On geometrical properties of preconditioners in IPMs
for classes of block-angular problems

Jordi Castro Stefano Nasini
Dept. of Stat. and Oper. Res. Dept. of Marketing
Universitat Politécnica de Catalunya IESEG School of Management
Barcelona, Catalonia Lille, France
jordi.castroQ@upc.edu snasiniQieseg.fr

Research Report UPC-DEIO DR 2016-03
February 2016; updated November 2016

Report available from http://www-eio.upc.es/~jcastro

ON GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMS FOR
CLASSES OF BLOCK-ANGULAR PROBLEMS*

JORDI CASTRO T AND STEFANO NASINI #

Abstract. One of the most efficient interior-point methods for some classes of block-angular structured problems
solves the normal equations by a combination of Cholesky factorizations and preconditioned conjugate gradient for,
respectively, the block and linking constraints. In this work we show that the choice of a good preconditioner depends
on geometrical properties of the constraints structure. In particular, it is seen that the principal angles between the
subspaces generated by the diagonal blocks and the linking constraints can be used to estimate ex-ante the efficiency
of the preconditioner. Numerical validation is provided with some generated optimization problems. An application
to the solution of multicommodity network flow problems with nodal capacities and equal flows of up to 64 million
variables and up to 7.9 million constraints is also presented.

Key words. interior-point methods, structured problems, preconditioned conjugate gradient, principal angles,
large-scale optimization

AMS subject classifications. 90C06, 90C08, 90C51

1. Introduction. Many real-world optimization problems exhibit a primal block-angular struc-
ture, where decision variables and constraints can be grouped in different blocks which are dependent
due to some linking constraints Applications of this class of problems can be found, for instance,
in multicommodity telecommunications networks, statistical data protection, multistage control and
planning, and complex networks.

Solution strategies to deal with this class of problems can be broadly classified into simplex-based
methods [14, 23|, decomposition methods [17, 1, 2, 27|, approximation methods [5], and interior-
point methods [10, 21]. One of the most efficient interior-point methods (IPMs) for some classes of
block-angular problems solves normal equations by a combination of Cholesky factorizations for the
block constraints and preconditioned conjugate gradient (PCG) iterations for the linking constraints
[10, 11]. The spectral radius of a certain matrix in the preconditioner, which is always in [0,1)
plays an important role in the efficiency of this approach. It was observed that for separable convex
problems with nonzero Hessians this spectral radius is reduced, and the PCG becomes more efficient
[13]. When the spectral radius approaches 1, switching to a suitable preconditioner may be an efficient
alternative [7]. It is worth noting that computing approximate Newton directions by PCG does not
destroy the good convergence properties of IPMs, as shown in [20]. There is an extensive literature
on the use of PCG within IPMs for other types of problems (e.g., [3, 4, 9, 18, 25, 28] to mention a
few).

However, it is not yet clear why for some classes of block-angular problems the above approach
may be very efficient (see, for instance, the results of [13, 12]), while it may need a large number of
PCQG iterations in others. The spectral radius may be used to monitor the good or bad behaviour, but
an ex-ante explanation has to be found in the structural information of the block-angular constraints
matrix. The purpose of this paper is to provide such a explanation by considering geometrical
properties of the primal block-angular matrix structure which, in addition, may be used to improve the
preconditioning in some instances. It will be shown that the principal angles between the subspaces
generated by the diagonal blocks and the ones generated by the linking constraints play an important
role, explaining the efficiency of the approach and providing a proper choice of the preconditioner.

This paper is organized as follows. Section 2 outlines the specialized IPM for primal block-
angular problems. Section 3 analyzes the quality of preconditioning techniques based on geometrical
and spectral properties. This analysis is used to obtain complementary preconditioners to deal with
orthogonality and collinearity of the subspaces generated by the diagonal blocks and the ones gener-
ated by the linking constraints. Section 4 provides a numerical validation of the analysis in previous
section. This is based on both a simulation analysis of the effect of geometrical relations on PCG
iterations—Subsection 4.1—and a real world application to multicommodity network flow problems
with nodal capacities—Subsection 4.2—, where the analyzed geometrical properties can be fully ex-
ploited.

*This work has been supported by MINECO-FEDER grants MTM2012-31440 and MTM2015-65362-R.

TDept. of Statistics and Operations Research,Universitat Politécnica de Catalunya, Jordi Girona 1-3, 08034
Barcelona, Catalonia. jordi.castro@Qupc.edu

fDepartment of Marketing, IESEG School of Management (LEM-CNRS 9221), 3 rue de la Digue, 59000 Lille,
France. s.nasini@ieseg.fr

mailto:jordi.castro@upc.edu
mailto:s.nasini@ieseg.fr

2 JORDI CASTRO AND STEFANO NASINI

2. Outline of the IPM for primal block-angular problems. The primal block-angular
formulation dealt with by the algorithm is

k
(2.1a) min Z(ci)Txi
=0

A Nl xl bl
subject to N, 22 b2
(2.1b) : — :
Nk Ik bk
L1 L2 e Lk I .TO bO
(2.1c) 0<az'<u’ i=0,... k

Matrices N; € R™*" and L; € R*™ j =1,..., k, respectively define the block-diagonal and linking
constraints, k being the number of blocks. Vectors 2° € R™,i = 1,...,k, are the variables for each
block. 29 € R! are the slacks of the linking constraints. b* € R™ i =1,...,k, is the right-hand side
vector for each block of constraints, whereas b° € R! is for the linking constraints. The upper bounds
for each group of variables are defined by u* € R™,5 = 0,...,k. Problems with equality linking
constraints can be formulated by setting «® = 0. The total number of constraints and variables of
(2.1) is thus, respectively, m =1+ Zle m; and n = [+ Zle n,;. Formulation (2.1) is a very general
model which accommodates to several block-angular problems.

In this work we consider the specialized IPM of [10, 11]. Briefly, this approach requires the solution
at each interior-point iteration of the normal equations system AOAT Ay = g, where A € R™*™ is the
constraints matrix of (2.1b); © = (W(U - X)"'+ZX~1)~! € R” is a diagonal matrix computed from
the values (x,w, z) € R3" of the current primal-dual point—w and z being the Lagrange multipliers
associated to, respectively, upper and lower bounds; Ay € R™ is the direction of movement for the
Lagrange multipliers of equality constraints y; and g € R™ is some right-hand side. A derivation of
the normal equations can be found in [29].

Exploiting the block structure of A and © we have

[N1O1 N, N,©O,LT 1
ABOATAy = Nx©OLN, Ny©LL] Ay
(2.2)
| LGN ... LiOyN] | Qg+ 8 Lo, L] |

B C Ayl o g1
ERIFA
where Ay; and Ays are the components of Ay associated to, respectively, block and linking con-
straints; ©; = (Wi(U; — X;)™' + Z;X; 1), i = 0,...,k, are the blocks of ©; and g = (g{ g5)" is
a proper partition of the right-hand side g. By eliminating Ay; from the first group of equations of
(2.2), we obtain

(2.3a) (D—-C"B™'C)Ays = (g2 — C"B71gy)
(2.3b) BAy, = (g1 — CAya).

The specialized IPM for this class of problems solves (2.3) by a combination of k Cholesky factor-
izations, for the systems involving B and PCG for (2.3a). Indeed, matrix D — CTB~1C € R of
(2.3a), whose dimension is the number of linking constraints, is symmetric and positive definite, since
it is the Schur complement of the normal equations (2.2), which are symmetric and positive definite.
System (2.3a) can thus be solved by PCG. A good preconditioner is instrumental. D — C T B~1C is
a P-regular splitting, i.e., it is symmetric and positive definite, D is nonsingular and D + CTB~1C
is positive definite. Therefore the P-regular splitting theorem [26] guarantees that

(2.4) 0<p(D~Y(C"B'C)) <1,

where p(-) denotes the spectral radius of a matrix (i.e., the maximum absolute eigenvalue). This
allows us to compute the inverse of D —C T B~1C as the following infinite power series (see [10, Prop.

GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs 3

4] for a proof).

(2.5) (D-Cc'B7 o)t = (i(pl(cTBlc))i> D™

=0

A preconditioner is thus obtained by truncating the infinite power series (2.5) at some term.
The more the terms included, the better the preconditioner will be, at the expense of increasing
the execution time of each PCG iteration. If we only include the first term, or the first and second
terms, of the infinite power series (2.5) the resulting preconditioners will be, respectively, D~! or
(I+D~Y(CTB~'C))D~!. As shown in [12], in most test problems D~! was the best option for the
tradeoff between being a good and an efficient preconditioner. Thus, in this work we will focus on
the first term preconditioner D~!. Although the expected performance for a general primal block-
angular matrix is problem dependent, the effectiveness of the preconditioner obtained by truncating
the infinite power series (2.5) is governed by the spectral radius p(D~!(CT B~'C))—the farther from
1, the better [13]—and the structure of D, as each PCG iteration requires the solution of a system
with this matrix.

The spectral radius tends to approach 1 when the IPM is close to the optimal solution [13]. For
this reason a hybrid preconditioner was introduced in [7]: the power series preconditioner (either
D='or (I + D~YCTB~C))D™!) is used in the initial IPM iterations, switching to the splitting
preconditioner [25] when the former becomes inefficient. The above hybrid scheme is supported by
the known good behaviour of the splitting preconditioner near the solution of the linear optimization
problem. Briefly, given the normal equations matrix A©OAT, the splitting preconditioner is based on a
partition of the columns of A into basic and nonbasic columns, forming the nonsingular basis matrix
Ap € R™*™ and the nonbasic one Ay € R™*("=7) respectively. Applying the same partition to ©,
the normal equations matrix can be rewritten as

(2.6) AOAT = AgOpAL + ANONAY.

The splitting preconditioner is defined as (9]_31/ 2A§1. The symmetric application of this preconditioner
to AOAT gives:

on (O PARNAOATIO, P AT =0, 4, (As0pA + AxOyAL)ALTO
' =1+ (057 A5 Av0 %) (0,7 A5 Ave).
Sufficiently close to an optimal solution, with a suitable choice of the columns of Ag, the diagonal
entries of @gl and Oy are very small and (6);;1/ 2Al_glA N@%Q) approaches the zero matrix. Some
strategies for identifying a suitable matrix Ap are discussed in 25, 7].
This specialized IPM has been recently implemented in a software package called BlockIP [12],
that will be used for the computational results of this paper.

