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Abstract

Any institution that disseminates data in aggregated form has the duty to ensure
that individual confidential information is not disclosed, either by not releasing data
or by perturbing the released data, while maintaining data utility. Controlled tabular
adjustment (CTA) is a promising technique of the second type where a protected table
that is close to the original one in some chosen distance is constructed. The choice of
the specific distance shows a trade-off: while the Euclidean distance has been shown
(and is confirmed here) to produce tables with greater “utility”, it gives rise to Mixed
Integer Quadratic Problems (MIQPs) with pairs of linked semi-continuous variables
that are more difficult to solve than the Mixed Integer Linear Problems corresponding
to linear norms. We provide a novel analysis of Perspective Reformulations (PRs) for
this special structure; in particular, we devise a Projected PR (P2R) which is piecewise-
conic but simplifies to a (nonseparable) MIQP when the instance is symmetric. We
then compare different formulations of the CTA problem, showing that the ones based
on P2R most often obtain better computational results.

keywords Mixed Integer Quadratic Programming, Perspective Reformulation, Data
Privacy, Statistical Disclosure Control, Tabular Data Protection, Controlled Tabular Ad-
justment

∗To appear in Operations Research
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· · · Si · · · Sj · · ·
... · · · · · · · · · · · · · · ·

ASk · · · 450M$ · · · 35M$ · · ·
... · · · · · · · · · · · · · · ·

ASl · · · 625M$ · · · 770M$ · · ·
... · · · · · · · · · · · · ...

(a)

· · · Si · · · Sj · · ·
... · · · · · · · · · · · · · · ·

ASk · · · 22 · · · 1 / 2 · · ·
... · · · · · · · · · · · · · · ·

ASl · · · 27 · · · 33 · · ·
... · · · · · · · · · · · · ...

(b)

Figure 1: Example of disclosure in tabular data: (a) turnover and (b) number of companies
per activity sector and state.

1 Introduction

The most important mission of National Statistical Agencies (NSAs), and a significant
mission of several other institutions, is to provide high-quality statistical data. These
data are disseminated either in disaggregated (i.e., microdata or microfiles) or aggregated
(i.e., tabular data) form. A microdata file is a matrix of individuals by variables, where
each cell provides the information of a particular individual for some particular variable.
Crossing two or more categorical variables of the microdata file produces tabular data,
either a single multiway or multidimensional table, or a set of related tables. There are
stringent requirements that no confidential or sensitive information of any individual can
be disclosed from the released data; not only is this dictated by law, but also respondents
(e.g., of a census) may be tempted to hide or change information if they suspect that their
confidential information may be released. This justifies the interest in statistical disclosure
control, i.e., the set of techniques that can be deployed to protect sensitive information.
In particular, the focus of this work is on tabular data protection. A seminal work on
this field is in Bacharach (1966); the current state-of-the-art is described in the recent
surveys of Salazar-González (2008) and Castro (2012a), as well as in the monographs
Willenborg and de Waal (2000), Hundepool et al. (2012).

Although tabular data provide aggregated information, the publication of some cells
may jeopardize individual information. Consider the small example of Figure 1: if there
is only one company with activity sector ASk in state Sj , then any attacker knows the
turnover of this company. For two companies, any of them can deduce the other’s turnover,
becoming an internal attacker. Clearly, the risk in the example is due to a small number
of respondents in cell (ASk,Sj). However, even if the number of respondents was larger,
there could be a disclosure risk if some companies can obtain a tight estimator of another’s
turnover (for instance by subtracting its own contribution from the cell value). Unsafe or
sensitive cells are a priori determined before the application of any tabular data protection
method, by applying some “sensitivity rules”. These rules are out of the scope of this work;
e.g., see Domingo-Ferrer and Torra (2002), Hundepool et al. (2012) for details.

Disclosure limitation techniques for tabular data can be seen as a map F (T ) = T ′,
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where T and T ′ are the original an released tables, respectively. The goal is to obtain
a table T ′ which minimizes the disclosure risk while preserving as much as possible the
data utility of the original table T . According to Hundepool et al. (2012), data utility
can be defined as the value of a given data release as an analytical resource; for microdata
this means that statistical analyses (e.g., regressions, principal component analysis, etc.)
provide similar results with the original and released microfiles, while for tables data utility
can be measured (Castro and Giessing 2006) by the number of published cells with large
relative changes with respect to their original values. Disclosure risk (Hundepool et al.
2012) occurs when an unacceptably narrow estimate of some confidential respondent’s
information can be derived from the released table T ′, that is, when the attacker problem
T̂ = F̂−1(T ′)—where F̂−1 is an estimate of the inverse map (Castro 2012b)—produces
“close” estimates T̂ of T . In practice, disclosure control decisions are a trade-off between
data utility and disclosure risk.

Tabular data techniques are classified as perturbative if one is allowed to add small per-
turbations or adjustments to released data, and as nonperturbative if released cell values
must be exact, and therefore one is only allowed to entirely eliminate cells. Clearly, nonper-
turbative approaches are more rigid than perturbative ones. Furthermore, the most widely
used nonperturbative approach, cell suppression (Kelly et al. 1992, Fischetti and Salazar-González
2001, Castro 2007), requires the solution of large-scale optimization problems to iden-
tify the optimal set of cells to be suppressed. It is perhaps not surprising, therefore,
that perturbative approaches are being considered as emerging technologies for tabular
data protection. In particular, Controlled Tabular Adjustment (CTA) is gaining recog-
nition and acceptance among NSAs (Zayatz 2009), as testified by the recent monograph
Hundepool et al. (2012) and by the fact that it is currently used by Eurostat (Statistical
Office of the European Communities) within a wider protection scheme for tabular data
(Giessing et al. 2009). Figure 1 can be used to illustrate CTA. If cell (ASk,Sj) of table
(a) is considered sensitive, with lower and upper protection levels of 5, then the published
value of this cell must be in the range (−∞, 30]∪ [40,∞). We say that the protection sense
is “lower” or “upper” if the published value is, respectively, in (−∞, 30] or in [40,∞). The
remaining cells in the same column and row of the sensitive cell have to be accordingly
adjusted to preserve the marginal values, while minimizing the distance between the orig-
inal and the released values. Since each sensitive cell introduces a disjunctive constraint,
which can be formulated by adding one binary variable, when the number of sensitive cells
is large CTA is a difficult combinatorial optimization problem.

It is worth remarking that, while the tables of Figure 1 are two-way (two-dimensional)
ones, in general the situation can be much more complex. Tables can be classified in (i)
k-dimensional tables, which are obtained by crossing k categorical variables; (ii) hierar-
chical tables, or set of tables that share some variables with hierarchical structure (e.g.,
“country”, “state/province”, “city”); (iii) linked tables, the most general situation, which
is a set of tables that are obtained from the same microdata. A particularly interesting
case for NSAs, which will be tested in this work, are two-dimensional hierarchical tables
that share one hierarchical variable (e.g., tables that show the turnover crossing “activ-
ity sector” by “country”, “activity sector” by “state/province”, and “activity sector” by
“city”). These are named one-hierarchical two-dimensional tables (or 1H2D for short),

3



and their relations can be represented as a tree of tables. However, table relations for
any type of table are represented by linear constraints, where the sum of the inner cells is
equal to the marginal cell; thus, the techniques developed in this paper are applicable to
the most general case (linked tables) as well.

In all previous works on CTA, the L1 or Manhattan norm has been used to measure
the distance between the original and the protected published data (Dandekar and Cox
2002, Castro 2006). This has the advantage that CTA can then be formulated as a
Mixed Integer Linear Problem (MILP) with a number of variables and constraints that
is linear in the size of the table, and whose solution can therefore be attempted with
general-purpose MILP solvers. By contrast, formulations of the cell suppression problem
are much larger and typically require the application of specialized approaches such as
Benders decomposition. This is not to say that CTA, even with the L1 distance, is an easy
problem: for large (1H2D) tables MILP solvers may require a long time even to provide
a first feasible solution, and therefore heuristic approaches (González and Castro 2011)
are required to provide practical solutions in a reasonable time. It can be expected that
CTA with L2 (Euclidean) distance, which results in a Mixed Integer Quadratic Problem
(MIQP), is even more difficult to solve; this is likely the reason why this work is, to the
best of our knowledge, the first one where such a feat is attempted. Yet, protecting a table
using L2 in CTA has several benefits:

• Weighting the distance between the original and the published cell value by the
inverse of the original cell value, the objective function of CTA minimizes the well-
known χ2 distance between the original and the released table, which is useful for
the statistical evaluation of the results.

• The L2 distance more evenly distributes the deviations induced by sensitive cells to
other cells. This avoids concentration of deviations in few cells, which improves the
overall utility of the published data, as measured, e.g., by the number of cells (pos-
sibly counting the non-sensitive ones only) whose published value is “significantly”
different from the original data. This is empirically shown in Subsection 4.3 for all
the test instances considered in this work.

• It has been recently shown (Castro 2012b) that, in general, L2 provides solutions
with a lower disclosure risk than L1, i.e., it is more difficult for an attacker to infer
good information about the original data if the table was protected with L2-CTA
rather than with L1-CTA. In particular, the attacker problem T̂ = F̂−1(T ′) was
solved in (Castro 2012b) for 25 instances from the literature, considering both L1-
CTA and L2-CTA in four attacker scenarios, each one corresponding to a different
amount of information available to the attacker to compute the estimate of the
inverse map F̂−1, and taking randomness into account. The empirical distributions
of the percentage differences between the original confidential cell values T and the
estimates T̂ computed by the attacker showed that L2-CTA provides in general a
measurably lower disclosure risk than L1-CTA.

• From a computational point of view, once the binary variables are fixed (i.e., the
protection sense is decided), the solution of the resulting continuous problem can be
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more efficient for L2 than for L1 if Interior-Point (IP) methods are used, as it was
shown in (Castro 2006); while this holds true already for general-purpose solvers,
specialized IP approaches can be orders of magnitude faster than state-of-the-art
general-purpose ones (Castro and Cuesta 2010). Indeed, from the IP perspective,
the resulting QPs and LPs are quite equivalent, both in theory and in practice.
Theoretically, the complexity of the IP algorithm is the same, since it only depends
on the self-concordant barrier function used for the inequality constraints (the vari-
able bounds), which are the same in these QP and LP (Nesterov 2004, Chapter
4). And in practice, since the QP is separable (the Hessian is diagonal), the struc-
ture of the linear systems to be solved at each IP iteration is the same for QP and
LP. On the other hand, the QPs from L2-CTA have the additional benefit of be-
ing strictly convex, which may actually improve IP performances. For instance, in
Castro and Cuesta (2010), very large QPs (of about 10 million variables and 200,000
constraints) deriving from L2-CTA were solved by the IP algorithm of Cplex in seven
iterations; such good results have never been observed for the LPs deriving from L1-
CTA. We remark that simplex-like approaches are not competitive with IP methods
for the LPs derived from L1-CTA, likely due to the degeneracy of the problem; how-
ever, IP methods are not efficient when the original L1-CTA MILP model is solved,
since they lack the reoptimization capabilities of simplex methods.

