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Abstract: Recent numerical experiments show that the resolution of the Nonlinear Network flow problem with
side Constraints (NNC) can be significantly sped up, when the side constraints are linear, by specialised codes
based on a conjunction of basis partitioning techniques and active set methods. A natural extension of these
methods is that of including them in a Projected Lagrangian Algorithm PLA. A specialised PLA will solve the
general (NNC) problem through the optimization of a sequence of (NNC)s with linearized side constraints,
taking advantage of the efficiency of the linear side constraint codes. The description of this methodology will
be presented together with the numerical results obtained from the application of this technique to a set of

hydrothermal scheduling problems.
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1 Introduction

1.1

The standard form of the Nonlinear Network flow prob-
lem with side Constraints (NNC) could be defined as
the following optimization problem:

Definition of the problem

min, f(z) (1)
s.t.:
Az =r (2)
)+ Ihzn = by (3)
Te +Lizi = (4)
0<z <ug (5)
0< 2 < tn (6)
0<z <u (M)

where:

(1) f : R™ — R is nonlinear and twice continuously
differentiable over the feasible set defined by con-
straints (2-7).

these are the network equations, where A € IR™*”
is the full rank node-arc incidence matrix, and r €
IR™ the injection/consumption vector.

(2)

(3) these equality nonlinear side constraints stand for
any set of generally bounded nonlinear constraints
b, < ¢(z) < b,. The functions c: IR — IR'" are
usually assumed to be twice continuously differen-

tiable, although for practical purposes they only

projected Lagrangian methods, basis partitioning, hy-

need to be differentiable and continuous. Vector
b, € IR is the right-hand side and I,, € IFit"'Xt" 18
the coefficient matrix of the slacks z, € Ri".

these are the standard form of a set of #; general
linear side constraints by < Tx < b, with T' €

IR"*™ and the RHS vector b; € R". T, € IRtIXfl is
the coefficient matrix of the slacks z; € IR™.

uy, € R™, u,; € R" and u,, € IR are, re-
spectively, the upper bounds to the real variables
z € IR"™ and to the slack variables z, and z; used to
transform the general inequality linear and nonlin-
ear side constraint into the standard equality form.

1.2 Motivation: the Short-Term Hy-
drothermal Scheduling problem

One of the most relevant applications of the (NNC)
problems is the Shori-Term Hydrothermal Scheduling
(STHS)problem. (STHS) is among the most impor-
tant problems to be solved in the management of a
power utility when hydroelectric plants are a part of
the power system. The solution sought indicates how
to distribute the hydroelectric generation (cost-free) in
each reservoir of the reservoir system and how to allo-
cate generation to thermal units committed to operat-
ing over a short period of time (e.g. two days) so that
the fuel expenditure during the period is minimized. In
(STHS) the predicted load at each hourly interval must
be met, and a spinning reserve requirement to account
for failures or load prediction errors must be satisfied.
These load and spinning reserve constraints take in both



hydro and thermal generation. As usual, the short-term
period (of 24 to 168 hours) is subdivided into smaller
time intervals (of 1 to 4 hours) for which data are de-
termined and variables are optimized.

A great variety of formulations of the (STHS) prob-
lems can be found in the literature of the power sys-
tem field. In this paper we will focus our attention
onn the so—called Coupled Model proposed by Heredia
and Nabona in [1]. The most relevant characteristic of
this model is that all the variables taking part in the
(STHS) problem are flows on arcs of a single network
such as that in Figure 1, called the Hydro-Thermal-
Transmission Extended Network (HTTEN). The HT-
TEN 1is build with the well-known hydro replicated
network, through which the temporal evolution of the
reservoir system is usually modelled. In Figure 1, vari-
ables di and si stand respectively for the discharge and
spillage of reservoir k at time interval 7, variable 'u](ci_l
is the volume of reservoir k at the beginning of the i*h
interval and variable vi represents the volume of the
same reservoir at the end of the interval, after releasing
the discharge di and the spill st .
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Figure 1: Hydro-Thermal-Transmission Extended Net-
work (HTTEN).

