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We present an algorithmic approach for solving large-scale two-stage stochastic problems having mixed
0–1 first stage variables. The constraints in the first stage of the deterministic equivalent model have 0–1
variables and continuous variables, while the constraints in the second stage have only continuous. The
approach uses the twin node family concept within the algorithmic framework, the so-called branch-and-fix
coordination, in order to satisfy the nonanticipativity constraints. At the same time we consider a scenario
cluster Benders decomposition scheme for solving large-scale LP submodels given at each TNF integer set.
Some computational results are presented to demonstrate the efficiency of the proposed approach.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Very frequently, mainly for optimization problems with a given
time horizon to be exploited, some coefficients in the objective func-
tion, in the right-hand side (rhs) vector and, to a lesser extent in the
constraint matrix, are not known with certainty when decisions are
to be made. These circumstances allow the use of stochastic pro-
grams with recourse.

Computation in stochastic programs with recourse has focused
on two-stage problems, since they reflect the simplest mode of in-
terplaying decision and information. The uncertain parameters are
random variables on some probability space (�′,A′,P′), with �′,
A′, and P′, respectively, denoting the set of all outcomes, a collec-
tion of random variables, and the assigned probabilities. Without the
loss of generality, a finite number of scenarios, �, is often consid-
ered based on some discretization of the realization of �′ ∈ �′, each
with an associated probability of occurrence w�, � ∈ �.

In the general formulation of a two-stage program, decisions on
the first and second stage variables have to be made stage-wise.
First-stage variables are selected before observing the realization of
uncertain parameters. After having decided on first stage and having
observed each realization of uncertain parameters, the second stage
(or recourse) decision has to be made. The first stage corresponds to
decisions to be made without anticipating of some of the problem
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data, i.e., first-stage variables take the same value in each scenario
(nonanticipativity constraints).

When a finite number of scenarios is considered, a general two-
stage program can be expressed in terms of the first-stage decision
variables being equivalent to a large, dual block-angular program-
ming problem, introduced in Wets [1] and known as deterministic
equivalent model (DEM).

Sometimes a general two-stage linear problem adds the condition
that some variables, in either the first stage or the second stage
should be integer. In many practical situations the restrictions are
in fact, that the variables must be binary, i.e., they can only take the
value 0 or 1.

The simplest form of two-stage stochastic integer programs con-
tains first-stage pure 0–1 variables and second stage continuous
variables. Laporte and Louveaux [2] apply a branch-and-cut proce-
dure for such problems, based on the Benders decomposition (BD)
method, see Benders [3]. Alonso-Ayuso et al. [4], provide an effi-
cient branch-and-fix coordination (BFC)methodology for solving two
types of stochastic 0–1 problems, namely, mixed 0–1 problems for
two-stage environments, where the first stage has only 0–1 vari-
ables, and pure 0–1 problems for multistage environments, where
uncertainty appears only in the objective function coefficients and
in the rhs. This methodology is used by Alonso-Ayuso et al. [5,6] for
solving such a model in production planning applications.

Ahmed et al. [7] develop a branch-and-bound solution approach
for stochastic programs having a fixed technology matrix and gen-
eral first stage and pure integer recourse variables. CarBe and Tind
[8] generalize the BD to deal with stochastic programs having 0–1
mixed-integer recourse variables and either pure continuous or pure
first-stage 0–1 variables.
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When the first stage contains pure 0–1 variables, finite termina-
tion is readily justified by adopting search procedures that branch
over the 0–1 first-stage variables. Sherali and Fraticelli [9], Sen and
Higle [10], and Ntaimo and Sen [11] propose decomposition algo-
rithms based on branch-and-cut generation for solving two-stage
stochastic programs having first-stage pure 0–1 variables and 0–1
mixed-integer recourse variables. Sen and Sherali [12] and Sherali
and Zhu [13] propose a similar branch-and-cut propose a decompo-
sition approach, where a modified BD method is developed. CarBe
and Schultz [14] and Hemmecke and Schultz [15] design a branch-
and-bound algorithm for problems having mixed-integer variables
in both stages. However their approach focuses more on using
Lagrangian relaxation to obtain good bounds, and less on branching
and variable fixing. They obtain lower and upper bounds but they
are not seeking the optimal solution. They can estimate the feasi-
ble solutions to be within a percentage of the optimum. Moreover,
randomness occurs only in the rhs of the second-stage problem.
With this same stochastic structure, Takriti and Birge [16] also use
Lagrangean relaxation but instead of updating the Lagrange mul-
tipliers via traditional methods, they use the progressive hedging
algorithm of Rockafellar and Wets [17].

In this paper we study general two-stage stochastic mixed
0–1 problems, where 0–1 variables and continuous variables have
nonzero elements in the first stage and there are continuous vari-
ables in the second stage. The continuous variables do not need to
be bounded. Furthermore, the stochasticity, discretized into a finite
set of scenarios, can appear anywhere in the model. We propose an
algorithmic approach based on a specialization of the BFC scheme.
Notice that the original BFC only considers 0–1 variables in the
first-stage constraints, the set of variables above where the branch-
ing procedure is developed. The relaxation of the nonanticipativity
constraints of the first-stage variables in the DEM allows for the
independent solution of the so-called mixed 0–1 scenario cluster-
related problems. The nonanticipativity constraints of the first-stage
0–1 variables are satisfied by using a scheme that is based on the
twin node family (TNF), concept introduced in Alonso-Ayuso et al.
[4]. The scheme is specifically designed for coordinating the node
branching selection and pruning and the 0–1 variable branching
selection and fixing at each branch-and-fix (BF) tree.

As previously mentioned, we consider 0–1 and continuous first-
stage variables, such that the BFC scheme just forces us to satisfy
nonanticipativity for the 0–1 variables. In addition, the proposed ap-
proach considers the compact representation of the DEM at each TNF
integer set. By fixing the 0–1 variables to the nodes values, the DEM
has only continuous variables. In order to satisfy the nonanticipativ-
ity constraints also on the first-stage continuous variables, we need
to solve two linear submodels of the DEM, for the given TNF integer
set. The optimal values of those submodels, guarantee that our ap-
proach finds the optimal solution or determines infeasibility in the
original two-stage stochastic instance. In order to increase the effi-
ciency of our approach for solving large-scale instances we exploit
the remaining model's structure, such that a BD is used to solve lin-
ear submodels in several steps of the procedure. The conditions for
pruning a TNF are also stated. Another contribution of the paper is
the decomposition of the set of scenarios in clusters, not only for
the general scheme of the BFC–TSMIP procedure but also for the BD.
Some computational experience is reported to compare the quality
of the solution obtained by our approach and the solution obtained
by solving the DEM by the plain use of a state-of-the-art optimiza-
tion engine. The proposed approach compares favorably.