3. Analysis of preconditioning techniques for block-angular problems. By the defini-
tion of B, C' and D in (2.2), we may write

k
C'B7'C = Y Li®;N] (N;©;N)™' N;©;L]
(3.1) =t
= Y Le/?rel’L]
i=1
where
(3.2) P, =0!*N (N;o,NJ) ' Nior? i=1,... k

is the projection operator onto R(G)}/QNZT), the range or column space of @}/2NZ—T. Let us consider
the following two opposite cases:

1. If each column of ©}/2L] belongs to R(O1/*N,") for i = 1,...,k (which is equivalent to
saying that the rows of Li@}/ 2 might be written as a linear combination of the rows of
NZ@;/Q) then Pi@i/szT = @;/QLZT, as P; is the identity operator of the subspace generated

4 JORDI CASTRO AND STEFANO NASINI

u e R(©,LT)

1

v € R(OANT)

Fic. 1. Angles between subspaces.
1/2 77T
by the columns of ©,”"N,', and

k
p-c™B7'c =D-Y L0/’ Pel’L]
(3.3) =t
-D— ZLi@iLiT = 0,.
=1

2. On the contrary, if each column of @3/2L; belongs to N(NZO;/Q), the null space of Ni®1/2

i
fori=1,...,k, then PZ-G;/QLZ-T =0 and

k
(3.4) D—-C'BlCc =D-— ZLi@szi@;/zL;r - D

i=1

Thus O, and D~! would be the inverse of D —CTB~'C (i.e., the exact preconditioners) when,
for i = 1...k, each column of @;/QL; belongs to either ’R(@;/QNZT) or N(NiG)}/Q), respectively.
Needless to say, these two extreme cases will rarely appear in a real problem; for instance, when
@;/ 2LZT belongs to R(@;/ 2NZ-T) the linking constraints are redundant and can be removed, obtaining
a block-separable problem. However, as seen in next subsections, they allow to decide whether D!
or Oy ! will be a good preconditioner for (2.3a), and which of them will theoretically behave better.

3.1. Geometrical and spectral properties.
According to previous discussion, the goodness of the approximation of O Yand D' to (D —

CTB~'C)~! might be measured by the principal angles between the range spaces of @3/2NiT and

@;/ QLZT, for i =1,...,k. The principal angles provide information about the relative position of two
subspaces of an inner product space. Consider two subspaces Lg and Ng of R", with dim Lg = [,
dim Ng = m, and ¢ = min{l,m}. The principal angles between Lg and Ng, denoted as 0 < v <
... <74 < /2, are obtained by solving for j = 1,..., ¢ this sequence of optimization problems [6][19,
Chapter 12]:

(3.5) cos(v;) = max u'v

(3.6) subject to |ul| =1, ||v]| =1

(3.7) u€ Lo, vENg

(3.8) viop =0, ulu,=0,k=1...7—1,

u; € R" and v; € R" being the optimal vectors. In other words, for j = 1 the procedure finds
the unit vectors u; € Lo and v; € Mg which minimize the angle between them—mnamed ~;. For
j > 1, the procedure considers the orthogonal complements of span{ui,...,u;_1} in Lg and of
span{vi,...,vj_1} in Ng, and computes a new pair of vectors u;, v; in the above subspaces minimizing
the angle ;. In our case, we have that Lo = R(OY2LT) and Ng = R(Q/2NT), where N = N,
L =1L1; and © = ©; for some i € {1,...,k}. The vectors {uq,...,uqs} and {v1,...,v,} are called
principal vectors, associated to principal angles {v1,...,7,}. The principal angles between subspaces
can be graphically depicted as in Figure 1. If ¢ = m = [, the distance between the equidimensional
subspaces Lo and Ng is defined as siny, = /1 — cos?~, [19, Chapter 2|. The Appendix shows a
procedure to compute principal angles based on the singular value decomposition. This procedure is

GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs 5

prohibitive for large optimization problems, but, as it will be shown later, it is not required in our
optimization method.

As ©;,i=1,...,k, are different at each interior-point iteration, the principal angles between the
subspaces Lo and Ng also change. Accordingly, the goodness of the approximation of © Yand D!
to (D — CTB~1C)~! dynamically changes along the interior-point iterations. Proposition 3.1 below
provides a lower bound of the cosine of principal angles of Lo and Ng as a function of the principal
angles of £ = £; and N' = N7, that is, the subspaces £ = R(L]) and N' = R(N,") defined by
matrices L; and IV; without the scaling matrix ©;.

PROPOSITION 3.1. Consider the subspaces L = R(L"T) C R® and N = R(N") C R", and
the associated subspaces Lo = R(OV2LT) C R" and No = R(OY2NT) C R under the linear
transformation ©'Y2, where L = L;, N = N; and © = ©; for some i € {1,...,k}, © thus being
a positive diagonal matriz. Let v(u,v) be the first principal angle between L and N, associated to
principal vectors u and v; and Yo the first principal angle between Lo and Ng. If L and N are not
orthogonal, then

(3.9) cos(ve) > max {0, @®C cos (fy(u,v))} ,

max

where Omin and Omax are the smallest and largest diagonal components of ©, and O, € [—Omax, Omaz)-
If in addition u;v; > 0 for all i =1,...,n then we have

6min
(3.10) cos(ve) > o 8 (v(u,v)) > 0.

/ / . /
Proof. Let v (%, %) be the angle between the unitary transformed vectors % €

Lo and % € No. From the definition of principal angles as resulting from the maximization

problem (3.5)—(3.8), and since vectors Hgigz” and ”81;2” are feasible for this problem, we have

@1/2u @1/21}
3.11 cos > cos , .
&1 R)
Since u, v are principal vectors, by (3.6) |lu|| = ||v|| = 1. Moreover, since principal angles are always

in [0,7/2], and we are assuming £ and A are not orthogonal, we have
(3.12) 0<u'v=ull [Jv] cos(y(u,v)) = cos(y(u,v)) < 1.

By definition of inner product, by (3.12), using that for any square matrix M and vector w |Mw| <
| M| ||lw]|, and that v/Omax > ||©2],

e'/2y oY%y u'Ov u'Ov
cos | v /2,1 T©1/2 = oi/2 1/2 = 1/2]2 =
[©1/2ul| " [[©1/20]] [©1/2ul| [[©1/20] — [[©/2[]2 [lu]]

(3.13)

1 u'6wv u' Ou

> >
cos(3(u,0) =

T Opax UV

cos(y(u,v)).
Defining the set P = {i € {1,...,n} : u;v; > 0}, since |jul| = ||v]| =1 and u"v < 1, we have that

(3.14) 0<> ww; <1 and —1<) uw <0.
ieP igP
Then, by (3.14),
u'OU =" Ouv; + Y Oitliv; > Omax Y Uit > —Opax,
i€P igP igP
and similarly,
u' Qv = Z Ouv; + Z O;u;v; < Opax Z UiV < Opax.
i€P igP i€P
Then, there exists some (unkwon) ©. € [—Omax, Omax| such that

(3.15) O, =u'Owv.

6 JORDI CASTRO AND STEFANO NASINI

Applying (3.15) in (3.13), and since, by definition, cos(ye) > 0, inequality (3.9) is proved.
If u;v; >0 foralli=1,...,n, we have

uw'Ov _ Opinu'v
ulv = wulw

Applying (3.16) to the penultimate term of (3.13) we get (3.10). O

An important consequence of Proposition 3.1 is that we have no information about the principal
angles in the final iterations of the IPM, as ©in/Omax can approach 0 and ©./0O,.x can be any
number in [—1,1] when the iterative process gets close to the optimal solution. In the worst case, it
may even happen that almost-collinear subspaces £ and N become almost-orthogonal for some ©.

It is worth noting that the two extreme cases have opposite behaviour:

e If £ and N are orthogonal (that is, their principal angles are m/2), then, for a diagonal ©
matrix such that some component ©; ; is very large, and for other components j # ¢ ©;; =~ 0,
the principal angles of Lg and Ng will become close to 0. This is a limit case of (3.10). In
such a situation, D~! would be the best preconditioner for the first interior-point iterations,
while Oy ! should be used for the last ones. However, we empirically observed that, for the
instances considered in this work, large principal angles in the first interior-point iterations
may not tend to 0 as the algorithm approaches the solution. This will be illustrated in below
Subsection 3.2.

e If £ C N, then the principal angles are 0. This means that, for some matrix ¥ € R™*!,
LT = NTY, thus (©Y/2LT) = (©2NT)Y and the principal angles of Lo and Ng will
also be 0. Although this case is not of practical interest—since if £ C A then the linking
constraints are redundant and can be removed—it can explain, as we observed, why small
principal angles in the initial interior-point iterations remain small near the optimal solution.

As shown below, the goodness of the dynamical approximation of ©g U and D! to (D —
CTB~1C)~! along the interior-point iterations is related to the changes in the spectral radius of
matrix D~1(C'T B~1C)—which is always in [0,1) [10, Theorem 1]. Since D~! is the first term of the
power series (2.5), the farther away from 1 is the spectral radius of D~1(CT B=1C) the better is the
quality of the approximation of the first few terms of (2.5). Although the particular behavior of the
spectral radius value is problem dependent, in general, it comes closer to 1 as we approach the optimal
solution, because of the ill-conditioning of the ® matrix. Next result provides a clear relationship
between the spectral radius of D~1(CT B~1C) and the projection operators in the subspaces Lg and
Ne.

PROPOSITION 3.2. Let A be an arbitrary eigenvalue of D~ (CTB~1C). If each column 0]‘@;/2L1T

belongs to R(@g/zN;) then

(3.16) = Opin.

k
T‘T (Zi:l Ll@zLZT) r
r' Dr ’

(3.17) A=
where T is an eigenvector associated to \. On the contrary, if each column of @ll/ZLiT belongs to
./\/'(Ni@;/Q), the null space of Ni@i/Q, then

(3.18) A=0.

