Publication Type | Conference Paper |
Year of Publication | 2022 |
Authors | F.-Javier Heredia; Ignasi Mañé; Marlyn Dayana Cuadrado Guevara |
Conference Name | EURO 2022 |
Conference Date | 03-06/07/2022 |
Conference Location | Espoo, Finland. |
Type of Work | Invited presentation |
ISBN Number | 978-951-95254-1-9 |
Key Words | research; multistage stochastic programming; virtual power plants; unit commitment |
Abstract | In this study we present a multistage stochastic programming model to find the joint optimal bid to electricity markets of a pool of dispatchable (thermal) and non-dispatchable (wind) production units with battery storage facilities. The assumption is that these programming units are operated by the same utility that, previous to the market clearing, has to dispatch some bilateral contracts with the joint production of the production pool. The multistage model mimics the multimarket bidding process in the Iberian Electricity Market (MIBEL). First, the utility has to decide how to cover the energy of the bilateral contracts with the available units. Second, the production capacity of each unit, not allocated to the bilateral contracts, must be offered to the seven consecutives spot markets (day-ahead and six intraday markets) plus the secondary reserve market (the most relevant ancillary services market). The stochasticity of the electricity clearing prices and the hourly generation of the wind-power units is considered. The stochastic process associated to this multistage decision-making process is modelled through multistage scenario trees with thirty-four stages that are built from forecasting models based on real data of the Iberian Electricity Market. The numerical results show the advantage of the joint operation of the pool of production units with an increase of the overall expected profits, mainly due to a strong reduction of the operational costs. |
URL | Click Here |
Export | Tagged XML BibTex |
Publication Type | Tesis de Grau i Màster // BSc and MSc Thesis |
Year of Publication | 2017 |
Authors | Roger Reixach Sánchez |
Director | F.-Javier Heredia, Jordi de la Hoz |
Tipus de tesi | MSc Thesis |
Titulació | Master en Enginyeria de l'Energia |
Centre | ETSEIB |
Data defensa | 11/2017 |
Nota // mark | 6 |
Key Words | teaching; electricity markets; MSc Thesis |
DOI / handle | http://hdl.handle.net/2117/109081 |
URL | Click Here |
Export | Tagged XML BibTex |
Publication Type | Tesis de Grau i Màster // BSc and MSc Thesis |
Year of Publication | 2018 |
Authors | Roger Pasola |
Director | F.-Javier Heredia; Josep Salas |
Tipus de tesi | MSc Thesis |
Titulació | Màster in Industrial Engeneering |
Centre | ETSEIB |
Data defensa | 03/11/2018 |
Nota // mark | 9.0 |
Key Words | teaching; electricity markets; EUPHEMIA; MSc Thesis |
DOI / handle | http://hdl.handle.net/2117/123837 |
URL | Click Here |
Export | Tagged XML BibTex |
Publication Type | Conference Paper |
Year of Publication | 2017 |
Authors | F.-Javier Heredia; Marlyn D. Cuadrado |
Conference Name | WindFarms 2017 |
Conference Date | 31/05-02/06/2017 |
Conference Location | Madrid, Spain |
Type of Work | Invited presentation |
Key Words | research; wind farms; Ion-Li battery; multistage stochastic programming; stochastic programming |
URL | Click Here |
Export | Tagged XML BibTex |
Publication Type | Tesis de Grau i Màster // BSc and MSc Thesis |
Year of Publication | 2016 |
Authors | Maksims Sisovs |
Director | F.-Javier Heredia |
Tipus de tesi | MSc Thesis |
Titulació | "KIC InnoEnergy" Master of Science in Smart Electrical Networks and Systems |
Centre | Escola Tècnica Superior d'Enginyeria Industrial de Barcelona (ETSEIB) |
Data defensa | 16/09/2016 |
Nota // mark | 10 MH (A+ with honours) |
Key Words | teaching; BEES; battery energy storage systems; electrical vehicle; smart meters; retail energy market; MSc Thesis |
Abstract | The main focus of this master thesis project is to evaluate the economic, technical and regulatory feasibility of distributed battery energy storage systems (BESS) and the potential opportunity of electricity companies to increase their prots through advanced operation in energy services, such as electric energy time-shift, ancillary or electric vehicle incentives in Spanish electricity market. To assess the feasibility, an optimization tool has been developed. This tool simulates energy trading between different market participants with particular features extracted from data analysis and literature. Load consumption proles had been developed from smart meter real data by applying several data mining techniques. This part had been guided by external collaborating entity Minsait. Electricity market analysis includes the overview of its functionality principles and regulatory side regarding storage adaptation and specific service applicability. Market historical prices were used for further electricity trading simulation. A brief technical insight explains current storage situation and tells about high-potential technologies in emerging markets. Benchmark analysis covers several products of battery manufacturers with relevant technical and price information. Spanish electricity market showed low adaptability to distributed BESS solutions: energy arbitrage incomes have resulted being insuficient. Ancillary services, despite promising economic gures, are to a large extent prohibited to be provided by distributed storage. Electric vehicle incentives, though, resulted being of a high interest due to absence of direct investment. |
Export | Tagged XML BibTex |