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Abstract

In a recent work [3] the authors improved one of the métient interior-point approaches for
some classes of block-angular problems. This was achigvadding a quadratic regularization
to the logarithmic barrier. This regularized barrier wasvgh to be self-concordant, thus fitting
the general structural optimization interior-point framoek. In practice, however, most codes
implement primal-dual path-following algorithms. Thisoshpaper shows that the primal-dual
regularized central path is well defined, i.e., it existss itinique, and it converges to a strictly
complementary primal-dual solution.
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1. Introduction

Let us consider the linear programming problem

min ¢'x
s.to Ax=bhb Q)
0<x<u,

wherex, c,u € R", b e R™, andA € R™", Note that any bounded problem can be formulated as
(1). The standard logarithmic barrier problem, used inriatgpoint methods, associated to (1)
is

n n
min B, u) 2 c x+ul— > Inxi— > In(u = x
(1) p Z} 2, ni =) @
s.to Ax=Db,0<x<u,
u being the barrier parameter. Previously used regulariaedmnts replace®(x, 1) by
Br(xp) 2 cTx+3(x=%)TQp(x~X) @
+ u(=Ziinx - 2 In(u - X)),
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Qp being a positive definite matrix andthe current point obtained by the interior-point algo-
rithm. For instanceQp was the identity matrix in [6]; an@p was a diagonal matrix with small
entries—dynamically updated at each interior-point iferat-in [1]. Unfortunately, these prox-
imal point regularizations depend on the current peinand then they do not fit the general
theory of structural optimization for interior-point mettts [5]. In [3] the authors suggested the
alternative regularized barrier problem

n n
Bo(X, 1) éch+,u(%xTQx—ileln X; —;In(ui —xi)J 4)
Q being a diagonal positive semidefinite matrix. This regaéat barrier function was shown to
be a self-concordant barrier [3] for upper-bounded probklamd thus it fits the general interior-
point theory of [5]. It was shown in [3] than, due to this regyigation term, the spectral proper-
ties of a preconditioned system were significantly improvEiis allowed the ficient solution
of the normal equations of some very large primal block-gergoroblems by means of a scheme
that combines Cholesky factorizations and preconditiarmegugate gradients [2].
The KKT conditions for (2) are [7]:

Ax = b,
Aly+z-w = ¢
XZe = pe (5)
U-X)\We = pue
(zw) > 0, O<x<uy

e € R"is a vector of 1'sy € R™, z w € R" are the Lagrange multipliers (or dual variables) of
Ax = b, x > 0 andx < u, respectively; and matrice§ Z, U,W € R™" are diagonal matrices
made up of vectorg, z u,w. The first two sets of inequalities of (5) impose, respebtiveri-
mal and dual feasibility; the last two impose complemenhtaiThe solutions of system (5) for
differentu values gives rise to an arc of strictly feasible primal-duaihts known as the primal-
dual central path. Ag tends to 0, the solutions of (5) converge to those of (1) andutl. A
primal-dual path-following algorithm attempts to follotva primal-dual central path. This is the
algorithm implemented in packages like, e.g., CPLEX, XBr&#OSEK, etc.

The KKT conditions for (2) replacin®(x, 1) by the regularized version (4) are

Ax = b,
Aly —uQx+z-w = c,
XZe = pue (6)
U-X)We = pue
(zw) > 0, O<x<u

Note (5) and (6) only dfer in the dual feasibility. System (6) will be referred as tie regular-
ized KKT conditions, and the arc of primal-dual solutionsddferentu values as the regularized
primal-dual central path.

The purpose of this short paper is to show that the reguthpzenal-dual central path is well
defined for (primal and dual) feasible problems: it existd &@rs unique (i.e., for any there
is a solution to (6), and this solution is unique); and it aenges to a strictly complementary
solution of (1). Section 2 shows the existence and uniguergection 3 shows the convergence
to a primal-dual solution with strict complementarity. Wetend previous results [4, 7, 8] for the
standard central path defined by (5) to the new regularizesiore(6).
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2. Existence and uniqueness of the regularized central path

To simplify the notation, we will consider that the boundedlgem (1) has been trans-
formed to an equivalent problem without explicit upper basii.e., adding slacks € R", and
constraintx + s = uto Ax = b, and including slacks in the vector of variables):

min c'x
s.to Ax=Db @)
x> 0.

The dual of (7) is
min b’y
s.to Aly+z=c (8)
z>0.

The simplified primal and dual regularized logarithmic Erproblems are, respectively,

1 n
; T T
min ¢ = - In x;
i x+u(2x Qx .; x.]

