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Abstract

Lagrangian relaxation (LR) algorithms are among the most successful approaches for solving large-scale hydro-thermal unit commit-
ment (UC) problems; this is largely due to the fact that the single-unit commitment (1UC) problems resulting from the decomposition,
incorporating many kinds of technical constraints such as minimum up- and down-time requirements and time-dependent startup costs,
can be efficiently solved by dynamic programming (DP) techniques. Ramp constraints have historically eluded efficient exact DP
approaches; however, this has recently changed [Frangioni A, Gentile C. Solving nonlinear single-unit commitment problems with ramp-
ing constraints. Oper Res 2006;54(4):767–75]. We show that the newly proposed DP algorithm for ramp-constrained (1UC) problems
allows to extend existing LR approaches to ramp-constrained (UC); this is not obvious since the heuristic procedures typically used
to recover a primal feasible solution are not easily extended to take ramp limits into account. However, dealing with ramp constraints
in the subproblems turns out to be sufficient to provide the LR heuristic enough guidance to produce good feasible solutions even with no
other modification of the approach; this is due to the fact that (sophisticated) LR algorithms to (UC) duly exploit the primal information
computed by the Lagrangian Dual, which in the proposed approach is ramp feasible. We also show by computational experiments that
the LR [approach] is competitive with those based on general-purpose mixed-integer program (MIP) solvers for large-scale instances,
especially hydro-thermal ones.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The short-term unit commitment (UC) problem in
hydro-thermal power generation systems requires to opti-
mally operate a set of hydro – possibly cascade connected
– and thermal generating units, over a given time horizon
(typically one day or one week), in order to satisfy a fore-
casted energy demand at minimum total cost. The generat-
ing units are subject to some technical restrictions,
depending on their type and characteristics; for hydro units
typical constraints concern the discharge rate, spillage lim-
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its, reservoir storage and effect on downstream units. As for
the thermal units, they must usually satisfy minimum up-
and down-time constraints and upper and lower bounds
over the produced power when the unit is operational,
besides having complex power production and start-up
costs. Closely representing the actual operating behavior
of generating units within mathematical optimization mod-
els is crucial for being able to effectively coordinate the pro-
duction of the generating system taking into account each
unit’s characteristics [27], which is of increasing importance
in the ongoing liberalization of the electricity market in
many countries [19]. Indeed, while the (UC) problem in
the form treated in this paper originated from the era of
monopolistic producers, it has numerous applications even
in the liberalized regime; furthermore, algorithmic
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approaches developed for the ‘‘classical’’ (UC) problem
can usually be easily extended to forms of the problem aris-
ing in a market environment [19,9].

Despite having attracted the interest of researchers for
over 30 years, (UC) still cannot be considered a well-solved
problem for all practical sizes and operating environments;
this should not be surprising, since it is a large-scale,
mixed-integer nonlinear program (MINLP). Despite the
ever-increasing availability of cheap computing power
and the advances in off-the-shelf software for MINLP,
solving (UC) by general-purpose software, even using the
most advanced approaches available, is not feasible when
the number of units [17] and/or the length of the time hori-
zon [18] grows large. Recently, an interesting approach has
been devised where the nonlinearities in the problem are
approximated by means of piecewise-linear functions, so
that (UC) can be approximated by a mixed-integer linear
program (MILP), for which more efficient general-purpose
solvers are available [10,11,24]. This approach may provide
good results especially for low- to mid-size instances, while
specialized approaches are still required for very-large-scale
instances, or when very fast running times are required by
the operational environment; this is also confirmed by the
results reported in Section 6 of the present paper.

Among the most efficient specialized algorithmic
approaches for (UC), Lagrangian relaxation (LR) methods
[2,6–8,14,23,28] surely play a major role. These approaches
exploit the spatial structure of the problem, that is, the fact
that removing the constraints that tie the different units
together, one obtains a set of disjoint single-unit commit-
ment (1UC) problems, requiring to optimally operate one
single (hydro or thermal) unit over the time horizon. These
problems are typically easily solvable by network flow tech-
niques – for hydro units – or dynamic programming (DP)
techniques – for thermal units.

However, the success of LR methods critically depend
on two factors:

• Being able to optimally solving the (1UC) problems
efficiently;

• being able to turn the infeasible solution(s) produced at
each step of the approach into ‘‘good’’, feasible ones.

In turn, both these depend on the specific details of the
operational constraints of the generating units that are rep-
resented in the mathematical model; each time that new
constraints have to be included in the model, a (usually,
nontrivial) modification is required to the solution method
to (1UC) (e.g., [21,22,12]), and possibly of the heuristic used
to produce feasible solutions. Thus, here appears the typical
trade-off between the accuracy of the mathematical models
employed and the efficiency of the corresponding solution
process. For hydro units, for instance, it is customary to
assume a linear relationship between the discharged water
and the generated power, disregarding the nonlinearities
corresponding to the variation of the water head and the
minimum discharge necessary to keep the turbines opera-
tional; these assumptions are reasonable when dealing with
short term operation, and dramatically simplify the hydro
(1UC) problems. For thermal units, it is usually assumed
that the dynamic of the generating plant does not pose
restrictions (other than on maximum and minimum power
levels) on the amount of power generated at each time per-
iod of the time horizon; unfortunately, this is not realistic
for large units or if the time periods are to be taken small
(e.g., 15 min), since then ramp constraints need to be consid-
ered. These limit the maximum increase or decrease of gen-
erated power from one time period to the next, reflecting the
thermal and mechanical inertia that has to be overtaken in
order for the unit to increase or decrease its output. Unfor-
tunately, ramp constraints complicate the structure of ther-
mal (1UC) problems, rendering the classical DP approaches
unusable; this is due to the fact that the variables represent-
ing the power output at different time periods are no longer
independent once that commitment (on/off) decision has
been taken. Four approaches have been proposed in the lit-
erature to overcome this difficulty:

• Discretizing the power variables space one may keep
using a standard DP procedure [5,4]; however, the com-
putational burden increases as the granularity of the dis-
cretization is decreased, and the obtained solution is in
general an approximated one.

