
Annals of Operations Research manuscript No.

(will be inserted by the editor)

A stochastic programming model for the optimal

electricity market bid problem with bilateral contracts for

thermal and combined cycle units

F.-Javier Heredia · Marcos-J. Rider ·

Cristina Corchero

Received: date / Accepted: date

Abstract This paper developed a stochastic programming model that integrated the

most recent regulation rules of the Spanish peninsular system for bilateral contracts in

the day-ahead optimal bid problem. Our model allows a price-taker generation company

to decide the unit commitment of the thermal and combined cycle programming units,

the economic dispatch of the bilateral contract (BC) between all the programming units

and the optimal sale bid by observing the Spanish peninsular regulation. The model

was solved using real data of a typical generation company and a set of scenarios for

the Spanish market price. The results are reported and analyzed.
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1 Introduction

Generation companies in liberalized electricity markets do not have a load of their own

to satisfy, but must bid their hourly generation to the market operator, who selects the

lowest-price among the biding companies to match the pool load. A specific generation

company (GenCo) expects to have most of its bids accepted, i.e., have them priced

below the market price, determined hourly by matching the lowest-price bids with the

pool load. Liberalized electricity markets are nowadays very sophisticated energy- and

financial-transaction multimarkets where, around the main electricity market, the so-

called ”day-ahead” or ”spot” market, a portfolio of other financial and physical markets

as well as bilateral contracts exist. Moreover, a generation company operating in such a

complex market can no longer optimize its medium- and short-term generation planning

decisions without considering the relation between those markets and the increasing

importance of the emission-free (wind power and hydro-generation) and low-emission

technologies (combined cycle).
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1.1 The Iberian Electricity Market (MIBEL)

The day-ahead market is not only the main physical energy market of the Iberian

Electricity Market MIBEL (mainland Spanish and Portuguese systems) in terms of

the amount of traded energy, but also the mechanism through which other energy

products, as bilateral contracts, are integrated into the energy production system. In

the MIBEL the day-ahead market of day D consists of a series of twenty-four hourly

auctions which are cleared simultaneously between 10h and 10:30h of the previous day

(D-1). Selling and buying agents must submit their sale/purchase bids to each auction

before 10:00h of D-1. Both sale and purchase bids are composed of up to 25 price-energy

pairs with non-increasing price values (see Section 2.3), and each agent is unaware of

the bids of the rests of the agents. The clearing price λD

t of each hourly auction t

is determined by the intersection of the aggregated offer and demand curves. All the

sale/purchase bids with a lower/greater bid price are matched and will be remunerated

at the same clearing price λD

t , whichever the original bid price.

Bilateral contracts are agreements between a generation company and a qualified

consumer to provide a given amount of electrical energy at a stipulated price along

with a delivering period. The characteristics of the BC (energy, price and delivering

period) are negotiated several days before the day-ahead market, either in organized

or non-organized markets. In the organized BC markets, the producers and consumers

send sell and purchase bids that are matched by the market operator. There are two

organized BC markets in the MIBEL, the CESUR (CESUR, 2008) and EPE (MEFF,

2008) auctions. In non-organized BC markets, the producers and consumers agree the

amount, price, and period of the energy delivered, in a private negotiation. In both

cases, from the point of the view of the GenCo, a BC represents a scheduled load curve

to be delivered, chargeable at a fixed price, that has to be optimally dispatched among

the GenCo’s units. The resulting dispatch must be communicated (nominated using

the MIBEL’s terminology) to the system and market operator no later than 25 minutes

before the closure of the day-ahead market. A relevant characteristic of the MIBEL´s

day-ahead market rules is that the production units engaged in the dispatching of the

bilateral contracts are allowed to offer the non-dispatched part of its total capacity

to the pool. This fact makes the optimal sale bid and the optimal BC’s dispatching

mutually dependents, coupling both problems.

1.2 Combined cycle units

The combined cycle (CC) units represent the majority of the new generating unit

installations in North America and Europe. Their advantages are: a) High efficiency

(can reach 60%, which is a 20 – 30% improvement over that of the thermal power

plants); b) Fast response (can be quite instrumental in facing rapid fluctuations in the

power markets); c) Environmental friendliness (the CO2 production of a natural gas

fueled CC plant is much lower than that of other fossil-fueled turbine technologies);

and d) Compact and shorter installation time. For example, as of December 31, 2007,

the total installed capacity in the Spanish Peninsular Electricity System was 85.959

MW (this capacity has increased by 26.140 MW since 2002). This increase is chiefly

attributed to the commissioning of new CC, cogeneration, and renewable power plants,

most of which comprised the wind power. Currently, the installed capacity of CC units

represents 24.38% of the total installed capacity. Also, the total net generation in the
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Table 1 Generation of electricity in the Spanish Peninsular Electricity System (GWh)

2002 2003 2004 2005 2006 2007

Hydro 22.598 38.874 29.777 19.170 24.761 26.381
Nuclear 63.016 61.875 63.606 57.539 60.184 55.046
Coal 78.768 72.249 76.358 77.393 66.143 71.846
Fuel 16.474 8.027 7.697 10.013 5.841 2.384
CC 5.308 14.991 28.974 48.840 63.561 68.304

Subtotal 186.164 196.016 206.412 212.955 220.490 223.962

Self-consumption -8.420 -8.162 -8.649 -9.080 -8.719 -8.655

Cogeneration
and renewables 35.401 41.412 45.868 50.365 49.904 55.754

Total 213.145 229.266 243.631 254.240 261.675 271.061

Spanish Peninsular Electricity System reached 271 TWh (representing an increase of

around 58 TWh over 2002), with 25% from coal plants, 24% from CC plants, 21% from

cogeneration and renewable plants, 20% from nuclear plants, 9% from hydro plants and

1% from fuel plants (Table 1).