The remainder of the paper is organized as follows. Section 2
presents the mixed 0–1 DEM. Section 3 presents the TNF based BFC
algorithmic framework of the proposed approach for problem solv-
ing. Section 4 presents the models to be solved for obtaining the LP
optimal solution at the TNF integer sets. Section 5 introduces the BFC

implementation. An illustrative case is included in Section 6. Section
7 reports on the computational results. Section 8 concludes.

2. Mixed 0–1 DEM

Let us consider the general two-stage deterministic mixed 0–1
model, having 0–1 and continuous first-stage variables

min cT1� + cT2x + qTy
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where c1, c2 and q are the vectors of the objective function coeffi-
cients for the first-stage variables vectors � and x, and the second
stage variables vector y, respectively; and b1, b2, and h01 and h02
are the left-hand side (lhs) and rhs vectors for the first stage of con-
straint block, respectively. Additionally, A and T0, are the matrices of
the first-stage constraint block; T and W are the constraints matri-
ces of the second stage constraint block and h1 and h2 are the cor-
responding lhs and rhs, respectively. In a general purpose problem
(1), the lhs b1, h01 or h2 can take the value −∞, the rhs b2, h02 or h2
can take the value ∞ , or we may find the case where some of the
constraints satisfy with equality. The vector � has n 0–1 variables,
and the vectors x and y have continuous variables.

Let us assume that in the general stochastic setting, some of the
coefficients in the vectors q, h01, h02, h1, h2 and the matrices T0, T,
W are uncertain, but the uncertainty is represented by the scenarios
� from the finite set, say, �, each with an associated probability
of occurrence w�, � ∈ �. Observe that the vectors h01, h02 and
the matrix T0, can include uncertain coefficients, but all of them
correspond to the block of first-stage constraints. So, the stochastic
version of the two stage problem (1) can be represented by the so-
called DEM that in the compact representation has the following
structure:

zMIP = min cT1� + cT2x +
∑
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w�q�Ty�
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The compact representation of DEM (2) can be transformed into
a splitting variable representation, such that the variables vectors �
and x are replaced with �� and x�, respectively, ∀� ∈ �. So, there is
a model for each scenario � ∈ �, but they are linked by the so-called
nonanticipativity constraints

�� − ��′ = 0, (3)

x� − x�′ = 0, (4)
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∀�,�′ ∈ � : ���′. Notice that constraints (3) and (4) force the
equality of the values of the first-stage variables.

Then, the splitting variable representation is as follows:

(MIP) : zMIP = min
∑
�∈�

w�(cT1�
� + cT2x

� + q�Ty�)
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x� − x�′ = 0 ∀�,�′ ∈ � : ���′,

�� − ��′ = 0 ∀�,�′ ∈ � : ���′. (5)

Notice that the dualization (or the relaxation) of constraints (3)
and (4) from model MIP (5) results in |�| independent mixed 0–1
models. For solving the original model, we propose the use of a BFC
scheme for each of the scenario-related models to ensure the inte-
grality condition on the �-variables, such that the nonanticipativity
constraints (3) are satisfied while selecting the branching nodes and
the branching variables. To this end, the so-called TNF concept is
used. Additionally, the proposed approach optimizes the linear sub-
model that results from model MIP (5) at each TNF integer set, so
that the nonanticipativity constraints (4) are also satisfied, see below.

3. BFC algorithmic framework

The scenario-related model for � ∈ � that results from ignoring
the nonanticipativity constraints (3) and (4) in model MIP (5) can be
expressed as
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Instead of obtaining independently the optimal solution to the
programs MIP� (6), we propose a specialization of the BFC approach.

It is specially designed to coordinate the selection of the branch-
ing node and branching variable for each scenario-related BF tree,
such that the relaxed constraints (3) are satisfied when fixing the
appropriate variables to either 1 or 0.

The approach proceeds by branching on the �-variables, coordi-
nating the execution of the linear submodels under the scenarios. In
minimization problems, as those defined in this work, it computes
a chain of lower bounds, say Zi, where Zi =

∑|�|
�=1z

�
i , and z�i denotes

the solution to the linear relaxation of MIP� model (6), where the

first i �-variables have been fixed to 0 or 1, and where Z0 denotes
the solution value of the model associated with the root node, say,
i = 0, that can be calculated by solving the linear relaxation of the
original problem, ZLP , or alternatively as Z0 =∑|�|

�=1z
�
0 , although the

solution value has not to be the same.
In the case where the optimal solution that has been obtained

in each node has 0–1 values and it satisfies the nonanticipativity
constraints for all the �-variables, any of two following situations
have occurred:

1. The nonanticipativity constraints (4) have been satisfied and, then
a new solution has been found for the original stochastic mixed
0–1 program. The related incumbent solution can be updated and
in any case, the TNF is pruned. The optimality of the incumbent
solution has been proved, if the sets of active nodes are empty.

2. The nonanticipativity constraints (4) have not been satisfied. In
this case, wemust optimize the LP submodel resulting from fixing
the �-variables in the model to the branched on/been fixed at
values in the integer TNF whose associated models have been
optimized. If the LP model is feasible the incumbent solution is
updated and if the TNF cannot be pruned, continue with the tree
examination.

See similar decomposition approaches in CarBe and Schultz [14],
Hemmecke and Schultz [15], Klein Haneveld and van der Vlerk Kang
[18], Nowak et al. [19] and Romisch and Schultz [20], among others.
However, those approaches focus more on using a Lagrangian relax-
ation of the constraints (3) to obtain good lower bounds, and less on
branching and variable fixing. In any case, Lagrangian relaxation and
BD schemes can be added to the BFC procedure. See also Schultz [21].

