IFORS2014

Stream: Optimization models and algorithms in Energy Industry TD-10 Session: Decision Support Models for the Energy Industry III

Stochastic Optimal Bid to Electricity Markets

with Emission Risk Constraints

(report http://hdl.handle.net/2117/20640, submitted)

Dr. F.-Javier Heredia, Julián Cifuentes Group on Numerical Optimization and Modeling Universitat Politécnica de Catalunya – BarcelonaTech (<u>http://gnom.upc.edu</u>)

> Dr. Cristina Corchero Catalonian Institute for Energy Research

Projects DPI2008-02153 and MTM2013-48462-C2-1-R Spanish Government

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

F.-Javier Heredia et al. : Day-Ahead Market Bid model with Emission Risk $(DAMBER)_{\gamma,\beta}$

Summary

- Framework and motivation.
- Day-ahead Market Bid model
- Day-Ahead Market Bid model with Emission Risk Constraints
- Case study.
- Conclusions.

F.-Javier Heredia et al. : Day-Ahead Market Bid model with Emission Risk (DAMBER)_{Y,B}

Framework and motivation of the work

- Framework:
 - A price-taker GenCo owning:
 - * A set of fuel/coal thermal units (high emission technology) and
 - ✤ A set of Combined Cycle Gas Turbines (CCGT) generation units (20%~30% more efficient than thermal power plants, low emission technology).
 - The GenCo operates in the Day-ahead Market (DAM), a series of twenty-four hourly auctions where the most important part of the electricity energy is negotiated (78% in the case of the MIBEL).
 - In addition, the GenCo must cover a set of bilateral and futures contracts, agreement between a GenCo and a qualified consumer to provide a given amount of electrical energy. This energy is integrated into the energy production system through the DAM.
 - The GenCo must abide by the Spanish National Emission Reduction Plan (NERP [1]). The Spanish NERP imposes, for the period 2008-15, a global reduction of 81% of *SO*₂ and 15% of *NO*_x emissions, w.r.t. the emissions in 2001.
- **Motivation:** to develop a new stochastic programming model to cope with the optimal generation bid to the day-ahead market (DAM) that complies with the SO_2 and NO_x emission limits.

[1] ORDEN PRE/3420/2007, de 14 de noviembre. B.O.E. 284 de 20 de marzo 2007. Gouvernment of Spain, 2007.

IFORS2014 – Barcelona 13th-18th July

 $(DAMBER)_{\gamma,\beta}$ - 3

F.-Javier Heredia et al. : Day-Ahead Market Bid model with Emission Risk $(DAMBER)_{\gamma,\beta}$

Literature review

- Although the SO_2 and NO_x emission limits can modified modifies substantially the shape of the optimal bid strategy of an electricity producer quite few attention has been given in the bibliography to this problem.
- [2] develops a load dispatch model to minimize the NO_x emissions taking the fuel cost and stochastic wind power availability as constraints, disregarding the electricity market.
- [3] considers a deterministic unit commitment of both thermal and combined cycle units that minimizes the generation costs satisfying simple bounds to the SO_2 and NO_x emissions.
- [4, 5] use formulate multiobjective optimization models where both the profit and emissions are minimized.
- These works doesn't incorporate the bid rules of the electricity market (neither the DAM nor the bilateral and future contracts).

[2] X. Liu, IET Generation, Transmission & Distribution 5 (2011) 735–742.
[3] B. Lu, S. M. Shahidehpour, IEEE Transactions on Power Systems 20 (2005) 1022–1034.
[4] C. Peng, H. Sun, J. Guo, G. Liu, Energy Conversion and Management 57 (2012) 13–22.
[5] H. S. A. R. A. Ahmadi, J. Aghaei, Applied Soft Computing 12 (2012) 2137–2146.

SITAT POLITÈCNICA

Summary

- Framework and motivation.
- Day-ahead Market Bid model
- Day–Ahead Market Bid model with Emission Risk Constraints
- Case study.
- Conclusions.