• Approximating the cost function with a piecewise-linear
(convex) function one may use the DP approach of [13],
in turn based on the efficient algorithm the Single-Unit
Economic Dispatch (1ED) problems with ramp con-
straints of [3,26]; however, the computational burden
increases with the accuracy of the approximation (the
number of linear pieces in the cost function), and the
obtained solution is in general an approximated one.

• Solving (1UC) problems only approximately, e.g., by
using two-stage Lagrangian techniques as in [20], where
ramp constraints are dualized and the corresponding
Lagrangian multipliers updated (keeping those of the
system balance constraints fixed) until a solution that
is ramp-feasible is attained; however, the computational
burden increases as multiple solutions of each (1UC) are
required for each LR iteration, and the obtained solu-
tion is in general an approximated one.

• Using general-purpose, off-the-shelf mixed-integer qua-
dratic programming (MIQP) solvers for solving (1UC)
in alternative to DP approaches. This has the advantage
of allowing incorporation of several other constraints in
the formulation, e.g. related to the electrical market; since
MIQP effective solvers have only recently become avail-
able, this approach has usually been coupled to approxi-
mation of the cost function by a piecewise-linear
(convex) function, thus making (1UC) solvable by a more
common MILP solver [1]. However, the solution time for
general-purpose solvers (as it should be expected) grows
very rapidly with the size of the instance, making this
approach unusable for longer time horizons [18], even if
a state-of-the-art MIQP solver is used.
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Recently, a DP algorithm for thermal (1UC) with ramp-
ing constraints has been proposed [18] that can solve to
optimality problems on a time horizon of n time periods
in O(n3) for convex cost functions whose unconstrained
minimum can be found in O(1), such as the quadratic ones
typically used in operational settings. The algorithm solves
thermal (1UC) problems with a very general definition of
ramping constraints and complex, time-dependent startup
costs. In this paper, we report on the use of that algorithm
within LR approaches to (UC). We show that the increased
complexity of the (1UC) subproblems – w.r.t. O(n2) of the
case without ramp constraints – does not represent a seri-
ous computational bottleneck for this class of approaches.
Also, we show that existing LR approaches that duly use
the primal information provided by the Lagrangian dual
(e.g. [14,8]) are fairly ‘‘resistant’’ to the introduction of
ramp constraints, once these are properly taken into
account in the Lagrangian subproblem. This is not obvi-
ous, since the heuristic procedures typically used to recover
a primal feasible solution are not easily extended to take
into account ramp constraints. Yet, solving ramp-con-
strained (1UC) subproblems turns out to be sufficient to
provide the LR heuristic enough guidance to produce good
feasible solutions even with no other substantial modifica-
tion of the approach, due to the fact that the primal infor-
mation computed by the Lagrangian dual always remains
ramp-feasible. To the best of our knowledge, this is the first
LR approach that has been shown capable of solving—
very large-scale—(UC) problems with ramp constraints
with exact solution of the (1UC) subproblems and without
any form of approximation of either the power production
levels or the objective function. We show on a set of realis-
tic thermal and hydro-thermal instances that the proposed
approach consistently obtains much better solutions than a
comparable approach solving non-ramp-constrained
(1UC) problems. Also, we show that good quality solutions
are obtained in a small fraction of the time required for the
same task by state-of-the-art, general-purpose MIQP tech-
nology. Using a MILP (approximate) formulation within a
general-purpose MIQP solver turns out to be, for a some-
what surprising reason, much more efficient than using the
MIQP formulation on exactly the same solver; however,
the LR approach still looks competitive for large-scale
instances, especially hydro-thermal ones.
2. The UC model

Consider a set P of thermal units and a set H of hydro
cascades, each comprising one or more basin units, and let
T ¼ f1; . . . ; ng be the set of time periods defining the time
horizon (the time period ‘‘0’’ will be used for indicating the
initial conditions of the power system). Introducing status
and power production variables of the thermal units, ui

t

and pi
t, respectively, with i 2 P ; t 2T, the objective func-

tion of (UC), representing the total power production cost
to be minimized, has the form
X
i2P

ciðpi; uiÞ ¼
X
i2P

ciðuiÞ þ
X
t2T

ci
t pi

t

� � !
; ð1Þ

that is, the power production cost at each hour is typically
approximated via a (convex) quadratic separable form
(neglecting for instance the so called valve points, see e.g.
[27]) in the pi

t variables. In this paper, we allow the cost func-
tion to be nonseparable per hour due to time-dependent
start-up costs, whose exact form has no impact on the pro-
posed approach and is not reported here for the sake of nota-
tional simplicity; the interested reader can refer to [18] for a
detailed discussion of the form of start-up cost which can be
accommodated by the proposed algorithmic framework.
The constraints of (UC) can be partitioned into three sets: lo-
cal constraints for thermal units, local constraints for hydro
units, and global (system wide) constraints.

• Local constraints for thermal units: for each thermal unit
i 2 P, let si

þ and si
� be respectively the minimum up- and

down-time requirements, Di
þ and Di

� be respectively the
maximum ramp-up and ramp-down rates, �pi

min and �pi
max

be respectively the maximum and minimum power out-
put of unit when operating in steady state, and �li and �ui

be the maximum power that can be produced by the unit
in the time period where it is committed or decommit-
ted, respectively. Then, the local constraints correspond-
ing to each unit i 2 P are

�pi
minui

t 6 pi
t 6 �pi

maxui
t t 2T ð2Þ

pi
t 6 pi

t�1 þ ui
t�1D

i
þ þ 1� ui

t�1

� �
�li t 2T ð3Þ

pi
t�1 6 pi

t þ ui
tD

i
� þ 1� ui

t

� �
�ui t 2T ð4Þ

ui
t P ui

r � ui
r�1 t 2T; r 2 t � si

þ; t � 1
� �

ð5Þ
ui

t P 1� ui
r�1 � ui

r t 2T; r 2 t � si
�; t � 1

� �
ð6Þ

ui
t 2 f0; 1g t 2T ð7Þ

Note that we assume knowledge of the complete state of
each unit prior to the beginning of the current opera-
tion, that is, its commitment ui

0, the generated power
pi

0; for the sake of minimum up- and down-time con-
straints 5, 6, it is also necessary to know how long it
has been on or off at time period 0.