For the specialization of the BFC approach to solving problemMIP
(5), letR� denote the BF tree associated with scenario �, andG� the
set of active nodes in R�, � ∈ �. Any two active nodes, say g ∈ G�

and g′ ∈ G�′
are called twin nodes if either they are the root nodes

or the paths from the root nodes to each of them in their own BF
trees R� and R�′

, respectively, have branched on/been fixed at the
same 0–1 values for the variables in �� and ��′

, for �,�′ ∈ �. A TNF,
say, Hf is a set of nodes, such that any one is a twin node to all the
other members of the family, for f ∈ F, where F is the set of TNFs.
Notice that g, g′ ∈ Hf for any family f ∈ F implies that ���′ for
g ∈ G� and g′ ∈ G�′

, �,�′ ∈ �. A TNF integer set is a set of integer BF
nodes, one per BF tree, where the nonanticipativity constraints (3) of
the 0–1 variables are satisfied.

Let us consider the scenario tree and the BFtrees shown in
Fig. 1, which correspond to the illustrative example given in Section
6. Some of the TNF are H0 = {01, 02}, H1 = {11, 12}, H2 = {21, 22},
H3 = {31, 32}, H4 = {41, 42}, H9 = {91, 92} and H10 = {101, 102}. At
least, the last four families are branched TNFinteger sets, since all
of the 0–1 variables � have been branched on 0 or 1. There can be
more TNFinteger sets; for example H2 = {21, 22}, if the ��

3 solutions
from LP� at node 2 are binary and such that �1

3 = �2
3. Notice that the

first TNFto be used is H0 ={01, 02}. Based on the LPoptimal solution
of the scenario related models attached to the nodes in H0, let us
assume that the selected branching variable is �1 and, so, the new
TNF H1 = {11, 12} and H6 = {61, 62} are created and so forth. The
BFC algorithm proceeds by branching on the �-variables, along the
TNF in the order in which appear in the figure; they can give rise
to new TNF integer sets, if the corresponding not branching on �-
variables, take the values 0 or 1.

It is clear that the relaxation of the nonanticipativity constraints
(3) and (4) is not required for all pairs of scenarios in order to gain
computational efficiency. For a brief study of the relevance of sce-
nario cluster number choice, see Escudero et al. [22]. So, the num-
ber of scenarios to consider in a given model basically depends on
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Fig. 1. Twin Node Families (TNF).

the dimensions of the scenario related model MIP� (6). The crite-
rion for scenario clustering in the sets, say, �1, . . . ,�p̂, where p̂ is the
number of clusters to consider, could alternatively be based on the
smallest internal deviation of the uncertain parameter, the greatest
deviation, etc. The determination of the most efficient criterion is in-
stance dependent. In any case, notice that �p∩�p′ =∅, p, p′ =1, . . . , p̂ :
p� p′ and �=∪p̂

p=1�
p. By abusing the notation slightly, the problem

to consider for the scenario cluster p = 1, . . . , p̂ can be expressed as
follows:

(MIPp): zpMIP = min
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The p̂ problems MIPp (7) are linked by the nonanticipativity con-
straints

�p
i − �p′

i = 0 ∀i ∈ I, (8)

xpj − xp
′

j = 0 ∀j ∈ J, (9)

where I and J denote the sets of variables in the �-and x-vectors,
respectively, n = |I|, and p, p′ = 1, . . . , p̂ : p� p′. We will denote LPp

to the linear relaxation of MIPp (7), i.e. with �p ∈ [0, 1]n.

3.1. LP submodels to be solved at the TNF integer sets

Notice that we have defined a TNF integer set as a set of integer BF
nodes, one per BF tree, where the nonanticipativity constraints (3) of

the 0–1 variables are satisfied. At each TNF integer set can be defined
two linear submodels.

Let the linear model LPTNF (10) that results after fixing in problem
DEM (2) all the �-variables at the 0–1 related values for a given TNF
integer set. In the new model, � will denote the 0–1 values of the
respective vector �.

(LPTNF): zTNFLP = cT1� + min cT2x +
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w�q�Ty�

s.t. b1�A

(
�

x

)
�b2,

h�
01�T�

0

(
�
x

)
�h�

02, � ∈ �,

h�
1 �T�

(
�
x

)
+ W�y� �h�

2 , � ∈ �,

x, y� �0, � ∈ �. (10)

The model LPTNF (10) needs to be solved since the coordinated
branching in the BFC algorithm is only designed for the nonantici-
pativity constraints (8) on the �-variables. However, the nonantici-
pativity constraints (9) on the x-variables must also be satisfied in
any feasible solution to the original problem MIP (5). The model is
solved in Step 6 of the specialization of the BFC algorithm that we
propose in Section 5.

The second linear submodel to solve at a TNF integer set, cor-
responds to the case in which not all the �-variables have been
branched on in the current TNF, but in the corresponding optimal
solution to LPp, all of them have taken the same 0–1 values. Let the
linear model LPf that results when the �-variables that are not yet
branched on/been fixed at in the current TNF can take fractional val-

ues. Let � = ( �
�f ) denote the vector of �-variables composed by the

subset of 0–1 values, �, of the branched on �-variables and the sub-
set of these variables which have not yet been branched on/fixed at,
�f , in a given iteration of the BFC algorithm. Notice that 0��f �1.
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The model can be expressed as

(LPf ): zfLP = min cT1� + cT2x +
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The model LPf (11) needs to be solved for obtaining strong lower
bounds of the solution value of the best descendant nodes from
a given node by additionally satisfying the nonanticipativity con-
straints (9) on the x–variables. In this case, the �f -variables that have
not yet been branched on/been fixed at the current iteration of the
BFC algorithm are allowed to be fractional. The model is solved in
Step 6 of the specialization of the BFC algorithm that we propose in
Section 5.

3.2. Branching procedure and pruning strategies

The BFC algorithm that we propose proceeds by branching on the
n �-variables along the scenario-cluster related BF trees, coordinating
the satisfaction of integrality and nonanticipativity constraints for
all the TNFs.