Proof. Eigenvalue \ of D~1(C'T B~1C) satisfies (CT B~1C)r = ADr for some eigenvector r. From
the definition of C, B, D in (2.2) and projection matrices P; in (3.2) we have

k
(Z LiO:N, (N:&;N,) ' N;@;L]) r = ADr
i=1
is equivalent to
k k 1
(1—X\)Dr = <@0 + ZLi@iLZT) r— (Z L;O;N;” (N;&;N,") "~ Ni@iLiT> r,
i=1 i=1

which implies

k
rTOr +77 <Z L:©,”(I - P»@i”LI) r
=1

(3.19) (1-)) = 5

GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs 7

From this expression and applying the definition of W and Wys
u 1/2 1/2 k 1/2 1/2
(3.20) Wy => L&, (I-P)0, L[and Wg=>)» L®©, PO, L],
i=1 =1
we find the following identities

rT <Zf:1 L&)JJ) r—1r T War T Waer

rT Dr "~ rTDr

(3.21) A=

It turns out that r " Wy = 0 when each column of 93/21/; belongs to R(@;ﬂN;); and 7' Wgrr =0
when each column of 92/2LI belongs to N(Nl@:/Q). The proof is complete. O

Note that a clear lesson from Proposition 3.2 is that the spectral radius might be small even in the
case of almost collinearity between the rows of LZ@;/2 and their projections into R(@;/ 2 N,T), when
rTQr > TT(Zle L;0;L])r. This means that, although O is in theory a better preconditioner
in case of almost collinearity, in practice it can be even outperformed by D. This is consistent with

some of the computational results of Subsections 4.1-4.2, and with Theorem 1 of [13], which stated
that the spectral radius p of D~'(C' T B~1(C) is bounded by

(3.22) 0<p< max — 0 <1,
je{1,...,l} (’UJ) O0; + 5
v] J
where u is the eigenvector (or one of the eigenvectors) of D~*(CTB~1C) for p; v, 3=1,...,1,and

V = [V ...V]], are respectively the eigenvalues and matrix of columnwise eigenvectors of Zf:l L:O;L;;
v =V Tu (and, abusing of notation, we assume that for v; = 0, (u;/v;)? = +00). Clearly, from (3.22),
the larger O, the closer p to 0, which it is also concluded from (3.17).

3.2. Practical estimation of principal angles. The use of principal angles between subspaces
in our context has two downsides:

e If the subspace spanned by linking constraints is R, that is, if R(L,) = R™, fori =1,... k,
then NV; C £;. In such case the principal angles are always zero, regardless of what R(N,)
is. This happens, for instance, in multicommodity network flow problems [10], edge-colored
network problems [15], and cutting planes approaches for facility location problems [16],
where L; = I, for i = 1,...,k. Our interest is on whether the linking constraints belong to
R(NZ-T), equivalent to saying that the rows of L; may be written as a linear combination of
the rows of N;, whereas the principal angles between R(L,) and R(N,") might be seen as
a measure of mutual dependency, in the sense that they go to zero even in the opposite case
when the rows of N; are linear combinations of the ones of L;. The latter condition does not
imply any favorable argument for Oy as a preconditioner.

e As already stated in previous subsection, the computation of principal angles between Lg
and Ng using the algorithm of Figure 7 in the Appendix can be totally prohibitive to be
included as part of the optimization procedure.

To circumvent the above drawbacks, two sensible and more practical approaches will be described
below. Both are based on the computation of principal angles between a subspace Lo, = R(@ll / 2LT)
of dimension 1 (that is, L € R'*™) and Ng, = R(@il/QNiT) (where N; € R™*™). In this case,
the problem (3.5)—(3.8) is highly simplified. First, ¢ = min{l,m;} = 1, and then we do not have
constraints (3.8) (i.e., there is only a principal angle to compute). Second, constraints (3.6) and (3.7)
impose

1

VIO, LT

(3.23) u= @3/2LTOL, for some a € R, and 1 = u'v = o?LO,L ", such that a =

Similarly, we have
(3.24) v= @;/QNiTa:, for some x € R™, and v'v =2 N;N, = = 1.

Then, using (3.23) and (3.24) the optimization problem (3.5)—(3.8) reduces to

cos(y) = max w' v=c'z N,;0,L
zER™ where ¢= ———,
subject to " N;N, 'z =1 v LO,LT

8 JORDI CASTRO AND STEFANO NASINI

whose solution can be directly computed, considering a Lagrange multiplier v € R for the constraint,
as

1
(3.25) r* = (Ni@iNiT)_lQ% where vt = 5\/CT(Ni@iNiT)7lc .

v

Since for the principal angle we only need the optimal value of the objective function cos(y) = ¢' z*,

computations can be simplified by noting that

T(N.O.NT)-1
(3.26) cos(y) = ¢zt = c (N;O;N;')~'c
Ve (NN) e

= \JeT (VN) e

The cost of solving (3.26) is equivalent to the solution of a system of equations with one of the blocks
defining matrix B in (2.2), whose factorization is already available at each interior-point iteration.
The two practical approaches considered for computing principal angles, which rely on (3.26),
are as follows:
e For each block 4, i = 1,...,k, and linking constraint j, j = 1,...,l, we solve (3.26) for
L = L; j, that is, we compute the principal angle—denoted as v; ;—between IN; and the j-th
row of L;. Then the reported principal angle is the average of principal angles:

k 1
>ic1 Zj:l Vi,g

2 —
(3.27) v o

The inconvenience of this approach is that it solves kl problems (3.26). A good feature of
this method is that it averages angles between real linking constraints and block matrices.

e To reduce the number of problems (3.26) to be solved, in this second method we compute,
for each block 7, i = 1,...,k, the principal angle between N; and the average of the rows of

L;, that is we solve (3.26) for L = L; = (22.:1 L; ;)/l. If we denote this angle as 7;, then the
final angle provided is

Eo_
D1 Vi

(3.28) ==

This approach only requires solving k problems (3.26). However, it provides some sort of
approximation of the principal angle, since it does not use the rows of L;, but a convex
combination of them. This can be justified by noting that, if the principal angle between
every row L; ;, 7 =1,...,1, and N; is O (that is, L; ; is linearly dependent with the rows of
N;) then the principal angle between a convex combination of rows of L; and N; will also be
0.
The above two approaches have been implemented in the optimization package used for the compu-
tational experiments. Figure 2 shows the estimation of principal angles obtained with either (3.27)
or (3.28) during the interior-point iterations of four of the instances of Tables 3-6 of Subsection 4.2.
We observe that, for the first interior-point iterations, both methods provide similar values. How-
ever, when we approach the optimal solution, angles computed with (3.28) tend to go to 0, while
those obtained with (3.27) in general remain close to the original values. From Table 7 of Subsec-
tion 4.2—which provides the true angles for these instances, computed using the costly algorithm in
Figure 7 of the Appendix—we see that angles computed with (3.27) are usually better estimations.
Unfortunately, in the huge instances of Subsection 4.2, method (3.27) was prohibitive (it resulted in
very high CPU times), so we had to (successfully) apply method (3.28). The estimations with (3.27)
in Figure 2 also confirm, as discussed in previous subsection, that although the scaling matrices ©;
may change the principal angles at each interior-point iteration, in general when the angles are large
at the first iterations, they remain large near the optimal solution.

There are other possible methods to reduce the computational cost of (3.27), such as, for instance,
to consider just a sample or a representative subset of rows of L;. However, we did not try these
other options because, at least for the instances tested in this work, the results obtained with (3.28)
were satisfactory.

According to the above discussion, if we want to predict from the beginning which preconditioner
will behave better based on principal angles, we can use either (3.27) or (3.28), since both methods
provide similar estimations at the first interior-point iterations. It is worth to mention that in this
case (3.26) is solved before the IPM has started, and then ©; = I has to be used. Moreover, since ©;
are the same for all i = 1,...,k, if matrices N; and L; are also the same for all 7, then the number

GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs 9

0.9 12

+++++++++++++ 'using (3.27') + 'using (3.27')
os | T, using (3.28) 1 using (3.28)
T, 1t
c o7t e e c
k=] i)
.g 06 b .g Y |
A P
2 05 | 2
B 2 °°f
< 0.4 <
g g
g 03} 5 04r
£ £
T o2} a
0.2
01
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
IP iteration IP iteration
(a) (b)
0.8 T T 1.2 T T
using (3.27) + using (3.27)
07 using (3.28) using (3.28)
T, il
§ osf ¢ g
£ g os},
% 05r b B
L [
3 3 ’
L o0ap L o6} il
c =
© ©
® 03F} <
£ . £ oaf
£ L T, £
£ o02f T { =
02}
0.1}
0 i 0 i
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
IP iteration IP iteration

(c) (d)

FiG. 2. Estimation of principal angles (in vertical axes) computed with either (3.27) or (3.28) along the interior-
point iterations (in horizontal azes), for four particular instances. Plots (a) and (b) correspond to the first instances
of, respectively, Tables 8 and 4 of Subsection 4.2. Plots (c) and (d) were obtained by adding extra constraints to the
first instances of Tables 5 and 6 of Subsection /.2.

of problems (3.26) to be solved drops to [and 1, for, respectively, (3.27) and (3.28). We considered
the following rule for automatic selection of the preconditioner:

(3.29) %f v > 7., then use D:ll,
if v < 7, then use O,

where 7 has been previously computed with either (3.27) or (3.28) using ©; = I, and 7, is a threshold

parameter provided by the user. In the computational experiments of Subsection 4.2 we used 7, =

0.957/4, i.e., if the angle is closer to 0 than to 7/2, we choose @al, otherwise D! is selected; the

0.95 coefficient guarantees that, in case of tie, D~! will be used, since, according to (2.5), it is the

first term of the exact preconditioner.