9)
s.to Ax=h, x>0,
and .
1
max b'y+u|-=x"Qx+ ) Inz
y u( 5X Q ; ) (10)
s.to ATly—uQx+z=c, z>0.
The simplified regularized KKT conditions for either (9) a0 are
Ax = b,
ATy —uQx+z = c,
XZe = pue (11)
x2 > O
The primal-dual feasible s&t and the strictly feasible sgt® are defined by
F = {(x, y,2)|Ax=b, ATy - uQx+z=c, (x, 2 > O}, (12)
7O = {(x, Y,2)|Ax=b, Aly—uQx+z=c, (x, 2 > O}. (13)

We start by proving the following preliminary Lemma, to beeddater:

Lemmal. If 79 £ o (i.e., the problem is strictly feasible) then for eacreKR, K > 0, the set
{(x2)1(xy.2) € F for some y and X z < K} (14)

is bounded.

Proof. Let (X,y,2) be any point inF° and(x,y, 2) be any point inF such thatx"z < K. Since
AX = bandAx = bthenA (X — x) = 0. Similarly, AT (y - y)+(z— 2) —uQ (X - X) = 0. Therefore,

X-X0"Z-2 =(x-x" g—AT V- y) +uQ(X- X))
=pu(X=%' Q(X-x)
~-(X-X)TAT(y-Y)
=pu(X-%" QX=X -0-(y-Y)
= p(X- x3>TQ(x‘— X).



which can be recast as

Xz2+Zx=XZ+ X z2-pu(Xx-%" Q(X-X).

Sincex"z < K andu (X - x)T Q(X - x) > 0 because® is positive semidefinite,

Xz+Zx<K+XZ-pu(X-X"Q(X-X)<K+XxZ (15)

which means 1 1
0<x<Z(K+X2),0<z<;(K+X2),i=1....n
¢ ¢

and hence (14) is bounded. O

To show existence and uniqueness we first define the new set
HO = {(x.2) | (x.y.2) € F° for somey}.

We also define the barrier function
1 n
f.(x2 = =x"z- Z In(x%z), (16)
H i=1

with the following properties:

Lemma2 1. f,tends to+co whenevelx, 2) approaches the boundary #f°, i.e., when any
Xj or z; approaches).
2. f, is strictly convex orH°.
3. f, is bounded below of{°.

4. Givenu > 0, and anyx € R, points(x, z) of the level setf, = {(x, 2 e HO| f(%2) < K}
satisfy
X € [M,My], ze[M,M], i=1,...,n, (17)

for some positive numbers,lnd M,, and thus they are contained in compact subsets.

Proof. (We remark that the regularization term does not intervengroofs of properties 1, 3
and 4, and they are the same than for the standard centralgogtliay, we recall them here for
completeness).

Property 1 is straightforward.

For property 2, note that the second terrii; In (xz) is strictly convex (since its Hessian is
positive definite). The first term is shown to be convexféh Indeed, ifxis any point for which
AX = b, we have for anyx,2) € Hthatx"z= x"(c - ATy + uQx) = c"x - X' ATy + ux" Qx =
c'x=X"(C—z+puQX) +ux"Qx = c"x - c"X+ X" z— uX" Qx+ ux" Qx, which is convex inx, 2)
sinceQ > 0. Hence,f,(x,2) is the sum of a convex and a strictly convex function, thus it
strictly convex.



To show property 3, we defirg{t) = t — Int — 1 and rewritef, (X, 2) as

n . .
f.(x2) = g(ﬁ)+ n—ning (18)
=\

i
Functiong(t) is strictly convex in(0, o), g(t) > 0 fort € (0, ), and tends teo when either
t - 0ort — co. Usingg(t) > 0in (18) we have

f,(x2=2n-nlnu=n(l-Inwy),

i.e., f,(x,2) is bounded below.
Property 4 is shown by noting that by (18)x, 2) < « if and only if

n (XJ'Z]') _
> 0% <%
A
wherex = k — n+ ninu. Choosing a particular indéx= j, and using thag(t) > 0, we have
AN Xizi\ —
o(%2)<7- Y04 <k
H S\ u

Therefore, using thaj(t) — oo when eithett — 0 ort — oo, there exists a valu®l such that
1 .
MsxizisM, i=1,...,n (29)

Adding the terms in this expression we get

n
x'z= Z Xz < nNM. (20)
i=1

By (20) and the boundedness established by Lemma 1 we know élRests a numbei, such
thatx € (0,M] andz € (0, My] foralli = 1,...,n. Using (19), we have tha > 1/ (Mz) >
1/ (MM,) for all i; for z we obtain the same lower bound. (17) holds by setkihg 1/ (MMy,).