At each BFC node i ∈ {0, 1, 2, . . . ,n}, the lower bound Zi =
∑p̂

p=1z
p
i

is computed, where zpi denotes the solution of the LPpi model, in

which the first i �-variables have already been fixed to 0 or 1, �
p
j ,

j = 1, . . . , i, in the current iteration of the algorithm, i.e., the solution
to the following problem:

(LPpi ) : LP
p

s.t. �p
j = �

p
j ∀j ∈ {1, . . . , i},

�p
j ∈ [0, 1] ∀j ∈ {i + 1, . . . ,n}. (12)

If some of the relaxed integrality and nonanticipativity con-
straints for �-variables are not satisfied, the branching continues
deep until all �-variables have the same 0–1 values. Otherwise,
the satisfaction of the relaxed nonanticipativity constraints for x-
variables is tested. If they are satisfied, the upper bound is updated,
Z = Zi. If not, the following LPTNFi problem is solved:

(LPTNFi ) : LPTNF

s.t. �j = �j ∀j ∈ {1, . . . , i} (from i th node in the branch),

�j = �j ∀j ∈ {i + 1, . . . ,n} (from solution of LPpi ) (13)

and, the upper bound is updated, if it is necessary, that is, Z =
min{zTNFi , Z}.

Notice that the solution to be obtained by solving the linear
model LPTNFi attached to a TNF integer set could be the incumbent
solution, since all the �- and x-variables satisfy the nonanticipativity
constraints and the �-variables also satisfy integrality. However, it
does not necessarily mean that it should be pruned, except if all 0–1
variables have been branched on for the family, i.e., i=n. Otherwise,

a better solution can still be obtained by branching on the non-yet
branched on 0–1 variables. Indeed, notice that for any BFC node i
it results that, Zi�zTNFi and zTNFi �zfi . Recall that z

TNF
i is the solution

value in (13) that satisfies the nonanticipativity constraints (4) by
fixing the �-variables to their 0–1 values, where the constraints (3)
are already satisfied. The family can be pruned if zTNFi = zfi , where zfi
is the solution value of model LPfi , where both constraint types (3)
and (4) are satisfied, but the non-yet branched on �-variables are
allowed to take fractional values, i.e., the solution of the following
problem:

(LPfi ) : LPf

s.t. �j = �j ∀j ∈ {1, . . . , i},

�j ∈ [0, 1] ∀j ∈ {i + 1, . . . ,n}. (14)

In this case, there is no better solution than zTNFi to be obtained

from the descendant TNF integer sets. Hence, if zTNFi > zfi and zfi < Z,
the branching follows deep to the i+1-th node, because it is possible
to find a better feasible solution in the tree.

Finally, the conditions for pruning a branch in the BFC procedure
that we propose can be enumerated as follows:

(i) After computing Zi:
• The linear scenario-clustermodel LPpi attached to a given node

member is infeasible, for any p = 1, . . . , p̂.
• The lower bound Zi is not better than the incumbent solution

Z, i.e., Zi�Z.
• The �-integrality and �- and x-nonanticipativity con-
straints are satisfied whenever Zi is computed. In this case,
Z:=min{Zi, Z}.

(ii) After computing zTNFi :
• zTNFi is calculated at i=n, i.e. we are at the end of the branch (all

0–1 variables have already been branched on for the family).
(iii) After computing zfi :

• The linear model LPfi does not have a better solution value

than model LPTNFi , i.e., zTNFi = zfi .

• The solution value of the linear model LPfi is not better than

the incumbent solution, i.e., zfi �Z.

• zfi < z
TNF
i and zfi < Z, and all the fractional variables � take 0–1

values in the solution to model (14); in this case, the incum-
bent solution is updated.

In this way, the proposed approach always finds the optimal so-
lution or determines that the instance is infeasible. However its com-
putation for large-scale problems is not trivial at all because they
combine several classes of difficulties: the number of branches to
test can be huge, i.e., the cardinality of the set of feasible solutions
can be too big and a high number of linear models zp, zTNF and zf can
exist to solve, or it can happen that the last two linear models have
large dimensions. To gain computational efficiency, we propose the
decomposition of these linear submodels for large-scale problems.

4. LP submodels to be solved via BD

We present in this section two submodels to be solved via BD
for obtaining the LP optimal solution for the TNF integer sets, see
Section 3 and the specialization that we propose of the BFC algorithm,
see Section 5.
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The computational experience on using BD within the framework
of the BFC algorithm is reported in Section 7.We use BD, in particular,
in Steps 1 and 6 of the algorithm, see Section 5. As a result, BFC with
BD gives the optimal solution for large-scale problems in reasonable
computing time, while using our specialization of the BFC algorithm
alone does not obtain any solution due to running out of memory.
On the contrary, for small and medium sized instances, BFC without
BD requires smaller computing time than the strategy BFC–BD does
for obtaining the optimal solution.

4.1. All �-variables fixed to 0 or 1

The linear model LPTNF (10) results after fixing in model DEM (2)
the �-variables at the 0–1 related values for a given TNF integer set.
In this model, � will denote the 0–1 values of the respective vector
of variables �, all of them fixed to 0 or 1.

This linear problem can be decomposed and its solution can be
iteratively obtained by identifying extreme points and rays based
cuts from the optimization of the so-called auxiliary program (AP),
and appending them to the so-called relaxed master program (RMP)
for its optimization, see Benders [3]. The RMP can be expressed as

zTNFLP = cT1� + min cT2x + �

s.t. b1�A
(

�
x

)
�b2,

h�
01�T�

0
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)
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)]
, �� ∈ J

ep ,
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er ,

x�0,� ∈ IR,

where J
ep ⊆ Jep and J

er ⊆ Jer are the subsets of the extreme
points and extreme rays already identified, respectively.

4.2. Fractional �-variables

Throughout this subsection we will consider the decomposition
of the other LP model to solve for a given TNF integer set, the linear
model LPf (11). In this situation, the �-variables can take fractional
values, �f , or even the values 0 or 1, �, if they are not yet branched
on/fixed at in the current TNF. In terms of the BD, zfLP can be expressed
by the RMP as

zfLP = min cT1� + cT2x + �

s.t. b1�A
(
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−h�
2

)
+
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�
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)]
, �� ∈ J

er ,

0��f �1, x�0, � ∈ IR.

In order to gain computational efficiency, we present a scenario
cluster based procedure for using the BD procedure, known as the
L-shaped method, see Birge and Louveaux [23] and Van Slyke and
Wets [24]. In our particular approach, Step 2 solves the feasibility
problem in each scenario cluster, p. Notice that the objective function
depends on a set of slack variables v+, v−, whose dimension is the
number of constraints. This objective function can be optimized for
a given scenario cluster instead of a particular scenario. Moreover,
once the feasibility cut has been defined, the procedure goes back to
Step 1 in order to solve the new RMP.