1.3 Literature Review

Several researchers have proposed optimal bidding models in the day-ahead market for

thermal units under the price-taker assumption, with or without BC. Some researchers

(Conejo and Arroyo, 2002) presented a mixed-integer programming model to optimize

the production schedule of a single unit with a simple bidding strategy. Furthermore,

in another study (Gountis and Bakirtzis, 2004), the approximation of step-wise bid

curves by linear bid functions, based on the marginal costs was considered, although in a

context without BC. Also, in an earlier study (Ni et al, 2004), the concept of price-power

function, which is similar to the matched energy function defined in our study (see

Section 2.3), was used to derive the optimal bid curves of a hydro-thermal system under

the assumption that the spot prices for the day-ahead and reserve markets behave as a

Markov Chain. The mixed-integer stochastic programming model (Nowak et al, 2005)

distinguishes the variables corresponding to the bid energy and those representing the

matched energy, though in a price-maker framework and without BC. In another model

(Shresta et al, 2004), very much related in some aspects to the one presented in our

study, a stochastic unit commitment problem with BC was solved by maximizing the

day-ahead market benefit. The stochasticity in the spot prices was introduced through a

set of scenarios, giving rise to a two-stage stochastic programming problem. In another

earlier study (Triki et al, 2005), the researchers presented a mixed-integer stochastic

optimization model for scheduling the thermal units, and the production plants were

optimized in the presence of stochastic market-clearing prices. Nevertheless, the two

earlier models (Shresta et al, 2004; Triki et al, 2005) failed to propose any explicit

modeling of the optimal bid as we have done. Furthermore, the general considerations

about the bidding process in electricity markets can also be obtained (Anderson and

Philpott, 2002, 2003; Neame et al, 2003).
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One of the earlier studies (Bjelogrlic, 2000) considered the CC units in the short-

term resource scheduling. The proposed algorithm was based on the assumption that

the thermal subsystem of a CC is modeled through input-output curves that are de-

fined for all configurations and all steam load ranges. A method (Lu and Shahidehpour,

2004) was presented to calculate the unit commitment of CC units using dynamic pro-

gramming and lagrangian relaxation applied to the security-constrained short-term

scheduling problem. Furthermore, the price-based unit commitment problem based on

the mixed-integer programming method for a generating company with thermal, CC,

cascaded-hydro, and pumped-storage units has also been presented (Li and Shahideh-

pour, 2005). None of the earlier publications presented an explicit formulation of the

optimal sale bid of the CC units to the day-ahead market or any considerations about

the BC.

1.4 Contributions

Our study developed an stochastic mixed-integer quadratic programming model for a

price-taker GenCo with BC obligations to determine the optimal bidding strategy of a

pool of thermal and CC programming units in the day-ahead electricity market. The

model allows a price-taker GenCo to decide the unit commitment of its thermal and CC

programming units, the economic dispatch of the BC among the programming units,

and the optimal bid for thermal and CC units. The main contributions of this paper

include: (a) a new model for the optimal bid function and matched energy for thermal

and CC units, (b) a new and detailed mixed-integer formulation of the operation rules

of the CC units and (c) the joint optimization of all the above-mentioned factors

together with the BC duties. The model was tested with real data of market prices and

programming units of a GenCo operating in the Spanish electricity market (OMEL,

2008).

In Section 2 of this paper, the stochastic programming model for the BC-constrained

optimal bid problem is presented, where the unit commitment and BC constraints are

defined and the model for the BC-constrained optimal bid function and equivalent

constraints are given. In Section 3, the stochastic processes involving day-ahead mar-

ket clearing prices are characterized and a detailed case study is solved and analyzed.

Finally, in Section 4 some relevant conclusions are drawn.

2 The Stochastic Programming Model

Fig. 1 represents a price-taker GenCo possessing a set I of thermal units (coal, nuclear,

fuel) and a set C of CC units (a combustion turbine and a steam turbine), represented

mathematically by a set P of pseudo-units (see Section 2.1). Both thermal and CC units

bid to the t ∈ T = {1, 2, . . . , 24} hourly auctions of the day-ahead market (left-oriented

arrows of Fig. 1). The stochasticity of the spot price λD

t , t ∈ T is represented by a set of

S scenarios. The set BC represents the portfolio of BC duties, with known energy (LBC

jt

MWh) and price (λBC

jt e/MWh) for each BC contract j ∈ BC and time period t ∈ T ,

that must be dispatched between the thermal and CC units (right-oriented arrows of

Fig. 1).

The objective of this study is to find how to optimally manage the thermal and CC

units in order to take the maximum benefit from the day-ahead market while covering
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Fig. 1 Representation of the system under study

the bilateral contracts agreements. This problem nicely fits the decision structure of

a two-stage stochastic optimization problem (Birge and Louveaux (1997)) where the

random variable λD corresponds the vector of clearing prices for the 24 auctions of the

day-ahead market of day D. The random variable λD would be represented through

a set of S scenarios λD,s = [λD,s
1 , λD,s

2 , . . . , λD,s
24 ]′, s ∈ S whose realization is known

short after the day-ahead closure time (10:00h of day D-1). For each period, t ∈ T , the

decisions to be taken previously to the realization of the random variables (here and

now decisions or first-stage variables) are:

– The unit commitment of the thermal and CC units (variables uit).

– The energy allocated to the portfolio of bilateral contracts by each thermal and

CC units (variables bit).

The optimal bid will be expressed as a function of these first stage variables, showing

the need for a simultaneous optimization of both the BC dispatching and the optimal

bid. The left-oriented arrows in Fig. 1 correspond to the second stage variables pM,s
it ,

the matched energy, the amount of energy that would be accepted in the i-th auction

in case scenario s occurs (see Section 2.3).