On the other hand, the protected values provided by CTA with the L2 distance will likely
be more fractional than those provided by the L1 distance, which has been often observed
in practice to provide integer values even without imposing integrality constraints. Yet,
this is not a significant drawback since CTA is mainly used for “magnitude” tables which
do not provide frequencies but information about a third continuous variable (salary, net
profit, turnover, . . . ) which is most often fractional.

The comparison of the computational results of Section 4 for L2-CTA with those re-
ported in the literature for L1-CTA (Castro 2012a) confirms that the former is much harder
than the latter. On the other hand, L2-CTA has been empirically shown to provide tables
with higher data utility (Subsection 4.3) and lower disclosure risk (Castro 2012b). Hence,
there is a trade-off between computing time and data utility/disclosure risk. Admittedly,
L2-CTA may not be a practical approach for large instances: even if providing better
quality tables, the solution time can be unbearable. However, for small-to-medium tables
L2-CTA can be a choice: NSAs may well be willing to spend extra CPU time to obtain
tables with higher utility and lower disclosure risk. Unfortunately, the straightforward
MIQP formulation of L2-CTA is computationally prohibitive even for small tables; this
paper is the first attempt to derive some practical solution approaches for this problem.

The main structural characteristic of MIQP formulations of CTA with the L2 distance
(from now on, simply “CTA”) is very closely related to convex separable quadratic-cost
models with semicontinuous variables, which are naturally formulated as in the following
(fragment of) MIQP

min
{

wz2 + cy : yl ≤ z ≤ yu , y ∈ {0, 1}
}

(1)

where w > 0 and l < u. This is useful because (1) admits the Perspective Reformulation
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(PR)
min

{

wz2/y + cy : yl ≤ z ≤ yu , y ∈ {0, 1}
}

. (2)

Despite the weird look and the apparent ill-definiteness at y = 0, the objective function
in (2) can be extended with continuity in zero and it is convex. Actually, the objective
function is the convex envelope of an appropriately re-defined version of the objective
function in (1), i.e., the best possible convex objective function to have when the integrality
constraints y ∈ {0, 1} are relaxed to y ∈ [0, 1]. Indeed, (2) has at least two possible further
reformulations which avoid the fractional term in the objective function with the associated
difficulties (nondifferentiability, possible numerical problems) at y = 0: one is the Mixed
Integer Second-Order Cone Program (SOCP)

min
{

v + cy : yl ≤ z ≤ yu ,
√

wz2 + (v − y)2/4 ≤ (v + y)/2 , y ∈ {0, 1}
}

(3)

(Tawarmalani and Sahinidis 2002, Aktürk et al. 2009, Günlük and Linderoth 2008), and
another is the Semi-Infinite (SI) MILP

min
{

v + cy : yl ≤ z ≤ yu , y ∈ {0, 1}, v ≥ w(2γz − γ2y) for all γ ∈ [l, u]
}

(4)

where γ is the index of the infinitely many linear constraints (called Perspective Cuts in
Frangioni and Gentile (2006)) whose pointwise supremum completely describes the ob-
jective function in (2). Either (3) or any finite approximation to (4)—typically, to be
iteratively refined—can be used as models of (2), whose continuous relaxation is signif-
icantly stronger than the one of (1) and that therefore is a more convenient starting
point to develop exact and approximate solution algorithms (Frangioni and Gentile 2006,
2007, Günlük and Linderoth 2008, Aktürk et al. 2009, Frangioni et al. 2009). Somewhat
surprisingly, the potentially very large and approximated (4) appears to be most often
preferable to the compact and exact (3) in the context of exact or approximate enumerative
solution approaches (Frangioni and Gentile 2009), likely due to the better reoptimization
capabilities of simplex methods for linear programs compared to those of interior point
methods for conic programs.

Yet a different approach, named Projected Perspective Reformulation (P2R), has been
recently proposed in Frangioni et al. (2011). The idea is to recast the continuous relax-
ation of (2) as the minimization over z ∈ [0, u] of the function

φ(z) = miny
{

wz2/y + cy : ly ≤ z ≤ uy , y ∈ [0, 1]
}

(5)

which effectively eliminates the y variable(s) from the model and projects the perspective
relaxation on the space of the variable z. The function φ is convex, and its closed form
can be algebraically computed revealing a piecewise-quadratic function with at most two
pieces, at most one of them actually quadratic (and the other linear). When the underlying
problem has a useful structure (e.g., network flow or knapsack), the continuous relaxation
of (2) obtained in this way retains that structure, which allows to use specialized algorithms
to solve it and therefore to outperform both (3) and (4). The application of this approach
is only possible under rather restrictive assumptions that are only partially satisfied in
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our case; this has been very recently improved upon in Frangioni et al. (2013), where
in particular the y variables are re-instated in the formulation thus allowing the use of
general-purpose solvers, albeit possibly at the cost of weakening the bound w.r.t. the one
of the standard Perspective Reformulation.

In this paper we discuss the application of Perspective Reformulation techniques to the
CTA problem. In particular, besides the standard approaches (3) and (4), we develop and
test a new reformulation partly inspired by the results of Frangioni et al. (2011). However,
since our problem is different and somewhat more complex, the projected version of the PR
we obtain is substantially different and trickier to use. Thus, instead of insisting in keeping
the equivalence with the original formulation, we adopt an approach conceptually similar
to (but technically entirely different from) that of Frangioni et al. (2013) and “drop the
nastier pieces” of the projected formulation, ending up with an approximated reformulation
which is only as tight as the PR in some special cases, and looser otherwise. However,
this reformulation results in a simpler (although non-separable) MIQP to be solved, and
therefore it is most often preferable to the standard ones (3) and (4); furthermore, it
suggests a simple modification to the latter which invariably improves their performances.
Armed with these results we show on a large experimental set that CTA for randomly-
generated 1H2D and real-world tables of realistic sizes can most often be solved effectively
enough.

We remark that the Perspective Reformulation approach is much more widely appli-
cable than the simple quadratic case we consider here; furthermore, it not only applies to
the objective function but also to constraints f(z) ≤ 0 that are “activated” if and only if
a binary variable y is 1, where f can be any closed convex (possibly, SOCP-representable)
function and z is a vector whose feasible region can be any bounded polyhedron; see
e.g. Ceria and Soares (1999), Tawarmalani and Sahinidis (2002), Grossmann and Lee (2003),
Frangioni and Gentile (2006), Hijazi et al. (2011) and the recent survey Günlük and Linderoth
(2011). It should also be remarked that the computation of convex envelopes for specially-
structured functions of “a few” variables is an important field for which several advances
are being done; one of the most researched structures is that of functions φ(z, y) = f(z)g(y)
where f is convex and g is concave (Khajavirad and Sahinidis 2013, Tawarmalani et al.
2012, Tawarmalani and Sahinidis 2001). Thus, it is conceivable that some of the ideas
developed here, while technically different from these exploited in different settings, could
be extended to a possibly large set of more complex situations.

2 Formulations of the CTA problem

Any CTA problem instance, either with one table or with any number of tables, can be
represented by the following elements:

• a set of n cells ai, i ∈ N = {1, . . . , n}, that satisfy m linear relations Aa = b
(a = [ai]i∈N ); these relations impose that the set of inner cells has to be equal to
the total or marginal cell, i.e., if I| is the set of inner cells of relation j ∈ {1, . . . ,m},
and tj is the index of the total cell of relation j, the constraint associated to this
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relation is
(

∑

i∈I|
ai

)

− atj = 0;

• the subset S ⊆ N of indices of sensitive cells, and hence its complement U = N \S;

• a vector of nonnegative cell weights w = [wi]i∈N ;

• finite lower and upper bounds l̄a ≤ a ≤ ūa for each cell reasonably known by any
attacker;

• nonnegative lower and upper protection levels for each confidential cell i ∈ S, li and
ui respectively, such that the released values x = [xi]i∈N are considered to be safe if
they satisfy

either xi ≥ ai + ui or xi ≤ ai − li for all i ∈ S . (6)

Given any weighted distance ‖ · ‖w, CTA can then be formulated as

min
{

‖x− a‖w : Ax = b , l̄a ≤ x ≤ ūa , (6)
}

(7)

since one seeks for the released values x that are closest (in the given norm) to the true
values a, compatible with the relationships that a is known to have to satisfy, and protected
according to (6). Of course, the disjunctive constraints (6) are the difficult part of the
problem, their feasible region being nonconvex. Formulating them hence requires some
nonconvex element, the simplest one being a vector of binary variables y = [yi]i∈S ∈
{0, 1}|S|. It is also convenient to restate the problem in terms of the deviations z = x− a
from the true cell values, which therefore have to satisfy l̄a − a = l̄ ≤ z ≤ ū = ūa − a; this
gives the formulation

min
{

‖z‖w : Az = 0 , l̄ ≤ z ≤ ū , l̄i(1−yi)+uiyi ≤ zi ≤ ūiyi−li(1−yi) , yi ∈ {0, 1} i ∈ S
}

(8)
with “natural big-M constraints”. Indeed, when yi = 1 one has zi ≥ ui and thus the
protection sense is “upper”, while when yi = 0 one rather gets zi ≤ −li and thus the
protection sense is “lower”. While this formulation is correct, it would provide rather weak
bounds when its continuous relaxation is formed by replacing the integrality constraints
yi ∈ {0, 1} with yi ∈ [0, 1]. The simple example with n = 1, “empty” A, l1 = u1 = 10 and
−l̄1 = ū1 = 100 shows that for y1 = 1/2 the solution z1 = 0 is feasible to the relaxation,
whose optimal value is therefore 0, while the optimal value of the integer problem is
‖10‖w. Since weak bounds are very detrimental for the solution of the problem via exact
or approximate approaches, we aim at constructing “better” formulations of the problem.

A first step in this direction is to introduce vectors of positive and negative deviations
z+ ∈ R

n and z− ∈ R
n, respectively, thereby redefining z = z+ − z−; this allows to

reformulate the disjunctive constraints in (8) as

uiyi ≤ z+i ≤ ūiyi

li(1− yi) ≤ z−i ≤ −l̄i(1− yi)

yi ∈ {0, 1}

i ∈ S (9)
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As before, when yi = 1, the constraints force ui ≤ z+i ≤ ūi and z−i = 0, thus the protection
sense is “upper”; conversely, when yi = 0 we get z+i = 0 and li ≤ z−i ≤ −l̄i, thus the
protection sense is “lower”. This alone is not enough to improve on the bounds, though:
in the above example we now have z+1 = z−1 = 5 as a feasible solution for y1 = 1/2, which
still leads to a null bound. However the advantage of this formulation is that we now have
two semicontinuous variables, to which we can hope to apply Perspective Reformulation
techniques. This is not straightforward: the two semicontinuous variables are governed by
the same integer variable, and unlike in standard cases—where this is possible, provided
that all variables are “active” or “inactive” at the same time—one of them is “active” if
and only of the other is not. Furthermore, the objective function is nonseparable in z+ and
z−, and the convex envelope of multilinear functions, even if with only two variables as
here, is notoriously a complex object (cf. Luedtke et al. (2010) and the references therein)
so that “dirty tricks” have to be used (Frangioni and Gentile 2007) in order to apply PR
techniques. Thus, the next section will be devoted to the study of the convex envelope for
our particular case.