The thermal and transmission network (therm—trans
net “¢” in Figure 1) is the graph which models the ther-
mal units and the transmission network of the genera-
tion system. This graph is based on the concept of the
equivalent thermal network for thermal unit “j” (Fig-
ure 2), a network with four arcs (r7;, 7pj, gr; and gp;)
and one node (A), which could be used to model the
output generation and the incremental and decremen-
tal spinning reserve of thermal unit “j”. Variables rr;
and rp; in Figure 2 are the incremental and decremental

spinning reserve of thermal unit “;” respectively. The

auxiliary variables gr; and gp; are the so—called incre-
mental and decremental “gaps”, and are introduced into
the model to transform the linear inequalities defining
the spinning reserve into network equations. The set
of equivalent thermal networks for each thermal unit at
each interval are linked to the transmission network and
to the sink node, through the bus node “B” and “S”,
respectively, in Figure 2. See reference [1] for a more
detailed explanation of all the above.

Figure 2: Equivalent thermal network of thermal unit
(S

J

The coupled network formulation of the short-term
hydrothermal coordination problem considers an objec-
tive function which is the sum of the thermal generation
costs plus an economic evaluation of the transportation
losses. The generation costs are taken as a quadratic
function of the thermal generation P! which, in terms
of the variables of the equivalent thermal network, could
be expressed as P]-i =rpj+gp;+P; (balance equation of
node “B” in Figure 2). The expression of the objective
function is:

Ni Nu

minZ{Z[Clj(T’Dj +9pj + P;)

i=1 j=1

+egj(rpj + 9 + Py)*1+ 7 (8)

where cj; c,; are the linear and quadratic coeflicients of
the thermal generation cost function, #* is the cost per
MWh of losses, and r; and ¢ are the reactance and the
power flow, respectively, of the transmission line [.

The first constraints to be satisfied are the flow bal-
ance equations of the HT'TEN, which could be expressed
as:
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ArrTEN = PHTTEN

where the only set of variables not yet defined is
g = [g1,...,gN!]". There is also a set of linear and
nonlinear side constraints that must be imposed in or-
der to couple the hydro and thermal systems. As the
transmission network is included in the HTTEN, there
is no need for a specific load constraint because the net-
work balance equations of the thermal and transmis-
sion network ensure the satisfaction of the load at each
interval. The following hydrogeneration nonlinear side
constraints define variables g;'-:

1,...,Ng;i=1,... Ni

(10)

In this relation gj» is the arc which feeds the generation
of the reservoir k at interval ¢ into the corresponding

g;’ = Z hk(diaviavi_l) Jj=
kel;

generation bus of the transmission network. The non-
linear (and nonconvex) functions Ay on the right—hand
side of (10) are the expression of the hydrogeneration as
a function of the discharge di’ and the initial and final
volume v¢, vi_]. More details of this expression can be
obtained from the paper [1].

The satisfaction of the incremental and decremen-
tal spinning reserve requirements at each interval (Rj
and R%,)) are imposed through the following set of con-
straints:

Nr ' Nu . . Nr .
—Zg;’-#ZTZIj 2 RZI‘ZHk (11)

k=1 ji=1 k=1

Nr . Nu . .

Y g+ b = Rp (12)

k=1 ji=1

i=1,...,Ni
where F;C is the maximal hydrogeneration of reservoir
k at interval 7. Finally, to complete the d.c. approach
to the transmission network, Kirchhoff’s voltage law is
imposed through the following set of linear side con-

straints:

2

(k,1)€loopj

zript; = 0 for all basic loopsj ;i =1,..., Ni

(13)

The minimization of (8) subject to constraints (9-13),
plus the necessary upper and lower bounds to the vari-
ables, constitutes the Coupled Model of the (STHS)
problem. As the reader can verify, it is an (NNC)
problem. The section below presents a method for solv-
ing this problem based on specialised network flow pro-
jected Lagrangian techniques.