O

Finally, next Theorem 1 shows that for gmy- 0 the barrier functiorf,(x, z) defined by (16)
reaches its minimum ift°, that the minimizer is unique, and that this means that thelagized
KKT conditions (11) have a unique solution.

Theorem 1. If F® # @ andu > 0O, then f,(x,2) has a unique minimizer i°, and (11) has a
unique solution.

Proof. By property 4 of Lemma 2 we have that level s#s = {(x.2) € H°|f,(x.2) <k} of

f.(x, 2) are contained in a compact subsetféf, and thusf,(x, 2) has a minimizer inH°. By
property 2 of Lemma 2f,(x, 2) is strictly convex, thus the minimizer will be unique.

We next show this unique minimizer corresponds to the ungpletion of (11). This mini-
mizer solves the linearly constrained minimization proble

min f,(x, 2) s. toAx=D, Aly+z-uQx=c, (x,2) > 0. (21)
5



From the Lagrangian

Ly, zv,w) = f,(% 2) + V' (Ax-b)
+W'(ATy + z— uQx~ c)

we obtain the KKT conditions of (21)

dc df,
a = _X +A V—,LlQW

= ~Ze-Xlte+ Alv—puQw=0,

K (22)

d—L = Aw=0,
Y df
£ _ L tw=Xe-Zle+w=0
dz dz u

By combining the first and third equalities of (22) we obtain
Alv=X"1te- 32e+ uQ(Zte- EXe). (23)
H H
By combining the second and third we find that
1
A(Zle- =X =0,
M
which means 1
(Zle- =xe"ATv=0.
M
Using the above result in (23) we have
1 1 1
(Zle- =X (X le- =Ze+ uQ(Zte- =Xe) =0,
M M M

or equivalently,
1 1
(Zle- =X (X te— =Z¢
(il o (24)
+ (Zte- ;x@TﬂQ(z-le— ;X(a) =0.
The first term of (24) can be written as
1 A NN B 1
(Zle- =X (X?Z)X*Z?)(Xle- =29 =
H H

P73, 138 1 TP, 1yb8
(X*Z°e-=X"Z"¢) (X" Z°e-=X"Z"¢ =
M H

2
”(xzyl/ze - }(XZ)l/Ze
M

v

O’
2
Il Il being the Euclidean norm. Sin€g > 0 andu > 0, the second term of (24) is greater or
equal than zero. Therefore (24) holds if and only if

2

H(XZ)’l/ze— %(XZ)l/Ze 0, (25)

2

I
©

(Zte- EXe)TyQ(Z’le - EXe) (26)
H H
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From (25) we haveX2)'?%e = %(Xal/ze, and thereforexZe = pe. XZe = pe if and only

if Zle— 1Xe = 0, and then (26) holds. Therefore, the unique minimizer &) gtisfies not
only the Tjéasibility conditions of (11), but also thecomplementarity condition, and the proof
is complete. O

3. Convergence of theregularized central path
Two properties are first proved. The first one shows the reigeld central path is bounded.

Proposition 1. Let (x(u), y(u), z()) be on the regularized central path defined by (11). Then
(X(u), Z(u)) is bounded for alD < u < p and any giverd < u < co.

Proof. Since &(u), y(1), z(u)) solves (11)x" (1)z(u) = nu. Therefore, using Lemma 1x((), z(u))
is bounded. O

The second property shows the evolution of the objectiVesandb'y, and the regularized
barriersPo(x) £ $xTQx— ¥, Inx andDg(x.2) £ -$x"Qx+ X, Inz of, respectively, (9)
and (10), along the regularized central path.

Proposition 2. Let(x(u), y(u), z(«)) be on the regularized central path defined by (11). Therefore
foranyO < up < g,

CTX(u2) < €' X(u1),  Po(X(2)) > Po(X(1)),
bTY(u2) > bTy(u1), Dq(X(2)) < Do(X(2)).