2.1 Thermal and Combined Cycle units operation

In the thermal power plants, the fuel (natural gas) and the compressed air are mixed

and burnt in a combustion chamber. The energy released during the combustion is

used to turn a combustion turbine that drives an electric generator (G1) to produce

electricity (Fig. 2). The combined cycle plants employ more than one thermodynamic

cycle – Rankine (steam turbine) and Brayton (combustion turbine). In the CC units,

the heat captured from the exhaust gas of combustion turbine (CT) (which would

otherwise be wasted), is used in the heat recovery steam generator (HRSG) that is used

to turn a steam turbine (ST), which consequently drives an electric generator (G2) to

produce additional electricity, which enhances the efficiency of electricity generation

(Bachmann et al, 1999).

The CC units represent a combination of combustion and steam turbines within

a power plant. Typically, a CC unit consists of several CTs and an HRSG/ST set.
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Fig. 2 Combined cycle unit

Table 2 States of the CC unit and its associated Pseudo units

CC unit with a CT and HRSG/ST

State Composition Pseudounit 1 uPc(1)t Pseudounit 2 uPc(2)t

0 0CT+0HRSG/ST off 0 off 0
1 1CT+0HRSG/ST on 1 off 0
2 1CT+1HRSG/ST off 0 on 1

Based on the different combinations of CTs and HRSG/ST, a CC unit can operate at

multiple states or configurations. The first two columns of Table 2 show the states of a

CC unit with a CT and an HRSG/ST considered in this study. The operational rules

of a typical CC unit were formulated (Lu and Shahidehpour, 2004) with the help of

the so-called pseudo units (PUs). As the thermal units, the PUs of each CC unit have

their own unique cost characteristics, real power generation limits, minimum on time

limits, etc., and can be viewed as a special set of non-independent or coupling single

thermal units. Contrary to the model proposed earlier (Lu and Shahidehpour, 2004),

where each one of the three states of the CC unit had its own PU, our formulation

only considered two PUs, each associated with states 1 and 2 of the CC. The on/off

state of these two PUs uniquely determined the state of the CC (see columns 3 and 5

of Table 2), and allowed (as it will be seen later) a correct modeling of the operation

of the state 0 without the need of an additional PU.

Let us define Pc, the set of PUs of the CC unit c ∈ C, and P = ∪c∈CPc, the complete

set of PUs. By Pc(j), we denote the PU associated with the state j ∈ {1, 2} of the CC

unit c. Thus, U = I ∪ P represents the complete set of units (thermal and pseudo).

The on/off state of each thermal and pseudo units at period t can be represented by

the first-stage binary variables uit, i ∈ U . Columns 4 and 6 of Table 2 illustrate the

relation of the commitment binary variables of the PUs, uPc(1)t and uPc(2)t, with the

state of the associated CC unit.

However, the operation of each thermal unit must guarantee the minimum up (ton
i )

and down (toffi ) times. Several equivalent formulation of these conditions can be found

in the literature (Carrion (2006); Nabona and Pages (2007)). Following (Nabona and

Pages, 2007) the minimum up and down times are introduced in our model through

the set of constraints:
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t t + 1
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Fig. 3 Feasible transitions of the CC unit with a CT and HRSG/ST

uit − ui(t−1) − eit + ait = 0 (a)
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∑
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eit +

min{t+ton
i ,|T |}
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i ∈ I , t ∈ T (1)

where Eq. (1a)-(1b) define the auxiliary binary variables ait and eit to be ait = 1 iff

ui(t−1) = 1 and uit = 0, and eit = 1 iff ui(t−1) = 0 and uit = 1. The minimum up

(ton
i ) and down (toffi ) times are guaranteed by Eq. (1b)-(1c). The set Ki stands for the

initial state of each unit.

Analogously, each PU i ∈ P has its own minimum up time, ton
i :

uit − ui(t−1) − eit + ait = 0 (a)

eit +

min{t+ton
i ,|T |}

∑

j=t

aij ≤ 1 (b)

uit, ait, eit∈{0, 1} ∩ Ki (c)



























i ∈ P , t ∈ T (2)

Each CC unit also has a minimum down time, i.e., once shut down, the CC unit

cannot be started up before tC
c periods. Thus, we introduced the auxiliary variables

uC

ct, aC

ct and eC

ct to represent the on/off, shut-down, and start-up state, respectively,

of the CC unit c ∈ C. As in the case of the thermal and pseudo units, the following

constraints formulate the minimum down time condition for the CC units:

uC

ct − uC

c(t−1) − eC

ct + aC

ct = 0 (a)

aC

ct +

min{t+tC
c ,|T |}

∑

j=t

eC

cj ≤ 1 (b)

uC

ct, a
C

ct, e
C

ct∈{0, 1} ∩ KC
c (c)



























c ∈ C , t ∈ T (3)

where set KC
c stands for the initial state of the CC unit c. In fact, variables uC

ct, aC

ct and

eC

ct are not necessary, because they can be expressed in terms of the binary variables

of the PU of Pc with the aid of the feasible transition rules defined in Fig. 3:
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uC

ct = uPc(1)t + uPc(2)t ; eC

ct = ePc(1)t − aPc(2)t ; aC

ct = aPc(1)t − ePc(2)t (4)

and, the constraints (3) can be re-expressed in terms of the PU variables as:

(

uPc(1)t + uPc(2)t

)

−
(

uPc(1)(t−1) + uPc(2)(t−1)

)

+

+
(

aPc(1)t − ePc(1)t

)

−
(

ePc(2)t − aPC(2)t

)

= 0 (a)

(

aPc(1)t − ePc(2)t

)

+

min{t+tC
c ,|T |}

∑

j=t

(

ePc(1)j − aPc(2)j

)

≤ 1 (b)



























c ∈ C

t ∈ T
(5)

Condition (3c) can be omitted because it is equivalent to condition (2c). The feasible

transitions rules (Fig. 3) impose additional constraints to the operation of the PUs

associated to the same CC unit, c ∈ C. First, the PUs in Pc are mutually exclusive

(Eq. (6a)), i.e., only one of them can be committed at a given period (a CC can only

be in one state simultaneously). Second, the change of the commitment of the PUs

in Pc between periods t and t + 1 are limited to the feasible transitions depicted in

Fig. 3. These feasible transitions impose that, if the CC unit c is in state 0 at period t

(uPc(1)t + uPc(2)t = 0), it cannot be in state 2 at period t + 1 (uPc(2)(t+1) = 0) (Eq.