• Local constraints for hydro cascade units: Each cascade
h 2 H is composed by a set H(h) (possibly containing
only one element) of individual hydro units; for each
j 2 H(h), variables qj

t ; v
j
t and wj

t represent respectively
discharged water, the volume of the reservoir and the
spilled water at time period t 2T. Constants �vj

min and
�vj

max represents respectively the minimum and maximum
volume for the reservoir, �qj

max represents the technical
maximum of discharged water (the technical minimum
is assumed to be zero in order to avoid nonlinearities
in the model), while �wj

t represents the natural inflows
at time period t 2T. Finally, let SðjÞ be the (possibly
empty) set of the immediate predecessors of unit j—
those whose discharge and spillage reaches j without
passing through other reservoirs—and tkj be the water
time delay from plant k 2SðjÞ to the basin feeding
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plant j. Then, the local constraints corresponding to
each unit j 2 H(h) are:

0 6 qj
t 6 �qj

max t 2T ð8Þ
�vj

min 6 vj
t 6 �vj

max t 2T ð9Þ
vj

t � vj
t�1 ¼ �wj

t � wj
t � qj

t þ
X

k2SðjÞ
qk

t�tkj
þ wk

t�tkj

� �
t 2T

ð10Þ

Note that, in order for the balance equations (10) to be
well-defined, we assume knowledge of the volume of
each reservoir at time period t = 0, as well as water dis-
charged and spilled at all time periods prior to t = 1 for
which the water is still arriving to one of the down-
stream basins (i.e., those k 2SðjÞ such that t < tkj).

• Global constraints: For each time period t 2T, let �dt be
the forecasted load to be satisfied, and for each hydro
unit j let aj be the power-to-discharged-water efficiency
(assumed constant, again to avoid nonlinearities); then,
the system-wide constraints—linking the different units
among themselves—are:X
i2P

pi
t þ
X
h2H

X
j2HðhÞ

ajqj
t ¼ �dt t 2T ð11Þ

We refer to (UC) as the problem of minimizing (1) sub-
ject to constraints (2)–(11). This is a large-scale, mixed-inte-
ger nonlinear program; however, it should be noted that
when the ui

t variables are fixed, the remaining economic dis-
patch (ED) problem is a linearly constrained convex prob-
lem, hence easily solvable. For future reference, we will
denote the set defined by constraints (2)–(7) for a given
thermal unit i 2 P as Ui, and the set defined by constraints
(8)–(10) for a given hydro cascade h 2 H by Hh.

We remark that several of the (widely accepted) simpli-
fying assumptions in the above model can be relaxed with-
out hindering the applicability of the proposed approach;
in particular, more sophisticated models of hydro cascades,
e.g., taking into account nonlinear effects of the water head
on the power-to-discharged-water efficiency and/or non-
zero technical minima for discharged water, could be used
at the cost of more difficult hydro subproblems and (ED)s.
Conversely, thermal units are modeled in a fairly sophisti-
cated way, and the approach can be easily extended (cf.
[18]) to handle issues such as:

• Data dependent on the time period t, i.e., different ramp
limits Di

tþ and Di
t� or start-up and shut-down power out-

put �li
t and �ui

t for each t 2T, modeling, e.g., the reaction
to varying operating parameters such as the external
temperature.

• Data dependent on the history of the unit, i.e., different
ramp limits, start-up and shut-down power output,
maximum and minimum power levels, and even (coeffi-
cients of the) cost function according to how long the
unit has remained consecutively committed before the
current time period.
• Different discretization intervals for commitment and
power variables, e.g., power production levels to be
specified for each quarter of hour of the time horizon
whereas the commitment decisions can only be changed
hourly.

Thus, the UC model here considered is well-suited for
being employed in a free market regime, both at the stage
where GenCos need to optimize their production schedule
once that their own load profile has been established by the
market procedures, and within approaches for computing
optimal bidding strategies [19,9].

3. The Lagrangian relaxation

The LR approach is based on dualizing each of the cou-
pling constraint (11) via a Lagrangian multiplier kt, thereby
forming the Lagrangian relaxation of (UC)

LðkÞ ¼
X
i2P

/1
i ðkÞ þ

X
h2H

/2
hðkÞ þ

X
t2T

kt
�dt ð12Þ

where

/1
i ðkÞ ¼ min ciðpi; uiÞ � kpi : ðpi; uiÞ 2 Ui

� 	
/2

hðkÞ ¼ min �k
X

j2HðhÞ
ajqj : ½qj�j2HðhÞ 2Hh

( )

It is well known (e.g., [16]) that for each k 2 Rn;LðkÞ gives
a lower bound on the optimal value of (UC). Therefore,
one is interested in the k* such that this lower bound is
the best (maximum), i.e., in the optimal solution of the
Lagrangian dual of (UC):

maxfLðkÞ : k 2 Rng: ð13Þ
Since Lð�Þ is a non differentiable function, proper algo-
rithms must be chosen for solving (13); bundle methods
[15], particularly in their disaggregated variant [2], have
been repeatedly reported to be quite efficient in solving
(13), much more so [8] than alternative algorithms such
as subgradient methods [4,28].

However, solving (13) is not, in general, enough to solve
(UC); even for k = k*, the optimal solution to (12) is not
guaranteed to—and will not in general—satisfy the relaxed
constraints (11). Therefore, a number of Lagrangian heu-
ristics have been devised that attempt to convert the
(sequence of) infeasible solution(s) provided by (13) in a
(sequence of) feasible, hopefully ‘‘good’’, one(s). Roughly
speaking, there are two possible ways for doing this:

• Either combinatorial heuristics are run at every step of
the iterative solution of (13), thus for several different
values of k, that use the infeasible optimal solution of
the corresponding (12) to produce a feasible solution
for (UC);

• or the Lagrangian problem is modified with further
terms that try to enforce feasibility of the obtained
solutions.
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Most approaches from the literature belong to the first
group; it is outside the scope of the present paper to
describe them in detail, the interested reader being referred,
e.g., to [2,4,8,7,14,28]. These approaches suffer from the
drawback that the combinatorial heuristic ran at each iter-
ation is dependent on the exact details of the model to be
solved, and may be difficult to adapt to different situations;
this motivated the development of the second group of
approaches, where a further quadratic term (either an Aug-
mented Lagrangian one [6] or a proximal one [12]) is added
to the problem to try to enforce feasibility of the obtained
solutions. Since the quadratic term may make the Lagrang-
ian relaxation harder to solve, approximate solution via
sequential linearization may have to be employed.