2 The projected Lagrangian ap-
proach

Projected Lagrangian methods are well known in the
optimization literature. One of the most successful gen-
eral purpose nonlinear optimization packages, MINOS
[3], is based on this methodology. Roughly speaking,
the projected Lagrangian method solves nonlinear con-
strained problems by successively solving a set of sub-
problems where the objective function is somehow re-
lated with the Lagrangian function and the constraints
are formulated as a linearization of the original non-
linear constraints. A projected Lagrangian based algo-
rithm applied to the solution of (NNC) problem (1-7)
goes through the following steps:

PLA : Projected Lagrangian algorithm for
problem (NNC)

1. Select some starting values for z° and A° (Lagrange
multipliers estimate). Set k := 0.

2. Major iteration: If 2* is the optimal solution of
(NNC) then STOP. Otherwise, proceed.

(a) Linearize the nonlinear side constraints at z*:
c(z) = ck(a:) = c(xk) + Vc(:vk)(a: — xk) (14)

(b) Minor iterations: solve the linearized sub-
problem (NNLC)k :

: k

ernIléln " (z) (15)
s.t.: (16)
Az =r (17)

V(:(J:k)m + 1,2, = bZ (18)

Te +Lizp =b (19)

0<z <u (20)

0<zp <uy (21)

0< 2z <u,p (22)

where b8 = b, —c(2*)+Ve(z¥)z* and ®F(2) is
the merit function, which should be equal to,
or at least related with, the Lagrangian func-
tion L(z, \* z%) = f(z) — AR ((‘(T) - (‘k(r))
Let [#*]* be the optimal solution of problem
(NNLC)* and [A*]* the Lagrange multipli-

ers of constraints (18) at the optimal solution
(2.



(c) Update z* and A* somehow from the solution
[z*]¥ and [A*]*. Set k := k + 1 and go to step
2.

Robinson [4] proved the g-quadratically local conver-
gence of this method if the merit function is defined as

o (x) = f(z) = N (e(z) — cF(x))

and the vectors 2+ and A**! for the new major iter-
ation are taken respectively as [z*]* and [A*]¥. More-
over, the Robinson’s method lacks global convergence.
To overcome this problem, Murtagh and Saunders pro-
posed in [5] a projected Lagrangian method based on
Robinson’s procedure where the merit function is de-

(23)

fined as a modified augmented Lagrangian function:
®F (2 2% AF p*) = fz) — A (e(z) — c*(z)) +
k
p
+5lle(@) = cF(@)ll2 - (24)

Murtagh and Saunders’s package MINOS [3], which im-
plements this methodology, is probably considered as
the best of the general purpose nonlinear optimiza-
tion packages. It must be emphasised that problem
(NNLC)* defined by equations (15-22) is nothing but
a nonlinear network flow problem with linear side con-
straints, which could be efficiently solved through the
specialised nonlinear network flow techniques described
in the section below.

2.1 Optimization of the linearized sub-

problems (NNLC)*

Package noxcb09 [2] is an optimization code for solv-
ing the nonlinear network flow problem with linear side
constraints (NNLC) defined as:

i, f(z) (25)
s.t.: (26)
Az =r (27)

Te +Liz1 =b (28)

0<z <u, (29)

0<z <uy (30)

This program consists of a specialized implementa-
tion of the active set strategy proposed by Murtagh and
Saunders in [6]. This algorithm could be expressed as
follows:

ASA: active set algorithm.

1. Initialization.

0

(a) Find an initial feasible solution z”. Initialize

the numerical tolerances ¢, > 0 and e¢g > 0.

(b) Define the basic B, superbasic S° and non-
basic N'© sets of variables associated with the
current active set at z°.

Compute the null space basis 7°, the reduced
gradient g, = ZOIVf(xo) and the Lagrange
multipliers ¢ = Vaf(z%) — Vef(z°)BIN
of the nonbasic variables. Set k := 0.

()

2. Do While o* < —e¢,.

(a) Select a nonbasic variable ¢ € N¥ U N} such
that (ré“ < 0 and relax its active bound.