(6b)). Conversely, if uPc(2)t = 1, then uPc(1)(t+1) + uPc(2)(t+1) ≥ 1 (Eq. (6c)). The

following set of constraints formulates the specific operation rules of the CC units:

∑

m∈Pc

umt ≤ 1 (a)

uPc(2)(t+1) ≤ uPc(1)t + uPc(2)t (b)

uPc(2)t ≤ uPc(1)(t+1) + uPc(2)(t+1) (c)



















c ∈ C, t ∈ T (6)

2.2 Bilateral Contracts Constraint

Consider that the GenCo has agreed to physically provide the energy amounts LBC

jt at

hour t ∈ T of day D for each one of the j ∈ BC bilateral contracts. This energy LBC

jt

can be provided by any programming unit U , both thermal and PUs:

∑

i∈U

bit =
∑

j∈BC

LBC

jt (a)

bit ∈ [0, pi] i ∈ U (b)











t ∈ T (7)

where the total contribution of the committed unit i to the BC covering at period t is

represented by the variable bit. The system of constraints (1,2,5,6,7) defines the set Ω

Ω =
{

u ∈ {0, 1}|T |×|U|, b ∈ ℜ|T |×|U| | [u, b] satisfies (1, 2, 5, 6, 7)
}

(8)

of all the feasible unit commitment and BC–dispatching solutions [u, b]. In the following

section the optimal sale bid for each feasible policy [u, b] is developed and the expression

of the associated matched energy is formulated.
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2.3 Optimal bid function and equivalent matched energy constraints

In the Iberian Electricity Market (MIBEL) a simple sale bid of unit i for the t-th

auction of the day-ahead market consists on a step-wise non-decreasing curve defined

with up to 25 power(MWh)/price(e/MWh) blocks

(

pB

itk, λB

itk

)

, k = 1, . . . , 25 (9)

From the point of view of a GenCo, after the market clearing, all the blocks with

a bid price λB

itk not greater than the clearing price λD

t will be accepted (matched).

Therefore, the matched energy associated to the clearing price λD

t , pM

it (λD

t ), will be the

total energy amount of the sale bid (9) accepted at the t-th auction, that is:

pM

it (λD

t ) =
∑

k | λB
itk

≤λD
t

pB

itk (10)

This matched energy should be generated and rewarded at price λD

t , and the rest

blocks of Eq. (9) will be neglected. The objective of this section is to develop the

optimal bid function, λB∗
it (pB

it), that gives the optimal bid price, λB

it, at which the

capacity generation, pB

it must be bid to maximize the benefit from the pool. It will be

shown that this optimal bid price can be determined uniquely by the values of bit and

uit. To ease the modeling, we considered λB∗
it (pB

it) as a general function, not necessarily

step-wise. This is a common simplified representation of the true sale bid (9) used by

several authors (e.g., (Gountis and Bakirtzis, 2004)). Furthermore, it is always possible

to adapt a posteriori the resulting optimal bid function to the step-wise representation

(9).

The expressions of the optimal bid and matched energy functions for a committed

unit i ∈ U would be developed under the following assumptions:

Assumption 1 The GenCo is a price-taker, i.e., the day-ahead clearing price λD

t does

not depend on the GenCo’s bidding.

Assumption 2 To guarantee the commitment of the unit i in the operational pro-

gramming resulting from the clearing of the day-ahead market, the unit i would bid its

minimum generation output p
i

at zero price (instrumental bid).

Assumption 3 To respect the MIBEL rules, the total contribution of unit i to the BC

covering must be excluded from the bid.

Assumption 4 The probability function of the clearing-price random variable λD

t has

been discretized in a set of scenarios S with associated clearing price λD,s
t and proba-

bility P s, s ∈ S.

Assumption 3 implies that the non-negative bid energy pB

it must be upper bounded

by (pi − bit). By assuming the quadratic thermal generation costs, CG(p) = cb
i + cl

ip +

cq
i (p)2, the benefits obtained from the day-ahead market as a function of the matched

energy pM,s
it (the amount of energy that the thermal unit i has to produce as a result of

the market-clearing mechanism) for a given dispatched BC energy bit, under scenario

s will be:
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BD,s
it (pM,s

it , bit) = λD,s
t pM,s

it −
[

CG(pM,s
it + bit) − CG(bit)

]

= λD,s
t pM,s

it − cl
ip

M,s
it − cq

i (pM,s
it )2 − 2cq

i pM,s
it bit (11)

The expression of the optimal bid function is established by the following theorem:

Theorem 1 If assumptions 1-3 hold true, then the expression:

λB∗
it (pB

it, bit)=

{

0 if 0≤pB

it≤ [p
i
−bit]

+

2cq
i (pB

it+bit)+cl
i if [p

i
−bit]

+ <pB

it≤pi−bit

i ∈ U , t ∈ T (12)

with [a− b]+ = max{0, a− b}, is the optimal bid function of unit i for the t-th auction

of the day-ahead market in the sense that, for any given value bit, if function (12) is

bid, the matched energy pM,s
it corresponding to any scenario s with market price λD,s

t ,

maximizes the day-ahead benefit function (11)

Proof The first block of the optimal bid function λB∗
it (pB

it, bit) = 0 for pB

it ≤ [p
i
− bit]

+

is the instrumental bid needed to guarantee assumptions 2 and 3.