It is relevant for the present context that all the most
recent and efficient approaches, both of the first [8,14]
and of the second [6,12] type, make use of the continuous
primal information generated by the solution of (13). In
fact, it is well-known that the Lagrangian dual of a prob-
lem with convex objective function and nonconvex feasible
set is equivalent to the convexified relaxation of the prob-
lem where the original objective function is optimized over
the intersection of the convex hull of the (integer) solutions
of the LR and the relaxed constraints. Most importantly,
this equivalence is computational in the sense that basically
all algorithms for solving the Lagrangian dual either natu-
rally compute, or can be modified to do so, a solution to
the convexified relaxation [16]. In particular, bundle meth-
ods applied to (13) compute at each iteration a continuous
solution that satisfies all constraints (2)–(9), and that pretty
rapidly becomes almost feasible w.r.t. the relaxed con-
straints (11). This continuous, almost feasible solution is
very useful to drive the heuristic search for integer, entirely
feasible solutions to (UC), as described in more details in
Section 5.

The LR approach has proven to be capable of solving
non ramp-constrained large-scale (UC) problems with a
provable high degree of accuracy in relatively short time.
However, extending the approach to ramp constraints
requires, in principle, three steps:

(i) solving (possibly approximately) ramp-constrained
(1UC) subproblems;

(ii) modifying the heuristics in order to take into account
the ramping constraints while fixing the commitment
ui

t variables;
(iii) solving ramp-constrained Economic Dispatch prob-

lems at each iteration to recover the pi
t and qj

t vari-
ables once that the ui

t variables have been
(heuristically) fixed.

Of those, (i) has only been made possible—without
approximations or an excessive growth of the computa-
tional burden—by the development in [18], while (iii) is
trivial in that it only requires to add some linear constraints
to the classical (ED) formulation. As for the point (ii), the
rationale behind the ‘‘augmented’’ approaches [6,12] was
exactly to provide a general substitute for specialized com-
binatorial heuristics in order to avoid the problem.

The aim of this paper is to show that point (ii) is—at
least for ramp constraints, but possibly also in other
cases—much less of a problem than often perceived, that
is, the combinatorial heuristics originally developed for
(UC) without ramp constraints are efficient in the ramp-
constrained case also, only provided that ramp-constrained
(1UC) (and, obviously, ramp-constrained (ED)s) are
solved. This should not be too surprising considering that,
when a ramp-constrained (12) is solved, the latest combina-
torial heuristics construct the feasible solutions using, as
starting points, two solutions—an integer infeasible one
and the continuous almost feasible one—that are both
ramp-feasible. Hence, ramp-constrained (1UC) provide—
through the ramp-feasibility of the primal solutions, as well
as through better dual multipliers—the standard LR heu-
ristic with enough guidance to produce good feasible solu-
tions even with no other modification of the approach.

4. Solving the (1UC) problem

In this section we briefly sketch the algorithm of [18] for
solving the ramp-constrained (1UC) problem. We assume
that each term ci

t in (1) is a ‘‘simple’’ convex function, in
the sense that unconstrained minimization of ci

t can be car-
ried upon in O(1). Then, the overall cost function ci of (1) is
the sum of ci

t plus a start-up cost function that only
depends (but possibly in sophisticated ways) on how long
the unit has been turned off. Because we are only interested
in one unit at a time, for notational simplicity in the
remainder of the section we will drop the superscript i.

The approach of [18] is a DP procedure, that is, it
requires the computation of a shortest path in a suitable
acyclic directed state space graph. Following an idea orig-
inally proposed in [13], the state space graph comprises a
node for all pairs (h,k) for h; k 2T and k P h, plus a
source s and a sink d. Each state (h,k) represents the unit
being turned on at time period h (i.e., being uncommitted
at time period h � 1), and being turned off again at time
period k; clearly, all states that correspond to operations
violating the minimum up-time requirements are not con-
structed. The graph has arcs between any node (h,k) and
(r,q) such that it is feasible to turn on the unit at time
instant r given that it has been turned off at time instant
k; each of these arcs are labeled with the start-up cost of
the unit at time instant r. There are also arcs from the
source s to all nodes (h,k) compatible with the initial state
of the unit; finally, there is a zero-cost arc from each node
to the sink d. Clearly, every s–d path on this graph repre-
sents a feasible solution to (1UC), arc costs representing
the contribution of start-up costs to the objective function;
fixed generating costs, if any, can also be easily included as
node costs. It is now necessary to compute, for each node
(h,k), the optimal contribution of the variable generating
costs, that depend on the pt variables. This requires the
solution of the Economic Dispatch with ramp constraints
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problem for the interval [h,k], that is, the minimization of
(the continuous part of) (1) subject to (2)–(7) if all ut vari-
ables for t 62 [h,k] are fixed to zero and all those for t 2 [h,k]
are fixed to one; we will denote this problem as (EDhk).
Since all the binary variables are fixed, this is an optimiza-
tion problem with convex objective function and linear
constraints, hence easily solvable. By assigning its optimal
objective function value z�hk ¼ zðEDhkÞ to the corresponding
node, the (node plus arc) cost of each s–d path on the graph
is that of the feasible solution it represents. Thus, (1UC)
can be solved with a visit of a graph with O(n2) nodes
and O(n4) arcs, once that all the data has been computed;
exploiting some structural properties of the state-space
graph, the complexity of the visit can be reduced to O(n3)
[18].