3 Perspective Reformulations of the CTA problem

In the following we will most often concentrate on a single cell i ∈ S; thus, to simplify the
notation we will consider the index i as fixed and drop it. In order to improve the lower
bound provided by the continuous relaxation, one possibility is to compute the convex
envelope of the nonconvex function

f( z+ , z− , y ) =











w(z+ − z−)2 if u ≤ z+ ≤ ū , z− = 0 and y = 1

w(z+ − z−)2 if l ≤ z− ≤ −l̄ , z+ = 0 and y = 0

+∞ otherwise

(10)

This can be easily accomplished with well-developed tools from the literature, starting from
the classical results of Tawarmalani and Sahinidis (2002) that have been along the way
extended to large classes of functions, e.g. these whose generating sets have appropriate
structure (Khajavirad and Sahinidis 2013). In our case, however, this can be very simply
obtained by considering two arbitrary points u ≤ z̄+ ≤ ū and l ≤ z̄− ≤ −l̄ and computing
the convex combinations of the two tuples in the epigraphical space

( z̄+, 0, 1, w(z̄+)2 ) ( 0, z̄−, 0, w(z̄−)2 ) .

In other words, taking any arbitrary convex combinator θ ∈ [0, 1] and using the shorthand
f(z) = wz2 (which also suggests how the approach can be generalized to any convex
function f), we have

θ( z̄+ , 0 , 1 , f(z̄+) ) + (1− θ)( 0 , z̄− , 0 , f(z̄−) ) =

( θz̄+ , (1− θ)z̄− , θ , θf(z̄+) + (1− θ)f(z̄−) )

Now, identifying θ ≡ y, z+ ≡ θz̄+ and z− ≡ (1− θ)z̄− we can rewrite the above as
(

z+ , z− , y , yf

(

z+

y

)

+ (1− y)f

(

z−

1− y

) )

9



which finally leads to

cof( z+ , z− , y ) =







































w
(

(z+)2

y
+ (z−)2

1−y

)

if
uy ≤ z+ ≤ ūy

l(1− y) ≤ z− ≤ −l̄(1− y)
, y ∈ (0, 1)

w (z+)2

y
if uy ≤ z+ ≤ ūy , z− = 0 , y = 1

w (z−)2

1−y
if z+ = 0 , l(1− y) ≤ z− ≤ −l̄(1− y) , y = 0

+∞ otherwise
(11)

and therefore to the following PR of (8):

min
∑

i∈U wi(z
+
i − z−i )

2 +
∑

i∈S cofi( z
+
i , z−i , yi ) (12)

A(z+ − z−) = 0 , 0 ≤ z+ ≤ ū , 0 ≤ z− ≤ −l̄ , (9) (13)

In the following, with a little abuse of notation we will often write the simpler

w
(

(z+)2/y + (z−)2/(1− y)
)

(14)

instead of cof( z+ , z− , y ). This is justified by the fact that even if (14), like (2), looks
undefined for y = 0 (and y = 1), it is easily extended by continuity; this can be seen either
by considering that when y → 0 then z+ → 0 linearly with y, so that (z+)2/y → 0 (and
symmetrically when y → 1), or by devising reformulations a-la (3) and (4) and verifying
that they actually have no problems at all for integer values of y. We also remark that
the PR (11) can alternatively be obtained as follows:

1. substitute (z+ − z−)2 in the objective function with (z+)2 + (z−)2, which is correct
since z+z− = 0 holds in each integer solution;

2. treat z+ and z− as two distinct semicontinuous variables with two distinct binary
variables, say y+ and y−, and apply the standard PR (2);

3. now exploit the fact that y+ + y− = 1 to replace y+ = y and y− = 1− y.

This analysis suggests that one can further improve the PR even regarding the non-
sensitive cells i ∈ U . In fact, these can be considered as sensitive cells with l = u = 0, and
therefore it is clear that one could have taken

(MIQP) min
{

∑

i∈N wi

(

(z+i )
2 + (z−i )

2
)

: (13)
}

as the original MIQP formulation of CTA, to which then directly apply steps 2. and
3. above, thus obtaining

(PR) min
{

∑

i∈U wi

(

(z+i )
2+(z−i )

2
)

+
∑

i∈S wi

(

(z+i )
2/yi+(z−i )

2/(1−yi)
)

: (13)
}

.

Note how (MIQP) has already improved the lower bound: for our example of Section 2
(with w1 = 1), z+1 = z−1 = 5 and y1 = 1/2, (MIQP) gives a bound of 50 instead of 0. Yet,
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(PR) is even better: for the same solution it gives a bound of 100, which (as expected)
is the optimal solution to the problem. One can then apply the standard SOCP and SI
reformulation tricks to (PR), i.e., formulae (3) and (4), to express the objective function
of (PR) in terms of one SOCP constraint/infinitely many linear constraints, respectively;
we denote the two thus obtained PRs of CTA as (SOCP) and (P/C), respectively.

Conversely, applying the projection approach of Frangioni et al. (2011) following the
same guidelines is not possible. The reason is that the main condition required for that to
work is that the binary variable corresponding to one semicontinuous variable only appears
in the corresponding constraints (9) and nowhere else, or, in other words, that there are no
constraints directly linking the binary variables to one another. This is clearly not the case
here, as the constraint y+ + y− = 1 is crucial. While the separability requirement on the
integer variables has been somewhat relaxed in Frangioni et al. (2013), the corresponding
formulations are shown to be substantially weaker than the (PR) when the “linking”
constraints are important in the formulation, which clearly is the case here. Hence, in
order to extend the projection approach of Frangioni et al. (2011) to CTA we elected to
explicitly carry out the analysis for our case. This is done by considering the function

g(z+, z−) = miny
{

cof( z+ , z− , y ) : y ∈ [0, 1]
}

(15)

(clearly convex, being the partial minimization of a convex function) and carrying out a
case-by-case analysis of its shape. This is significantly more complex and rather tedious, so
the details are best relegated to the Appendix. These can be summarized by the following
Theorem.

Theorem 1 The function g(z+, z−) is piecewise-conic-quadratic with at most three pieces.
If cell i is reasonably balanced, i.e., max{ li , ui } < min{ ūi , −l̄i }, then g(z+, z−) has
exactly three pieces, the “central” one of which is

wi(z
+
i + z−i )

2 (16)

that is also the lower approximation to g(z+, z−) corresponding to the relaxation of the
bounds constraints (9). If, furthermore, cell i is totally symmetric, i.e., ūi = −l̄i and
li = ui, then (16) actually coincides with g(z+, z−).

It would be then possible to derive a projected model analogous to those of Frangioni et al.
(2011) for CTA, but the prospects of doing so are not particularly encouraging. First of
all, the corresponding model would be a SOCP with up to three SOCP constraints for each
sensitive cell; the standard formulation (SOCP), which already has only two of them, is
typically not competitive with (P/C) (Frangioni and Gentile 2009), a fact that we directly
verified to be true for CTA also. Furthermore, the rationale of Frangioni et al. (2011) is
to exploit structural properties in the original problem, which are absent here for general
tabular data since the matrix A lacks exploitable characteristics.

Yet, the analysis readily suggests a workable alternative: use the model

(MIQP+) min
{

∑

i∈N wi

(

z+i + z−i
)2

: (13)
}

11



instead of (MIQP), (SOCP) or (P/C). This is possible since (16) is a lower approximation
to (15); furthermore, the two objective functions obviously coincide on integer solutions.
The model is clearly stronger than (MIQP); on sensitive cells its objective function is
weaker than that of (SOCP) or (P/C), unless in the totally symmetric case, in which
they are equivalent. However, on non-sensitive cells its objective function is stronger than
that of (SOCP) or (P/C). Note that the objective functions of (MIQP) and (MIQP+),
on non-sensitive cells, could seem to actually be equivalent on the constraints (13), since
these can all be written in terms of z = z+ − z−. In other words, the coefficient of z−

in every constraint is always the opposite to that of z+. Hence, one could always assume
that z+z− = 0 in the optimal solution of each continuous relaxation, since if this were not
the case then one could reduce both variables at the same rate, keeping feasibility and
improving the objective function value. However, this line of reasoning fails when valid
inequalities are added to the formulation. These, typically, do not obey to the condition
that the coefficients of z+ and z− are opposite, and therefore z+z− > 0 can (and indeed
does) happen. So, in terms of strength of the continuous relaxation (and after introduction
of valid inequalities) the models (MIQP+) and (PR) are not comparable. The (MIQP+)
model is somewhat simpler than (SOCP), not requiring SOCP constraints; however, it has
a nonseparable (albeit only slightly so) objective function. It is also more compact than
(P/C), which however is a separable quadratic model.

Note that, as in the previous case, there is no need to distinguish between sensitive
and non-sensitive cells: the reformulation (16) of the objective function can be applied
to either, and this actually has—as it can be expected—positive results. Indeed, since
(z+i + z−i )

2 dominates (z+i )
2+(z−i )

2, and they coincide in a minimizer, as previously seen,
the analysis suggests to rather consider

(PR+) min
{

∑

i∈U wi(z
+
i + z−i )

2 +
∑

i∈S wi

(

(z+i )
2/yi + (z−i )

2/(1− yi)
)

: (13)
}

as the “starting” Perspective Relaxation. Thus, other than (MIQP), (SOCP), (P/C) and
(MIQP+), there are two further possible models: (SOCP+) and (P/C+), obtained from
(PR+) exactly as (SOCP) and (P/C) are obtained from (MIQP), respectively. Compared
to (SOCP) and (P/C), these new models have (slightly) nonseparable objective function
but may provide better results. The relative strengths and weaknesses of these six models
can only be gauged computationally, which is done in the next section.