To observe the optimality of the second part of the bid function, we must maximize

the day-ahead benefit function (11) with respect to the matched energy pM,s
it into the

interval:

pM,s
it ∈

]

[p
i
− bit]

+ , pi − bit

]

(13)

The matched energy that maximizes the day-ahead benefit function is defined as:

pM,s
it (bit) = argsup

p
M,s

it

{

BD,s
it (pM,s

it , bit) | [p
i
− bit]

+ < pM,s
it ≤ pi − bit

}

(14)

and its value can be obtained using:

pM,s
it (bit) =











[p
i
− bit]

+ if p∗,s
it ≤ max{p

i
, bit} (a)

p∗,s
it − bit if p∗,s

it ∈]max{p
i
, bit}, pi[ (b)

pi − bit if p∗,s
it ≥ pi (c)

i ∈ U

t ∈ T

s ∈ S

(15)

where p∗,s
it =

(

λD,s
t − cl

i

)

/2cq
i , i.e., the unconstrained maximum of the benefit function

(11) when bit = 0, is a constant parameter that only depends on the scenario, period

and unit.

Let us now analyze the expression of the matched energy associated with the bid

(12) for all the possible values of the clearing market price λD,s
t . The following three

cases can be distinguished (see Fig 4):











λD,s
t ≤ λB

it (a)

λD,s
t ∈ ] λB

it , λ
B

it [ (b)

λD,s
t ≥ λ

B

it (c)

(16)

where λB

it and λ
B

it are the threshold prices:
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λ̃D,s
it λB

it λ̂D,s
it

λ
B

it λ̌D,s
it

λD,s
t

Case (16a) Case (16b) Case (16c)

pi − bit

p∗,s
it −bit

[p
i
−bit]

+

pM,s
it

Fig. 4 Matched bid energy function p
M,s
it

as a function of the clearing market price λ
D,s
t

corresponding to the optimal bid function (12)

λB

it = 2cq
i

(

[p
i
− bit]

+ + bit

)

+ cl
i ; λ

B

it = 2cq
i pi + cl

i (17)

It can be easily observed that cases (16a), (b), and (c) are equivalent to cases (15a),

(b), and (c), respectively, i.e.,

λD,s
t ≤ λB

it ⇐⇒ p∗,s
it ≤ max{p

i
, bit} (18)

λD,s
t ∈ ] λB

it , λ
B

it[ ⇐⇒ p∗,s
it ∈] max{p

i
, bit}, pi[ (19)

λD,s
t ≥ λ

B

it ⇐⇒ p∗,s
it ≥ pi (20)

Let us now observe the expression of the matched energy associated with the three

cases (16a), (b), and (c), which also coincides with the optimal matched energy, pM,s
it ,

for the three cases of Eq. (15):

Case (16a) : If the market clearing price λ
D,s
t is below the minimum non-instrumental

bid price λB

it (see λ̃D,s
it in Fig. 4), then only the instrumental part of the bid (12)

is accepted and the matched energy will be [p
i
− bit]

+,i.e, the same amount as in

case (15a).

Case (16b) : When the market clearing price λD,s
t is strictly between the threshold

prices (see λ̂D,s
it in Fig. 4), only the bid energy with a bid price less than or equal to

this clearing price will be accepted (matched). The matched energy obtained from

the expression of the optimal bid function in this case is
(

λD,s
t − cl

i

)

/2cq
i − bit,

which is the same expression as in case (15b).

Case (16c) : If the market clearing price λD,s
t is above the maximum bid price λ

B

it (see

λ̆D,s
it in Fig. 4)then the maximum generation bid (pi − bit) is matched, which is the

same amount as in case (15c).

Subsequently, it has been proved that if the proposed function (12) is bid to the day-

ahead market, then the resulting matched energy will maximize the day-ahead benefit

function (11) ⊓⊔

When bT

it = 0 (the committed unit i does not contribute to the BC covering), our

problem reduces to the classical self-commitment problem discussed by several authors
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(Gountis and Bakirtzis, 2004; Conejo and Arroyo, 2002). In this case, it is well known

that the optimal-bid strategy for a price-taker GenCo consists of an instrumental bid up

to the operational minimum limit, p
i
, and the rest of the plant capacity at the marginal

price, 2cq
i pit + cl

i. This optimal policy corresponds to the particular case bit = 0 of the

generalized optimal-bid function (12). The matched energy for this particular case will

be called the BC-free day-ahead matched energy, and can be represented by pD,s
it :

pD,s
it ≡ pM,s

it (0) =











p
i

if p∗,s
it ≤ p

i
(a)

p∗,s
it if p∗,s

it ∈]p
i
, pi[ (b)

pi if p∗,s
it ≥ pi (c)

i ∈ U

t ∈ T

s ∈ S

(21)

where pD,s
it is a constant parameter of the model for a fixed thermal i, period t, and

scenario s, and can be used to develop a simplified expression of the optimal matched

energy pM,s
it (bit).

Proposition 1 The optimal matched energy function (15) can be expressed as:

pM,s
it (bit) =

[

pD,s
it − bit

]+
i ∈ U , t ∈ T , s ∈ S (22)

with the constant parameter pD,s
it defined in Eq. (21).