However, computing the node costs requires the solu-
tion of O(n2) convex problems, each with up to n variables.
Hence, solving (EDhk) efficiently—or, more to the point,
solving all the O(n2) of them efficiently—is crucial. Indeed,
the main contribution of [18] is the proposal of an efficient
dynamic programming algorithm that can solve all O(n2)
Economic Dispatch problems in O(n3) for cost functions
whose unconstrained minimization is O(1), i.e., given by
a closed formula, such as the quadratic ones. The algo-
rithm is based on the fact that, defining zhkð�pÞ to be the
optimal solution value of (EDhk) if the further constraint
pk ¼ �p is imposed, one has a constructive way to compute
zh(k+1) given zhk. In particular, one can prove [18] the fol-
lowing fact:

Proposition 1. The function zhk is finite-valued only in v + 1
intervals [m0,m1],[m1,m2] . . . [mv,mv+1], with v 6 2(k � h),

in which

zhkð�pÞ ¼ zjð�pÞ if �p 2 ½mi;miþ1�for i ¼ 0; . . . ; v

where each function zj is the sum of at most k � h + 1 func-

tions ct for t 2 {h,h + 1, . . . ,k}.

The proof of the above proposition is constructive, and
provides an algorithm for explicitly computing zh(k+1) given
the piecewise representation of zhk (the case zhh is trivial).
The overall complexity of the procedure depends on the
actual form of the functions ct; for quadratic functions,
all the problems (EDhh), (EDh(h+1)), . . . , (EDhk) can be
solved in O((k � hs)2), hence solving all the O(n2) (ED)
problems is O(n3). Note that this complexity is only for
computing the optimal objective function values; however,
the optimal solutions of all the (EDhk) problems corre-
sponding to all nodes in the optimal path are also needed.
Those solutions are easily found with a ‘‘backward pass’’,
using the available information constructed in the ‘‘for-
ward pass’’: the (both primal and dual) optimal solution
of any (EDhk) can be found in O(k � h), so computing
the optimal solution to (1UC), in terms of the power vari-
ables, once the ‘‘upper’’ dynamic programming procedure
is computed, is O(n). Thus, with the approach of [18] one
can solve (1UC), for the quadratic case, in O(n3) overall.
5. The combinatorial heuristic

Here we briefly recall the combinatorial heuristic, pro-
posed in [8], which is ran at each step of the iterative
method used to solve (13). The heuristic uses as starting
points the current value of the Lagrangian multipliers �k,
the corresponding optimal solution �s ¼ ½�p; �u; �q� of (12)—
in which �u is integral and constraints (2)–(10) are satisfied,
but (11) are not—and the ‘‘convexified’’ solution
~s ¼ ½~p; ~u; ~q� produced by the bundle approach, where ~u is
not integral, constraints (2)–(10) are satisfied and con-
straints (11) are typically almost satisfied. Then, the follow-
ing three steps are performed:

(i) the ‘‘convexified’’ hydro power production ~q is con-
sidered as fixed, and the total power demand is
decreased accordingly;

(ii) a greedy-type heuristic is used to set a commitment
status û of the thermal units in order to try to guaran-
tee that the remaining power demand can be satisfied;

(iii) finally, the actual power production ½p̂; q̂� of thermal
and hydro units is determined by solving the Eco-
nomic Dispatch problem (1)–(11) for the fixed value
û of the commitment variables; note that (ED) is
large-scale convex quadratic program, hence theoret-
ically ‘‘easy’’ but still relatively costly to solve in
practice.

This heuristic is motivated by the fact that adjusting the
commitment status of thermal units is relatively simple
because the commitment decision at time t directly impacts
only commitment decisions in a small set of time instants
centered on t, depending on the minimum up- and down-
time constraints, while changing the power output of some
hydro units at a certain time instant potentially impacts the
hydro power output of the units in all the time horizon.
However, once the combinatorial decisions have been
taken, the remaining continuous problem (which, however,
is not guaranteed to have a feasible solution) is ‘‘easy’’. In
particular, the greedy heuristic at step (ii) checks for each
time period t whether the residual demand

~dt ¼ �dt �
X
h2H

X
j2HðhÞ

ajq̂j
t

can be satisfied by the active thermal units in the integral
solution �u by simply checking that it belongs to the range
½�u�t ; �uþt �, where

�u�t ¼
X
i2P

�pi
min�ui

t �uþt ¼
X
i2P

�pi
max�u

i
t:

If ~dt > �uþt , then the time period t is said undercommitted,
while if ~dt < �u�t it is said overcommitted; in either case,
the solution �u has to be modified by turning some units
on or off at t. For this purpose, a priority list of units is
formed to decide which ones are more ‘‘promising’’ at
any given time instant; the list is based on a combination
of the Lagrangian cost of turning on the unit and on the
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‘‘convexified’’ commitment status ~ui
t of the unit, interpreted

as a ‘‘probability’’ that the unit i should be on at time per-
iod t in the optimal solution.

We remark that this is only one of the several possible
implementations of the algorithmic scheme; several others
are presented and compared in [8], showing that the one
just described is usually the best. Furthermore, the heuristic
has been developed for the non-ramp-constrained case: the
definition of �u�t and �uþt does not take into account the
ramping constraints, and therefore may trick the heuristic
into concluding that a time period is ‘‘feasible’’ while in
actuality it is not because, due to ramping, the maximum
(minimum) amount of power that can actually be produced
in t, given the chosen commitment, is smaller (larger) than
�uþt ð�u�t Þ.

It would be possible (although nontrivial) to try to adapt
the heuristic to take into account somewhat ramp rates.
Furthermore, one may go the route of [6,12] and avoid
the heuristic altogether; finally, the two approaches may
be combined. However, the purpose of this paper is to
show that the information about ramp rates ‘‘embedded’’
into �s and ~s is enough to provide the heuristic, with no
modification, enough guidance to produce (good quality)
feasible solutions.

6. Computational experiences

In this section we present some numerical results aimed
at showing the efficiency and the effectiveness of the pro-
posed approach. Our algorithm has been coded within a
C++ commercial code, PowerSchedO. All tasks are imple-
mented by custom-written routines except the solution of
the ED—a large-scale, linearly constrained convex qua-
dratic program—in step (iii) of the heuristic, for which
the commercial solver Mosek was used. All the results have
been obtained on an Opteron 246 (2 GHz) computer with
2 GigaBytes of RAM, running Linux Fedora Core 3.