IFORS2014 – Barcelona 13th-18th July

 $(DAMBER)_{\gamma,\beta}$ - 5

F.-Javier Heredia et al. : Day-Ahead Market Bid model with Emission Risk $(DAMBER)_{\gamma,\beta}$

(DAMB) base model (1/4)

The starting point of this work is the Day-Ahead Market Bid model:

	(max	h(u, b, f, q, g, p)		
	s.t.:	$b_t \in P_t^{BC}$	$t\in \mathcal{T}$	(c1)
(DAMB)	{	$f_{tj} \in P_{t,j}^{FC}$	$t \in \mathcal{T}, j \in \mathcal{F}$	(c2)
	on spec	$u_i \in P_i^{UC}$	$i \in \mathcal{U}$	(c3)
		$u_{ti}, b_{ti}, f_{ti}, q_{ti}, g_{ti}^s, p_{ti}^s \in P_{ti}^{D^s}$	$i \in \mathcal{U}, t \in \mathcal{T}, s \in \mathcal{S}$	(<i>c</i> 4)

- It incorporates the optimal bid model with futures and bilateral contracts developed in [6] and [7] and
- the mathematical modeling of the CCGT unit commitment introduced in [8,9].
- [6] C. Corchero, F.-J. Heredia, Computers & Operations Research 38 (2011) 1501–1512.
- [7] C. Corchero, E. Mijangos, F.-J. Heredia, TOP 21 (2013) 84–108.
- [8] C. Corchero, F.-J. Heredia, J. Cifuentes-Rubiano, in: IEEE (Ed.), Proceedings of the 2012 9th International Conference on the European Energy Market (EEM 2012), pp. 1–8. DOI: 10.1109/EEM.2012.6254676.
- [9] F. J. Heredia, M. J. Rider, C. Corchero, Annals of Operations Research 193 (2012) 107–127. doi:10.1007/s10479-011-

(DAMB) base model (2/4)

• The starting point of this work is model (*DAMB*):

	(max s.t.:	<mark>h</mark> (u,b,f,q,g,p)	and and and the second		
	5.1	$b_t \in P_t^{BC}$		$t \in \mathcal{T}$	(c1)
(DAMB)	server the second	$f_{tj} \in P_{t,j}^{FC}$	t	$\in \mathcal{T}, j \in \mathcal{F}$	(c2)
	or special takes the	$u_i \in P_i^{UC}$		<i>i</i> ∈ U	(<i>c</i> 3)
	u_t	$a_{ti}, b_{ti}, f_{ti}, q_{ti}, g_{ti}^s, p_{ti}^s$	$\in P_{ti}^{D^s}$ $i \in \mathcal{C}$	$\mathcal{U}, t \in \mathcal{T}, s \in \mathcal{S}$	(<i>c</i> 4)
where:		and a second second	and the second		
(DAM,	BC, FC) -	ue of the total profit – operational costs	generation+		
	10 ⁰¹ 10 ¹¹	is the set of time pe			
	100 - 11 - T	eneration units (bot			D.C.
		cenarios for the DAI	VI price (λ_t^3) v	vith probability	P^{s} .
		iture contracts.			
UNIVERSITAT POLI DE CATALUNYA BARCELONATECH	R	EC ^B IFORS2014	– Barcelona 13 th -18 th .	July (DA	MBER) _{γ,β} - 7
FJavier He	redia et al. :	Day-Ahead Market Bid	model with Emis	sion Risk (DAMB	PER) _{γ,β}
	(<i>D</i> ₂	AMB) base r	nodel (3	3/4)	
The startir	ng point of	f this work is model	(DAMB):	a series of	All and a second
	(max s.t.:	h(<mark>u,b,f,q</mark> ,g,p)	and a strange for the		
Superior Scherter	Strand Hotelin an	$b_t \in P_t^{BC}$		$t \in \mathcal{T}$	(c1)
(DAMB)	And Antonio and	$f_{tj} \in P_{t,j}^{FC}$	t	$\in \mathcal{T}, j \in \mathcal{F}$	(<i>c</i> 2)
	contraped Joylet No.	$u_i \in P_i^{UC}$		$i \in \mathcal{U}$	(<i>c</i> 3)
	u_t	$t_{i}, b_{ti}, f_{ti}, q_{ti}, g_{ti}^s, p_{ti}^s$	$\in P_{ti}^{D^s}$ $i \in C$	$\mathcal{U}, t \in \mathcal{T}, s \in \mathcal{S}$	(<i>c</i> 4)
where the	e first sta	ge variables are:			

- u_i are the **unit commitment** variables (binary).