Proof To observe the equivalence of Eq. (15) and Eq. (22), the three cases (15a), (b),

and (c) can be analyzed:

Case (15a) : This is the case where p∗,s
it ≤ max{p

i
, bit}. If max{p

i
, bit} = p

i
then,

p∗,s
it ≤ p

i
⇒ pD,s

it = p
i
⇒ [pD,s

it − bit]
+ = [p

i
− bit]

+ = pM,s
it (bit) (23)

Conversely, if max{p
i
, bit} = bit, then either p

∗,s
it ≤ p

i
, which has just been ana-

lyzed, or p
i

< p
∗,s
it ≤ bit. In this last case, as bit ≤ pi, Eq. (21) sets p

D,s
it = p

∗,s
it ,

and both [pD,s
it − bit]

+ and [p
i
− bit]

+ take the value of zero.

Case (15b) : In this case, p∗,s
it ∈]p

i
, pi[ and through Eq. (21), pD,s

it = p∗,s
it . The matched

energy is:

[

pD,s
it − bit

]+
=

[

p∗,s
it − bit

]+
= |p∗,s

it > bit| = p∗,s
it − bit = pM,s

it (bit) (24)

Case (15c) : Finally, when p∗,s
it ≥ pi, Eq. (21) sets pD,s

it = pi, and consequently,

[

pD,s
it − bit

]+
= [pi − bit]

+ = |bit ≤ pi| = pi − bit = pM,s
it (bit) ⊓⊔ (25)

Proposition 1 sets that for a committed unit i (uit = 1) that bids the function (12)

to the t-th auction of the day-ahead market, the matched energy at scenario s will be
[

pD,s
it − bit

]+
. However, if the unit is uncommitted (uit = 0), then the bid does not

exist and the matched energy becomes zero. The matched energy can be then expressed

through the matched energy function as a function of variables bit and uit:

pM,s
it (bit, uit)=

{

[

pD,s
it − bit

]+
if uit = 1

0 if uit = 0
i ∈ U , t ∈ T , s ∈ S (26)

Fig. 5 represents the function pM,s
it (bit, uit) (thick line and dot). However, this

non-differentiable expression cannot be included in the optimization model as it is. To
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0 1

vs
it

p
M,s
it

p
M,s
it

bit

pi

p
D,s
it

p
D,s
it

z
s
it
=

0

z
s
it
=

1

uit

Fig. 5 The matched energy function p
M,s
it

for a fixed spot price λ
D,s
t

formulate an equivalent mixed-integer linear formulation, we introduced the auxiliary

binary zs
it and continuous vs

it variables (see Fig 5). In this formulation, zs
it = 1 whenever

bit ≥ pD,s
it and zs

it = 0 otherwise, while vs
it will be always defined as vs

it =
[

bit − pD,s
it

]+
.

With the help of these auxiliary variables, expression (26) can be transformed into the

following equivalent mixed-integer linear system:

pM,s
it = pD,s

it uit + vs
it − bit (a)

pD,s
it (zs

it+uit−1)≤bit (b)

bit≤pD,s
it (1−zs

it)+pi(z
s
it+uit−1) (c)

pD,s
it (1−zs

it)≥pM,s
it (d)

pD,s
it (1−zs

it)≤pD,s
it uit (e)

vs
it≤ (pi−pD,s

it )(zs
it+uit−1) (f)

pM,s
it ∈ [0, pD,s

it ] (g)

vs
it ∈ [0, pi − pD,s

it ] (h)

zs
it∈{0, 1} (i)











































































i ∈ U

t ∈ T

s ∈ S

(27)

The following proposition establishes the equivalence between the function (26) and

the system (27) over the set Ω of all the feasible unit commitment and BC-dispatching

solutions:

Proposition 2 The system (27) and the function (26) are equivalent in the sense that

for every feasible solution, [u, b] ∈ Ω, the value of the matched energy variable pM,s
it at

every feasible solution of the system (27) satisfies function (26).

Proof First, let us consider the solution of system (27) for all the feasible solutions in

Ω with uit = 0. As the parameter pD,s
it is always non-negative, by Eq. (27e), zs

it = 1,
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and Eq. (27d), together with the bounds of Eq. (27g) sets pM,s
it = 0. Analogously, Eq.

(27c) and Eq. (27f), together with the bounds Eq. (7b) and Eq. (27h) zeroes the values

of bit and vs
it, respectively. The remaining equations, Eq. (27a) and Eq. (27b), result

in the redundant relations pM,s
it = 0 and bit ≥ 0, respectively.

Second, let us analyze system (27) for all the feasible solutions in Ω with uit = 1.

For all these solutions, system (26) reduces to:

pM,s
it = pD,s

it + vs
it − bit (a)

pD,s
it zs

it≤bit (b)

bit≤pD,s
it (1−zs

it)+piz
s
it (c)

pD,s
it (1−zs

it)≥pM,s
it (d)

pD,s
it (1−zs

it)≤pD,s
it (e)

vs
it≤ (pi−pD,s

it )zs
it (f)

pM,s
it ∈ [0, pD,s

it ] (g)

vs
it ∈ [0, pi − pD,s

it ] (h)

zs
it∈{0, 1} (i)











































































i ∈ U

t ∈ T

s ∈ S

(28)

The set of the feasible solutions of Ω with uit = 1 can be partitioned depending on the

value of variable bit:

– For those solutions in Ω with uit = 1 and bit ≤ pD,s
it , Eq. (28b) sets zs

it = 0.

Subsequently, Eq. (28f) together with the bounds (28h) sets vs
it ≤ 0, and by Eq.

(28a), pM,s
it = pD,s

it − bit, which coincides with the value given by the function (26)

for uit = 1 and bit ≤ pD,s
it . Equations (28c), (28d), and (28e) derive redundant

expressions.

– Conversely, for those solutions in Ω with uit = 1 and bit > pD,s
it , Eq. (28c) sets

zs
it = 1. Subsequently, Eq. (28d), together with the lower bound defined in Eq.