Switching between preconditioners at some interior-point iteration will only be worth if principal
angles significantly change with ©;. However, according to the above discussion, when the initial
principal angles are close enough to 0, © ! will be in general the best preconditioner, not only for the
first, but for all the interior-point iterations. Otherwise, D~! will be in general preferred. In addition,
the CPU time required for computing principal angles is not negligible for huge instances. Given all
these considerations, our switching criteria only computed principal angles if strictly necessary, and
it focused on other indicators such as (1) the number of PCG iterations performed with the current
preconditioner in the last interior-point iteration; (2) and, if the current preconditioner is D=1,
the spectral radius p (which can be easily computed using the procedure described in [7]). The
implemented switching criteria, which is applied every 7; interior-point iterations, is as follows:

if current preconditioner is O ' then
if (PCG iterations > 7p - 1) and (y > 7,,) then switch to D1,
else if current preconditioner is D~! then
if (PCG iterations > 7p - 1) and (p > 7,) and (y < 7,) then switch to ©,",

(3.30)

where 7, is a threshold value for the spectral radius, 7p is a percentage of the number of linking
constraints [(the size of the system solved by PCG), and 7, was already used in (3.29). The values

10 JORDI CASTRO AND STEFANO NASINI

TABLE 1
CPU time of BlockIP using D=1 and @al preconditioners. The instances have | = 100 linking constraints and
k =100 equal diagonal block matrices N € R10%50,

_ CPU time IPM iterations average PCG iter.

(6% ' @_1 D_1 9_1 D_1 @-1 D—l
(0] 0 (0]

w/14 2 0.99 1.47 30 43 2.84 5.87

w/10 4 1.27 1.54 38 44 4.94 6.29

/6 6 1.30 1.58 36 46 9.00 6.05

w/2 8 1.29 1.27 35 39 8.91 5.05

TABLE 2
CPU time of BlockIP using D~ and @51 preconditioners. The instances have | = 200 linking constraints and
k = 1000 equal diagonal block matrices N € R20%200,

o _ CPU time IPM iterations average PCG iter.
o, D1 9" D1 o' D1

w/14 2 191.52 547.21 28 s 1.85 7.08
w/10 4 512.61 479.12 80 61 6.40 12.05
w/6 6 496.39 574.33 64 76 17.50 11.75
w/2 8 565.52 497.19 67 70 26.29 11.85

used in the computational results of Subsection 4.2 were 7, = 3, 7p = 0.2, and 7, = 0.95. As it will
be observed in the computational results this switching criteria is rarely applied (only in three out of
60 instances). Choosing the right preconditioner, either D~! or O !, from the beginning turned out
to be a more important factor in the performance of the IPM. We remark that this situation is quite
different from other hybrid preconditioning approaches, such as, for instance, the one in [7]: in that
approach the two different preconditioners are known in advance to behave better for, respectively,
the first and last interior-point iterations, and thus (1) we know in advance which preconditioner to
start with; and (2) the switching is usually performed.

4. Numerical validation. The numerical validation of the proposed preconditioning technique
is based on two types of computational experiments: (1) assessing the effect of the described geomet-
rical relations to the number of PCG iterations; (2) analyzing the global numerical performance of
both preconditioning techniques, when applied to classes of multicommodity network flow problems.
All the runs were carried out on a Fujitsu Primergy RX300 server with two 3.33 GHz Intel Xeon
X5680 CPUs (each CPU with 12 cores) and 144 GB of RAM, under a GNU/Linux operating system
(Suse 11.4), without exploitation of multithreading capabilities.

4.1. Geometrical relations and PCG iterations. Our goal here is to generate synthetic
problems such that we can control the level of collinearity between their linking and block constraints.
To this end, consider two full rank matrices N € R™*" n > m, and Y € R>*™ n > [, and let
L = YN. The rows of L € R*™ are linear combinations of the rows of N and the principal angles
between the subspaces generated by LT and N are zero. Each vector in R(L') can be rotated an
angle o around the i-th and j-th coordinate axes by pre-multiplying LT by the n x n rotation matrix:

1 .- 0 0 0 0 cee 0T
0 0 :
0 --- cos(a) O 0 —sin(a) --- 0
0o --- 0 1 0 0 0
(4.1) Rij(o) = :
0 0 0 1 0 0
0 sin(a) 0 0 cos(e) -+ O
0 - 0 0 -~ 0 0 co 1]

If we consider H = {(4,5) : 1 <i<mn—1,i <j <n}, the set of all possible pairs of coordinate axes,
the n(n—1)/2 distinct R;;(«) rotation matrices may be concatenated in some order to produce a new
rotation matrix such as []; ;yes Rij(a), where S € . (Rotations in three dimensions and higher do
not commute, so that different orderings give different rotations.)

We are interested in showing the performance of the PCG method at each interior-point itera-
tion when changing the geometrical relations between the diagonal block and the linking constraint
matrices, in accordance with specified rotations. To do so we randomly draw N; € R™*" and

GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs 11

small instances big instances
25 16
0 oo e
g g | e
S S 12 et
515 EF | T
5 S 10
£ 10 4
3t * 8
3 6
0 4
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12
IP iteration IP iteration

Fic. 3. PCG iterations along the IPM iterations for a = ©/16, T = 2, with preconditioners @0_1 and D=1, The
blue points (and associated dashed regression line) correspond to the PCG iterations based on D~ preconditioner, while
the green points (and associated dashed regression line) correspond to the PCG iterations based on @51 preconditioner.

small instances big instances
40 17
35 . B - * » 16
’ 15
« 30 @
s g -
E 25 g 13
= 2
g 20 g 12
a -9
#® 15 T
10
10
9
5 8
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16
IP iteration IP iteration

Fic. 4. PCG iterations along the IPM iterations for a = w/12, T = 2, with preconditioners @51 and D~1. The
blue points (and associated dashed regression line) correspond to the PCG iterations based on D™1 preconditioner, while
the green points (and associated dashed regression line) correspond to the PCG iterations based on @al preconditioner.

Y; € R>™ = 1,...,k, from a uniform probability distribution. Then S C H is also randomly
selected to compute the rotation matrix []; ;e Rij(a). Finally, we obtain the linking constraint

matrices L; = Y;N; (H(i,j)es Rij(Oz))7 for i = 1,...,k. This procedure relies on the number 7 = |S|
of concatenated rotation matrices and the angle of rotation « to evaluate the associated changes in
the PCG iterations using O Uand D! as preconditioners. It is worth to remark that « are not the
principal angles between linking constraints matrices L; and block constraints matrices N;, but it is
expected that small o values (that is, small rotations) will result in small principal angles.

The BlockIP package [12] implementing the specialized interior-point method has been extended
with the ©5' preconditioner introduced in this work. The main features of BlockIP are: (1)
it implements a long-step infeasible IPM, including both Newton and predictor-corrector direc-
tions [29]; (2) it uses the approach described in Section 2—which relies on Cholesky factoriza-
tions and PCG—for the solution of the normal equations [10, 11, 13]; (3) Cholesky systems are
exactly solved; (4) PCG systems are stopped when the error (computed as 1 — cos(Qz,d), for some
system Qx = d) is below some tolerance; (5) in the computational results of this paper the ini-
tial PCG tolerance was set to €2 = 1074, and it was updated at each interior-point iteration t as
€1 = min{0.95 - ¢/, 1078}. More details about the code—which is available for research purposes
from http://www-eio.upc.es/~ jcastro/BlockIP.html—can be found in [12].

Tables 1 and 2 show the computational results obtained with BlockIP using D! and Oy ! pre-
conditioners. Instances of Table 1 are “small”, with [= 100 linking constraints, and & = 100 equal
diagonal block matrices N € R19%59, For the “big” instances of Table 2 these dimensions are I = 200,

= 1000, and N € R?9%200 The first columns of these tables show the angle o of each rotation,

http://www-eio.upc.es/~jcastro/BlockIP.html

12 JORDI CASTRO AND STEFANO NASINI

small instances big instances
50 19
45 18
. 40 17
8 . 2
S 16
: 815
30 s
2 S 1
* 25 ."__‘:"’ F 13T
20 B
15 . 11 .
0 5 1015 20 25 30 35 0 5 10 15
IP iteration [P iteration

Fic. 5. PCG iterations along the IPM iterations for o = /8, 7 = 2, with preconditioners @0_1 and D=1, The blue
points (and associated dashed regression line) correspond to the PCG iterations based on D1 preconditioner, while
the green points (and associated dashed regression line) correspond to the PCG iterations based on @51 preconditioner.

small instances big instances
50 19
45 'S
) 17
£40 . 16
= =]
§ 35 % 15
<] 3 14
g 2
2300 e Tt e e
ST e PR 8 13
25 ammmhe T ¥
N 1
10
15 510 15 20 25 % s
30 35 40 0 2 4 6 8 10 12 14 16 18
IP iteration IP iteration

Fic. 6. PCG iterations along the IPM iterations for o = w/4, T = 2, with preconditioners @0_1 and D=1, The blue
points (and associated dashed regression line) correspond to the PCG iterations based on D™ preconditioner, while
the green points (and associated dashed regression line) correspond to the PCG iterations based on 651 preconditioner.

whereas the second columns report the number 7 of rotation matrices considered. The remaining
columns give the CPU time, number of IPM iterations, and average number of PCG iterations per
IPM iteration, for both preconditioners.

It is observed that the performance of the specialized IPM strongly relies on « for both the
small and big instances. In particular, for ©, 1 the smaller «, the better the preconditioner; and the
average number of PCG iterations increases with . On the other hand, D~ is the best precond-
tioner when o = 7/2. This numerical evidence supports the previous discussion on the effect of the
geometrical relations between the diagonal blocks and the linking constraint matrices on the quality
of the preconditioner. In addition, the same conclusion will be provided by the numerical results of
next Subsection 4.2 using a nontrivial—i.e., non-synthetic—problem.