4 Computational Tests

We performed a large computational experiment to compare the six models (MIQP),
(P/C), (SOCP), (MIQP+), (P/C+), and (SOCP+). All models have been solved with
Cplex 12.2 in single-threaded mode on a computer with 2.2 GHz AMD Opteron 6174
CPUs and 32 GB of RAM, under a GNU/Linux operating system (Ubuntu 10.10). In
addition, models (MIQP), (SOCP), (MIQP+), and (SOCP+) have been solved, for some
real-world difficult instances, with Cplex 12.1 in multi-threaded mode (up to 24 parallel
threads) on a computer with 3.33GHz Intel Xeon X5680 CPUs and 144 GB of RAM, under
a GNU/Linux operating system (Suse 11.4). A few details are noteworthy:
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• (SOCP) and (SOCP+) have been tested but were regularly worse than (P/C) and
(P/C+), respectively, for single-threaded executions, confirming the results of (Frangioni and Gentile
2009); therefore, the corresponding results have not been reported.

• (P/C) and (P/C+) could not be considered for the multi-threaded executions, since
the addition of perspective cuts deactivates the parallel capabilities of Cplex. (SOCP)
and (SOCP+), which are inefficient for single-threaded executions, allow Cplex to
exploit its parallel features, and then are considered for the multi-threaded execu-
tions.

• The large values of l̄i and ūi in the instances created substantial numerical problems,
whereby a variable (say z−i ) that should have been zero (say because yi = 1) actually
had a “substantial” nonzero value (say because 1− yi ≈ 1e-6, and therefore −l̄i(1−
yi) was still “large”), leading to some of the cells in the table not actually being
protected. This has been solved as specified below.

• The default Cplex parameters have been used for the computational results save for
the parameter CPX PARAM NUMERICALEMPHASIS that was set to 1 to avoid numerical
difficulties (see point above), likely affecting the solution speed. In general, all the
versions tested were very sensitive to this particular parameter, and for many in-
stances no solution could be found if not set to 1. In addition, (P/C) methods require
also the Cplex parameter PRELINEAR set to 0 and REDUCE set to 1 (PRIMALONLY).

• The (P/C) and (P/C+) models have been implemented by means of a CPLEX
cutcallback procedure that allows to dynamically add user cuts during the exe-
cution of the Branch&Cut. In particular, given the continuous solution (z̃+, z̃−, ỹ)
of the current node relaxation, for each i ∈ U one tests if the perspective cut for
γ = z̃+/ỹ (cf. inequality in formula (4)) is violated, and the same is done for γ =
z̃−i /(1− ỹi); all the violated perspective cuts are returned to be added to the model.
Additional details about the (P/C) procedure can be found in Frangioni and Gentile
(2006), Frangioni and Gentile (2009).

• The runs were performed with a time limit of 10000 seconds (wall-clock time) and,
unless otherwise specified, with the Cplex default gap of 0.01%.

4.1 Test instances

For our tests we have considered both synthetic hierarchical instances and real-world ones.
Hierarchical instances were obtained with a generator of 1H2D synthetic tables (Castro
2007) that was retrieved from http://www-eio.upc.es/~jcastro/generators_csp.html.
This is a relevant class of instances, since a significant fraction of the tables released by
NSAs are 1H2D. The generator produces a set of two-dimensional subtables with hier-
archical structure according to the setting of several parameters, among which the mean
number of rows per subtable, the number of columns per subtable, the depth of the hi-
erarchical tree, the percentage of sensitive cells, the minimum and maximum number of
rows with hierarchies per subtable, and the random seed. We fixed all these parameters,
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but three: the mean number of rows per subtable (“r”∈ {10, 20}), the number of columns
per subtable (“c”∈ {20, 30}), and the percentage of sensitive cells (“s”∈ {3, 5, 10}). In
addition, we generated both symmetric and asymmetric instances. The former have the
property that ui = li; note that in general this does not imply ūi = −l̄i, since in many cases
one has to ensure non-negativity of the perturbed values, which usually leads to ūi > −l̄i.
Asymmetric instances were instead obtained by considering ui = a · li, “a”∈ {2, 5, 10} be-
ing the asymmetry parameter. Instances are thus named by the particular combination of
parameters used for its generation, i.e., “r-c-s” for symmetric instances and “r-c-s-a”
for asymmetric ones. For each combination of parameters we generated 5 instances vary-
ing the random generator seed, and all the reported results are averaged on these five
instances.

We also dealt with a set of real-world instances. These are a subset of public instances
that have been previously used in the literature (Castro 2006, Fischetti and Salazar-González
2001), and some confidential ones provided by Eurostat and the Australian NSA. Of the
available real-world instances, we selected those that are neither too easy, i.e., solved by
every model in a few seconds, nor too difficult, i.e., very large (up to millions of cells) and
such that one cannot even find the first feasible solution—and often even solve the con-
tinuous relaxation at the root node—within the allotted timeframe. Unlike the synthetic
1H2D instances, the real-world ones have symmetric protection levels (i.e., ui = li); as
we shall see, this turns out to be a questionable modeling choice from the computational
viewpoint.

Tables 1, 2, and 3 report the characteristics of, respectively, the 1H2D symmetric, 1H2D
asymmetric, and real-world instances: the number of cells |N |, the number of sensitive cells
|S|, the number of table relations m, the percentage of nonzeros in matrix A (showing that
these matrices are very sparse), the number of variables and constraints in the resulting
(MIQP) or (MIQP+) models, and the percentage of pure binary variables (that are in one-
to-one correspondence with sensitive cells). As already mentioned, these data is averaged
over the 5 instances of the same type for synthetic tables. Note that (P/C),(P/C+),
(SOCP), and (SOCP+) models have more variables and constraints than these due to the
reformulation tricks (3) and (4); in particular, (P/C) and (P/C+) formulations in theory
have infinitely many constraints, but only finitely many ones are dynamically generated
in order to approximate the objective function value of (PR) or (PR+), respectively, with
the same GAP required to the solution of the problem.

4.2 Computational Results

The computational results obtained with models (MIQP+), (P/C+), (MIQP) and (P/C)
in single-threaded executions are reported in Tables 4 and 5 for the symmetric and asym-
metric 1H2D instances, respectively. In the tables, the column “gap” reports the gap
between the value of the best feasible solution (UB) and the lower bound provided (LB)
by the algorithm at termination (i.e., gap = ( UB − LB )/ LB); this is the optimality gap
“perceived” by the algorithm. The column “pgap” reports the analogous measure, only
using the best known lower bound ever computed in our tests (on the same architecture) in
place of LB; this is our best measure of the actual optimality gap of the feasible solution
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Table 1: Size and properties of symmetric instances.

instance |N | |S| m %nnz vars. cons. %bin

10-20-3 2877 81 452 0.47 5835 777 1.39
10-20-5 3163 150 466 0.45 6475 1064 2.31
10-20-10 2772 262 447 0.47 5806 1495 4.51
10-30-3 4569 131 612 0.34 9270 1137 1.42
10-30-5 4185 201 600 0.35 8571 1403 2.34
10-30-10 4706 452 617 0.34 9864 2426 4.59
20-20-3 6607 188 630 0.32 13401 1381 1.40
20-20-5 6426 305 621 0.33 13157 1841 2.32
20-20-10 6212 590 611 0.34 13013 2969 4.53
20-30-3 9145 264 760 0.27 18554 1816 1.42
20-30-5 8947 431 754 0.27 18324 2478 2.35
20-30-10 9164 884 761 0.27 19211 4296 4.60

produced by the algorithm, and the difference between “gap” and “pgap” gives a sense of
how much weaker the lower bound attained at termination is w.r.t. the best among the
four models. The columns “time” and “nodes” report, respectively, the total CPU time
and the number of Branch&Cut nodes expended by the algorithm. For the sake of clarity,
gaps below 0.01% are represented by a “−” and instances that hit the time limit of 10000
seconds are marked by a “∗”. Note that Tables 4 and 5 show average results for the five
instances of each set of parameters r-c-s and r-c-s-a. This explains that in some cases
(e.g., 20-30-5 of Table 4) the average gap is positive whereas the average CPU time is
below the time limit.

The results show that, as it could be expected, (MIQP) attains by far the worst
results. Similarly to what has been reported several times (Frangioni and Gentile 2006,
2007, Günlük and Linderoth 2008, Aktürk et al. 2009, Frangioni et al. 2009, Hijazi et al.
2011), the use of “standard” PR techniques, i.e. (P/C) (and (SOCP), which is always
worse) significantly improve on (MIQP) by delivering much better lower bounds, which in
turn dramatically reduce the number of required B&C nodes. Note that typically (P/C)
enumerates fewer nodes than (MIQP) in the same time, which is reasonable since adding
valid inequalities requires repeated solutions of the continuous relaxation. This is true
consistently both for symmetric and asymmetric instances.

In many cases (P/C+) is even more efficient than (P/C), showing that the trade-off
between the (slightly) non-separable objective function and the higher bound is often fa-
vorable. This is true for all symmetric instances, and for roughly half of the asymmetric
ones, in particular the smallest ones. Furthermore, most often (MIQP+) performs better
than (P/C+). This is true for all symmetric instances, and for most of the asymmetric in-
stances except some of those with large asymmetry parameter a ∈ {5, 10} (e.g., 10 30 10 5,
10 30 10 10, 20 30 10 5, and 20 30 10 10). This is consistent with our theoretical results:
(MIQP+) and (P/C+) should provide the same lower bound on fully symmetric instances,
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Table 2: Size and properties of asymmetric instances.

instance |N | |S| m %nnz vars. cons. %bin

10-20-3-2 2877 81 452 0.47 5835 777 1.39
10-20-3-5 3163 89 466 0.45 6414 822 1.39
10-20-3-10 2919 82 454 0.46 5920 784 1.39
10-20-5-2 3095 146 462 0.45 6337 1048 2.31
10-20-5-5 2835 134 450 0.47 5804 986 2.31
10-20-5-10 3188 151 467 0.45 6526 1070 2.31
10-20-10-2 3230 306 469 0.45 6765 1691 4.52
10-20-10-5 3146 298 465 0.45 6589 1655 4.52
10-20-10-10 3024 286 459 0.46 6334 1603 4.52
10-30-3-2 4476 129 609 0.34 9081 1124 1.42
10-30-3-5 4383 126 606 0.35 8893 1110 1.41
10-30-3-10 4452 128 609 0.34 9031 1121 1.42
10-30-5-2 4439 213 608 0.35 9091 1460 2.34
10-30-5-5 4427 212 608 0.35 9066 1457 2.34
10-30-5-10 3999 192 594 0.36 8190 1360 2.34
10-30-10-2 4334 416 605 0.35 9084 2270 4.58
10-30-10-5 4204 404 601 0.35 8811 2216 4.58
10-30-10-10 4545 437 612 0.34 9526 2359 4.59
20-20-3-2 5985 170 600 0.34 12140 1280 1.40
20-20-3-5 6556 186 627 0.33 13299 1372 1.40
20-20-3-10 6737 192 636 0.32 13665 1402 1.40
20-20-5-2 5905 280 596 0.34 12091 1717 2.32
20-20-5-5 6573 312 628 0.33 13458 1876 2.32
20-20-5-10 6409 304 620 0.33 13123 1837 2.32
20-20-10-2 6082 577 605 0.34 12740 2913 4.53
20-20-10-5 6094 578 605 0.34 12767 2919 4.53
20-20-10-10 6577 624 628 0.33 13779 3126 4.53
20-30-3-2 8804 254 749 0.27 17862 1767 1.42
20-30-3-5 9219 266 762 0.27 18705 1828 1.42
20-30-3-10 9176 265 761 0.27 18617 1822 1.42
20-30-5-2 9126 440 759 0.27 18693 2519 2.35
20-30-5-5 8661 417 744 0.28 17740 2414 2.35
20-30-5-10 8996 434 755 0.27 18426 2490 2.35
20-30-10-2 9170 884 761 0.27 19224 4298 4.60
20-30-10-5 9151 883 760 0.27 19185 4291 4.60
20-30-10-10 9033 871 756 0.27 18938 4241 4.60
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Table 3: Size and properties of real-world instances.