L-shaped primal scenario cluster based procedure.

Step 0: Set k:=ep:=er:=0.
Step 1: Solve the RMP (with � = 0 if ep = 0). Set �:=0, p:=0 and
k:=k + 1.

min cT1� + cT2x + �

s.t. b1�A
(

�
x

)
�b2,

h�
01�T�

0

(
�
x

)
�h�

02 ∀� ∈ �,

�̂�T
j1

(
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−T�

)(
�
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)
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−h�
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)
, � ∈ �p, j1 = 0, . . . , er ,

(15)
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−h�
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)
, j2 = 0, . . . , ep, (16)

0��f �1, x�0, � ∈ IR.

Save primal variables �̂, x̂ and �̂.
Step 2: Set p:=p + 1. Solve the feasibility problem in scenario
cluster p, � ∈ �p

(FEAS) : zpFEAS = min eTv+�
1 + eTv−�

1 + eTv+�
2 + eTv−�

2

s.t. W�y� − Iu−� + Iv+�
1 − Iv−�

1 = h�
1 − T�

(
�̂

x̂

)
, � ∈ �p,

W�y� + Iu+� − Iv+�
2 + Iv−�

2 = h�
2 − T�

(
�̂

x̂

)
, � ∈ �p,

y�, v+�
1 , v−�

1 , v+�
2 , v−�

2 , u+�, u−� �0, � ∈ �p,

(17)

where the dimension of eT=(1, . . . , 1) is the number of constraints
for scenario cluster p.
If zpFEAS �0 (infeasible): Set er:=er + 1, �� = +∞, ∀� ∈ �p, save
the dual variables �̂�, � ∈ �p and define the feasibility cut (15).
Go to Step 1.
If zpFEAS = 0 (feasible) and p < p̂, go to Step 2.
Step 3: Solve the auxiliary primal problem in scenario � ∈ �

�� = min q�Ty�

s.t.

(
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−W�

)
y� �
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(
�̂
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)
⎞
⎟⎟⎟⎟⎠ ,

y� >0. (18)
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Set ep:=ep + 1, save �� and the dual variables �̂�, reset �:=0
and define the optimality cut (16).
Step 4: Set �:=∑�∈�w

���. If ���, Stop. Optimal solution has
been found in k-th iteration.
Save �:=� + c1�̂ + c2x̂ and go to Step 1.

The dimensions of the cluster-based dual vector to be used for
obtaining the feasibility cut, problem FEAS (17), are greater than the
dimensions for a scenario based scheme. In effect, problem (17) has,
in this case, 2 · |�p| constraints for each scenario cluster p, and 2
constraints for each scenario feasibility problem. However, notice
that the solution to this problem for each scenario cluster forces
the feasibility in more scenarios than by using the scheme for each
individual scenario. Then, the scenario cluster based scheme allows
us to define tighter feasibility cuts than when using a scenario based
procedure.

Moreover, it is not necessary to choose the same dimension for
the scenario cluster, �p, in the L-shaped algorithm as in the general
procedure.

5. BFC implementation

We present the version that has been implemented for perform-
ing the computational experimentation reported in Section 7.

Let us introduce the elements that we use in our depth first strat-
egy, see Alonso-Ayuso et al. [6] and Sherali and Zhu [13], among
others, for selecting the branching variable and the two descendant
TNFs from one given, where �i is the selection parameter for the
�-variables to branch.

�i = min

⎧⎨
⎩

p̂∑
p=1

�
p
i , p̂ −

p̂∑
p=1

�
p
i

⎫⎬
⎭ , i ∈ I,

where �
p
i give the current values of the variables �p

i , andI gives the
set of the �-variables. Additionally, 〈i〉 will denote the i-th variable
in a nonincreasing order of the �-parameter.

Let 	i be the branching parameter, such that

	i =

⎧⎪⎨
⎪⎩
0 if

p̂∑
p=1

�
p
i � p̂ −

p̂∑
p=1

�
p
i

1 otherwise,

, i ∈ I.

By convention, zTNF = +∞, for the infeasible problem LPTNF (10)
related to a given TNF integer set, and zf = +∞, for the infeasible
problem LPf (11).

BFC procedure.

Step 0: Initialize Z:= + ∞.
Step 1: Solve the LP relaxation of the original problem MIP (5) and
compute Z. If there is any 0–1 variable that takes a fractional value
then go to Step 2. Otherwise, the optimal solution to the original
problem has been found and, so, Z:=Z and stop.
Step 2: Initialize i:=1 and go to Step 4.
Step 3: Reset i:=i + 1. If i = |I| + 1 then go to Step 8.
Step 4: Set 〈i〉:=argmax{�j, j ∈ I}, such that j has not been previously
branched on or not been fixed at in the current branching path.
Branch �p

〈i〉:=	〈i〉, ∀p = 1, . . . , p̂.

Step 5: Solve the linear relaxations LPp〈i〉 (12), ∀p= 1, . . . , p̂ and com-
pute Z.

If Z�Z then go to Step 7.
If there is any �-variable that either takes fractional values or takes
different values for some of the p̂ scenario clusters then go to Step 3.
If all the x–variables take the same value for all scenario clusters
p = 1, . . . , p̂ then update Z:=Z and go to Step 7.
Step 6: Solve the submodel LPTNF〈i〉 (13) to satisfy the nonanticipativity
constraints (9) for the x-variables in the given TNF integer set. Notice
that the solution value is denoted by zTNF .
Update Z:=min{zTNF , Z}. If i = |I| then go to Step 7.
Solve the submodel LPf〈i〉 (14), where the fractional �-variables are
the non-yet branched on at the current TNF. Notice that the solution
value is denoted by zf . If all the fractional �- variables take 0–1
values in the solution to submodel (14), update Z := min{zf , Z} and
go to Step 7.
If zTNF = zf or zf �Z then go to Step 7, otherwise go to Step 3.
Step 7: Prune the branch.
If �p

〈i〉 = 	〈i〉, ∀p = 1, . . . , p̂ then go to Step 10.
Step 8: Reset i:=i − 1.
If i = 0 then stop, since the optimal solution Z has been found.
Step 9: If �p

〈i〉 = 1 − 	〈i〉, ∀p = 1, . . . , p̂, then go to Step 8.