The plots of Figures 3, 4, 5 and 6 illustrate the evolution of the number of PCG iterations
(vertical axis) at each IPM iteration (horizontal axis) for both preconditioners. Small and large
instances of the same dimensions as in Tables 1 and 2 have been used, but with different angles
and always with 7 = 2 rotations matrices. The blue and green dots are related to D~! and ©, !
respectively. The corresponding regression lines have been fitted to the empirical number of PCG
iterations. It is observed that for small angles Figures 3 and 4), as expected by the theory, the
preconditioner D~! usually requires more PCG iterations than © L. this difference increases as we
approach the optimal solution, for the small instances. However, for the “larger” angles of Figures 5
and 6, again in accordance with theory, preconditioner D~! becomes more efficient than 6 1 after
certain IPM iteration. The message should then be that, for problems with small angles, © ! should
be preferred in general to D~!. It is worth noting that a side benefit of O, ! is that it is always a
diagonal preconditioner, independently of the problem, unlike D!, which may require a Cholesky

GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs 13

TABLE 3
CPU time and iterations (within parenthesis) of BlockIP (using D~1 and @gl preconditioners) and CPLEX
available LP methods (Primal Simplex, Dual Simplex, Barrier Method) when solving MNFPNCs. Only 20% of nodes
are constrained to have an outflow capacity, i.e., | = 0.2n.

CPLEX BlockIP
n k n. var. n. con. - - - - —T
Primal Simplex Dual Simplex Barrler CH D~
150 200 880030 29830 57.5 (997332 5 (85732 8 (1 5.7 (29) 5.6 (29
150 400 1803230 59630 242.2 (428032 14.0 (163391 12 9 (1 12.2 (30) 12.1 (30
150 600 2601030 89430 362.2 (444258 25.9 (249271 19.7 (1 19.6 (31) 18.8 (31
150 800 3850430 119230 590.5 (575356 38.0 (24.1 (29)

300 200 3587460 59860 459.3 (4676110
300 400 7022460 119660 > 3600 (8306650
300 600 11245260 179460 > 3600 (8453150
300 800 14862460 239260 > 3600 (9071240

27.5 (203873
69.5 (415156
112.7 (571964
178.5 (784104

29.8 (1
57.2 (1
102.7 (17
140.3 (18

5
5 57.4 (30) 59.1 (30

99.0 (31) 94.9 (30

1
)
)
)
26.8 (32)
)
)
123.1 (30) 133.8 (31)

3) (
4) (
) (
6) (
5) 30.3 (30) 322 (32
) (
) (
) (

NN N’ Nt 2NN N

)
|
329632) 30.5 (1
)
)
)
)

TABLE 4
CPU time and iterations (within parenthesis) of BlockIP (using D~1 and @51 preconditioners) and CPLEX
available LP methods (Primal Simplex, Dual Simplex, Barrier Method) when solving MNFPNCs. All the nodes have
an outflow capacity, i.e., |l =n.

CPLEX BlockIP
n k n. var. n. con. - - - - o1 I
Primal Simplex Dual Simplex Barrier A D~

150 200 880030 29950 75.1 (967177) 6.7 (86446) 11.8 (17) 5.9 (29) 5.8 (29)
150 400 1803230 59750 257.0 (607837) 18.6 (163574) 23.8 (17) 14.0 (32) 12.9 (31)
150 600 2601030 89550 426.9 (729617) 32.3 (249227) 33.6 (17) 21.9 (34) 20.0 (33)
150 800 3850430 119350 585.4 (476154) 52.8 (330616) 52.0 (19) 29.9 (33) 27.9 (32)
300 200 3587460 60100 682.9 (4310028) 28.3 (203780) 85.4 (16) 54.9 (33) 30.4 (34)
300 400 7022460 119900 > 3600 (8226752) 72.2 (413460) 120.3 (13) 78.9 (37) 66.5 (33)
300 600 11245260 179700 > 3600 (8489927) 118.5 (567590) 205.6 (15) 140.5 (32) 140.1 (33)
300 800 14862460 239500 > 3600 (8408703) 181.6 (779265) 284.7 (16) 141.2 (32) 140.8 (40)

factorization.

4.2. Multicommodity network flow problem with nodal capacities and equal flows.
Let G = (V, A) be a directed graph, where V is a set of n vertices or nodes and A is a set of n’ arcs,
and let KC be a set of k commodities. The multicommodity network flow problem with nodal capacities
(MNFPNC from now on) looks for the minimum cost routing of the flows for all the commodities
from some source to some destination nodes, imposing capacities on the total outflow at some nodes
h € C C V. This problem differs from the standard multicommodity flow problem in that capacities
are imposed at nodes, instead of at arcs. The node capacity constraints are

(4.2) SN aj<bh, hec,

€K jEV

where b9 denotes the capacity of node h € C. MNFPNC matches the standard formulation (2.1)
of primal block-angular problems, by considering m; = n, n; = n’, N; = N € RM=1xn" for all
i=1,...,k, where N is the node-arc incidence matrix associated to G; and | = |C|, L; = L € R
for all i =1,...,k, are derived from N by considering only positive coeflicients to obtain (4.2).

Tables 3 and 4 report two computational experiments associated to MNFPNCs of different sizes.
The eight instances of Table 3 correspond to problems where | = 0.2n (i.e., only 20% of nodes
are constrained to have an outflow capacity), whereas the eight instances of Table 4 correspond to
problems where | = n (all the nodes have capacities). For each instance, the tables provide the
number of nodes n, number of commodities k, the total number of variables (“n.var”), total number
of constraints (“n.con.”), and the CPU time and (within parentheses) total number of iterations for
all the solvers considered: primal simplex, dual simplex and barrier for CPLEX; and BlockIP with
both ©4 1and D~ preconditioners. In these runs BlockIP computed Newton directions, which is its
default option when PCG is used. A time limit of 3600 seconds was considered.

It can be seen from Tables 3 and 4 that the CPU time associated to the primal simplex is always
far greater than the ones of the other solvers. The dual simplex is quite competitive and in some
instances outperforms CPLEX barrier method and BlockIP. BlockIP with both preconditioners is
in general more efficient than CPLEX barrier, although it requires more IPM iterations because it
computes Newton directions instead of second or higher order ones. The network size n does not
seem to have a substantial effect on the comparative efficiency of the five solvers. Instead the increase
in the number of linking constraints (either [= 0.2n, in Table 3 or I = n, in Table 4) almost doubles
the CPU time of the CPLEX barrier method, whereas only slightly affects the specialized IPM.

14

CPU time and iterations (within parenthesis) of BlockIP (using D=1 and ©g

JORDI CASTRO AND STEFANO NASINI

TABLE 5

Y preconditioner) and CPLEX

available LP methods (Primal Simplex, Dual Simplex, Barrier Method) when solving MEFPNCs. Only 20% of nodes

are constrained to have an outflow capacity, i.e.,

[=0.2n.

CPLEX BlockIP
n k n. var. n. con. - - - - —T —
Primal Simplex Dual Simplex Barrier SN D
150 200 880030 56830 59.3 (989973) 9 (90369) 7.7 (16) 6.5 (30) 6.8 (32)
150 400 1803230 113630 239.0 (516211) 19. 5 (222725) 17.6 (18) 11.5 (32) 11.5 (33)
150 600 2601030 170430 514.1 (563073) 33.9 (280339) 42.2 (27) 25.4 (34) 24.0 (33)
150 800 3850430 227230 635.4 (650626) 52.0 (406268) 54.1 (26) 30.9 (32) 30.5 (32)
300 200 3587460 113860 1357.0 (958439) 37.9 (232976) 44.9 (20) 39.6 (37) 34.8 (34)
300 400 7022460 227660 > 3600.0 (1325388) 85.3 (456233) 118.2 (29) 70.7 (32) 70.1 (32)
300 600 11245260 341460 > 3600.0 (1213005) 142.5 (665822) 155.7 (25) 109.2 (33) 108.7 (34)
300 800 14862460 455260 > 3600.0 (1179502) 204.8 (860729) 239.8 (30) 152.8 (34) 150.8 (34)
TABLE 6

CPU time and iterations (within parenthesis) of BlockIP (using D' and ©g

L preconditioner) and CPLEX

available LP methods (Primal Simplex, Dual Simplex, Barrier Method) when solving MEFPNCs. All the nodes have

an outflow capacity, i.e., | =n.
CPLEX BlockIP
n k n. var. n. con. Primal Simol Dual Simol Bor o T e
rimal Simplex ual Simplex arrier 0

150 200 880030 56950 79.0 (2320414) 7.5 (86446) 11.3 (16) 5.9 (32) 5.0 (32)
150 400 1803230 113750 296.9 (964870) 26.7 (163574) 26.7 (18) 15.1 (33) 14.6 (33)
150 600 2601030 170550 619.9 (1839715) 43.0 (230553) 96.7 (27) 29.6 (34) 26.5 (33)
150 800 3850430 227350 891.7 (1061339) 74.7 (249227) 68.0 (22) 35.8 (33) 34.5 (32)
300 200 3587460 114100 820.8 (1184579) 36.9 (330616) 87.6 (18) 51.1 (36) 43.7 (34)
300 400 7022460 227900 > 3600.0 (4906436) 88.6 (203780) 232.8 (22) 98.8 (34) 80.2 (34)
300 600 11245260 341700 > 3600.0 (4701108) 177.3 (413460) 288.5 (21) 125.5 (35) 119.0 (36)
300 800 14862460 455500 > 3600.0 (4904433) 364.9 (1278588) 480.1 (25) 240.0 (35) 206.6 (34)

Let us consider a slight modification of the MNFPNCs, obtained by introducing to each com-
modity a set of equal flow constraints, i.e. constraints requiring that each arc in a specified set R,
must carry the same amount of flow, for every group of arcs r € R; that is, x}l = xa} yJfori=1...k,
aj,ap € Ry, r =1...R (where a;, a; denote two particular arcs in the network) These constraints
arose while modeling some real-life problems, such as water resource system management [22]. We
call this problem multicommodity equal flow problem with nodal capacities (MEFPNC from now on).
Here we are considering MEFPNCs of different sizes with R = EF - n groups of arcs having the same
flows per each commodity and |R,| = EF - 100 number of arcs in each group r = 1... R, where EF
is a given parameter to control the number of equal flow constraints.