For our tests, we have randomly generated several sets
of realistic pure thermal and hydro-thermal instances, with
number of thermal units ranging from 20 to 200 and num-
ber of hydro units ranging from 10 to 100, on a daily prob-
lem (n = 24). The generator produces a generating set with
‘‘small’’, ‘‘medium’’ and ‘‘large’’ thermal units in realistic
proportions; the characteristics of each unit are then ran-
domly generated within a set of realistic parameters,
depending on the type of the unit. Ramping restrictions
are also randomly generated within realistic measures,
resulting in large units to require between two and three
hours to ramp from the technical minimum to the technical
maximum. All the instances have time-invariant start-up
costs; this is a ‘‘worst case’’ situation for the new approach,
in that the new DP procedure requires O(n3) regardless to
the fact that start-up costs are time-dependent or time-
invariant, while the ‘‘classical’’ DP is O(n2) in the former
case, but only O(n) in the latter. Furthermore, introducing
time-dependent startup costs in the MIQP formulation
increases the number of continuous variables and con-
straints (although not the number of binary variables
[25]) in the model, thereby making it more difficult to solve,
while—apart from the possible effect on the DP proce-
dure—time-dependent startup costs are basically handled
for free in the LR approach. The (UC) instances are freely
available at http://www.di.unipi.it/optimize/Data.
6.1. Impact of the new DP procedure on the LR approach

We first analyze the impact of the newly proposed DP
procedure by comparing two versions of the LR approach,
identical except for the fact that one uses the ramp-con-
strained DP of [18] and the other uses the ‘‘classical’’ DP
disregarding ramps.

The results are displayed in Table 1. In the Table, col-
umn ‘‘p’’ reports the total number of thermal generating
units, while column ‘‘h’’ reports the total number of hydro
units. The first half of the table, with h = 0, is therefore
composed by ‘‘pure thermal’’ instances; each row reports
averaged results of five instances of the same size. Columns
‘‘RCDP’’ report results for the LR approach using the
ramp-constrained DP, while columns ‘‘UDP’’ report
results for the LR approach using the standard uncon-
strained DP. In both cases, column ‘‘time’’ reports the
required running time (in seconds), column ‘‘iter’’ reports
the total number of iterations of the bundle method used
to solve (13)—that is, the number of times that the heuristic
is attempted—, column ‘‘sol’’ reports the total number of
feasible solutions found and column ‘‘gap’’ reports the
obtained gap (in percentage)

best feasible solution � bestlowerbound

best lower bound
� 100;

the number in parenthesis next to the gap, if any, is the
number of instances in that group for which no feasible
solution at all has been found, so that the reported gap is
the average among those for which at least a solution
was found. Note that we have used the best overall lower
bound for computing the gap, as opposed to the best lower
bound produced by each single algorithm, so that any dif-
ference in gaps is only due to the quality of the obtained
feasible solutions. For UDP, column ‘‘Dlb’’ reports the
gap (in percentage) between the obtained lower bound
and that of RCDP; the latter is always higher because
the Lagrangian relaxation is ‘‘more constrained’’, and the
Lagrangian dual is solved to optimality.

It is clear from the table that RCDP is much more effec-
tive than UDP. On pure thermal instances it obtains much
smaller gaps—always at least one order of magnitude smal-
ler, and up to three orders of magnitude smaller in the larg-
est instances—and it is always capable of finding at least a
feasible solution, while UDP fails to solve several of the
smallest instances. This is clearly explained by looking at
column ‘‘sol’’: while RCDP finds feasible solutions at least
once in roughly ten dual iterations, UDP only finds on
average one solution during all the course of the algorithm.
This is not surprising, since the heuristic in UDP has abso-

http://www.di.unipi.it/optimize/Data


Table 1
Comparison of the two different DP approaches

p h RCDP UDP

Time Iter Sol Gap Time Iter Sol Gap Dlb

20 0 8 189 34 0.44 6 202 1 11.30 (3) 2.49
50 0 17 195 33 0.26 16 247 1 5.25 (3) 1.48
75 0 30 206 33 0.38 22 278 1 9.25 2.38

100 0 46 213 21 0.48 29 285 1 8.69 2.21
150 0 72 277 23 0.20 54 341 1 7.66 2.31
200 0 134 317 67 0.06 78 369 1 8.53 2.46

20 10 16 162 159 0.22 7 206 3 3.80 1.50
50 20 41 165 146 0.07 16 231 6 0.63 1.19
75 35 89 209 166 0.02 28 274 5 1.73 1.19

100 50 135 218 143 0.04 38 301 1 1.86 1.27
150 75 222 223 164 0.01 71 318 1 4.10(1) 1.20
200 100 353 244 192 0.05 90 305 2 4.38 1.25
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lutely no information about ramp constraints, that only
come up in the solution of the ED problem, when the crit-
ical (binary) decisions have already been taken; on the con-
trary, RCDP benefits from much more accurate
information coming from the ramp-constrained Lagrang-
ian subproblems. This also explains why UDP is faster
(though never more than a factor of two): it is not due to
the extra cost of the DP procedure, that is negligible in
the context of the overall approach, but rather to the fact
that UDP solves a much smaller number of ED problems,
which are rather costly. Clearly, the extra time required by
RCDP is very well-spent in this case, especially considering
the much higher robustness of the approach; the fact that
RCDP also improves the lower bound, most often to the
tune of more than 2%, is also a nice extra effect of using
the more sophisticated DP procedure.

The results of hydro-thermal instances confirm those of
the pure thermal case. Hydro-thermal instances are easier
to solve for LR approaches, since the flexibility of hydro
units allow the system to react better to changes of the
demand, possibly without requiring (too many) thermal
units to switch state. This is testified by the much smaller
gaps, by the much larger fraction of dual iterations that
actually produce a feasible solution, and by the fact
that—barring an occasional (150, 75) instance—even
UDP consistently finds feasible solutions. However, the
gaps obtained by RCDP are in this case most often better
than those of UDP by three orders of magnitude, and (with
a comparable number of dual iterations) the former finds
feasible solutions in the hundreds, while the latter only
finds a few of them. Due to the much smaller number of
ED solved, UDP is also roughly three times faster than
RDCP; however, the latter never requires more than 6 min-
utes even for the largest instances, and the obtained solu-
tions are of excellent quality.