Proof. For notational simplicity, let us denote by (y', ) the point &(u), y(ui), z(ii)) on the
regularized central path. Sine& andx? solve (9) for, respectively; andu,, and the objective
function of (9) is strictly convex, we have

c"xt + uiPo(xt) < €7 X% + 1 Po(X®) (27)
and
"3 + uaPo (@) < "Xt + uaPo(Xh). (28)
Adding (27) and (28), we obtain
(12 — 1) (Po(x') = Po(x®)) > 0. (29)

Sinceu; < u1, from (29) we have
Po(>®) > Po(x). (30)
Using (30) in (28), we see that x> < c"x.
Similarly, since &y, z}) and &2,y?, 7%) solve (10) for, respectively;; andu,, and the
objective of (10) is strictly concave on the feasible regfoe., the reduced Hessian—pre and
post multiplied by the Jacobian of constraints—is negatefinite), we have

bTyl + /JlDQ(Xl, Zl) > bTy2 + ﬂlDQ(XZ, 22) (31)
and
bTy2 + ,ugDQ(Xz, 22) > bTyl + /JzDQ(Xl, Zl) (32)

Adding (31) and (32), and using that < w1, we conclude thaDQ(xz) < Dg(xY). Using this
result in (32), we finally obtain that"y? > bTy*
O
7



Next proposition shows the regularized central path c@egto an optimal solution.

Proposition 3. The regularized central path sequene€u), y(u), z(.)) converges to an optimal
solution of (7) and (8) ag — O.

Proof. By Proposition 1, X(u), z(u)) is bounded and then it has a limit poix{@), z(0)) asu — O.
Any (x(u), z(u)) in the subsequence whose limit ig(@), z(0)) satisfies (11), i.e.Ax(u) = b,
c— 2(u) + uQx(u) € range(A"), x(u)" z(u) = nu, (X(u), 2(u)) > 0. Sincerangg(AT) is a closed set,
asu — 0 there is a/(0) such thatAx(0) = b, ¢ — z(0) = ATy(0), x(0)" z(0) = 0, (x(0), 0)) > 0,
and thus x(0), y(0), z(0)) is an optimal solution of (7) and (8). O

A significant diference between the standard central path defined by (5) amdghlarized
central defined by (6) is that the regularized central patioisguaranteed to converge to the
analytic center of the optimal set for any regularizationtnwaQ. This can be illustrated by the
following small example. Consider the maximizationx@fover the unit square [@]? defined
by constraints & x; < 1, and 0< x, < 1. This problem is formulated in standard form as

min  —Xg
s.to Xi+x3=1
Xo+Xg=1 (33)

x=>0i=1,..., 4.

Considering a diagonal regularization mat@x= diag(@, 02, 03, t4), Gi = 0,i = 1,...,4, condi-
tions (11) for this problem are

X1+X3 =1
Xo+X4s =1
Y1 —ugix1+2z =-1
Yo —ulpXe+2 =0 (34)

Y1 —uQeXzs+2z3 =0
Y2 —utaXq +24 =0
Xz =upi=1,...,4
(%,z) >0i=1,...,4

If Q=0,i.e., there is no regularization, the solution of (34)Xpandx, is shown to be

1-2u+ 4?2 +1 1
= 5 Xz - A
2 2
As u — oo the central path point tends t&y( x2) — (1/2,1/2), the analytic center of the feasible
set. Asy — 0, the optimal solutionx, x;) — (1,1/2) is obtained, which coincides with the

analytic center of the optimal face (the segm@n0)(1, 1)).
If Q # 0, the solution of (34) fox; andx; is provided by the cubic equations

X1

(O + Ga)XS — (2ug + Oy + 1)%E + (ujs — 2u + 1)xg +p =0
(G +0a)X3 — (20 + )X + (L —2)x2+1 =0,

Note thatx, does not depend gn and for somé&), x, may be diferent than 12, i.e., the optimal

point does not converge to the analytic center of the optfea. For instance, for the particular

valuesqi = 10i, i = 1,...,4 we obtainx, = 0.64548. Asuy — oo, X3 — 0.70178, and as
8



central path regularized central path

0.8

0.6

X,

0.4

0.2

X,

Figure 1: Central path and regularized central for probl88) 6n (1, x2) space.

u — 0,x; — 1. The other two solutions of each cubic equation are disthsihce they do
not satisfy some equations of (34). Figure 1 shows the degpdith and the regularized central
path, for the previous particuldp, on the 3, Xo) space. Note, however, that for sor@ethe
regularized central path, not only converges to the aratgnter of the optimal solution set, but
also coincides with the central path. For instance, in thésvgole, this happensd, = g = gz =
Oa.