instance |N | |S| m %nnz vars. cons. %bin

australia ABS 24420 918 274 0.20 49758 3946 1.84
cbs 11163 2467 244 0.82 24793 10112 9.95
hier13 2020 112 3313 0.18 4152 3761 2.70
hier13x13x13a 2197 108 3549 0.15 4502 3981 2.40
hier13x13x13b 2197 108 3549 0.15 4502 3981 2.40
hier13x13x13c 2197 108 3549 0.15 4502 3981 2.40
hier13x13x13d 2197 108 3549 0.15 4502 3981 2.40
hier13x13x13e 2197 112 3549 0.15 4506 3997 2.49
hier13x13x7d 1183 75 1443 0.31 2441 1743 3.07
osorio 10201 7 202 0.99 20409 230 0.03
sbs2008 C 4212 1135 2580 0.13 9559 7120 11.87
sbs2008 E 1430 382 991 0.33 3242 2519 11.78
table7 624 17 230 1.30 1265 298 1.34
table8 1271 3 72 2.78 2545 84 0.12
targus 162 13 63 3.53 337 115 3.86

Table 4: Results for symmetric instances.

MIQP+ P/C+ MIQP P/C
instance gap pgap time nodes gap pgap time nodes gap pgap time nodes gap pgap time nodes
10-20-3 − − 442 474 − − 486 357 6.49 − 9686 10365 − − 1331 1973
10-20-5 − − 765 690 − − 1016 611 67.62 0.05 ∗ 2649 0.16 − 6695 8675
10-20-10 − − 3852 10507 2.21 0.07 7660 2676 72.75 0.14 ∗ 5536 12.39 0.14 ∗ 3230
10-30-3 − − 1470 760 − − 1749 457 127.03 0.02 ∗ 778 0.98 − 9070 3022
10-30-5 − − 4850 4003 0.07 − 7102 4769 118.53 0.12 ∗ 1422 15.80 0.03 ∗ 1853
10-30-10 2.44 2.44 ∗ 3512 8.26 2.53 ∗ 889 128.67 2.62 ∗ 1619 35.30 2.54 ∗ 643
20-20-3 − − 1710 260 − − 1874 291 158.64 − ∗ 636 17.84 0.04 8559 596
20-20-5 − − 3543 1507 1.27 − 7237 1185 138.59 0.12 ∗ 625 12.33 − 8808 481
20-20-10 7.10 7.10 ∗ 1968 24.51 7.21 ∗ 504 142.82 7.60 ∗ 777 38.22 7.39 ∗ 262
20-30-3 0.40 0.40 6113 738 3.60 0.41 6800 458 138.85 0.47 ∗ 726 27.17 0.45 ∗ 379
20-30-5 7.39 7.39 8791 751 15.19 7.46 8885 379 156.73 9.37 ∗ 801 32.83 8.02 ∗ 406
20-30-10 19.92 19.92 ∗ 674 32.04 21.13 ∗ 102 153.79 23.08 ∗ 496 44.06 21.20 ∗ 56
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Table 5: Results for asymmetric instances.

MIQP+ P/C+ MIQP P/C
instance gap pgap time nodes gap pgap time nodes gap pgap time nodes gap pgap time nodes
10-20-3-2 − − 23 9 − − 58 1 − − 1218 7823 − − 106 17
10-20-3-5 − − 19 1 − − 82 1 − − 322 197 − − 111 1
10-20-3-10 − − 15 7 − − 55 1 − − 270 124 − − 78 1
10-20-5-2 − − 58 30 − − 119 9 0.04 − ∗ 113601 − − 152 32
10-20-5-5 − − 21 15 − − 79 1 − − 1293 2332 − − 81 1
10-20-5-10 − − 20 2 − − 106 1 − − 1483 660 − − 111 1
10-20-10-2 − − 438 556 − − 637 181 0.04 − ∗ 67541 1.49 − 2904 370
10-20-10-5 − − 4315 31344 − − 142 1 0.08 − ∗ 102641 − − 142 1
10-20-10-10 − − 416 2135 − − 120 1 0.04 − 5044 26508 − − 109 1
10-30-3-2 − − 115 28 − − 271 5 0.02 − ∗ 55266 − − 391 35
10-30-3-5 − − 40 4 − − 220 1 − − 2447 1333 − − 237 1
10-30-3-10 − − 31 1 − − 232 1 − − 1468 565 − − 258 1
10-30-5-2 − − 193 103 − − 377 19 0.05 − ∗ 28721 − − 455 72
10-30-5-5 − − 119 39 − − 333 1 − − 4055 24181 − − 258 1
10-30-5-10 − − 63 46 − − 207 1 − − 1855 1104 − − 216 1
- 10-30-10-2 − − 1158 1035 − − 1905 230 7.03 − ∗ 27461 0.82 − 3066 986
10-30-10-5 − − 6489 38818 − − 401 1 8.53 − ∗ 60347 − − 311 1
10-30-10-10 − − 4806 22519 − − 522 1 0.09 − ∗ 52141 − − 372 1
20-20-3-2 − − 136 25 − − 393 1 0.03 − ∗ 13721 − − 502 9
20-20-3-5 − − 72 1 − − 625 1 − − 4074 1207 − − 691 1
20-20-3-10 − − 76 1 − − 574 1 2.18 − 5356 465 − − 644 1
20-20-5-2 − − 257 47 − − 601 4 1.40 − ∗ 14362 − − 598 24
20-20-5-5 − − 117 10 − − 690 1 1.19 − ∗ 15635 − − 638 1
20-20-5-10 − − 128 54 − − 736 1 0.52 − 6434 2076 − − 623 1
20-20-10-2 − − 1448 212 − − 2802 138 63.41 0.04 ∗ 1006 − − 2525 228
20-20-10-5 0.02 − 9203 22462 − − 943 1 3.40 − ∗ 9950 − − 634 1
20-20-10-10 0.03 − 7910 19421 − − 1327 1 7.33 − ∗ 9801 − − 801 1
20-30-3-2 − − 439 28 − − 1477 1 13.94 − ∗ 1203 − − 1649 16
20-30-3-5 − − 140 1 − − 1597 1 5.39 − 8400 1767 − − 1510 1
20-30-3-10 − − 157 8 − − 1601 1 8.34 − 9321 691 − − 1547 1
20-30-5-2 − − 777 65 − − 2160 17 48.34 − ∗ 612 − − 2111 34
20-30-5-5 − − 618 462 − − 1800 1 19.74 − ∗ 1692 − − 1622 1
20-30-5-10 − − 622 243 − − 1988 1 2.14 − 9815 2623 − − 1625 1
20-30-10-2 1.23 1.23 7575 1454 3.67 1.24 8407 297 79.80 1.39 ∗ 422 4.16 1.23 7705 262
20-30-10-5 0.52 − ∗ 12890 − − 2784 1 36.91 0.03 ∗ 718 − − 1915 1
20-30-10-10 0.04 − ∗ 17526 − − 2619 1 27.08 0.03 ∗ 1441 − − 1817 1
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and although this is not really the case even for our symmetric instances (cf. §4.1), it ap-
pears that the bounds are close enough to be roughly equivalent within the B&C approach.
Indeed, the same phenomenon observed for (MIQP) and (P/C) shows off once again here:
(P/C+) most often enumerates less nodes than (MIQP+), which means that the (P/C+)
bound is usually somewhat stronger. However, most often (MIQP+) is faster on the in-
stances that are solved within 10000 seconds, and it provides better gaps on the ones that
stop at the time limit. This is due to the fact that, by not requiring constraint generation
to compute the (approximated) PR bound, its time-per-node is lower.

The results show that, as it could be expected, the main driver of the difficulty of an
instance is the percentage of sensitive cells: while instances with up to 5% of sensitive cells
are routinely solved within the time limit, instances with 10% of sensitive cells are typically
more difficult. However, this is only true for symmetric instances: as the asymmetry
parameter “a” grows, the instances become easier. Indeed, almost all asymmetric instances
are solved within 10000 seconds by (P/C) and (P/C+), and the easiest ones are associated
with values a > 2. This is not unreasonable, as a high degree of symmetry (albeit in a
technically different sense) is well-known to be detrimental for combinatorial problems.
Remarkably, a trade-off shows off for (MIQP+). While that model is almost invariably
the best for a = 2, it is typically worse than (P/C+) and (P/C), often by a relevant
margin, when a > 2 and s = 10. Indeed, s = 10 are the most difficult instances, since
they involve a higher percentage of binary variables. Also, these are the cases where most
often (P/C) bests (P/C+). This seems to indicate that the approximation (16) of the
objective function only makes sense, both for sensitive and non-sensitive cells, when a
reasonably degree of symmetry is present (which is, however, the most difficult case).

It should be remarked that protection levels, and therefore their (a)symmetry, are a
choice of the modeler. Indeed, in practice NSAs derive the upper protection levels ui
from the sensitivity rules (Hundepool et al. 2012), and, as a rule of thumb, this value
is assigned to the lower protection level li, too. Since asymmetric instances are more
efficiently solved than symmetric ones, however, such a practice should be discouraged in
favor of choosing decidedly asymmetric values with any appropriate heuristic. This will
likely keep the same confidentiality protection and data usability in the disclosed tables
while making their computation more efficient.

Tables 6 and 7 show the results on the real-world instances for, respectively, single-
and multi-threaded executions. Note that the column “pgap” in each table is computed
considering only the lower bounds of the four algorithms of the table, since the others
were solved on a different computer and by a different Cplex release. As it is customary,
column “time” in Table 7 reports wall-clock time.

The single-threaded results in Table 6 basically confirm these on the synthetic in-
stances: (MIQP) is the worst model, (P/C) is significantly better, (P/C+) is usually (but
not always) better yet, (MIQP+) is (at least on our test set) invariably the best. Yet,
in several cases the obtained results can hardly be deemed satisfactory, with several gaps
larger than 20%, and one as high as 50%. It thus makes sense to investigate if the problems
can be solved with reasonable precision when more computational power is available.