6.2. Comparison with a general-purpose MIQP solver

We now present results comparing the LR using the
ramp-constrained DP of [18] with an approach using
state-of-the-art, general-purpose MIQP technology. For
this, we simply passed the MIQP formulation (1)–(11) to
the commercial solver Cplex 9.1.

The results are displayed in Table 2. For RCDP, the
results of Table 1 are reported, albeit limited to the pure
thermal cases for reasons to become clear shortly. Columns
‘‘Cplex MIQP’’ reports results obtained by the MIQP sol-
ver Cplex 9.1. The code was ran with a time limit of one
hour, which is already unrealistic in most production envi-
ronments; however, none of the instances were solved to
optimality within that time. Thus, we report in column
‘‘first’’ the (average) time required by the MIQP solver
for finding any integer solution, in column ‘‘best’’ the time
required for finding its best solution, and in column ‘‘eqv’’
the time required for finding a solution with equivalent or
better quality than the best one found by RCDP (counting
one hour if this never happens). Finally, columns ‘‘gap’’
and ‘‘Dlb’’ have the same meaning as for UDP in Table 1.

The Table shows that, given enough time, the MIQP
approach may deliver more accurate solutions than the
LR approach on smaller-size instances. For very small
instances (p = 20) this is true both for the lower bound
and for the upper bound, while for instances with p up to
100 the lower bound is always dominated by the Lagrang-
ian one, while the upper bound may be better. However,
this comes at a hefty cost in terms of time, as Cplex takes
anywhere between 25 and 150 times the running time of
RDCP to deliver solutions of the same quality (even when
it succeeds in doing this); we should also remark that
RDCP may—and typically does—find its best solution
way before the actual termination of the approach. Fur-
thermore, the MIQP solver requires a long time just to find
any feasible solution (possibly of bad quality), which is
unacceptable in many operating environments. Finally,
for p > 100 it may fail to find a feasible solution at all
within an hour of running time; this always happens for
the largest instances (p = 200), which are, incidentally,
those that are better solved by the LR approach. We have
therefore avoided to report the results of Cplex for
hydro-thermal instances, since the much larger size of the



Table 2
Comparing the LR and a MIQP solver

p RCDP Cplex MIQP

Time Iter Sol Gap First Best Eqv Gap Dlb

20 8 189 34 0.44 24 2229 858 0.29 �0.14
50 17 195 33 0.26 249 1491 2563 0.22 0.34
75 30 206 33 0.38 447 1514 2195 0.10 0.44

100 46 213 21 0.48 940 2327 1236 0.13 0.47
150 72 277 23 0.20 2348 2483 3280 0.24 (1) 0.42
200 134 317 67 0.06 3600 3600 3600 * (5) 0.44
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formulation (for the same number of thermal units) make it
even less efficient at solving these instances.

6.3. Comparison with a general-purpose MILP solver

During the first revision of this paper, an anonymous
referee suggested us to test the approximated MILP formu-
lation of [10]; this is obtained from (1)–(11) by replacing
the quadratic terms in the objective function by a (convex)
piecewise-linear approximation. While the number of
pieces in the approximation is in general arbitrary, we used
a four-piece approximation as suggested in [10] (the inter-
ested reader is referred to the original paper for details);
this results in a MIP with roughly four times the number
of continuous variables and more constraints than the ori-
ginal quadratic formulation, but without quadratic terms
in the objective function.

We were initially doubtful about the possible effectiveness
of this formulation, since we were going to solve it with the
very same general-purpose solver, Cplex 9.1, thus most of
the sophisticated techniques (preprocessing, branching
rules, valid inequalities, . . .) available to the MILP solver
were also available in the MIQP case, too. Hence, the only
fundamental difference between the two cases seemed to be
whether a quadratic program (QP) or a linear program
(LP) was solved at each relaxation instead; since most often
a QP can be solved in no more than three times the time it
takes to solve an LP of the same size, we expected nothing
more than an improvement of at most a factor of three in
the running times, even less since the MILP formulation is
significantly larger than the MIQP one. However we fol-
lowed the advice of the referee, and the actual results,
reported in Table 3 proved us blatantly wrong. Columns
‘‘RCDP’’ have the same meaning as in the previous para-
graphs; the results are however different since, having been
obtained over an year after the previous ones, a more
advanced and efficient version of the code was used, with a
significant part of the performance improvements being
due to using a more recent version of Mosek (version 5 vs.
version 3.2). Columns ‘‘Cplex MILP’’ reports results
obtained by the MILP solver Cplex 9.1; as in [10], the code
was instructed to stop as soon as a relative gap of 0.5% or
less is attained, and it always managed to achieve this result.
We could mention at this point that, being the piecewise-lin-
ear approximation of the objective function an upper esti-
mate, the lower bounds computed by the MILP solver are
not, in general, valid for the ‘‘true’’ problem, so the estimate
of the relative gap is approximated. Columns ‘‘time’’ and
‘‘gap’’ have the same meaning as in the other cases, columns
‘‘ftime’’ and ‘‘gap’’ report respectively the time it takes to
generate the first integer feasible solution (the column being
empty if the time is very small, so that Cplex does not cor-
rectly report it) and its relative gap, column ‘‘nodes’’ reports
the number of visited nodes in the enumeration tree and,
finally, column ‘‘LPs’’ reports the total number of LP solved;
this is much larger than the number of nodes because Cplex
9.1 employs a sophisticated ‘‘Branch & Cut’’ approach
where valid inequalities are automatically derived and added
to the formulation to improve the lower bound.