Step 10: Branch �p
〈i〉 = 1 − 	〈i〉, ∀p = 1, . . . , p̂. go to Step 5.

6. Illustrative instance

Consider the following instance: where |�| = 2 scenarios; n� = 3,
�—variables; nx = 3, x—variables and ny = 3, y—variables.

δ

→

→

scenario � = 1

�1, 2,�3 scenario � = 2

Let DEM mixed 0–1 problem have the following form:

zMIP = min9�1 − 18�2 + 27�3 + 65x1 − 65x2 + 65x3

− 0.15y11 − 355y12 − 355y13 + 205y21 + 21y22 + 21y23

s.t. 1.5��1 + �2 + �3�2,

1�0.3�1 + 0.6�2 + 0.9�3 + 0.51x1 + 0.77x2 + 1.03x3�100,

2�0.24x1 + 0.23x2 + 0.22x3�120,

9.26�1 + 17.52�2 + 25.78�3 + 2y11 + 2y12 + 2y13�510,

8�1 + 8�2 + 8�3 + 12x1 + 12x2 + 12x3 + 12y11

+ 12y12 + 12y13�200,

0.4x1 + 0.7x2 + x3 + 2y11 + 2.1y12 + 2.2y13�240,

10.26�1 + 18.52�2 + 26.78�3 + y21 + y22 + 3.27y23�501,

6�1 + 6�2 + 6�3 + 14x1 + 14x2 + 14x3 + 10y21 + 10y22

+ 10y23�355,

0.5x1 + 0.8x2 + 1.1x3 + 1.9y21 + 2y22 + 2.1y23�240,

x1, x2, x3, y�
1 , y

�
2 , y

�
3 �0, � ∈ {1, 2},

�1,�2,�3 ∈ {0, 1}.
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Fig. 2. Algorithm BFC for the illustrative instance.

We have considered p̂ = 2 scenario clusters, both of them with
the same probability, i.e., w� = 1

2 , � ∈ �.

z1MIP = min 4.5�1 − 9�2 + 13.5�3 + 32.5x1 − 32.5x2 + 32.5x3

− 1.15y11 − 355y12 − 355y13

s.t. 1.5��1 + �2 + �3�2,

1�0.3�1 + 0.6�2 + 0.9�3 + 0.51x1 + 0.77x2

+ 1.03x3�100,

2�0.24x1 + 0.23x2 + 0.22x3�120,

9.26�1 + 17.52�2 + 25.78�3 + 2y11 + 2y12 + 2y13�510,

8�1 + 8�2 + 8�3 + 12x1 + 12x2 + 12x3 + 12y11

+ 12y12 + 12y13�200,

0.4x1 + 0.7x2 + x3 + 2y11 + 2.1y12 + 2.2y13�240,

x1, x2, x3, y11, y
1
2, y

1
3�0,

�1,�2,�3 ∈ {0, 1}. (19)

z2MIP = min 4.5�1 − 9�2 + 13.5�3 + 32.5x1 − 32.5x2 + 32.5x3

+ 205y21 + 21y22 + 21y23

s.t. 1.5��1 + �2 + �3�2,

1�0.3�1 + 0.6�2 + 0.9�3 + 0.51x1 + 0.77x2 (20)

+ 1.03x3�100,

2�0.24x1 + 0.23x2 + 0.22x3�120,

10.26�1+18.52�2 + 26.78�3+y21+y22+3.27y23�501,

6�1 + 6�2 + 6�3 + 14x1 + 14x2 + 14x3 + 10y21

+ 10y22 + 10y23�355,

0.5x1 + 0.8x2 + 1.1x3 + 1.9y21 + 2y22 + 2.1y23�240,

x1, x2, x3, y21, y
2
2, y

2
3�0,

�1,�2,�3 ∈ {0, 1}. (21)

We will show the performance of our BFC procedure in this small
instance, which is illustrated in Fig. 2.

At the root node of the BFC tree, we initialize Z=+∞. We solve the
linear relaxation of the mixed 0–1 DEM, and obtain Z=zLP=−3053.43
and (�1,�2,�3) = (0.5, 1, 0). We solve the two scenario-cluster linear
problems, LP�, for �=1, 2. The solution values of the � variables are
(�1,�2,�3)

1 = (0.5, 1, 0) and (�1,�2,�3)
2 = (0.5, 1, 0).

What is the order of branching in �-variables? Let us compute �i:

�1 = min{1, 1} = 1, �2 = min{2, 0} = 0 and �3 = min{0, 2} = 0.
As �1��2��3, the order of branching for the 0–1 first-stage vari-
ables will be the natural one, i.e., 〈1〉 = 1, 〈2〉 = 2 and 〈3〉 = 3.
And, how will we start branching on each �-variable? Let us com-
pute 	i:
1�1 ⇒ 	1 = 0, 2�0 ⇒ 	2 = 1 and 0�2 ⇒ 	3 = 0.
So, we will start fixing �1 to 0, then �2 to 1 and finally, �3 to 0.

The steps of the procedure are presented in Table 1, where the first
two columns give the node of the TNF under consideration (f denotes
a fractional �-variable), the next three columns represent the solu-
tion of the scenario models (Step 5), the sixth column is full when
Step 6 occurs, and the last column represents the yes–no decision of
pruning (P), it appears as y if the decision is to prune, and it appears
as n if the decision is to continue branching.

7. Computational experience

We report the results of the computational experience obtained
while optimizing modelMIP (5) by using the BFC approach presented
in Section 5. The scenarios have been randomly generated for a broad
variety of instances.

Our algorithmic approach has been implemented in a C + + ex-
perimental code, which uses the simplex method from the library
COIN-OR to solve the LP models. The computations were carried out
on a Workstation Dell precision 690 (Intel Xeon Quad Core) under
the LINUX operating system, having a cpu speed of 3.73GHz.

Table 2 presents the dimensions of DEM (2), compact represen-
tation. The headings are as follows: m, number of constraints; n�,
number of �-variables; nx, number of x-variables; ny, number of y-
variables; nel, number of nonzero elements in the constraint ma-
trix and dens, constraint matrix density %. The table has been split
into three categories. The first one includes cases with |�| = 1000
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Table 1
Steps of the illustrative instance.