The 24-threads results of Table 7 show mixed success for (SOCP) and (SOCP+);
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Table 6: Single-threaded results for real instances.

MIQP+ P/C+ MIQP P/C
instance gap pgap time nodes gap pgap time nodes gap pgap time nodes gap pgap time nodes
australia ABS 2.29 2.29 ∗ 2401 8.08 3.15 ∗ 401 113.69 2.60 ∗ 1501 9.45 2.87 ∗ 763
cbs 1.24 0.61 ∗ 32281 0.77 0.77 ∗ 1801 96.38 1.22 ∗ 16400 0.77 0.74 ∗ 1801
hier13 24.77 24.77 ∗ 145 129.83 118.55 ∗ 15 111.65 27.21 ∗ 126 74.02 28.40 ∗ 73
hier13x13x13a 30.52 29.87 ∗ 123 29.87 29.87 ∗ 119 114.41 29.74 ∗ 200 55.41 29.74 ∗ 171
hier13x13x13b 30.54 29.88 ∗ 114 29.88 29.88 ∗ 99 114.41 29.74 ∗ 200 55.41 29.74 ∗ 171
hier13x13x13c 32.30 29.90 ∗ 100 29.90 29.90 ∗ 90 114.41 29.77 ∗ 197 55.41 29.77 ∗ 171
hier13x13x13d − − 3357 89 − − 3479 78 − − 9135 162 − − 4960 100
hier13x13x13e − − 3293 149 − − 3830 90 − − 9887 185 − − 5489 111
hier13x13x7d − − 1458 805 − − 3052 1033 − − 4995 4310 − − 2928 2595
osorio − − 3754 255 − − 6493 252 27.42 − ∗ 83 0.72 − ∗ 145
sbs2008 C 4.97 4.97 ∗ 33839 219.57 26.69 ∗ 389 49.66 5.24 ∗ 11332 12047.9 2594.78 ∗ 110
sbs2008 E 50.15 50.15 ∗ 401380 68.49 47.97 ∗ 11988 55.82 48.16 ∗ 507901 31.75 17.30 ∗ 7937
table7 − − 0.55 1 − − 5.74 1 − − 76.61 12 − − 3.86 1
table8 − − 1.84 15 − − 2.85 15 − − 1.22 9 − − 3.01 15
targus − − 0.16 3 − − 0.28 13 − − 0.21 16 − − 0.32 3

Table 7: Multi-threaded results for real instances.

MIQP+ SOCP+ MIQP SOCP
instance gap pgap time nodes gap pgap time nodes gap pgap time nodes gap pgap time nodes
australia ABS 1.41 1.41 ∗ 30870 13.77 3.25 ∗ 1780 137.12 12.98 ∗ 9010 14.45 3.79 ∗ 221
cbs 1.12 0.59 ∗ 737465 71.70 39.80 ∗ 4828 94.98 1.09 ∗ 198867 1.00 1.00 ∗ 5990
hier13 − − 4290 3185 143.47 2.99 ∗ 829 − − 9403 6256 174.56 5.39 ∗ 0
hier13x13x13a − − 7038 5092 169.62 3.67 ∗ 0 12.15 − ∗ 4609 169.08 1.79 ∗ 5308
hier13x13x13b − − 7018 5122 169.62 3.67 ∗ 0 − − 9015 6750 167.00 0.83 ∗ 5866
hier13x13x13c − − 7165 5591 63.44 32.99 ∗ 0 − − 7771 6425 172.30 3.04 ∗ 5910
hier13x13x13d − − 154 139 62.73 − ∗ 0 − − 409 261 109.16 0.02 ∗ 0
hier13x13x13e − − 148 169 62.73 − ∗ 0 − − 429 251 89.86 0.02 ∗ 0
hier13x13x7d − − 160 1704 120.07 9.71 ∗ 0 − − 1258 11812 113.26 3.42 ∗ 0
hier13x7x7d − − 34.08 2029 56.28 3.99 ∗ 0 − − 91.52 3801 56.74 2.33 ∗ 4
osorio − − 363 255 − − 250 505 − − 2439 255 − 0.00 224 509
sbs2008 C 2.39 2.39 ∗ 726715 17.37 2.82 ∗ 4979 4.82 2.21 ∗ 292576 8.09 3.20 ∗ 5131
sbs2008 E 39.34 0.82 ∗ 12640158 − − 6097 20602 43.08 − ∗ 13122442 184.90 2.49 ∗ 184041
table7 − − 0.26 0 − − 64.23 1283 − − 28.31 9 − − 73.89 1280
table8 − − 1.52 15 − − 10.40 15 − − 0.96 9 − − 9.85 15
targus − − 0.46 3 − − 11.82 316 − − 0.32 25 − − 6.17 177
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Table 8: Results for symmetric instances with 5% gap.

MIQP+ P/C+
instance gap pgap time nodes gap pgap time nodes PCs
10-20-3 3.93 3.30 52 47 3.58 3.42 74 55 819
10-20-5 3.92 3.83 82 96 3.99 3.80 127 109 1559
10-20-10 4.96 4.96 175 344 5.41 4.97 2485 757 6734
10-30-3 4.79 4.71 230 165 4.98 4.84 249 113 1194
10-30-5 4.07 3.89 194 132 4.22 4.05 321 152 2263
10-30-10 5.14 5.04 1172 1320 9.89 5.16 5545 1123 8709
20-20-3 3.97 3.72 352 159 3.70 3.68 436 124 1815
20-20-5 3.75 3.73 594 310 4.84 3.73 1073 364 4460
20-20-10 12.37 11.17 5328 1377 13.04 11.13 8987 1944 21451
20-30-3 4.12 3.54 1265 357 3.92 3.55 1614 257 2449
20-30-5 9.43 5.96 5145 618 5.98 5.97 5248 1122 7279
20-30-10 14.72 14.72 ∗ 2190 28.24 15.08 ∗ 593 16350

sometimes they are better than (MIQP), sometimes worse. In general (MIQP+) is by far
the best option, as in previous tables, although it is very occasionally bested by (SOCP+)
(cf. sbs2008 E, one of the most difficult confidential instances). What is perhaps more
relevant is that, coupled with a relatively powerful—but by no means “super”—24-threads
machine, (MIQP+) is capable of providing solutions with pretty low gap for all the real-
world instances in our test bed.

We finally explore the other obvious approach for reducing the required running time,
i.e., accepting less accurate solutions. This is also reasonable, since in practice solutions
that are a few percent off the optimal one should be more than acceptable for end users of
CTA. In Tables 8, 9, and 10 we show results for, respectively, symmetric, asymmetric and
real instances with a 5% gap, a setting that has also been used in the literature for L1-
CTA (Castro 2012a). Due to the previous results we only report data for the formulations
(MIQP+) and (P/C+); for the latter, columns “PCs” report the number of perspective
cuts. Executions were performed in the same hardware and software environment than
for Table 7, except in single-threaded mode.

Clearly, solution time is now significantly reduced, providing for most instances satis-
factory solutions with a moderate CPU time. For symmetric 1H2D instances, (MIQP+)
is clearly the most efficient approach, being almost always faster (sometimes by more
than an order of magnitude) and, with only a few exceptions, obtaining comparable or
better bounds. Things are slightly more complex for asymmetric 1H2D instances: while
(MIQP+) is still faster, and often significantly so, the relationships between the bounds
is more erratic, with both methods displaying significantly better bounds at times and
significantly worse in other cases. However, this may well depend on the fact that, with
such a large gap, one model may basically stumble upon the good feasible solution needed
to terminate the execution much sooner than the other. Finally, results are less clear for
real instances: the two models exhibit a more similar behavior, although in a few cases
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Table 9: Results for asymmetric instances with 5% gap.

MIQP+ P/C+
instance gap pgap time nodes gap pgap time nodes PCs
10-20-3-2 1.57 − 4 0 2.49 2.49 23 0 450
10-20-3-5 2.90 − 4 0 0.38 0.38 29 0 459
10-20-3-10 3.37 − 3 0 1.07 1.07 22 0 401
10-20-5-2 2.47 0.03 6 0 2.82 2.82 34 0 849
10-20-5-5 2.87 − 4 0 0.84 0.84 27 0 680
10-20-5-10 1.93 − 4 0 1.38 1.38 33 0 722
10-20-10-2 3.96 0.02 85 144 4.35 4.35 123 87 3268
10-20-10-5 3.55 0.03 10 0 0.02 0.02 51 0 1890
10-20-10-10 3.26 0.03 7 0 0.26 0.26 43 0 1628
10-30-3-2 1.34 − 21 9 2.41 2.41 70 3 729
10-30-3-5 3.34 − 8 0 0.11 0.11 58 0 613
10-30-3-10 2.20 − 7 0 2.76 2.76 61 0 596
10-30-5-2 2.78 0.02 29 18 2.69 2.69 85 2 1264
10-30-5-5 2.52 − 14 0 0.05 0.05 78 0 1191
10-30-5-10 2.56 − 9 0 1.30 1.30 62 0 953
10-30-10-2 4.39 0.09 77 50 2.88 2.88 234 87 4116
10-30-10-5 3.05 0.02 23 0 0.07 0.07 89 0 2551
10-30-10-10 3.91 0.02 19 0 0.21 0.21 112 0 2409
20-20-3-2 1.98 − 14 0 2.44 2.44 100 0 931
20-20-3-5 1.96 − 14 0 3.77 3.77 150 0 983
20-20-3-10 0.38 − 13 0 0.97 0.97 135 0 887
20-20-5-2 2.76 0.02 21 0 3.24 3.24 123 0 1578
20-20-5-5 0.97 − 16 0 1.18 1.18 157 0 1673
20-20-5-10 0.58 − 16 0 1.27 1.27 156 0 1519
20-20-10-2 4.94 0.02 314 132 4.46 4.46 393 56 6304
20-20-10-5 2.52 − 25 0 1.04 1.04 180 0 3612
20-20-10-10 2.28 − 126 47 0.22 0.22 216 0 3647
20-30-3-2 2.68 − 41 0 2.28 2.28 287 0 1400
20-30-3-5 0.98 − 31 0 3.47 3.47 307 0 1340
20-30-3-10 0.29 − 31 0 1.05 1.05 323 0 1232
20-30-5-2 3.36 − 111 24 2.73 2.73 348 0 2636
20-30-5-5 2.30 − 39 0 2.02 2.02 335 0 2336
20-30-5-10 1.43 − 41 0 0.88 0.88 376 0 2258
20-30-10-2 5.13 0.55 1313 503 4.58 4.58 1555 208 10454
20-30-10-5 3.37 − 72 0 0.12 0.12 495 0 5924
20-30-10-10 2.15 − 58 0 0.31 0.31 484 0 5030
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Table 10: Results for real instances with 5% gap.