It is also worth to mention that for problems with a uniqueimat point, both the regularized
and standard central path converge to this point, but, dépgmonQ, with different trajectories.
However, in practice, since small regularizations are pgleelse trajectories are similar. To
illustrate this situation, consider the simple problem

min  Xq + Xo

S.t0 X >0,%x >0, (35)

with a unique optimal solution. Conditions (11) for this plem are

-ugixi+z =1 =12
Xz =p i=12 (36)
(%,z) >0 i=12

If Q = 0, the central path isx{ = u, %o = u,zz = 1,z = 1). If Q # 0, the regularized central

path is
L (LTI
2u0; ’
_ 2%
BV

Asu — 0, thenx — Oandz — 1,i = 1, 2, thus the regularized central path provides the optimal
solution. However, the trajectories of the central path mgililarized central path arefidirent,
as shown in Figure 2 fog; = 1 andg, = 25. Note that ag — o0, (X1, X2) — (o0, 00) in the
central path, whereagy(, x,) — (1,1/5) in the regularized central path.
The previous discussion can be summarized in the follonésglt.
9
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central path regularized central path

T T T T 1
0 0.2 0.4 0.6 0.8 1
X,

Figure 2: Central path (only part betweer= 0.5 andu = 0) and regularized central path for problem (35) &n &2)
space.

Proposition 4. The regularized central path sequen(®éu), y(u), z(u)) is not guaranteed to con-
verge to the analytic center of the optimal sefas> 0 (unlike the standard central path).

Proof. The above problem (33) is a counterexample that proves tbgogition. O

Finally, the below result shows that, like the central pdltie, regularized central path con-
verges to a strictly complementary primal-dual solution.

Theorem 2. The regularized central path sequen(@€u), y(u), z(1)) converges to a strictly com-
plementary primal-dual solution gs— 0.

Proof. By the Goldman-Tucker theorem, there exists a strictly dempntary solutionx®, y*, z*),
i.e.,x" solves (7),¥*, Z") solves (8), andg > 0, x5y = 0,2g = 0,zy > 0, where

B = ie{l,...,n}:xi*>0},
N = liefl....n:Z >0}

are the sets of the complementarity partition (i N = {1,...,n}, andB N N = 0). Let
(x(u), y(u), z(u)) be a point of the regularized central path for somd.e., this point solves
(11). Since the complementary solutioxt,(y*, z*) solves the KKT conditions of (7) and (8),
namely,Ax = b, ATy* + 2 = ¢, ()72 = 0, (x',Z) > 0, we haveA(x* — x(u)) = 0 and
Z - Au) = —AT(y* - y(u)) — uQx(u). Therefore

(X = x(@)'(Z = 2w) = —u(x" = X())T QX(w). (37)
Since &* — x(u))"(z* — z(u)) also satisfies
(X = x(@) (2 = 2) = mu — (x) T 2w) = ()" x(w), (38)

combining (37) and (38) we have

0= (X) 2u) + (Z) X(w) = u(n+ (X = X()) Qx(w)).
10



Sincex* is bounded, and by Propositionx{u) is also bounded for all & u < u and any given
0 < i < oo, there exists a bounded valueln 0 < C < oo such that

Cx {(x = xw)"Qx) : X' solves (7)

X(u1) solves (11), 0< u < i}, (39)
for any given O< u < c. Then
0< > X200 + ) Z%() < u(n+C), (40)
ieB ieN
wheren + C > n. Sincex(u)z(u) = 4, i = 1,...,n, (40) can be rewritten as
4
0<ZX|(/J) > (ﬂ)_(n+C) (41)

ieB ieN

Thus we have

X (1) > )9* >O|eB Zi(/J)anC>0i€N.

Therefore, agt — 0, XB(O) > O andzN(O) > 0, i.e., the regularized central path converges to a
strictly complementary primal-dual solution. O

As a corollary of Theorem 2, we have that under some condititire regularized central
path is guaranteed to converge to the analytic center offitimal face, like the standard central
path.

Corollary 1. Let(x",y*,Z") be the analytic center of the primal and dual optimal set. K@,
C defined in (39), then the regularized central path sequér@s, y(u), z(1)) converges to the
analytic center of the optimal sét*, y*, Z°).

Proof. The analytic center of the optimal set*(y*,z") is a strictly complementary solution.
Then, by (41), and using th&t = 0, we have

X z
25w " 22w
<

i€eB ieN

n
Therefore, by the inequality of arithmetic and geometri@angeof positive numbers,

ata) =
el

ieB ieN i€eB ieN

Of all the points on the optimal face, the analytic centenésitnique maximizer [ Ticg %) ([ Tien 2).
and then, ag — 0, we must have

()11 (o) 720

i.e., Xg(0) = x; andzy(0) = z,. O
11



For instance, note that the conditions of Corollary 1 holezxample (35):x* = 0 is the
unique solution—thus the analytic center—of the optimal aetilC = 0 > —x(u)" Qx(u), since
Q=>0.
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