, in order to determine the exact policies to 

be implemented.  For example, an assumption of zero land costs has been made for existing petrol 

stations; however it may be that existing service providers in these facilities will not be directly 

responsible for the installation of fast charging stations, in which case some form of land rent cost 

would be applicable. In their current form, the costs used allow us to demonstrate how true costs 

would be included in the model.  

As briefly mentioned in chapter two, it would also be desirable to consider the characteristics of 

potential facility locations that would make them attractive to users. These may include, for 

example, the different amenities within their vicinity. In order to account for these, one would 

need an estimation of the utility associated with having different types of amenities at fast charging 

stations. Indeed, in their approach, Bernardo et al. (2013) take the parameters for such utility 

values estimated by Houde (2012) for gasoline station consumers in the city of Quebec. However, it 

is felt that there are likely to be considerable differences between gasoline refuelling and EV 

charging activities, as well as differences in the consumers, and thus their preferences. With 

greater resources, one would ideally consider the preferences displayed by the population of 

Barcelona and, where possible, try to identify specific tastes of EV users in the early stages. 

Incorporating this in the optimisation model, potentially as a third objective function to consider 

would provide scope for further study.  

Nevertheless, since the majority of these limitations relate to either restrictions on the availability 

of data or the time needed for implementation, they can be considered independent from the 

proposed optimisation methodology, and thus the validity of this methodology is maintained. 

Improvements made to the input data using the suggestions outlined above could therefore be 

applied to obtain more accurate results for a decision maker, without needing to alter the 

proposed optimisation model. Only if one wished to include a third objective would the model 

need to change; in this case, one would add a third component to the objective function in (10), 

using the same transformation as has been applied to the existing objective functions    (x) and 

   (x). The general methodology would therefore remain unchanged, although the observation of 

trade-offs between conflicting objectives would be less straightforward.  
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8. Conclusions and Further Research 

This study addresses the problem of locating fast charging stations for electric vehicles in the early 

stages of infrastructure implementation for the case study of Barcelona, providing two primary 

contributions to the existing literature.  Firstly, the concept of deviations is introduced to this 

particular facility location problem; previous studies have considered EV users to be fixed to 

particular paths, and optimised the capture of flow along these. Allowing consumers to deviate 

from their original paths provides a more realistic approach, and ensures that everybody is 

accounted for in the optimisation problem. The second important contribution is the use of the 

multi-objective weighted sums methodology. Previous studies have either considered only a single 

objective, or set a fixed constraint for a second objective. In this study, using different weights 

combinations has enabled the computation of multiple solutions and the depiction of the Pareto 

front, which could provide valuable information to a central planner, particularly when preferences   

are not clear. This approach could be applied not only for the city of Barcelona but for other cities 

facing similar problems.  

For the case study addressed, with the function transformation applied, it is found that solutions 

offering the greatest balance in trade-offs between the conflicting objectives are for values of, 

     between 0.02 and 0.3, or equivalently values of      between 0.7 and 0.98. Furthermore, it is 

shown that the definition of the candidate node set    can have an important effect on the size of 

the attainable set and the shape of the trade-off curve, and should therefore be considered 

carefully prior to implementation.  

Of the limitations outlined in section 7, two are considered particularly important. In order for 

solutions to be applicable, a more sophisticated travel demand model should be developed to gain 

a more accurate estimation of paths taken by EV users, and thus the implied deviations associated 

with recharging. Furthermore, the estimation of set up costs implied for locating charging stations 

should consider the policy options under consideration by local authorities, and be made more 

case specific.  

Finally, it is considered that the natural next step for further research would be to consider a third 

objective related to amenities within the vicinity of candidate facility locations. This is deemed 

particularly important given the nature of EV charging, in which even with “Fast Charging” provided 

by DC points, there is a standard associated waiting time considerably longer than the petrol 

refuelling time most car users are accustomed to. Indeed, without the possibility of engaging in 
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other activities whilst waiting for an EV to charge, one could posit that the cost associated with this 

lost time should also be taken into account; this also provides scope for further study.   
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