The table shows that the MILP approach is remarkably
efficient in obtaining good quality solutions for UC
instances, dramatically more so than the MIQP one. A
close inspection of the solution logs revealed us that the dif-
ference mainly lies in the effectiveness of the primal heuris-
tic, i.e., the (unknown) approach used within the Cplex

solver to construct a feasible integer solution out of the
continuous one produced by the relaxation. In fact, while
in the MIQP case the solution, if at all produced, had at
least initially abysmal gaps (to the tune of 7%), the very
first solution produced by the MILP solver quite often,
although not always, has a very small gap (much less than
1%); even when the first solution is not satisfactory, the
MILP solver would typically find a very good one shortly
thereafter.

The reasons of this dramatic difference in the effective-
ness of the primal heuristics in the MIQP and MILP case
is not very clear to us; perhaps it can be due to the fact that
the continuous solution generated by the MIQP code is
not, usually, a vertex of the feasible polyhedron, and there-
fore may be ‘‘more fractional’’ than the one generated by
the MILP code. This may conceivably impact on the per-
formances of the heuristic, which typically uses rounding
techniques and therefore greatly benefits from having very
many variables already set to integer values. Whatever the
reason, the MILP approach has proved capable to obtain-
ing very good quality solutions to even the largest instances
in times not exceeding 8 min.

On the pure thermal instances, the MILP code consis-
tently outperforms the LR as far as the quality of the solu-
tions is concerned; however, the gap between the two



Table 3
Comparing the LR and a MILP solver

p h RCDP Cplex MILP

Time Gap Iter Time Gap ftime fgap Nodes LPs

10 0 0.75 0.99 187 0.95 0.33 1.18 0 23
20 0 1.83 0.46 189 3.72 0.36 1.00 0 23
50 0 4.84 0.28 195 21.93 0.21 15.98 0.36 0 25
75 0 9.41 0.34 206 56.31 0.20 47.08 1.62 10 59

100 0 14.74 0.33 213 94.09 0.17 69.75 2.18 16 76
150 0 21.20 0.17 277 218.69 0.12 177.35 6.58 16 115
200 0 34.80 0.09 317 267.78 0.09 247.12 1.85 6 87

20 10 1.76 0.39 170 93.53 0.21 0.59 140 258
50 20 6.36 0.06 160 17.98 0.06 17.98 0.06 0 60
75 35 15.01 0.04 198 96.86 0.11 96.86 0.11 170 300

100 50 24.74 0.04 209 130.86 0.06 130.86 0.06 180 266
150 75 37.41 0.02 189 467.62 0.06 467.62 0.06 300 554
200 100 50.91 0.01 175 427.71 0.05 427.71 0.05 205 321
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narrows as the size of the instances increase, and for the
largest instances the two approaches provide solutions of
comparable quality. Furthermore, the LR approach is
always faster, with the speedup increasing as the size of
the instances does and reaching one order of magnitude.
Also, column ‘‘ftime’’ reveals that the first feasible solution
is obtained very late, sometimes right before termination;
thus, there does not seem to be a way to improve on these
running times, not even by accepting the very first solution
produced (which, as column ‘‘fgap’’ indicates, can be of
very bad quality).

This trend is even clearer for hydro-thermal instances.
There, for all instances with p > 20 the MILP code stops
as soon as the first solution is obtained; unlike the pure
thermal case, that solution invariably turns out to be of
very good quality. However, unlike the pure thermal case
the LR approach almost always provides solutions of even
better quality than the MILP, and requires much less time
to do so, with a speedup of up to a factor of 12 on the larg-
est instances. So, while the MILP approach is highly com-
petitive w.r.t. the LR one on small- to mid-size instances,
especially pure thermal ones, when running time is not
much of a concern, the LR approach still is the method
of choice for very-large-scale instances, especially hydro-
thermal ones, when a fast response time is required.

7. Conclusions and directions for future work

In this paper, we have proposed a Lagrangian relaxation
(LR) approach for solving large-scale hydro-thermal unit
commitment (UC) problems with ramp constraints on the
thermal generating units. The keys of the effectiveness of
the approach are the efficient algorithm for single-unit
commitment (1UC) problems with ramp constraints
recently proposed in [18], that exactly solves the Lagrang-
ian subproblems without resorting to any form of approx-
imation, and the sophisticated heuristics for producing an
integer ramp-feasible and demand-feasible solution out of
the two infeasible ones (the integer demand-infeasible and
the continuous demand-almost-feasible) computed by the
LR approach. Despite the fact that the heuristic has been
developed for problems without ramping constraints, and
does not take them into account, solving ramp-constrained
subproblems turns out to be sufficient for solving with high
provable accuracy very-large-scale realistic instances in rea-
sonable computational time on low-end hardware.

Our approach is competitive with using general-purpose
MIP technology, especially mixed-integer quadratic pro-
gram solvers. Using the approximated formulation of [10]
turns out to provide consistent improvements, up to the
point that the resulting MILP approach may be preferable
to the LR one on small- to mid-size instances, especially
pure thermal ones; however, the LR approach still is the
method of choice for very-large-scale instances, especially
hydro-thermal ones, when a fast response time is required.
Furthermore, our LR approach could be improved in at
least three ways:

• By improving the heuristic in order to take into account
ramp constraints directly in the logic of the greedy
approach, as opposed to only indirectly by the use of
ramp-constrained starting solutions;

• by using an ‘‘augmented’’ approach a-la [6,12] in alter-
native to, or in combination with, the combinatorial
heuristic;

• by embedding the whole process in a Branch& Bound
approach, like that of Cplex, in order to refine both
the upper and the lower bound at the cost of a longer
running time.

A different line of research involves increasing the accu-
racy of the employed mathematical models of hydro and
thermal units to improve the real-life quality of the
obtained solution, for instance by taking into account
reserve constraints, i.e., reserving spare capacity on the
active thermal units in order to be able to cope with the
inherent uncertainty of the load and system failures. These
constraints are necessary in a monopolistic context, and
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may be useful in a liberalized regime since extra available
capacity is a valuable commodity that is normally traded
in a separated market. Incorporating reserve constraints
in the ‘‘classical’’ (UC) problem is usually not difficult;
indeed, they are often considered in the literature [8]. How-
ever, extending our approach to reserve-constrained ver-
sions of (UC) is not straightforward, and it will be the
subject of a future work.
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