TAT POLITÈCNICA

- q_{ti} are the energy of the price-acceptant bid (continuous).

(DAMB) base model (3/4)

• The starting point of this work is model (DAMB):

	(max	h(u,b,f,q, <mark>g,p</mark>)		
	s.t.:	$b_t \in P_t^{BC}$	$t\in\mathcal{T}$	(c1)
(DAMB)	{	$ \begin{array}{ccc} f_t & \in P_t^F \\ f_{tj} & \in P_{t,j}^{FC} \end{array} \end{array} $	$t \in \mathcal{T}, j \in \mathcal{F}$	(c1) (c2)
	Con spece	$u_i \in P_i^{UC}$	$i \in \mathcal{U}$	(c3)
		$u_{ti}, b_{ti}, f_{ti}, q_{ti}, \frac{g_{ti}^s}{g_{ti}^s}, \frac{p_{ti}^s}{p_{ti}^s} \in P_{ti}^{D^s}$	$i \in \mathcal{U}, t \in \mathcal{T}, s \in \mathcal{S}$	(<i>c</i> 4)

where the second stage variables are:

- *p^s_{ti}* (continuous) is the matched energy [MWh] in the day-ahead market under scenario *s*.
- g_{ti}^{s} (continuous) is the **total output** [MWh] of the generation unit *i* at time period *t* under scenario *s*.

IFORS2014 – Barcelona 13th-18th July

 $(DAMBER)_{\gamma,\beta}$ - 9

F.-Javier Heredia et al. : Day-Ahead Market Bid model with Emission Risk $(DAMBER)_{\gamma,\beta}$

(DAMB) base model (4/4)

• The starting point of this work is model (DAMB):

	(max	h(u,b,f,q,g,p)		
	s.t.:	$b_t \in P_t^{BC}$	$t\in\mathcal{T}$	(<i>c</i> 1)
(DAMB)	{	$f_{tj} \in P_{t,j}^{FC}$	$t\in \mathcal{T}, j\in \mathcal{F}$	(<i>c</i> 2)
	. comission	$u_i \in P_i^{UC}$	$i \in \mathcal{U}$	(c3)
		$u_{ti}, b_{ti}, f_{ti}, q_{ti}, g_{ti}^s, p_{ti}^s \in P_{ti}^{D^s}$	$i \in \mathcal{U}, t \in \mathcal{T}, s \in \mathcal{S}$	(<i>c</i> 4)

where the constraints are:

- (c1) are the constraints for the **Bilateral Contracts** at time period t.
- (c2) are the constraints for the **Future Contract** j at time period t.
- (c3) are the unit commitment constraints of generation unit i.
- (c4) are the constraints for the day-ahead market rules for unit *i* at time period *t* and scenario *s*.

Summary

- Framework and motivation.
- Day-ahead Market Bid model
- Day–Ahead Market Bid model with Emission Risk Constraints
- Case study.
- Conclusions.

IFORS2014 – Barcelona 13th-18th July

 $(DAMBER)_{\gamma,\beta}$ - 11

F.-Javier Heredia et al. : Day-Ahead Market Bid model with Emission Risk $(DAMBER)_{\gamma,\beta}$

First approach: (DAMB) with emission limits.

- Our concern was to extend model (*DAMB*) to take into account the limits that the NERP imposes to the emissions of SO₂ and NO_x of the thermal units.
- Obviously a first approach [10,11,12] is modify the model (*DAMB*) by simply imposing an emission limit to every scenario $s \in S$ through the following set of constraints:

$$\sum_{t \in \mathcal{T}} e_i^{SO_2} g_{ti}^s \le \overline{SO}_2 \qquad \sum_{t \in \mathcal{T}} e_i^{NO_x} g_{ti}^s \le \overline{NO}_x \quad s \in \mathcal{S}$$

with g_{ti}^s the total generation at scenario *s* and $e_i^{SO_2}$ and $e_i^{NO_x}$ [kg/MWh] the emission coefficients .