(b) Update B*, 8*, N* Z* and g,*.
(c) Do While ||g.%|| > ea
i. Compute a feasible descent direction:

A. Compute the positive definite approx-
imation H* Z’“’Wf(xk)zk

B. Find p.* by solving H*p,* = —g.*

C. Compute p* := ZFp,*

ii. Find the maximal step length:
a = min{@B, O_zg}

1i. Linesearch:

*k .
o — argm1n0<asa{f($k + apk)}

iv. Update the current solution:

2Pl gk ()z*kpk

v. If a** = &, then update B¥, S¥ A*
vi. Update Z* and ¢.%. k:=k+1
End Do

(d) Compute the Lagrange multiplier estimates

k k
ag”, Oy .

End Do

The efficiency of this algorithm depends both on the
cost of each iteration and on the number of iterations.
The cost per iteration is usually dominated by the cost
of solving systems of equations with the basic matrix
B, while the number of iterations depends mainly on
the quality of the descent direction, the efficiency of
the linesearch and the convergence criteria, which, in
the algorithm above, has been stated in the simplifying
form [|g.*|| < eg®, 0o® > —¢, and o,* < ¢,, but is
actually far more complex.

The network structure of problem (NNLC) could
be exploited through the so—called basis partitioning
method to reduce the cost of each iteration, speeding
up the solution of systems of equations involving the
basic matrix B. The basis partitioning technique [7] is
based on the fact that each basis of problem (NNLC)
could be expressed as:



(31)

where A4 € IR™*™ is a basis of the network matrix
A (spanning tree), Ac € IR™”° are the columns of ma-
trix A related with the basic arcs not belonging to the
spanning tree (non-key arcs), and the last columns of B
correspond to the basic slacks z;. Matrices Ty € R xm
and Tz € IR % are the basic columns of matrix 7,
while matrix I¢ 1s built with the basic columns of ma-
trix I;. The key idea for the exploitation of the network
structure of problem (NNLC) is that, thanks to ex-
pression (31), it can be shown [7] that the systems of
equations Bv = w and v'B = w’ can be computed by
solving (a) systems of equations with the matrix Ay,
whose solution could be efficiently found through net-
work flow techniques, and (&) systems of equations with
the general (dense) matrix ) = [TC|IC]—TAA;1[AC|O] €
IR Matrix @ is called the working basis and is sim-
ply the Schurz complement of the matrix A4 in B.

To improve the convergence of this algorithm (number
of iteration to achieve the optimal solution), special care
was pald to the computation of the descent direction
(step 2(c)i), the linesearch (step 2(c)iii), the working
basis update (step 2(c)vi), and the convergence criteria
(steps 2 and 2c¢). noxcb09 can find the descent direc-
tion either through a truncated Newton method [8] or
a quasi-Newton method [6]. The linesearch procedure
uses a backtracking search with quadratic and cubic fit.
As for the working basis update, the user can choose be-
tween the product form of the inverse, with the Heller-
man and Rarick’s P reordering algorithm, and an LU
factorization. A detailed explanation of the convergence
criteria implemented in steps 2 and 2c) could be found

in [9].

Table 1: Summarized EIO/UPC computational results

Problem Max. size o/ bo
scale n m t; | Average | Max.
Large 18000 | 3000 | 750 5.10 17.96

Medium | 8064 | 2479 | 840 2.87 10.00
Small 2256 | 697 | 240 1.34 2.47

The efficiency of code noxcb09 was tested against the
general purpose package MINOS 5.3 over the EIO/UPC
test problems described in [9]. This is a set of 110
(NNLC) problems, some of them randomly gener-
ated and others coming from real-world applications.
The numerical experiments were done on a Sun Sparc
10/41 workstation with a single processor at 40MHz
(~100Mips, 20Mflops) and 64Mb of central memory
(32Mb real memory, 32Mb swapping memory). The

results of the computational experiments are summa-
rized in Table 1, where the 110 (NNLC) problems of
the EIO/UPC collection have been divided into small,
medium and large scale. The efficiency of noxcb09
against MINOS 5.3 is measured through the ratio be-
tween t,,, the execution time for MINOS 5.3 and t,
the execution time for noxcb09 (for instance, t,, /t\o =
2 means that noxcb09 is twice as fast as MINOS 5.3).
From Table 1 it seems clear that, in general, the spe-
cialised code noxcb09 performs better, and that its effi-
ciency improves with the size of the (NNLC) problem.