Tables 5 and 6 report two computational experiments associated to these MEFPNCs. As before,
the eight instances of Table 5 correspond to problems with | = 0.2n, whereas | = n in Table 6. The
parameter EF was set to 0.1 in these instances. The meaning of the columns is the same as in Tables
3 and 4. It is worth mentioning that for every set R, ={a1,az,...,qr,}, and i € K, the equal flow
constraints are formulated as z,, =z SR -1, mstead of zo, = a5,j=2,...,[R,|.
With this formulation we avoid a “dense column” for variables !, , which makee BlockIP more efﬁcient.
CPLEX barrier is not affected by this different reformulation due to its presolving capabilities. The
principal angles between linking and block constraints are the same for both formulations, since they
span the same subspace (it is easy to show that given the constraints matrices for the two formulations,
one can be obtained from the other by simple linear manipulations).

The inclusion of equal flow constraints negatively affects the computational performance of all the
considered solvers, though in different proportions. The dual simplex and barrier almost double its
CPU times in the largest instances with respect to the MNFPNCs, whereas the ones associated to the
specialized IPM slightly increase. In fact, the specialized IPM becomes the most efficient algorithm
for this class of problems from k& = 400. Also for the MEFPNCs, as it was for the MNFPNCs, the
network size n does not seem to have a substantial effect on the ranking of the five solvers.

As for the two preconditioners of BlockIP, results with © !and D! are very similar in solving
MEFPNCs with [= 0.2n, as shown in Table 5. The results with D~! indicate it to be a slightly
better preconditioner when | = n. In both cases BlockIP outperforms the CPLEX available LP
methods. It is worth noting that BlockIP uses an out-of-date sparse linear algebra package for
the Cholesky factorization [24], while CPLEX implements highly tuned state-of-the-art factorization
routines. Therefore, the performance of BlockIP could be significantly improved by the use of a more

aJ+1’J

GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs 15

TABLE 7
Average principal angles between the subspaces generated by the columns of LT and N, for each instance of
multi-commodity network flow problems with nodal capacities in Tables 3, 4, 5 and 6.

average principal angles
Table 3 Table 4 Table5 Table 6
150 0.8774 0.8319 0.7958 0.8225
300 0.8544 0.8297 0.7732 0.8247

n

TABLE 8
Dimensions and properties of MEFPNCs with small and dense networks.

n k I density NC EF n. var. n. con.
1 400 2000 40 0.2 0.1 0.00 32894040 798040
2 400 2000 40 0.2 0.1 0.05 32894040 998040
3 400 2000 40 0.2 0.1 0.10 32894040 1598040
4 400 2000 40 0.2 0.1 0.15 32894040 2598040
5 400 2000 40 0.2 0.1 0.20 32894040 3998040
6 400 2000 80 0.2 0.2 0.00 32894080 798080
7 400 2000 80 0.2 0.2 0.05 32894080 998080
8 400 2000 80 0.2 0.2 0.10 32894080 1598080
9 400 2000 80 0.2 0.2 0.15 32894080 2598080
10 400 2000 80 0.2 0.2 0.20 32894080 3998080
11 400 2000 120 0.2 0.3 0.00 32894120 798120
12 400 2000 120 0.2 0.3 0.05 32894120 998120
13 400 2000 120 0.2 0.3 0.10 32894120 1598120
14 400 2000 120 0.2 0.3 0.15 32894120 2598120
15 400 2000 120 0.2 0.3 0.20 32894120 3998120
16 400 2000 40 0.4 0.1 0.00 64142040 798040
17 400 2000 40 0.4 0.1 0.05 64142040 998040
18 400 2000 40 0.4 0.1 0.10 64142040 1598040
19 400 2000 40 0.4 0.1 0.15 64142040 2598040
20 400 2000 40 04 0.1 0.20 64142040 3998040
21 400 2000 80 0.4 0.2 0.00 64142080 798080
22 400 2000 80 0.4 0.2 0.05 64142080 998080
23 400 2000 80 0.4 0.2 0.10 64142080 1598080
24 400 2000 80 0.4 0.2 0.15 64142080 2598080
25 400 2000 80 0.4 0.2 0.20 64142080 3998080
26 400 2000 120 0.4 0.3 0.00 64142120 798120
27 400 2000 120 0.4 03 0.05 64142120 998120
28 400 2000 120 0.4 0.3 0.10 64142120 1598120
29 400 2000 120 0.4 0.3 0.15 64142120 2598120
30 400 2000 120 0.4 0.3 0.20 64142120 3998120

recent Cholesky solver.

The information of the average principal angles between the subspaces generated by the columns
of LT and N7 of the instances of Tables 3-6 is reported in Table 7, differentiating for the 150 and
300 nodes instances. These true principal angles were computed with the exact algorithm of Figure 7
in the Appendix, so they are not estimations given by the two methods described in Subsection 3.2.
The first observation we deduce from data collected in Table 7 is that the average principal angles
are generally stable with respect to the number of nodes. We also see that average principal angles
are far from 0, which may explain why preconditioner D~! outperforms 6 ! in general, in Tables
3-6.

We finally generated and solved a set of large instances, considering only the CPLEX barrier
solver, and BlockIP with the two preconditioners © !and D!, and a new variant (named “automatic”
in the tables of results) that selected the best preconditioner according to (3.29), possibly switching
to the other preconditioner using the criteria in (3.30). No time limit was set in these runs. The
corresponding results are reported in Tables 8-9 and Tables 10-12, for small dense and big sparse
networks, respectively. Tables 8 and 10 show the dimensions and characteristics of the instances:
columns [provide the number of linking constraints; columns “density” provide the fraction “number
of arcs/maximum number of arcs (n(n — 1)/2)” columns “NC” show the fraction of nodal capacity
constraints, i.e., “number of node capacities/n”; and columns “EF” provide the parameter considered
for the equal flow constraints. The rest of columns have the same meaning as in previous tables.

The instances of Table 8 with small dense networks were solved with CPLEX, and BlockIP
using the Newton direction; Table 9 shows these results. For the instances of Table 10 with large
sparse networks, we additionally used BlockIP with the predictor-corrector direction (as discussed
below, this was instrumental for the efficiency of BlockIP). These results are reported in Tables 11—

16

JORDI CASTRO AND STEFANO NASINI

TABLE 9
Results with BlockIP (using Newton direction for variants D™, @51 and automatic selection of preconditioners)
and CPLEX barrier for MEFPNCs with small and dense networks.

CPLEX BlockIP Newton direction
Barrier @al D1 Automatic
it. CPU it. PCG CPU it. PCG CPU it. PCG CPU Prec. Y
1 17 428.32 32 57 424.55 33 51 432.94 33 51 44149 DI 0.773
2 19 461.37 35 75 487.77 34 55 508.19 34 55 45540 D~ 0.771
3 31 761.24 35 88 544.80 35 61 538.53 35 61 55944 D1 0.767
4 30 724.38 37 155 706.19 37 99 636.19 36 103 596.13 D~! (4) 0.756
5 27 708.23 37 127 697.22 40 90 698.52 37 127 721.17 @al 0.740
6 18 402.91 33 60 441.18 33 50 435.00 33 50 43244 DI 0.803
7 19 465.19 35 82 487.26 34 55 456.62 34 55 460.36 D1 0.802
8 29 705.41 35 88 542.94 36 61 556.18 36 61 540.66 D1 0.797
9 26 704.96 38 169 674.00 39 106 641.39 37 121 639.92 D~1(4) 0.788
10 41 1071.90 38 187 754.78 40 119 727.62 38 137 717.11 D~Y(4) 0.774
11 17 422.87 33 62 445.08 33 49 440.76 33 49 452.55 DT 0.838
12 20 535.59 35 80 491.03 34 55 459.19 34 55 488.47 D~1 0.837
13 37 961.37 36 90 575.95 37 59 574.79 37 59 591.68 D~! 0.833
14 28 831.13 38 180 687.14 39 106 651.40 39 106 671.72 D! 0.825
15 32 1319.40 39 199 789.96 40 115 731.61 40 115 72853 D! 0.814
16 28 901.33 33 64 678.91 33 53 661.25 33 53 663.92 DI 0.768
17 38 1315.00 34 81 712.32 34 61 688.42 34 61 689.50 D! 0.767
18 36 1385.90 35 85 752.29 35 66 731.96 35 66 743.15 Dt 0.765
19 45 1697.40 36 90 818.97 36 69 826.87 36 69 807.50 D1 0.760
20 43 1843.00 37 100 939.06 37 86 920.71 37 86 886.39 D! 0.753
21 26 949.55 32 64 660.20 33 54 667.20 33 54 667.95 DI 0.794
22 30 1210.40 34 84 715.17 34 62 734.03 34 62 692.10 D1 0.793
23 50 2124.00 35 91 775.08 35 66 752.99 35 66 741.86 D1 0.791
24 36 1461.50 36 96 838.86 36 70 840.70 36 70 798.98 D! 0.787
25 35 1606.60 38 112 993.90 38 83 912.51 38 83 90741 D1 0.782
26 38 1349.50 33 78 709.65 32 54 647.39 32 54 65225 DT 0.835
27 28 1328.00 34 86 719.12 34 62 694.62 34 62 694.77 D1 0.834
28 41 1656.70 36 105 804.65 36 69 770.40 36 69 768.26 D! 0.832
29 41 1757.90 37 109 872.03 36 70 803.45 36 70 803.71 D! 0.828
30 30 1564.20 38 123 964.46 38 81 914.56 38 81 916.24 D1 0.823
TABLE 10

Dimensions and properties of MEFPNCs with large and sparse networks.

n k I density NC EF n. var. n. con.
31 800 2000 80 0.02 0.1 0.00 13898080 1598080
32 800 2000 80 0.02 0.1 0.05 13898080 1998080
33 800 2000 80 0.02 0.1 0.10 13898080 3198080
34 800 2000 80 0.02 0.1 0.15 13898080 5198080
35 800 2000 80 0.02 0.1 0.20 13898080 7998080
36 800 2000 160 0.02 0.2 0.00 13898160 1598160
37 800 2000 160 0.02 0.2 0.05 13898160 1998160
38 800 2000 160 0.02 0.2 0.10 13898160 3198160
39 800 2000 160 0.02 0.2 0.15 13898160 5198160
40 800 2000 160 0.02 0.2 0.20 13898160 7998160
41 800 2000 240 0.02 0.3 0.00 13898240 1598240
42 800 2000 240 0.02 0.3 0.05 13898240 1998240
43 800 2000 240 0.02 0.3 0.10 13898240 3198240
44 800 2000 240 0.02 0.3 0.15 13898240 5198240
45 800 2000 240 0.02 0.3 0.20 13898240 7998240
46 800 2000 80 0.04 0.1 0.00 26484080 1598080
47 800 2000 80 0.04 0.1 0.05 26484080 1998080
48 800 2000 80 0.04 0.1 0.10 26484080 3198080
49 800 2000 80 0.04 0.1 0.15 26484080 5198080
50 800 2000 80 0.04 0.1 0.20 26484080 7998080
51 800 2000 160 0.04 0.2 0.00 26484160 1598160
52 800 2000 160 0.04 0.2 0.05 26484160 1998160
53 800 2000 160 0.04 0.2 0.10 26484160 3198160
54 800 2000 160 0.04 0.2 0.15 26484160 5198160
55 800 2000 160 0.04 0.2 0.20 26484160 7998160
56 800 2000 240 0.04 0.3 0.00 26484240 1598240
57 800 2000 240 0.04 0.3 0.05 26484240 1998240
58 800 2000 240 0.04 0.3 0.10 26484240 3198240
59 800 2000 240 0.04 0.3 0.15 26484240 5198240
60 800 2000 240 0.04 0.3 0.20 26484240 7998240

conditioners) and CPLEX barrier for MEFPNCs with large and sparse networks.

GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs

TABLE 11
Results with BlockIP (using predictor-corrector direction for variants D™1, @al and automatic selection of pre-

17

CPLEX BlockIP predictor-corrector direction
Barrier 951 D1 Automatic

it. CPU it. PCG CPU it. PCG CPU it. PCG CPU Prec. ~

31 12 495.06 22 72 677.86 24 79 764.06 22 72 691.65 961 0.703
32 21 796.48 24 134 791.57 22 90 741.25 24 134 814.78 51 0.694
33 13 613.00 23 126 943.45 26 197 1152.24 23 126 948.45 @al 0.649
34 32 1535.60 28 149 1543.33 31 307 2010.34 28 149 1547.49 @al 0.589
35 85 4442.30 21 98 1472.82 192 3755 18933.60 21 98 1491.84 951 0.491
36 12 559.93 22 85 696.55 23 7 746.63 23 7 707.57 DT 0.748
37 22 1041.20 23 133 774.28 26 103 829.87 23 133 760.36 951 0.741
38 22 1243.30 24 166 1064.07 27 220 1232.14 24 166 1037.54 @al 0.707
39 25 1611.80 23 126 1310.97 39 360 2385.75 23 126 1282.90 @51 0.647
40 45 2901.50 21 93 1504.07 31 406 2611.41 21 93 1453.75 @al 0.548
41 11 674.28 22 s 679.94 23 77 707.79 23 " 70419 D-T 0.804
42 23 1359.10 24 140 836.78 26 103 822.08 26 103 830.87 D~1 0.798
43 14 1050.30 24 174 1038.12 30 232 1312.26 30 232 132288 D-1 0.768
44 22 1597.40 22 141 1253.54 58 860 4049.23 22 141 1270.42 @51 0.708
45 85 5944.70 21 100 1463.74 24 410 2167.35 21 100 1483.09 @al 0.606
46 13 789.73 22 79 1031.86 24 66 1100.24 22 79 1046.23 @al 0.738
47 29 1708.00 23 90 1129.02 26 75 1257.89 23 90 1131.68 @51 0.733
48 32 1985.10 24 124 1348.27 28 122 1577.65 24 124 1352.66 @al 0.714
49 15 1108.80 23 154 1617.12 25 160 1804.16 23 154 1632.36 @al 0.689
50 15 1230.90 21 124 1773.00 29 250 2626.98 21 124 1743.29 961 0.652
51 12 875.53 23 77 1087.61 25 68 1141.81 25 68 1177.41 D—T 0.767
52 26 2172.00 24 104 1260.91 26 74 1244.23 26 74 127097 D~! 0.763
53 29 2191.00 24 131 1385.90 25 99 1361.02 25 99 1365.77 D~!' 0.749
54 24 2146.90 24 204 1807.09 25 199 1793.25 24 204 1751.85 @al 0.723
55 18 1733.10 23 151 2020.30 26 249 2309.60 23 151 2075.58 @al 0.687
56 13 1134.40 22 82 1033.35 25 70 1146.59 25 70 1204.39 D-T 0.805
57 32 2622.70 24 119 1212.28 26 84 1257.95 26 84 1263.93 D-1 0.802
58 29 2505.10 25 136 1413.30 25 93 1422.24 25 93 1372.66 D~!' 0.789
59 27 2610.70 25 198 1891.78 25 215 1911.14 25 215 1821.69 D~1 0.767
60 13 1547.80 25 197 2202.88 28 295 2693.02 25 197 2164.69 -1 0.732

=)

12. For each run, these tables provide the number of IPM iterations (columns “it.”), CPU times
in seconds (columns “CPU”), overall number of PCG iterations (columns “PCG”); and , for the
BlockIP “automatic” variant, the initial estimated principal angle using (3.28) (columns “v”), and the
initially selected preconditioner according to (3.29) (columns “Prec.”). Column “Prec.” also reports—
in brackets, and in case of a switching between preconditioners—the particular IPM iteration number
where the switch was performed.

Among the 30 instances of Table 9, BlockIP with some variant outperformed CPLEX barrier in
27 instances, and CPLEX barrier was only superior in the three smallest ones: #1, #6 and #11.
The “automatic” variant only selected preconditioner © ! for instance #5; D~ was used for the
remaining ones since their estimated angles were above the threshold value 7., = 0.957/4 = 0.74613
for the rule (3.29). The switching between preconditioners only happened in three instances, #4, #9
and #1, reducing the CPU time compared to using either 961 or D~ for all the IPM iterations. In
the remaining instances the initially selected preconditioner was applied for all the IPM iterations;
and, remarkably, the best preconditioner (the one involving less CPU time and/or less number of
PCG iterations) was selected in most instances. In these cases the CPU time of the “automatic”
variant incurred in some overhead due to the computation of principal angles. (In some instances the
CPU time with the “automatic” variant is sligthly less than that obtained with either © Lor D71
this (in theory impossible) fact was due to inacuracies of the operating system timing routines. This
fact was also observed in results of other tables.)

As for the 30 instances of Table 10, the results obtained with BlockIP computing the Newton
direction, reported in Table 12, were not fully satisfactory. It can be observed that CPLEX barrier
(whose results are reported in Table 11) usually outperformed BlockIP using the Newton direction
with either variant. Nevertheless, even in these unfavourable cases, the “automatic” variant usually
selected the best option (by a significant margin in some instances, such as in #35, #40, #45, #50,
#55 and #60). Results drastically changed when BlockIP computed predictor-director directions:
BlockIP was competititive and outperformed CPLEX in some of the most difficult instances. These

18 JORDI CASTRO AND STEFANO NASINI

TABLE 12
Results with BlockIP (using Newton direction for variants D™, @al and automatic selection of preconditioners)
and CPLEX barrier for MEFPNCs with large and sparse networks.

BlockIP Newton direction

@gl D1 Automatic
it. PCG CPU it. PCG CPU it. PCG CPU Prec. Y
31 36 66 946.43 37 64 989.44 36 66 948.33 0_1 0.703
32 37 121 1021.63 37 83 988.42 37 121 1022.78 0_1 0.694
33 45 138 1558.14 86 171 2880.19 45 138 1627.43 @al 0.649
34 40 115 1883.31 53 169 2516.36 40 115 2008.19 @al 0.589
35 36 81 2153.31 86 191 5198.91 36 81 2237.70 661 0.491
36 39 71 1043.15 39 58 1014.32 39 58 1051.49 D1 0.748
37 37 129 1030.03 38 84 1016.23 37 129 1057.02 661 0.741
38 39 139 1388.36 91 181 3075.57 39 139 1390.82 @0_1 0.707
39 43 110 2037.50 160 327 7524.45 43 110 2048.50 @0_1 0.647
40 36 80 2157.00 99 207 6239.70 36 80 2252.81 @0—1 0.548
41 37 63 1015.59 42 61 1166.39 42 61 1095.37 DT 0.804
42 40 142 1128.31 38 84 1022.93 38 84 1032.06 D! 0.798
43 38 142 1376.46 52 157 1843.27 52 157 1830.28 D! 0.768
44 42 120 2141.33 97 256 4618.71 42 120 2011.55 @0_1 0.708
45 37 79 2297.12 93 209 5749.08 37 79 2237.28 @0—1 0.606
46 34 62 1434.37 33 52 1330.78 34 62 1385.14 @0_1 0.738
47 35 97 1546.51 36 64 1554.71 35 97 1535.42 @0_1 0.733
48 37 140 1843.27 40 97 1999.25 37 140 1843.39 @al 0.714
49 36 128 2105.54 38 128 2364.30 36 128 2181.78 @al 0.689
50 36 101 2527.68 55 160 4030.74 36 101 2517.88 @61 0.652
51 33 65 1404.61 33 51 1329.42 33 51 1335.45 DT 0.767
52 36 99 1545.08 37 64 1565.00 37 64 1568.63 D! 0.763
53 38 142 1888.47 38 95 1801.29 38 95 1874.87 D! 0.749
54 38 174 2284.05 50 172 2981.77 38 174 2278.19 @al 0.723
55 38 125 2709.45 62 194 4374.40 38 125 2665.91 @al 0.687
56 34 65 1378.88 35 52 1424.71 35 52 1399.58 D1 0.805
57 36 104 1544.71 37 66 1538.87 37 66 1544.03 D! 0.802
58 38 144 1856.94 40 90 1872.33 40 90 1936.99 D! 0.789
59 38 166 2265.80 49 161 2836.92 49 161 2942.40 D1 0.767
60 37 164 2691.99 69 217 4849.53 37 164 2753.61 @0_1 0.732

results are shown in Table 11. Although predictor-corrector directions for PCG-based IPMs are not
as competitive as for Cholesky-based ones (since we have no factorization to reuse), in these instances
the number of PCG iterations was small enough to make it worth solving twice the normal equations
for a better direction. As in previous cases, the “automatic” variant selected in almost all cases the
best preconditioners (some notable results are observed for instances #34, #35, #39, #40, #44,
#45, #50). We also observe that the more (equal-flow block) constraints, the better ©; ' is. This
is consistent with theory: the more constraints in N;, the “larger” is the subspace spanned by their
columns, and then principal angles between the rows of L; and N; are smaller (i.e., closer to 0),
which means that © ! is closer to be the exact preconditioner. From Table 11, we see that BlockIP
outperformed CPLEX in 19 of the 30 instances, and by a significant margin in some cases. These
results could be improved if larger instances would have been tested. For instance, in a tough instance
(not included in the above tables) of n = 4000, k = 2000, density= 0.001, NC=0.2, with no equal flow
constraints, CPLEX barrier spent about 37000 seconds (requiring 85 Gigabytes of memory), while
BlockIP found a solution in 11000 seconds (using 15 Gigabytes of memory).

