dual methods

Coordinación hidrotérmica a corto y largo plazo de la generación eléctrica en un mercado competitivo (DPI2002-03330).

Publication TypeFunded research projects
Year of Publication2002
AuthorsF.-Javier Heredia
Type of participationFull time researcher
Duration01/2003 -12/2005
Funding organizationMinisterio de Educación y Ciencia
PartnersDepartament d'Estadística i Investigació Operativa / Universitat Politècnica de Catalunya; Unión Fenosa
Full time researchers7
Budget85.000’00 €
Project codeDPI2002-03330
Key Wordsresearch; dual methods; lagrangian relaxation; unit commitment; power systems; transmission network; radar multiplier; project; public; competitive; micinn; energy
ExportTagged XML BibTex

Planificación de la generación eléctrica a corto y largo plazo en un mercado liberalizado con contratos bilaterales (DPI2005-09117-C02-01).

Publication TypeFunded research projects
Year of Publication2005
AuthorsF.-Javier Heredia
Type of participationFull time researcher
Duration01/2006-12/2008
Funding organizationMinisterio de Educación y Ciencia
PartnersDepartament d'Estadística i Investigació Operativa, Universidad Politèctica de Catalunya; Unión Fenosa
Full time researchers5
Budget289.408'00€
Project codeDPI2005-09117-C02-01
Key Wordsresearch; stochastic programming; electricity markets; future contracts; bilateral contracts; regulation markets; project; public; competitive; micinn; energy
AbstractThe project aims at two new features: the simultaneous consideration of bidding power to the liberalized market and of bilateral contracts (between a generation company and a consumer client), given the future elimination of the current regulations discouraging bilateral contracts, and the developement of optimization procedures more efficient than those employed now to solve these problems. This higher efficiency will allow a more accurate modeling and solving larger real problems in reasonable CPU time. In this project, both modeling languages and commercially available solvers in the one hand, and our own optimization algorithms in the other are employed. The algorithms to be developed include the use of: interior-point methods, global optimization, column-generation methods, and Lagrangian relaxation procedures employing dual methods
URLClick Here
ExportTagged XML BibTex

The radar multiplier method: a two-phase approach for large scale nonlinear combinatorial optimization problems

Publication TypeConference Paper
Year of Publication2003
AuthorsHeredia, F. J.; Beltran, C.
Conference Name 21th IFIP TC7 Conference on System Modelling and Optimization
Pagination92
Conference Date21-25/07/2003
PublisherINRIA
Conference LocationSophia Antipolis, France
EditorJ. Cagnol; J.P. Zolesio
Type of WorkContributed oral presentation
ISBN Number2-7261-1253-6
Key Wordsaugmented lagrangian relaxation; generalized unit commitment; radar multiplier method; research
ExportTagged XML BibTex

Generalized Unit Commitment

Publication TypeConference Paper
Year of Publication2004
AuthorsHeredia, F. J.; Beltran, C.
Conference NameApplied Mathematical Programming and Modellization (APMOD 2004)
Conference Date21-23/06/2004
Conference LocationBrunel University, Uxbridge, UK.
Type of WorkInvited oral presentation
Key Wordsaugmented lagrangian relaxation; generalized unit commitment; radar multiplier method; research
AbstractThe Generalized Unit Commitment problem (GUC) extends the unit commitment problem by adding the transmission network. A full-network modelization of the GUC problem is presented. In this model, all non-binary variables of the problem can be represented as flows of the so called Hydro-Thermal-Transmission Network (HTTN), including those representing incremental and decremental spinning reserve. The result is a large scale nonlinear mixed optimization problem that is solved with the Radar Multiplier method, a novel two-phase dual technique based on augmented Lagrangian relaxation and variable duplication. The computational implementation of the proposed model and method, both in FORTRAN and AMPL, are described. The numerical solution of several instances of the GUC problem will be presented and discussed, showing the capability of the model and solution technique to cope with real-world instances of the GUC problem.
ExportTagged XML BibTex

Unit Commitment by Augmented Lagrangian Relaxation: Testing Two Decomposition Approaches

Publication TypeJournal Article
Year of Publication2002
AuthorsBeltran, C.; Heredia, F. J.
Journal TitleJournal of Optimization Theory and Applications
VolumeV112
Issue2
Pages295 - 314
Journal Date02/2002
PublisherSpringer Netherlands
Key Wordsaugmented lagrangian relaxation; generalized unit commitment; block coordinated descent method; auxiliary principle problem; research; paper
AbstractOne of the main drawbacks of the augmented Lagrangian relaxation method is that the quadratic term introduced by the augmented Lagrangian is not separable. We compare empirically and theoretically two methods designed to cope with the nonseparability of the Lagrangian function: the auxiliary problem principle method and the block coordinated descent method. Also, we use the so-called unit commitment problem to test both methods. The objective of the unit commitment problem is to optimize the electricity production and distribution, considering a short-term planning horizon.
URLClick Here
DOI10.1023/A:1013601906224
ExportTagged XML BibTex

An Effective Line Search for the Subgradient Method

Publication TypeJournal Article
Year of Publication2005
AuthorsBeltran C.; F.-Javier Heredia
Journal TitleJournal of Optimization Theory and Applications
Volume125
Issue1
Pages19
Start Page1
ISSN Number0022-3239
Key Wordslagrangian relaxation; generalized unit commitment; radar subgradient method; research; paper
AbstractOne of the main drawbacks of the subgradient method is the tuning process to determine the sequence of steplengths. In this paper, the radar subgradient method, a heuristic method designed to compute a tuning-free subgradient steplength, is geometrically motivated and algebraically deduced. The unit commitment problem, which arises in the electrical engineering field, is used to compare the performance of the subgradient method with the new radar subgradient method.
URLClick Here
DOI10.1007/s10957-004-1708-4
ExportTagged XML BibTex
Syndicate content