(28g), sets pM,s
it = 0, accordingly with the value of the matched energy defined

by function (26). The remaining equations (28a), (28b), (28e), and (28f) provide

redundant constraints. ⊓⊔

Proposition 2 assures that every feasible solution of Ω satisfies the equivalent

matched-energy constraints (27) and that the associated variable pM,s
it represents the

true value of the matched energy function (26). Then the variables pM,s
it can be in-

cluded in the stochastic model together with constraints (27) to assure that variables

pM,s
it will match the value given by function (26).

2.4 Total generation constraints

Finally, the model must include the following set of constraints that define the total

generation output of unit i at each time period t and scenario s as the sum of the

energy allocated to the BC contracts plus the matched energy in the corresponding

scenario:

ps
it = bit + pM,s

it i ∈ U , t ∈ T , s ∈ S (29)
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2.5 Objective function

The expected value of the benefit function B can be expressed as:

EλD

[

B(u, a, e, p, pM ; λD)
]

=
∑

t∈T

∑

j∈BC

λBC

jt LBC

jt (30)

−
∑

t∈T

∑

i∈I

[

con
i eit + coff

i ait + cb
iuit

]

(31)

−
∑

t∈T

∑

c∈C

[

con
Pc(1)

(

ePc(1)t − aPc(2)t

)

+ con
Pc(2)ePc(2)t +

∑

i∈Pc

cb
iuit

]

(32)

+
∑

t∈T

∑

i∈U

∑

s∈S

P s
[

λD,s
t pM,s

it −cl
ip

s
it−cq

i (ps
it)

2
]

(33)

The term (30) is constant and corresponds to the BC profit. The term (31) is the

on/off fixed cost of the unit commitment of the thermal units. The CC’s start-up

and fixed generation costs are formulated in term (32). In this formulation, as in (Lu

and Shahidehpour, 2004), only start-up costs are associated to the PU, and no cost

is associated to the transition from state 2 to state 1. Both terms (31) and (32) are

deterministics and does not depend on the realization of the random variable λD.

Finally, expression (33) represents the expected value of the benefit from the day-

ahead market for thermal and CC units, where P s is the probability of scenario s.

Usually, the generation cost functions of the PUs are represented as piece-wise linear

functions, but in this study, they were modeled as quadratic functions as done in a

couple of earlier studies (Lu and Shahidehpour, 2004; Li and Shahidehpour, 2005). All

the functions appearing in Eqs. (31) and (33) are linear except the generation costs in

Eq. (33), which are concave quadratic (cq
i ≥ 0, see Tables 3 and 4).

2.6 Final model

The final model developed in the previous sections is as follows:



































max EλD [B(u, a, e, p, pM ; λD)]

s.t. :

Eq. (1) Thermal unit commitment constraints

Eq. (2, 5, 6) Combined cycle unit commitment const.

Eq. (7) Bilateral contracts dispatching const.

Eq. (27) Optimal matched energy equivalent const.

Eq. (29) Definition of the total unit’s generation ps
it

(34)

The deterministic equivalent of the two-stage stochastic problem (34) is a mixed,

continuous-binary concave quadratic maximization problem with linear constraints

that can be solved with the help of standard optimization software, as illustrated in

the following section.



16

Table 3 Operational Characteristics of the Thermal Units

i cb
i

cl
i

c
q
i

p
i

pi st0
i

con
i

c
off
i

ton
i

t
off
i

e e/MWh e/MWh2 MW MW hr e e hr hr

1 151.08 40.37 0.015 160.0 350.0 +3 412.80 412.80 3 3
2 554.21 36.50 0.023 250.0 563.2 +3 803.75 803.75 3 3
3 327.02 28.85 0.036 160.0 370.7 -2 438.40 438.40 3 3
4 197.93 36.91 0.020 160.0 364.1 -1 419.20 419.20 3 3

Table 4 Operational Characteristics of the Combined Cycle Units

c Pc cb
i

cl
i

c
q
i

p
i

pi st0
i

con
i

ton
i

e e/MWh e/MWh2 MW MW hr e hr

1 5 151.08 50.37 0.023 160.0 350.0 –2 803.75 2
1 6 224.21 32.50 0.035 250.0 563.2 –2 412.80 2
2 7 163.11 55.58 0.019 90.0 350.0 –2 320.50 2
2 8 245.32 31.10 0.022 220.0 700.0 –2 510.83 2

Table 5 Characteristics of the Bilateral Contracts

j LBC
j,t=1...24 λBC

j,t=1...24

MW e/MWh

1 200 75
2 150 73
3 250 78

3 Test and Results

The model (34) has been tested using real data of a typical generation company and

market prices for the Spanish Peninsular Electricity System (OMEL, 2008) and the

results are reported in this section. The day under study is Monday, May 05 2008,

in the electricity market of mainland Spain. 3 bilateral contracts, 4 thermal units, 2

combined cycle units with a CT and a HRSG/ST and 24 hours of study were used in the

tests. The characteristics of the thermal and CC units and BCs are shown in Table 3, 4

and 5, respectively. The parameter st0i stands for the number of hours the unit has been

on (st0i > 0) or off (st0i < 0) previous to the first optimization period. The minimum off

time for both CC units (parameter tCc in Eq. 3) was set to 3 hours, and also both CC

units was considered shut-down for 3 hours previous to the first optimization period.

The model (34) has been implemented in AMPL (Fourer et al, 2003) and solved with

CPLEX (CPLEX, 2008) (default options) using a SunFire X2200 with two dual core

AMD Opteron 2222 processors at 3 GHz and 32 Gb of RAM memory.