It is worth remarking that the density of D may negatively affect the performance of precon-
ditioner D!, possibly involving a costly Cholesky factorization, whereas ©¢ is always diagonal.
However, in all the MNFPNCs and MEFPNCs instances tested in this work, D is also diagonal.
Therefore the different performance of preconditioners is mainly explained by the geometrical rela-
tions between the subspaces spanned by the linking and block constraints (and their principal angles).
Yet, the computation of ©y will always be less costly than that of D: even in the best case for D
(that is, when L; = I), we have D = Q¢ + Zle 0;.

5. Conclusions. This work showed that the angles between the subspaces generated by the
diagonal blocks and the linking constraints may explain the effectiveness of two complementary pre-
conditioners, namely O Land D1, in the specialized IPM for block-angular problems. It was also
shown that the evolution of principal angles along the IPM iterations rely on the diagonal ©® matrix.
Two methods for the estimation of principal angles were developed and used to predict ex-ante which

GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs 19

Algorithm Computation of principal angles(LT € R™*! NT ¢ R»*™)
q = min(m,1)
//Compute orthonormal basis of R(LT) and R(N ") using QR factorizations
Qr + QR(L"), Qr e R™
QN < QR(NT), Qn € R™*™
//Compute singular value decomposition of Q; Qn: USVT = Q] Qn
U, 2, V] + SVD(Q]Qn), U € R™*% V € R™*4 orthonormal, ¥ € R4*4
// Compute vector of principal angles v
v < arccos(diag(X)), v € R?
// Compute principal vectors W and Wy
Wi« QLU, Wy, e R™*4
Wy + QNV7 Wy € R™>4
Return: v, W, Wy
End _algorithm

Fia. 7. Algorithm to compute principal angles between column spaces of LT and N .

preconditioner to be used for each particular instance. Algebraical properties of the two comple-
mentary preconditioners were supported by numerical results. We also analyzed the performance
of the specialized IPM with the two preconditioners in the solution of the multicommodity network
flow problem with nodal capacities and equal flows, observing that it outperforms all of the available
CPLEX methods in some of the largest instances.

Oy ! and D~ have shown to be the exact preconditioners when a linking constraint belongs to
respectively the range and null space of the matrix of block constraints. Since any vector defining a
linking constraint can be decomposed as the sum of two orthogonal vectors belonging to the range
and null space of the matrix of block constraints, it might be worth to exploit this fact to see whether
a multipreconditioner based on the two above can be obtained, following for instance [8]. This is part
of the further research to be done.

Alternative more efficient and accurate methods for the estimation of the principal angles (e.g.,
considering a sample or representative subset of linking constraints), and applying the specialized IPM
(either with g 1. D~ or combining both) to other problems are also part of the future research.

Acknowledgments. We would like to acknowledge the two anonymous reviewers for his valuable
suggestions, that improved the results in the manuscript and fixed several issues.

Appendix. Computation of principal angles.

Principal angles between two subspaces can be computed by the singular value decomposition,
as shown by next theorem from [6] (procedure also described in [19, Chapter 12]):

THEOREM A.1. Let the columns of matrices Qr € R™ ! and Qn € R™ ™ form orthonormal
bases for the subspaces L and N, correspondingly. Principal vectors u € R™ and v € R™ must verify
u = Qru and v = QNv, where u € R! and v € R™ are left and right singular vectors of Q] Qn,
associated to the singular value cos (v(u,v)), that is to say, (Q} Qn)v = cos (y(u,v)) u.

The algorithm of Figure 7 outlines how to compute the principal angles of column spaces of
matrices LT € R"*! and N7 € R?*™. The algorithm is just provided for completeness: as shown
in Subsection 3.2, it does not need to be used in practice in our approach. In fact, its use would
be prohibitive since the required singular value decomposition is computationally very expensive for
large optimization problems.

REFERENCES

[1] F. BaBonNEAU, O. bu MERLE, AND J.-P. ViaL, Solving large-scale linear multicommodity flow problems with
an active set strategy and proximal-ACCPM, Oper. Res., 54 (2006), pp. 184-197.

[2] F. BABONNEAU AND J.-P. ViaL, ACCPM with a nonlinear constraint and an active set strategy to solve nonlinear
multicommodity flow problems, Math. Prog., 120 (2009), pp. 179-210.

[3] S. BeLLavia, J. Gonpzio, AND B. Morini, B., A matriz-free preconditioner for sparse symmetric positive
definite systems and least-squares problems, SIAM J. Sci. Comp., 35 (2013), pp. A192-A211.

[4] L. BErcamascui, J. Gonpzio, J., AND G. ZiLLl, Preconditioning indefinite systems in interior point methods
for optimization, Comput. Optim. Appl., 28 (2004), pp. 149-171.

[5] D. Bienstock, Potential Function Methods for Approzimately Solving Linear Programming Problems. Theory
and Practice, Kluwer, Boston, MA, 2002.

[6] A. Biorck aND G.H. GoLus, Numerical methods for computing angles between linear subspaces, Math. Comp.,
27 (1977), pp. 579-594.

20

7]
8]
(9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]
(18]
19]
[20]
[21]
[22]
(23]
[24]
25]
[26]
27]
28]

[29]

JORDI CASTRO AND STEFANO NASINI

S. BocaNEGRA, J. CasTRO, AND A.R.L. OLIVEIRA, Improving an interior-point approach for large block-angular
problems by hybrid preconditioners, Eur. J. Oper. Res., 231 (2013), pp. 263-273.

R. Bripson anD C. GREIF, A multipreconditioned conjugate gradient algorithm, SIAM J Matrix Anal. Appl.,
27 (2006), pp. 1056-1068.

Y. Cao, C.D. Larp, AND V.M. Zavara, Clustering-based preconditioning for stochastic programs, Comput.
Optim. Appl., 64 (2016), pp. 379-406.

J. CasTrO, A specialized interior-point algorithm for multicommodity network flows, STAM J. Optim., 10 (2000),
pp. 852-877.

J. CasTrO, An interior-point approach for primal block-angular problems, Comput. Optim. Appl., 36 (2007), pp.
195-219.

J. CasTroO, Interior-point solver for convex separable block-angular problems, Optim. Method. Softw., 31 (2016),
pp. 88-109.

J. CastrO AND J. CUESTA, Quadratic regularizations in an interior-point method for primal block-angular
problems, Math. Prog., 130 (2011), pp. 415-445.

J. CasTrO AND N. NaBONA, An implementation of linear and nonlinear multicommodity network flows, Eur. J.
Oper. Res., 92 (1996), pp. 37-53.

J. CasTrRO AND S. NasiNi, Mathematical programming approaches for classes of random network problems, Eur.
J. Oper. Res., 245 (2015), pp. 402-414.

J. CasTro, S. Nasint and F. Saldanha-da-Gama, A cutting-plane approach for large-scale capacitated multi-
period facility location using a specialized interior-point method, Math. Prog., (2016), doi:10.1007/s10107-
016-1067-6.

A. FrancionNi, AND G. GarLo, A bundle type dual-ascent approach to linear multicommodity min cost flow
problems, INFORMS J. Comput., 11 (1999), pp. 370-393.

A. Francgiont aND C. GENTILE, New preconditioners for KKT systems of network flow problems, SIAM J.
Optim., 14 (2004), pp. 894-913.

G.H. Goru anD C.F. Van LoanN, Matrix Computations, Third Ed., Johns Hopkins Univ. Press, Baltimore,
MD, 1996.

J. Gonbzio, Convergence analysis of an inexact feasible interior point method for convexr quadratic programming,
SIAM J. Optim., 23 (2013), pp. 1510-1527.

J. Gonbpzio AND R. SARKIssIAN, Parallel interior-point solver for structured linear programs, Math. Prog., 96
(2003), pp. 561-584.

A. Manca, G. SEcHI, AND P. Zuppas, Water supply network optimisation using equal flow algorithms, Water
Resour. Manag., 24 (2010), pp. 3665-3678.

R.D. McBRIDE, Progress made in solving the multicommodity flow problem, SIAM J. Optim., 8 (1998), pp.
947-955.

E. Nag, anp B.W. PevTON, Block sparse Cholesky algorithms on advanced uniprocessor computers, STAM J.
Sci. Comput., 14 (1993), pp. 1034-1056.

A.R.L. Oriveira, AND D.C. SorRENSEN, A new class of preconditioners for large-scale linear systems from
interior point methods for linear programming, Linear Algebra Appl., 394 (2005), pp. 1-24.

J.M. OrTEGA, Introduction to Parallel and Vector Solutions of Linear Systems, Plenum Press, New York, NY,
1988.

A. Ouorou, A proximal cutting plane method using Chebychev center for nonsmooth convex optimization, Math.
Prog., 119 (2009), pp. 239-271.

M.G.C. RESENDE AND G. VEIGA, An implementation of the dual affine scaling algorithm for minimum-cost
flow on bipartite uncapacitated networks, STAM J. Optim., 3 (1993), pp. 516-537.

S.J. WricHT, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1996.