MIQP+ P/C+
instance gap pgap time nodes gap pgap time nodes PCs

australia ABS 4.94 4.94 695 300 5.09 4.58 5486 1747 35395
cbs 2.43 1.93 295 2130 2.04 2.04 291 0 13917
hier13 5.26 5.23 3712 1016 5.23 5.23 5511 1059 3660
hier13x13x13a 5.25 5.20 7904 1788 5.20 5.20 6966 1620 3178
hier13x13x13b 5.25 5.20 7900 1788 5.20 5.20 7023 1620 3178
hier13x13x13c 5.25 5.20 7908 1788 5.20 5.20 6907 1620 3178
hier13x13x13d 5.02 2.12 683 56 2.12 2.12 660 50 1761
hier13x13x13e 4.97 4.69 645 71 4.69 4.69 745 73 1800
hier13x13x7d 5.21 5.21 312 433 5.22 5.21 666 581 1567
osorio 1.85 1.85 3 0 1.81 1.81 64 1 27
sbs2008 C 5.26 5.26 4740 56479 56.94 6.17 ∗ 1081 31708
sbs2008 E 44.25 44.25 ∗ 1156201 55.40 42.75 ∗ 44615 14305
table7 − − 0 0 − − 3 0 75
table8 0.71 0.71 0 0 1.12 0.71 1 2 12
targus 1.11 1.11 0 0 1.12 1.12 0 0 66

(e.g. australia ABS, osorio, and sbs2008 C) (MIQP+) has a clear edge, and where it is
slower it’s not so by much more than 10%. It is worth noting that some real instances
exhibit a gap greater than 5%; since each row corresponds to an instance this is not, like
it happened in other cases, due to averaging, but rather to the (somewhat questionable)
habit of Cplex to define the gap as (UB − LB)/UB.

To summarize, it is fair to say that (MIQP+) obtains good results for all the types
of instances, showing that appropriate modeling techniques combined with state-of-the-
art, general-purpose MIQP solvers can provide accurate solutions to real-life (and realistic)
instances within a reasonable timeframe, especially if one is ready to throw at the problem a
slightly more substantial amount of computational resources and/or accept solutions with
a somewhat larger gap.

4.3 About the utility of protected data

As stated in the introduction, one of the possible benefits of using L2-CTA, as opposed to
L1-CTA, is the expected higher utility of published data. This is explored in this section,
where we empirically compare the data utility provided by both approaches on our test
bed.

We measure “data utility” as in Castro and Giessing (2006), i.e., by counting the num-
ber of published cells which changed “too much” with respect to their original values. To
measure the change in a cell we consider the percentage deviation, i.e., %dev = |z|/|a|·100;
cells with percentage deviations above a threshold value are considered to have changed
“too much”. We set the threshold value to one fourth of the maximum percentage de-
viation of L1-CTA, which was almost (but on two instances) always greater than the
maximum percentage deviation of L2-CTA.
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Table 11: Utility of protected tables for symmetric instances.

L1 L2

instance mean max large mean max large

sym-10-20-3 27.8 9425.3 6 6.3 318.4 0
sym-10-20-5 36.6 9900.0 11 7.3 624.6 0
sym-10-20-10 36.0 9420.0 11 6.5 337.4 0
sym-10-30-3 31.6 9197.4 9 7.9 270.4 0
sym-10-30-5 44.5 9900.0 12 8.3 429.0 0
sym-10-30-10 36.7 9900.0 10 7.1 284.0 0
sym-20-20-3 60.9 9900.0 19 15.0 555.0 0
sym-20-20-5 82.5 9900.0 28 15.5 430.2 0
sym-20-20-10 82.6 9900.0 25 14.3 842.2 0
sym-20-30-3 30.7 9754.7 13 6.9 504.9 0
sym-20-30-5 28.5 9900.0 10 5.6 349.1 0
sym-20-30-10 33.0 9900.0 12 5.7 463.6 0

Tables 11, 12, and 13 show the results for, respectively, symmetric, asymmetric and
real-world instances. As in previous sections, results for symmetric and asymmetric syn-
thetic tables are averaged over five instances. The tables show, both for L1 and L2, the
average (columns “mean”) and maximum (columns “max”) percentage deviation over all
the cells in the table, as well as the number of cells with “large” percentage deviations
(columns “large”) defined as discussed above.

The tables clearly show that L2-CTA typically provides much more “useful” data.
Indeed, for symmetric and asymmetric synthetic tables the average and maximum per-
centage deviations of L2-CTA were always smaller than those of L1-CTA, and the number
of cells with large deviations was always 0 for L2-CTA. For real-world tables, L2-CTA
always provided smaller average deviations and, excluding instances “hier13x13x13d” and
“hier13x13x13e”, the same can be said for the maximum deviations. The number of cells
with large deviations was also smaller for L2 than for L1, although, unlike for synthetic
tables, it is not always zero. Therefore, it can be concluded that, at least using as criteria
the number of cells with large percentage deviations, the utility of tables protected with
L2-CTA is higher than that of tables protected with L1-CTA.

It is fair to mention that L1-CTA may outperform L2-CTA for other measures. For
instance, the number of (non-sensitive) cells with zero deviations (nonperturbed cells) pro-
vided by L1-CTA is typically greater than for L2-CTA, as more variables can be expected
to be fixed at their bounds when minimizing a linear objective instead of a quadratic one.
However this is not a main inconvenience; indeed, CTA is used in practice as a second
stage after the introduction of stochastic noise (Giessing 2012), so original cell values will
anyway be modified.
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Table 12: Utility of protected tables for asymmetric instances.

L1 L2

instance mean max large mean max large

asym-10-20-3-2 27.8 9425.3 6 6.3 318.4 0
asym-10-20-3-5 36.6 9900.0 11 7.3 624.6 0
asym-10-20-3-10 36.0 9420.0 11 6.5 337.4 0
asym-10-20-5-2 31.6 9197.4 9 7.9 270.4 0
asym-10-20-5-5 44.5 9900.0 12 8.3 429.0 0
asym-10-20-5-10 36.7 9900.0 10 7.1 284.0 0
asym-10-20-10-2 60.9 9900.0 19 15.0 555.0 0
asym-10-20-10-5 82.5 9900.0 28 15.5 430.2 0
asym-10-20-10-10 82.6 9900.0 25 14.3 842.2 0
asym-10-30-3-2 30.7 9754.7 13 6.9 504.9 0
asym-10-30-3-5 28.5 9900.0 10 5.6 349.1 0
asym-10-30-3-10 33.0 9900.0 12 5.7 463.6 0
asym-10-30-5-2 42.9 9900.0 18 9.0 442.5 0
asym-10-30-5-5 52.9 9900.0 23 9.6 621.8 0
asym-10-30-5-10 45.5 9900.0 17 9.0 449.4 0
asym-10-30-10-2 62.1 9900.0 25 14.4 665.8 0
asym-10-30-10-5 74.8 9900.0 31 14.6 641.8 0
asym-10-30-10-10 91.9 9900.0 43 15.0 469.3 0
asym-20-20-3-2 31.6 9900.0 18 5.9 623.3 0
asym-20-20-3-5 38.0 9900.0 23 6.6 495.7 0
asym-20-20-3-10 31.8 9900.0 21 5.4 515.5 0
asym-20-20-5-2 40.7 9900.0 20 7.2 285.3 0
asym-20-20-5-5 40.6 9900.0 23 7.5 573.6 0
asym-20-20-5-10 42.9 9900.0 24 8.1 559.3 0
asym-20-20-10-2 67.6 9900.0 41 14.7 798.5 0
asym-20-20-10-5 88.7 9900.0 55 15.5 866.4 0
asym-20-20-10-10 91.1 9900.0 61 15.9 916.1 0
asym-20-30-3-2 30.8 9900.0 26 6.4 799.6 0
asym-20-30-3-5 36.0 9900.0 33 5.8 562.2 0
asym-20-30-3-10 36.2 9900.0 32 5.4 480.0 0
asym-20-30-5-2 41.0 9900.0 35 8.4 837.5 0
asym-20-30-5-5 51.6 9900.0 44 8.9 578.8 0
asym-20-30-5-10 54.2 9900.0 51 8.9 532.5 0
asym-20-30-10-2 72.8 9900.0 70 15.8 966.4 0
asym-20-30-10-5 87.7 9900.0 84 13.4 804.9 0
asym-20-30-10-10 88.3 9900.0 79 14.8 771.5 0
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Table 13: Utility of protected tables for real instances.

L1 L2

instance mean max large mean max large

australia ABS 70.5 153000.0 7 5.8 545.5 0
cbs 115.6 55400.0 33 9.3 156.5 0
hier13 0.9 69.7 11 0.8 18.8 2
hier13x13x13a 0.8 69.7 11 0.7 18.8 2
hier13x13x13b 0.8 69.7 11 0.7 18.8 2
hier13x13x13c 0.8 69.7 11 0.7 18.8 2
hier13x13x13d 1.1 82.5 16 0.9 99.6 6
hier13x13x13e 1.1 82.5 16 0.9 99.6 6
hier13x13x7d 1.1 46.5 15 0.7 12.2 1
hier13x7x7d 1.0 28.3 22 0.8 27.7 15
osorio 0.1 100.0 8 0.1 100.0 2
sbs2008 C 44279.7 13158600.0 21 1280.8 728200.0 0
sbs2008 E 3964.4 2023400.0 2 482.9 197875.0 0
table7 3.0 200.0 13 2.4 140.0 9
table8 0.3 150.0 3 0.1 11.1 0
targus 3.3 50.0 15 2.8 37.5 13

5 Conclusions

This paper studies the CTA problem with L2 distance. The peculiar structure of the
problem are pairs of alternative semicontinuous variables, such that exactly one of them
is nonzero in any feasible solution. Exploiting ideas from the Perspective Reformulation
approach, we developed and analyzed several MIQP, SOCP, and Semi-Infinite LP strong
formulations for the problem, which provide different degrees of approximation to the ob-
jective function of the classical PR. We show that one particularly simple MIQP model,
derived applying a relaxation of the P2R technique, is often preferable, from the compu-
tational viewpoint, at least on instances that are not “too much asymmetric”. Yet, other
models are better on highly asymmetric and with a large percentage of binary variables
instances, which are usually easier to solve; this also provides indications to practitioners
about setting the protection levels to the cells in order to make the instances more easily
solvable. The right choice of the model allows to solve real-life instances in reasonable time
with off-the-shelf, general-purpose MIQP solvers, at least on relatively powerful multi-core
computers and/or if a relatively large optimality gap is allowed. The published tables can
be expected to be “more useful” than those obtained with the L1 distance, albeit at a
greater computational effort. Indeed, since CTA is a difficult problem, instances with a
large number of sensitive cells and/or a high degree of symmetry remain difficult to solve
with high accuracy; further research will then be required to improve the effectiveness of
the solution methods for these cases. Also, the specific structure of CTA may show up,
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perhaps with non-quadratic functions, in other applications: the techniques developed in
this paper could be adaptable to these cases.
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Appendix. Proof of Theorem 1.