 Nevertheless, this approach is quite restrictive as it forces the optimal bid to abide by the NERP limits even in the most extremes (unlikely) scenarios

[10] C. Corchero, F.-J. Heredia, J. Cifuentes-Rubiano, in: IEEE (Ed.), Proceedings of the 2012 9th International Conference on the European Energy Market (EEM 2012), pp. 1–8. DOI: 10.1109/EEM.2012.6254676.

[11] B. Lu, S. M. Shahidehpour, IEEE Transactions on Power Systems 20 (2005) 1022–1034. DOI: 10.1109/TPWRS.2004.840411

[12] H. S. A. R. A. Ahmadi, J. Aghaei, Applied Soft Computing 12 (2012) 2137–2146. DOI:10.1016/j.asoc.2012.03.020.

 $(DAMBER)_{\gamma,\beta}$ - 12

Conditional Emission at Risk $\Phi_{\gamma}^{\overline{SO}_2,\overline{NO}_{\chi}}$ (1/4)

- A more flexible approach can be formulated by analogy to the well known *CVaR* concept [13]. The *Conditional Emission-at-Risk* (*CEaR*) is proposed as a tool to measure and control the risk of violating the NERP emission limits.
- To this end, we define **first** the auxiliary binary variables y^s such that:

$$y^{s} = \begin{cases} 1 & \text{, if scenario } s \text{ exceeds } \overline{SO}_{2} \left(\Rightarrow \sum_{t \in \mathcal{T}, i \in \mathcal{I}} e_{i}^{SO_{2}} g_{ti}^{s} > \overline{SO}_{2} \right) \\ 0 & \text{, if scenario } s \text{ satisfies } \overline{SO}_{2} \end{cases}$$

through the following constraints :

$$(\overline{SO}_2 + \epsilon) + M^{SO_2}(y^s - 1) \le \sum_{t \in \mathcal{T}, i \in \mathcal{I}} e_i^{SO_2} g_{ti}^s \le \overline{SO}_2 + M^{SO_2} y^s \quad s \in \mathcal{S} \quad (1)$$

($\epsilon \gtrsim 0$ and M^{SO_2} parameters)

[13] R. T. Rockafellar, S. Uryasev, The Journal of risk 2 (2000) 21-41.

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH IFORS2014 – Barcelona 13th-18th July

DAMBER)_{γ,β} - 13

F.-Javier Heredia et al. : Day-Ahead Market Bid model with Emission Risk $(DAMBER)_{\gamma,\beta}$

Conditional Emission at Risk $\Phi_{\gamma}^{\overline{SO}_2,\overline{NO}_{\chi}}$ (2/4)

Second we restrict the probability of exceed the limit SO₂ to be below a prefixed value γ ∈ [0, 1] (excess probability):

$$\sum_{s\in\mathcal{S}} P^s y^s \le \boldsymbol{\gamma} \quad (2)$$

Third, a new variable v^s will account for the SO₂ violation at scenario s:

$$v^{s} = \begin{cases} \sum_{t \in \mathcal{T}, i \in \mathcal{I}} e_{i}^{SO_{2}} g_{ti}^{s} & \text{if } y^{s} = 1 \text{ (scenario } s \text{ exceeds } \overline{SO}_{2} \text{)} \\ 0 & \text{if } y^{s} = 0 \text{ (scenario } s \text{ satisfies } \overline{SO}_{2} \text{)} \end{cases}$$

if $y^s = 0$ (scenario s satisfies SO_2)

Variables v^s are defined through the following constraints:

$$-M^{SO_2}(1-y^s) \le v^s - \sum_{t \in \mathcal{T}, i \in \mathcal{I}} e_i^{SO_2} g_{ti}^s \le M^{SO_2}(1-y^s) \quad s \in \mathcal{S} \quad (3)$$

$$v^s \le M^{SO_2} v^s$$

 $s \in S$ (4)

Conditional Emission at Risk $\Phi_{\gamma}^{\overline{SO}_2,\overline{NO}_{\chi}}$ (3/4)