In order to test the two-stage stochastic model (34) a characterization of the

market price λD through a set of scenarios is required, where each scenario λD,s =

[λD,s
1 , . . . , λD,s

24 ] is composed by a set of 24 hourly market prices. A set of 25 scenarios

has been used, obtained as the result of the application of a scenario reduction algo-

rithm (Gröwe-Kuska et al, 2003) to the complete set of historic data available from

June 2007 to the day under study. A summary of the characteristics of the optimization

problem and its solution is shown in Table 6. In Table 7 the usual stochastic program-
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Table 6 Optimization Characteristics of the Study Case

Constraints Real Binary E(Benefits) CPU
variables variables e s

31927 9915 5240 850.058 893

Table 7 Stochastic Programming Indicators

Monday, May 05, 2008

RP 850.058e
EEV 830.695e
VSS 19.363e

Hour

T
h
er

m
a
l
a
n
d

co
m

b
in

ed
cy

cl
e

u
n
it
s

CC1

CC2

T1

T2

T3

T4

0 2 4 6 8

9

10 12 14 16 18 20 22 24

Fig. 6 The unit commitment of thermal and CC units.

ming indicators needed to evaluate the goodness of the stochastic approximation are

reported (Birge and Louveaux, 1997). VSS, the measure of the advantage of using

the stochastic programming model instead of the deterministic one, shows that is is

possible to increase the expected benefits in 19.363e (2.33%) by using the stochastic

optimal solution.

The optimal unit commitment of thermal and CC units is shown in Fig. 6. The

three states or configurations of the CC units are represented as white (state 0), gray

(state 1, Pc(1)) and black (state 2, Pc(2)) hourly blocks. Notice how the operation of

the CC units obey the minimum up time and the feasible transition rules expressed

by Eq. (2) and Eq. (6) respectively. When started-up, both CC units stay in state 1

longer than the minimum on time ton
i = 2 before switching to the state 2, where they

remain for the rest of the optimization period.

Fig. 7 shows the aggregated economic dispatch of the three BCs (600MWh) by the

thermal (white bars) and the CC (black bars) units. It can be observed that, depending

on the period, the portfolio of BC is covered exclusively by the thermal units (periods

1,2,10,15,19 and 24), or by a combination of thermal and CC units (the rest of the

periods).

The optimal bid functions (12) for the thermal and CC units are represented in

Fig. 8 and Fig. 9 respectively, where bt...k represents the value of bit at the different

periods t, and b∗ corresponds to the rest of periods not explicitly indicated. To help

the understanding of this graphics, let us analyze the most simple case, the thermal

unit T4, which is committed all the periods, except the first one. First, observe the

piecewise discontinuous thick line, with a first block going from 0 to the minimum
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Fig. 7 Management of the bilateral contracts (
∑

j∈BC
LBC

jt
= 600MW) between thermal and

combined cycle units.
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Fig. 8 Representation of the optimal bid function λB∗
it

(pB
it

, bit) of the thermal units.

output p, and a second block between p and p, with a slope equal to the marginal

cost of the thermal unit 2cq
4. Both blocks correspond, respectively, to the two blocks

defining the optimal bid function (12). After the development of Section 2.3 we know

that this thick line represents the optimal bid function only in those periods where

bit = 0, (periods t ∈ {2, 9, 11− 14, 16, 18, 20− 23} for the thermal unit T4). Moreover,

for those periods where bit > 0, the optimal bid function corresponds to the part of the

thick line between the auxiliary second vertical axis shown in Fig. 8 located at bit, and
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Fig. 9 Representation of the optimal bid function λB∗
it

(pB
it

, bit) of the CC units.

pt. In the case of the thermal unit T4, b4,t = p
4

= 160MW for periods t ∈ {3 − 8, 15},

b4,t = 130MW for period t = 17 and b4,t = 30MW for periods t ∈ {10, 19, 24}.

Although b4,t ≤ p
4

for all t in the case of the thermal unit T4, this could not be the

case for other thermal units: see for instance the optimal bid function of thermal unit

T3, where b3,t = 190MW t ∈ {2 − 5, 15} and b3,22 = 221.5MW, both values above

the minimum generation p
3

= 160MW. The optimal bid functions of the remaining

thermal units of Fig. 8 can be interpreted in a similar way.

Let us now focus our attention on the optimal bid functions of the CC units (Fig.

9). First observe how each CC has two different sets of optimal bid functions, depending

on the state of the CC unit at each period t. The CC unit 1 would send the optimal bid

functions CC1-P1(1) at periods 5,6 and 7, where this CC unit is in state 1 (gray blocks

of Fig. 6), and the optimal bid functions CC1-P1(2) at the rest of the periods (black

blocks of Fig. 6). The same happens with the second CC unit, CC2. Please notice that

the optimal bid function of each state of the same CC unit has its own slope, which

corresponds to the marginal cost of each PU.

4 Conclusions

This study provides a procedure for a price-taker generation company operating under

the most recent regulations of the Iberian Electricity Market to optimally manage a

pool of thermal and combined cycle units. The proposed technique is built within the

versatile decision framework provided by the stochastic programming methodology.

A two-stage stochastic mixed-quadratic programming problem has been proposed to

decide the optimal unit commitment and sale bid to the day-ahead market, and the

optimal economic dispatch of the bilateral contracts for all the thermal and combined
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cycle units observing the MIBEL regulation. The objective of the producer is to max-

imize the expected profit from its involvement in the spot market. The most relevant

contributions of this study include: (a) the integration of a new model for the com-

bined cycle units with the thermal units and the bilateral contracts covering and (b)

a new modeling of the optimal sale bid for both thermal and combined cycle units,

with respect to the dispatched energy of the bilateral contracts. The set of scenarios

representing the uncertainty of the spot prices has been built by applying reduction

techniques to the tree obtained from the actual data of the MIBEL system. The model

was implemented and solved with commercial optimization packages and tested with

real data of a Spanish generation company and market prices. The results of the com-

putational experiments show the validity of the presented model and its applicability

to real problems.
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