As in Section 3 we will concentrate on a fixed cell i ∈ S and therefore drop the index i.
Also, in the development we assume w.l.o.g. w = 1, because it is a multiplicative factor
which just goes untouched through the derivation. It is easy to see that the constraint

min{ l , u } ≤ z+ + z− ≤ max{ ū , −l̄ } (17)

is implied by (9): in all integral solutions one has either z+ ≤ ū and z− = 0, or z− ≤ −l̄
and z+ = 0, and, analogously, either z+ ≥ u and z− = 0 or z− ≥ l and z+ = 0. Therefore,
we can consider (17) as explicitly added to the formulation if we need it. Furthermore,
the constraints 0 ≤ z+ ≤ ū and 0 ≤ z− ≤ −l̄ are always valid.

From (9) we immediately obtain

0 ≤ z+/ū ≤ y ≤ z+/u

(l − z−)/l ≤ y ≤ (z− + l̄)/l̄ ≤ 1

which yields

δ(z+, z−) = max

{

z+

ū
, 1−

z−

l

}

≤ y ≤ min

{

z+

u
, 1 +

z−

l̄

}

= ∆(z+, z−) . (18)

We now want to develop a closed-form formula for the optimal solution y(z+, z−) of (15).
We therefore need to find the value of y such that

∂h(z+, z−, y)

∂y
= −

(z+)2

y2
+

(z−)2

(1− y)2
= 0,

where h( z+ , z− , y ) = cof( z+ , z− , y ) in (11), which leads to

(1− y)2(z+)2 = y2(z−)2 ⇔ (1− 2y + y2)(z+)2 = y2(z−)2

y2((z+)2 − (z−)2)− 2y(z+)2 + (z+)2 = 0 ⇔ y = z+/(z+ + z−) = ỹ

as 0 ≤ y ≤ 1, z+ ≥ 0 and z− ≥ 0. In fact, the other root of the quadratic equation,
z+/(z+− z−), coincides with ỹ when z− = 0, is > 1 when z+ > z− > 0, is indefinite when
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z+ = z− and is < 0 when z− > z+, and therefore is never relevant. Moreover, the second
derivative

∂2h(z+, z−, y)

∂y2
= 2

(z+)2

y3
+ 2

(z−)2

(1− y)3

is greater then zero in y = ỹ when 0 < ỹ < 1. Me must now distinguish three cases:

1) ỹ ≤ δ(z+, z−) ⇒ y(z+, z−) = δ(z+, z−);

2) δ(z+, z−) < ỹ < ∆(z+, z−) ⇒ y(z+, z−) = ỹ;

3) ∆(z+, z−) ≤ ỹ ⇒ y(z+, z−) = ∆(z+, z−).

For case 2), plugging y = ỹ = z+/(z+ + z−) into (9) gives

u ≤ z+ + z− ≤ ū and l ≤ z+ + z− ≤ −l̄ . (19)

Therefore, under these conditions, the optimal objective function value f∗(z+, z−) =
h(z+, z−, ỹ) takes the particularly simple form

f∗( z+ , z− ) = h( z+ , z− , z+/(z+ + z−) ) = (z+ + z−)2 ,

i.e., (16). Hence, in the totally symmetric case ū = −l̄, l = u one has max{ ū , −l̄ } =
min{ ū , −l̄ } and max{ u , l } = min{ u , l }, only case 2) can happen: g(z+, z−) =
f∗(z+, z−). Note that, as claimed in the Theorem, (16) ≡ f∗(z+, z−) ≤ g(z+, z−) as it
corresponds to unconstrained minimization over y.

With non-symmetric data, cases 1) and 3) has to be taken into account. The analysis
has to be divided into several sub-cases.

1) ỹ ≤ δ(z+, z−). Because δ(z+, z−) = max{z+/ū, 1− z−/l}, two sub-cases have to be
separately considered:

1.1) z+/ū ≥ 1 − z−/l and ỹ ≤ z+/ū; by simple algebraic manipulations, these two
conditions boil down to

lz+ + ūz− ≥ ūl (20)

z+ + z− ≥ ū (21)

By rewriting (20) in the equivalent form

z+ + z−(ū/l) ≥ ū

it is immediately evident that one among (20) and (21) is redundant when the
other is imposed; this depends on which of the two conditions

ū ≤ l (22)

l ≤ ū (23)

holds. In particular,
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∗ (22) ⇒ (20) dominates (21);

∗ (23) ⇒ (21) dominates (20).

In either case we have y(z+, z−) = z+/ū, which finally leads to

g( z+ , z− ) = h( z+ , z− , z+/ū ) = ū((z−)2/(ū− z+) + z+) . (24)

Note that the objective function value is always positive, as z+ ≤ ū.

1.2) z+/ū ≤ 1− z−/l and ỹ ≤ 1− z−/l; this gives

lz+ + ūz− ≤ ūl (25)

z+ + z− ≤ l (26)

Again, by rewriting (25) in the equivalent form

z+(l/ū) + z− ≤ l

we see that one of these is redundant when the other is imposed, depending on
the same conditions (22)/(23); that is,

∗ (22) ⇒ (25) dominates (26);

∗ (23) ⇒ (26) dominates (25).

In either case we have y(z+, z−) = 1− z−/l, which finally leads to

g( z+ , z− ) = h( z+ , z− , 1− z−/l ) = l((z+)2/(l − z−) + z−) . (27)

Note that the objective function value is always positive, as z− ≤ z+ + z− ≤ l.

3) ∆(z+, z−) ≤ ỹ. Because ∆(z+, z−) = min{z+/u, 1 + z−/l̄}, again this can happen
in two different ways:

3.1) z+/u ≤ 1 + z−/l̄ and ỹ ≥ z+/u; this is equivalent to

−l̄z+ + uz− ≤ −l̄u (28)

z+ + z− ≤ u (29)

where as usual (28) can be rewritten as z+ + z−(u/− l̄) ≤ u. Thus, according
to which among

−l̄ ≤ u (30)

u ≤ −l̄ (31)

holds, one of the constraints is useless; indeed,

∗ (30) ⇒ (28) dominates (29);

∗ (31) ⇒ (29) dominates (28).
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In either case we have y(z+, z−) = z+/u, which finally leads to

g( z+ , z− ) = h( z+ , z− , z+/u ) = u((z−)2/(u− z+) + z+) . (32)

Note that the objective function value is always positive, as z+ ≤ z++ z− ≤ u.

3.2) z+/u ≥ 1 + z−/l̄ and ỹ ≥ 1 + z−/l̄; one has

−l̄z+ + uz− ≥ −l̄u (33)

z+ + z− ≥ −l̄ (34)

According to which among (30)/(31) holds, one of the above (considering that
(33) can be rewritten as z+(−l̄/u) + z− ≥ −l̄) is irrelevant; that is,

∗ (30) ⇒ (33) dominates (34);

∗ (31) ⇒ (34) dominates (33).

In either case we have y(z+, z−) = 1 + z−/l̄, which finally leads to

g( z+ , z− ) = h( z+ , z− , 1 + z−/l̄ ) = (−l̄)((z+)2/(−l̄ − z−) + z−) . (35)

Again, the objective function value is always positive, as z− ≤ −l̄.

From the above discussion we conclude, remembering that 0 ≤ u ≤ ū and 0 ≤ l ≤ −l̄, that
the (z+, z−) space can be partitioned into several subsets, in each of which the objective
function is uniquely determined. Again this requires a case-by-case discussion:

• If ū ≤ l (cf. (22)), then max{l, u} = l ≥ min{ū,−l̄} = ū; therefore, case 2) is not
significant (cf. 19). Because (20) dominates (21) and (25) dominates (26), we have
that for all u ≤ z+ + z− ≤ −l̄

g(z+, z−) =

{

ū((z−)2/(ū− z+) + z+) if lz+ + ūz− ≥ ūl

l((z+)2/(l − z−) + z−) if lz+ + ūz− ≤ ūl
.

• Analogously, if −l̄ ≤ u (cf. (30)), then max{l, u} = u ≥ min{ū,−l̄} = −l̄; therefore,
case 2) does not happen (cf. 19). Because (28) dominates (29) and (33) dominates
(34), we have that for all l ≤ z+ + z− ≤ ū

g(z+, z−) =

{

u((z−)2/(u− z+) + z+) if − l̄z+ + uz− ≤ −l̄u

(−l̄)((z+)2/(−l̄ − z−) + z−) if − l̄z+ + uz− ≥ −l̄u
.

If none of the above two “extreme” cases occur, then the “simple” inequalities (21), (26),
(29), and (34) all dominate their “complex” companions (20), (25), (28), and (33), respec-
tively. We can thus continue the discussion listing all other possible ways in which l, u,
−l̄ and ū can be arranged along the line:
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• If l ≤ u ≤ ū ≤ −l̄, then max{l, u} = u and min{ū,−l̄} = ū. Thus,

g(z+, z−) =















u((z−)2/(u− z+) + z+) if l ≤ z+ + z− ≤ u

(z+ + z−)2 if u ≤ z+ + z− ≤ ū

ū((z−)2/(ū− z+) + z+) if ū ≤ z+ + z− ≤ −l̄

• If l ≤ u ≤ −l̄ ≤ ū, then max{l, u} = u and min{ū,−l̄} = −l̄. Thus,

g(z+, z−) =















u((z−)2/(u− z+) + z+) if l ≤ z+ + z− ≤ u

(z+ + z−)2 if u ≤ z+ + z− ≤ −l̄

(−l̄)((z+)2/(−l̄ − z−) + z−) if − l̄ ≤ z+ + z− ≤ ū

• If u ≤ l ≤ −l̄ ≤ ū, then max{l, u} = l and min{ū,−l̄} = −l̄. Thus,

g(z+, z−) =















l((z+)2/(l − z−) + z−) if u ≤ z+ + z− ≤ l

(z+ + z−)2 if l ≤ z+ + z− ≤ −l̄

(−l̄)((z+)2/(−l̄ − z−) + z−) if − l̄ ≤ z+ + z− ≤ ū

• If u ≤ l ≤ ū ≤ −l̄, then max{l, u} = l and min{ū,−l̄} = ū. Thus,

g(z+, z−) =















l((z+)2/(l − z−) + z−) if u ≤ z+ + z− ≤ l

(z+ + z−)2 if l ≤ z+ + z− ≤ ū

ū((z−)2/(ū− z+) + z+) if ū ≤ z+ + z− ≤ −l̄

Thus, we have a total of 6 possible cases; in 4 of them the function has three pieces, two
SOCP ones and a quadratic one, while in the remaining 2 the function has two pieces, all
of them being SOCP. We have therefore completed the proof of Theorem 1.
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