- Summarizing: constraints (1) (4) stablishes that, for every scenario s with probability P^s:
 - If scenario s exceeds \overline{SO}_2 , then $y^s = 1$ and $v^s =$ emissions
 - If scenario *s* satisfies \overline{SO}_2 , then $y^s = 0$ and $v^s = 0$

IREC⁹

• Lets consider now a solution g, y, v satisfying (1) - (4). Then, for any given value of the excess probability γ and emission limit \overline{SO}_2 , the Conditional Emission at Risk (*CEaR*) $\Phi_{\gamma}^{SO_2}$ associated to g, y, v is defined as the conditional expectation of the SO_2 emissions for those scenarios exceeding \overline{SO}_2 :

$$\Phi_{\gamma}^{\overline{SO}_2} = \sum_{s \in \mathcal{S}} P^s v^s / \sum_{s \in \mathcal{S}} P^s y^s$$

F.-Javier Heredia et al. : Day-Ahead Market Bid model with Emission Risk $(DAMBER)_{\gamma,\beta}$

Conditional Emission at Risk $\Phi_{\gamma}^{\overline{SO}_2,\overline{NO}_{\chi}}$ (4/4)

- Barcelona 13th-18th July

• It is possible now to control the amount by which the expectation of the violating emissions $\Phi_{\gamma}^{\overline{SO}_2}$ can surpass the limit \overline{SO}_2 :

$$\Phi_{\gamma}^{\overline{SO}_2} \leq (1 + \boldsymbol{\beta})\overline{SO}_2$$

This inequality ensures that the expected violation will be less than a fraction $\beta \in]0, 1]$ (excess factor) of the \overline{SO}_2 limit.

• Substituting in the last equation the definition of the *CEaR* $\Phi_{\gamma}^{\overline{SO}_2}$ we obtain:

$$\sum_{s \in \mathcal{S}} P^{s} v^{s} \le (1+\beta) \overline{SO}_{2} \sum_{s \in \mathcal{S}} P^{s} y^{s} \quad (5)$$

- Constraints (1) (5) defines the *CEaR* constraints for the *SO*₂ limit and its associated polyhedron $P_{\nu,\beta}^{SO_2}$.
- Analogously, a polyhedron $P_{\gamma,\beta}^{NO_x}$ can be defined for the NO_x limits.

 $(DAMBER)_{\nu,\beta}$ - 15

(DAMB) model with Emission Risk $(DAMBER)_{\gamma,\beta}$

• Finally, the **Day-Ahead Market Bid model with Emission Risk** that incorporates the emission risk constraints to the (*DAMB*) model is:

	(max	h(u, b, f, q, g, p)	(1)	
	s.t.:	$u, v, f, q, g, p \in P^{DAMB}$	(<i>c</i> 2)	
$(DAMBER)_{\gamma,\beta}$	{	$g, y, v \in P_{\gamma,\beta}^{SO_2}$	(<i>c</i> 3)	
		$g, z, w \in P_{\gamma,\beta}^{NO_{\chi}}$	(<i>c</i> 4)	

where:

- (1) and $(c2) \equiv (DAMB)$ model.
- Constraints (c3) define the SO_2 CEaR constraints associated to the excess probability γ and factor β .
- Constraints (c4) define the NO_x CEaR constraints associated to the excess probability γ and factor β .
- $(DAMBER)_{\gamma,\beta}$ is a linearly constrained mixed-integer concave quadratic maximization problem with a well defined global optimal solution.

IFORS2014 – Barcelona 13th-18th July

 $(DAMBER)_{\gamma,\beta}$ - 17

F.-Javier Heredia et al. : Day-Ahead Market Bid model with Emission Risk $(DAMBER)_{\gamma,\beta}$

