ILOG CPLEX 11.0 User's Manual > Continuous Optimization > Solving LPs: Simplex Optimizers > Diagnosing LP Infeasibility > Interpreting Solution Quality |
Interpreting Solution Quality |
INDEX PREVIOUS NEXT |
Infeasibility and unboundedness in linear programs are closely related. When the linear program ILOG CPLEX solves is infeasible, the associated dual linear program has an unbounded ray. Similarly, when the dual linear program is infeasible, the primal linear program has an unbounded ray. This relationship is important for proper interpretation of infeasible solution output.
The treatment of models that are unbounded involves a few subtleties. Specifically, a declaration of unboundedness means that ILOG CPLEX has detected that the model has an unbounded ray. Given any feasible solution x with objective z, a multiple of the unbounded ray can be added to x to give a feasible solution with objective z-1 (or z+1 for maximization models). Thus, if a feasible solution exists, then the optimal objective is unbounded. Note that ILOG CPLEX has not necessarily concluded that a feasible solution exists. To see whether ILOG CPLEX has also concluded that the model has a feasible solution, use one of these routines or methods:
IloCplex::isPrimalFeasible
or isDualFeasible
in the C++ API;
IloCplex.isPrimalFeasible
or isDualFeasible
in the Java API;
Cplex.IsPrimalFeasible
or IsDualFeasible
in the .NET API.
CPXsolninfo
in the Callable Library
By default, individual infeasibilities are written to a log file but not displayed on the screen. To display the infeasibilities on your screen, in Concert Technology, use methods of the environment to direct the output stream to a log file; in the Interactive Optimizer, use the command set output logonly y cplex.log
.
For C++ applications, see Accessing Solution Information, and for Java applications, see Accessing Solution Information. Those sections highlight the application programming details of how to retrieve statistics about the quality of a solution.
Regardless of whether a solution is infeasible or optimal, the command display solution quality
in the Interactive Optimizer displays the bound and reduced-cost infeasibilities for both the scaled and unscaled problem. In fact, it displays the following summary statistics for both the scaled and unscaled problem:
When the simplex optimizer detects infeasibility in the primal or dual linear program (LP), parts of the solution it provides are relative to the Phase I linear program it solved to conclude infeasibility. In other words, the result you see in such a case is not the solution values computed relative to the original objective or original righthand side vector. Keep this distinction in mind when you interpret solution quality; otherwise, you may be surprised by the results. In particular, when ILOG CPLEX detects that a linear program is infeasible using the primal simplex method, the reduced costs and dual variables provided in the solution are relative to the objective of the Phase I linear program it solved. Similarly, when ILOG CPLEX detects that a linear program is unbounded because the dual simplex method detected dual infeasibility, the primal and slack variables provided in the solution are relative to the Phase I linear program created for the dual simplex optimizer.
The following sections discuss these summary statistics in greater detail.
The maximum bound infeasibility identifies the largest bound violation. This information may help you discover the cause of infeasibility in your problem. If the largest bound violation exceeds the feasibility tolerance of your problem by only a small amount, then you may be able to get a feasible solution to the problem by increasing the parameter for feasibility tolerance (EpRHS
in Concert Technology, CPX_PARAM_EPRHS
in the Callable Library). Its range is between 1e-9
and 0.1
. Its default value is 1e-6
.
The maximum reduced-cost infeasibility identifies a value for the optimality tolerance that would cause ILOG CPLEX to perform additional iterations. It refers to the infeasibility in the dual slack associated with reduced costs. Whether ILOG CPLEX terminated with an optimal or infeasible solution, if the maximum reduced-cost infeasibility is only slightly smaller in absolute value than the optimality tolerance, then solving the problem with a smaller optimality tolerance may result in an improvement in the objective function.
To change the optimality tolerance, set the parameter for optimality tolerance ( EpOpt
in Concert Technology, CPX_PARAM_EPOPT
in the Callable Library).
The maximum row residual identifies the maximum constraint violation. ILOG CPLEX Simplex optimizers control these residuals only indirectly by applying numerically sound methods to solve the given linear system. When ILOG CPLEX terminates with an infeasible solution, all infeasibilities will appear as bound violations on structural or slack variables, not constraint violations. The maximum row residual may help you decide whether a model of your problem is poorly scaled, or whether the final basis (whether it is optimal or infeasible) is ill-conditioned.
The maximum dual residual indicates the numeric accuracy of the reduced costs in the current solution. By construction, in exact arithmetic, the dual residual of a basic solution is always 0 (zero). A nonzero value is thus the effect of roundoff error due to finite-precision arithmetic in the computation of the dual solution vector. Thus, a significant nonzero value indicates ill conditioning.
When you are trying to decide whether your problem is ill-conditioned, you also need to consider the following maximum absolute values, all available in the infeasibility analysis that ILOG CPLEX provides you:
When using the Component Libraries, use the method cplex.getQuality
or the routine CPXgetdblquality
to access the information provided by the command display solution quality
in the Interactive Optimizer.
If you discover from this analysis that your model is indeed ill-conditioned, then you need to reformulate it. Coping with an Ill-Conditioned Problem or Handling Unscaled Infeasibilities outlines steps to follow in this situation.
Copyright © 1987-2007 ILOG S.A. All rights reserved. Legal terms. | PREVIOUS NEXT |