Node Fix z Compute zTNF z P

�1 �2 �3 z�
LP �1 �2 �3

0 f f f −3574.03 −2764.07 0.5 1 0 �1 f +∞
−809.96 0.5 1 0 n

1 0 f f −3565.03 −2759.57 0 1 0.5 �3 f +∞
−805.46 0 1 0.5 n

2 0 1 f −3565.03 −2759.57 0 1 0.5 �3f +∞
−805.46 0 1 0.5 n

3 0 1 0 −∞ Infeasible +∞ y
4 0 1 1 −3426.24 −2634.49 0 1 1 +∞

−791.75 0 1 1 x12 � x22 −2912.59 −2912.59 y
5 0 0 f −∞ Infeasible −2912.59 y
6 1 f f −3560.53 −2757.32 1 0.5 0 �2 f −2912.59

−803.21 1 0.5 0 n
7 1 1 f −3444.24 −2643.49 1 1 0 −2912.59

−800.75 1 1 0 x12 � x22 −2930.59 −2930.59 y
8 1 0 f −3538.03 −2746.07 1 0 0.5 �3 f −2930.59

−791.64 1 0 0.5 n
9 1 0 0 −∞ Infeasible −2930.59 y

10 1 0 1 −3399.24 −2620.99 1 0 1 −2930.59
−778.25 1 0 1 x12 � x22 −2885.59 −2930.59 y

Table 2
MIP model dimensions.

Case Deterministic equivalent model

|�| m n� nx ny nel dens

P1 1000 8008 100 100 100 000 2 401 600 0.299
P2 1000 8008 120 120 120 000 2 881 920 0.299
P3 1000 8008 150 150 150 000 3 602 400 0.299
P4 1000 8038 100 300 100 000 4 015 200 0.497
P5 1000 8008 200 200 150 000 4 403 200 0.365
P6 1000 8053 120 600 120 000 6 758 160 0.695
P7 1000 7075 200 450 450 000 7 395 000 0.232
P8 1000 6070 150 750 450 000 8 163 000 0.298
P9 1000 8008 500 500 150 000 9 208 000 0.761
P10 1000 8008 1000 1000 200 000 17 616 000 1.089
P11 2000 16008 100 100 200 000 4 801 600 0.149
P12 2000 18009 150 150 300 000 8 102 700 0.149
P13 2000 12007 600 600 500 000 17 408 400 0.289
P14 2000 12070 600 600 600 000 18 084 000 0.249
P15 2000 14070 500 500 690 000 18 900 000 0.194
P16 2000 16007 500 500 500 000 20 007 000 0.249
P17 2000 12070 600 1000 700 000 23 512 000 0.277
P18 2000 12110 300 1400 700 000 24 787 000 0.292
P19 2000 14009 750 750 1 000 000 28 013 500 0.199
P20 2000 14009 1000 1000 1 000 000 35 018 000 0.249
P21 3000 27009 100 100 300 000 8 101 800 0.099
P22 3000 27009 500 500 1 500 000 40 509 000 0.099
P23 3000 24007 1000 1000 1 500 000 60 014 000 0.166

Compact representation.

scenarios, and the second and third categories include cases with
2000 and 3000 scenarios, respectively. Notice the large-scale dimen-
sions of the testbeds.

Table 3 presents the dimensions of the scenario cluster model
MIPp (7). The headings are similar to Table 1 but, now, instead of
|�|, |�p| gives the dimension of each scenario cluster considered.
For each instance, the number of scenario-cluster related submodels
that the procedure solves is |�|/|�p| = p̂. Each cluster contains |�p|
scenarios consecutive, starting from the first one and following in
natural order.

Table 4 presents the main results of our computational experi-
mentation for given values of the number of scenario clusters. The
headings are as follows: ZLP , solution value of the LP relaxation

Table 3
MIPp model dimensions.

Case Scenario cluster model

|�p| m n� nx ny nel dens

P1 40 208 100 100 2500 61 600 10.969
P2 40 208 120 120 3000 73 920 10.969
P3 40 208 150 150 3750 92 400 10.969
P4 40 238 100 300 2500 115 200 16.690
P5 40 208 200 200 3750 113 200 13.114
P6 40 253 120 600 3000 73 920 10.969
P7 40 250 200 450 11 200 228 750 7.721
P8 40 220 150 750 11 250 265 500 9.943
P9 40 208 500 500 3750 238 000 24.089
P10 40 208 1000 1000 5000 456 000 31.319
P11 50 328 100 100 4000 97 600 7.085
P12 50 369 150 150 6000 164 700 7.085
P13 50 247 600 600 10 000 356 400 12.883
P14 50 310 600 600 12 000 444 000 10.850
P15 50 350 500 500 13 800 44 660 8.622
P16 50 327 500 500 10 000 407 000 11.315
P17 50 310 600 1000 14 000 580 000 11.993
P18 50 350 300 1400 14 000 679 000 12.357
P19 50 289 750 750 20 000 573 500 9.230
P20 50 289 1000 1000 20 000 718 000 11.293
P21 60 459 100 100 5000 136 800 5.731
P22 60 459 500 500 25 000 684 000 5.731
P23 60 407 1000 1000 25 000 1 014 000 9.227

Compact representation.

of the original problem (2); ZMIP , solution value of the original
problem; GAP, optimality gap defined as (ZMIP − ZLP)/ZLP%; nn, num-
ber of TNF branches for the set of BF trees; TLP and TBLP , the elapsed
time (s) for obtaining the LP solution without using the BD and
using it, respectively; T, TB and TCOIN , the total elapsed time (s) to
obtain the optimal solution to the original problem by using the BFC
procedure without BD, by using BFC jointly with BD and by plain
use of the optimization engine in COIN-OR for solving DEM (2),
respectively. Notice that when using the strategy BFC–BD, the LP
relaxation of the original problem in Step 1, and the linear programs
LPTNFi (13) and LPfi (14) in Step 6 are optimized using BD, but this is
not the case for the LP relaxation of the scenario cluster model LPpi
(12) in Step 5, which is not decomposed.
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Table 4
Stochastic solution.