Summary

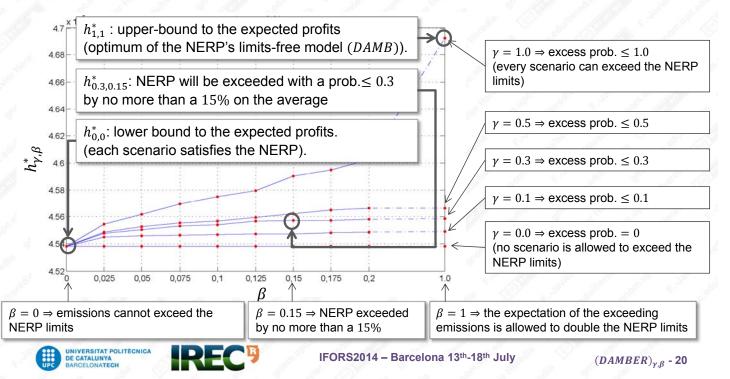
- Framework and motivation.
- Day-ahead Market Bid model
- Day–Ahead Market Bid model with Emission Risk Constraints
- Case study.
- Conclusions.

Case Study

- Model $(DAMBER)_{\gamma,\beta}$ can be used to asses the impact of the emission limits onto the **optimal generation bid** and the **expected profits**.
- Data set (further details at http://hdl.handle.net/2117/20640):
 - 50 scenarios of the day-ahead market spot prices generated from the complete set of historic data available from June 2007 to May 2010 [14].
 - Four thermal units and two combined cycle units currently operating in the MIBEL.
 - Emission limits \overline{SO}_2 and \overline{NO}_x from the National Emission Reduction Plan [15].
 - SO_2 and NO_x emissions rates e^{SO_2} and e^{NO_x} published by the intergovernmental Panel on Climate Change Emission [16].
 - [14] National emission reduction plan, ORDEN PRE/3420/2007, de 14 de noviembre. B.O.E. 284 de 20 de marzo 2007. Gouvernement of Spain, 2007.
 - [15] C. Corchero, F.-J. Heredia, E. Mijangos, in: M. Delimar (Ed.), Proceedings of the 2011 8th International Conference on the European Energy Market (EEM), pp. 244–249

[16] Intergovernmental panel on climate change emission factor database(ipcc-efdb), http://www.ipcc-nggip.iges.or.jp/efdb/.

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH


IFORS2014 - Barcelona 13th-18th July

 $(DAMBER)_{\gamma,\beta}$ - 19

F.-Javier Heredia et al. : Day-Ahead Market Bid model with Emission Risk $(DAMBER)_{\gamma,\beta}$

Impact of the NERP in the expected profits

• The parameterized efficient frontier of the problem $(DAMBER)_{\gamma,\beta}$ shows the change in the value of the optimal expected profits h^* as a function of the risk parameters: $h^*_{0,0} \le h^*_{\gamma,\beta} \le h^*_{1,1}$

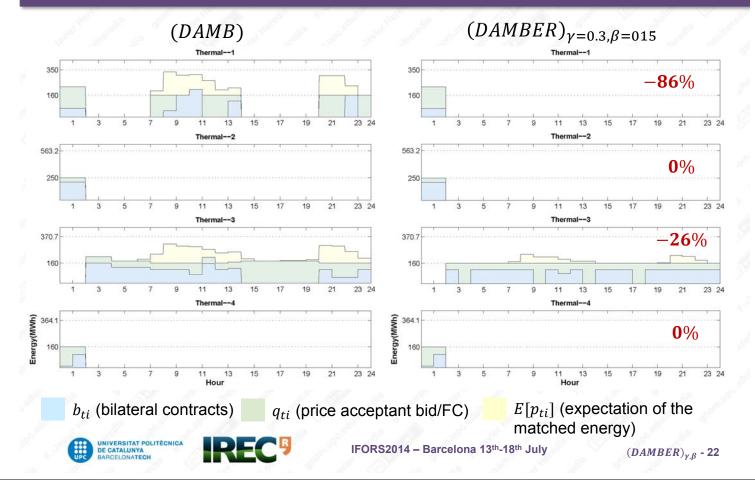
Impact of the NERP in the optimal generation bid

Cases	Cont. var.	Binary var.	Constraints	Exec. Time ⁽¹⁾
(DAMB)	20.160	200	49.458	6 min
$(DAMBER)_{\gamma=0.3,\beta=0.15}^{(2)}$	20.260	300	49.962	48 min