3 MAPH4 : a specialized pro-
jected Lagrangian code for the
(STHS) problem

MAPH4 is an implementation of the projected Lagrangian
algorithm PLA to solve the (STHS) problem described
in Section 1.2. This implementation uses the package
noxcb09 to solve the linearized subproblems (NNLC)*
in step 2b of algorithm PLA. Both MAPH4 and MINGS
5.3 were applied to solve the (STHS) problems shown
in Table 2.

Table 2: Characteristics of test cases

case | Nr Nu Nm Nb Ni n mt, U
A24x 3 4 6 5 24| 88829024 96
B24x 6 4 6 5 24| 115235524 96
B48x 6 4 6 5 48 | 2256 697 48 192

In this table, Nr is the number of reservoirs, Nu the
number of thermal units, Nm the number of transmis-
sion lines, Nb the number of busses, and n, m, ¢, and
t; are, respectively, the number of arcs and nodes of the
HTTEN and the number of nonlinear and linear side
constraints. These problems were solved with MINOS
5.3 and with MAPH4. The computational results are
summarized in Table 3. All the runs were performed on
the same Sun Sparc 10/41 workstation as was used to
solve the EIO/UPC collection. In this table, the col-
umn |W|, which expresses the discrepancy in the
objective function value at the optimal solution, shows
that both programs find the same local optima. It can
be observed, looking at the column ;j\‘/{”i, that the effi-
ciency or speed—up ratio goes from 2.08 for the smaller
case to 5.6 for the larger one. These values are greater
than those obtained with the problems in the EIO/UPC
collection with similar size (last row of Table 1). Thus,
we conclude that, on the limited basis of current com-
putational experience, the efficiency of code MAPH4 is
even better than in the linearly constrained case.

Finally, it is interesting to study the speed—up
achieved in the cost per iteration by the network flow



Table 3: General efficiency of MAPH4

CPU(sec.) | Ratio

case |%;m”| MA MI tarr
MA MA

A24x| 5.0x 10°% | 2.3 4.8 2.08
B24x | 4.7x10~2 | 3.1 15.3 4.93
B48x| 1.5 x 1073 | 6.4 36.2 5.65

specialised implementation of the PLA algorithm. Ta-
ble 4 shows the number of major and minor iterations,
the time per minor iteration and the time per iteration
ratio, which is a measure of the speed—up of the iteration
cost.

Table 4: Efficiency in the iteration time

Iter. (maj/min) | millisec./iter. | Ratio
case | MAPH4 MINOS MAPH4 MINOS MI/MA
A24x | 3/2384 53/2030 0.96 2.3 2.4
B24x | 3/3947 99/3855 0.78 3.9 5.0
B48x | 3/7988 119/4656 | 0.80 7.7 9.6

Analysing the last column in Table 4, there is an ev-
ident speed—up with the network flow techniques. It is
also clear that the speed—up or efficiency factor increases
with the size of the problem, but also that the speed—
up in the cost per iteration is greater than the general
speed—up (last column in Table 3). This degradation
of the convergence speed—up factor in comparison with
the iteration speed—up is due to the greater number of
minor iterations needed to achieve the convergence cri-
teria. Therefore, it seems that, although the network
flow techniques significantly improve the efficiency of
the solution of the subproblems (NNLC)k, other parts
of the algorithm contributing to the rate of convergence,
such as the update rules for the Lagrange multipliers A
and the penalty parameter p*, need to be improved.

4 Conclusions

A new projected Lagrangian methodology for the non-
linear network flow problem with side constraints has
been proposed and described. This methodology is
based on the well-known projected Lagrangian methods
with the modified augmented Lagrangian merit func-
tion together with basis partitioning techniques, which
have proved to be suitable for exploiting the network
structure of the problem. The proposed projected La-
grangian algorithm has been implemented and used to
solve a set of real power system problems. The com-
putational results shows the efficiency of the proposed
method, but also reveal the posibility of increasing the

convergence rate with a more careful implementation of
several algorithmic issues.
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