Case p̂ ZLP ZMIP GAP nn TLP T TB
LP TB TCOIN

P1 25 −1 026 540 −996 961 2.88 336 9.24 121.539 8.81 264.897 266.529
P2 25 −1 004 790 −975 767 2.89 336 12.02 136.297 10.32 313.124 340.430
P3 25 −2 243 630 −2 194 520 2.19 330 17.20 257.128 11.93 297.089 676.814
P4 25 −3 563 630 −3 523 100 1.137 132 9.03 137.340 6.54 134.816 257.719
P5 25 −14 964 200 −14 939 200 0.17 380 16.23 191.001 8.57 558.871 698.793
P6 25 −41 739 600 −41 726 800 0.03 128 21.52 142.245 18.72 127.076 498.763
P7 25 −4 207 640 −4 207 630 0.00 251 22.92 231.919 16.357 226.73 641.928
P8 25 −1 140 720 −1 107 570 2.90 335 12.64 166.662 11.92 357.534 591.750
P9 25 −9 536 070 −9 518 680 0.183 383 36.83 324.448 9.64 777.157 2291.730
P10 25 −42 031 500 −42 011 100 0.048 394 62.18 812.241 15.07 2270.66 7257.616
P11 40 −315 991 000 −315 933 000 0.018 390 19.39 171.412 14.82 340.857 684.131
P12 40 −442 956 000 −442 897 000 0.013 390 35.55 286.542 20.96 507.880 1344.797
P13 40 −218 408 000 −218 392 000 0.007 67 57.41 142.813 37.23 113.855 1525.194
P14 40 −148 389 000 −148 376 000 0.009 64 59.03 160.578 36.58 131.956 –
P15 40 −160 293 000 −160 277 000 0.009 69 69.42 248.003 46.59 214.132 928.182
P16 40 −258 877 000 −258 855 000 0.008 390 68.11 668.312 44.69 1136.630 6412.737
P17 40 −193 010 000 −192 993 000 0.009 68 70.86 205.130 44.80 180.935 2462.026
P18 40 −190 622 000 −190 596 000 0.013 128 43.94 388.032 39.35 352.678 –
P19 40 −95 545 900 −95 532 500 0.014 65 – – 48.34 1047.970 –
P20 40 −95 808 800 −95 795 500 0.014 86 – – 58.67 1762.630 –
P21 50 −490 077 000 −489 987 000 0.018 662 36.71 496.39 24.12 792.306 1809.765
P22 50 −421 943 000 −421 900 000 0.010 834 – – 132.85 7161.880 –
P23 50 −288 501 000 −288 473 000 0.009 1498 – – 147.117 10 120.900 –

The number nn of TNFs that have been branched on is rela-
tively small. The COIN-OR strategy requires more elapsed time than
the other two strategies. The BFC strategy alone requires much less
elapsed time than the BFC–BD strategy, while there is enough mem-
ory to store and solve the LP submodels. Obviously, the simplex
scheme is enough to solve linear models of these small and medium
scale dimensions. For bigger instances (in particular, P19, P20, P22
and P23), BD is needed to solve the LP submodels. For these large-
scale models, BFC–BD is the only able strategy for solving them.

We will use the log2 scaled performance profile described in
Dolan and Moré [25], for comparing the three strategies mentioned,
namely, COIN, BFC and BFC–BD.

For each problem p ∈ {P1, P2, . . . , P23}, and strategy s ∈
{COIN,BFC,BFC–BD}, we define:

Tp,s, computing time required to solve problem p by strategy s.
rp,s, performance ratio, rp,s =Tp,s/mins{Tp,s} and rp,s =rM iff s does not
solve problem p, where rM is a big number, say 12.
�s(
), performance profile, �s(
) = P(rp,s�
) = Card{p : rp,s�
}/
Card{p}. �s : IR → [0, 1] for a strategy s is a nondecreasing, piece-
wise constant function, continuous from the right at each break-
point. The value of �s(1) is the probability that the strategy will win
over the rest of the strategies. In particular, 1− �s(
) is the fraction
of problems that the strategy s cannot solve within a factor 
 of the
best strategy, including problems for which the strategy in question
fails.
�s(
), log2 scaled performance profile, �s(
) = P(log2(rp,s)�
) =
Card{p : log2(rp,s)�
}/Card{p}.

In Fig. 3, we can observe and compare the efficiency of the strate-
gies (at 
 = 0), and also the stability of them (at 
 = rM). Both items
can be shown in the same figure due to the log2 scaled performance
profile.

If we are interested in the strategy that can solve most of the
problems with the greatest efficiency, then BFC–BD and BFC stand
out. The strategy COIN alone fails on 100% of the problems. These
results indicate that for any 
�0, BFC–BD and BFC solve more prob-
lems within a factor of 
 than COIN strategy does. In other words, by
examining 
 = 0 we can say that BFC–BD is the fastest strategy on
approximately in 52.17% of the problems and BFC is the fastest one
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Fig. 3. Comparison, in terms of CPU time, on 23 two-stage stochastic MIP problems

on the 47.83% of the problems. By examining 
=12, we can say that
BFC–BD solves all the problems to optimality, and BFC solves most
of the problems (about 82.61%).

8. Conclusions and future work

We have presented an algorithmic framework for solving two-
stage stochastic mixed 0–1 problems where the uncertainty appears
anywhere in the problem, and the 0–1 variables and the continuous
variables appear both in the first stage. The framework is based on a
specialization of the BFC method. The BD is used to solve the linear
submodels in the first step and other places in the algorithm. The
nonanticipativity constraints for the first-stage continuous variables
are satisfied by solving linear submodels at the TNF integer sets. The
computational experience shows that the BFC and BFC–BD strategies
require much less elapsed time for obtaining the optimal solution
than the time required by the plain use of COIN-OR, a state-of-the-
art optimization engine. For the first class and some examples of the
second class, with small and middle dimensions, the use of BD gives
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worse results than using BFC alone. Otherwise, the BFC–BD strategy
gives the optimal solution for large-scale problems, in a reasonable
elapsed time while the others cannot.

As a future work we are planning to perform an extensive com-
putational experimentation to assess the possibility of introducing
in our approach the feature that allows second stage variables to be
also 0–1 variables. Another future work under consideration is the
extension of the proposed methodology to the multi-stage case.
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