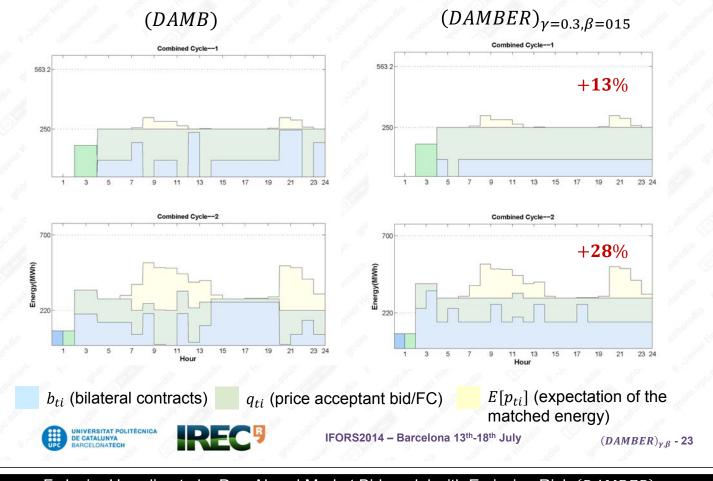
(1) AMPL+ CPLEX 12.4 (mipgap=0.01, threads=20). 2 x CPUs Intel Xeon X5680 six core – 12 threads 3.33 GHz, 64Gb RAM (2) Emission limits will be violated with a probability ≤ 0.3 by no more than a 15% on the average.

Cases	$E[SO_2]$ $(\overline{SO}_2 = 3.900 \ kg)$	$E[NO_x]$ ($\overline{NO}_x = 11.460 \ kg$)	E[profit]
(DAMB)	6.139 kg	14.665 kg	469.597 €
$(DAMBER)_{\gamma=0.3,\beta=0.15}$	3.903 kg	7.104 kg	455.757 €
Variation	-36.4%	-51.6%	-2.9 %

Cases	Total generation (thermal units)	Total generation (CCGT units)	Total generation (thermal + CCGT units)
(DAMB)	9.151,5 MWh	11.802,7 MWh	20.954,3 MWh
$(DAMBER)_{\gamma=0.3,\beta=0.15}$	4.969,4 MWh	14.384,4 MWh	19.353,9 MWh
Variation	-46 %	+22%	-8%


UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

IFORS2014 – Barcelona 13th-18th July


 $(DAMBER)_{\gamma,\beta}$ - 21

F.-Javier Heredia et al. : Day-Ahead Market Bid model with Emission Risk $(DAMBER)_{\gamma,\beta}$

Impact of the NERP in the optimal generation bid

Impact of the NERP in the optimal generation bid

F.-Javier Heredia et al. : Day-Ahead Market Bid model with Emission Risk $(DAMBER)_{\gamma,\beta}$

Summary

- Framework and motivation.
- Day-ahead Market Bid model
- Day–Ahead Market Bid model with Emission Risk
- Case study.
- Conclusions.

Conclusions

- This work proposes a new two-stage stochastic programming model to cope with the optimal generation bid to the day-ahead electricity market of a GenCo taking into account the MIBEL market rules and the SO₂ and NO_x emission limits of the current Spanish National Emission Reduction Plan regulation.
- A new measure of risk called **Conditional Emissionat-Risk** (*CEaR*) that allows the formulation of a **family of models** $(DAMBER)_{\gamma,\beta}$ parameterized by the excess probability γ and level β which give a flexible tool to asses a wide range of decisions related with the electricity generation under NERP regulations.
- The numerical results show that, for a given representative risk level, the SO_2 and NO_x NERP obligations can be met by reducing the expected total energy production by 8%, with a 3% decrease in the expected profits.
- This reduction of the total energy production is unevenly distributed among the generation technologies, with a 46% decrease of the thermal production against a 22% increase of the CCGT generation, confirming the central role of the CCGT technology in an environmental friendly energy production system.

IFORS2014 – Barcelona 13th-18th July

 $(DAMBER)_{\gamma,\beta}$ - 25

F.-Javier Heredia et al. : Day-Ahead Market Bid model with Emission Risk $(DAMBER)_{\gamma,\beta}$

Thank you very much for your attention!!

